WorldWideScience

Sample records for general chemistry organic

  1. Analysis of Students’ Missed Organic Chemistry Quiz Questions that Stress the Importance of Prior General Chemistry Knowledge

    OpenAIRE

    Julie Ealy

    2018-01-01

    A concern about students’ conceptual difficulties in organic chemistry prompted this study. It was found that prior knowledge from general chemistry was critical in organic chemistry, but what were some of the concepts that comprised that prior knowledge? Therefore an analysis of four years of organic chemistry quiz data was undertaken. Multiple general chemistry concepts were revealed that are essential prior knowledge in organic chemistry. The general chemistry concepts that were foun...

  2. Understanding the Impact of a General Chemistry Course on Students' Transition to Organic Chemistry

    Science.gov (United States)

    Collins-Webb, Alexandra; Jeffery, Kathleen A.; Sweeder, Ryan D.

    2016-01-01

    The move from general chemistry to organic chemistry can be a challenge for students as it often involves a transition from quantitatively-oriented to mechanistically-oriented thinking. This study found that the design of the general chemistry course can change the student experience of this transition as assessed by a reflective survey. The…

  3. Measuring Student Performance in General Organic Chemistry

    Science.gov (United States)

    Austin, Ara C.; Ben-Daat, Hagit; Zhu, Mary; Atkinson, Robert; Barrows, Nathan; Gould, Ian R.

    2015-01-01

    Student performance in general organic chemistry courses is determined by a wide range of factors including cognitive ability, motivation and cultural capital. Previous work on cognitive factors has tended to focus on specific areas rather than exploring performance across all problem types and cognitive skills. In this study, we have categorized…

  4. The Importance of Undergraduate General and Organic Chemistry to the Study of Biochemistry in Medical School.

    Science.gov (United States)

    Scimone, Anthony; Scimone, Angelina A.

    1996-01-01

    Investigates chemistry topics necessary to facilitate the study of biochemistry in U.S. medical schools. Lists topics considered especially important and topics considered especially unimportant in general chemistry and organic chemistry. Suggests that in teaching undergraduate general or organic chemistry, the topics categorized as exceptionally…

  5. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  6. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  7. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  8. A study of how precursor key concepts for organic chemistry success are understood by general chemistry students

    Science.gov (United States)

    Meyer, Patrick Gerard

    This study examines college student understanding of key concepts that will support future organic chemistry success as determined by university instructors. During four one-hour individual interviews the sixteen subjects attempted to solve general chemistry problems. A think-aloud protocol was used along with a whiteboard where the students could draw and illustrate their ideas. The protocols for the interviews were adapted from the Covalent Structure and Bonding two-tiered multiple choice diagnostic instrument (Peterson, Treagust, & Garnett, 1989) and augmented by the Geometry and Polarity of Molecules single-tiered multiple choice instrument (Furio & Calatayud, 1996). The interviews were videotaped, transcribed, and coded for analysis to determine the subjects' understanding of the key ideas. The subjects displayed many misconceptions that were summarized into nine assertions about student conceptualization of chemistry. (1) Many students misunderstand the location and nature of intermolecular forces. (2) Some think electronegativity differences among atoms in a molecule are sufficient to make the molecule polar, regardless of spatial arrangement. (3) Most know that higher phase change temperatures imply stronger intermolecular attractions, but many do not understand the difference between covalent molecular and covalent network substances. (4) Many have difficulty deciding whether a molecule is polar or non-polar, often confusing bilateral symmetry with spatial symmetry in all three dimensions. (5) Many cannot reliably draw correct Lewis structures due to carelessness and overuse of flawed algorithms. (6) Many are confused by how electrons can both repel one other and facilitate bonding between atoms via orbitals---this seems oxymoronic to them. (7) Many cannot explain why the atoms of certain elements do not follow the octet rule and some believe the octet rule alone can determine the shape of a molecule. (8) Most do know that electronegativity and polarity

  9. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    Science.gov (United States)

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry…

  10. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    Science.gov (United States)

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  11. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  12. Benchmarking Problems Used in Second Year Level Organic Chemistry Instruction

    Science.gov (United States)

    Raker, Jeffrey R.; Towns, Marcy H.

    2010-01-01

    Investigations of the problem types used in college-level general chemistry examinations have been reported in this Journal and were first reported in the "Journal of Chemical Education" in 1924. This study extends the findings from general chemistry to the problems of four college-level organic chemistry courses. Three problem…

  13. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    Science.gov (United States)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  14. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  15. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    Science.gov (United States)

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry…

  16. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    Science.gov (United States)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general

  17. "Drug" Discovery with the Help of Organic Chemistry.

    Science.gov (United States)

    Itoh, Yukihiro; Suzuki, Takayoshi

    2017-01-01

    The first step in "drug" discovery is to find compounds binding to a potential drug target. In modern medicinal chemistry, the screening of a chemical library, structure-based drug design, and ligand-based drug design, or a combination of these methods, are generally used for identifying the desired compounds. However, they do not necessarily lead to success and there is no infallible method for drug discovery. Therefore, it is important to explore medicinal chemistry based on not only the conventional methods but also new ideas. So far, we have found various compounds as drug candidates. In these studies, some strategies based on organic chemistry have allowed us to find drug candidates, through 1) construction of a focused library using organic reactions and 2) rational design of enzyme inhibitors based on chemical reactions catalyzed by the target enzyme. Medicinal chemistry based on organic chemical reactions could be expected to supplement the conventional methods. In this review, we present drug discovery with the help of organic chemistry showing examples of our explorative studies on histone deacetylase inhibitors and lysine-specific demethylase 1 inhibitors.

  18. Reaction-Map of Organic Chemistry

    Science.gov (United States)

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  19. What Does the Acid Ionization Constant Tell You? An Organic Chemistry Student Guide

    Science.gov (United States)

    Rossi, Robert D.

    2013-01-01

    Many students find the transition from first-year general chemistry to second-year organic chemistry a daunting task. There are many reasons for this, not the least of which is their lack of a solid understanding and appreciation of the importance of some basic concepts and principles from general chemistry that play an extremely critical role in…

  20. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    Science.gov (United States)

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  1. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  2. Mass spectrometry. [in organic chemistry

    Science.gov (United States)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  3. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  4. Organic Chemistry Self Instructional Package 2: Methane.

    Science.gov (United States)

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  5. Organic Chemistry Self Instructional Package 12: Alkynes.

    Science.gov (United States)

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The…

  6. Design and Evaluation of a One-Semester General Chemistry Course for Undergraduate Life Science Majors

    Science.gov (United States)

    Schnoebelen, Carly; Towns, Marcy H.; Chmielewski, Jean; Hrycyna, Christine A.

    2018-01-01

    The chemistry curriculum for undergraduate life science majors at Purdue University has been transformed to better meet the needs of this student population and prepare them for future success. The curriculum, called the 1-2-1 curriculum, includes four consecutive and integrated semesters of instruction in general chemistry, organic chemistry, and…

  7. Affordances of Instrumentation in General Chemistry Laboratories

    Science.gov (United States)

    Sherman, Kristin Mary Daniels

    2010-01-01

    The purpose of this study is to find out what students in the first chemistry course at the undergraduate level (general chemistry for science majors) know about the affordances of instrumentation used in the general chemistry laboratory and how their knowledge develops over time. Overall, students see the PASCO(TM) system as a useful and accurate…

  8. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  9. Organic Chemistry in Action! What Is the Reaction?

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2015-01-01

    The "Organic Chemistry in Action!" ("OCIA!") program is a set of teaching resources designed to facilitate the teaching and learning of introductory level organic chemistry. The "OCIA!" program was developed in collaboration with practicing and experienced chemistry teachers, using findings from Chemistry Education…

  10. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  11. General Chemistry for Engineers.

    Science.gov (United States)

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  12. Nomenclature and Terminology of Organic Chemistry. I. Sixty Years of Croatian Nomenclature of Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Rapić, V.

    2013-07-01

    Full Text Available This article describes the history and development of the Croatian nomenclature of organic chemistry from the publication of the first translation of international nomenclature recommendations to the present age. In the Introduction, trivial, common, systematic (rational, and semisystematic names are defined, and the etymology and meaning of terms nomenclature and terminology are clarified.At the beginning of the central part of this article, attention is focused on the need to create our national nomenclature. The very first such project, initiated by the Croatian Chemical Society (CCS, was the translation of the Geneva (1892 and Lie`ge rules (1930 published in 1954. In 1979 comprehensive general IUPAC rules appeared, and the Croatian Society of Chemical Engineers (CSCE in two volumes printed the Croatian edition of this important document, known as the Blue Book, in 1985 and 1988. A Guide to IUPAC Nomenclature of Organic Compounds (1993 expanded the main principles and rules from the Blue Book, and introduced a higher degree of organic nomenclature systematization. The Croatian translation of the Guide was published in 2002. In the last six decades, almost fifty translations of international rules have been issued, and almost all of them represented the official recommendations of the CCS/CSCE. Finally, the nomenclature in the translations of five comprehensive textbooks fororganic chemistry is analysed.In conclusion, readers are informed that the Croatian version of IUPAC rules is applied in our secondary school and university education, in Croatian encyclopaedism and mass media, as well.

  13. Organic Chemistry in Space

    Science.gov (United States)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  14. A Comparison of How Undergraduates, Graduate Students, and Professors Organize Organic Chemistry Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Leung, Min Wah; Flynn, Alison B.

    2018-01-01

    To explore the differences between how organic chemistry students and organic chemistry professors think about organic chemistry reactions, we administered a card sort task to participants with a range of knowledge and experience levels. Beginning students created a variety of categories ranging from structural similarities to process oriented…

  15. Computer assisted instruction in the general chemistry laboratory

    Science.gov (United States)

    Pate, Jerry C.

    This dissertation examines current applications concerning the use of computer technology to enhance instruction in the general chemistry laboratory. The dissertation critiques widely-used educational software, and explores examples of multimedia presentations such as those used in beginning chemistry laboratory courses at undergraduate and community colleges. The dissertation describes a prototype compact disc (CD) used to (a) introduce the general chemistry laboratory, (b) familiarize students with using chemistry laboratory equipment, (c) introduce laboratory safety practices, and (d) provide approved techniques for maintaining a laboratory notebook. Upon completing the CD portion of the pre-lab, students are linked to individual self-help (WebCT) quizzes covering the information provided on the CD. The CD is designed to improve student understanding of basic concepts, techniques, and procedures used in the general chemistry laboratory.

  16. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    Science.gov (United States)

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  17. The Distribution of Macromolecular Principles throughout Introductory Organic Chemistry

    Science.gov (United States)

    Shulman, Joel I.

    2017-01-01

    Many of the principles of organic polymer chemistry are direct extensions of the information contained in the standard introductory organic chemistry course. Often, however, the discussion of macromolecules is relegated to a chapter at the end of the organic chemistry text and is covered briefly, if at all. Connecting the organic-chemical…

  18. Investigating Students' Similarity Judgments in Organic Chemistry

    Science.gov (United States)

    Graulich, N.; Bhattacharyya, G.

    2017-01-01

    Organic chemistry is possibly the most visual science of all chemistry disciplines. The process of scientific inquiry in organic chemistry relies on external representations, such as Lewis structures, mechanisms, and electron arrows. Information about chemical properties or driving forces of mechanistic steps is not available through direct…

  19. Titan: a laboratory for prebiological organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  20. Physical organic chemistry in the making

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    The discipline of physical organic chemistry will continue to occupy a central position in chemistry. The rapid increase in instrumentation and important theoretical developments allow the investigation of many problems of great complexity and challenge. In the next century the leading theme will

  1. Student Attitudes toward Flipping the General Chemistry Classroom

    Science.gov (United States)

    Smith, J. Dominic

    2013-01-01

    The idea of ''flipping the classroom'' to make class time more engaging and student-centred has gained ground in recent years. The lecture portion of General Chemistry I and General Chemistry II courses were pushed outside the classroom using pre-recording technology and streaming delivery of content, in order to make in-class time more…

  2. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    Science.gov (United States)

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click

  3. Mixed-Methods Study of Online and Written Organic Chemistry Homework

    Science.gov (United States)

    Malik, Kinza; Martinez, Nylvia; Romero, Juan; Schubel, Skyler; Janowicz, Philip A.

    2014-01-01

    Connect for organic chemistry is an online learning tool that gives students the opportunity to learn about all aspects of organic chemistry through the ease of the digital world. This research project consisted of two fundamental questions. The first was to discover whether there was a difference in undergraduate organic chemistry content…

  4. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    Science.gov (United States)

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  5. Love Story: Oxygen in Organic Chemistry

    Science.gov (United States)

    Roberts, John D.

    1974-01-01

    Significant discoveries and developments regarding oxygen and organic compounds are recounted to show that research in this specific area is worthwhile and relevant and to point out that research in other areas of organic chemistry deserves continued encouragement as well. (DT)

  6. Incorporation of Medicinal Chemistry into the Organic Chemistry Curriculum

    Science.gov (United States)

    Forbes, David C.

    2004-01-01

    Application of concepts presented in organic chemistry lecture using a virtual project involving the sythesis of medicinally important compounds is emphasized. The importance of reinforcing the concepts from lecture in lab, thus providing a powerful instructional means is discussed.

  7. Cellular uptake: lessons from supramolecular organic chemistry.

    Science.gov (United States)

    Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan

    2015-07-04

    The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.

  8. Student Perceptions of Online Homework Use for Formative Assessment of Learning in Organic Chemistry.

    Science.gov (United States)

    Richards-Babb, Michelle; Curtis, Reagan; Georgieva, Zomitsa; Penn, John H

    2015-11-10

    Use of online homework as a formative assessment tool for organic chemistry coursework was examined. Student perceptions of online homework in terms of (i) its ranking relative to other course aspects, (ii) their learning of organic chemistry, and (iii) whether it improved their study habits and how students used it as a learning tool were investigated. Our students perceived the online homework as one of the more useful course aspects for learning organic chemistry content. We found a moderate and statistically significant correlation between online homework performance and final grade. Gender as a variable was ruled out since significant gender differences in overall attitude toward online homework use and course success rates were not found. Our students expressed relatively positive attitudes toward use of online homework with a majority indicating improved study habits (e.g., study in a more consistent manner). Our students used a variety of resources to remediate incorrect responses (e.g., class materials, general online materials, and help from others). However, 39% of our students admitted to guessing at times, instead of working to remediate incorrect responses. In large enrollment organic chemistry courses, online homework may act to bridge the student-instructor gap by providing students with a supportive mechanism for regulated learning of content.

  9. Experimental interstellar organic chemistry: Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1971-01-01

    In a simulation of interstellar organic chemistry in dense interstellar clouds or on grain surfaces, formaldehyde, water vapor, ammonia and ethane are deposited on a quartz cold finger and ultraviolet-irradiated in high vacuum at 77K. The HCHO photolytic pathway which produces an aldehyde radical and a superthermal hydrogen atom initiates solid phase chain reactions leading to a range of new compounds, including methanol, ethanol, acetaldehyde, acetonitrile, acetone, methyl formate, and possibly formic acid. Higher nitriles are anticipated. Genetic relations among these interstellar organic molecules (e.g., the Cannizzaro and Tischenko reactions) must exist. Some of them, rather than being synthesized from smaller molecules, may be degradation products of larger organic molecules, such as hexamethylene tetramine, which are candidate consitituents of the interstellar grains. The experiments reported here may also be relevant to cometary chemistry.

  10. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  11. Organic chemistry in a CO2 rich early Earth atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Carrasco, Nathalie; Millan, Maëva; Vettier, Ludovic; Szopa, Cyril

    2017-12-01

    The emergence of life on the Earth has required a prior organic chemistry leading to the formation of prebiotic molecules. The origin and the evolution of the organic matter on the early Earth is not yet firmly understood. Several hypothesis, possibly complementary, are considered. They can be divided in two categories: endogenous and exogenous sources. In this work we investigate the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth where the significant VUV contribution of the young Sun involved an efficient formation of reactive species. We address the issue whether this chemistry can lead to the formation of complex organic compounds with CO2 as only source of carbon in an early atmosphere made of N2, CO2 and H2, by mimicking experimentally this type of chemistry using a low pressure plasma reactor. By analyzing the gaseous phase composition, we strictly identified the formation of H2O, NH3, N2O and C2N2. The formation of a solid organic phase is also observed, confirming the possibility to trigger organic chemistry in the upper atmosphere of the early Earth. The identification of Nitrogen-bearing chemical functions in the solid highlights the possibility for an efficient ionospheric chemistry to provide prebiotic material on the early Earth.

  12. Misconception of pre-service chemistry teachers about the concept of resonances in organic chemistry course

    Science.gov (United States)

    Widarti, Hayuni Retno; Retnosari, Rini; Marfu'ah, Siti

    2017-08-01

    A descriptive quantitative research has been done to identify the level of understanding and misconceptions of the pre-service chemistry teachers related to the concept of resonance in the organic chemistry course. The subjects of the research were 51 students of State University of Malang, majoring Chemistry Education, currently in their fourth semester, 2015-2016 academic year who have taken the course of Organic Chemistry I. The instruments used in this research is a combination of 8 numbers of multiple choice tests with open answer questions and certainty of response index (CRI). The research findings revealed that there are still misconceptions found in the organic chemistry course, especially about the concept of resonance. There were several misconceptions of the pre-service chemistry teachers, such as resonance structures are in equilibrium with each other; resonance structures are two or more Lewis structures with different in arrangement of both atom and electron; resonance structures are only structures containing charged atoms; formal charge and resonance structures are not related; and the stability of resonance structures are only determined by location of charges in atoms found in such structures. There is also a lack of understanding of curved arrows notation to show electron pair movement.

  13. Learning Organic Chemistry Through Natural Products -12 ...

    Indian Academy of Sciences (India)

    Higher Learning. Generations of students would vouch for the fact that he has the uncanny ability to present the chemistry of natural products logically and with feeling. The most interesting chemical aspect of a molecule is its. reactivHy pattern. NR Krishnaswamy. In this part of the series, dynamic organic chemistry and.

  14. Connecting Achievement Motivation to Performance in General Chemistry

    Science.gov (United States)

    Ferrell, Brent; Phillips, Michael M.; Barbera, Jack

    2016-01-01

    Student success in chemistry is inherently tied to motivational and other affective processes. We investigated three distinct constructs tied to motivation: self-efficacy, interest, and effort beliefs. These variables were measured twice over the course of a semester in three sections of a first-semester general chemistry course (n = 170). We…

  15. Practicing What We Preach: Assessing "Critical Thinking" in Organic Chemistry

    Science.gov (United States)

    Stowe, Ryan L.; Cooper, Melanie M.

    2017-01-01

    Organic chemistry is often promoted as a course designed to cultivate skill in scientific "ways of thinking." Expert organic chemists perceive their field as one in which plausible answers to complex questions are arrived at through analytical thought processes. They draw analogy between problem solving in organic chemistry and diagnosis…

  16. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    Science.gov (United States)

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  17. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  18. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  19. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry

    Science.gov (United States)

    Sousa, Maria Emília; Araújo, Maria João; do Vale, Maria Luísa; Andrade, Paula B.; Branco, Paula; Gomes, Paula; Moreira, Rui; Pinho e Melo, Teresa M.V.D.; Freitas, Victor

    2016-01-01

    For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report. PMID:27102166

  20. 11th National Meeting of Organic Chemistry and 4th Meeting of Therapeutic Chemistry

    Directory of Open Access Journals (Sweden)

    Maria Emília Sousa

    2016-03-01

    Full Text Available For the first time under the auspices of Sociedade Portuguesa de Química, the competences of two important fields of Chemistry are brought together into a single event, the 11st National Organic Chemistry Meeting and the the 4th National Medicinal Chemistry Meeting, to highlight complementarities and to promote new synergies. Abstracts of plenary lectures, oral communications, and posters presented during the meeting are collected in this report.

  1. Who Says Organic Chemistry Is Difficult? Exploring Perspectives and Perceptions

    Science.gov (United States)

    O'Dwyer, Anne; Childs, Peter E.

    2017-01-01

    Much research has identified organic chemistry as an area of difficulty for learners. There is also much literature pertaining to the factors that contribute to learners' difficulties. This paper explores the intersections of teachers' and learners' perceptions of teaching and learning organic chemistry respectively. Understanding these nuances…

  2. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  3. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  4. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Higher Learning. ... The Series on "learning Organic Chemistry Through Natural Products". Nature is a remarkable ... skeletal structure to the interior electronic configu- ration ... Among the advantages of this approach are the fact that unlike the.

  5. Biocatalysis in organic chemistry and biotechnology: past, present, and future.

    Science.gov (United States)

    Reetz, Manfred T

    2013-08-28

    Enzymes as catalysts in synthetic organic chemistry gained importance in the latter half of the 20th century, but nevertheless suffered from two major limitations. First, many enzymes were not accessible in large enough quantities for practical applications. The advent of recombinant DNA technology changed this dramatically in the late 1970s. Second, many enzymes showed a narrow substrate scope, often poor stereo- and/or regioselectivity and/or insufficient stability under operating conditions. With the development of directed evolution beginning in the 1990s and continuing to the present day, all of these problems can be addressed and generally solved. The present Perspective focuses on these and other developments which have popularized enzymes as part of the toolkit of synthetic organic chemists and biotechnologists. Included is a discussion of the scope and limitation of cascade reactions using enzyme mixtures in vitro and of metabolic engineering of pathways in cells as factories for the production of simple compounds such as biofuels and complex natural products. Future trends and problems are also highlighted, as is the discussion concerning biocatalysis versus nonbiological catalysis in synthetic organic chemistry. This Perspective does not constitute a comprehensive review, and therefore the author apologizes to those researchers whose work is not specifically treated here.

  6. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  7. Concept-Oriented Task Design: Making Purposeful Case Comparisons in Organic Chemistry

    Science.gov (United States)

    Graulich, Nicole; Schween, Michael

    2018-01-01

    Acquiring conceptual understanding seems to be one of the main challenges students face when studying organic chemistry. Traditionally, organic chemistry presents an extensive variety of chemical transformations, which often lead students to recall an organic transformation rather than apply conceptual knowledge. Strong surface level focus and…

  8. Profiles in chemistry: a historical perspective on the national organic symposium.

    Science.gov (United States)

    Fenlon, Edward E; Myers, Brian J

    2013-06-21

    This perspective delineates the history of the National Organic Chemistry Symposium (NOS) and, in doing so, traces the development of organic chemistry over the past 88 years. The NOS is the premier event sponsored by the ACS Division of Organic Chemistry (ORGN) and has been held in odd-numbered years since 1925, with the exceptions of 1943 and 1945. During the 42 symposia, 332 chemists have given 549 plenary lectures. The role the NOS played in the launch of The Journal of Organic Chemistry and Organic Reactions and the initiation of the Roger Adams Award are discussed. Representative examples highlighting the chemistry presented in each era are described, and the evolution of the field is examined by assigning each NOS talk to one of seven subdisciplines and analyzing how the number of talks in each subdiscipline has changed over time. Comparisons of the demographics of speakers, attendees, and ORGN members are made, and superlatives are noted. Personal interest stories of the speakers are discussed, along with the relationships among them, especially their academic lineage. Logistical aspects of the NOS and their historical trends are reviewed. Finally, the human side of science is examined, where over the past century, the NOS has been intertwined with some of the most heated debates in organic chemistry. Conflicts and controversies involving free radicals, reaction mechanisms, and nonclassical carbocations are discussed.

  9. General chemistry courses that can affect achievement: An action research study in developing a plan to improve undergraduate chemistry courses

    Science.gov (United States)

    Shweikeh, Eman

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty

  10. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Learning Organic Chemistry Through Natural Products - Architectural Designs in Molecular Constructions. N R Krishnaswamy. Volume 16 Issue 12 December 2011 pp 1287-1293 ...

  11. SPECIAL ISSUE DEDICATED TO THE 10TH ANNIVERSARY OF THE CHEMISTRY JOURNAL OF MOLDOVA. GENERAL, INDUSTRIAL AND ECOLOGICAL CHEMISTRY

    OpenAIRE

    Gheorghe DUCA

    2016-01-01

    Ten years ago, in 2006, CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry was founded by the Institute of Chemistry of Academy of Sciences of Moldova and Moldova State University. Chemistry Journal of Moldova is an open access, international indexed and peer-reviewed journal that publishes papers of high quality containing original results in the areas of Chemical Sciences, such as analytical chemistry, ecological chemistry, food chemistry, industrial chem...

  12. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Learning Organic Chemistry Through Natural Products Determination of Absolute Stereochemistry. N R Krishnaswamy. Series Article Volume 1 Issue 2 February 1996 pp 40-46 ...

  13. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  14. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    Science.gov (United States)

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  15. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  16. Flipped Classroom in Organic Chemistry Has Significant Effect on Students’ Grades

    Directory of Open Access Journals (Sweden)

    Caroline Cormier

    2018-01-01

    Full Text Available The flipped classroom as a form of active pedagogy in postsecondary chemistry has been developed during the last 10 years and has been gaining popularity with instructors and students ever since. In the current paradigm in science, technology, engineering, and mathematics education, it is widely recognized that active learning has significant positive effects on students’ grades. Postsecondary organic chemistry is a difficult course for students, and the traditional way of teaching does not foster students’ active involvement. Implementation of active pedagogy could increase students’ achievement in this course. However, few quantitative data are available on the impact of active pedagogy in general, or flipped classrooms in particular, on learning in organic chemistry at a postsecondary level. Thus, in this study, we evaluated the gain on final grade scores in organic chemistry after implementing a flipped classroom approach to promote active learning in this course. We encouraged students to be active by having them watch educational videos before each class and then having them work during class time on problems that focused on applying the concepts presented in the videos. Exams were the same as those completed by students in the traditional classrooms of our college. In an a posteriori analysis of our students’ grades, we compared final grades in traditional classrooms (control group, N = 66 and in flipped classrooms (experimental group, N = 151. The sample was stratified in three categories depending on students’ academic ability in college, from low-achieving to high-achieving students. Our results show that students in the experimental group have significantly higher final grades in organic chemistry than those in the control group, that is, 77% for students in the active classroom vs. 73% in the traditional classroom (p < 0.05. The effect was the greatest for low-achieving students, with final scores of 70% in

  17. What are the Limitations of Enzymes in Synthetic Organic Chemistry?

    Science.gov (United States)

    Reetz, Manfred T

    2016-12-01

    Enzymes have been used in organic chemistry and biotechnology for 100 years, but their widespread application has been prevented by a number of limitations, including the often-observed limited thermostability, narrow substrate scope, and low or wrong stereo- and/or regioselectivity. Directed evolution provides a means to address and generally solve these problems, especially since recent methodology development has made this protein engineering method faster, more efficient, and more reliable than in the past. This Darwinian approach to asymmetric catalysis has led to a number of industrial applications. Metabolic-pathway engineering, mutasynthesis, and fermentation are likewise enzyme-based techniques that enrich chemistry. This account outlines the scope, and particularly, the limitations, of biocatalysis. The complementary nature of enzymes and man-made catalysts is emphasized. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Learning Organic Chemistry Through Natural Products Architectural Designs in Molecular Constructions. N R Krishnaswamy. Series Article Volume 1 Issue 10 October 1996 pp 37-43 ...

  19. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 7. Learning Organic Chemistry Through Natural engine Products - Structure and Biological Functions. N R Krishnaswamy. Series Article Volume 1 Issue 7 July 1996 pp 23-30 ...

  20. Defining Conceptual Understanding in General Chemistry

    Science.gov (United States)

    Holme, Thomas A.; Luxford, Cynthia J.; Brandriet, Alexandra

    2015-01-01

    Among the many possible goals that instructors have for students in general chemistry, the idea that they will better understand the conceptual underpinnings of the science is certainly important. Nonetheless, identifying with clarity what exemplifies student success at achieving this goal is hindered by the challenge of clearly articulating what…

  1. LOGICAL REASONING ABILITY AND STUDENT PERFORMANCE IN GENERAL CHEMISTRY.

    Science.gov (United States)

    Bird, Lillian

    2010-03-01

    Logical reasoning skills of students enrolled in General Chemistry at the University of Puerto Rico in Río Piedras were measured using the Group Assessment of Logical Thinking (GALT) test. The results were used to determine the students' cognitive level (concrete, transitional, formal) as well as their level of performance by logical reasoning mode (mass/volume conservation, proportional reasoning, correlational reasoning, experimental variable control, probabilistic reasoning and combinatorial reasoning). This information was used to identify particular deficiencies and gender effects, and to determine which logical reasoning modes were the best predictors of student performance in the general chemistry course. Statistical tests to analyze the relation between (a) operational level and final grade in both semesters of the course; (b) GALT test results and performance in the ACS General Chemistry Examination; and (c) operational level and student approach (algorithmic or conceptual) towards a test question that may be answered correctly using either strategy, were also performed.

  2. Tc Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy S.; Conradsen, Steven D.

    2003-01-01

    Tc complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that long-term consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges we are conducting a research program to study to develop thermodynamic data on Tc-organic complexation over a wide range of chemical conditions. We will attempt to characterize Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques to validate our model. On the basis of such studies we will develop credible model of Tc chemistry in HLW that will allow prediction of Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  3. Impact of General Chemistry on Student Achievement and Progression to Subsequent Chemistry Courses: A Regression Discontinuity Analysis

    Science.gov (United States)

    Shultz, Ginger V.; Gottfried, Amy C.; Winschel, Grace A.

    2015-01-01

    General chemistry is a gateway course that impacts the STEM trajectory of tens of thousands of students each year, and its role in the introductory curriculum as well as its pedagogical design are the center of an ongoing debate. To investigate the role of general chemistry in the curriculum, we report the results of a posthoc analysis of 10 years…

  4. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  5. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  6. A General Chemistry Experiment Incorporating Synthesis and Structural Determination

    Science.gov (United States)

    van Ryswyk, Hal

    1997-07-01

    An experiment for the general chemistry laboratory is described wherein gas chromatography-mass spectroscopy (GC-MS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) are used to characterize the products of a series of microscale reactions on vanillin. A single sophisticated instrument can be incorporated into the laboratory given sufficient attention to the use of sampling accessories and software macros. Synthetic experiments coupled with modern instrumental techniques can be used in the general chemistry laboratory to illustrate the concepts of synthesis, structure, bonding, and spectroscopy.

  7. Students' Written Arguments in General Chemistry Laboratory Investigations

    Science.gov (United States)

    Choi, Aeran; Hand, Brian; Greenbowe, Thomas

    2013-01-01

    This study aimed to examine the written arguments developed by college freshman students using the Science Writing Heuristic approach in inquiry-based general chemistry laboratory classrooms and its relationships with students' achievement in chemistry courses. Fourteen freshman students participated in the first year of the study while 19…

  8. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Learning Organic Chemistry Through Natural Products From Molecular and Electronic Structures to Reactivity. N R Krishnaswamy. Series Article Volume 1 Issue 5 May 1996 pp 12-18 ...

  9. Organics in environmental ices: sources, chemistry, and impacts

    Directory of Open Access Journals (Sweden)

    V. F. McNeill

    2012-10-01

    Full Text Available The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding the quantitative impacts of chemical and biological processes, ice morphology, and snow formation on the fate of organic material in cold regions. Interdisciplinary work at the interfaces of chemistry, physics and biology is needed in order to fully characterize the nature and evolution of organics in the cryosphere and predict the effects of climate change on the Earth's carbon cycle.

  10. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  11. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  12. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  13. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  14. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    Science.gov (United States)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  15. Supramolecular chemistry: from molecular information towards self-organization and complex matter

    International Nuclear Information System (INIS)

    Lehn, Jean-Marie

    2004-01-01

    Molecular chemistry has developed a wide range of very powerful procedures for constructing ever more sophisticated molecules from atoms linked by covalent bonds. Beyond molecular chemistry lies supramolecular chemistry, which aims at developing highly complex chemical systems from components interacting via non-covalent intermolecular forces. By the appropriate manipulation of these interactions, supramolecular chemistry became progressively the chemistry of molecular information, involving the storage of information at the molecular level, in the structural features, and its retrieval, transfer, and processing at the supramolecular level, through molecular recognition processes operating via specific interactional algorithms. This has paved the way towards apprehending chemistry also as an information science. Numerous receptors capable of recognizing, i.e. selectively binding, specific substrates have been developed, based on the molecular information stored in the interacting species. Suitably functionalized receptors may perform supramolecular catalysis and selective transport processes. In combination with polymolecular organization, recognition opens ways towards the design of molecular and supramolecular devices based on functional (photoactive, electroactive, ionoactive, etc) components. A step beyond preorganization consists in the design of systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined supramolecular architectures by self-assembly from their components. Self-organization processes, directed by the molecular information stored in the components and read out at the supramolecular level through specific interactions, represent the operation of programmed chemical systems. They have been implemented for the generation of a variety of discrete functional architectures of either organic or inorganic nature. Self-organization processes also give access to advanced supramolecular materials, such as

  16. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry

    National Research Council Canada - National Science Library

    Wilson, Charles Owens; Beale, John Marlowe; Block, John H

    2011-01-01

    "For over half a century, Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry has served the discipline of medicinal chemistry for both graduate and undergraduate pharmacy...

  17. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  18. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  19. Chemistry, Life, the Universe, and Everything: A New Approach to General Chemistry, and a Model for Curriculum Reform

    Science.gov (United States)

    Cooper, Melanie; Klymkowsky, Michael

    2013-01-01

    The history of general chemistry is one of almost constant calls for reform, yet over the past 60 years little of substance has changed. Those reforms that have been implemented are almost entirely concerned with how the course is taught, rather than what is to be learned. Here we briefly discuss the history of the general chemistry curriculum and…

  20. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    Science.gov (United States)

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  1. Trends in metallo-organic chemistry of scandium, yttrium, and the lanthanides

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    Several interesting aspects of the metallo-organic chemistry of group 3 and the lanthanides have been highlighted, which include: (a) the chemistry of a few notable organolanthanide compounds, alkoxo and aryloxo derivatives derived from sterically demanding ligands, (b) new trends in the chemistry of lanthanide heterometallic alkoxides, (c) an account of zero valent organometallics of yttrium and the lanthanides, and (d) aspects of agostic interactions in the lanthanide metallo-organic compounds. (author). 49 refs

  2. Attitude Counts: Self-Concept and Success in General Chemistry

    Science.gov (United States)

    Lewis, Scott E.; Shaw, Janet L.; Heitz, Judith O.; Webster, Gail H.

    2009-06-01

    General chemistry is a required first step for students who wish to pursue a career in science or health professions. The course often has low rates of student success and as a result serves as a gateway limiting access to science fields. This study seeks to better understand factors that are related to student success in general chemistry by focusing on the affective domain, in this case students' self-concept, or self-evaluation of ability as it pertains to a specific field of study. First, a profile of students' self-concept in the general chemistry setting is created. Next, the relationship between self-concept and success in the course is investigated, including examining the role of self-concept after taking into account a cognitive measure (SAT scores). This study is unique in that evidence is found for the impact of self-concept after taking into account a cognitive measure. Finally, the effect of a semester-long, inquiry-oriented learning environment on students' self-concept is described. Suggested interventions to improve student self-concept are also discussed.

  3. Microwaves in organic chemistry and organic chemical

    Directory of Open Access Journals (Sweden)

    Mijin Dušan Ž.

    2005-01-01

    Full Text Available The usual way of applying heat to a chemical reaction is the use of a Bunsen burner, an oil or some other type of bath, or an electric heater. In inorganic chemistry, microwave technology has been used since the late 1970s while it has been implemented in organic chemistry since the mid-1980s. Microwave heating has been used in the food industry for almost fifty years. The shorter reaction times and expanded reaction range that is offered by microwave technology are suited to the increased demands in industry. For example, there is a requirement in the pharmaceutical industry for a higher number of a novel chemical entities to be produced, which requires chemists to employ a number of resources to reduce time for the production of compounds. Also, microwaves are used in the food industry, as well as in the pyrolysis of waste materials, sample preparation, the solvent extraction of natural products and the hydrolysis of proteins and peptides.

  4. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  5. Microwave-assisted organic and polymer chemistry

    NARCIS (Netherlands)

    Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    The first ACS symposium on Microwave-Assisted Chemistry: Organic and Polymer Synthesis, held as part of the ACS National meeting in Philadelphia, in August 2008, aimed at various topics of the use of microwave irradiation. The symposium found that specific heating effects, such as higher microwave

  6. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  7. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    Science.gov (United States)

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  8. A context based approach using Green Chemistry/Bio-remediation principles to enhance interest and learning of organic chemistry in a high school AP chemistry classroom

    Science.gov (United States)

    Miller, Tricia

    The ability of our planet to sustain life and heal itself is not as predictable as it used to be. Our need for educated future scientists who know what our planet needs, and can passionately apply that knowledge to find solutions should be at the heart of science education today. This study of learning organic chemistry through the lens of the environmental problem "What should be done with our food scraps?" explores student interest, and mastery of certain concepts in organic chemistry. This Green Chemistry/ Bio-remediation context-based teaching approach utilizes the Nature MillRTM, which is an indoor food waste composting machine, to learn about organic chemistry, and how this relates to landfill reduction possibilities, and resource production. During this unit students collected food waste from their cafeteria, and used the Nature MillRTM to convert food waste into compost. The use of these hands on activities, and group discussions in a context-based environment enhanced their interest in organic chemistry, and paper chromatography. According to a one-tailed paired T-test, the result show that this context-based approach is a significant way to increase both student interest and mastery of the content.

  9. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Thermal Properties of Organic Hydrocarbons

    Science.gov (United States)

    D'Amelia, Ronald; Franks, Thomas; Nirode, William F.

    2007-01-01

    In first-year general chemistry undergraduate courses, thermodynamics and thermal properties such as melting points and changes in enthalpy ([Delta]H) and entropy ([Delta]S) of phase changes are frequently discussed. Typically, classical calorimetric methods of analysis are used to determine [Delta]H of reactions. Differential scanning calorimetry…

  10. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  11. Learning Organic Chemistry Through Natural Products

    Indian Academy of Sciences (India)

    SERIES I ARTICLE. Learning Organic Chemistry. Through Natural Products. 2. Determination of Absolute Stereochemistry. N R Krishnaswamy was initiated into the world of natural products by T R. Seshadri at University of. Delhi and has carried on the glorious traditions of his mentor. He has taught at Bangalore University,.

  12. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students’ Course

    Science.gov (United States)

    Wehle, Sarah

    2016-01-01

    Objective. To investigate German pharmacy students’ attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students’ attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU’s pharmacy program. PMID:27170811

  13. Perception of the Relevance of Organic Chemistry in a German Pharmacy Students' Course.

    Science.gov (United States)

    Wehle, Sarah; Decker, Michael

    2016-04-25

    Objective. To investigate German pharmacy students' attitudes toward the relevance of organic chemistry training in Julius Maximilian University (JMU) of Würzburg with regard to subsequent courses in the curricula and in later prospective career options. Methods. Surveys were conducted in the second-year organic chemistry course (50 participants) as well as during the third-year and fourth-year lecture cycle on medicinal and pharmaceutical chemistry (66 participants) in 2014. Results. Students' attitudes were surprisingly consistent throughout the progress of the degree course. Students considered organic chemistry very relevant to the pharmacy study program (95% junior and 97% senior students), and of importance for their future pharmacy program (88% junior and 94% senior students). With regard to prospective career options, the perceived relevance was considerably lower and attitudes were less homogenous. Conclusions. German pharmacy students at JMU Würzburg consider organic chemistry of high relevance for medicinal chemistry and other courses in JMU's pharmacy program.

  14. Physics, radiology, and chemistry. 5. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1978-01-01

    This book is an introduction into physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of colid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, anorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Futhermore connections with biology and medicine are considered. (HSI) [de

  15. Green Goggles: Designing and Teaching a General Chemistry Course to Nonmajors Using a Green Chemistry Approach

    Science.gov (United States)

    Prescott, Sarah

    2013-01-01

    A novel course using green chemistry as the context to teach general chemistry fundamentals was designed, implemented and is described here. The course design included an active learning approach, with major course graded components including a weekly blog entry, exams, and a semester project that was disseminated by wiki and a public symposium.…

  16. Impact of a Library Instruction Session on Bibliographies of Organic Chemistry Students

    Science.gov (United States)

    Kromer, John

    2015-01-01

    Students in Chemistry 254: Organic Chemistry for Majors were required to write a paper about an organic name reaction. Before turning in this assignment, students had the option of attending a one-hour library instruction session covering SciFinder, sources for spectra, ACS Style, and print resources about organic name reactions. Twenty-five…

  17. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  18. An approach to teaching general chemistry II that highlights the interdisciplinary nature of science.

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. Copyright © 2010 Wiley Periodicals, Inc.

  19. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry…

  20. Bio-organic chemistry at BARC

    International Nuclear Information System (INIS)

    Sharma, A.; Ghosh, S.K.; Chattopadhyay, S.

    2009-01-01

    Bioorganic chemistry plays a pivotal role of co-ordination amongst the research and developmental activities of physical, biological, material and nuclear sciences. Understandably, the domain of bioorganic chemistry encompasses overlapping scientific fields, and often involves multi-disciplinary subjects. The research activities of bioorganic research at BARC are, therefore directed with reference to deliverables, relevant to various nuclear and non-nuclear programmes of the department. Also, the activities of the division are fine tuned to address the contemporary needs. It is now well recognized that organic compounds are essential in various programmes of nuclear technology. These include solvents and membranes for the back-end process, carrier molecules for radiopharmaceuticals, optoelectrical materials and sensors for high tech applications etc. Coupled with this, bioorganics also form integral part of the departmental mission-oriented societal programmes in the areas of health and agriculture

  1. A report on workshops: General circulation model study of climate- chemistry interaction

    International Nuclear Information System (INIS)

    Wei-Chyung, Wang; Isaksen, I.S.A.

    1993-01-01

    This report summarizes the discussion on General Circulation Model Study of Climate-Chemistry Interaction from two workshops, the first held 19--21 August 1992 at Oslo, Norway and the second 26--27 May 1993 at Albany, New York, USA. The workshops are the IAMAP activities under the Trace Constituent Working Group. The main objective of the two workshops was to recommend specific general circulation model (GCM) studies of the ozone distribution and the climatic effect of its changes. The workshops also discussed the climatic implications of increasing sulfate aerosols because of its importance to regional climate. The workshops were organized into four working groups: observation of atmospheric O 3 ; modeling of atmospheric chemical composition; modeling of sulfate aerosols; and aspects of climate modeling

  2. Horizons of organic and organoelemental chemistry. 7. All-Russian conference on organometallic chemistry. Program and summaries of communications. V. 1

    International Nuclear Information System (INIS)

    1999-01-01

    Abstracts of the seventh All-Russian conference on organometallic chemistry are presented. The synthesis of organometallic compounds of rare earth, transition elements, the synthesis of organic boron compounds are played an important role in modern organic chemistry and the main part of reports are devoted to these problems. Methods of labelling by radioactive isotopes of organic compounds used in medicine are discussed

  3. A Flipped Classroom Redesign in General Chemistry

    Science.gov (United States)

    Reid, Scott A.

    2016-01-01

    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course ("J. Chem. Educ.," 2016, 93, 13-23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while…

  4. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    Science.gov (United States)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  5. Collections for terminology in chemistry

    International Nuclear Information System (INIS)

    1974-08-01

    This book describes terminology in chemistry, which is divided into seven chapters. The contents of this book are element name, names of an inorganic compound such as ion and radical and polyacid, an organic compound on general principle and names, general terminology 1 and 2, unit and description method on summary, unit and the symbol for unit, number and pH, Korean mark for people's name in chemistry, names of JUPAC organic compound of summary, hydrocarbons, fused polycyclic hydrocarbons, bridged hydrocarbons, cyclic hydrocarbons with side chains, terpenes hydrocarbons, fundamental heterocyclic systems and heterocyclic spiro compounds.

  6. Physics, radiology, and chemistry. 7. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (orig./HP) [de

  7. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  8. Looking forward: a glance into the future of organic chemistry

    International Nuclear Information System (INIS)

    Compain, Ph.; Desvergnes, V.; Suzenet, F.; Ollivier, C.; Robert, F.; Mihail, Barboiu; Belmont, Ph.; Bleriot, Y.; Bolze, F.; Bouquillon, S.; Bourguet, E.; Braida, B.; Constantieux, Th.; Desaubry, L.; Dupont, D.; Gastaldi, St.; Jerome, F.; Legoupy, St.; Marat, X.; Migaud, M.; Moitessier, N.; Papot, S.; Peri, F.; Petit, M.; Py, S.; Schulz, E.; Tranoy-Opalinski, I.; Vauzeilles, B.; Vayron, Ph.; Vergnes, L.; Vidal, S.; Wilmouth, S.

    2006-01-01

    What will organic chemistry do in the next forty years? This Perspective lists six tasks that have emerged during the first edition of ESYOP, a symposium devoted to the future of organic chemistry. The collective answer presented has been elaborated following a 4-step process: stimulating plenary lectures given by outstanding chemists and philosophers, short presentations given by each participant (average age: 34 years old), think-tank sessions and writing of the final report after the symposium. (authors)

  9. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    Science.gov (United States)

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  10. Modeling of iodine radiation chemistry in the presence of organic compounds

    International Nuclear Information System (INIS)

    Taghipour, Fariborz; Evans, Greg J.

    2002-01-01

    A kinetic-based model was developed that simulates the radiation chemistry of iodine in the presence of organic compounds. The model's mechanistic description of iodine chemistry and generic semi-mechanistic reactions for various classes of organics, provided a reasonable representation of experimental results. The majority of the model and experimental results of iodine volatilization rates were in agreement within an order of magnitude

  11. Experimental interstellar organic chemistry - Preliminary findings

    Science.gov (United States)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  12. General Chemistry Courses That Can Affect Achievement: An Action Research Study in Developing a Plan to Improve Undergraduate Chemistry Courses

    Science.gov (United States)

    Shweikeh, Eman

    2014-01-01

    Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on…

  13. Population-Based Pediatric Reference Intervals in General Clinical Chemistry: A Swedish Survey.

    Science.gov (United States)

    Ridefelt, Peter

    2015-01-01

    Very few high quality studies on pediatric reference intervals for general clinical chemistry and hematology analytes have been performed. Three recent prospective community-based projects utilising blood samples from healthy children in Sweden, Denmark and Canada have substantially improved the situation. The Swedish survey included 701 healthy children. Reference intervals for general clinical chemistry and hematology were defined.

  14. Nomenclature and Terminology of Organic Chemistry. I. Sixty Years of Croatian Nomenclature of Organic Chemistry

    OpenAIRE

    Rapić, V.; Varga-Defterdarović, L.

    2013-01-01

    This article describes the history and development of the Croatian nomenclature of organic chemistry from the publication of the first translation of international nomenclature recommendations to the present age. In the Introduction, trivial, common, systematic (rational), and semisystematic names are defined, and the etymology and meaning of terms nomenclature and terminology are clarified.At the beginning of the central part of this article, attention is focused on the need to create our na...

  15. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 4. Organic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Organic chemistry) there are the abstracts concerning different aspects of organic chemistry: synthesis and study of properties of heterocyclic, organometallic, biologically active, medicinal compounds, new ion exchange materials, reagents for analytic chemistry, etc [ru

  16. Aspects and prospects of the chemistry of organic heterocycles (review)

    International Nuclear Information System (INIS)

    Schroth, W.

    1986-01-01

    The systematics of heterocycles, their place in organic chemistry, and their significance for theory and practice are discussed. Problems of the chemistry of heterocycles are discussed on the examples of systems with various types of conjugation and ring sizes. The focus is on the principles of synthesis of heterocycles, in particular, those based on acetylene, various C 3 fragments, carbon disulfide, and maleic anhydride. Individual sections of the survey are devoted to the role of heterocycles in biosynthesis, as well as certain problems common to the chemistry of heterocycles, biochemistry, and macromolecular chemistry

  17. Learning beyond the Classroom: Using Text Messages to Measure General Chemistry Students' Study Habits

    Science.gov (United States)

    Ye, Li; Oueini, Razanne; Dickerson, Austin P.; Lewis, Scott E.

    2015-01-01

    This study used a series of text message inquiries sent to General Chemistry students asking: "Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?" This method for collecting data is novel to chemistry education research so the first research goals were to investigate the feasibility of the technique…

  18. Technetium Chemistry in HLW: Role of Organic Complexants

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Blanchard, David L. Jr.; Campbell, James A.; Cho, Herman M.; Rai, Dhanpat Rai; Xia, Yuanxian; Conradson, Steven D.

    2002-01-01

    Technetium complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remove Tc from high-level nuclear waste prior to waste immobilization can be developed and so that longterm consequences of Tc remaining in residual waste after sludge removal can be evaluated. Only limited data on the stability of Tc-organic complexes exists, and even less thermodynamic data on which to develop predictive models of Tc chemical behavior is available. To meet these challenges, we present a research program to study Tc-speciation in actual tank waste using state-of-the-art analytical organic chemistry, separations, and speciation techniques. On the basis of such studies, we will acquire thermodynamic data for the identified Tc-organic complexes over a wide range of chemical conditions in order to develop credible models to predict Tc speciation in tank waste and Tc behavior during waste pretreatment processing and in waste tank residuals

  19. Correlation of preadmission organic chemistry courses and academic performance in biochemistry at a midwest chiropractic doctoral program.

    Science.gov (United States)

    McRae, Marc P

    2010-01-01

    Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry.

  20. Extraterrestrial organic chemistry: from the interstellar medium to the origins of life. Part 2: complex organic chemistry in the environment of planets and satellites.

    Science.gov (United States)

    Raulin, F; Kobayashi, K

    2001-01-01

    During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system.

  1. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  2. Institute of Nuclear Chemistry and Technology annual report 1995

    International Nuclear Information System (INIS)

    1996-01-01

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations

  3. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  4. Institute of Nuclear Chemistry and Technology annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1995. The papers are gathered in several branches as follows: radiation chemistry and physics (15); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (23); radiobiology (7); nuclear technologies and methods (21); nucleonic control systems (5). The Annual Report of INCT - 1995 contains also a general information about the staff and organization of the Institute, the full list of scientific publications and patents, conferences organized by INCT, thesis and list of projects granted by Polish and international organizations.

  5. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science*,†

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M.

    2012-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. PMID:21445902

  6. Cooperative studyware development of organic chemistry module by experts, teachers, and students

    Science.gov (United States)

    Dori, Yehudit J.

    1995-06-01

    Experts, teachers, and students took active part in a process of organic chemistry studyware development. A unique characteristic of this process was the active involvement of three different groups of people in the authoring process: science educators, chemistry teachers, and chemistry students studying towards an education certificate. The science educators—the experts—advised the team on new methods of presenting the subject matter in an appealing way, using 3D computerized molecular modeling. The in-service chemistry teachers contributed from their rich field experience to constructing the studyware. This mutual development helped maintain the balance between expert requirements and expectations from students on one hand, and the actual student capabilities, as perceived by teachers through constant contact with the students, on the other. Finally, the preservice teachers—the undergraduate chemistry students—were often zealous, enthusiastic, and willing to put in the extra time and effort needed to produce quality studyware, while following the guidelines of the experts and teachers. Feedback on the qualities and shortcomings of the studyware was obtained in two cycles. The first one was done while the studyware was still under development by peers, and the second by individual target students, serving as a beta-site. This double feedback helped improve the studyware, mainly by elaborating on portions that require more detail and explanation. The paper describes the process as well as representative parts of the studyware. The combination of experts, teachers, and students in the development team seems to have the potential to yield studyware that is appropriate for effective science education in general and chemistry teaching in particular.

  7. Improving General Chemistry Course Performance through Online Homework-Based Metacognitive Training

    Science.gov (United States)

    Casselman, Brock L.; Atwood, Charles H.

    2017-01-01

    In a first-semester general chemistry course, metacognitive training was implemented as part of an online homework system. Students completed weekly quizzes and multiple practice tests to regularly assess their abilities on the chemistry principles. Before taking these assessments, students predicted their score, receiving feedback after…

  8. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    Science.gov (United States)

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Organization of a cognitive activity of students when teaching analytical chemistry

    Directory of Open Access Journals (Sweden)

    А. Tapalova

    2012-12-01

    Full Text Available Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated in the course of self-control, peer review, and solving creative problems. Mastering the techniques of critical thinking (comparison, abstraction, generalization and their use in a particular chemical material - are necessary element in the formation of professional thinking of the future chemistry teacher.

  10. Correlation of Preadmission Organic Chemistry Courses and Academic Performance in Biochemistry at a Midwest Chiropractic Doctoral Program*

    Science.gov (United States)

    McRae, Marc P.

    2010-01-01

    Purpose: Organic chemistry has been shown to correlate with academic success in the preclinical years of medicine, dentistry, and graduate physiology. The purpose of this study is to examine the relationship between undergraduate organic chemistry grades and first-semester biochemistry grades at a Midwest chiropractic doctoral program. Methods: Students enrolled in a first-semester biochemistry course who had completed the prerequisite courses in organic chemistry offered at this same institution were entered into the study. The total grade for each of the three courses was calculated using the midterm and final exam raw scores with a weighting of 50% each. Analysis consisted of obtaining correlation coefficients between the total grades of organic 1 with biochemistry and organic 2 with biochemistry. Using the biochemistry total grade, the students were divided into quartiles and course grades for both organic chemistry 1 and 2 were calculated. Results: For the 109 students in the study, the correlation coefficient between the biochemistry and organic chemistry 1 and biochemistry and organic chemistry 2 courses was r = 0.744 and r = 0.725, respectively. The difference in organic chemistry grades between those in the first and fourth quartiles was 63.2% and 86.9% for organic chemistry 1 (p organic chemistry 2 (p organic chemistry can be used as an indicator of future academic success in a chiropractic biochemistry course. Knowledge of such a relationship could prove useful to identify students who may potentially run into academic difficulty with first-year biochemistry PMID:20480012

  11. QM/MM investigations of organic chemistry oriented questions.

    Science.gov (United States)

    Schmidt, Thomas C; Paasche, Alexander; Grebner, Christoph; Ansorg, Kay; Becker, Johannes; Lee, Wook; Engels, Bernd

    2014-01-01

    About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar

  12. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    Science.gov (United States)

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  13. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    Science.gov (United States)

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry…

  14. A Transition Program for Underprepared Students in General Chemistry: Diagnosis, Implementation, and Evaluation

    Science.gov (United States)

    Shields, Shawn P.; Hogrebe, Mark C.; Spees, William M.; Handlin, Larry B.; Noelken, Greg P.; Riley, Julie M.; Frey, Regina F.

    2012-01-01

    We developed an online exam to diagnose students who are underprepared for college-level general chemistry and implemented a program to support them during the general chemistry sequence. This transition program consists of extended-length recitations, peer-led team-learning (PLTL) study groups, and peer-mentoring groups. We evaluated this…

  15. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  16. Student Conceptions about Energy Transformations: Progression from General Chemistry to Biochemistry

    Science.gov (United States)

    Wolfson, Adele J.; Rowland, Susan L.; Lawrie, Gwendolyn A.; Wright, Anthony H.

    2014-01-01

    Students commencing studies in biochemistry must transfer and build on concepts they learned in chemistry and biology classes. It is well established, however, that students have difficulties in transferring critical concepts from general chemistry courses; one key concept is "energy." Most previous work on students' conception of energy…

  17. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta

    2010-01-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  18. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    growing library of linkers amenable to the synthesis of COFs is now available, and new COFs and topologies made by reticular synthesis are being reported. Much research is also directed toward the development of new methods of linking organic building units to generate other crystalline COFs. These efforts promise not only new COF chemistry and materials, but also the chance to extend the precision of molecular covalent chemistry to extended solids.

  19. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    Science.gov (United States)

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  20. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  1. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  2. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  3. Organic Chemistry Students' Ideas about Nucleophiles and Electrophiles: The Role of Charges and Mechanisms

    Science.gov (United States)

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2015-01-01

    Organic chemistry students struggle with reaction mechanisms and the electron-pushing formalism (EPF) used by practicing organic chemists. Faculty have identified an understanding of nucleophiles and electrophiles as one conceptual prerequisite to mastery of the EPF, but little is known about organic chemistry students' knowledge of nucleophiles…

  4. Past, Present and Future of General Chemistry in the PUC-Rio.

    Science.gov (United States)

    Farias, Percio A. M.; Goulart, Mauricio S.; de Mello, Paulo Correa

    This manuscript describes the role of chemistry as a vehicle for understanding many other basic sciences and engineering based on the experience acquired in the General Chemistry course at the "Center Technical-Scientific" at the Pontific Catholic University of Rio de Janeiro (CTC-PUC-Rio). A description of the history of the General…

  5. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    Science.gov (United States)

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  6. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    Science.gov (United States)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  7. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry.

    Science.gov (United States)

    Domingo, Luis R

    2016-09-30

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  8. Improvements to the Characterization of Organic Nitrogen Chemistry

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  10. Atoms-First Curriculum: A Comparison of Student Success in General Chemistry

    Science.gov (United States)

    Esterling, Kevin M.; Bartels, Ludwig

    2013-01-01

    We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of…

  11. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    Science.gov (United States)

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  12. Operating experience in correcting severe secondary chemistry upsets by controlling makeup water organics (TOC)

    International Nuclear Information System (INIS)

    Flint, W.G.; Mc Intosh, R.J.

    1986-01-01

    In this paper following observations are presented: conductivity and chloride excursions in steam condensate were directly linked to makeup water quality. Data strongly suggests that the breakdown of makeup water organics was responsible for substandard condensate water quality; although the short-term effects of gross organic contamination have been documented, the longer term consequences of continuous exposure by moderate organic levels needs to be addressed; a greater understanding of the organic removal efficiency of the various water purification technologies is essential to controlling TOC contamination; and a much better understanding of makeup plant chemistry and the interrelationship of makeup water contamination and plant chemistry has proven essential to optimizing plant performance and guaranteeing the best possible steam chemistry. The role of the chemistry group as an active participant in operations has been proven at Kewaunee Nuclear Plant

  13. Effects of Students' Pre- and Post-Laboratory Concept Maps on Students' Attitudes toward Chemistry Laboratory in University General Chemistry

    Science.gov (United States)

    Kilic, Ziya; Kaya, Osman Nafiz; Dogan, Alev

    2004-01-01

    The purpose of this study was to investigate the effects of scientific discussions based on student-constructed pre- and post-laboratory concept maps on students' attitudes toward chemistry laboratory in the university general chemistry. As part of instruction, during the first four laboratory sessions, students were taught how to construct and…

  14. Teaching innovation in organic chemistry: An inquiry into what happens when the lecturer stops lecturing

    Science.gov (United States)

    Bauer, Richard Charles

    1998-12-01

    In this dissertation the author presents findings from a study of an organic chemistry class in which the instructor changed his mode of content delivery. Instead of using a traditional lecture, the professor engaged students in discussions about chemical behavior, required students to complete cooperative learning activities in and out of class, and altered his examination format. The purpose of the research was to investigate the implementation of the changes made in content delivery, describe subsequent classroom interactions, and discuss participant responses to the innovations. Because of the research focus the author used a qualitative methodology to investigate this unique organic chemistry course. The study showed that the instructor's belief system and skills played an important role in overcoming barriers to implementation. Analysis of class transcripts revealed that the class was highly interactive with students freely offering responses to the instructor's questions and sometimes submitting insightful comments. The discussion format of the class also revealed some student misunderstanding that other teaching structures may not have identified. In general the instructor was able to pursue some concepts in more depth than allowed by a typical lecture mode of content delivery. Analysis of class transcripts also showed characteristics of organic chemistry teaching by Prof. Loudon that might be described as exemplary. He focused student attention on molecular structure and the chemical behavioral patterns that emerge from organic compounds that are structurally similar. Student response to Prof. Loudon's teaching style was quite favorable. A common remark from students was that his personal knowledge of them contributed to their class preparation and desire to learn. In general, students appreciated the opportunity to discuss exam questions in their groups before individual exam administration. On the final course evaluation, however, a couple students

  15. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    Directory of Open Access Journals (Sweden)

    Luis R. Domingo

    2016-09-01

    Full Text Available A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT, is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT, the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through a rigorous quantum chemical analysis of the changes of the electron density as well as the energies associated with these changes along the reaction path in order to understand experimental outcomes. Studies performed using MEDT allow establishing a modern rationalisation and to gain insight into molecular mechanisms and reactivity in Organic Chemistry.

  16. Development and Implementation of a Two-Semester Introductory Organic-Bioorganic Chemistry Sequence: Conclusions from the First Six Years

    Science.gov (United States)

    Goess, Brian C.

    2014-01-01

    A two-semester second-year introductory organic chemistry sequence featuring one semester of accelerated organic chemistry followed by one semester of bioorganic chemistry is described. Assessment data collected over a six-year period reveal that such a course sequence can facilitate student mastery of fundamental organic chemistry in the first…

  17. On the Applicability of the Green Chemistry Principles to Sustainability of Organic Matter on Asteroids

    Directory of Open Access Journals (Sweden)

    Vera M. Kolb

    2010-06-01

    Full Text Available The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in the green organic reactions in water are directly applicable to astrobiology. Another green chemistry approach is to abolish use of toxic solvents. This can be accomplished by carrying out the reactions without a solvent in the solventless or solid-state reactions. The advances in these green reactions are directly applicable to the chemistry on asteroids during the periods when water was not available. Many reactions on asteroids may have been done in the solid mixtures. These reactions may be responsible for a myriad of organic compounds that have been isolated from the meteorites.

  18. "No one does this for fun": Contextualization and process writing in an organic chemistry laboratory course

    Science.gov (United States)

    Gay, Andrea

    This study investigated the introduction of curriculum innovations into an introductory organic chemistry laboratory course. Pre-existing experiments in a traditional course were re-written in a broader societal context. Additionally, a new laboratory notebook methodology was introduced, using the Decision/Explanation/Observation/Inference (DEOI) format that required students to explicitly describe the purpose of procedural steps and the meanings of observations. Experts in organic chemistry, science writing, and chemistry education examined the revised curriculum and deemed it appropriate. The revised curriculum was introduced into two sections of organic chemistry laboratory at Columbia University. Field notes were taken during the course, students and teaching assistants were interviewed, and completed student laboratory reports were examined to ascertain the impact of the innovations. The contextualizations were appreciated for making the course more interesting; for lending a sense of purpose to the study of chemistry; and for aiding in students' learning. Both experts and students described a preference for more extensive connections between the experiment content and the introduced context. Generally, students preferred the DEOI method to journal-style laboratory reports believing it to be more efficient and more focused on thinking than stylistic formalities. The students claimed that the DEOI method aided their understanding of the experiments and helped scaffold their thinking, though some students thought that the method was over-structured and disliked the required pre-laboratory work. The method was used in two distinct manners; recursively writing and revising as intended and concept contemplation only after experiment completion. The recursive use may have been influenced by TA attitudes towards the revisions and seemed to engender a sense of preparedness. Students' engagement with the contextualizations and the DEOI method highlight the need for

  19. Application and Utilization of Electrochemistry in Organic Chemistry

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš

    2011-01-01

    Roč. 15, č. 17 (2011), s. 2921-2922 ISSN 1385-2728 R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * organic chemistry * applications Subject RIV: CG - Electrochemistry Impact factor: 3.064, year: 2011

  20. Learning Organic Chemistry Through Natural Products A Practical ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Learning Organic Chemistry Through Natural Products A Practical Approach. N R Krishnaswamy. Series Article Volume 1 Issue 9 September 1996 pp 25-33. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    Science.gov (United States)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  2. On the Applicability of the Green Chemistry Principles to Sustainability of Organic Matter on Asteroids

    OpenAIRE

    Vera M. Kolb

    2010-01-01

    The connection between astrobiology and green chemistry represents a new approach to sustainability of organic matter on asteroids or similar bodies. Green chemistry is chemistry which is environmentally friendly. One obvious way for chemistry to be green is to use water as a solvent, instead of more toxic organic solvents. Many astrobiological reactions occur in the aqueous medium, for example in the prebiotic soup or during the aqueous alteration period on asteroids. Thus any advances in th...

  3. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    Science.gov (United States)

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  4. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  5. Biodiesel from Seeds: An Experiment for Organic Chemistry

    Science.gov (United States)

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  6. Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry

    OpenAIRE

    Luis R. Domingo

    2016-01-01

    A new theory for the study of the reactivity in Organic Chemistry, named Molecular Electron Density Theory (MEDT), is proposed herein. MEDT is based on the idea that while the electron density distribution at the ground state is responsible for physical and chemical molecular properties, as proposed by the Density Functional Theory (DFT), the capability for changes in electron density is responsible for molecular reactivity. Within MEDT, the reactivity in Organic Chemistry is studied through ...

  7. Evaluation of Learning Processes in an Organic Chemistry Course.

    Science.gov (United States)

    Maroto, B.; Camusso, C.; Cividini, M.

    1997-01-01

    Reviews a subjective exercise completed by students at the end of each of six units in an introductory organic chemistry course. Argues that instruction should be shaped by Ausubel's concept of meaningful learning. (DDR)

  8. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    Science.gov (United States)

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  9. Advance Organizers and Examining of their Usage in 9th Grade Chemistry Textbooks

    OpenAIRE

    Canan NAKİBOĞLU; Nihan KAŞMER; Cem GÜLTEKİN; Füsun DÖNMEZ

    2010-01-01

    An advance organizer is the tool that is presented prior to the material to be learned, and that helps learners to organize and interpret new incoming information. In this study, a concept map concerning the classification of advance organizer was developed. Then, 9th grade chemistry textbooks written according to both current (year 2007) and past (year 1996) high school chemistry curriculum were examined by taking into account the concept map prepared. Next, the findings of each textbook ana...

  10. The Effects of Clickers and Online Homework on Students' Achievement in General Chemistry

    Science.gov (United States)

    Gebru, Misganaw T.

    2012-01-01

    Retention of an introductory general chemistry course material is vital for student success in future chemistry and chemistry-related courses. This study investigated the effects of clickers versus online homework on students' long-term content retention, examined the effectiveness of online homework versus no graded homework on…

  11. The Critical Role of Organic Chemistry in Drug Discovery.

    Science.gov (United States)

    Rotella, David P

    2016-10-19

    Small molecules remain the backbone for modern drug discovery. They are conceived and synthesized by medicinal chemists, many of whom were originally trained as organic chemists. Support from government and industry to provide training and personnel for continued development of this critical skill set has been declining for many years. This Viewpoint highlights the value of organic chemistry and organic medicinal chemists in the complex journey of drug discovery as a reminder that basic science support must be restored.

  12. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  13. Furfural - from biomass to organic chemistry laboratory

    International Nuclear Information System (INIS)

    Ribeiro, Paulo Roberto; Carvalho, Jose Roque Mota; Geris, Regina; Queiroz, Vinicius; Fascio, Miguel

    2012-01-01

    The goal of this manuscript is provide to students of Chemistry and related areas an alternative experiment in which they can obtain a compound and learn to observe and interpret properties and predict organic structure by obtaining furfural from biomass. Furfural is an organic compound, obtained through acid hydrolysis of pentosans, commonly used in the chemical and pharmaceutical industries. Students are guided to get furfural through extractive procedures and chemical reactions adapted to semi-micro laboratory scale. Characterization of furfural was done by chemical tests and physical properties. Identification was accomplished by a series of spectroscopic and spectrometric techniques. (author)

  14. Using "The Poisoner's Handbook" in Conjunction with Teaching a First-Term General/Organic/Biochemistry Course

    Science.gov (United States)

    Zuidema, Daniel R.; Herndon, Lindsey B.

    2016-01-01

    Deborah Blum's New York Times bestselling nonfiction book "The Poisoner's Handbook" was used as supplementary reading in our first-term General/Organic/Biochemistry course. This course serves as both the first course for our Allied Health chemistry sequence and a core science course. Our goal was that, through reading this book, students…

  15. Stepwise Approach to Writing Journal-Style Lab Reports in the Organic Chemistry Course Sequence

    Science.gov (United States)

    Wackerly, Jay Wm.

    2018-01-01

    An approach is described that gradually transitions second-year organic chemistry students to writing full "The Journal of Organic Chemistry" ("JOC") style lab reports. The primary goal was to introduce students to and build rhetorical skills in scientific and technical writing. This was accomplished by focusing on four main…

  16. Evaluation of a Flipped, Large-Enrollment Organic Chemistry Course on Student Attitude and Achievement

    Science.gov (United States)

    Mooring, Suazette R.; Mitchell, Chloe E.; Burrows, Nikita L.

    2016-01-01

    Organic Chemistry is recognized as a course that presents many difficulties and conceptual challenges for students. To combat the high failure rates and poor student attitudes associated with this challenging course, we implemented a "flipped" model for the first-semester, large-enrollment, Organic Chemistry course. In this flipped…

  17. Theoretical study of reaction dynamics in radiation chemistry

    International Nuclear Information System (INIS)

    Tachiya, Masanori

    2008-01-01

    The period from late 1950's to early 1970's was golden age of radiation chemistry. During this period the hydrated electron was discovered, various new phenomena were found in ionic processes in liquid hydrocarbons, and the trapped electron and electron tunneling were discovered in organic glasses. In those days radiation chemistry was a vast treasure-house of theoretical problems. We could find not only problems special to radiation chemistry but also many problems interesting as general physical chemistry. In this review I explain how some theoretical problems discovered in the field of radiation chemistry have evolved into those of general physical chemistry, with special emphasis on my own work. (author)

  18. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…

  19. Shock-induced chemistry in organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory; Manner, Virginia [Los Alamos National Laboratory; Chellappa, Raja [Los Alamos National Laboratory; Yoo, Choong - Shik [WASHINGTON STATE UNIV

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  20. Novel Aryne Chemistry in Organic Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijian [Iowa State Univ., Ames, IA (United States)

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good

  1. On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology

    Science.gov (United States)

    Zhang, Yunshen

    2017-11-01

    with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.

  2. A Forty Year Odyssey in Metallo-Organic Chemistry.

    Science.gov (United States)

    Nicholas, Kenneth M

    2015-07-17

    In this invited Perspective, I provide a personal account highlighting several of my group's research contributions in metallo-organic chemistry over the past 40 years. Our early work focused primarily in stoichiometric structure/reactivity of transition metal-organic compounds and their use in organic synthesis. More recent efforts have centered on the discovery and development of new metal-catalyzed organic reactions via reactive metal-organic intermediates. The major research findings that are described here include (1) propargyl-cobalt complexes as electrophilic agents for C-C and C-Nu coupling; (2) the activation of carbon dioxide by metal complexes; (3) metal-promoted C-H nitrogenation reactions; (4) oxo-metal catalyzed deoxygenation reactions; and (5) catalyst discovery via dynamic templating with substrate- and transition-state analogues.

  3. First two-reagent vitamin D assay for general clinical chemistry.

    Science.gov (United States)

    Saida, Fakhri B; Padilla-Chee, Mario; Dou, Chao; Yuan, Chong

    2018-05-01

    Vitamin D is a lipid-soluble molecule that plays key physiological roles in the metabolism of calcium, phosphate and magnesium. Recent studies show that deficiency in vitamin D is linked to cardiovascular diseases, autoimmune diseases and cancer. As a result, regular monitoring of 25-OH vitamin D (the main circulating form of vitamin D) is becoming essential. Current 25-OH vitamin D testing methodologies are cumbersome (too many reagents, long incubation times, phase separation) and are not compatible with general clinical chemistry platforms. Here, we report on a novel method to detect 25-OH vitamin D that is fast (results in 10 min or less), simple (two reagents) and compatible with virtually all general clinical chemistry analyzers. An immunoturbidimetric assay for 25-OH vitamin D (the Diazyme EZ Vitamin D Assay) has been developed using nanoparticles and vitamin D-specific antibodies. The performance of the assay kit, which consists of two reagents and five calibrators, was tested on the Beckman AU680 analyzer (AU680). The new assay was precise, sensitive (LOD = 7.2 nmol/L), linear (up to 390.1 nmol/L) and correlated strongly (R 2  > 0.95) with major commercial 25-OH vitamin D assays. Additionally, the assay was found to be the fastest to date, with the first results obtained within 10 min. Throughput on the AU680 was estimated at over 300 tests per hour. The newly developed 25-OH vitamin D assay is fast, precise and accurate. It can be run on most general chemistry analyzers. This assay aims at providing vitamin D-testing capabilities to all clinical chemistry laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Integrating Chemical Information Instruction into the Chemistry Curriculum on Borrowed Time: A Multiyear Case Study of a Capstone Research Report for Organic Chemistry

    Science.gov (United States)

    Jacobs, Danielle L.; Dalal, Heather A.; Dawson, Patricia H.

    2016-01-01

    To develop information literacy skills in chemistry and biochemistry majors at a primarily undergraduate institution, a multiyear collaboration between chemistry faculty and librarians has resulted in the establishment of a semester-long capstone project for Organic Chemistry II. Information literacy skills were instilled via a progressive…

  5. Student Perceptions of Online Homework Use for Formative Assessment of Learning in Organic Chemistry

    Science.gov (United States)

    Richards-Babb, Michelle; Curtis, Reagan; Georgieva, Zornitsa; Penn, John H.

    2015-01-01

    Use of online homework as a formative assessment tool for organic chemistry coursework was examined. Student perceptions of online homework in terms of (i) its ranking relative to other course aspects, (ii) their learning of organic chemistry, and (iii) whether it improved their study habits and how students used it as a learning tool were…

  6. Development and analysis of educational technologies for a blended organic chemistry course

    Science.gov (United States)

    Evans, Michael James

    Blended courses incorporate elements of both face-to-face and online instruction. The extent to which blended courses are conducted online, and the proper role of the online components of blended courses, have been debated and may vary. What can be said in general, however, is that online tools for blended courses are typically culled together from a variety of sources, are often very large scale, and may present distractions for students that decrease their utility as teaching tools. Furthermore, large-scale educational technologies may not be amenable to rigorous, detailed study, limiting evaluation of their effectiveness. Small-scale educational technologies run from the instructor's own server have the potential to mitigate many of these issues. Such tools give the instructor or researcher direct access to all available data, facilitating detailed analysis of student use. Code modification is simple and rapid if errors arise, since code is stored where the instructor can easily access it. Finally, the design of a small-scale tool can target a very specific application. With these ideas in mind, this work describes several projects aimed at exploring the use of small-scale, web-based software in a blended organic chemistry course. A number of activities were developed and evaluated using the Student Assessment of Learning Gains survey, and data from the activities were analyzed using quantitative methods of statistics and social network analysis methods. Findings from this work suggest that small-scale educational technologies provide significant learning benefits for students of organic chemistry---with the important caveat that instructors must offer appropriate levels of technical and pedagogical support for students. Most notably, students reported significant learning gains from activities that included collaborative learning supported by novel online tools. For the particular context of organic chemistry, which has a unique semantic language (Lewis

  7. Challenges in Creating Online Exercises and Exams in Organic Chemistry.

    Science.gov (United States)

    Jaun, Bernhard; Thilgen, Carlo

    2018-02-01

    e-Learning has become increasingly important in chemical education and online exams can be an attractive alternative to traditional exams written on paper, particularly in classes with a large number of students. Ten years ago, we began to set up an e-course complementing our lecture courses Organic Chemistry I and II within the open-source e-learning environment Moodle. In this article, we retrace a number of decisions we took over time, thereby illustrating the challenges one faces when creating online exercises and exams in (organic) chemistry. Special emphasis is put on the development of MOSFECCS (MOlecular Structural Formula Editor and Calculator of Canonical SMILES), our new editor for drawing structural formulae and converting them to alphanumeric SMILES codes that can be submitted as answers to e-problems. Convinced that the possibility for structure input is essential to set up sensible chemistry quizzes and exams, and realising that existing tools present major flaws in an educational context, we decided to embark on the implementation of MOSFECCS which takes into account a number of didactic aspects.

  8. Introducing Scientific Literature to Honors General Chemistry Students: Teaching Information Literacy and the Nature of Research to First-Year Chemistry Students

    Science.gov (United States)

    Ferrer-Vinent, Ignacio J.; Bruehl, Margaret; Pan, Denise; Jones, Galin L.

    2015-01-01

    This paper describes the methodology and implementation of a case study introducing the scientific literature and creative experiment design to honors general chemistry laboratory students. The purpose of this study is to determine whether first-year chemistry students can develop information literacy skills while they engage with the primary…

  9. A General Chemistry Laboratory Course Designed for Student Discussion

    Science.gov (United States)

    Obenland, Carrie A.; Kincaid, Kristi; Hutchinson, John S.

    2014-01-01

    We report a study of the general chemistry laboratory course at one university over four years. We found that when taught as a traditional laboratory course, lab experiences do not encourage students to deepen their understanding of chemical concepts. Although the lab instructor emphasized that the lab experiences were designed to enhance…

  10. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  11. Illustrating Concepts in Physical Organic Chemistry with 3D Printed Orbitals

    Science.gov (United States)

    Robertson, Michael J.; Jorgensen, William L.

    2015-01-01

    Orbital theory provides a powerful tool for rationalizing and understanding many phenomena in chemistry. In most introductory chemistry courses, students are introduced to atomic and molecular orbitals in the form of two-dimensional drawings. In this work, we describe a general method for producing 3D printing files of orbital models that can be…

  12. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  13. Effectiveness of Analogy Instructional Strategy on Undergraduate Student's Acquisition of Organic Chemistry Concepts in Mutah University, Jordan

    Science.gov (United States)

    Samara, Nawaf Ahmad Hasan

    2016-01-01

    This study aimed at investigating the effectiveness of analogy instructional strategy on undergraduate students' acquisition of organic chemistry concepts in Mutah University, Jordan. A quasi-experimental design was used in the study; Participants were 97 students who enrolled in organic chemistry course at the department of chemistry during the…

  14. High Structure Active Learning Pedagogy for the Teaching of Organic Chemistry: Assessing the Impact on Academic Outcomes

    Science.gov (United States)

    Crimmins, Michael T.; Midkiff, Brooke

    2017-01-01

    Organic Chemistry is a required course for programs in chemistry, biology, and many health science careers. It has historically been considered a highly challenging course with significant failure rates. As with many science disciplines, the teaching of Organic Chemistry has traditionally focused on unstructured exposition-centered delivery of…

  15. Using Structure-Based Organic Chemistry Online Tutorials with Automated Correction for Student Practice and Review

    Science.gov (United States)

    O'Sullivan, Timothy P.; Hargaden, Gra´inne C.

    2014-01-01

    This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing…

  16. Beyond Rote Learning in Organic Chemistry: The Infusion and Impact of Argumentation in Tertiary Education

    Science.gov (United States)

    Pabuccu, Aybuke; Erduran, Sibel

    2017-01-01

    There exists bias among students that learning organic chemistry topics requires rote learning. In this paper, we address such bias through an organic chemistry activity designed to promote argumentation. We investigated how pre-service science teachers engage in an argumentation about conformational analysis. Analysis of the outcomes concentrated…

  17. Integrating the Liberal Arts and Chemistry: A Series of General Chemistry Assignments to Develop Science Literacy

    Science.gov (United States)

    Miller, Diane M.; Chengelis Czegan, Demetra A.

    2016-01-01

    This paper describes assignments that have been implemented in a General Chemistry I course to promote science literacy. This course was chosen in particular because it reaches a broad audience, which includes nonscience majors. The assignment series begins with several discussions and tasks to develop information literacy, in which students find…

  18. Development and Preliminary Impacts of the Implementation of an Authentic Research-Based Experiment in General Chemistry

    Science.gov (United States)

    Tomasik, Janice Hall; Cottone, Katelyn E.; Heethuis, Mitchell T.; Mueller, Anja

    2013-01-01

    Incorporating research-based lab activities into general chemistry at a large university can be challenging, considering the high enrollments and costs typically associated with the courses. Performing sweeping curricular overhauls of the general chemistry laboratory can be difficult, and in some cases discouraged, as many would rather maintain…

  19. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    Science.gov (United States)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  20. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  1. The tip of the iceberg in organic chemistry classes : how do students deal with the invisible?

    OpenAIRE

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students´ use of the arrow-pushing formalism, the investigation of students´ conceptual knowledge and their cognitive skills have shaped our understanding of college students´ understanding in organic chemistry classes. This review provides an overview of res...

  2. Delayed Reaction: The Tardy Embrace of Physical Organic Chemistry by the German Chemical Community.

    Science.gov (United States)

    Weininger, Stephen J

    2018-02-01

    The emergence of physical organic chemistry, which focuses on the mechanisms and structures of organic reactions and molecules using the tools of physical chemistry, was a major development in twentieth-century chemistry. It first flourished in the interwar period, in the UK and then in the US. Germany, by contrast, did not embrace the field until almost a half century later. The great success of classical organic chemistry, especially in synthesis, encouraged indifference to the new field among German chemists, as did their inductivist research philosophy, as enunciated by Walter Hückel's ground-breaking textbook (1931). This author also resisted new concepts and representations, especially those of the American theoretician, Linus Pauling. The arrival of the Nazi regime reinforced such resistance. Postwar conditions initiated a reaction against this conservative, nationalistic attitude, especially in the American Occupation Zone. Exposure to American textbooks and visiting lecturers influenced attitudes of younger chemists. The accompanying shift towards a more explanatory, less hierarchical mode of pedagogy was consonant with larger social and political developments.

  3. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    Science.gov (United States)

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of…

  4. Preparation for College General Chemistry: More than Just a Matter of Content Knowledge Acquisition

    Science.gov (United States)

    Cracolice, Mark S.; Busby, Brittany D.

    2015-01-01

    This study investigates the potential of five factors that may be predictive of success in college general chemistry courses: prior knowledge of common alternate conceptions, intelligence, scientific reasoning ability, proportional reasoning ability, and attitude toward chemistry. We found that both prior knowledge and scientific reasoning ability…

  5. Intuitive Judgments Govern Students' Answering Patterns in Multiple-Choice Exercises in Organic Chemistry

    Science.gov (United States)

    Graulich, Nicole

    2015-01-01

    Research in chemistry education has revealed that students going through their undergraduate and graduate studies in organic chemistry have a fragmented conceptual knowledge of the subject. Rote memorization, rule-based reasoning, and heuristic strategies seem to strongly influence students' performances. There appears to be a gap between what we…

  6. What We Don't Test: What an Analysis of Unreleased ACS Exam Items Reveals about Content Coverage in General Chemistry Assessments

    Science.gov (United States)

    Reed, Jessica J.; Villafan~e, Sachel M.; Raker, Jeffrey R.; Holme, Thomas A.; Murphy, Kristen L.

    2017-01-01

    General chemistry courses are often the foundation for the study of other science disciplines and upper-level chemistry concepts. Students who take introductory chemistry courses are more often from health and science-related fields than chemistry. As such, the content taught and assessed in general chemistry courses is envisioned as building…

  7. Synthesis of liquid crystals derived from nitroazobenzene: a proposed multistep synthesis applied to organic chemistry laboratory classes

    International Nuclear Information System (INIS)

    Cristiano, Rodrigo; Cabral, Marilia Gabriela B.; Aquino, Rafael B. de; Cristiano, Claudia M.Z.

    2014-01-01

    We describe a synthetic route consisting of five steps from aniline to obtain liquid crystal compounds derived from nitroazobenzene. Syntheses were performed during the second half of the semester in organic chemistry laboratory classes. Students characterized the liquid crystal phase by the standard melting point techniques, differential scanning calorimetry and polarized optical microscopy. These experiments allow undergraduate students to explore fundamentally important reactions in Organic Chemistry, as well as modern concepts in Chemistry such as self-assembly and self-organization, nanostructured materials and molecular electronics. (author)

  8. Does Mechanistic Thinking Improve Student Success in Organic Chemistry?

    Science.gov (United States)

    Grove, Nathaniel P.; Cooper, Melanie M.; Cox, Elizabeth L.

    2012-01-01

    The use of the curved-arrow notation to depict electron flow during mechanistic processes is one of the most important representational conventions in the organic chemistry curriculum. Our previous research documented a disturbing trend: when asked to predict the products of a series of reactions, many students do not spontaneously engage in…

  9. Synthesis and Chemistry of Organic Geminal Di- and Triazides.

    Science.gov (United States)

    Häring, Andreas P; Kirsch, Stefan F

    2015-11-06

    This review recapitulates all available literature dealing with the synthesis and reactivity of geminal organic di- and triazides. These compound classes are, to a large extent, unexplored despite their promising chemical properties and their simple preparation. In addition, the chemistry of carbonyl diazide (2) and tetraazidomethane (105) is described in separate sections.

  10. Self-Assembled Student Interactions in Undergraduate General Chemistry Clicker Classrooms

    Science.gov (United States)

    MacArthur, James R.; Jones, Loretta

    2013-01-01

    Student interviews, focus groups, and classroom observations were used in an exploratory study of the nature of student interactions in a large (300+ students) general chemistry course taught with clickers. These data suggest that students are self-assembling their learning environment: choosing ways in which to interact with one another during…

  11. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  12. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  13. A New Approach to the General Chemistry Laboratory

    Science.gov (United States)

    Bieron, Joseph F.; McCarthy, Paul J.; Kermis, Thomas W.

    1996-11-01

    Background Canisius College is a medium-sized liberal arts college with a longstanding tradition of maintaining an excellent chemistry program. We realized a few years ago, however, that this tradition was not being sustained by our General Chemistry laboratory course, which had not changed significantly in years. With the help of a grant from the National Science Foundation, our department has been able to design a new laboratory course built around several guiding principles. The design called for experiments to be grouped in units or clusters. Each cluster has a unifying theme or common thread, which gives some coherence to the experiments. The clusters and experiments are listed in the appendix and briefly explained below. Course Design Cluster A's topic is organic and polymer chemistry, and its main objective is to show that chemistry can be enjoyable and relevant to common experiences. Data collection is minimal and hands-on manipulation with observable products is emphasized. Cluster B is a case study of the chemistry of maintaining a swimming pool. The common theme is solution chemistry, and the experiments are designed to promote critical thinking. Cluster C encompasses both oxidation - reduction reactions and electrochemistry, and attempts to show the commonality of these important topics. Cluster D is a series of experiments on methods and techniques of analytical chemistry; in this group the analysis of unknown materials is undertaken. Cluster E is covered last in the second semester, and it stresses important concepts in chemistry at a slightly more advanced level. The emphasis is on the relationship of experiment to theory, and the cluster involves experiments in kinetics, equilibrium, and synthesis. Other guidelines that we considered important in our design were the use of computers (when appropriate), the introduction of microscale chemistry, and the use of instrumentation whenever possible. A separate cluster, labeled Mac, was developed to provide

  14. Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain.

    Science.gov (United States)

    Weykamp, Cas; Secchiero, Sandra; Plebani, Mario; Thelen, Marc; Cobbaert, Christa; Thomas, Annette; Jassam, Nuthar; Barth, Julian H; Perich, Carmen; Ricós, Carmen; Faria, Ana Paula

    2017-02-01

    Optimum patient care in relation to laboratory medicine is achieved when results of laboratory tests are equivalent, irrespective of the analytical platform used or the country where the laboratory is located. Standardization and harmonization minimize differences and the success of efforts to achieve this can be monitored with international category 1 external quality assessment (EQA) programs. An EQA project with commutable samples, targeted with reference measurement procedures (RMPs) was organized by EQA institutes in Italy, the Netherlands, Portugal, UK, and Spain. Results of 17 general chemistry analytes were evaluated across countries and across manufacturers according to performance specifications derived from biological variation (BV). For K, uric acid, glucose, cholesterol and high-density density (HDL) cholesterol, the minimum performance specification was met in all countries and by all manufacturers. For Na, Cl, and Ca, the minimum performance specifications were met by none of the countries and manufacturers. For enzymes, the situation was complicated, as standardization of results of enzymes toward RMPs was still not achieved in 20% of the laboratories and questionable in the remaining 80%. The overall performance of the measurement of 17 general chemistry analytes in European medical laboratories met the minimum performance specifications. In this general picture, there were no significant differences per country and no significant differences per manufacturer. There were major differences between the analytes. There were six analytes for which the minimum quality specifications were not met and manufacturers should improve their performance for these analytes. Standardization of results of enzymes requires ongoing efforts.

  15. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    Science.gov (United States)

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  16. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  17. A general method for the inclusion of radiation chemistry in astrochemical models.

    Science.gov (United States)

    Shingledecker, Christopher N; Herbst, Eric

    2018-02-21

    In this paper, we propose a general formalism that allows for the estimation of radiolysis decomposition pathways and rate coefficients suitable for use in astrochemical models, with a focus on solid phase chemistry. Such a theory can help increase the connection between laboratory astrophysics experiments and astrochemical models by providing a means for modelers to incorporate radiation chemistry into chemical networks. The general method proposed here is targeted particularly at the majority of species now included in chemical networks for which little radiochemical data exist; however, the method can also be used as a starting point for considering better studied species. We here apply our theory to the irradiation of H 2 O ice and compare the results with previous experimental data.

  18. A General Chemistry and Precalculus First-Year Interest Group (FIG): Effect on Retention, Skills, and Attitudes

    Science.gov (United States)

    Pence, Laura E.; Workman, Harry J.; Haruta, Mako E.

    2005-01-01

    The backdrop of the calculus reform movement created a fertile movement for the creation of overlap between general chemistry and precalculus as many of the goals emphasized key concepts from the chemistry lab. By using the graphing calculator in both precalculus and chemistry laboratory enhanced the students' comfort and competence with the…

  19. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    International Nuclear Information System (INIS)

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-01-01

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides

  20. Organic radiation chemistry--the present state and problems

    International Nuclear Information System (INIS)

    Sareava, V.V.; Kalyazin, E.P.

    1985-01-01

    The authors pose the principal problems to be solved in organic radiation chemistry: 1) to derive from the structural formula of a given organic compound the composition of the products from its radiolysis under standard conditions; 2) to use a number of physicochemical properties of a given compound at the molecular and material levels to predict the variation in composition and fraction of products from the radiolysis of the compounds with a change in irradiation conditions, i.e., the parameters of the acting radiation and the state of the substance, to indicate the direction of the principal radiation chemical processes in complex mixtures of natural or technical origin. Having stated the problems, the authors attempt to show the level of understanding of the radiolysis of organic compounds, using aliphatic hydrocarbons as principal discussion subjects

  1. Annual report of Institute of Nuclear Chemistry and Technology 1996

    International Nuclear Information System (INIS)

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations

  2. Annual report of Institute of Nuclear Chemistry and Technology 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The report is a collection of short communications being a review of the scientific activities of the Institute of Nuclear Chemistry and Technology, Warsaw in 1996. The papers are gathered in several branches as follows: radiation chemistry and physics (17); Radiochemistry, stable isotopes, nuclear analytical methods,chemistry in general (20); radiobiology (9); nuclear technologies and methods (28).The last and biggest chapter has been divided in four smaller groups; process engineering; material engineering,structural studies,diagnostics; radiation technologies; nucleonic control systems. The annual report of INCT-1996 contains also a general information of Institute, the full list of scientific publications and patents, conferences organized by INCT, Ph.D. and D.Sc. thesis, a list of projects granted by Polish Committee of Scientific Research and other organizations.

  3. Apoc Social: A Mobile Interactive and Social Learning Platform for Collaborative Solving of Advanced Problems in Organic Chemistry.

    Science.gov (United States)

    Sievertsen, Niels; Carreira, Erick M

    2018-02-01

    Mobile devices such as smartphones are carried in the pockets of university students around the globe and are increasingly cheap to come by. These portable devices have evolved into powerful and interconnected handheld computers, which, among other applications, can be used as advanced learning tools and providers of targeted, curated content. Herein, we describe Apoc Social (Advanced Problems in Organic Chemistry Social), a mobile application that assists both learning and teaching college-level organic chemistry both in the classroom and on the go. With more than 750 chemistry exercises available, Apoc Social facilitates collaborative learning through discussion boards and fosters enthusiasm for complex organic chemistry.

  4. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  5. 3D-printed devices for continuous-flow organic chemistry.

    Science.gov (United States)

    Dragone, Vincenza; Sans, Victor; Rosnes, Mali H; Kitson, Philip J; Cronin, Leroy

    2013-01-01

    We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  6. Dragonfly: In Situ Exploration of Titan's Organic Chemistry and Habitability

    Science.gov (United States)

    Turtle, E. P.; Barnes, J. W.; Trainer, M. G.; Lorenz, R. D.

    2017-12-01

    Titan's abundant complex carbon-rich chemistry, interior ocean, and past presence of liquid water on the surface make it an ideal destination to study prebiotic chemical processes and document the habitability of an extraterrestrial environment. Titan exploration is a high science priority due to the level of organic synthesis that it supports. Moreover, opportunities for organics to have interacted with liquid water at the surface (e.g., in impact melt sheets) increase the potential for chemical processes to progress further, providing an unparalleled opportunity to investigate prebiotic chemistry, as well as to search for signatures of potential water-based or even hydrocarbon-based life. The diversity of Titan's surface materials and environments drives the scientific need to be able to sample a variety of locations, thus mobility is key for in situ measurements. Titan's atmosphere is 4 times denser than Earth's reducing the wing/rotor area required to generate a given amount of lift, and the low gravity reduces the required magnitude of lift, making heavier-than-air mobility highly efficient. Dragonfly is a rotorcraft lander mission proposed to NASA's New Frontiers Program to take advantage of Titan's unique natural laboratory to understand how far chemistry can progress in environments that provide key ingredients for life. Measuring the compositions of materials in different environments will reveal how far organic chemistry has progressed. Surface material can be sampled into a mass spectrometer to identify the chemical components available and processes at work to produce biologically relevant compounds. Bulk elemental surface composition can be determined by a neutron-activated gamma-ray spectrometer. Meteorology measurements can characterize Titan's atmosphere and diurnal and spatial variations therein. Geologic features can be characterized via remote-sensing observations, which also provide context for samples. Seismic sensing can probe subsurface

  7. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    unparalleled insight into the chemistry of these plasma systems. Part II of this work is focused on understanding the efficacy of a general chemistry recitation program. Such programs can be an valuable tool for improving students' problem solving skills and understanding using methods that are difficult to implement in large lecture settings. Here, general chemistry students at Colorado State University participated in a variety of recitation activities throughout the first semester of a 2-semester general chemistry sequence, including peer-led exercises, games, and scaffolded worksheets. Through weekly surveys, students were asked to evaluate and assess recitation activities for both interest and effectiveness as part of their course homework. Also included in these survey assignments were content questions relevant to the weekly themes, providing a measure of student learning of recitation topics. Student opinions were correlated with content retention, and these data were compared against student responses to a pre-survey administered before the first recitation session. This analysis allows for monitoring students' expectations of recitation courses and how well those expectations are met through the various types of activities employed. Ultimately, this work has found that students have positive feeling with respect to individual assignments, but that perspectives on chemistry and the course in general decrease dramatically from the beginning to the end of the semester. Thus, this work can serve as a significant starting points for future efforts to monitor and record student perceptions in the general chemistry recitation classroom, leading to further investigation into the source of changing attitudes and the role that week-to-week activities have on global course attitudes.

  8. Atmospheric Prebiotic Chemistry and Organic Hazes

    Science.gov (United States)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  9. Comparative analysis of a nontraditional general chemistry textbook and selected traditional textbooks used in Texas community colleges

    Science.gov (United States)

    Salvato, Steven Walter

    The purpose of this study was to analyze questions within the chapters of a nontraditional general chemistry textbook and the four general chemistry textbooks most widely used by Texas community colleges in order to determine if the questions require higher- or lower-order thinking according to Bloom's taxonomy. The study employed quantitative methods. Bloom's taxonomy (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956) was utilized as the main instrument in the study. Additional tools were used to help classify the questions into the proper category of the taxonomy (McBeath, 1992; Metfessel, Michael, & Kirsner, 1969). The top four general chemistry textbooks used in Texas community colleges and Chemistry: A Project of the American Chemical Society (Bell et al., 2005) were analyzed during the fall semester of 2010 in order to categorize the questions within the chapters into one of the six levels of Bloom's taxonomy. Two coders were used to assess reliability. The data were analyzed using descriptive and inferential methods. The descriptive method involved calculation of the frequencies and percentages of coded questions from the books as belonging to the six categories of the taxonomy. Questions were dichotomized into higher- and lower-order thinking questions. The inferential methods involved chi-square tests of association to determine if there were statistically significant differences among the four traditional college general chemistry textbooks in the proportions of higher- and lower-order questions and if there were statistically significant differences between the nontraditional chemistry textbook and the four traditional general chemistry textbooks. Findings indicated statistically significant differences among the four textbooks frequently used in Texas community colleges in the number of higher- and lower-level questions. Statistically significant differences were also found among the four textbooks and the nontraditional textbook. After the analysis of

  10. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  11. Physics, radiology, and chemistry. An introduction to natural science. 8. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1991-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore connections with biology and medicine are considered. (orig./HP) With 104 figs., 51 tabs [de

  12. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  13. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    Science.gov (United States)

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  14. Radiation chemistry of the liquid state

    International Nuclear Information System (INIS)

    Buxton, G.V.

    1987-01-01

    More is known about the radiation chemistry of water than any other liquid. From a practical viewpoint out knowledge is virtually complete, and water radiolysis now provides a very convenient way of generating an enormous variety of unstable species under well-defined conditions. This facility, coupled with the techniques of pulse radiolysis, has opened up new areas in aqueous inorganic, organic, and biochemistry that cannot be readily studied by thermal or photochemical methods. This chapter is aimed, therefore, at those who wish to use radiolytic methods to generate and study unstable species in aqueous solution. The basic features of the radiation chemistry of water are described first to show how the primary radical and molecular products evolve with time and to delineate the bounds of useful experimental conditions. Next, the properties of the primary radicals are summarized, and examples are given to show how the primary radicals can be converted into secondary radicals, often of a single kind. This is an important aspect of the radiation chemistry of aqueous solutions. Lastly, the impact of our knowledge of the radiation chemistry of water on advances in general chemistry is illustrated by examples from the fields of inorganic and organic chemistry

  15. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    Science.gov (United States)

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  16. Organic Chemistry Masterclasses

    Indian Academy of Sciences (India)

    of Science Education that is published monthly by the Academy since January 1996. ...... Modern chemistry is also emerging from molecules derived from the .... photochemical reactions, the traditional correlation diagram approach is more ...

  17. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  18. Exploring Chemical Equilibrium with Poker Chips: A General Chemistry Laboratory Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2012-01-01

    A hands-on laboratory exercise at the general chemistry level introduces students to chemical equilibrium through a simulation that uses poker chips and rate equations. More specifically, the exercise allows students to explore reaction tables, dynamic chemical equilibrium, equilibrium constant expressions, and the equilibrium constant based on…

  19. The Influence of Modern Instrumentation on the Analytical and General Chemistry Curriculum at Bates College

    Science.gov (United States)

    Wenzel, Thomas J.

    2001-09-01

    The availability of state-of-the-art instruments such as high performance liquid chromatograph, gas chromatograph-mass spectrometer, inductively coupled plasma-atomic emission spectrometer, capillary electrophoresis system, and ion chromatograph obtained through four Instructional Laboratory Improvement and one Course, Curriculum, and Laboratory Improvement grants from the National Science Foundation has led to a profound change in the structure of the analytical and general chemistry courses at Bates College. Students in both sets of courses now undertake ambitious, semester-long, small-group projects. The general chemistry course, which fulfills the prerequisite requirement for all upper-level chemistry courses, focuses on the connection between chemistry and the study of the environment. The projects provide students with an opportunity to conduct a real scientific investigation. The projects emphasize problem solving, team work, and communication, while still fostering the development of important laboratory skills. Cooperative learning is also used extensively in the classroom portion of these courses.

  20. Historical Analysis of the Inorganic Chemistry Curriculum Using ACS Examinations as Artifacts

    Science.gov (United States)

    Srinivasan, Shalini; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Johnson, Adam R.; Lin, Shirley; Marek, Keith A.; Nataro, Chip; Murphy, Kristen L.; Raker, Jeffrey R.

    2018-01-01

    ACS Examinations provide a lens through which to examine historical changes in topic coverage via analyses of course-specific examinations. This study is an extension of work completed previously by the ACS Exams Research Staff and collaborators in general chemistry, organic chemistry, and physical chemistry to explore content changes in the…

  1. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  2. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  3. #IHeartChemistryNCSU: Free Choice, Content, and Elements of Science Communication as the Framework for an Introductory Organic Chemistry Project

    Science.gov (United States)

    Frohock, Bram H.; Winterrowd, Samantha T.; Gallardo-Williams, Maria T.

    2018-01-01

    Students in a large introductory organic chemistry class were given the freedom to choose an organic compound of interest and were challenged to develop an educational object (physical or digital) designed to be shared with the broader public via social media. Analysis of the project results shows that most students appreciated the open nature of…

  4. Separating the effects of organic matter-mineral interactions and organic matter chemistry on the sorption of diuron and phenanthrene.

    Science.gov (United States)

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-06-01

    Even though it is well established that soil C content is the primary determinant of the sorption affinity of soils for non-ionic compounds, it is also clear that organic carbon-normalized sorption coefficients (K(OC)) vary considerably between soils. Two factors that may contribute to K(OC) variability are variations in organic matter chemistry between soils and interactions between organic matter and soil minerals. Here, we quantify these effects for two non-ionic sorbates-diuron and phenanthrene. The effect of organic matter-mineral interactions were evaluated by comparing K(OC) for demineralized (HF-treated) soils, with K(OC) for the corresponding whole soils. For diuron and phenanthrene, average ratios of K(OC) of the HF-treated soils to K(OC) of the whole soils were 2.5 and 2.3, respectively, indicating a substantial depression of K(OC) due to the presence of minerals in the whole soils. The effect of organic matter chemistry was determined by correlating K(OC) against distributions of C types determined using solid-state (13)C NMR spectroscopy. For diuron, K(OC) was positively correlated with aryl C and negatively correlated with O-alkyl C, for both whole and HF-treated soils, whereas for phenanthrene, these correlations were only present for the HF-treated soils. We suggest that the lack of a clear effect of organic matter chemistry on whole soil K(OC) for phenanthrene is due to an over-riding influence of organic matter-mineral interactions in this case. This hypothesis is supported by a correlation between the increase in K(OC) on HF-treatment and the soil clay content for phenanthrene, but not for diuron.

  5. 3D-printed devices for continuous-flow organic chemistry

    Directory of Open Access Journals (Sweden)

    Vincenza Dragone

    2013-05-01

    Full Text Available We present a study in which the versatility of 3D-printing is combined with the processing advantages of flow chemistry for the synthesis of organic compounds. Robust and inexpensive 3D-printed reactionware devices are easily connected using standard fittings resulting in complex, custom-made flow systems, including multiple reactors in a series with in-line, real-time analysis using an ATR-IR flow cell. As a proof of concept, we utilized two types of organic reactions, imine syntheses and imine reductions, to show how different reactor configurations and substrates give different products.

  6. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Nuclear and Radiochemistry in Chemistry Education Curriculum Project

    International Nuclear Information System (INIS)

    Robertson, J.D.; Missouri University, Columbia, MO; Kleppinger, E.W.

    2005-01-01

    Given the mismatch between supply of and demand for nuclear scientists, education in nuclear and radiochemistry has become a serious concern. The Nuclear and Radiochemistry in Chemistry Education (NRIChEd) Curriculum Project was undertaken to reintroduce the topics normally covered in a one-semester radiochemistry course into the traditional courses of a four-year chemistry major: general chemistry, organic chemistry, quantitative and instrumental analysis, and physical chemistry. NRIChEd uses a three-pronged approach that incorporates radiochemistry topics when related topics in the basic courses are covered, presents special topics of general interest as a vehicle for teaching nuclear and radiochemistry alongside traditional chemistry, and incorporates the use of non-licensed amounts of radioactive substances in demonstrations and student laboratory experiments. This approach seeks not only to reestablish nuclear science in the chemistry curriculum, but to use it as a tool for elucidating fundamental and applied aspects of chemistry as well. Moreover, because of its relevance in many academic areas, nuclear science enriches the chemistry curriculum by encouraging interdisciplinary thinking and problem solving. (author)

  8. Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Development, Implementation, and Assessment of General Chemistry Lab Experiments Performed in the Virtual World of Second Life

    Science.gov (United States)

    Winkelmann, Kurt; Keeney-Kennicutt, Wendy; Fowler, Debra; Macik, Maria

    2017-01-01

    Virtual worlds are a potential medium for teaching college-level chemistry laboratory courses. To determine the feasibility of conducting chemistry experiments in such an environment, undergraduate students performed two experiments in the immersive virtual world of Second Life (SL) as part of their regular General Chemistry 2 laboratory course.…

  10. Examining the Effects of Reflective Journals on Pre-Service Science Teachers' General Chemistry Laboratory Achievement

    Science.gov (United States)

    Cengiz, Canan; Karatas, Faik Özgür

    2015-01-01

    The general chemistry laboratory is an appropriate place for learning chemistry well. It is also effective for stimulating higher-order thinking skills, including reflective thinking, a skill that is crucial for science teaching as well as learning. This study aims to examine the effects of feedback-supported reflective journal-keeping activities…

  11. Suggestions for Modifications in the Teaching of General Chemistry to Accommodate Learning Disabled Students: Alternative Techniques for Teaching General Chemistry to Learning Disabled Students in the University.

    Science.gov (United States)

    Habib, H. S.

    A professor involved with the HELDS project (Higher Education for Learning Disabled Students) describes modifications in a general chemistry course. A syllabus lists program objectives for eight text chapters, evaluation components, and course rules. Two units are described in detail, with information presented on modifications made for LD…

  12. A Computer Algebra Approach to Solving Chemical Equilibria in General Chemistry

    Science.gov (United States)

    Kalainoff, Melinda; Lachance, Russ; Riegner, Dawn; Biaglow, Andrew

    2012-01-01

    In this article, we report on a semester-long study of the incorporation into our general chemistry course, of advanced algebraic and computer algebra techniques for solving chemical equilibrium problems. The method presented here is an alternative to the commonly used concentration table method for describing chemical equilibria in general…

  13. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    Gutmacher, R.; Crawford, R.

    1978-01-01

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  14. Annual Report of Institute of Nuclear Chemistry and Technology 1998

    International Nuclear Information System (INIS)

    1999-04-01

    Actual edition of Annual Report is a full review of scientific activities of the Institute of Nuclear Chemistry and Technology (INCT), Warsaw, in 1998. The abstracts are presented in the following group of subjects: radiation chemistry and physics, radiation technologies (26); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (25); radiobiology (11); nuclear technologies and methods - process engineering (5); material engineering, structural studies and diagnostics (9); nucleonic control systems (7). The edition also included the list of INCT scientific publications and patents as well as information on conferences organized or co-organized by the INCT in 1998

  15. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    Science.gov (United States)

    Głowacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (∼2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Selected chapters from general chemistry in physics teaching with the help of e - learning

    Science.gov (United States)

    Feszterová, Melánia

    2017-01-01

    Education in the field of natural disciplines - Mathematics, Physics, Chemistry, Ecology and Biology takes part in general education at all schools on the territory of Slovakia. Its aim is to reach the state of balanced development of all personal characteristics of pupils, to teach them correctly identify and analyse problems, propose solutions and above all how to solve the problem itself. High quality education can be reached only through the pedagogues who have a good expertise knowledge, practical experience and high level of pedagogical abilities. The teacher as a disseminator of natural-scientific knowledge should be not only well-informed about modern tendencies in the field, but he/she also should actively participate in project tasks This is the reason why students of 1st year of study (bachelor degree) at the Department of Physics of Constantine the Philosopher University in Nitra attend lectures in the frame of subject General Chemistry. In this paper we present and describe an e - learning course called General Chemistry that is freely accessible to students. One of the aims of this course is to attract attention towards the importance of cross-curricular approach which seems to be fundamental in contemporary natural-scientific education (e.g. between Physics and Chemistry). This is why it is so important to implement a set of new topics and tasks that support development of abilities to realise cross-curricular goals into the process of preparation of future teachers of Physics.

  17. Organic compounds in fluid inclusions of Archean quartz-Analogues of prebiotic chemistry on early Earth.

    Science.gov (United States)

    Schreiber, Ulrich; Mayer, Christian; Schmitz, Oliver J; Rosendahl, Pia; Bronja, Amela; Greule, Markus; Keppler, Frank; Mulder, Ines; Sattler, Tobias; Schöler, Heinz F

    2017-01-01

    The origin of life is still an unsolved mystery in science. Hypothetically, prebiotic chemistry and the formation of protocells may have evolved in the hydrothermal environment of tectonic fault zones in the upper continental crust, an environment where sensitive molecules are protected against degradation induced e.g. by UV radiation. The composition of fluid inclusions in minerals such as quartz crystals which have grown in this environment during the Archean period might provide important information about the first organic molecules formed by hydrothermal synthesis. Here we present evidence for organic compounds which were preserved in fluid inclusions of Archean quartz minerals from Western Australia. We found a variety of organic compounds such as alkanes, halocarbons, alcohols and aldehydes which unambiguously show that simple and even more complex prebiotic organic molecules have been formed by hydrothermal processes. Stable-isotope analysis confirms that the methane found in the inclusions has most likely been formed from abiotic sources by hydrothermal chemistry. Obviously, the liquid phase in the continental Archean crust provided an interesting choice of functional organic molecules. We conclude that organic substances such as these could have made an important contribution to prebiotic chemistry which might eventually have led to the formation of living cells.

  18. Formation and Dimerization of NO2 A General Chemistry Experiment

    Science.gov (United States)

    Hennis, April D.; Highberger, C. Scott; Schreiner, Serge

    1997-11-01

    We have developed a general chemistry experiment which illustrates Gay-Lussac's law of combining volumes. Students are able to determine the partial pressures and equilibrium constant for the formation and dimerization of NO2. The experiment can be carried out in about 45 minutes with students working in groups of two. The experiment readily provides students with data that can be manipulated with a common spreadsheet.

  19. Chemistry Perfumes Your Daily Life

    Science.gov (United States)

    Fortineau, Anne-Dominique

    2004-01-01

    A synopsis on the history of perfumery is presented, along with the various processes accessible for obtaining natural perfume constituents, and creation of synthetic chemicals. The important contribution of organic chemists in the invention of perfumes, aspects of fragrance chemistry, and general information on the perfume industry are…

  20. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.

    Science.gov (United States)

    Frecentese, Francesco; Saccone, Irene; Caliendo, Giuseppe; Corvino, Angela; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Severino, Beatrice; Santagada, Vincenzo

    2016-01-01

    Green chemistry is a discipline of great interest in medicinal chemistry. It involves all fields of chemistry and it is based on the principle to conduct chemical reactions protecting the environment at the same time, through the use of chemical procedures able to avoid pollution. In this context, water as solvent is a good choice because it is abundant, nontoxic, non-caustic, and non-combustible. Even if microwave assisted organic reactions in conventional solvents have quickly progressed, in the recent years medicinal chemists have focused their attention to processes deemed not dangerous for the environment, using nanotechnology and greener solvents as water. Several reports of reaction optimizations and selectivities, demonstrating the capability of microwave to allow the obtaining of increased yields have been recently published using water as solvent. In this review, we selected the available knowledge related to microwave assisted organic synthesis in aqueous medium, furnishing examples of the newest strategies to obtain useful scaffolds and novel derivatives for medicinal chemistry purposes. The intention of this review is to demonstrate the exclusive ability of MAOS in water as solvent or as co-solvent. For this purpose we report here the most representative applications of MAOS using water as solvent, focusing on medicinal chemistry processes leading to interesting nitrogen containing heterocycles with potential pharmaceutical applications.

  1. Perry's Scheme of Intellectual and Epistemological Development as a Framework for Describing Student Difficulties in Learning Organic Chemistry

    Science.gov (United States)

    Grove, Nathaniel P.; Bretz, Stacey Lowery

    2010-01-01

    We have investigated student difficulties with the learning of organic chemistry. Using Perry's Model of Intellectual Development as a framework revealed that organic chemistry students who function as dualistic thinkers struggle with the complexity of the subject matter. Understanding substitution/elimination reactions and multi-step syntheses is…

  2. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  3. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun'93: chemistry of new materials

    International Nuclear Information System (INIS)

    1993-01-01

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties

  4. Web-Enhanced General Chemistry Increases Student Completion Rates, Success, and Satisfaction

    Science.gov (United States)

    Amaral, Katie E.; Shank, John D.; Shibley, Ivan A., Jr.; Shibley, Lisa R.

    2013-01-01

    General Chemistry I historically had one of the highest failure and withdrawal rates at Penn State Berks, a four-year college within the Penn State system. The course was completely redesigned to incorporate more group work, the use of classroom response systems, peer mentors, and a stronger online presence via the learning management system…

  5. Engaging Organic Chemistry Students Using ChemDraw for iPad

    Science.gov (United States)

    Morsch, Layne A.; Lewis, Michael

    2015-01-01

    Drawing structures, mechanisms, and syntheses is a vital part of success in organic chemistry courses. ChemDraw for iPad has been used to increase classroom experiences in the preparation of high quality chemical drawings. The embedded Flick-to-Share allows for simple, real-time exchange of ChemDraw documents. ChemDraw for iPad also allows…

  6. The chemistry of cyborgs--interfacing technical devices with organisms.

    Science.gov (United States)

    Giselbrecht, Stefan; Rapp, Bastian E; Niemeyer, Christof M

    2013-12-23

    The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Teaching Green and Sustainable Chemistry: A Revised One-Semester Course Based on Inspirations and Challenges

    Science.gov (United States)

    Marteel-Parrish, Anne E.

    2014-01-01

    An elective course, "Toward the Greening of Our Minds": Green and Sustainable Chemistry, has been offered at Washington College since 2005. This new course without laboratory is designed for chemistry and biology majors and minors who have previously taken two semesters of general chemistry and organic chemistry. Due to the popularity of…

  8. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    Science.gov (United States)

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…

  9. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  10. Using the Plan View to Teach Basic Crystallography in General Chemistry

    Science.gov (United States)

    Cushman, Cody V.; Linford, Matthew R.

    2015-01-01

    The plan view is used in crystallography and materials science to show the positions of atoms in crystal structures. However, it is not widely used in teaching general chemistry. In this contribution, we introduce the plan view, and show these views for the simple cubic, body-centered cubic, face-centered cubic, hexagonal close packed, CsCl, NaCl,…

  11. General Chemistry Students' Goals for Chemistry Laboratory Coursework

    Science.gov (United States)

    DeKorver, Brittland K.; Towns, Marcy H.

    2015-01-01

    Little research exists on college students' learning goals in chemistry, let alone specifically pertaining to laboratory coursework. Because students' learning goals are linked to achievement and dependent on context, research on students' goals in the laboratory context may lead to better understanding about the efficacy of lab curricula. This…

  12. 24 CFR 4100.2 - General organization.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false General organization. 4100.2... (Continued) NEIGHBORHOOD REINVESTMENT CORPORATION ORGANIZATION AND CHANNELING OF FUNCTIONS § 4100.2 General organization. (a) The Board of Directors. (1) The Corporation is under the direction of a Board of Directors...

  13. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    Science.gov (United States)

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  14. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  15. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Providing Students with Interdisciplinary Support to Improve Their Organic Chemistry Posters

    Science.gov (United States)

    Widanski, Bozena; Thompson, Jo Ann; Foran-Mulcahy, Katie; Abafo, Amy

    2016-01-01

    A two-semester-long interdisciplinary support effort to improve student posters in organic chemistry lab is described. In the first semester, students' literature search report is supported by a workshop conducted by an Instruction Librarian. During the subsequent semester, a second workshop is presented by the Instruction Librarian, an English…

  17. Improving Students' Inquiry Skills and Self-Efficacy through Research-Inspired Modules in the General Chemistry Laboratory

    Science.gov (United States)

    Winkelmann, Kurt; Baloga, Monica; Marcinkowski, Tom; Giannoulis, Christos; Anquandah, George; Cohen, Peter

    2015-01-01

    Research projects conducted by faculty in STEM departments served as the inspiration for a new curriculum of inquiry-based, multiweek laboratory modules in the general chemistry 1 course. The purpose of this curriculum redesign was to improve students' attitudes about chemistry as well as their self-efficacy and skills in performing inquiry…

  18. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  19. Results of an interactively coupled atmospheric chemistrygeneral circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  20. Synthesis and Characterization of Calixarene Tetraethers: An Exercise in Supramolecular Chemistry for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Debbert, Stefan L.; Hoh, Bradley D.; Dulak, David J.

    2016-01-01

    In this experiment for an introductory undergraduate organic chemistry lab, students tetraalkylate tertbutylcalix[4]arene, a bowl-shaped macrocyclic oligophenol, and examine the supramolecular chemistry of the tetraether product by proton nuclear magnetic resonance (NMR) spectroscopy. Complexation with a sodium ion reduces the conformational…

  1. Awareness, Analysis, and Action: Curricular Alignment for Student Success in General Chemistry

    Science.gov (United States)

    Jewitt, Sarah; Sutphin, Kathy; Gierasch, Tiffany; Hamilton, Pauline; Lilly, Kathleen; Miller, Kristine; Newlin, Donald; Pires, Richard; Sherer, Maureen; LaCourse, William R.

    2018-01-01

    This article examines the ways that a shared faculty experience across five partner institutions led to a deep awareness of the curriculum and pedagogy of general chemistry coursework, and ultimately, to a collaborative action plan for student success. The team identified key differences and similarities in course content and instructional…

  2. Students' Interpretations of Mechanistic Language in Organic Chemistry before Learning Reactions

    Science.gov (United States)

    Galloway, Kelli R.; Stoyanovich, Carlee; Flynn, Alison B.

    2017-01-01

    Research on mechanistic thinking in organic chemistry has shown that students attribute little meaning to the electron-pushing (i.e., curved arrow) formalism. At the University of Ottawa, a new curriculum has been developed in which students are taught the electron-pushing formalism prior to instruction on specific reactions--this formalism is…

  3. Effects of Implementing a Hybrid Wet Lab and Online Module Lab Curriculum into a General Chemistry Course: Impacts on Student Performance and Engagement with the Chemistry Triplet

    Science.gov (United States)

    Irby, Stefan M.; Borda, Emily J.; Haupt, Justin

    2018-01-01

    Here, we describe the implementation a hybrid general chemistry teaching laboratory curriculum that replaces a portion of a course's traditional "wet lab" experiences with online virtual lab modules. These modules intentionally utilize representations on all three levels of the chemistry triplet-macroscopic, submicroscopic, and symbolic.…

  4. General Chemistry Exercises Focused on the Professional Profile on Nuclear Careers

    International Nuclear Information System (INIS)

    Lau-González, Maritza; Jáuregui-Haza, Ulises; Corona-Hernández, José Ángel; Santamaría-Arbona, María Teresa; Abreu-Díaz, Aidamary

    2016-01-01

    The subject General Chemistry is part of the base curriculum of the nuclear profile careers: Radiochemistry Careers and Engineering on Nuclear Technologies and Energetics. It has as main objectives the complementing, the deep analysis and integration of the basic principles of chemistry as a science, and due to its content, it constitutes an excellent platform to settle inter-subject relationships with those of the nuclear specialties. The aim of this paper is presenting linking examples among the subjects, through exercises that are supported in the Moodle Platform, conceived for the independent work of students, which besides facilitating the consolidation of the received knowledge in high school, and those ones in the first year of the career, allow them to be familiar with the future of their profession. (author)

  5. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    Science.gov (United States)

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  6. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    Science.gov (United States)

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  7. Implementation of picoSpin Benchtop NMR Instruments into Organic Chemistry Teaching Laboratories through Spectral Analysis of Fischer Esterification Products

    Science.gov (United States)

    Yearty, Kasey L.; Sharp, Joseph T.; Meehan, Emma K.; Wallace, Doyle R.; Jackson, Douglas M.; Morrison, Richard W.

    2017-01-01

    [Superscript 1]H NMR analysis is an important analytical technique presented in introductory organic chemistry courses. NMR instrument access is limited for undergraduate organic chemistry students due to the size of the instrument, price of NMR solvents, and the maintenance level required for instrument upkeep. The University of Georgia Chemistry…

  8. Mukilteo water sensor time series - Field work coupling measurements of carbon chemistry and distribution of free-living organisms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To estimate the carbon chemistry conditions experienced by free-living organisms, we will conduct coupled biological/carbon chemistry sampling for key zooplankton...

  9. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  10. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Isotopic Labeling with Sodium Borodeuteride in the Introductory Organic Chemistry Laboratory

    Science.gov (United States)

    Kjonaas, Richard A.; Fitch, Richard W.; Noll, Robert J.

    2017-01-01

    A microscale isotopic labeling experiment is described for the introductory organic chemistry laboratory course wherein half of the students use sodium borohydride (NaBH[subscript 4]) and the other half use sodium borodeuteride (NaBD[subscript 4]) to reduce acetophenone to 1-phenylethanol and then compare spectral data. The cost is reasonable, and…

  11. Building a Database for the Historical Analysis of the General Chemistry Curriculum Using ACS General Chemistry Exams as Artifacts

    Science.gov (United States)

    Luxford, Cynthia J.; Linenberger, Kimberly J.; Raker, Jeffrey R.; Baluyut, John Y.; Reed, Jessica J.; De Silva, Chamila; Holme, Thomas A.

    2015-01-01

    As a discipline, chemistry enjoys a unique position. While many academic areas prepared "cooperative examinations" in the 1930s, only chemistry maintained the activity within what has become the ACS Examinations Institute. As a result, the long-term existence of community-built, norm-referenced, standardized exams provides a historical…

  12. Improving Students' Understanding of Molecular Structure through Broad-Based Use of Computer Models in the Undergraduate Organic Chemistry Lecture

    Science.gov (United States)

    Springer, Michael T.

    2014-01-01

    Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…

  13. Changes in Visual/Spatial and Analytic Strategy Use in Organic Chemistry with the Development of Expertise

    Science.gov (United States)

    Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa

    2017-01-01

    We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…

  14. Comparable Educational Benefits in Half the Time: An Alternating Organic Chemistry Laboratory Sequence Targeting Prehealth Students

    Science.gov (United States)

    Young, Sherri C.; Colabroy, Keri L.; Baar, Marsha R.

    2016-01-01

    The laboratory is a mainstay in STEM education, promoting the development of critical thinking skills, dexterity, and scientific curiosity. The goals in the laboratory for nonchemistry, prehealth majors, though, could be distinguished from those for chemistry majors. In service courses such as organic chemistry, much laboratory time is often spent…

  15. Team-Based Learning Reduces Attrition in a First-Semester General Chemistry Course

    Science.gov (United States)

    Comeford, Lorrie

    2016-01-01

    Team-based learning (TBL) is an instructional method that has been shown to reduce attrition and increase student learning in a number of disciplines. TBL was implemented in a first-semester general chemistry course, and its effect on attrition was assessed. Attrition from sections before implementing TBL (fall 2008 to fall 2009) was compared with…

  16. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    Science.gov (United States)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  17. The use of domestic microwave oven in experimental classes of organic chemistry: salicylaldehyde nitration

    OpenAIRE

    Teixeira, Eurídes Francisco; Santos, Ana Paula Bernardo dos; Bastos, Renato Saldanha; Pinto, Angelo C.; Kümmerle, Arthur Eugen; Coelho, Roberto Rodrigues

    2010-01-01

    The use of microwave in chemistry has known benefits over conventional heating methods, e.g. reduced reaction times, chemical yield improvement and the possibility if reducing or eliminating the use of organic solvents. We describe herein a procedure for the nitration of salicylaldehyde in water using a domestic microwave oven, which can be used as an experiment in the undergraduate chemistry laboratory. The experiment involves safe and rapid preparation and identification of the position iso...

  18. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  19. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  20. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  1. Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry

    Science.gov (United States)

    Wright, Robin; Cotner, Sehoya; Winkel, Amy

    2009-01-01

    Curriculum design assumes that successful completion of prerequisite courses will have a positive impact on student performance in courses that require the prerequisite. We recently had the opportunity to test this assumption concerning the relationship between completion of the organic chemistry prerequisite and performance in introductory…

  2. Benchmarking uranyl peroxide capsule chemistry in organic media

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Harrison A.; Nyman, May [Department of Chemistry, Oregon State University, Corvallis, OR (United States); Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C. [Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN (United States)

    2017-01-03

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Benchmarking uranyl peroxide capsule chemistry in organic media

    International Nuclear Information System (INIS)

    Neal, Harrison A.; Nyman, May; Szymanowski, Jennifer; Fein, Jeremy B.; Burns, Peter C.

    2017-01-01

    Uranyl peroxide capsules are a recent addition to polyoxometalate (POM) chemistry. Ten years of development has ensued only in water, while transition metal POMs are commonly exploited in aqueous and organic media, controlled by counterions or ligation to render the clusters hydrophilic or hydrophobic. Here, new uranyl POM behavior is recognized in organic media, including (1) stabilization and immobilization of encapsulated hydrophilic countercations, identified by Li nuclear magnetic resonance (NMR) spectroscopy, (2) formation of new cluster species upon phase transfer, (3) extraction of uranyl clusters from different starting materials including simulated spent nuclear fuel, (4) selective phase transfer of one cluster type from a mixture, and (5) phase transfer of clusters from both acidic and alkaline media. The capsule morphology of the uranyl POMs renders accurate characterization by X-ray scattering, including the distinction of geometrically similar clusters. Compositional analysis of the aqueous phase post-extraction provided a quantitative determination of the ion exchange process that enables transfer of the clusters into the organic phase. Preferential partitioning of uranyl POMs into organic media presents new frontiers in metal ion behavior and chemical reactions in the confined space of the cluster capsules in hydrophobic media, as well as the reactivity of clusters at the organic/aqueous interface. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Investigating the Longitudinal Impact of a Successful Reform in General Chemistry on Student Enrollment and Academic Performance

    Science.gov (United States)

    Lewis, Scott E.

    2014-01-01

    Considerable effort in chemistry education research has been dedicated to developing and evaluating reform pedagogies designed to improve student success in general chemistry. Policy recommendations propose adoption of these techniques as a means to increase the number of science graduates, however there is the potential that the impact of these…

  5. A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu; Doan, Tan L. H.; Cordova, Kyle E.; Yaghi, Omar M.

    2016-04-06

    A crystalline material with a two-dimensional structure, termed metal–organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent–organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol–1) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

  6. The Tip of the Iceberg in Organic Chemistry Classes: How Do Students Deal with the Invisible?

    Science.gov (United States)

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students' use of the arrow-pushing formalism, the investigation of students' conceptual knowledge and…

  7. Modern electronic structure theory and applications in organic chemistry

    CERN Document Server

    Davidson, ER

    1997-01-01

    This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n

  8. A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture

    OpenAIRE

    Nicholas Sadgrove; Graham Jones

    2015-01-01

    This review is a comprehensive introduction to pertinent aspects of the extraction methodology, chemistry, analysis and pharmacology of essential oils, whilst providing a background of general organic chemistry concepts to readers from non-chemistry oriented backgrounds. Furthermore, it describes the historical aspects of essential oil research whilst exploring contentious issues of terminology. This follows with an examination of essential oil producing plants in the Australian context with ...

  9. Integration of Computational and Preparative Techniques to Demonstrate Physical Organic Concepts in Synthetic Organic Chemistry: An Example Using Diels-Alder Reaction

    Science.gov (United States)

    Palmer, David R. J.

    2004-01-01

    The Diels-Alder reaction is used as an example for showing the integration of computational and preparative techniques, which help in demonstrating the physical organic concepts in synthetic organic chemistry. These experiments show that the students should not accept the computational results without questioning them and in many Diels-Alder…

  10. Student participation in World Wide Web-based curriculum development of general chemistry

    Science.gov (United States)

    Hunter, William John Forbes

    1998-12-01

    This thesis describes an action research investigation of improvements to instruction in General Chemistry at Purdue University. Specifically, the study was conducted to guide continuous reform of curriculum materials delivered via the World Wide Web by involving students, instructors, and curriculum designers. The theoretical framework for this study was based upon constructivist learning theory and knowledge claims were developed using an inductive analysis procedure. This results of this study are assertions made in three domains: learning chemistry content via the World Wide Web, learning about learning via the World Wide Web, and learning about participation in an action research project. In the chemistry content domain, students were able to learn chemical concepts that utilized 3-dimensional visualizations, but not textual and graphical information delivered via the Web. In the learning via the Web domain, the use of feedback, the placement of supplementary aids, navigation, and the perception of conceptual novelty were all important to students' use of the Web. In the participation in action research domain, students learned about the complexity of curriculum. development, and valued their empowerment as part of the process.

  11. Visualizing Molecular Chirality in the Organic Chemistry Laboratory Using Cholesteric Liquid Crystals

    Science.gov (United States)

    Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott

    2016-01-01

    Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…

  12. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  13. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  14. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-05-09

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  15. Analytical chemistry department. Annual report, 1977

    International Nuclear Information System (INIS)

    Knox, E.M.

    1978-09-01

    The annual report describes the analytical methods, analyses and equipment developed or adopted for use by the Analytical Chemistry Department during 1977. The individual articles range from a several page description of development and study programs to brief one paragraph descriptions of methods adopted for use with or without some modification. This year, we have included a list of the methods incorporated into our Analytical Chemistry Methods Manual. This report is organized into laboratory sections within the Department as well as major programs within General Atomic Company. Minor programs and studies are included under Miscellaneous. The analytical and technical support activities for GAC include gamma-ray spectroscopy, radiochemistry, activation analysis, gas chromatography, atomic absorption, spectrophotometry, emission spectroscopy, x-ray diffractometry, electron microprobe, titrimetry, gravimetry, and quality control. Services are provided to all organizations throughout General Atomic Company. The major effort, however, is in support of the research and development programs within HTGR Generic Technology Programs ranging from new fuel concepts, end-of-life studies, and irradiated capsules to fuel recycle studies

  16. Theme-Based Bidisciplinary Chemistry Laboratory Modules

    Science.gov (United States)

    Leber, Phyllis A.; Szczerbicki, Sandra K.

    1996-12-01

    A thematic approach to each of the two introductory chemistry laboratory sequences, general and organic chemistry, not only provides an element of cohesion but also stresses the role that chemistry plays as the "central science" and emphasizes the intimate link between chemistry and other science disciplines. Thus, in general chemistry the rubric "Environmental Chemistry" affords connections to the geosciences, whereas experiments on the topic of "Plant Assays" bridge organic chemistry and biology. By establishing links with other science departments, the theme-based laboratory experiments will satisfy the following multidisciplinary criteria: (i) to demonstrate the general applicability of core methodologies to the sciences, (ii) to help students relate concepts to a broader multidisciplinary context, (iii) to foster an attitude of both independence and cooperation that can transcend the teaching laboratory to the research arena, and (iv) to promote greater cooperation and interaction between the science departments. Fundamentally, this approach has the potential to impact the chemistry curriculum significantly by including student decision-making in the experimental process. Furthermore, the incorporation of GC-MS, a powerful tool for separation and identification as well as a state-of-the-art analytical technique, in the modules will enhance the introductory general and organic chemistry laboratory sequences by making them more instrument-intensive and by providing a reliable and reproducible means of obtaining quantitative analyses. Each multifaceted module has been designed to meet the following criteria: (i) a synthetic protocol including full spectral characterization of products, (ii) quantitative and statistical analyses of data, and (iii) construction of a database of results. The database will provide several concrete functions. It will foster the idea that science is a continuous incremental process building on the results of earlier experimentalists

  17. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  18. Fascinating chemistry or frustrating unpredictability : Observations in crystal engineering of metal–organic frameworks

    NARCIS (Netherlands)

    Goesten, M.G.; Kapteijn, F.; Gascon, J.

    2013-01-01

    Reticular design is a highly attractive concept, but coordination chemistry around the tectonic units of metal– organic frameworks (MOFs) and additional interplay with anionic and solvent species provide for dazzling complexity that effectively rules out structure prediction. We can however study

  19. Relationships of Approaches to Studying, Metacognition, and Intellectual Development of General Chemistry Students

    Science.gov (United States)

    Egenti, Henrietta N.

    2012-01-01

    This study investigated approaches to studying, intellectual developments, and metacognitive skills of general chemistry students enrolled for the spring 2011 semester at a single campus of a multi-campus community college. The three instruments used were the Approaches and Study Skills Inventory for Students (ASSIST), the Learning Environment…

  20. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  1. Engaging Participation and Promoting Active Learning through Student Usage of the Internet to Create Notes for General Chemistry in Class

    Science.gov (United States)

    Henry, Renee Monica

    2017-01-01

    Reported here is a study of an interactive component to General Chemistry I and General Chemistry II where a new pedagogy for taking notes in class was developed. These notes, called key word created class notes, prompted students to locate information using the Internet guided by a key word. Reference Web sites were added to a next generation of…

  2. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  3. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  4. Measuring Meaningful Learning in the Undergraduate Chemistry Laboratory: A National, Cross-Sectional Study

    Science.gov (United States)

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Research on laboratory learning points to the need to better understand what and how students learn in the undergraduate chemistry laboratory. The Meaningful Learning in the Laboratory Instrument (MLLI) was administered to general and organic chemistry students from 15 colleges and universities across the United States in order to measure the…

  5. Using Commercially Available Techniques to Make Organic Chemistry Representations Tactile and More Accessible to Students with Blindness or Low Vision

    Science.gov (United States)

    Supalo, Cary A.; Kennedy, Sean H.

    2014-01-01

    Organic chemistry courses can present major obstacles to access for students with blindness or low vision (BLV). In recent years, efforts have been made to represent organic chemistry concepts in tactile forms for blind students. These methodologies are described in this manuscript. Further work being done at Illinois State University is also…

  6. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students

    Science.gov (United States)

    Hoch, Matthew A.; Russell, Cianan B.; Steffen, Debora M.; Weaver, Gabriela C.; Burgess, John R.

    2009-01-01

    With the booming interest in health food and nutrition, investigations of the antioxidant capacities of various foods have come to the forefront of food science. This general chemistry laboratory curriculum provides students with an opportunity to design and implement their own experiments relating to antioxidants in food. The curriculum is six…

  7. First 25-hydroxyvitamin D assay for general chemistry analyzers.

    Science.gov (United States)

    Saida, Fakhri B; Chen, Xiaoru; Tran, Kiet; Dou, Chao; Yuan, Chong

    2015-03-01

    25-Hydroxyvitamin D [25(OH)D], the predominant circulating form of vitamin D, is an accurate indicator of the general vitamin D status of an individual. Because vitamin D deficiencies have been linked to several pathologies (including osteoporosis and rickets), accurate monitoring of 25(OH)D levels is becoming increasingly important in clinical settings. Current 25(OH)D assays are either chromatographic or immunoassay-based assays. These assays include HPLC, liquid chromatography-tandem mass spectrometry (LC-MS/MS), enzyme-immunosorbent, immunochemiluminescence, immunofluorescence and radioimmunoassay. All these assays use heterogeneous formats that require phase separation and special instrumentations. In this article, we present an overview of these assays and introduce the first homogeneous assay of 25(OH)D for use on general chemistry analyzers. A special emphasis is put on the unique challenges posed by the 25(OH)D analyte. These challenges include a low detection limit, the dissociation of the analyte from its serum transporter and the inactivation of various binding proteins without phase separation steps.

  8. The secondary water chemistry and its quality specification of PWR steam generators

    International Nuclear Information System (INIS)

    Zhang Guiqin.

    1984-01-01

    Reasonably organizing the secondary water chemistry of a steam generator is of great importance for improving thermal-hydraulic characteristics and avoiding or alleviating probability of its internals failures by corrosion. In this paper emphasis is put on importance and task of the secondary water chemistry, the meaning and the control demand for feedwater and boiler water specification. At the same time, the current situation on the secondary water chemistry of PWR steam generators is reviewed generally. (Author)

  9. Versatile Organic Chemistry on Vanadium-Based Multi-Electron Reservoirs.

    Science.gov (United States)

    Nachtigall, Olaf; Spandl, Johann

    2018-02-21

    We report the synthesis, post-functionalization, and redox behavior of two organically functionalized aggregates, [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-CH 2 N 3 }] and [V 6 O 7 (OMe) 9 {(OCH 2 ) 3 C-NH 2 }]. All twelve μ 2 -oxo groups on the edges of the Lindqvist-type {V 6 O 19 } core were replaced by alkoxo ligands. The absence of a negative charge and the closed organic shell make these neutral mixed-valence compounds very stable towards hydrolysis and well soluble in almost all common organic solvents. These are important advantages over classical POMs. By post-functionalization through copper(I)-catalyzed Huisgen cycloaddition or imine formation, various organic moieties could be introduced. Even a well-soluble trimer composed of three hexanuclear vanadium units connected through an aromatic triimino core was synthesized and studied. The diverse redox behavior, the versatile reactivity, the good stability, and the excellent solubility make our vanadium compounds highly interesting for applications as building blocks in macromolecular chemistry as well as redox labels in biochemistry. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of Formative Quizzes on Teacher Candidates’ Learning in General Chemistry

    OpenAIRE

    Yalaki, Yalcin; Bayram, Zeki

    2015-01-01

    Formative assessment or assessment for learning is one of the most emphasized educational innovations around the world. Two of the common strategies that could be used in formative assessment are use of summative tests for formative purposes and comment only marking. We utilized these strategies in the form of formative quizzes in a general chemistry course and measured its effect on students’ learning. The results of our weak-experimental design, which was conducted with 124 pre-service elem...

  11. Infrared and Raman Spectroscopy: A Discovery-Based Activity for the General Chemistry Curriculum

    Science.gov (United States)

    Borgsmiller, Karen L.; O'Connell, Dylan J.; Klauenberg, Kathryn M.; Wilson, Peter M.; Stromberg, Christopher J.

    2012-01-01

    A discovery-based method is described for incorporating the concepts of IR and Raman spectroscopy into the general chemistry curriculum. Students use three sets of springs to model the properties of single, double, and triple covalent bonds. Then, Gaussian 03W molecular modeling software is used to illustrate the relationship between bond…

  12. Can They Succeed? Exploring At-Risk Students' Study Habits in College General Chemistry

    Science.gov (United States)

    Ye, Li; Shuniak, Constantine; Oueini, Razanne; Robert, Jenay; Lewis, Scott

    2016-01-01

    A well-established literature base identifies a portion of students enrolled in post-secondary General Chemistry as at-risk of failing the course based on incoming metrics. Learning about the experiences and factors that lead to this higher failure rate is essential toward improving retention in this course. This study examines the relationship…

  13. A Comprehensive General Chemistry Demonstration

    Science.gov (United States)

    Sweeder, Ryan D.; Jeffery, Kathleen A.

    2013-01-01

    This article describes the use of a comprehensive demonstration suitable for a high school or first-year undergraduate introductory chemistry class. The demonstration involves placing a burning candle in a container adjacent to a beaker containing a basic solution with indicator. After adding a lid, the candle will extinguish and the produced…

  14. An ideal teaching program of nuclear chemistry in the undergraduate chemistry curriculum

    International Nuclear Information System (INIS)

    Uenak, T.

    2009-01-01

    It is well known that several reports on the common educational problems of nuclear chemistry have been prepared by certain groups of experts from time to time. According to very important statements in these reports, nuclear chemistry and related courses generally do not take sufficient importance in undergraduate chemistry curricula and it was generally proposed that nuclear chemistry and related courses should be introduced into undergraduate chemistry curricula at universities worldwide. Starting from these statements, an ideal program in an undergraduate chemistry curriculum was proposed to be introduced into the undergraduate chemistry program at the Department of Chemistry, Ege University, in Izmir, Turkey during the regular updating of the chemistry curriculum. Thus, it has been believed that this Department of Chemistry has recently gained an ideal teaching program in the field of nuclear chemistry and its applications in scientific, industrial, and medical sectors. In this contribution, the details of this program will be discussed. (author)

  15. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  16. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    Science.gov (United States)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  17. The Testing Effect: An Intervention on Behalf of Low-Skilled Comprehenders in General Chemistry

    Science.gov (United States)

    Pyburn, Daniel T.; Pazicni, Samuel; Benassi, Victor A.; Tappin, Elizabeth M.

    2014-01-01

    Past work has demonstrated that language comprehension ability correlates with general chemistry course performance with medium effect sizes. We demonstrate here that language comprehension's strong cognitive grounding can be used to inform effective and equitable pedagogies, namely, instructional interventions that differentially aid low-skilled…

  18. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  19. Institute of Nuclear Chemistry and Technology annual report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994

  20. Institute of Nuclear Chemistry and Technology annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This annual report is a collection of short communications being a review of scientific activity of the Institute of Nuclear Chemistry and Technology, Warsaw, Poland in 1994. The papers are gathered into several branches as follows: radiation chemistry and physics (16 papers); radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general (17 papers); radiobiology (6 papers); nuclear technologies and methods (30 papers). The annual report of INCT-1994 contains also a general information about the Institute, the full list of papers published in 1994, information about Nukleonika - the International Journal of Nuclear Research being edited in INCT, the list of patent granted and patent applications in 1994, information about conferences organized by the Institute, the list of Ph.D. and D.Sc. finished in 1994 as well as the list of research projects and contracts being realized in INCT during 1994.

  1. Content-related interactions and methods of reasoning within self-initiated organic chemistry study groups

    Science.gov (United States)

    Christian, Karen Jeanne

    2011-12-01

    Students often use study groups to prepare for class or exams; yet to date, we know very little about how these groups actually function. This study looked at the ways in which undergraduate organic chemistry students prepared for exams through self-initiated study groups. We sought to characterize the methods of social regulation, levels of content processing, and types of reasoning processes used by students within their groups. Our analysis showed that groups engaged in predominantly three types of interactions when discussing chemistry content: co-construction, teaching, and tutoring. Although each group engaged in each of these types of interactions at some point, their prevalence varied between groups and group members. Our analysis suggests that the types of interactions that were most common depended on the relative content knowledge of the group members as well as on the difficulty of the tasks in which they were engaged. Additionally, we were interested in characterizing the reasoning methods used by students within their study groups. We found that students used a combination of three content-relevant methods of reasoning: model-based reasoning, case-based reasoning, or rule-based reasoning, in conjunction with one chemically-irrelevant method of reasoning: symbol-based reasoning. The most common way for groups to reason was to use rules, whereas the least common way was for students to work from a model. In general, student reasoning correlated strongly to the subject matter to which students were paying attention, and was only weakly related to student interactions. Overall, results from this study may help instructors to construct appropriate tasks to guide what and how students study outside of the classroom. We found that students had a decidedly strategic approach in their study groups, relying heavily on material provided by their instructors, and using the reasoning strategies that resulted in the lowest levels of content processing. We suggest

  2. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  3. Integrating Multiple Teaching Methods into a General Chemistry Classroom

    Science.gov (United States)

    Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella

    1998-02-01

    In addition to the traditional lecture format, three other teaching strategies (class discussions, concept maps, and cooperative learning) were incorporated into a freshman level general chemistry course. Student perceptions of their involvement in each of the teaching methods, as well as their perceptions of the utility of each method were used to assess the effectiveness of the integration of the teaching strategies as received by the students. Results suggest that each strategy serves a unique purpose for the students and increased student involvement in the course. These results indicate that the multiple teaching strategies were well received by the students and that all teaching strategies are necessary for students to get the most out of the course.

  4. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    Science.gov (United States)

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  5. Column chromatography with almecega resin: a project for experimental organic chemistry

    International Nuclear Information System (INIS)

    Vieira Junior, Gerardo Magela; Carvalho, Adonias Almeida; Gonzaga, Wellington de Abreu; Chaves, Mariana H.

    2007-01-01

    The use of natural products to demonstrate the silica gel column chromatography technique is proposed in the present article. It describes the separation of the triterpenes α- and β-amirin from the diol breine and maniladiol, obtained from almecega resin (Protium heptaphyllum March.). The experiment uses an accessible material, was accomplished in 4 h, and can be applied with success an the experimental course of organic chemistry for undergraduate students. (author)

  6. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    Science.gov (United States)

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Organic Chemistry in Portugal from 1900 to 1970: A Contribution to the History of Science

    Directory of Open Access Journals (Sweden)

    Paulo Nuno Martins

    2017-12-01

    Full Text Available The main purpose of this article is to describe the contributions made by various professors in Portuguese institutions, (located at Lisbon, Coimbra and Oporto, for the development of organic chemistry, between 1900 and 1970, so that we can get a better idea of the Portuguese work done in this area (i.e., teaching, pedagogical, etc.. For this purpose, we will take particular attention to technical books used in class (lecture and laboratory. Another point of this article is to refer the organic chemistry laboratories, existent in various Portuguese universities, in order to understand the importance of practice for the complete university student training. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1086

  8. General Chemistry Students' Conceptual Understanding and Language Fluency: Acid-Base Neutralization and Conductometry

    Science.gov (United States)

    Nyachwaya, James M.

    2016-01-01

    The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…

  9. Sterilization affects soil organic matter chemistry and bioaccumulation of spiked p,p'-DDE and anthracene by earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, Jason W., E-mail: kelsey@muhlenberg.ed [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States); Slizovskiy, Ilya B.; Peters, Richard D.; Melnick, Adam M. [Program in Environmental Science and Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104 (United States)

    2010-06-15

    Laboratory experiments were conducted to assess the effects of soil sterilization on the bioavailability of spiked p,p'-DDE and anthracene to the earthworms Eisenia fetida and Lumbricus terrestris. Physical and chemical changes to soil organic matter (SOM) induced by sterilization were also studied. Uptake of both compounds added after soil was autoclaved or gamma irradiated increased for E. fetida. Sterilization had no effect on bioaccumulation of p,p'-DDE by L. terrestris, and anthracene uptake increased only in gamma-irradiated soils. Analyses by FT-IR and DSC indicate sterilization alters SOM chemistry and may reduce pollutant sorption. Chemical changes to SOM were tentatively linked to changes in bioaccumulation, although the effects were compound and species specific. Artifacts produced by sterilization could lead to inaccurate risk assessments of contaminated sites if assumptions derived from studies carried out in sterilized soil are used. Ultimately, knowledge of SOM chemistry could aid predictions of bioaccumulation of organic pollutants. - Soil sterilization affects soil organic matter chemistry and pollutant bioaccumulation.

  10. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  11. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  12. Water chemistry in WWER reactors

    International Nuclear Information System (INIS)

    Yurmanov, V.A.; Mamet, V.A.; Shestakov, Yu.M.; Amosov, M.M.

    1997-01-01

    In this paper ''Water Chemistry in WWER Reactors'', are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH T values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ''soft decontamination'' involving changing the KOH concentration and, hence, the pH T before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs

  13. Water chemistry in WWER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yurmanov, V A; Mamet, V A; Shestakov, Yu M; Amosov, M M [All-Russian Scientific Research Inst. for Nuclear Power Plants Operation, Moscow (Russian Federation)

    1997-02-01

    In this paper ``Water Chemistry in WWER Reactors``, are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH{sub T} values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ``soft decontamination`` involving changing the KOH concentration and, hence, the pH{sub T} before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs.

  14. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    Science.gov (United States)

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  15. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  16. 49 CFR 501.3 - Organization and general responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Organization and general responsibilities. 501.3... TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ORGANIZATION AND DELEGATION OF POWERS AND DUTIES § 501.3 Organization and general responsibilities. The National Highway Traffic Safety...

  17. Research and Teaching: Computational Methods in General Chemistry--Perceptions of Programming, Prior Experience, and Student Outcomes

    Science.gov (United States)

    Wheeler, Lindsay B.; Chiu, Jennie L.; Grisham, Charles M.

    2016-01-01

    This article explores how integrating computational tools into a general chemistry laboratory course can influence student perceptions of programming and investigates relationships among student perceptions, prior experience, and student outcomes.

  18. Effectiveness of Student-Generated Video as a Teaching Tool for an Instrumental Technique in the Organic Chemistry Laboratory

    Science.gov (United States)

    Jordan, Jeremy T.; Box, Melinda C.; Eguren, Kristen E.; Parker, Thomas A.; Saraldi-Gallardo, Victoria M.; Wolfe, Michael I.; Gallardo-Williams, Maria T.

    2016-01-01

    Multimedia instruction has been shown to serve as an effective learning aid for chemistry students. In this study, the viability of student-generated video instruction for organic chemistry laboratory techniques and procedure was examined and its effectiveness compared to instruction provided by a teaching assistant (TA) was evaluated. After…

  19. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  20. Chemistry between the stars

    International Nuclear Information System (INIS)

    Kroto, H.W.

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned. (author)

  1. Chemistry between the stars

    Energy Technology Data Exchange (ETDEWEB)

    Kroto, H W

    1986-01-01

    During the past 15 years the techniques used by chemists to determine accurate molecular structures have combined with those of radio astronomers to probe the space between the stars. Together they paint a new picture of interstellar space, a picture which shows that vast clouds of gas and dust are continually collapsing to form stars and planets and that the main constituents of these clouds are molecules, some of which are quite complex organic species. It is now known that many of the organic building blocks, useful in the evolution of biologically significant macromolecules, existed long before the Earth was formed. These findings present a challenge to previous widely-accepted theories that such molecules were first generated in the Earth's primaeval atmosphere. In this paper certain aspects of these discoveries are considered with particular emphasis on the contributions made by techniques of use in general chemistry. After a brief astronomical introduction to the Interstellar Medium (ISM) the interaction between chemistry and radioastronomy is discussed. This is followed by details of some exciting, new and quite unexpected advances in our understanding of carbon chemistry, discovered during experiments aimed at understanding some of the more perplexing radioastronomy results. Finally an overview is given of the present knowledge of the molecular composition of the ISM and the resulting implications in so far as the origins of life are concerned.

  2. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  3. Evaluating Student Motivation in Organic Chemistry Courses: Moving from a Lecture-Based to a Flipped Approach with Peer-Led Team Learning

    Science.gov (United States)

    Liu, Yujuan; Raker, Jeffrey R.; Lewis, Jennifer E.

    2018-01-01

    Academic Motivation Scale-Chemistry (AMS-Chemistry), an instrument based on the self-determination theory, was used to evaluate students' motivation in two organic chemistry courses, where one course was primarily lecture-based and the other implemented flipped classroom and peer-led team learning (Flip-PLTL) pedagogies. Descriptive statistics…

  4. Playing with Light: Adventures in Optics and Spectroscopy for Honors and Majors General Chemistry

    Science.gov (United States)

    van Staveren, Marie N.; Edwards, Kimberly D.; Apkarian, V. A.

    2012-01-01

    A lab was developed for use in an undergraduate honors and majors general chemistry laboratory to introduce students to optics, spectroscopy, and the underlying principles of quantum mechanics. This lab includes four mini-experiments exploring total internal reflection, the tunneling of light, spectra of sparklers and colored candles, and emission…

  5. The Evaluation of Students' Written Reflection on the Learning of General Chemistry Lab Experiment

    Science.gov (United States)

    Han, Ng Sook; Li, Ho Ket; Sin, Lee Choy; Sin, Keng Pei

    2014-01-01

    Reflective writing is often used to increase understanding and analytical ability. The lack of empirical evidence on the effect of reflective writing interventions on the learning of general chemistry lab experiment supports the examination of this concept. The central goal of this exploratory study was to evaluate the students' written…

  6. Meaningful Understanding and Systems Thinking in Organic Chemistry: Validating Measurement and Exploring Relationships

    Science.gov (United States)

    Vachliotis, Theodoros; Salta, Katerina; Tzougraki, Chryssa

    2014-01-01

    The purpose of this study was dual: First, to develop and validate assessment schemes for assessing 11th grade students' meaningful understanding of organic chemistry concepts, as well as their systems thinking skills in the domain. Second, to explore the relationship between the two constructs of interest based on students' performance…

  7. A New Higher Education Curriculum in Organic Chemistry: What Questions Should Be Asked?

    Science.gov (United States)

    Lafarge, David L.; Morge, Ludovic M.; Méheut, Martine M.

    2014-01-01

    Organic chemistry is often considered to be a difficult subject to teach and to learn, particularly as students prefer to resort to memorization alone rather than reasoning using models from chemical reactivity. Existing studies have led us to suggest principles for redefining the curriculum, ranging from its overall structure to the tasks given…

  8. The A[subscript 1c] Blood Test: An Illustration of Principles from General and Organic Chemistry

    Science.gov (United States)

    Kerber, Robert C.

    2007-01-01

    The glycated hemoglobin blood test, usually designated as the A[subscript 1c] test, is a key measure of the effectiveness of glucose control in diabetics. The chemistry of glucose in the bloodstream, which underlies the test and its impact, provides an illustration of the importance of chemical equilibrium and kinetics to a major health problem.…

  9. An Analysis of Undergraduate General Chemistry Students' Misconceptions of the Submicroscopic Level of Precipitation Reactions

    Science.gov (United States)

    Kelly, Resa M.; Barrera, Juliet H.; Mohamed, Saheed C.

    2010-01-01

    This study examined how 21 college-level general chemistry students, who had received instruction that emphasized the symbolic level of ionic equations, explained their submicroscopic-level understanding of precipitation reactions. Students' explanations expressed through drawings and semistructured interviews revealed the nature of the…

  10. Character education in perspective of chemistry pre-service teacher

    Science.gov (United States)

    Merdekawati, Krisna

    2017-12-01

    As one of the pre-service teacher education programs, Chemistry Education Department Islamic University of Indonesia (UII) is committed to providing quality education. It is an education that can produce competent and characteristic chemistry pre-service teacher. The focus of research is to describe the perception of students as a potential teacher of chemistry on character education and achievement of character education. The research instruments include questionnaires and observation sheets. Research data show that students have understood the importance of character education and committed to organizing character education later in schools. Students have understood the ways in which character education can be used. The students stated that Chemistry Education Department has tried to equip students with character education. The observation result shows that students generally have character as a pre-service teacher.

  11. A Content Analysis of General Chemistry Laboratory Manuals for Evidence of Higher-Order Cognitive Tasks

    Science.gov (United States)

    Domin, Daniel S.

    1999-01-01

    The science laboratory instructional environment is ideal for fostering the development of problem-solving, manipulative, and higher-order thinking skills: the skills needed by today's learner to compete in an ever increasing technology-based society. This paper reports the results of a content analysis of ten general chemistry laboratory manuals. Three experiments from each manual were examined for evidence of higher-order cognitive activities. Analysis was based upon the six major cognitive categories of Bloom's Taxonomy of Educational Objectives: knowledge, comprehension, application, analysis, synthesis, and evaluation. The results of this study show that the overwhelming majority of general chemistry laboratory manuals provide tasks that require the use of only the lower-order cognitive skills: knowledge, comprehension, and application. Two of the laboratory manuals were disparate in having activities that utilized higher-order cognition. I describe the instructional strategies used within these manuals to foster higher-order cognitive development.

  12. The Flipped Classroom for Teaching Organic Chemistry in Small Classes: Is It Effective?

    Science.gov (United States)

    Fautch, Jessica M.

    2015-01-01

    The flipped classroom is a pedagogical approach that moves course content from the classroom to homework, and uses class time for engaging activities and instructor-guided problem solving. The course content in a sophomore level Organic Chemistry I course was assigned as homework using video lectures, followed by a short online quiz. In class,…

  13. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  14. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    Science.gov (United States)

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  15. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    Science.gov (United States)

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  16. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  17. Students' Perceptions of a Project-Based Organic Chemistry Laboratory Environment: A Phenomenographic Approach

    Science.gov (United States)

    Burrows, Nikita L.; Nowak, Montana K.; Mooring, Suazette R.

    2017-01-01

    Students can perceive the laboratory environment in a variety of ways that can affect what they take away from the laboratory course. This qualitative study characterizes undergraduate students' perspectives of a project-based Organic Chemistry laboratory using the theoretical framework of phenomenography. Eighteen participants were interviewed in…

  18. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    Science.gov (United States)

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  19. Improving the Success of First Term General Chemistry Students at a Liberal Arts Institution

    Science.gov (United States)

    Stone, Kari L.; Shaner, Sarah E.; Fendrick, Carol M.

    2018-01-01

    General Chemistry is a high impact course at Benedictine University where a large enrollment of ~250 students each year, coupled with low pass rates of a particularly vulnerable student population from a retention point of view (i.e., first-year college students), make it a strategic course on which to focus innovative pedagogical development.…

  20. Peer Mentor Program for the General Chemistry Laboratory Designed to Improve Undergraduate STEM Retention

    Science.gov (United States)

    Damkaci, Fehmi; Braun, Timothy F.; Gublo, Kristin

    2017-01-01

    We describe the design and implementation of an undergraduate peer mentor program that can overlay an existing general chemistry laboratory and is designed to improve STEM student retention. For the first four freshman cohorts going through the program, year-to-year retention improved by a four-year average of 20% for students in peer-mentored…

  1. Podcast Effectiveness as Scaffolding Support for Students Enrolled in First-Semester General Chemistry Laboratories

    Science.gov (United States)

    Powell, Mary Cynthia Barton

    2010-01-01

    Podcasts covering essential first-semester general chemistry laboratory techniques and central concepts that aid in experimental design or data processing were prepared and made available for students to access on an as-needed basis on iPhones [arrow right] or iPod touches [arrow right]. Research focused in three areas: the extent of podcast…

  2. Principles of quantum chemistry

    CERN Document Server

    George, David V

    2013-01-01

    Principles of Quantum Chemistry focuses on the application of quantum mechanics in physical models and experiments of chemical systems.This book describes chemical bonding and its two specific problems - bonding in complexes and in conjugated organic molecules. The very basic theory of spectroscopy is also considered. Other topics include the early development of quantum theory; particle-in-a-box; general formulation of the theory of quantum mechanics; and treatment of angular momentum in quantum mechanics. The examples of solutions of Schroedinger equations; approximation methods in quantum c

  3. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  4. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  5. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    Science.gov (United States)

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  6. Oxygenated Organic Chemicals in the Pacific Troposphere: Distribution, Sources and Chemistry

    Science.gov (United States)

    Singh, Hanwant B.; Salas, L.; Chatfield, R.; Czech, E.; Fried, A.; Evans, M.; Jacob, D. J.; Blake, D.; Heikes, B.; Talbot, R.

    2003-01-01

    Airborne measurements of a large number of oxygenated organic chemicals (Oxorgs) were carried out in the Pacific troposphere (0.1-12 km) in the Spring of 2001 (Feb. 24-April 10). Specifically these measuremen ts included acetone, methylethyl ketone (MEK), methanol, ethanol, ace taldehyde, propionaldehyde, PANS, and organic nitrates. Complementary measurements of formaldehyde, organic peroxides, and tracers were al so available. Ox-orgs were abundant in the clean troposphere and were greatly enhanced in the outflow regions from Asia. Their mixing ratios were typically highest in the lower troposphere and declined toward s the upper troposphere and the lowermost stratosphere. Their total a bundance (Ox-orgs) significantly exceeded that of NMHC (C2-C8 NMHC). A comparison of these data with observations collected some seven yea rs earlier (Feb.-March, 1994), did not reveal any significant changes . Throughout the troposphere mixing ratios of Ox-orgs were strongly c orrelated with each other as well as with tracers of fossil and bioma sshiof'uel combustion. Analysis of the relative enhancement of selected Oxorgs with respect to CH3Cl and CO in twelve sampled plumes, origi nating from fires, is used to assess their primary and secondary sour ces from biomass combustion. The composition of these plumes also ind icates a large shift of reactive nitrogen into the PAN reservoir ther eby limiting ozone formation. The Harvard 3-D photochemical model, th at uses state of the art chemistry and source information, is used to compare simulated and observed mixing ratios of selected species. A 1 -D model is used to explore the chemistry of aldehydes. These results will be presented.

  7. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    Science.gov (United States)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  8. A Bridge between Two Cultures: Uncovering the Chemistry Concepts Relevant to the Nursing Clinical Practice

    Science.gov (United States)

    Brown, Corina E.; Henry, Melissa L. M.; Barbera, Jack; Hyslop, Richard M.

    2012-01-01

    This study focused on the undergraduate course that covers basic topics in general, organic, and biological (GOB) chemistry at a mid-sized state university in the western United States. The central objective of the research was to identify the main topics of GOB chemistry relevant to the clinical practice of nursing. The collection of data was…

  9. Mechanisms before Reactions: A Mechanistic Approach to the Organic Chemistry Curriculum Based on Patterns of Electron Flow

    Science.gov (United States)

    Flynn, Alison B.; Ogilvie, William W.

    2015-01-01

    A significant redesign of the introductory organic chemistry curriculum at the authors' institution is described. There are two aspects that differ greatly from a typical functional group approach. First, organic reaction mechanisms and the electron-pushing formalism are taught before students have learned a single reaction. The conservation of…

  10. Teaching biochemistry to medical students in Singapore--from organic chemistry to problem-based learning.

    Science.gov (United States)

    Khoo, H E

    2005-07-01

    The medical faculty in the National University of Singapore started in 1905 but the Chair in Biochemistry was only established in 1927. For many years the biochemistry course consisted of the teaching of the organic chemistry of substances of physiological importance, nutrition, metabolism and hormones. In 1961, clinical biochemistry was introduced and in the 1980s, genetics and molecular biology were included. By then, most of the organic chemistry content had been removed as greater emphasis was placed on clinical correlation. Laboratory classes consisted of mock glucose tolerance tests and the measurement of various enzymes. By the 1990s, students were no longer interested in such practical classes, so a bold decision was made around 1995 to remove laboratory classes from the curriculum. Unfortunately, this meant that the medical students who might have been interested in laboratory work could no longer do such work. However, the new curriculum in 1999 gave the department an opportunity to offer a laboratory course as an elective for interested students. This new curriculum adopted an integrated approach with Genetics being taught as part of Paediatrics, and a new module (Structural and Cell Biology) comprising aspects of cell biology and biochemistry was introduced. This module is currently taught by staff from Anatomy, Physiology and Biochemistry. Some biochemistry content is now incorporated into the clinical problem scenarios of problem-based learning such as jaundice, diabetes mellitus, anorexia nervosa, etc. So the evolution of teaching biochemistry to medical students in Singapore has paralleled worldwide trends and moved from the didactic teaching of organic chemistry of biomolecules to problem-based learning using clinical cases.

  11. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day- and nighttime chemistry

    Directory of Open Access Journals (Sweden)

    A. K. Y. Lee

    2016-06-01

    Full Text Available Substantial biogenic secondary organic aerosol (BSOA formation was investigated in a coniferous forest mountain region in Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS measurement identified two types of BSOA (BSOA-1 and BSOA-2, which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas–particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 arises from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is likely less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22–33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91 compared to the background organic aerosol. Using f91 to evaluate BSOA formation pathways in this unpolluted, forested region, heterogeneous oxidation of BSOA-1 is a minor production pathway of BSOA-2.

  12. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  13. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  14. A Genetically Optimized Predictive System for Success in General Chemistry Using a Diagnostic Algebra Test

    Science.gov (United States)

    Cooper, Cameron I.; Pearson, Paul T.

    2012-01-01

    In higher education, many high-enrollment introductory courses have evolved into "gatekeeper" courses due to their high failure rates. These courses prevent many students from attaining their educational goals and often become graduation roadblocks. At the authors' home institution, general chemistry has become a gatekeeper course in which…

  15. Design of Organic Transformations at Ambient Conditions: Our Sincere Efforts to the Cause of Green Chemistry Practice.

    Science.gov (United States)

    Brahmachari, Goutam

    2016-02-01

    This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the "design of energy efficiency" - that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity - and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on-going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon-carbon and carbon-heteroatom bond-forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    Science.gov (United States)

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  17. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  18. Reform in a General Chemistry Laboratory: How Do Students Experience Change in the Instructional Approach?

    Science.gov (United States)

    Chopra, I.; O'Connor, J.; Pancho, R.; Chrzanowski, M.; Sandi-Urena, S.

    2017-01-01

    This qualitative study investigated the experience of a cohort of students exposed consecutively to two substantially different environments in their General Chemistry Laboratory programme. To this end, the first semester in a traditional expository programme was followed by a semester in a cooperative, problem-based, multi-week format. The focus…

  19. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    Science.gov (United States)

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  20. Testing the Vibrational Theory of Olfaction: A Bio-Organic Chemistry Laboratory Experiment Using Hooke's Law and Chirality

    Science.gov (United States)

    Muthyala, Rajeev S.; Butani, Deepali; Nelson, Michelle; Tran, Kiet

    2017-01-01

    Sense of smell is one of the important senses that enables us to interact with our environment. The molecular basis of olfactory signal transduction is a fascinating area for organic chemistry educators to explore in terms of developing undergraduate laboratory activities at the interface of chemistry and biology. In this paper, a guided-inquiry…

  1. A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory

    Science.gov (United States)

    Blanco, Luis H.; Romero, Carmen M.

    1995-10-01

    A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.

  2. Organofluorine chemistry : applications, sources and sustainability.

    OpenAIRE

    Harsanyi, A.; Sandford, G.

    2015-01-01

    Fluorine is an essential element for life in the developed world that impacts hugely on the general public because many pharmaceuticals, agrochemicals, anaesthetics, materials and air conditioning materials owe their important properties to the presence of fluorine atoms within their structures. All fluorine atoms used in organic chemistry are ultimately sourced from a mined raw material, fluorspar (CaF2), but, given current usage and global reserve estimates, there is only sufficient fluorsp...

  3. Astronomical chemistry.

    Science.gov (United States)

    Klemperer, William

    2011-01-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  4. A Historical Analysis of the Curriculum of Organic Chemistry Using ACS Exams as Artifacts

    Science.gov (United States)

    Raker, Jeffrey R.; Holme, Thomas A.

    2013-01-01

    Standardized examinations, such as those developed and disseminated by the ACS Examinations Institute, are artifacts of the teaching of a course and over time may provide a historical perspective on how curricula have changed and evolved. This study investigated changes in organic chemistry curricula across a 60-year period by evaluating 18 ACS…

  5. Lewis Acid-Base Chemistry of 7-Azaisoindigo-Based Organic Semiconductors.

    Science.gov (United States)

    Randell, Nicholas M; Fransishyn, Kyle M; Kelly, Timothy L

    2017-07-26

    Low-band-gap organic semiconductors are important in a variety of organic electronics applications, such as organic photovoltaic devices, photodetectors, and field effect transistors. Building on our previous work, which introduced 7-azaisoindigo as an electron-deficient building block for the synthesis of donor-acceptor organic semiconductors, we demonstrate how Lewis acids can be used to further tune the energies of the frontier molecular orbitals. Coordination of a Lewis acid to the pyridinic nitrogen of 7-azaisoindigo greatly diminishes the electron density in the azaisoindigo π-system, resulting in a substantial reduction in the lowest unoccupied molecular orbital (LUMO) energy. This results in a smaller highest occupied molecular orbital-LUMO gap and shifts the lowest-energy electronic transition well into the near-infrared region. Both H + and BF 3 are shown to coordinate to azaisoindigo and affect the energy of the S 0 → S 1 transition. A combination of time-dependent density functional theory and UV/vis and 1 H NMR spectroscopic titrations reveal that when two azaisoindigo groups are present and high concentrations of acid are used, both pyridinic nitrogens bind Lewis acids. Importantly, we demonstrate that this acid-base chemistry can be carried out at the solid-vapor interface by exposing thin films of aza-substituted organic semiconductors to vapor-phase BF 3 ·Et 2 O. This suggests the possibility of using the BF 3 -bound 7-azaisoindigo-based semiconductors as n-type materials in various organic electronic applications.

  6. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  7. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal

    2017-01-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials

  8. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  9. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  10. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    Science.gov (United States)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen

  11. Chemistry, Poetry, and Artistic Illustration: An Interdisciplinary Approach to Teaching and Promoting Chemistry

    Science.gov (United States)

    Furlan, Ping Y.; Kitson, Herbert; Andes, Cynthia

    2007-10-01

    This article describes a successful interdisciplinary collaboration among chemistry, humanities and English faculty members, who utilized poetry and artistic illustration to help students learn, appreciate, and enjoy chemistry. Students taking general chemistry classes were introduced to poetry writing and museum-type poster preparation during one class period. They were then encouraged to use their imagination and creativity to brainstorm and write chemistry poems or humors on the concepts and principles covered in the chemistry classes and artistically illustrate their original work on posters. The project, 2 3 months in length, was perceived by students as effective at helping them learn chemistry and express their understanding in a fun, personal, and creative way. The instructors found students listened to the directives because many posters were witty, clever, and eye-catching. They showed fresh use of language and revealed a good understanding of chemistry. The top posters were created by a mix of A-, B-, and C-level students. The fine art work, coupled with poetry, helped chemistry come alive on campus, providing an aesthetic presentation of materials that engaged the general viewer.

  12. Enhancing Student Performance in First-Semester General Chemistry Using Active Feedback through the World Wide Web

    Science.gov (United States)

    Chambers, Kent A.; Blake, Bob

    2007-01-01

    The World Wide Web recently launched a new interactive feedback system for the instructors, so that can better understanding about their students and their problems. The feedback, in combination with tailored lectures is expected to enhance student performance in the first semester of general chemistry.

  13. Organic synthesis

    International Nuclear Information System (INIS)

    Lallemand, J.Y.; Fetizon, M.

    1988-01-01

    The 1988 progress report of the Organic Synthesis Chemistry laboratory (Polytechnic School, France), is presented. The laboratory activities are centered on the chemistry of natural products, which have a biological activity and on the development of new reactions, useful in the organic synthesis. The research works involve the following domains: the natural products chemistry which are applied in pharmacology, the plants and insects chemistry, the organic synthesis, the radical chemistry new reactions and the bio-organic physicochemistry. The published papers, the congress communications and the thesis are listed [fr

  14. General chemistry: expanding the learning outcomes and promoting interdisciplinary connections through the use of a semester-long project.

    Science.gov (United States)

    Wenzel, Thomas J

    2006-01-01

    The laboratory component of a first-semester general chemistry course for science majors is described. The laboratory involves a semester-long project undertaken in a small-group format. Students are asked to examine whether plants grown in soil contaminated with lead take up more lead than those grown in uncontaminated soil. They are also asked to examine whether the acidity of the rainwater affects the amount of lead taken up by the plants. Groups are then given considerable independence in the design and implementation of the experiment. Once the seeds are planted, which takes about 4 wk into the term, several shorter experiments are integrated in before it is time to harvest and analyze the plants. The use of a project and small working groups allows for the development of a broader range of learning outcomes than occurs in a "traditional" general chemistry laboratory. The nature of these outcomes and some of the student responses to the laboratory experience are described. This particular project also works well at demonstrating the connections among chemistry, biology, geology, and environmental studies.

  15. Role of Organic Solutes in the Chemistry Of Acid-Impacted Bog Waters of the Western Czech Republic

    Science.gov (United States)

    HrušKa, Jakub; Johnson, Chris E.; KráM, Pavel

    1996-04-01

    In many regions, naturally occurring organic acid anions can effectively buffer mineral acid inputs from atmospheric deposition, moderating their effect on surface water pH. We studied the effect of chronically high inputs of acid rain on the chemistry of three brown-water streams in the western Czech Republic. The dissolved organic acids in the streams were similar in character to those of other systems in Europe and North America. The site densities (the carboxyl group content per mass of C) were similar to values reported from Fenno-Scandia, and the relationship between the apparent pKa and pH conformed to those from two North American studies. Sulfate and organic acid anions (OA-) were the dominant anions in all three streams, yet despite high dissolved organic carbon and total organic acid concentrations, OA - comprised only 21-32% of total anion charge. This pattern was due to very high sulfate concentrations and, in two of the streams, a low degree of dissociation of the organic acids, probably the results of high long-term inputs of strong acids. Stream water pH was highly correlated to sulfate concentration, but uncorrelated with OA-, suggesting that free acidity is controlled by strong mineral acids rather than organic acids. Thus future reductions in strong acid inputs should result in increased pH and a return to organic control over acid-base chemistry.

  16. In-situ Evaluation of Soil Organic Molecules: Functional Group Chemistry Aggregate Structures, Metal and Surface Complexation Using Soft X-Ray

    International Nuclear Information System (INIS)

    Myneni, Satish C.

    2008-01-01

    Organic molecules are common in all Earth surface environments, and their composition and chemistry play an important role in a variety of biogeochemical reactions, such as mineral weathering, nutrient cycling and the solubility and transport of contaminants. However, most of what we know about the chemistry of these molecules comes from spectroscopy and microscopy studies of organic molecules extracted from different natural systems using either inorganic or organic solvents. Although all these methods gave us clues about the composition of these molecules, their composition and structure change with the extraction and the type of ex-situ analysis, their true behavior is less well understood. The goal of this project is to develop synchrotron instrumentation for studying natural organics, and to apply these recently developed synchrotron X-ray spectroscopy and microscopy techniques for understanding the: (1) functional group composition of naturally occurring organic molecules; (2) macromolecular structures of organic molecules; and (3) the nature of interactions of organic molecules with mineral surfaces in different environmental conditions.

  17. Química geral experimental: uma nova abordagem didática Experimental general chemistry: a new teaching approach

    Directory of Open Access Journals (Sweden)

    Geraldo Eduardo da Luz Júnior

    2004-02-01

    Full Text Available This essay describes a new didactic approach, in according with the national curriculum guidelines for chemistry undergraduate courses in Brazil, employed during the one-semester course "Experimental General Chemistry" for chemistry undergraduate students at the Federal University of Piauí. The new approach has positively helped student's training by improving their reading skills and their understanding of scientific reports, by developing the use of electronic tools to search and to recover the required knowledge for their learning activities, and by improving their skills of understanding published texts and dealing with digital sources. At the same time the students are strongly stimulated to enter the research program for undergraduate students available at the University.

  18. Nuffield A-Level Chemistry: A Personal View

    Science.gov (United States)

    Bailey, Roy

    1972-01-01

    Maintains that there are topics of thermodynamics and organic chemistry in Nuffield A-level chemistry program which should be reviewed critically for their content organization. The Nuffield course is considered better than the traditional courses in its educational value, yet highly biased for preparing students for college chemistry courses. (PS)

  19. Saccharin Derivative Synthesis via [1,3] Thermal Sigmatropic Rearrangement: A Multistep Organic Chemistry Experiment for Undergraduate Students

    Science.gov (United States)

    Fonseca, Custódia S. C.

    2016-01-01

    Saccharin (1,2-benzisothiazole-3-one 1,1-dioxide) is an artificial sweetener used in the food industry. It is a cheap and easily available organic compound that may be used in organic chemistry laboratory classes for the synthesis of related heterocyclic compounds and as a derivatizing agent. In this work, saccharin is used as a starting material…

  20. Linking the Lab Experience with Everyday Life: An Analytical Chemistry Experiment for Agronomy Students

    Science.gov (United States)

    Gimenez, Sônia Maria N.; Yabe, Maria Josefa S.; Kondo, Neide K.; Mouriño, Rodrigo O.; Moura, Graziela Cristina R.

    2000-02-01

    Agronomy students generally lack interest in chemistry. The objective of this work was to modify the analytical chemistry curriculum to increase student interest. Samples of soils and plants prepared by students were introduced. Soil was treated with molasses residue, organic matter (chicken manure and humus obtained from goat excrement), and lime. The response of plants to the different soil treatments increased student interest in chemical analyses. Evaluation of several chemical and physicochemical parameters of samples demonstrated in a clear way the application of the theoretical and practical concepts of chemistry.

  1. Using Web-Based Video as an Assessment Tool for Student Performance in Organic Chemistry

    Science.gov (United States)

    Tierney, John; Bodek, Matthew; Fredricks, Susan; Dudkin, Elizabeth; Kistler, Kurt

    2014-01-01

    This article shows the potential for using video responses to specific questions as part of the assessment process in an organic chemistry class. These exercises have been used with a postbaccalaureate cohort of 40 students, learning in an online environment, over a period of four years. A second cohort of 25 second-year students taking the…

  2. Organic Chemistry Students' Fragmented Ideas about the Structure and Function of Nucleophiles and Electrophiles: A Concept Map Analysis

    Science.gov (United States)

    Anzovino, Mary E.; Bretz, Stacey Lowery

    2016-01-01

    Organic chemistry students struggle with multiple aspects of reaction mechanisms and the curved arrow notation used by organic chemists. Many faculty believe that an understanding of nucleophiles and electrophiles, among other concepts, is required before students can develop fluency with the electronpushing formalism (EPF). An expert concept map…

  3. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  4. Development and Analysis of an Instrument to Assess Student Understanding of GOB Chemistry Knowledge Relevant to Clinical Nursing Practice

    Science.gov (United States)

    Brown, Corina E.; Hyslop, Richard M.; Barbera, Jack

    2015-01-01

    The General, Organic, and Biological Chemistry Knowledge Assessment (GOB-CKA) is a multiple-choice instrument designed to assess students' understanding of the chemistry topics deemed important to clinical nursing practice. This manuscript describes the development process of the individual items along with a psychometric evaluation of the…

  5. Transforming the Organic Chemistry Lab Experience: Design, Implementation, and Evaluation of Reformed Experimental Activities--REActivities

    Science.gov (United States)

    Collison, Christina G.; Kim, Thomas; Cody, Jeremy; Anderson, Jason; Edelbach, Brian; Marmor, William; Kipsang, Rodgers; Ayotte, Charles; Saviola, Daniel; Niziol, Justin

    2018-01-01

    Reformed experimental activities (REActivities) are an innovative approach to the delivery of the traditional material in an undergraduate organic chemistry laboratory. A description of the design and implementation of REActivities at both a four- and two-year institution is discussed. The results obtained using a reformed teaching observational…

  6. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry

    National Research Council Canada - National Science Library

    Wilson, Charles Owens; Beale, John Marlowe; Block, John H

    2011-01-01

    ... and chemistry students as well as practicing pharmacists. Fully updated for the Twelfth Edition, the book begins with the fundamental principles of chemistry, biochemistry, and biology that underlie the discipline of medicinal chemistry...

  7. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  8. Radiation chemistry - its Czechoslovak story and comments on general present

    International Nuclear Information System (INIS)

    Bednar, J.

    1978-01-01

    The history is outlined of radiation chemistry in Czechoslovakia since 1954 and scientists contributing to the respective stages of its development are listed. Current trends of radiation chemistry in the world are indicated. (J.P.)

  9. The Isolation of Rubber from Milkweed Leaves. An Introductory Organic Chemistry Lab

    Science.gov (United States)

    Volaric, Lisa; Hagen, John P.

    2002-01-01

    We present an introductory organic chemistry lab in which students isolate rubber from the leaves of milkweed plants (Asclepias syriaca). Students isolated rubber with a recovery of 2.4 ± 1.8% and 1.8 ± 0.7% for the microscale and macroscale procedures, respectively. Infrared spectra of their products were compared with the spectrum of synthetic rubber, cis-polyisoprene. Students tested for elasticity of their product by twisting it on a spatula and pulling; all students found some degree of elasticity.

  10. Based on a True Story: Using Movies as Source Material for General Chemistry Reports

    Science.gov (United States)

    Griep, Mark A.; Mikasen, Marjorie L.

    2005-10-01

    Research for chemical reports and case study analysis of chemical topics are two commonly used learning activities to engage and enrich student understanding of the content in introductory chemistry courses. Even though movies are excellent vehicles for exploring the human dimension of events, they have been used only sparingly as source material in introductory science courses. One reason for this sparing use has been the lack of a list of suitable movies. To fill this void, a list of one dozen highly rated movies is presented. The focus of these movies is either a scientist's chemical research or the societal impact of some chemical compound. The method by which two of these movies were used as source material for a written report in a general chemistry course is described. The student response to the exercise was enthusiastic.

  11. Effects on Student Achievement in General Chemistry Following Participation in an Online Preparatory Course. ChemPrep, a Voluntary, Self-Paced, Online Introduction to Chemistry

    Science.gov (United States)

    Botch, Beatrice; Day, Roberta; Vining, William; Stewart, Barbara; Rath, Kenneth; Peterfreund, Alan; Hart, David

    2007-03-01

    ChemPrep was developed to be a stand-alone preparatory short-course to help students succeed in general chemistry. It is Web-based and delivered using the OWL system. Students reported that the ChemPrep materials (short information pages, parameterized questions with detailed feedback, tutorials, and answers to questions through the OWL message system) permitted them to work independently without the need for textbook or lecture. On average, students who completed ChemPrep had higher grades in the subsequent GenChem, Nursing, and Honors chemistry courses, with a greater percentage achieving a grade of C- or higher. Participation in ChemPrep was voluntary, and more women than men responded. Students in the Honors course enrolled in ChemPrep in higher percentages than students in GenChem and Nursing. SAT and departmental math placement exam scores were used as proxy measures of prior achievement and ability. Based on these, Honors chemistry ChemPrep users were on par with their peers but performed better in the course than non-users. In GenChem and Nursing chemistry courses, ChemPrep helped students of high prior achievement and ability perform better than their achievement scores would predict. Weaker or less motivated students did not respond to the voluntary offerings of ChemPrep in the same numbers as stronger or more motivated students, and we are seeking alternate ways to reach this population.

  12. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  13. Beta,beta-Disilylated Sulfones as Versatile Building Blocks in Organic Chemistry – A New Sulfonyl Carbanion Transmetalation

    Czech Academy of Sciences Publication Activity Database

    Puget, Bertrand; Jahn, Ullrich

    -, č. 17 (2010), s. 2579-2582 ISSN 0936-5214 Institutional research plan: CEZ:AV0Z40550506 Keywords : carbanions * transmetalation * silanes * sulfones * Julia olefination Subject RIV: CC - Organic Chemistry Impact factor: 2.447, year: 2010

  14. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  15. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  16. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  17. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  18. Teaching and learning distillation in chemistry laboratory courses

    Science.gov (United States)

    van Keulen, Hanno; Mulder, Theo H. M.; Goedhart, Martin J.; Verdonk, Adri H.

    This study investigates the problems chemistry majors have with learning distillation in traditional chemistry laboratory courses. Using an interpretive cyclic research design, we collected and interpreted data, mainly in the form of observation notes and transcriptions of the discourse that takes place during laboratory courses. It was found that students experience numerous problems; these are described and interpreted. We summarize students' problems in four categories: (a) students use an independent component conception; (b) they have insufficient understanding of the properties of vapor; (c) they regard distillation from a physical point of view; and (d) they do not have a practical understanding of thermodynamics. The main origin of these problems was found to lie with the traditional curriculum structure. Lecture courses and textbooks treat distillation in a generalized and decontextualized way, whereas decisions in actual distillations are always based on contextual features. It was found that textbooks and teachers often do not discriminate carefully and explicitly among five different contexts for distillation: organic synthesis, chemical analysis, analytical chemistry, physical chemistry, and preparation of products. Students take the generalized concepts at face value and apply them to all distillations regardless of context. They cannot interpret their observations or make reasoned decisions based on the theoretical framework of a specific context.Received: 2 May 1994; Revised: 14 December 1994;

  19. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  20. Titan's organic chemistry

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  1. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    Science.gov (United States)

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  2. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    Science.gov (United States)

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  3. Power plant cycle chemistry - a currently neglected power plant chemistry discipline

    International Nuclear Information System (INIS)

    Bursik, A.

    2005-01-01

    Power plant cycle chemistry seems to be a stepchild at both utilities and universities and research organizations. It is felt that other power plant chemistry disciplines are more important. The last International Power Cycle Chemistry Conference in Prague may be cited as an example. A critical review of the papers presented at this conference seems to confirm the above-mentioned statements. This situation is very unsatisfactory and has led to an increasing number of component failures and instances of damage to major cycle components. Optimization of cycle chemistry in fossil power plants undoubtedly results in clear benefits and savings with respect to operating costs. It should be kept in mind that many seemingly important chemistry-related issues lose their importance during forced outages of units practicing faulty plant cycle chemistry. (orig.)

  4. INNOVATION IN ORGANIC CHEMISTRY PRACTICAL WORKS, USING PROBLEM-BASED LEARNING AS TEACHING STRATEGY

    OpenAIRE

    Miriam G. Acuña; Nora M. Sosa; Eusebia C. Valdez

    2011-01-01

    This paper presents the teaching strategy known as problem-based learning as an innovation implemented in the practical experiences of the Organic Chemistry course (Bachelor of Genetics), Faculty of Exact, Chemical and Natural Sciences (Universidad Nacional de Misiones, Argentina). It reviews the results of the experience implemented with students, in groups of 7 selected according to their preferences. A problem that required skills in planning, decision making process, thinking, using of ap...

  5. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hill, Nicholas J.; Hoover, Jessica M.; Stahl, Shannon S.

    2013-01-01

    Modern undergraduate organic chemistry textbooks provide detailed discussion of stoichiometric Cr- and Mn-based reagents for the oxidation of alcohols, yet the use of such oxidants in instructional and research laboratories, as well as industrial chemistry, is increasingly avoided. This work describes a laboratory exercise that uses ambient air as…

  6. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  7. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  8. Coal-related research, organic chemistry, and catalysis

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Coal chemistry research topics included: H exchange at 400 0 C, breaking C-C bonds in coal, molecular weight estimation using small-angle neutron scattering, 13 C NMR spectra of coals, and tunneling during H/D isotope effects. Studies of coal conversion chemistry included thermolysis of bibenzyl and 1-naphthol, heating of coals in phenol, advanced indirect liquefaction based on Koelbel slurry Fischer-Tropsch reactor, and plasma oxidation of coal minerals. Reactions of PAHs in molten SbCl 3 , a hydrocracking catalyst, were studied. Finally, heterogeneous catalysis (desulfurization etc.) was studied using Cu, Au, and Ni surfaces. 7 figures, 6 tables

  9. From helical to planar chirality by on-surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Vacek Chocholoušová, Jana; Jančařík, Andrej; Rybáček, Jiří; Kośmider, K.; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo

    2017-01-01

    Roč. 9, č. 3 (2017), s. 213-218 ISSN 1755-4330 R&D Projects: GA ČR(CZ) GC14-16963J; GA ČR(CZ) GA14-29667S Institutional support: RVO:68378271 ; RVO:61388963 Keywords : chirality * AFM * STM * helicene * on surface chemistry * DFT Subject RIV: CF - Physical ; Theoretical Chemistry; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Physical chemistry; Organic chemistry (UOCHB-X) Impact factor: 25.870, year: 2016

  10. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  11. Human development VIII: a theory of "deep" quantum chemistry and cell consciousness: quantum chemistry controls genes and biochemistry to give cells and higher organisms consciousness and complex behavior.

    Science.gov (United States)

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    Deep quantum chemistry is a theory of deeply structured quantum fields carrying the biological information of the cell, making it able to remember, intend, represent the inner and outer world for comparison, understand what it "sees", and make choices on its structure, form, behavior and division. We suggest that deep quantum chemistry gives the cell consciousness and all the qualities and abilities related to consciousness. We use geometric symbolism, which is a pre-mathematical and philosophical approach to problems that cannot yet be handled mathematically. Using Occam's razor we have started with the simplest model that works; we presume this to be a many-dimensional, spiral fractal. We suggest that all the electrons of the large biological molecules' orbitals make one huge "cell-orbital", which is structured according to the spiral fractal nature of quantum fields. Consciousness of single cells, multi cellular structures as e.g. organs, multi-cellular organisms and multi-individual colonies (like ants) and human societies can thus be explained by deep quantum chemistry. When biochemical activity is strictly controlled by the quantum-mechanical super-orbital of the cell, this orbital can deliver energetic quanta as biological information, distributed through many fractal levels of the cell to guide form and behavior of an individual single or a multi-cellular organism. The top level of information is the consciousness of the cell or organism, which controls all the biochemical processes. By this speculative work inspired by Penrose and Hameroff we hope to inspire other researchers to formulate more strict and mathematically correct hypothesis on the complex and coherence nature of matter, life and consciousness.

  12. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  13. Generalized superconducting flows -- Plasma confinement, organization

    International Nuclear Information System (INIS)

    Mahajan, S.M.

    1997-01-01

    Complete expulsion of magnetic vorticity is used to characterize the superconducting flow. It is shown that a simple, intuitive, but speculative generalization can serve as a paradigm for a variety of organized flows

  14. Student Learning through Journal Writing in a General Education Chemistry Course for Pre-Elementary Education Majors

    Science.gov (United States)

    Dianovsky, Michael T.; Wink, Donald J.

    2012-01-01

    This paper describes research on the use of journals in a general education chemistry course for elementary education majors. In the journals, students describe their understanding of a topic, the development of that understanding, and how the topic connects to their lives. In the process, they are able to engage in reflection about several…

  15. Effectiveness of E-Content Package on Teaching IUPAC Nomenclature of Organic Chemistry at Undergraduate Level

    Science.gov (United States)

    Devendiran, G.; Vakkil, M.

    2017-01-01

    This study attempts to discover the effectiveness of an e-content package when teaching IUPAC nomenclature of organic chemistry at the undergraduate level. The study consisted of a Pre-test-Post-test Non Equivalent Groups Design, and the sample of 71 (n = 71) students were drawn from two colleges. The overall study was divided into two groups, an…

  16. Organic carbamates in drug design and medicinal chemistry.

    Science.gov (United States)

    Ghosh, Arun K; Brindisi, Margherita

    2015-04-09

    The carbamate group is a key structural motif in many approved drugs and prodrugs. There is an increasing use of carbamates in medicinal chemistry and many derivatives are specifically designed to make drug-target interactions through their carbamate moiety. In this Perspective, we present properties and stabilities of carbamates, reagents and chemical methodologies for the synthesis of carbamates, and recent applications of carbamates in drug design and medicinal chemistry.

  17. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  18. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  19. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  20. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  1. Integration of Computational Chemistry into the Undergraduate Organic Chemistry Laboratory Curriculum

    Science.gov (United States)

    Esselman, Brian J.; Hill, Nicholas J.

    2016-01-01

    Advances in software and hardware have promoted the use of computational chemistry in all branches of chemical research to probe important chemical concepts and to support experimentation. Consequently, it has become imperative that students in the modern undergraduate curriculum become adept at performing simple calculations using computational…

  2. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry

    Science.gov (United States)

    Waxman, Eleanor M.; Dzepina, Katja; Ervens, Barbara; Lee-Taylor, Julia; Aumont, Bernard; Jimenez, Jose L.; Madronich, Sasha; Volkamer, Rainer

    2013-03-01

    The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry.

  3. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    Science.gov (United States)

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  4. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    Science.gov (United States)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of

  5. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  6. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa

    2017-09-15

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  7. Ethers on Si(001): A prime example for the common ground between surface science and molecular organic chemistry

    KAUST Repository

    Pecher, Lisa; Laref, Slimane; Raupach, Marc; Tonner, Ralf Ewald

    2017-01-01

    Using computational chemistry, we show that the adsorption of ether molecules on Si(001) under ultra-high vacuum conditions can be understood with textbook organic chemistry. The two-step reaction mechanism of (1) dative bond formation between the ether oxygen and a Lewis acidic surface atom and (2) a nucleophilic attack of a nearby Lewis basic surface atom is analysed in detail and found to mirror the acid-catalysed ether cleavage in solution. The O-Si dative bond is found to be the strongest of its kind and reactivity from this state defies the Bell-Evans-Polanyi principle. Electron rearrangement during the C-O bond cleavage is visualized using a newly developed bonding analysis method, which shows that the mechanism of nucleophilic substitutions on semiconductor surfaces is identical to molecular chemistry SN2 reactions. Our findings thus illustrate how the fields of surface science and molecular chemistry can mutually benefit and unexpected insight can be gained.

  8. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  9. Course organizers in general practice.

    Science.gov (United States)

    Williams, A. H.

    1986-01-01

    In August/September 1984 a survey of the 267 course organizers in post in England and Wales was carried out. Eighty-two per cent replied to a questionnaire asking for details about their work and personal status. All 16 regions in England and Wales completed a questionnaire about levels of staffing and remuneration of those involved in general practice postgraduate education. The results show that there are considerable variations between regions in the role and responsibilities of course organizers, in their training, and in the facilities that are provided for them. The majority of course organizers reported a workload greater than the number of sessions for which they were remunerated. The effects of these factors on recruitment, tenure of post, and job satisfaction are discussed. Recommendations are made for improving the situation, including the removal of course organizer pay from the scale of trainers' pay, so that there can be flexibility in the number of sessions which can be held, improvement in training and certain facilities, and the implementation of national and local job descriptions. PMID:2577940

  10. Independent Synthesis Projects in the Organic Chemistry Teaching Laboratories: Bridging the Gap between Student and Researcher

    Science.gov (United States)

    Keller, Valerie A.; Kendall, Beatrice Lin

    2017-01-01

    Science educators strive to teach students how to be well-rounded scientists with the ability to problem solve, anticipate errors, and adapt to unexpected roadblocks. Traditional organic chemistry experiments seldom teach these skills, no matter how novel or contemporary the subject material. This paper reports on the success of a quarter-long…

  11. Principles of Chemistry (by Michael Munowitz)

    Science.gov (United States)

    Kovac, Reviewed By Jeffrey

    2000-05-01

    At a time when almost all general chemistry textbooks seem to have become commodities designed by marketing departments to offend no one, it is refreshing to find a book with a unique perspective. Michael Munowitz has written what I can only describe as a delightful chemistry book, full of conceptual insight, that uses a novel and interesting pedagogic strategy. This is a book that has much to recommend it. This is the best-written general chemistry book I have ever read. An editor with whom I have worked recently remarked that he felt his job was to help authors make their writing sing. Well, the writing in Principles of Chemistry sings with the full, rich harmonies and creative inventiveness of the King's Singers or Chanticleer. Here is the first sentence of the introduction: "Central to any understanding of the physical world is one discovery of paramount importance, a truth disarmingly simple yet profound in its implications: matter is not continuous." This is prose to be savored and celebrated. Principles of Chemistry has a distinct perspective on chemistry: the perspective of the physical chemist. The focus is on simplicity, what is common about molecules and reactions; begin with the microscopic and build bridges to the macroscopic. The author's perspective is clear from the organization of the book. After three rather broad introductory chapters, there are four chapters that develop the quantum mechanical theory of atoms and molecules, including a strong treatment of molecular orbital theory. Unlike many books, Principles of Chemistry presents the molecular orbital approach first and introduces valence bond theory later only as an approximation for dealing with more complicated molecules. The usual chapters on descriptive inorganic chemistry are absent (though there is an excellent chapter on organic and biological molecules and reactions as well as one on transition metal complexes). Instead, descriptive chemistry is integrated into the development of

  12. Chemistry for DUMMIES: how to popularize and introduce chemistry to the general public.

    Science.gov (United States)

    Montangero, Marc

    2012-01-01

    To mark the occasion of the International Year of Chemistry, each week in 2011 I posted a two-minute film demonstrating and explaining a simple and safe experiment to be carried out at home using everyday household products on the site www.chimie.ch/nuls.

  13. Abstracts of the 26. Brazilian Congress on Chemistry

    International Nuclear Information System (INIS)

    1985-01-01

    It is presented the short communications of papers presented at the 26. Brazilian Congress on Chemistry, of nuclear interest. The papers are classified in four areas: isotope chemistry, organic chemistry, inorganic chemistry and physico-chemical. (E.G.) [pt

  14. Dynamic Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Lisbjerg, Micke

    This thesis is divided into seven chapters, which can all be read individually. The first chapter, however, contains a general introduction to the chemistry used in the remaining six chapters, and it is therefore recommended to read chapter one before reading the other chapters. Chapter 1...... is a general introductory chapter for the whole thesis. The history and concepts of dynamic combinatorial chemistry are described, as are some of the new and intriguing results recently obtained. Finally, the properties of a broad range of hexameric macrocycles are described in detail. Chapter 2 gives...

  15. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  16. Profile of students’ learning styles in Sorogan-Bandongan organic chemistry lecture

    Science.gov (United States)

    Rinaningsih; Kadarohman, A.; Firman, H.; Sutoyo

    2018-05-01

    Individual-based independent curriculum as one of target of national education of Indonesia in XXI century can be achieved with the implementation of Sorogan-Bandongan model. This kind of learning model highly facilitates students in understanding various concepts with their own, respective learning styles. This research aims to perceive the effectiveness of Sorogan-Bandongan in increasing the mastery of concept in various learning styles. The samples of this research are students majoring in chemistry amounted to 31 students. Using pre-test and post-test instrument, data are analyzed in descriptive-qualitative method. Based on the result of the data analysis, it is found that 16% of students have mathematical/logical learning style, 22.6% naturalist, 9.7% visual/spatial, 13% kinesthetic, 6% linguistic, 13% intrapersonal, 9.7% interpersonal, and 10% musical. After the implementation of Sorogan-Bandongan model in the Organic Chemistry lectures, improvement of classical learning outcomes as 11,07 is obtained. Six out of eight learning styles of students experienced increase in mastery of concept, where 7 students have the naturalist learning style, 4 students experienced decrease in mastery of concept while 1 student is stagnant (0); meanwhile, 2 out of 4 students that have the interpersonal learning style experienced decrease in mastery of concept.

  17. Seeing the Chemistry around Me--Helping Students Identify the Relevance of Chemistry to Everyday Life

    Science.gov (United States)

    Moore, Tracy Lynn

    2012-01-01

    The study attempted to determine whether the use of a series of reading and response assignments decreased students' perceptions of chemistry difficulty and enhanced students' perceptions of the relevance of chemistry in their everyday lives. Informed consent volunteer students enrolled in General Chemistry II at a community college in the…

  18. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    Science.gov (United States)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  19. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the activities carried out in 1985 by the Chemistry Department in the following fields: Chemistry, Inorganic Chemistry, Physicochemistry (Interphases, Surfaces), General Chemical Analysis, Active Materials Analysis, X Ray Fluorescence Analysis, Mass Spectroscopy (Isotopic Analysis, Instrumentation) and Optical Spectroscopy. A list of publications is enclosed. (M.E.L.) [es

  20. Gender Fair Efficacy of Concept Mapping Tests in Identifying Students' Difficulties in High School Organic Chemistry

    Science.gov (United States)

    Gafoor, Kunnathodi Abdul; Shilna, V.

    2014-01-01

    In view of the perceived difficulty of organic chemistry unit for high schools students, this study examined the usefulness of concept mapping as a testing device to assess students' difficulty in the select areas. Since many tests used for identifying students misconceptions and difficulties in school subjects are observed to favour one or the…