WorldWideScience

Sample records for gene-gun dna-vaccinated mice

  1. Fusion of a viral antigen to invariant chain leads to augmented T-cell immunity and improved protection in gene-gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Holst, Peter J; Christensen, Jan P

    2009-01-01

    against lethal peripheral challenge. The current study questioned whether the same strategy, i.e. linkage of GP to an Ii chain, could be applied to a naked DNA vaccine. Following gene-gun immunization with the linked construct (DNA-IiGP), GP-specific CD4(+) T cells could not be detected by flow cytometry...

  2. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  3. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene......+ T-cell responses were not induced. Thus, in addition to specific CD8+ T cell-mediated immunopathology, gene-gun DNA vaccination causes non-specific enhancement of RSV disease without affecting virus clearance....

  4. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  5. Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines

    Science.gov (United States)

    Šmahel, Michal; Poláková, Ingrid; Sobotková, Eva; Vajdová, Eva

    2011-01-01

    DNA vaccines showed great promise in preclinical models of infectious and malignant diseases, but their potency was insufficient in clinical trials and is needed to be improved. In this study, we tested systemic administration of two conventional adjuvants, synthetic oligodeoxynucleotide carrying immunostimulatory CpG motifs (CpG-ODN) and levamisole (LMS), and evaluated their effect on immune reactions induced by DNA vaccines delivered by a gene gun. DNA vaccination was directed either against the E7 oncoprotein of human papillomavirus type 16 or against the BCR-ABL1 oncoprotein characteristic for chronic myeloid leukemia. High doses of both adjuvants reduced activation of mouse splenic CD8+ T lymphocytes, but the overall antitumor effect was enhanced in both tumor models. High-dose CpG-ODN exhibited a superior adjuvant effect in comparison with any combination of CpG-ODN with LMS. In summary, our results demonstrate the benefit of combined therapy with gene-gun-delivered antitumor DNA vaccines and systemic administration of CpG-ODN or LMS. PMID:22028727

  6. Systemic Administration of CpG Oligodeoxynucleotide and Levamisole as Adjuvants for Gene-Gun-Delivered Antitumor DNA Vaccines

    Directory of Open Access Journals (Sweden)

    Michal Šmahel

    2011-01-01

    Full Text Available DNA vaccines showed great promise in preclinical models of infectious and malignant diseases, but their potency was insufficient in clinical trials and is needed to be improved. In this study, we tested systemic administration of two conventional adjuvants, synthetic oligodeoxynucleotide carrying immunostimulatory CpG motifs (CpG-ODN and levamisole (LMS, and evaluated their effect on immune reactions induced by DNA vaccines delivered by a gene gun. DNA vaccination was directed either against the E7 oncoprotein of human papillomavirus type 16 or against the BCR-ABL1 oncoprotein characteristic for chronic myeloid leukemia. High doses of both adjuvants reduced activation of mouse splenic CD8+ T lymphocytes, but the overall antitumor effect was enhanced in both tumor models. High-dose CpG-ODN exhibited a superior adjuvant effect in comparison with any combination of CpG-ODN with LMS. In summary, our results demonstrate the benefit of combined therapy with gene-gun-delivered antitumor DNA vaccines and systemic administration of CpG-ODN or LMS.

  7. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine;

    2004-01-01

    -protective levels around weaning at 3-5-weeks of age. If immunoprophylaxis is to be effective, an immunisation method capable of breaking through maternal immunity must be employed. In this study, we have developed and investigated the potential of a DNA vaccination approach to be one such method. The gene encoding...... the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...... opportunities for vaccination of piglets against PCV2....

  8. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  9. Novel DNA vaccine based on hepatitis B virus core gene induces specific immune responses in Balb/c mice

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Xing; Zu-Hu Huang; Shi-Xia Wang; Jie Cai; Jun Li; Te-Hui W Chou; Shan Lu

    2005-01-01

    AIM: To investigate the immunogenicity of a novel DNA vaccine,pSW3891/HBc, based on HBV core gene in Balb/c mice.METHODS: A novel DNA vaccine, pSW3891/HBc, encoding HBV core gene was constructed using a vector plasmid pSW3891. Balb/c mice were immunized with either pSW3891/HBc or empty vector DNA via gene gun. IgG anti-HBc responses in mouse sera were demonstrated by ELISA. Specific cytotoxicity of cytotoxic T lymphocytes (CTLs) of mice was quantitatively measured by lactate dehydrogenase release assay.RESULTS: HBcAg was expressed effectively in 293T cell line transiently transfected with pSW3891/HBc. Strong IgG anti-HBc responses were elicited in mice immunized with pSW3891/HBc. The end-point titers of anti-HBc reached the highest 1:97 200, 4 wk after the third immunization. The specific CTL killing with the highest specific lysis reached 73.25% at effector:target ratio of 20:1 in mice that received pSW3891/HBc DNA vaccine.CONCLUSION: pSW3891/HBc vaccination elicits specific anti-HBc response and induces HBc-specific CTL response in immunized Balb/c mice.

  10. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice.

    Science.gov (United States)

    Dumonteil, Eric; Escobedo-Ortegon, Javier; Reyes-Rodriguez, Norma; Arjona-Torres, Arletty; Ramirez-Sierra, Maria Jesus

    2004-01-01

    The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 x 10(4) parasites) as a model of acute infection, and then they were treated with two injections of 100 microg of plasmid DNA 1 week apart, beginning on day 5 postinfection. Control mice had high levels of parasitemia and mortality and severe cardiac inflammation, while mice treated with plasmid DNA encoding trypomastigote surface antigen 1 or Tc24 had reduced parasitemia and mild cardiac inflammation and >70% survived the infection. The efficacy of the immunotherapy also was significant when it was delayed until days 10 and 15 after infection. Parasitological analysis of cardiac tissue of surviving mice indicated that most mice still contained detectable parasite kinetoplast DNA but fewer mice contained live parasites, suggesting that there was efficient but not complete parasite elimination. DNA vaccine immunotherapy was also evaluated in CD1 mice infected with a low dose (5 x 10(2) parasites) as a model of chronic infection. Immunotherapy was initiated on day 70 postinfection and resulted in improved survival and reduced cardiac tissue inflammation. These results suggest that DNA vaccines have strong potential for the immunotherapy of T. cruzi infection and may provide new alternatives for the control of Chagas' disease.

  11. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA.

    Science.gov (United States)

    Aps, Luana R M M; Tavares, Milene B; Rozenfeld, Julio H K; Lamy, M Teresa; Ferreira, Luís C S; Diniz, Mariana O

    2016-06-20

    Bacillus subtilis spores represent a suitable platform for the adsorption of proteins, enzymes and viral particles at physiological conditions. In the present work, we demonstrate that purified spores can also adsorb DNA on their surface after treatment with cationic molecules. In addition, we demonstrate that DNA-coated B. subtilis spores can be used as particulate carriers and act as an alternative to gold microparticles for the biolistic (gene gun) administration of plasmid DNA in mice. Gene gun delivery of spores pre-treated with DODAB (dioctadecyldimethylammonium bromide) allowed efficient plasmid DNA absorption and induced protein expression levels similar to those obtained with gold microparticles. More importantly, we demonstrated that a DNA vaccine adsorbed on spores can be loaded into biolistic cartridges and efficiently delivered into mice, which induced specific cellular and antibody responses. Altogether, these data indicate that B. subtilis spores represent a simple and low cost alternative for the in vivo delivery of DNA vaccines by the gene gun technology.

  12. Vaccination Using Gene-Gun Technology.

    Science.gov (United States)

    Bergmann-Leitner, Elke S; Leitner, Wolfgang W

    2015-01-01

    DNA vaccines against infection with Plasmodium have been highly successful in rodent models of malaria and have shown promise in the very limited number of clinical trials conducted so far. The vaccine platform is highly attractive for numerous reasons, such as low cost and a very favorable safety profile. Gene gun delivery of DNA plasmids drastically reduces the vaccine dose and does not only have the potential to make vaccines more accessible and affordable, but also simplifies (a) the testing of novel antigens as vaccine candidates, (b) the testing of antigen combinations, and (c) the co-delivery of antigens with molecular adjuvants such as cytokines or costimulatory molecules. Described in this chapter are the preparation of the inoculum (i.e., DNA plasmids attached to gold particles, coating to the inside of plastic tubing also referred to as gene gun "bullets" or cartridges), the gene gun vaccination procedure, and the challenge of mice with Plasmodium berghei parasites to test the efficacy of the experimental vaccine.

  13. Induction of cytotoxic T-cell responses by gene gun DNA vaccination with minigenes encoding influenza A virus HA and NP CTL-epitopes

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Kirkby, N

    1999-01-01

    degree of controllability. We have examined the induction of murine CTL's by this approach using DNA plasmid minigene vaccines encoding known mouse K(k) minimal CTL epitopes (8 amino acids) from the influenza A virus hemagglutinin and nucleoprotein. We here report that such an approach is feasible...... and that wild type influenza virus flanking amino acid sequences can influence the CTL response but are not essential for optimal CTL induction. We also examined the effect of different new amino acid sequences flanking the CTL epitopes. In one version, two CTL epitopes were linked together as 'string of beads......-induced CTL responses and tested for their protective effect against a lethal influenza A virus infection in mice and no effect was found. We conclude that a specific and highly directed CTL induction is possible by unlinked minigene DNA immunisation, but that CTL induction solely is not always sufficient...

  14. Protection of Mice with a Divalent Tuberculosis DNA Vaccine Encoding Antigens Ag85B and MPT64

    Institute of Scientific and Technical Information of China (English)

    Xia TIAN; Hong CAI; Yu-Xian ZHU

    2004-01-01

    DNA vaccine may be a promising tool for controlling tuberculosis development. However,vaccines encoding single antigens of mycobacterium did not produce protective effect as BCG did. In the present study, we evaluated the immunogenicity and protective efficacy of a divalent DNA vaccine encoding two immunodominant antigens Ag85B and MPT64 of Mycobacterium tuberculosis. We found that both humoral and Th1-type (high IFN-γ, low IL-4) cellular responses obtained from the divalent DNA vaccine group were significantly higher than that conferred by BCG. RT-PCR results showed that antigens were expressed differentially in various organs in divalent DNA vaccine group. The survival rate for mice treated with the divalent DNA vaccine after challenging with high doses of virulent M. tuberculosis H37Rv was significantly higher than that of the BCG group or any of the single DNA vaccine group. Significant differences were also found between the single and divalent DNA vaccinated mice in terms of body, spleen and lung weight. Bacterial loading decreased about 2000-fold in lungs and about 100-fold in spleens of divalent DNA vaccinated mice when compared with that of the control group. We conclude that our divalent DNA vaccine may be a better choice for controlling tuberculosis disease in animals.

  15. Non-cytolytic antigen clearance in DNA-vaccinated mice with electropotation

    Institute of Scientific and Technical Information of China (English)

    Jin-liang PENG; Yong-gang ZHAO; Jun-hua MAI; Wen-ka PANG; Wei GUO; Guang-ming CHEN; Guo-yu MO; Gui-rong RAO; Yu-hong XU

    2007-01-01

    Aim: To explore the potential of electroporation (EP)-mediated hepatitis B virus (HBV) DNA vaccination for the treatment of chronic HBV infection. Methods: BALB/c mice were vaccinated with HBV DNA vaccine encoding for the HBV preS2-S antigen, combined with or without EP. HBV surface antigen expression plasmid was administered into mice liver via a hydrodynamic injection to mimic HBV infection. The clearance of antigen in the serum and liver was detected by ELISA assay and immunohistochemical staining. The histopathology of the liver tissues was examined by HE staining and serum alanine aminotransferase assay.Results: The immunogenicity ofHBV DNA vaccine encoding for the HBV preS2-S antigen can be improved by EP-mediated vaccine delivery. The elicited immune responses can indeed reduce the expression of HBV surface antigen (HBsAg) in hepatocytes of the mouse model that was transfected to express HBsAg using the hydrodynamic injection method. The antigen clearance process did not cause significant toxicity to liver tissue, suggesting a non-cytolytic mechanism. Conclusion: The EP-aided DNA vaccination may have potential in mediating viral clearance in chronic hepatitis B patients.

  16. Enhancement Effect of CpG DNA on the Somatostatin DNA Vaccine in Mice

    Institute of Scientific and Technical Information of China (English)

    XUE Chun-lin; MAO Da-gan; YANG Li-guo; CHENG Bao

    2007-01-01

    To study the immune effect of CpGDNA on somatostatin (SS) DNA vaccine, the 20-day-old experimental mice were immunized with 20 μg SS eukaryotic expression plasmid pES/2SS with different adjuvants in equal dose, such as the synthetic CpG-ODN, the pE-CpG plasmid, E. coli DNA and the crude liposome. A booster was given two weeks later. The results showed that the body weight gain of female mice in the SS immunized group was higher than that of the control (P<0.05). The levels of antibodies against SS, IgG2a/IgG1, spleen lymphocyte proliferation activity and the concentrations of GH and IGF- Ⅰ in the DNA vaccine groups combined with CpGDNA were significantly increased compared to that of the group immunized with DNA vaccine alone. All these suggested the recombinant SS expression plasmid can stimulate animals to produce antibodies against SS, and CpGDNA adjuvant can enhance the immune effect of DNA vaccine against SS and influence the concentration of GH and IGF- Ⅰ.

  17. DNA vaccines

    Science.gov (United States)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  18. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  19. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice

    OpenAIRE

    2007-01-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in most of Latin America. A key priority is the development of new treatments, due to the poor efficacy of current ones. We report here the comparative evaluation of therapeutic DNA vaccines encoding various T. cruzi antigens. ICR mice infected with 500 parasites intraperitoneally were treated at 5 and 12 days postinfection with 20 mu g of plasmid DNA encoding T. cruzi antigens TSA-1, TS, ASP-...

  20. Immunogenicity of RSV F DNA Vaccine in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Erdal Eroglu

    2016-01-01

    Full Text Available Respiratory syncytial virus (RSV causes severe acute lower respiratory tract disease leading to numerous hospitalizations and deaths among the infant and elderly populations worldwide. There is no vaccine or a less effective drug available against RSV infections. Natural RSV infection stimulates the Th1 immune response and activates the production of neutralizing antibodies, while earlier vaccine trials that used UV-inactivated RSV exacerbated the disease due to the activation of the allergic Th2 response. With a focus on Th1 immunity, we developed a DNA vaccine containing the native RSV fusion (RSV F protein and studied its immune response in BALB/c mice. High levels of RSV specific antibodies were induced during subsequent immunizations. The serum antibodies were able to neutralize RSV in vitro. The RSV inhibition by sera was also shown by immunofluorescence analyses. Antibody response of the RSV F DNA vaccine showed a strong Th1 response. Also, sera from RSV F immunized and RSV infected mice reduced the RSV infection by 50% and 80%, respectively. Our data evidently showed that the RSV F DNA vaccine activated the Th1 biased immune response and led to the production of neutralizing antibodies, which is the desired immune response required for protection from RSV infections.

  1. Detection of Progeny Immune Responses after Intravenous Administration of DNA Vaccine to Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Xin Ke-Qin

    2002-01-01

    Full Text Available A number of factors influence the development of tolerance, including the nature, concentration and mode of antigen presentation to the immune system, as well as the age of the host. The studies were conducted to determine whether immunizing pregnant mice with liposome-encapsulated DNA vaccines had an effect on the immune status of their offspring. Two different plasmids (encoding antigens from HIV-1 and influenza virus were administered intravenously to pregnant mice. At 9.5 days post conception with cationic liposomes, injected plasmid was present in the tissues of the fetus, consistent with trans-placental transfer. When the offspring of vaccinated dams were immunized with DNA vaccine, they mounted stronger antigen-specific immune responses than controls and were protected against challenge by homologous influenza virus after vaccination. Moreover, such immune responses were strong in the offspring of mothers injected with DNA plasmid 9.5 days after coitus. These results suggest that DNA vaccinated mothers confer the antigen-specific immunity to their progeny. Here we describe the methods in detail as they relate to our previously published work.

  2. Molecular Adjuvant Ag85A Enhances Protection against Influenza A Virus in Mice Following DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Hong Li

    2012-12-01

    Full Text Available A novel DNA vaccine vector encoding the Mycobacterium tuberculosis secreted antigen Ag85A fused with the influenza A virus (IAV HA2 protein epitopes, pEGFP/Ag85A-sHA2 (pAg85A-sHA2, was designed to provide protection against influenza. The antigen encoded by the DNA vaccine vector was efficiently expressed in mammalian cells, as determined by reverse transcription polymerase chain reaction (RT-PCR and fluorescence analyses. Mice were immunized with the vaccine vector by intramuscular injection before challenge with A/Puerto Rico/8/34 virus (PR8 virus. Sera and the splenocyte culture IFN-γ levels were significantly higher in immunized mice compared with the control mice. The novel vaccine group showed a high neutralization antibody titer in vitro. The novel vaccine vector also reduced the viral loads, increased the survival rates in mice after the PR8 virus challenge and reduced the alveolar inflammatory cell numbers. Sera IL-4 concentrations were significantly increased in mice immunized with the novel vaccine vector on Day 12 after challenge with the PR8 virus. These results demonstrated that short HA2 (sHA2 protein epitopes may provide protection against the PR8 virus and that Ag85A could strengthen the immune response to HA2 epitopes, thus, Ag85A may be developed as a new adjuvant for influenza vaccines.

  3. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  4. Comparative evaluation of therapeutic DNA vaccines against Trypanosoma cruzi in mice.

    Science.gov (United States)

    Sanchez-Burgos, Gilma; Mezquita-Vega, R Gabino; Escobedo-Ortegon, Javier; Ramirez-Sierra, Maria Jesus; Arjona-Torres, Arletty; Ouaissi, Ali; Rodrigues, Mauricio M; Dumonteil, Eric

    2007-08-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is a major public health problem in most of Latin America. A key priority is the development of new treatments, due to the poor efficacy of current ones. We report here the comparative evaluation of therapeutic DNA vaccines encoding various T. cruzi antigens. ICR mice infected with 500 parasites intraperitoneally were treated at 5 and 12 days postinfection with 20 microg of plasmid DNA encoding T. cruzi antigens TSA-1, TS, ASP-2-like, Tc52 or Tc24. Treatment with plasmid encoding TS and/or ASP-2-like antigens had no significant effect on parasitemia or survival. Treatment with Tc52 DNA significantly reduced parasitemia, as well as cardiac parasite burden, and improved survival, although myocarditis was not significantly affected. Finally, treatment with plasmids encoding Tc24 and TSA-1 induced the most complete control of disease as evidenced by significant reductions in parasitemia, mortality, myocarditis and heart parasite burden. These data demonstrate that therapeutic vaccine efficacy is dependent on the antigen and suggest that DNA vaccines encoding Tc24, TSA-1, and Tc52 represent the best candidates for further studies of a therapeutic vaccine against Chagas disease.

  5. Tumor prevention in HPV8 transgenic mice by HPV8-E6 DNA vaccination.

    Science.gov (United States)

    Marcuzzi, Gian Paolo; Awerkiew, Sabine; Hufbauer, Martin; Schädlich, Lysann; Gissmann, Lutz; Eming, Sabine; Pfister, Herbert

    2014-06-01

    The genus beta human papillomavirus 8 (HPV8) is involved in the development of cutaneous squamous cell carcinomas (SCCs) in individuals with epidermodysplasia verruciformis. Immunosuppressed transplant recipients are prone to harbor particularly high betapapillomavirus DNA loads, which may contribute to their highly increased risk of SCC. Tumor induction in HPV8 transgenic mice correlates with increased expression of viral oncogenes E6 and E2. In an attempt to prevent skin tumor development, we evaluated an HPV8-E6-DNA vaccine, which was able to stimulate a detectable HPV8-E6-specific cell-mediated immune response in 8/15 immunized mice. When skin of HPV8 transgenic mice was grafted onto non-transgenic littermates, the grafted HPV8 transgenic tissue was not rejected and papillomas started to grow within 14 days all over the transplant of 9/9 non-vaccinated and 7/15 not successfully vaccinated mice. In contrast, no papillomas developed in 6/8 successfully vaccinated mice. In the other two of these eight mice, a large ulcerative lesion developed within the initial papilloma growth or papilloma development was highly delayed. As the vaccine completely or partially prevented papilloma development without rejecting the transplanted HPV8 positive skin, the immune system appears to attack only keratinocytes with increased levels of E6 protein, which would give rise to papillomas.

  6. Control of Trypanosoma cruzi infection and changes in T-cell populations induced by a therapeutic DNA vaccine in mice.

    Science.gov (United States)

    Zapata-Estrella, Hiatzy; Hummel-Newell, Caroline; Sanchez-Burgos, Gilma; Escobedo-Ortegon, Javier; Ramirez-Sierra, Maria Jesus; Arjona-Torres, Arletty; Dumonteil, Eric

    2006-03-15

    Previous work showed that immunotherapy with a DNA vaccine encoding Trypanosoma cruzi antigen TSA-1 reduced cardiac tissue damage and improved survival in mice when administered during the acute or chronic phases of T. cruzi infection. In the present study, we investigated changes in T-cell populations induced by DNA vaccine immunotherapy. ICR mice were infected with 500 T. cruzi blood trypomastigotes and treated during the acute or chronic phases with two 100 microg doses of DNA vaccine. Analysis of stained splenocytes by flow cytometry indicated that the therapeutic vaccine induced a rapid increase in the number of CD4+ and CD8+ T cells in both the acute and chronic phases. Also, there was a rapid increase in T. cruzi-specific IFNgamma-producing CD8+ T cells following treatment during the chronic phase. The effects of these changes on the control of infection required longer time periods to be detectable but resulted in a reduction in myocarditis and T. cruzi parasite burden in both phases of the infection, as assessed by histopathologic analysis and semi-quantitative PCR detection of T. cruzi in cardiac tissue. These results suggest that DNA vaccines that induce CD8+ T-cells activity and IFNgamma production, would be good candidates for effective therapeutic vaccination against T. cruzi infection.

  7. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  8. A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge.

    Science.gov (United States)

    Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S

    2012-11-01

    We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.

  9. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    PingZHAO; Jin-ShanKE; Zhao-LinQIN; HaoREN; Lan-JuanZHAO; Jian-GuoYU

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E.coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E.coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E.coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  10. DNA Vaccine of SARS-Cov S Gene Induces Antibody Response in Mice

    Institute of Scientific and Technical Information of China (English)

    Ping ZHAO; Jin-Shan KE; Zhao-Lin QIN; Hao REN; Lan-Juan ZHAO; Jian-Guo YU; Jun GAO; Shi-Ying ZHU; Zhong-Tian QI

    2004-01-01

    The spike (S) protein, a main surface antigen of SARS-coronavirus (SARS-CoV), is one of the most important antigen candidates for vaccine design. In the present study, three fragments of the truncated S protein were expressed in E. Coli, and analyzed with pooled sera of convalescence phase of SARS patients.The full length S gene DNA vaccine was constructed and used to immunize BALB/c mice. The mouse serum IgG antibody against SARS-CoV was measured by ELISA with E. Coli expressed truncated S protein or SARS-CoV lysate as diagnostic antigen. The results showed that all the three fragments of S protein expressed by E. Coli was able to react with sera of SARS patients and the S gene DNA candidate vaccine could induce the production of specific IgG antibody against SARS-CoV efficiently in mice with seroconversion ratio of 75% after 3 times of immunization. These findings lay some foundations for further understanding the immunology of SARS-CoV and developing SARS vaccines.

  11. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To validate the immune protective efficacy of pORF5 DNA vaccine and to analyze potential mechanisms related to this protection. In this study, pORF5 DNA vaccine was constructed and evaluated for its protective immunity in a mouse model of genital chlamydial infection. Groups of BALB/c mice were immunized intranasally with pORF5 DNA vaccine. Humoral and cell mediated immune responses were evaluated. The clearance ability of chlamydial challenge from the genital tract and the chlamy- dia-induced upper genital tract gross pathology and histopathological characterization were also de- tected. The results showed that the total and the IgG2a anti-pORF5 antibody levels in serum were sig- nificantly elevated after pcDNA3.1-pORF5 vaccination, as were the total antibody and IgA levels in vaginal fluids. pcDNA3.1-pORF5 induced a significantly high level of Th1 response as measured by robust gamma interferon (IFN-γ). Minimal IL-4 was produced by immune T cells in response to the re-stimulation with pORF5 protein or the inactive elementary body in vitro. pcDNA3.1-pORF5-vacci- nated mice displayed significantly reduced bacterial shedding upon a chlamydial challenge and an accelerated resolution of infection. 100% of pcDNA3.1-pORF5 vaccinated mice successfully resolved the infection by day 24. pcDNA3.1-pORF5-immunized mice also exhibited protection against patho- logical consequences of chlamydial infection. The stimulated index was significantly higher than that of mice immunized with pcDNA3.1 and PBS (P<0.05). Together, these results demonstrated that immu- nization with pORF5 DNA vaccine is a promising approach for eliciting a protective immunity against a genital chlamydial challenge.

  12. Construction of sperm-specific lactate dehydrogenase DNA vaccine and experimental study of its immuno-contraceptive effect on mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lactate dehydrogenase C4 (LDHC4) is a key enzyme for sperm metabolism. It is distributed specifically in testis and is highly immunogenic. In this study, two DNA vaccines pVAX1-hLDHC and pVAX1-mLDHC were constructed by inserting coding sequences of human and mice LDHC4 into the eukaryotic ex-pression vector pVAX1. The production of LDHC4 specific antibodies was induced in the sera of vac-cinated mice and the reproductive tract secretions of vaccinated female mice through immunization by mucosal surface instillation. Furthermore, the antibody titer increased with the times of immunization. In the mating experiment, the number of newborns of the vaccinated mice reduced significantly and some immunized female mice even lost the ability to bear any offsprings, suggesting that the difference between the immunized and control mice was statistically significant. Sperm agglutination analysis indicated that both the antisera from immunized mice and the reproductive tract secretions of vacci-nated female mice could agglutinate normal sperms. Results of immunohistochemistry showed that the antibodies present in the sera of immunized mice and the reproductive tract secretions of vaccinated female mice could specifically react with LDHC4 antigen, which mainly locates in the cytoplasm, acrosome membrane externa and acrosome capsule of the sperm. Taken together, our results indicated that the constructed contraceptive DNA vaccines did yield immunocontraceptive effects on mice and this would enable clinical trials in near future.

  13. Construction of sperm-specific lactate dehydrogenase DNA vaccine and experimental study of its immunocontraceptive effect on mice

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; ZHANG Duo; XIN Na; XIONG YongZhong; CHEN Ping; LI Bo; TU XiangDong; LAN FengHua

    2008-01-01

    Lactate dehydrogenase C4 (LDHC4) is a key enzyme for sperm metabolism. It is distributed specifically in testis and is highly Immunogenic. In this study, two DNA vaccines pVAX1-hLDHC and pVAX1-mLDHC were constructed by inserting coding sequences of human and mice LDHC4 into the eukaryotic expression vector pVAX1. The production of LDHC4 specific antibodies was induced in the sere of vaccinated mice and the reproductive tract secretions of vaccinated female mice through Immunization by mucosal surface instillation. Furthermore, the antibody titer increased with the times of immunization.In the mating experiment, the number of newborns of the vaccinated mice reduced significantly and some immunized female mice even lost the ability to bear any offsprings, suggesting that the difference between the immunized and control mice was statistically significant. Sperm agglutination analysis indicated that both the antisera from immunized mice end the reproductive tract secretions of vaccinated female mice could agglutinate normal sperms. Results of immunohistochemistry showed that the antibodies present in the sere of immunized mice and the reproductive tract secretions of vaccinated female mice could specifically react with LDHC4 antigen, which mainly locates in the cytoplasm,acrosome membrane externa and acrosome capsule of the sperm. Taken together, our results indicated that the constructed contraceptive DNA vaccines did yield immunocontreceptive effects on mice and this would enable clinical trials in near future.

  14. Antitumor immunopreventive effect in mice induced by DNA vaccine encoding a fusion protein of α-fetoprotein and CTLA4

    Institute of Scientific and Technical Information of China (English)

    Geng Tian; Ji-Lin Yi; Ping Xiong

    2004-01-01

    AIM: To develop a tumor DNA vaccine encoding a fusion protein of murine AFP and CTLA4, and to study its ability to induce specific CTL response and its protective effect against AFP-producing tumor.METHODS: Murine α-fetoprotein (mAFP) gene was cloned from total RNA of Hepa1-6 cells by RT-PCR. A DNA vaccine was constructed by fusion murine α-fetoprotein gene and extramembrane domain of murine CTLA4 gene. The DNA vaccine was identified by restriction enzyme analysis,sequencing and expression. EL-4 (mAFP) was developed by stable transfection of EL-4 cells with pmAFP. The frequency of cells produdng IFN-γ in splenocytes harvested from the immunized mice was measured by ELISPOT. Mice immunized with DNA vaccine were inoculated with EL-4 (mAFP) cells in back to observe the protective effect of immunization on tumor. On the other hand, blood samples were collected from the immunized mice to check the functions of liver and kidney.RESULTS: 1.8 kb mAFP cDNA was cloned from total RNA of Hepa1-6 cells by RT-PCR. The DNA vaccine encoding a fusion protein of mAFP-CTLA4 was constructed and confirmed by restriction enzyme analysis, sequencing and expression. The expression of mAFP mRNA in EL-4 (mAFP) was confirmed by RT-PCR. The ELISPOT results showed that the number of IFN-γ-producing cells in pmAFP-CTLA4 group was significantly higher than that in pmAFP, pcDNA3.1 and PBS group. The tumor volume in pmAFP-CTLA4 group was significantly smaller than that in pmAFP, pcDNA3.1 and PBS group, respectively. The hepatic and kidney functions in each group were not altered.CONCLUSION: AFP-CTLA4 DNA vaccine can stimulate potent specific CTL responses and has distinctive antitumor effect on AFP-producing tumor. The vaccine has no impact on the function of mouse liver and kidney.

  15. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice

    Directory of Open Access Journals (Sweden)

    Wang Hai-Long

    2016-01-01

    Full Text Available Toxoplasma gondii is an obligate intracellular apicomplexan parasite that affects humans and various vertebrate livestock and causes serious economic losses. To develop an effective vaccine against T. gondii infection, we constructed a DNA vaccine encoding the T. gondii rhoptry protein 17 (TgROP17 and evaluated its immune protective efficacy against acute T. gondii infection in mice. The DNA vaccine (p3×Flag-CMV-14-ROP17 was intramuscularly injected to BALB/c mice and the immune responses of the vaccinated mice were determined. Compared to control mice treated with empty vector or PBS, mice immunized with the ROP17 vaccine showed a relatively high level of specific anti-T. gondii antibodies, and a mixed IgG1/IgG2a response with predominance of IgG2a production. The immunized mice also displayed a specific lymphocyte proliferative response, a Th1-type cellular immune response with production of IFN-γ and interleukin-2, and increased number of CD8+ T cells. Immunization with the ROP17 DNA significantly prolonged the survival time (15.6 ± 5.4 days, P < 0.05 of mice after challenge infection with the virulent T. gondii RH strain (Type I, compared with the control groups which died within 8 days. Therefore, our data suggest that DNA vaccination with TgROP17 triggers significant humoral and cellular responses and induces effective protection in mice against acute T. gondii infection, indicating that TgROP17 is a promising vaccine candidate against acute toxoplasmosis.

  16. DNA vaccine initiates replication of live attenuated chikungunya virus in vitro and elicits protective immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Hearn, Jason; Wang, Eryu; Weaver, Scott; Pushko, Peter

    2014-06-15

    Chikungunya virus (CHIKV) causes outbreaks of chikungunya fever worldwide and represents an emerging pandemic threat. Vaccine development against CHIKV has proved challenging. Currently there is no approved vaccine or specific therapy for the disease. To develop novel experimental CHIKV vaccine, we used novel immunization DNA (iDNA) infectious clone technology, which combines the advantages of DNA and live attenuated vaccines. Here we describe an iDNA vaccine composed of plasmid DNA that encode the full-length infectious genome of live attenuated CHIKV clone 181/25 downstream from a eukaryotic promoter. The iDNA approach was designed to initiate replication of live vaccine virus from the plasmid in vitro and in vivo. Experimental CHIKV iDNA vaccines were prepared and evaluated in cultured cells and in mice. Transfection with 10 ng of iDNA was sufficient to initiate replication of vaccine virus in vitro. Vaccination of BALB/c mice with a single 10 μg of CHIKV iDNA plasmid resulted in seroconversion, elicitation of neutralizing antibodies, and protection from experimental challenge with a neurovirulent CHIKV. Live attenuated CHIKV 181/25 vaccine can be delivered in vitro and in vivo by using DNA vaccination. The iDNA approach appears to represent a promising vaccination strategy for CHIK and other alphaviral diseases. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Directory of Open Access Journals (Sweden)

    Simone M Costa

    Full Text Available The dengue non-structural 3 (NS3 is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase, fused or not to a signal peptide (t-PA. The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture, mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  18. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines.

    Science.gov (United States)

    Costa, Simone M; Yorio, Anna Paula; Gonçalves, Antônio J S; Vidale, Mariana M; Costa, Emmerson C B; Mohana-Borges, Ronaldo; Motta, Marcia A; Freire, Marcos S; Alves, Ada M B

    2011-01-01

    The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.

  19. Protection of mice against Chlamydophila abortus infection with a bacteriophage-mediated DNA vaccine expressing the major outer membrane protein.

    Science.gov (United States)

    Ling, Yong; Liu, Wei; Clark, Jason R; March, John B; Yang, Junjing; He, Cheng

    2011-12-15

    A bacteriophage-delivered DNA vaccine against Chlamydophila abortus was constructed by cloning a eukaryotic cassette containing the ompA gene (which expresses the Major Outer Membrane Protein) into a bacteriophage lambda vector. Four groups, each of 20 BALB/c mice were inoculated separately with the phage vaccine, a conventional DNA vaccine based on the same ompA expression cassette, a live attenuated vaccine (strain 1B) or the empty phage vector. The phage and DNA vaccines and empty phage vector were administered intramuscularly on days 0, 14 and 28; the attenuated vaccine was given once on day 0. Half the animals in each group were challenged on day 42 by intraperitoneal injection of live C. abortus and sacrificed on day 49. Phage-vaccinated mice developed moderate antibody levels against C. abortus and yielded higher levels of IFN-γ and IL-2 compared with the attenuated live vaccine group. Clearance of chlamydiae from spleens was significantly better in the attenuated vaccine group compared with the phage vaccine group, while both groups were significantly superior to the DNA vaccine and control groups (p<0.01). Although levels of protection in the mouse model were lower in phage-vaccinated animals, than in 1B vaccinated animals, phage vaccines offer several other advantages, such as easier handling and safety, potentially cheaper production and no chance of reversion to virulence. Although these are preliminary results in a model system, it is possible that with further optimisation immunization with phage vaccines may provide a novel way to improve protection against C. abortus infection and trials in large animals are currently being initiated.

  20. Enhancing cellular immune response to HBV M DNA vaccine in mice by codelivery of interleukin-18 recombinant

    Institute of Scientific and Technical Information of China (English)

    陈建忠; 朱海红; 刘克洲; 陈智

    2004-01-01

    Objective:To investigate the effect of interleukin-18 (IL-18) on immune response induced by plasmid encoding hepatitis B virus middle protein antigen and to explore new strategies for prophylactic and therapeutic HBV DNA vaccines.Methods:BALB/c mice were immunized with pCMV-M alone or co-immunized with pcDNA3-18 and pCMV-M and then their sera were collected for analysing anti-HBsAg antibody by ELISA;splenocytes were isolated for detecting specific CTL response and cytokine assay in vitro.Results:The anti-HBs antibody level of mice co-immunized with pcDNA3-18 and pCMV-M was slightly higher than that of mice immunized with pCMV-M alone,but there was not significantly different (P>0.05).Compared with mice injected with pCMV-M, the specific CTL cytotoxity activity of mice immunized with pcDNA3-18 and pCMV-M was significantly enhanced (P0.05).Conclusion:The plasmid encoding IL-18 together with HBV M gene DNA vaccines may enhance specific TH1 cells and CTL cellular immune response induced in mice, so that IL-18 is a promising immune adjuvant.

  1. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice.

    Science.gov (United States)

    Hou, Jue; Liu, Ying; Hsi, Jenny; Wang, Hongzhi; Tao, Ran; Shao, Yiming

    2014-01-01

    Cholera toxin B subunit (CTB) was investigated as a classical mucosal adjuvant that can increase vaccine immunogenicity. In this study, we found out the in vitro efficacy of cholera toxin B subunit (CTB) in activating mice bone marrow-derived dendritic cells (BMDCs) through Toll-like receptor signaling pathways. In vitro RNA and transcriptional level profiling arrays revealed that CTB guides high levels of Th1 and Th2 type cytokines, inflammatory cytokines, and chemokines. Based on the robustness of these profiling results, we examined the induction of HIV Env-specific immunity by CTB co-inoculated with HIV Env DNA vaccine intramuscularly in vivo. CTB enhanced HIV-Env specific cellular immune responses in Env-specific IFN-γ ELISPOT, compared with DNA vaccine alone. Moreover, CTB induced high levels of Env specific humoral response and promoted antibody maturation after the third round of vaccination. This combination immunization strategy induced a Th2-type bias response which is indicative of a high ratio of IgG1/IgG2a. This study reports that CTB as a classical mucosal adjuvant could enhance HIV-1 DNA-based vaccine immunogenicity intramuscularly; therefore, these findings suggest that CTB could serve as an effective candidate adjuvant for DNA vaccination.

  2. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus.

    Science.gov (United States)

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Cañas-Arranz, Rodrigo; Vázquez-Calvo, Ángela; Merino-Ramos, Teresa; Escribano-Romero, Estela; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-04-19

    Usutu virus (USUV) is a mosquito-borne flavivirus whose circulation had been confined to Africa since it was first detected in 1959. However, in the last decade USUV has emerged in Europe causing episodes of avian mortality and sporadic severe neuroinvasive infections in humans. Remarkably, adult laboratory mice exhibit limited susceptibility to USUV infection, which has impaired the analysis of the immune responses, thus complicating the evaluation of virus-host interactions and of vaccine candidates against this pathogen. In this work, we showed that mice deficient in the alpha/beta interferon receptor (IFNAR (-/-) mice) were highly susceptible to USUV infection and provided a lethal challenge model for vaccine testing. To validate this infection model, a plasmid DNA vaccine candidate encoding the precursor of membrane (prM) and envelope (E) proteins of USUV was engineered. Transfection of cultured cells with this plasmid resulted in expression of USUV antigens and the assembly and secretion of small virus-like particles also known as recombinant subviral particles (RSPs). A single intramuscular immunization with this plasmid was sufficient to elicit a significant level of protection against challenge with USUV in IFNAR (-/-) mice. The characterization of the humoral response induced revealed that DNA vaccination primed anti-USUV antibodies, including neutralizing antibodies. Overall, these results probe the suitability of IFNAR (-/-) mice as an amenable small animal model for the study of USUV host virus interactions and vaccine testing, as well as the feasibility of DNA-based vaccine strategies for the control of this pathogen.

  3. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available BACKGROUND: Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses. METHODOLOGY / PRINCIPAL FINDINGS: The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device. CONCLUSIONS/SIGNIFICANCE: DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  4. DNA vaccine encoding Der p 2 allergen generates immunologic protection in recombinant Der p 2 allergen-induced allergic airway inflammation mice model

    Institute of Scientific and Technical Information of China (English)

    LI Guo-ping; LIU Zhi-gang; QIU Jing; RAN Pi-xin; ZHONG Nan-shan

    2005-01-01

    Background DNA immunization is a promising novel type of immunotherapy against allergy. An estimated 79.2% patients with asthma, wheezing and/or rhinitis suffer from Dermatophagoides pteronyssinus group 2 (Der p 2) allegen. The aim of the present study was to determine whether DNA vaccine encoding Der p 2 could generate immunologic protection in recombinant Der p 2 (rDer p 2) allergen-induced allergic airway inflammation mice model and to understand the role of DNA vaccination in specific-allergen immunotherapy for asthma. Methods After DNA vaccination, BALB/c mice were sensitized by intraperitoneal injection (i.p) and challenged by intranasal instillation of rDer p 2. The lung tissues were assessed using hematoxylin and eosin. Mucus-producing goblet cells were identifed using periodic acid-Schiff(PAS)/alcian blue. The total cell number and composition of bronchoalveolar lavage samples were determined. The levels of the cytokines IL-4 and IFN-γ, as well as IgE and IgG2a in the serum were determined by enzyme-linked immunosorbent assay. Allergen-specific IL-4 and IFN-γ production by spleen cells were also measured by enzyme-linked immunosorbent assay. Expression of signal transducer and activator of transcription 6 (STAT6) in splenocytes were determined by Western blot. Results DNA vaccine encoding Der p 2 allergen inhibited extensive infiltration of inflammatory cells and production of mucin induced by allergen. The influx of eosinophils into the lung interstitium was significantly reduced after administration of DNA vaccine. Significant reductions of IL-4 and increase in levels of IFN-γ in bronchoalveolar lavage fluid were observed. The allergen-specific IgE was markedly decreased in mice receiving DNA vaccination. Allergen could induce higher IFN-γ, weaker IL-4 in cultured spleen cells from mice receiving DNA vaccine. DNA vaccination inhibited STAT6 expression of spleen cells induced by allergen. Conclusion These results indicated that DNA vaccine encoding

  5. Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: role of CD4+ and CD8+ T cells.

    Science.gov (United States)

    Limon-Flores, Alberto Yairh; Cervera-Cetina, Rodrigo; Tzec-Arjona, Juan L; Ek-Macias, Lorena; Sánchez-Burgos, Gilma; Ramirez-Sierra, Maria J; Cruz-Chan, J Vladimir; VanWynsberghe, Nicole R; Dumonteil, Eric

    2010-10-28

    Chagas disease is a major public health problem, with about 10 million infected people, and DNA vaccines are a promising alternative for the control of Trypanosoma cruzi, the causing agent of the disease. We tested here a new DNA vaccine encoding a combination of two leading parasite antigens, TSA-1 and Tc24, for the prevention and therapy of T. cruzi infection. Immunized Balb/c mice challenged by T. cruzi presented a significantly lower parasitemia and inflammatory cell density in the heart compared to control mice. Similarly, the therapeutic administration of the DNA vaccine was able to significantly reduce the parasitemia and inflammatory reaction in acutely infected Balb/c and C57BL/6 mice, and reduced cardiac tissue inflammation in chronically infected ICR mice. Therapeutic vaccination induced a marked increase in parasite-specific IFNγ producing CD4(+) and CD8(+) T cells in the spleen as well as an increase in CD4(+) and CD8(+) T cells in the infected cardiac tissue. In addition, some effect of the DNA vaccine could still be observed in CD4-knockout C57BL/6 mice, which presented a lower parasitemia and inflammatory cell density, but not in CD8-deficient mice, in which the vaccine had no effect. These results indicate that the activation of CD8(+) T cells plays a major role in the control of the infection by the therapeutic DNA vaccine, and to a somewhat lesser extent CD4(+) T cells. This observation opens interesting perspectives for the potentiation of this DNA vaccine candidate by including additional CD8(+) T cell antigens/epitopes in future vaccine formulations.

  6. Characterization of Immune Responses Induced by Ebola Virus Glycoprotein (GP) and Truncated GP Isoform DNA Vaccines and Protection Against Lethal Ebola Virus Challenge in Mice

    Science.gov (United States)

    Li, Wenfang; Ye, Ling; Carrion, Ricardo; Mohan, Gopi S.; Nunneley, Jerritt; Staples, Hilary; Ticer, Anysha; Patterson, Jean L.; Compans, Richard W.; Yang, Chinglai

    2015-01-01

    In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed “antigenic subversion.” To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection. PMID:25877553

  7. Cellular immune responses of BALB/c mice induced by intramuscular injection of PRRSV-ORF5 DNA vaccine with different doses

    Institute of Scientific and Technical Information of China (English)

    CHENG Anchun; WANG Mingshu; CHEN Xiwen; XINI Nigen; DOU Wenbo; LI Xuemei; LIU Wumei; WANG Gang; ZHANG Pingying

    2007-01-01

    BALB/c mice were immunized with 50 μg,100 μg,200 μg of pcDNA-PRRSV-ORF5 DNA vaccine respectively by intramuscular injection,with PBS and pcDNA3.1(+)as controls.Fluorescence activated cell Sorter (FACS)was used to detect the number of CD4+ and CD8+T-lymphocytes.T-lymphocyte proliferation test was used to detect proliferation of the T-lymphocyte cells in peripheral blood lymphocytes of mice vaccinated with pcDNA-PRRSV-ORF5 DNA vaccine.The results showed that the difference in ConA response to T-lymphocytes in blood was highly significant between all experimental groups and the control group(P<0.01).The number of CD4+T-lymphocytes in experimental groups was significantly higher than that of the control group 7d after vaccination.The number of CD8+ T-lymphocytes in the experimental groups was higher than that of the control group 28 d after vaccination.Mice immunized with a higher dose(200 μg)of DNA vaccine demonstrated higher cellular immune response than those immunized with a lower dose(100 μg,50 μg)of DNA vaccine.The results demonstrated that pcDNA-PRRSV-ORF5 DNA vaccine could induce a good cellular immune response which may be dose-dependent.

  8. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice.

    Directory of Open Access Journals (Sweden)

    Ze Liu

    Full Text Available Legumain-based DNA vaccines have potential to protect against breast cancer. However, the lack of a safe and efficient oral delivery system restricts its clinical application. Here, we constructed alginic acid-coated chitosan nanoparticles (A.C.NPs as an oral delivery carrier for a legumain DNA vaccine. First, we tested its characteristic in acidic environments in vitro. DNA agarose electrophoresis data show that A.C.NPs protected DNA better from degradation in acidic solution (pH 1.5 than did chitosan nanoparticles (C.NPs. Furthermore, size distribution analysis showed that A.C.NPs tended to aggregate and form micrometer scale complexes in pH<2.7, while dispersing into nanoparticles with an increase in pH. Mice were intragastrically administrated A.C.NPs carrying EGFP plasmids and EGFP expression was detected in the intestinal Peyer's patches. Full-length legumain plasmids were loaded into different delivery carriers, including C.NPs, attenuated Salmonella typhimurium and A.C.NPs. A.C.NPs loaded with empty plasmids served as a control. Oral vaccination was performed in the murine orthotopic 4T1 breast cancer model. Our data indicate that tumor volume was significantly smaller in groups using A.C.NPs or attenuated Salmonella typhimurium as carriers. Furthermore, splenocytes co-cultured them with 4T1 cells pre-stimulated with CoCl2, which influenced the translocation of legumain from cytoplasm to plasma membrane, showed a 4.7 and 2.3 folds increase in active cytotoxic T lymphocytes (CD3(+/CD8(+/CD25(+ when treated with A.C.NPs carriers compared with PBS C.NPs. Our study suggests that C.NPs coated with alginic acid may be a safe and efficient tool for oral delivery of a DNA vaccine. Moreover, a legumain DNA vaccine delivered orally with A.C.NPs can effectively improve autoimmune response and protect against breast cancer in mice.

  9. A novel DNA vaccine technology conveying protection against a lethal herpes simplex viral challenge in mice.

    Directory of Open Access Journals (Sweden)

    Julie L Dutton

    Full Text Available While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2 challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.

  10. Suppression of breast tumor growth by DNA vaccination against phosphatase of regenerating liver 3.

    Science.gov (United States)

    Lv, J; Liu, C; Huang, H; Meng, L; Jiang, B; Cao, Y; Zhou, Z; She, T; Qu, L; Wei Song, S; Shou, C

    2013-08-01

    Phosphatase of regenerating liver (PRL)-3 is highly expressed in multiple cancers and has important roles in cancer development. Some small-molecule inhibitors and antibodies targeting PRL-3 have been recently reported to inhibit tumor growth effectively. To determine whether PRL-3-targeted DNA vaccination can induce immune response to prevent or inhibit the tumor growth, we established mouse D2F2 breast cancer cells expressing PRL-3 (D2F2/PRL-3) and control cells (D2F2/NC) with lentivirus, and constructed pVAX1-Igκ-PRL-3 plasmid (named as K-P3) as DNA vaccine to immunize BALB/c mice. We found that the K-P3 vaccine delivered by gene gun significantly prevented the growth of D2F2/PRL-3 compared with pVAX1-vector (Padjuvants, such as Mycobacterium tuberculosis heat-shock protein, CTL antigen 4 and M. tuberculosis T-cell stimulatory epitope (MT), into K-P3 vaccine for expressing the fusion proteins. We found that these adjuvant molecules did not significantly improve the antitumor activity of PRL-3 vaccine, but enhanced the production of PRL-3 antibodies in immunized mice. Summarily, our findings demonstrate that PRL-3-targeted DNA vaccine can generate significantly preventive and therapeutic effects on the growth of breast cancer expressing PRL-3 through the induction of cellular immune responses to PRL-3.

  11. Plasmid DNA Vaccine Co-Immunisation Modulates Cellular and Humoral Immune Responses Induced by Intranasal Inoculation in Mice.

    Directory of Open Access Journals (Sweden)

    Deborah F L King

    Full Text Available An effective HIV vaccine will likely require induction of both mucosal and systemic cellular and humoral immune responses. We investigated whether intramuscular (IM delivery of electroporated plasmid DNA vaccine and simultaneous protein vaccinations by intranasal (IN and IM routes could be combined to induce mucosal and systemic cellular and humoral immune responses to a model HIV-1 CN54 gp140 antigen in mice.Co-immunisation of DNA with intranasal protein successfully elicited both serum and vaginal IgG and IgA responses, whereas DNA and IM protein co-delivery did not induce systemic or mucosal IgA responses. Cellular IFNγ responses were preserved in co-immunisation protocols compared to protein-only vaccination groups. The addition of DNA to IN protein vaccination reduced the strong Th2 bias observed with IN protein vaccination alone. Luminex analysis also revealed that co-immunisation with DNA and IN protein induced expression of cytokines that promote B-cell function, generation of TFH cells and CCR5 ligands that can reduce HIV infectivity.These data suggest that while IN inoculation alone elicits both cellular and humoral responses, co-administration with homologous DNA vaccination can tailor these towards a more balanced Th1/Th2 phenotype modulating the cellular cytokine profile while eliciting high-levels of antigen-specific antibody. This work provides insights on how to generate differential immune responses within the same vaccination visit, and supports co-immunisation with DNA and protein by a mucosal route as a potential delivery strategy for HIV vaccines.

  12. THE HUMORAL AND CELLULAR IMMUNE RESPONSES INDUCED BY HPV18L1-E6/E7 DNA VACCINES IN MICE

    Institute of Scientific and Technical Information of China (English)

    Yang Jin; Li Xu; Li Ang; Wang Yili; Si Lüsheng

    2006-01-01

    Objective To construct eukaryotic expression vector of HPV18 L1- E6, E7 chimeric gene and examine the humoral and cellular immune responses induced by this DNA vaccines in mice. Methods The C-terminal of major capsid protein L1 gene and mutant zinc finger domains of early E6/7 oncogenes in HPV18 were integrated and inserted into eukaryotic expression vector pVAX1 to generate vaccines pVAX1-L1E6Mxx, E7Mxx. CHO cells were transiently transfected with the individual construct. Target protein expressions in the lysate of the transfected cells were measured by ELISA and immunocytochemistry. After BALB/c mice were vaccinated with various recombinant plasmids(pVAX1-L1-E6M3 or pVAX1-L1-E7M3) and immunie adjuvants (pLXHDmB7-2 or LTB) through different administration routes (intramuscular or intranasal) , the great cellular immune responses were produced as revealed by delayed-type hypersensitivity (DTH) and lymphocyte proliferation, and the expression of IL-4 and IFN- γ cells in CD4+ and CD8+subpopulations. Results The highly efficient expression of pVAX1-L1E6Mxx, E7Mxx vector in host eukaryotic cells were demonstrated both by ELISA and immunocytochemistry. The level of specific serum IgG against HPV in experiment groups mice was much higher than that of control group, and intranuscular immunization group had the highest antibody level. Intramuscular immunization groups were superior to intranasal immunization groups in DTH response, splenocyte proliferation and CD8+ IFN-γ + cells number, but CD4+ IL4+ cell number was higher in intranasal immunization groups. The immunization groups using pLXHDmB7-2 as adjuvant were superior to other groups in immunoresponse. Conclusion These DNA vaccines produce remarkable cellular and humoral immuneresponses in the mouse and may provide as prophylatic and therapeutic candidates for HPV induced cancer treatment.

  13. Boosting BCG-primed mice with chimeric DNA vaccine HG856A induces potent multifunctional T cell responses and enhanced protection against Mycobacterium tuberculosis.

    Science.gov (United States)

    Ji, Ping; Hu, Zhi-Dong; Kang, Han; Yuan, Qin; Ma, Hui; Wen, Han-Li; Wu, Juan; Li, Zhong-Ming; Lowrie, Douglas B; Fan, Xiao-Yong

    2016-02-01

    The tuberculosis pandemic continues to rampage despite widespread use of the current Bacillus Calmette-Guerin (BCG) vaccine. Because DNA vaccines can elicit effective antigen-specific immune responses, including potent T cell-mediated immunity, they are promising vehicles for antigen delivery. In a prime-boost approach, they can supplement the inadequate anti-TB immunological memory induced by BCG. Based on this, a chimeric DNA vaccine HG856A encoding Mycobacterium tuberculosis (M. tuberculosis) immunodominant antigen Ag85A plus two copies of ESAT-6 was constructed. Potent humoral immune responses, as well as therapeutic effects induced by this DNA vaccine, were observed previously in M. tuberculosis-infected mice. In this study, we further evaluated the antigen-specific T cell immune responses and showed that repeated immunization with HG856A gave modest protection against M. tuberculosis challenge infection and significantly boosted the immune protection primed by BCG vaccination. Enhanced protection was accompanied by increased multifunctional Th1 CD4(+) T cell responses, most notably by an elevated frequency of M. tuberculosis antigen-specific IL-2-producing CD4(+) T cells post-vaccination. These data confirm the potential of chimeric DNA vaccine HG856A as an anti-TB vaccine candidate.

  14. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice

    Science.gov (United States)

    Tomusange, Khamis; Wijesundara, Danushka; Gummow, Jason; Garrod, Tamsin; Li, Yanrui; Gray, Lachlan; Churchill, Melissa; Grubor-Bauk, Branka; Gowans, Eric J.

    2016-01-01

    DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans. PMID:27358023

  15. Characterization of immune responses induced by inactivated, live attenuated and DNA vaccines against Japanese encephalitis virus in mice.

    Science.gov (United States)

    Li, Jieqiong; Chen, Hui; Wu, Na; Fan, Dongying; Liang, Guodong; Gao, Na; An, Jing

    2013-08-28

    Vaccination is the most effective countermeasure for protecting individuals from Japanese encephalitis virus (JEV) infection. There are two types of JEV vaccines currently used in China: the Vero cell-derived inactivated vaccine and the live attenuated vaccine. In this study, we characterized the immune response and protective efficacy induced in mice by the inactivated vaccine, live attenuated vaccine and the DNA vaccine candidate pCAG-JME, which expresses JEV prM-E proteins. We found that the live attenuated vaccine conferred 100% protection and resulted in the generation of high levels of specific anti-JEV antibodies and cytokines. The pCAG-JME vaccine induced protective immunity as well as the live attenuated vaccine. Unexpectedly, immunization with the inactivated vaccine only induced a limited immune response and partial protection, which may be due to the decreased activity of dendritic cells and the expansion of CD4+CD25+Foxp3+ regulatory T cells observed in these mice. Altogether, our results suggest that the live attenuated vaccine is more effective in providing protection against JEV infection than the inactivated vaccine and that pCAG-JME will be a potential JEV vaccine candidate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Induction of neutralizing antibody response against four dengue viruses in mice by intramuscular electroporation of tetravalent DNA vaccines.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2014-01-01

    DNA vaccine against dengue is an interesting strategy for a prime/boost approach. This study evaluated neutralizing antibody (NAb) induction of a dengue tetravalent DNA (TDNA) vaccine candidate administered by intramuscular-electroporation (IM-EP) and the benefit of homologous TDNA boosting in mice. Consensus humanized pre-membrane (prM) and envelope (E) of each serotypes, based on isolates from year 1962-2003, were separately cloned into a pCMVkan expression vector. ICR mice, five-six per group were immunized for three times (2-week interval) with TDNA at 100 µg (group I; 25 µg/monovalent) or 10 µg (group II; 2.5 µg/monovalent). In group I, mice received an additional TDNA boosting 13 weeks later. Plaque reduction neutralization tests (PRNT) were performed at 4 weeks post-last immunization. Both 100 µg and 10 µg doses of TDNA induced high NAb levels against all DENV serotypes. The median PRNT50 titers were comparable among four serotypes of DENV after TDNA immunization. Median PRNT50 titers ranged 240-320 in 100 µg and 160-240 in 10 µg groups (p = ns). A time course study of the 100 µg dose of TDNA showed detectable NAb at 2 weeks after the second injection. The NAb peaked at 4 weeks after the third injection then declined over time but remained detectable up to 13 weeks. An additional homologous TDNA boosting significantly enhanced the level of NAb from the nadir for at least ten-fold (pdengue viral strain for both vaccine immunogen design and neutralization assays is critical to avoid a mismatching outcome. In summary, this TDNA vaccine candidate induced good neutralizing antibody responses in mice; and the DNA/DNA prime/boost strategy is promising and warranted further evaluation in non-human primates.

  17. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice

    Directory of Open Access Journals (Sweden)

    Maryam Yazdanian

    2015-01-01

    Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine immunization.

  18. Cationic solid-lipid nanoparticles are as efficient as electroporation in DNA vaccination against visceral leishmaniasis in mice.

    Science.gov (United States)

    Saljoughian, N; Zahedifard, F; Doroud, D; Doustdari, F; Vasei, M; Papadopoulou, B; Rafati, S

    2013-12-01

    The use of an appropriate delivery system has recently emerged as a promising approach for the development of effective vaccination against visceral leishmaniasis (VL). Here, we compare two vaccine delivery systems, namely electroporation and cationic solid-lipid nanoparticle (cSLN) formulation, to administer a DNA vaccine harbouring the L. donovani A2 antigen along with L. infantum cysteine proteinases [CPA and CPB without its unusual C-terminal extension (CPB(-CTE) )] and evaluate their potential against L. infantum challenge. Prime-boost administration of the pcDNA-A2-CPA-CPB(-CTE) delivered by either electroporation or cSLN formulation protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ and lower levels of IL-10 production, leading to a strong Th1 immune response. At all time points, the ratio of IFN-γ: IL-10 induced upon restimulation with rA2-rCPA-rCPB and F/T antigens was significantly higher in vaccinated animals. Moreover, Th2-efficient protection was elicited through a high humoral immune response. Nitric oxide production, parasite burden and histopathological analysis were also in concordance with other findings. Overall, these data indicate that similar to the electroporation delivery system, cSLNs as a nanoscale vehicle of Leishmania antigens could improve immune response, hence indicating the promise of these strategies against visceral leishmaniasis.

  19. The immunogenicity of tetravalent dengue DNA vaccine in mice pre-exposed to Japanese encephalitis or Dengue virus antigens.

    Science.gov (United States)

    Prompetchara, Eakachai; Ketloy, Chutitorn; Keelapang, Poonsook; Sittisombut, Nopporn; Ruxrungtham, Kiat

    2015-09-01

    Asian countries are an endemic area for both dengue (DENV) and Japanese encephalitis viruses (JEV). While JEV vaccines have been used extensively in this region, DENV vaccines remains under development. Whether preexisting naturally acquired or vaccination-induced immunity against JEV may affect the immune response to dengue vaccine candidate is unclear. In this study we used mice previously immunized with JEV vaccines to evaluate the impact on dengue-specific neutralizing antibody responses to a tetravalent dengue DNA vaccine candidate (TDNA). A tetravalent cocktail of plasmids encoding pre-membrane and envelope proteins from each dengue serotype was administered into mice which had been previously primed with inactivated or live-attenuated JEV vaccines, or dengue serotype2 virus (DENV-2). Neutralizing antibody response was measured employing a plaque reduction neutralization test at two weeks after the priming and at four weeks after the second dose of the dengue tetravalent plasmids. Inactivated or live-attenuated JEV vaccines, or DENV-2 induced low levels of neutralizing antibodies against the homologous viruses (JE and dengue virus, respectively). DENV-2 injection induced also low levels of cross-reactive antibodies against DENV-1, -3 and -4. JEV vaccines have no effect on the dengue-specific neutralizing antibody responses to the subsequent TDNA immunization. Pre-exposure to DENV-2 infection increased DENV-2 specific response neutralizing antibody to two doses of TDNA plasmids by six folds, but did not affect antibody response to other serotypes. Priming with JEV vaccines did not impact on dengue virus-specific neutralizing antibody response to a dengue TDNA vaccine candidate in mice.

  20. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice

    Directory of Open Access Journals (Sweden)

    Oliveira Sérgio C

    2011-07-01

    Full Text Available Abstract Background Heat shock proteins (HSPs are important candidates for the development of vaccines because they are usually able to promote both humoral and cellular immune responses in mammals. We identified and characterized the hsp60-hsp10 bicistronic operon of the animal pathogen Corynebacterium pseudotuberculosis, a Gram-positive bacterium of the class Actinobacteria, which causes caseous lymphadenitis (CLA in small ruminants. Findings To construct the DNA vaccine, the hsp60 gene of C. pseudotuberculosis was cloned in a mammalian expression vector. BALB/c mice were immunized by intramuscular injection with the recombinant plasmid (pVAX1/hsp60. Conclusion This vaccination induced significant anti-hsp60 IgG, IgG1 and IgG2a isotype production. However, immunization with this DNA vaccine did not confer protective immunity.

  1. Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses.

    Directory of Open Access Journals (Sweden)

    Callie E Bounds

    Full Text Available DNA vaccination of transchromosomal bovines (TcBs with DNA vaccines expressing the codon-optimized (co glycoprotein (GP genes of Ebola virus (EBOV and Sudan virus (SUDV produce fully human polyclonal antibodies (pAbs that recognize both viruses and demonstrate robust neutralizing activity. Each TcB was vaccinated by intramuscular electroporation (IM-EP a total of four times and at each administration received 10 mg of the EBOV-GPco DNA vaccine and 10 mg of the SUDV-GPco DNA vaccine at two sites on the left and right sides, respectively. After two vaccinations, robust antibody responses (titers > 1000 were detected by ELISA against whole irradiated EBOV or SUDV and recombinant EBOV-GP or SUDV-GP (rGP antigens, with higher titers observed for the rGP antigens. Strong, virus neutralizing antibody responses (titers >1000 were detected after three vaccinations when measured by vesicular stomatitis virus-based pseudovirion neutralization assay (PsVNA. Maximal neutralizing antibody responses were identified by traditional plaque reduction neutralization tests (PRNT after four vaccinations. Neutralizing activity of human immunoglobulins (IgG purified from TcB plasma collected after three vaccinations and injected intraperitoneally (IP into mice at a 100 mg/kg dose was detected in the serum by PsVNA up to 14 days after administration. Passive transfer by IP injection of the purified IgG (100 mg/kg to groups of BALB/c mice one day after IP challenge with mouse adapted (ma EBOV resulted in 80% protection while all mice treated with non-specific pAbs succumbed. Similarly, interferon receptor 1 knockout (IFNAR(-/- mice receiving the purified IgG (100 mg/kg by IP injection one day after IP challenge with wild type SUDV resulted in 89% survival. These results are the first to demonstrate that filovirus GP DNA vaccines administered to TcBs by IM-EP can elicit neutralizing antibodies that provide post-exposure protection. Additionally, these data describe

  2. [HBsAg expression, anti-HBs induction and pathological observation in the mice inoculated with DNA vaccine against hepatitis B].

    Science.gov (United States)

    Zhao, L; Qin, S; Tang, H

    1999-03-01

    To study if special humoral immunological response can be induced by DNA vaccine against Hepatitis B (NV-HB/s) and its mechanism. The Balb/C mice inoculated with NV-HB/s by intramuscular injection were detected for HBsAg(the expressed product of NV-HB/s) by ABC immunohistochemistry or ELISA, and for anti-HBs by ELISA and also performed the routine pathological examination. After inoculated with NV-HB/s, HBsAg could be detected from mice muscle tissue samples of injected sites one week later and almost kept positive(75% and even more) up to 6th month, but was undetectable from all the serum samples during this period; anti-HBs could be detected from serum samples of some mice two weeks later and of all the mice detected one month later, it still kept positive at 6th month while the mice were sacrificed. Under microscope, only non-specific inflammation was found in the muscle tissues of injected sites and could completely recover within 4 weeks, no matter whether the mice were inoculated with NV-HBs, or with traditional HB vaccine derived from blood, or even with PBS as control. DNA vaccine against Hepatitis B (NV-HB/s) can successfully express HBsAg in the muscle tissue of mice by intramuscular inoculation and subsequently induce anti-HBs in vitro.

  3. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  4. A suicidal DNA vaccine expressing the fusion protein of peste des petits ruminants virus induces both humoral and cell-mediated immune responses in mice.

    Science.gov (United States)

    Wang, Yong; Yue, Xiaolin; Jin, Hongyan; Liu, Guangqing; Pan, Ling; Wang, Guijun; Guo, Hao; Li, Gang; Li, Yongdong

    2015-12-01

    Peste des petits ruminants (PPR), a highly contagious disease induced by PPR virus (PPRV), affects sheep and goats. PPRV fusion (F) protein is important for the induction of immune responses against PPRV. We constructed a Semliki Forest virus (SFV) replicon-vectored DNA vaccine ("suicidal DNA vaccine") and evaluated its immunogenicity in BALB/c mice. The F gene of PPRV was cloned and inserted into the SFV replicon-based vector pSCA1. The antigenicity of the resultant plasmid pSCA1/F was identified by indirect immunofluorescence and western blotting. BALB/c mice were then intramuscularly injected with pSCA1/F three times at 14-d intervals. Specific antibodies and virus-neutralizing antibodies against PPRV were quantified by indirect ELISA and microneutralization tests, respectively. Cell-mediated immune responses were examined by cytokine and lymphocyte proliferation assays. The pSCA1/F expressed F protein in vitro and induced specific and neutralizing antibody production, and lymphocyte proliferation in mice. Mice vaccinated with pSCA1/F had increased IL-2 and IL-10 levels after 24-h post first immunization. IFN-γ and TNF-α levels increased from that time point and gradually decreased thereafter. Thus, the Semliki Forest virus replicon-vectored DNA vaccine expressing the F protein of PPRV induced both humoral and cell-mediated immune responses in mice. This could be considered as a novel strategy for vaccine development against PPR. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Oral Vaccination with Attenuated Salmonella typhimurium-Delivered TsPmy DNA Vaccine Elicits Protective Immunity against Trichinella spiralis in BALB/c Mice

    Science.gov (United States)

    Wang, Lei; Wang, Xiaohuan; Bi, Kuo; Sun, Ximeng; Yang, Jing; Gu, Yuan; Huang, Jingjing; Zhan, Bin; Zhu, Xinping

    2016-01-01

    Background Our previous studies showed that Trichinella spiralis paramyosin (TsPmy) is an immunomodulatory protein that inhibits complement C1q and C8/C9 to evade host complement attack. Vaccination with recombinant TsPmy protein induced protective immunity against T. spiralis larval challenge. Due to the difficulty in producing TsPmy as a soluble recombinant protein, we prepared a DNA vaccine as an alternative approach in order to elicit a robust immunity against Trichinella infection. Methods and Findings The full-length TsPmy coding DNA was cloned into the eukaryotic expression plasmid pVAX1, and the recombinant pVAX1/TsPmy was transformed into attenuated Salmonella typhimurium strain SL7207. Oral vaccination of mice with this attenuated Salmonella-delivered TsPmy DNA vaccine elicited a significant mucosal sIgA response in the intestine and a systemic IgG antibody response with IgG2a as the predominant subclass. Cytokine analysis also showed a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, 5, 6, 10) responses in lymphocytes from the spleen and MLNs of immunized mice upon stimulation with TsPmy protein. The expression of the homing receptors CCR9/CCR10 on antibody secreting B cells may be related to the translocation of IgA-secreted B cells to local intestinal mucosa. The mice immunized with Salmonella-delivered TsPmy DNA vaccine produced a significant 44.8% reduction in adult worm and a 46.6% reduction in muscle larvae after challenge with T. spiralis larvae. Conclusion Our results demonstrated that oral vaccination with TsPmy DNA delivered by live attenuated S. typhimurium elicited a significant local IgA response and a mixed Th1/Th2 immune response that elicited a significant protection against T. spiralis infection in mice. PMID:27589591

  6. Immunogenicity of a Multi-Epitope DNA Vaccine Encoding Epitopes from Cu–Zn Superoxide Dismutase and Open Reading Frames of Brucella abortus in Mice

    Science.gov (United States)

    Escalona, Emilia; Sáez, Darwin; Oñate, Angel

    2017-01-01

    Brucellosis is a bacterial zoonotic disease affecting several mammalian species that is transmitted to humans by direct or indirect contact with infected animals or their products. In cattle, brucellosis is almost invariably caused by Brucella abortus. Live, attenuated Brucella vaccines are commonly used to prevent illness in cattle, but can cause abortions in pregnant animals. It is, therefore, desirable to design an effective and safer vaccine against Brucella. We have used specific Brucella antigens that induce immunity and protection against B. abortus. A novel recombinant multi-epitope DNA vaccine specific for brucellosis was developed. To design the vaccine construct, we employed bioinformatics tools to predict epitopes present in Cu–Zn superoxide dismutase and in the open reading frames of the genomic island-3 (BAB1_0260, BAB1_0270, BAB1_0273, and BAB1_0278) of Brucella. We successfully designed a multi-epitope DNA plasmid vaccine chimera that encodes and expresses 21 epitopes. This DNA vaccine induced a specific humoral and cellular immune response in BALB/c mice. It induced a typical T-helper 1 response, eliciting production of immunoglobulin G2a and IFN-γ particularly associated with the Th1 cell subset of CD4+ T cells. The production of IL-4, an indicator of Th2 activation, was not detected in splenocytes. Therefore, it is reasonable to suggest that the vaccine induced a predominantly Th1 response. The vaccine induced a statistically significant level of protection in BALB/c mice when challenged with B. abortus 2308. This is the first use of an in silico strategy to a design a multi-epitope DNA vaccine against B. abortus. PMID:28232837

  7. Synergistic and additive effects of cimetidine and levamisole on cellular immune responses to hepatitis B virus DNA vaccine in mice.

    Science.gov (United States)

    Niu, X; Yang, Y; Wang, J

    2013-02-01

    We and others have previously shown that both cimetidine (CIM) and levamisole (LMS) enhance humoral and cellular responses to DNA vaccines via different mechanisms. In this study, we investigated the synergistic and additive effects of CIM and LMS on the potency of antigen-specific immunities generated by a DNA vaccine encoding the hepatitis B surface antigen (HBsAg, pVax-S2). Compared with CIM or LMS alone, the combination of CIM and LMS elicited a robust HBsAg-specific cellular response that was characterized by higher IgG2a, but did not further increase HBsAg-specific antibody IgG and IgG1 production. Consistent with these results, the combination of CIM and LMS produced the highest level of IL-2 and IFN-γ in antigen-specific CD4(+) T cells, whereas the combination of CIM and LMS did not further increase IL-4 production. Significantly, a robust HBsAg-specific cytotoxic response was also observed in the animals immunized with pVax-S2 in the presence of the combination of CIM and LMS. Further mechanistic studies demonstrated that the combination of CIM and LMS promoted dendritic cell (DC) activation and blocked anti-inflammatory cytokine IL-10 and TGF-β production in CD4(+) CD25(+) T cells. These findings suggest that CIM and LMS have the synergistic and additive ability to enhance cellular response to hepatitis B virus DNA vaccine, which may be mediated by DC activation and inhibition of anti-inflammatory cytokine expression. Thus, the combination of cimetidine and levamisole may be useful as an effective adjuvant in DNA vaccinations for chronic hepatitis B virus infection.

  8. Toxoplasma gondii: Vaccination with a DNA vaccine encoding T- and B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice.

    Science.gov (United States)

    Cao, Aiping; Liu, Yuan; Wang, Jingjing; Li, Xun; Wang, Shuai; Zhao, Qunli; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2015-11-27

    Toxoplasma gondii (T. gondii) is an obligate, intracellular, protozoan parasite that infects large variety of warm-blooded animals including humans, livestock, and marine mammals, and causes the disease toxoplasmosis. Although T. gondii infection rates differ significantly from country to country, it still has a high morbidity and mortality. In these circumstances, developing an effective vaccine against T. gondii is urgently needed for preventing and treating toxoplasmosis. The aim of this study was to construct a multi-epitopes DNA vaccine and evaluate the immune protective efficacy against acute toxoplasmosis in mice. Therefore, twelve T- and B-cell epitopes from SAG1, GRA2, GRA7 and ROP16 of T. gondii were predicted by bioinformatics analysis, and then a multi-epitopes DNA vaccine was constructed. Mice immunized with the multi-epitopes DNA vaccine gained higher levels of IgG titers and IgG2a subclass titers, significant production of gamma interferon (IFN-γ), percentage of T lymphocyte subsets, and longer survival times against the acute infection of T. gondii compared with those of mice administered with empty plasmid and those in control groups. Furthermore, a genetic adjuvant pEGFP-RANTES (pRANTES) could enhance the efficacy of the multi-epitopes DNA vaccine associating with humoral and cellular (Th1, CD8(+) T cell) immune responses. Above all, the DNA vaccine and the genetic adjuvant revealed in this study might be new candidates for further vaccine development against T. gondii infection.

  9. Immunization with Cytomegalovirus Envelope Glycoprotein M and Glycoprotein N DNA Vaccines can Provide Mice with Complete Protection against a Lethal Murine Cytomegalovirus Challenge

    Institute of Scientific and Technical Information of China (English)

    Huadong Wang; Yanfeng Yao; Chaoyang Huang; Quanjiao Chen; Jianjun Chen; Ze Chen

    2013-01-01

    Human cytomegalovirus virions contain three major glycoprotein complexes (gC Ⅰ,Ⅱ,Ⅲ),all of which are required for CMV infectivity.These complexes also represent major antigenic targets for anti-viral immune responses.The gC Ⅱ complex consists of two glycoproteins,gM and gN.In the current study,DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model.Humoral and cellular immune responses,spleen viral titers,and mice survival and body-weight changes were examined.The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection,whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response,and provided mice with complete protection against a lethal MCMV challenge.This study provides the first in vivo evidence that the gC Ⅱ (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.

  10. Immune responses in mice vaccinated with a suicidal DNA vaccine expressing the hemagglutinin glycoprotein from the peste des petits ruminants virus.

    Science.gov (United States)

    Wang, Yong; Liu, Guangqing; Shi, Lijun; Li, Wenchao; Li, Chuanfeng; Chen, Zongyan; Jin, Hongyan; Xu, Binrui; Li, Gang

    2013-11-01

    Peste des petits ruminants (PPR), an acute and highly contagious disease, affects sheep, goats, and some small ruminants. The hemagglutinin (H) glycoprotein of the PPR virus (PPRV) is considered important for inducing protective immune responses. In this study, a suicidal DNA vaccine based on the Semliki Forest virus (SFV) replicon was constructed and tested for its ability to induce immunogenicity in a mouse model. For this, the H gene of PPRV was cloned and inserted into pSCA1, an SFV replicon vector. The resultant plasmid named pSCA1-H was then transfected into BHK-21 cells following which the antigenicity of the expressed protein was confirmed by Western blotting and immunofluorescence. The pSCA1-H plasmid was then injected intramuscularly into BALB/c mice thrice at 2-week intervals. To evaluate the immunogenicity of pSCA1-H, specific antibodies and neutralizing antibodies against PPRV-H were measured using an indirect enzyme-linked immunosorbent assay and a microneutralization test, respectively. Cell-mediated immune responses were also examined using a lymphocyte proliferation assay. The results showed that pSCA1-H could express the H protein in BHK-21 cells. Specific antibodies, neutralizing antibodies, and lymphocyte proliferation responses were all induced in mice. Thus, this suicidal DNA vaccine could be a promising new approach for vaccine development against PPR. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice

    Directory of Open Access Journals (Sweden)

    Chen Jianjun

    2009-02-01

    Full Text Available Abstract Background Developing vaccines for the prevention of human infection by H5N1 influenza viruses is an urgent task. DNA vaccines are a novel alternative to conventional vaccines and should contribute to the prophylaxis of emerging H5N1 virus. In this study, we assessed whether a single immunization with plasmid DNA expressing H5N1 hemagglutinin (HA could provide early protection against lethal challenge in a mouse model. Methods Mice were immunized once with HA DNA at 3, 5, 7 days before a lethal challenge. The survival rate, virus titer in the lungs and change of body weight were assayed to evaluate the protective abilities of the vaccine. To test the humoral immune response induced by HA DNA, serum samples were collected through the eye canthus of mice on various days after immunization and examined for specific antibodies by ELISA and an HI assay. Splenocytes were isolated after the immunization to determine the antigen-specific T-cell response by the ELISPOT assay. Results Challenge experiments revealed that a single immunization of H5N1 virus HA DNA is effective in early protection against lethal homologous virus. Immunological analysis showed that an antigen-specific antibody and T-cell response could be elicited in mice shortly after the immunization. The protective abilities were correlated with the amount of injected DNA and the length of time after vaccination. Conclusion A single immunization of 100 μg H5 HA DNA vaccine combined with electroporation was able to provide early protection in mice against homologous virus infection.

  12. DNA vaccines against influenza.

    Science.gov (United States)

    Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka

    2014-01-01

    Genetic vaccine technology has been considerably developed within the last two decades. This cost effective and promising strategy can be applied for therapy of cancers and for curing allergy, chronic and infectious diseases, such as a seasonal and pandemic influenza. Despite numerous advantages, several limitations of this technology reduce its performance and can retard its commercial exploitation in humans and its veterinary applications. Inefficient delivery of the DNA vaccine into cells of immunized individuals results in low intracellular supply of suitable expression cassettes encoding an antigen, in its low expression level and, in turn, in reduced immune responses against the antigen. Improvement of DNA delivery into the host cells might significantly increase effectiveness of the DNA vaccine. A vast array of innovative methods and various experimental strategies have been applied in order to enhance the effectiveness of DNA vaccines. They include various strategies improving DNA delivery as well as expression and immunogenic potential of the proteins encoded by the DNA vaccines. Researchers focusing on DNA vaccines against influenza have applied many of these strategies. Recent examples of the most successful modern approaches are discussed in this review.

  13. Immune responses in mice to DNA vaccination using the C-terminus of p43(p12) from Mycobacterium avium subspcies paratuberculosis

    Institute of Scientific and Technical Information of China (English)

    Tim Bull; Nazira Sumar; Michael Stellakis; Jun Cheng; Joe Sheridan; John Hermon-Taylor

    2000-01-01

    AIM To incorporate p12 in a plasmid under the control of the CMV promotor and test for the ability of theconstruct to produce specific immune responses in DNA-immunized mice.METHODS A His-tag fusion of the protein p12, was expressed in the prokaryotic expression vector (pQE)and the recombinant protein purified using nickel-chelate chromatography. His-tagged p12 was sub-clonedinto the pBK-CMV vector for expression in eukaryotic systems. Groups of six female balb/c mice werevaccinated with either 50μg im of the DNA pBK-CMV-p12 or pBK-CMV vector alone at week 0, andboosted at 2 and 4 weeks. ELISPOT assays (detection of p12 T-cell dependant IF-γ release) on mouse spleniccells were used to measure cell mediated immune responses and anti-mouse IgG ELISAs to detect antibodyresponse.RESULTS Significant CMI and humoral immune responses to recombinant p12 were detected in micevaccinated with pBK-CMV-p12 vector compared to mice vaccinated with pBK-CMV vector alone. The miceremained well throughout the development of immunity to p12.CONCLUSION A DNA vaccine coding for a specific MAP protein will stimulate humoral and cell mediatedimmune responses in mice.

  14. Induction of immune response in mice with a DNA vaccine encoding outer membrane protein (omp31) of Brucella melitensis 16M.

    Science.gov (United States)

    Gupta, V K; Rout, P K; Vihan, V S

    2007-06-01

    Brucellosis causes serious economic losses to goat farmers by way of reproductive losses in the form of abortions and stillbirths. Nucleic acid vaccines provide an exciting approach for antigen presentation to the immune system. In this study, we evaluated the ability of DNA vaccine encoding the omp31 protein of Brucella melitensis 16M to induce cellular and humoral immune responses in mice. We constructed eukaryotic expression vectors called pTargeTomp31, encoding outer membrane protein (omp31) of B. melitensis 16M. pTargeTomp31 was injected intramuscularly three times, at 3-week intervals in groups of mice 6 weeks of age. pTargeTomp31 induced good antibody response in ELISA . pTargeTomp31 elicited a T-cell-proliferative response and also induced a strong gamma interferon production upon restimulation with either the omp31 antigen or B. melitensis 16M extract. We also demonstrate that animals immunized with this plasmid elicited a strong and long-lived memory immune response. Furthermore, pTargeTomp31 elicited a typical T-helper 1-dominated immune response in mice, as determined by immunoglobulin G isotype analysis. This vaccine also provided the moderate degree of protection to the mice. This study for the first time focuses on DNA immunization of a gene from B. melitensis. These results may lead to the development of a DNA-based vaccine for the control of brucellosis in goats.

  15. Assessment of a DNA Vaccine Encoding Burkholderia pseudomallei Bacterioferritin

    Science.gov (United States)

    2007-08-01

    bacterioferritin gene from Brucella abortus, when delivered to mice as a DNA vaccine, evokes a potent Th1 immune response, including strong IFN-γ...blocking buffer containing goat anti-mouse IgG alkaline phosphatase conjugate (Sigma) at a dilution of 1:30000 for 1hr at room temperature. Following...Walravens, and J. J. Letesson. 2001. Induction of immune response in BALB/c mice with a DNA vaccine encoding bacterioferritin or P39 of Brucella

  16. Preventive DNA vaccination against CEA-expressing tumors with anti-idiotypic scFv6.C4 DNA in CEA-expressing transgenic mice.

    Science.gov (United States)

    Denapoli, Priscila M A; Zanetti, Bianca F; Dos Santos, Adara A; de Moraes, Jane Z; Han, Sang W

    2017-03-01

    Carcinoembryonic antigen (CEA) is expressed during embryonic life and in low level during adult life. Consequently, the CEA is recognized by the immune system as a self-antigen and thus CEA-expressing tumors are tolerated. Previously, we constructed a single chain variable fragment using the 6.C4 (scFv6.C4) hybridoma cell line, which gave rise to antibodies able to recognize CEA when C57/Bl6 mice were immunized. Here, the scFv6.C4 ability to prevent the CEA-expressing tumor growth was assessed in CEA-expressing transgenic mice CEA2682. CEA2682 mice immunized with the scFv6.C4 expressing plasmid vector (uP/PS-scFv6.C4) by electroporation gave rise to the CEA-specific AB3 antibody after the third immunization. Sera from immunized mice reacted with CEA-expressing human colorectal cell lines CO112, HCT-8, and LISP-1, as well as with murine melanoma B16F10 cells expressing CEA (B16F10-CEA). Cytotoxic T lymphocytes (CTL) from uP/PS-scFv6.C4 immunized mice lysed B16F10-CEA (56.7%) and B16F10 expressing scFv6.C4 (B16F10-scFv6.C4) (46.7%) cells, against CTL from uP-immunized mice (10%). After the last immunization, 5 × 10(5) B16F10-CEA cells were injected into the left flank. All mice immunized with the uP empty vector died within 40 days, but uP/PS-scFv6.C4 vaccinated mice (40%) remained free of tumor for more than 100 days. Splenocytes obtained from uP/PS-scFv6.C4 vaccinated mice showed higher T-cell proliferative activity than those from uP vaccinated mice. Collectively, DNA vaccination with the uP-PS/scFv6.C4 plasmid vector was able to give rise to specific humoral and cellular responses, which were sufficient to retard growth and/or eliminate the injected B16F10-CEA cells.

  17. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: their immunity and protective efficacy in mice.

    Science.gov (United States)

    Lu, Hui; Xu, Xiao-Feng; Gao, Na; Fan, Dong-Ying; Wang, Juan; An, Jing

    2013-06-01

    Public health is still seriously threatened by dengue virus (DENV) and no vaccine against DENV is yet available for clinical use till now. In this study, DNA vaccine candidates encoding DENV serotype 2 (DENV-2) prM/E (premembrane and envelope proteins) and NS1 (non-structural 1 protein) with or without a gene adjuvant, granulocyte-macrophage colony-stimulating factor (GM-CSF), were evaluated in the aspects of immunity and protective efficacy in mice. We constructed three plasmids, pCAG-prM/E (which only expressed DENV2 prM/E), pCAG-prM/E/NS1 (which only expressed DENV2 prM/E/NS1) and pCAG-DG (which co-expressed DENV2 prM/E/NS1 and GM-CSF). The expressions of the recombined plasmids were analyzed by immuno-staining in Vero cells. Antibody responses and neutralization activity of the sera from the mice were assayed by ELISA and plaque reduction neutralization test after immunization with the plasmids. Immunized BALB/c mice were intracerebrally challenged with DENV2 to evaluate protective efficacy of the plasmids. The recombinant plasmids could be efficiently expressed in Vero cells and induced different levels of specific anti-DENV2 immune responses. The immunized mice were partially protected. The highest survival rate was observed in the pCAG-DG group although the anti-DENV2 titer and neutralization antibody titer were not the highest among the three groups. Our data suggested that pCAG-DG offered better protection against DENV2 infection.

  18. DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice.

    Science.gov (United States)

    Bahrami, Armina Alagheband; Ghaemi, Amir; Tabarraei, Alijan; Sajadian, Azadeh; Gorji, Ali; Soleimanjahi, Hoorieh

    2014-09-01

    Cervical cancer is the second most common cancer among women worldwide and remains a clinical problem despite improvements in early detection and therapy. The human papillomavirus (HPV) type 16 (HPV16) E7 oncoprotein expressed in cervical carcinoma cells are considered as attractive tumor-specific antigen targets for immunotherapy. Since the transformation potential of the oncogenes, vaccination based of these oncogenes is not safe. In present study, DNA vaccine expressing the modified variant with mutation in pRb-binding motif of the HPV-16 E7 oncoprotein was generated. A novel modified E7 gene with mutation in LYCYE motif was designed and constructed and the immunogenicity and antitumor effect of therapeutic DNA vaccines encoding the mutant and wild type of E7 gene were investigated. The L-Y-C-Y-E pRb-binding motif of E7 proteins has been involved in the immortalization and transformation of the host cell. The results showed that the mutant and wild type HPV-16 E7 vectors expressed the desired protein. Furthermore, the immunological mechanism behind mutant E7 DNA vaccine can be attributed at least partially to increased cytotoxic T lymphocyte, accompanied by the up-regulation of Th1-cytokine IFN-γ and TNF-β and down-regulation of Th3-cytokine TGF-β. Immunized mice with mutant plasmid demonstrated significantly stronger cell immune responses and higher levels of tumor protection than wild-type E7 DNA vaccine. The results exhibit that modified E7 DNA vaccine may be a promising candidate for development of therapeutic vaccine against HPV-16 cancers.

  19. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  20. Transient B-cell depletion with anti-CD20 in combination with proinsulin DNA vaccine or oral insulin: immunologic effects and efficacy in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ghanashyam Sarikonda

    Full Text Available A recent type 1 diabetes (T1D clinical trial of rituximab (a B cell-depleting anti-CD20 antibody achieved some therapeutic benefit in preserving C-peptide for a period of approximately nine months in patients with recently diagnosed diabetes. Our previous data in the NOD mouse demonstrated that co-administration of antigen (insulin with anti-CD3 antibody (a T cell-directed immunomodulator offers better protection than either entity alone, indicating that novel combination therapies that include a T1D-related autoantigen are possible. To accelerate the identification and development of novel combination therapies that can be advanced into the clinic, we have evaluated the combination of a mouse anti-CD20 antibody with either oral insulin or a proinsulin-expressing DNA vaccine. Anti-CD20 alone, given once or on 4 consecutive days, produced transient B cell depletion but did not prevent or reverse T1D in the NOD mouse. Oral insulin alone (twice weekly for 6 weeks was also ineffective, while proinsulin DNA (weekly for up to 12 weeks showed a trend toward modest efficacy. Combination of anti-CD20 with oral insulin was ineffective in reversing diabetes in NOD mice whose glycemia was controlled with SC insulin pellets; these experiments were performed in three independent labs. Combination of anti-CD20 with proinsulin DNA was also ineffective in diabetes reversal, but did show modest efficacy in diabetes prevention (p = 0.04. In the prevention studies, anti-CD20 plus proinsulin resulted in modest increases in Tregs in pancreatic lymph nodes and elevated levels of proinsulin-specific CD4+ T-cells that produced IL-4. Thus, combination therapy with anti-CD20 and either oral insulin or proinsulin does not protect hyperglycemic NOD mice, but the combination with proinsulin offers limited efficacy in T1D prevention, potentially by augmentation of proinsulin-specific IL-4 production.

  1. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects.

    Science.gov (United States)

    Tseng, Chih Wen; Monie, Archana; Trimble, Cornelia; Alvarez, Ronald D; Huh, Warner K; Buchsbaum, Donald J; Straughn, J Michael; Wang, Mei-Cheng; Yagita, Hideo; Hung, Chien-Fu; Wu, T-C

    2008-08-12

    There is currently a vital need for the development of novel therapeutic strategies for the control of advanced stage cancers. Antigen-specific immunotherapy and the employment of antibodies against the death receptor 5 (DR5) have emerged as two potentially promising strategies for cancer treatment. In the current study, we hypothesize that the combination of treatment with the anti-DR5 monoclonal antibody, MD5-1 with a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7(detox)) administered via gene gun would lead to further enhancement of E7-specific immune responses as well as anti-tumor effects. Our results indicated that mice bearing the E7-expressing tumor, TC-1 treated with MD5-1 monoclonal antibody followed by CRT/E7(detox) DNA vaccination generated the most potent therapeutic anti-tumor effects as well as highest levels of E7-specific CD8+ T cells among all the groups tested. In addition, treatment with MD5-1 monoclonal antibody was capable of rendering the TC-1 tumor cells more susceptible to lysis by E7-specific cytotoxic T lymphocytes. Our findings serve as an important foundation for future clinical translation.

  2. DNA vaccine for cancer immunotherapy.

    Science.gov (United States)

    Yang, Benjamin; Jeang, Jessica; Yang, Andrew; Wu, T C; Hung, Chien-Fu

    2014-01-01

    DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer due to its simplicity, stability, and safety. Results from numerous clinical trials have demonstrated that DNA vaccines are well tolerated by patients and do not trigger major adverse effects. DNA vaccines are also very cost effective and can be administered repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines face challenges in inducing potent antigen specific cellular immune responses as a result of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance immunogenicity of DNA vaccines against self-antigens have been investigated including encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate T cells or trigger associative recognition, priming with DNA vectors followed by boosting with viral vector, and utilization of immunomodulatory molecules. This review will focus on discussing strategies that circumvent immune tolerance and provide updates on findings from recent clinical trials.

  3. DNA vaccine: the miniature miracle

    Directory of Open Access Journals (Sweden)

    Karthik Kaliaperumal

    2013-08-01

    Full Text Available DNA, the essential part of the life is making way in to new vaccine technology. Plasmid vectors from the bacteria have revolutionized the world of vaccine design by its new technology – DNA vaccines. Small portion of the nucleotides from the pathogen held under the control of promoter in a plasmid vector can be used as a vaccine. DNA vaccines alleviate the odds of the other vaccines by having good hold on both the faces of the immunity. The key to the success of DNA vaccine lies in the route of administration of the vaccine which can be done in many ways. Prime boost strategy is an approach used to boost the action of DNA vaccine. To date there are only four DNA vaccine available in the market. [Vet World 2013; 6(4.000: 228-232

  4. Development of dengue DNA vaccines.

    Science.gov (United States)

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed.

  5. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia.

    Directory of Open Access Journals (Sweden)

    Xian-Min Feng

    Full Text Available Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis.Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79% and cyst (93% in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice.The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.

  6. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia.

    Science.gov (United States)

    Feng, Xian-Min; Zheng, Wen-Yu; Zhang, Hong-Mei; Shi, Wen-Yan; Li, Yao; Cui, Bai-Ji; Wang, Hui-Yan

    2016-01-01

    Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis. Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79%) and cyst (93%) in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice. The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.

  7. HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice.

    Science.gov (United States)

    Vertuani, Simona; Triulzi, Chiara; Roos, Anna Karin; Charo, Jehad; Norell, Håkan; Lemonnier, François; Pisa, Pavel; Seliger, Barbara; Kiessling, Rolf

    2009-05-01

    To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2(+) tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369-377, 435-443 and 689-697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4(+) T cells and antibodies are important components.

  8. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin.

    Directory of Open Access Journals (Sweden)

    Corinna Stefanie Weber

    Full Text Available The skin accommodates multiple dendritic cell (DC subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal and chicken ovalbumin (OVA under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.

  9. Immunogenicity and therapeutic effects of Ag85A/B chimeric DNA vaccine in mice infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Liang, Yan; Wu, Xueqiong; Zhang, Junxian; Xiao, Li; Yang, Yourong; Bai, Xuejuan; Yu, Qi; Li, Zhongming; Bi, Lan; Li, Ning; Wu, Xiaoli

    2012-12-01

    The situation of tuberculosis (TB) is very severe in China. New therapeutic agents or regimens to treat TB are urgently needed. In this study, Mycobacterium tuberculosis-infected mice were given immunotherapy intramuscularly with Ag85A/B chimeric DNA or saline, plasmid vector pVAX1, or Mycobacterium vaccae vaccine. The mice treated with Ag85A/B chimeric DNA showed significantly higher numbers of T cells secreting interferon-gamma (IFN-γ), more IFN-γ in splenocyte culture supernatant, more Th1 and Tc1 cells, and higher ratios of Th1/Th2 and Tc1/Tc2 cells in whole blood, indicating a predominant Th1 immune response to treatment. Infected mice treated with doses of 100 μg Ag85A/B chimeric DNA had an extended time until death of 50% of the animals that was markedly longer than the saline and vector control groups, and the death rate at 1 month after the last dose was lower than that in the other groups. Compared with the saline group, 100 μg Ag85A/B chimeric DNA and 100 μg Ag85A DNA reduced the pulmonary bacterial loads by 0.79 and 0.45 logs, and the liver bacterial loads by 0.52 and 0.50 logs, respectively. Pathological changes in the lungs were less, and the lesions were more limited. These results show that Ag85A/B chimeric DNA was effective for the treatment of TB, significantly increasing the cellular immune response and inhibiting the growth of M. tuberculosis.

  10. Immunologic Evaluation of DNA Vaccine Encoding Influenza Virus M2 Gene in Type A- Influenza Mice Model

    Directory of Open Access Journals (Sweden)

    Shaffifar, M. (MSc

    2015-05-01

    Full Text Available Background and Objective: The M2 gene expressing the conserved protein in influenza virus can be used to make a single-dose vaccine with permanent immunity. Material and Methods: The mice were allocated to one case group immunized with pcDNA3-M2 and two control groups with pcDNA and PBS, in three dozes with interval of two weeks. Two weeks after the last injection, Cellular immunity was analyzed by MTT lymphocyte proliferation, interferon gamma (IFN-gamma and interleukin 4 (IL-4 ratio assays. The remaining animals were challenged with PR8 virus. Results: The production rate of IFN8 and IL4 in pcDNA - M2 group was higher than that of control groups (P >0.0001. Given the results of lymphocyte proliferation, Stimulation index (SI in vaccinated mice was significantly higher than that of control groups (P<0.05. In comparison with mortality rate of 100% in control groups , the animals Challenged with PR8 vaccine had a 50% fatal rate implying a high protection level for this vaccine. Conclusion: The pcDNA3-M2 Vaccine can be considered as a promising vaccine against influenza infections.

  11. MDV-1 VP22 conjugated VP2 enhancing immune response against infectious bursal disease virus by DNA vaccination in mice

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    VP22 of Marek’s disease virus serotype 1 (MDV-1) could function in protein transduction. In this study, an infectious bursal disease virus VP2 gene was fused to the carboxyl termini of VP22. It showed that the fusion protein did not spread into the bystander cells from the cells transfected with pVP22-VP2, as the VP22 alone could. The VP22 proteins were found to be translocated into all the nuclei in the neighboring COS-1 cells, as analyzed by a fluorescence assay. Although mice were immunized with the recombinant DNAs mixed with polyethylenimine (PEI) at a dose of 1:2, it failed to enhance the antibody response against IBDV VP2, as measured by the indirect ELISA assay, yet the cell mediated immune response was significantly increased. The ratio of CD8+/CD4+ T cells was significantly increased in the immunized group with the fusion genes, compared with the group immunized with VP2 (P<0.05). Our results demonstrated that VP22 indeed enhances the cell-mediated response in the fused VP2 in a mice model system, possibly due to the fact that the IBDV VP2 could be carried into the surrounding cells at a limited level under pressure from MDV VP22.

  12. Neutralizing Antibody Response and Efficacy of Novel Recombinant Tetravalent Dengue DNA Vaccine Comprising Envelope Domain III in Mice

    Directory of Open Access Journals (Sweden)

    Ajit Kulkarni

    2017-03-01

    Full Text Available Background: Dengue is a global arboviral threat to humans; causing 390 million infections per year. The availability of safe and effective tetravalent dengue vaccine is a global requirement to prevent epidemics, morbidity, and mortality associated with it. Methods: Five experimental groups (6 mice per group each of 5-week-old BALB/c mice were immunized with vaccine and placebo (empty plasmid (100 µg, i.m. on days 0, 14 and 28. Among these, four groups (one group per serotype of each were subsequently challenged 3 weeks after the last boost with dengue virus (DENV serotypes 1-4 (100 LD50, 20 µl intracerebrally to determine vaccine efficacy. The fifth group of each was used as a control. The PBS immunized group was used as mock control. Serum samples were collected before and after subsequent immunizations. EDIII fusion protein expression was determined by Western blot. Total protein concentration was measured by Bradford assay. Neutralizing antibodies were assessed by TCID50-CPE inhibition assay. Statistical analysis was performed using Stata/IC 10.1 software for Windows. One-way repeated measures ANOVA and Mann-Whitney test were used for neutralizing antibody analysis and vaccine efficacy, respectively. Results: The recombinant EDIII fusion protein was expressed adequately in transfected 293T cells. Total protein concentration was almost 3 times more than the control. Vaccine candidate induced neutralizing antibodies against all four DENV serotypes with a notable increase after subsequent boosters. Vaccine efficacy was 83.3% (DENV-1, -3, -4 and 50% (DENV-2. Conclusion: Our results suggest that vaccine is immunogenic and protective; however, further studies are required to improve the immunogenicity particularly against DENV-2.

  13. Comparative Study on the Immunogenicity between Hsp70 DNA Vaccine and Hsp65 DNA Vaccine in Human Mycobacterium Tuberculosis

    Institute of Scientific and Technical Information of China (English)

    DAI; Wuxing; HUANG; Hailang; YUAN; Ye; HU; Jiajie; HUANGFU; Yongmu

    2001-01-01

    The BALB/c mice were immunized with Hsp70 DNA and Hsp65 DNA vaccines in human Mycobacterium tuberculosis. Eight weeks after immunization, the eyeballs were removed, blood and spleen taken, and intraperitoneal macrophages were harvested. The lymphocytic stimulating index(SI) was used to measure the cellular proliferating ability and NO release to measure the phagocytic activity of the macrophages. With ELISA kit, the levels of interleukin-2 (IL-2) and interferon-γ(IFN-γ) in serum and the splenic lymphocytic cultured supernatant were detected. The results showed that after the mice were immunized with 100 μg/mouse of Hsp70 DNA vaccine intramuscularly, the splenic lymphocytic proliferating ability in the mice was significantly increased as compared with that in the control group, vector group and Hsp65 DNA vaccine group (P<0. 01); The contents of NO in the intraperitoneal macrophages of the mice were significantly lower than in the control group and Hsp65 DNA vaccine group (P<0. 01); The levels of serum IL-2 in the mice were significantly higher than in the control group, but there was no statistical difference between Hsp65 DNA group and vector group (P>0. 05); The contents of serum IFN-γ in the mice were significantly higher than in the control group, but significantly lower than in the Hsp65 DNA vaccine group (P<0. 05). It was indicated that immunization with Hsp70 DNA vaccine could obviously enhance the immune response, but its intensity seemed inferior to Hsp65 DNA vaccine. The anti-infection mechanisms and clinical use in the future of the vaccines of Hsp70 DNA and Hsp65 DNA are worth further studying.

  14. A DNA vaccine encoding p39 and sp41 of Brucella melitensis induces protective immunity in BALB/c mice

    Directory of Open Access Journals (Sweden)

    A Al-Mariri

    2014-01-01

    Full Text Available Brucella species are facultative intracellular gram-negative bacteria that can multiply within phagocytic and non-phagocytic cells of humans or animals as end hosts. B. melitensis causes abortion in pregnant animals and undulant fever in humans. A 41 kDa surface protein (sp41 is associated with bacterial adherence and invasion of HeLa cells. The role of this protein a is important for the interaction with host cells. Previously, the putative periplasmic binding protein p39 had been described as T-cell immunodominant Brucella antigens. Both vectors (pCIp39 and pCIsp41 induced antigen-specific serum immunoglobulin as well as a T-cell-proliferative response and a strong gamma interferon production upon re-stimulation with either the specific antigens or Brucella extract. The level of protection was significant in pCIp39 and pCIsp41 treated mice but it was lower than the required level.

  15. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production...

  16. Targeting DNA vaccines to myeloid cells using a small peptide.

    Science.gov (United States)

    Ye, Chunting; Choi, Jang Gi; Abraham, Sojan; Shankar, Premlata; Manjunath, N

    2015-01-01

    Targeting DNA vaccines to dendritic cells (DCs) greatly enhances immunity. Although several approaches have been used to target protein Ags to DCs, currently there is no method that targets DNA vaccines directly to DCs. Here, we show that a small peptide derived from the rabies virus glycoprotein fused to protamine residues (RVG-P) can target DNA to myeloid cells, including DCs, which results in enhanced humoral and T-cell responses. DCs targeted with a DNA vaccine encoding the immunodominant vaccinia B8R gene via RVG-P were able to restimulate vaccinia-specific memory T cells in vitro. Importantly, a single i.v. injection of B8R gene bound to RVG-P was able to prime a vaccinia-specific T-cell response that was able to rapidly clear a subsequent vaccinia challenge in mice. Moreover, delivery of DNA in DCs was enough to induce DC maturation and efficient Ag presentation without the need for adjuvants. Finally, immunization of mice with a DNA-vaccine encoding West Nile virus (WNV) prM and E proteins via RVG-P elicited high titers of WNV-neutralizing Abs that protected mice from lethal WNV challenge. Thus, RVG-P provides a reagent to target DNA vaccines to myeloid cells and elicit robust T-cell and humoral immune responses.

  17. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues

    Institute of Scientific and Technical Information of China (English)

    Yan-hong YAN; Sheng-cai QI; Ling-kai SU; Qing-an XU; Ming-wen FAN

    2013-01-01

    Aim:To investigate how co-delivery of the gene encoding C-C chemokine ligand-19 (CCL-19) affected the systemic immune responses to an anti-caries DNA vaccine pClA-P in mice.Methods:Plasmid encoding CCL19-GFP fusion protein (pCCL19/GFP) was constructed by inserting murine ccl19 gene into GFPexpressing vector pAcGFP1-N1.Chemotactic effect of the fusion protein on murine dendritic cells (DCs) was assessed in vitro and in vivo using transwell and flow cytometric analysis,respectively.BALB/c mice were administered anti-caries DNA vaccine pClA-P plus pCCL19/GFP (each 100 μg,im) or pClA-P alone.Serum level of anti-PAc IgG was assessed with ELISA.Splenocytes from the mice were stimulated with PAc protein for 48 h,and IFN-y and IL-4 production was measured with ELISA.The presence of pCCL19/GFP in spleen and draining lymph nodes was assessed using PCR.The expression of pCCL19/GFP protein in these tissues was analyzed under microscope and with flow cytometry.Results:The expression level of CCL19-GFP fusion protein was considerably increased 48 h after transfection of C0S-7 cells with pCCL19/GFP plasmids.The fusion protein showed potent chemotactic activity on DCs in vitro.The level of serum PAc-specific IgG was significantly increased from 4 to 14 weeks in the mice vaccinated with pCIA-P plus pCCL19/GFP.Compared to mice vaccinated with pCIA-P alone,the splenocytes from mice vaccinated with pClA-P plus pCCL19/GFP produced significantly higher level of IFN-Y,but IL-4 production had no significant change.Following intromuscular co-delivery,pCCL19/GFP plasmid and fusion protein were detected in the spleen and draining lymph nodes.Administration of CCL19 gene in mice markedly increased the number of mature DCs in secondary lymphoid tissues.Conclusion:CCL19 serves as an effective adjuvant for anti-caries DNA vaccine by inducing chemotactic migration of DCs to secondary lymphoid tissues.

  18. Comparation of Immune Reaction Efficiency of RNA Replicon Vaccine and DNA Vaccine of HBV in Mice%乙肝病毒RNA复制子疫苗与DNA疫苗对小鼠免疫效率的比较

    Institute of Scientific and Technical Information of China (English)

    曹锦艳; 杨东; 任林柱; 张英; 闫森; 郝琳琳; 李莉

    2011-01-01

    为建立并获取更有效的乙肝疫苗,本实验通过将所构建的HBVRNA复制子疫苗和DNA疫苗分别免疫小鼠,检测细胞免疫与体液免疫的效果。结果表明,以pSFV为基础构建的疫苗载体免疫小鼠后采集的血清中抗体效价不随免疫剂量的增加而提高,在较低剂量免疫的时候,RNA复制子疫苗所产生的抗体效价优于DNA疫苗。并且RNA复制子疫苗在以较低剂量免疫后脾细胞CTL活性高于DNA疫苗。本研究证明HBVRNA疫苗比DNA疫苗表达效果更好,安全性更高,更具有应用前景。%To establish and obtain a more effective hepatitis B vaccine (HBV), mice cellular and humoral immunity were detected and compared after being immunized by the RNA replicon vaccines and DNA vaccines of HBV which were constructed by our lab. The results showed that RNA replicon vaccines gained higher immune antibody titer, and higher CTL activity of spleen cells than that of DNA vaccines at low-dose, but not dose dependent. It was concluded that HBV RNA vaccines are much safer and gained higher expression efficiency than the DNA vaccines, thus RNA vaccines of HBV are more prospective for the gene therapy of HBV.

  19. Comparation of Immune Reaction Efficiency of RNA Replicon Vaccine and DNA Vaccine of HBV in Mice%乙肝病毒RNA复制子疫苗与DNA疫苗对小鼠免疫效率的比较

    Institute of Scientific and Technical Information of China (English)

    曹锦艳; 杨东; 任林柱; 张英; 闫森; 郝琳琳; 李莉

    2011-01-01

    为建立并获取更有效的乙肝疫苗,本实验通过将所构建的HBV RNA复制子疫苗和DNA疫苗分别免疫小鼠,检测细胞免疫与体液免疫的效果.结果表明,以pSFV为基础构建的疫苗载体免疫小鼠后采集的血清中抗体效价不随免疫剂量的增加而提高,在较低剂量免疫的时候,RNA复制子疫苗所产生的抗体效价优于DNA疫苗.并且RNA复制子疫苗在以较低剂量免疫后脾细胞CTL活性高于DNA疫苗.本研究证明HBV RNA疫苗比DNA疫苗表达效果更好,安全性更高,更具有应用前景.%To establish and obtain a more effective hepatitis B vaccine (HBV), mice cellular and humoral immunity were detected and compared after being immunized by the RNA replicon vaccmes and DNA vaccines of HBV which were constructed by our lab. The results showed that RNA replicon vaccines gained higher immune antibody titer, and higher CTL activity of spleen cells than that of DNA vaccines at low-dose, but not dose dependent.It was concluded that HBV RNA vaccmes are much safer and gained higher expression efficiency than the DNA vaccines, thus RNA vaccines of HBV are more prospective for the gene therapy of HBV.

  20. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...... viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies...

  1. DNA vaccines for viral diseases

    Directory of Open Access Journals (Sweden)

    Donnelly J.J.

    1999-01-01

    Full Text Available DNA plasmids encoding foreign proteins may be used as immunogens by direct intramuscular injection alone, or with various adjuvants and excipients, or by delivery of DNA-coated gold particles to the epidermis through biolistic immunization. Antibody, helper T lymphocyte, and cytotoxic T lymphocyte (CTL responses have been induced in laboratory and domesticated animals by these methods. In a number of animal models, immune responses induced by DNA vaccination have been shown to be protective against challenge with various infectious agents. Immunization by injection of plasmids encoding foreign proteins has been used successfully as a research tool. This review summarizes the types of DNA vaccine vectors in common use, the immune responses and protective responses that have been obtained in animal models, the safety considerations pertinent to the evaluation of DNA vaccines in humans and the very limited information that is available from early clinical studies.

  2. DNA vaccines for aquacultured fish.

    Science.gov (United States)

    Lorenzen, N; LaPatra, S E

    2005-04-01

    Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain to be fully addressed, although inherently the risks should not be any greater than with the commercial fish vaccines that are currently used. Present classification systems lack clarity in distinguishing DNA-vaccinated animals from genetically modified organisms (GMOs), which could raise issues in terms of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production conditions has recently been initiated in Canada and Denmark.

  3. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    Science.gov (United States)

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  4. Biotechnology and DNA vaccines for aquatic animals

    Science.gov (United States)

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  5. Application of DNA vaccine in treatment of mice with multi-drug resistant tuberculosis%应用结核病DNA疫苗治疗小鼠耐多药结核病的研究

    Institute of Scientific and Technical Information of China (English)

    梁艳; 安慧茹; 史迎昌; 白雪娟; 刘成龙; 吴雪琼; 张俊仙; 李宁; 阳幼荣; 余琦; 宋晶莹; 李忠明; 王博

    2010-01-01

    目的 研究结核分枝杆菌Ag85A质粒DNA疫苗单独或联合药物治疗小鼠耐多药结核病的效果,为建立耐多药结核病的免疫治疗新策略和新方案奠定基础.方法 用结核分枝杆菌高耐利福平、低耐异烟肼临床分离株HB361尾静脉注射17~19 g的6~8周龄雌性BALB/C小鼠后,将小鼠随机分为6组,每组10只.感染后第2天开始,分别用pVAX1载体(A组)、利福平(B组)、吡嗪酰胺(C组)、Ag85A质粒DNA疫苗(D组)、Ag85A质粒DNA疫苗联合利福平(E组)、Ag85A质粒DNA疫苗联合吡嗪酰胺(F组)治疗60 d.治疗结束后4周,分别取肺、肝和脾观察病理改变,称取重量,做菌落计数.结果 小鼠感染4周后,肺内菌量达到1.5×107 CFU,脾内菌量达到1.1×106 CFU.A、B组小鼠死亡率均为10%,其余各组小鼠均存活.治疗结束后4周,肺组织病理显示,各治疗组肺组织病变均有不同程度减轻,病变局限,可见正常的肺泡结构,肺泡轮廓相对清晰.与A组比较,C、D、E、F组肺组织菌落数分别减少了1.18、1.35、1.38、1.08 logs,脾脏菌落数分别减少了0.91、1.00、1.26、1.03 logs(P<0.01).结论 结核分枝杆菌Ag85A质粒DNA疫苗单独或联合药物治疗小鼠耐多药结核病均有显著疗效.Ag85A质粒DNA疫苗与抗结核药物联合治疗是治疗耐多药结核病的最有前途的免疫策略.%Objective To establish foundation for new strategy and program on immune therapy of multi-drug resistant tuberculosis (MDR-TB) by studying the therapeutic effects of Mycobacterium tuberculosis Ag85A plasmid DNA vaccine alone or combined with drugs on MDR-TB mice. Methods Sixty 6-8 weeks old female BALB/C mice were injected via tail vein with clinical isolate Mycobacterium tuberculosis HB361 which was highly resistant to rifampin (RFP) and lowly resistant to isoniazid. The mice were randomly divided into six groups, ten mice in each group. From the second day after infection,the mice respectively received pVAX1

  6. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Wang QM; Sun SH; Hu ZL; Zhou FJ; Yin M; Xiao CJ; Zhang JC

    2005-01-01

    Cell-mediated immune responses are crucial in the protection against tuberculosis. In this study, we constructed epitope DNA vaccines (p3-M-38) encoding cytotoxic T lymphocyte (CTL) epitopes of MPT64 and 38 kDa proteins of Mycobacterium tuberculosis. In order to observe the influence of spacer sequence (Ala-Ala-Tyr) or ubiquitin (UbGR) on the efficacy of the two CTL epitopes, we also constructed DNA vaccines, p3-M-S(spacer)-38, p3-Ub (UbGR)-M-S-38 and p3-Ub-M-38. The immune responses elicited by the four DNA vaccines were tested in C57BL/6 (H-2b) mice. The cytotoxicity of T cells was detected by LDH-release method and by enzyme-linked immunospot assay for epitope-specific cells secreting interferon-gamma. The results showed that DNA immunization with p3-M-38 vaccine could induce epitope-specific CD8+ CTL response and that the spacer sequence (AAY) only enhanced M epitope presentation. The protein-targeting sequence (UbGR) enhanced the immunogenicity of the two epitopes. The finding that defined spacer sequences at C-terminus and protein-targeting degradation modulated the immune response of epitope string DNA vaccines will be of importance for the further development of multi-epitope DNA vaccines against tuberculosis.

  7. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.

  8. Ensuring safety of DNA vaccines

    Directory of Open Access Journals (Sweden)

    Wessels Stephen

    2005-09-01

    Full Text Available Abstract In 1990 a new approach for vaccination was invented involving injection of plasmid DNA in vivo, which elicits an immune response to the encoded protein. DNA vaccination can overcome most disadvantages of conventional vaccine strategies and has potential for vaccines of the future. However, today 15 years on, a commercial product still has not reached the market. One possible explanation could be the technique's failure to induce an efficient immune response in humans, but safety may also be a fundamental issue. This review focuses on the safety of the genetic elements of DNA vaccines and on the safety of the microbial host for the production of plasmid DNA. We also propose candidates for the vaccine's genetic elements and for its microbial production host that can heighten the vaccine's safety and facilitate its entry to the market.

  9. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...... viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies...... for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain...

  10. Gene gun delivery systems for cancer vaccine approaches.

    Science.gov (United States)

    Aravindaram, Kandan; Yang, Ning Sun

    2009-01-01

    Gene-based immunization with transgenic DNA vectors expressing tumor-associated antigens (TAA), cytokines, or chemokines, alone or in combination, provides an attractive approach to increase the cytotoxic T cell immunity against various cancer diseases. With this consideration, particle-mediated or gene gun technology has been developed as a nonviral method for gene transfer into various mammalian tissues. It has been shown to induce both humoral and cell-mediated immune responses in both small and large experimental animals. A broad range of somatic cell types, including primary cultures and established cell lines, has been successfully transfected ex vivo or in vitro by gene gun technology, either as suspension or adherent cultures. Here, we show that protocols and techniques for use in gene gun-mediated transgene delivery system for skin vaccination against melanoma using tumor-associated antigen (TAA) human gpl00 and reporter gene assays as experimental systems.

  11. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  12. A Single Dose of a DNA Vaccine Encoding Apa Coencapsulated with 6,6′-Trehalose Dimycolate in Microspheres Confers Long-Term Protection against Tuberculosis in Mycobacterium bovis BCG-Primed Mice

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C. C.; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon

    2013-01-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6′-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB. PMID:23740922

  13. Protein antigen delivery by gene gun-mediated epidermal antigen incorporation (EAI).

    Science.gov (United States)

    Scheiblhofer, Sandra; Ritter, Uwe; Thalhamer, Josef; Weiss, Richard

    2013-01-01

    The gene gun technology can not only be employed for efficient transfer of gene vaccines into upper layers of the skin, but also for application of protein antigens. As a tissue rich in professional antigen presenting cells, the skin represents an attractive target for immunizations. In this chapter we present a method for delivery of the model antigen ovalbumin into the skin of mice termed epidermal antigen incorporation and describe in detail how antigen-specific proliferation in draining lymph nodes can be followed by flow cytometry.

  14. Therapeutic Effects of DNA Vaccine on Allergen-Induced Allergic Airway Inflammation in Mouse Model

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Nanshan Zhong; Bin Liao1; Ying Xiong

    2006-01-01

    Vaccination with DNA encoding Dermatophagoides pteronyssinus group 2 (Der p 2) allergen previously showed its effects of immunologic protection on Der p 2 allergen-induced allergic airway inflammation in mice. In present study, we investigated whether DNA vaccine encoding Der p 2 could exert therapeutic role on allergen-induced allergic airway inflammation in mouse model and explored the mechanism of DNA vaccination in asthma specific-allergen immunotherapy. After sensitized and challenged by Der p 2, the BALB/c mice were immunized with DNA vaccine. The degrees of cellular infiltration were scored. IgE levels in serum and IL-4/lL-13 levels in BALF were determined by ELISA. The lung tissues were assessed by histological examinations. Expressions of STAT6 and NF-κB in lung were determined by immunohistochemistry staining. Vaccination of mice with DNA vaccine inhibited the development of airway inflammation and the production of mucin induced by allergen, and reduced the level of Der p 2-specific IgE level. Significant reductions of eosinophii infiltration and levels of IL-4and IL-13 in BALF were observed after vaccination. Further more, DNA vaccination inhibited STAT6 and NF-κBexpression in lung tissue in Der p 2-immunized mice. These results indicated that DNA vaccine encoding Der p 2allergen could be used for therapy of allergen-induced allergic airway inflammation in our mouse model.

  15. BTX AgilePulse(TM) system is an effective electroporation device for intramuscular and intradermal delivery of DNA vaccine.

    Science.gov (United States)

    Davtyan, Hayk; Hovakimyan, Armine; Zagorski, Karen; Davtyan, Arpine; Petrushina, Irina; Agdashian, David; Murthy, Vidya; Cribbs, David H; Agadjanyan, Michael G; Ghochikyan, Anahit

    2014-01-01

    DNA vaccines promote immune system activation in small animals and exhibit certain advantages when compared to conventional recombinant protein vaccines. However in clinical trials DNA vaccines are less effective in inducing potent immune responses due to the low delivery efficiency and expression of antigens. Currently, various delivery devices such as gene-guns, bioinjectors and electroporation systems are being used in order to increase the potency of DNA vaccines. However, the optimal delivery parameters are required and must be carefully set to obtain the highest levels of gene expression and strong immune responses in humans. The focus of this study was to optimize electroporation settings (voltage, pulse length, pulse intervals, and number of pulses), as well as the route of administration (intradermal vs. intramuscular) and dosage of the DNA epitope vaccine, AV-1959D, delivered by the BTX AgilePulse(TM) system. As a result, we have chosen the optimal settings for electroporation delivery using different routes of immunization with this vaccine, generating (i) robust antibody production to the B cell epitope (a small peptide, derived from β-amyloid), and (ii) strong cellular immune responses to Th epitopes (a small synthetic peptide and eleven peptides from various pathogens) incorporated into DNA vaccine platform.

  16. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida

    Directory of Open Access Journals (Sweden)

    Satparkash Singh

    2011-06-01

    Full Text Available Haemorrhagic Septicaemia (HS, an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  17. Immune response to dna vaccine expressing transferrin binding protein a gene of Pasteurella multocida.

    Science.gov (United States)

    Singh, Satparkash; Singh, Vijendra Pal; Cheema, Pawanjit Singh; Sandey, Maninder; Ranjan, Rajeev; Gupta, Santosh Kumar; Sharma, Bhaskar

    2011-04-01

    Haemorrhagic Septicaemia (HS), an acute and fatal disease of cattle and buffalo is primarily caused by serotype B:2 or E:2 of Pasteurella multocida. The transferrin binding protein A (TbpA) has been found to act as immunogen and potent vaccine candidate in various Gram negative bacteria including P. multocida. The present study was carried out to evaluate the potential of this antigen as a DNA vaccine against HS in mice model. The tbpA gene of P. multocida serotype B:2 was cloned in a mammalian expression vector alone and along with murine IL2 gene as immunological adjuvant to produce monocistronic and bicistronic DNA vaccine constructs, respectively. The immune response to DNA vaccines was evaluated based on serum antibody titres and lymphocyte proliferation assay. A significant increase in humoral and cell mediated immune responses was observed in mice vaccinated with DNA vaccines as compared to non immunized group. Additionally, the bicistronic DNA vaccine provided superior immune response and protection level following challenge as compared to monocistronic construct. The study revealed that DNA vaccine presents a promising approach for the prevention of HS.

  18. Lipopolysaccharide contamination in intradermal DNA vaccination: toxic impurity or adjuvant?

    Science.gov (United States)

    van den Berg, Joost H; Quaak, Susanne G L; Beijnen, Jos H; Hennink, Wim E; Storm, Gert; Schumacher, Ton N; Haanen, John B A G; Nuijen, Bastiaan

    2010-05-05

    Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Mice were vaccinated with a model DNA vaccine (Luc-NP) with an increasing content of residual LPS. The effect of LPS on systemic toxicity, antigen expression and cellular immunity was studied. The presence of LPS in the DNA vaccine neither induced systemic toxicity (as reflected by IL-6 concentration in serum), nor influenced antigen expression (measured by intravital imaging). Higher LPS contents however, appeared to be associated with an elevated cytotoxic T-lymphocyte (CTL) response but without reaching statistical significance. Interestingly, the DNA tattoo procedure by itself was shown to induce a serum cytokine response that was at least as potent as that induced by parenteral LPS administration. LPS does not show toxicity in mice vaccinated by DNA tattooing at dose levels well above those encountered in GMP-grade DNA preparations. Thus, residual LPS levels in the pharmaceutical range are not expected to adversely affect clinical outcome of vaccination trials and may in fact have some beneficial adjuvant effect. The observed pro-inflammatory effects of DNA tattoo may help explain the high immunogenicity of this procedure. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment.

    Directory of Open Access Journals (Sweden)

    Youmin Kang

    Full Text Available BACKGROUND: Regulatory T (Treg cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis (MS. Tacrolimus (FK506 has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. METHODOLOGY/PRINCIPAL FINDINGS: After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. CONCLUSIONS/SIGNIFICANCE: DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.

  20. Evaluation of the immunogenicity of recombinant replicative DNA vaccines expressing multiple anti-gens of hepatitis C virus in a mice model%表达丙型肝炎病毒多个融合抗原的复制型DNA 疫苗在小鼠体内免疫原性的研究

    Institute of Scientific and Technical Information of China (English)

    邓瑶; 管洁; 殷霄; 文波; 陈红; 王文; 谭文杰

    2015-01-01

    目的:探索新型的基于丙型肝炎病毒( HCV)多个靶抗原的复制型DNA疫苗的免疫效果。方法本研究构建了两种表达基于HCV中国1b代表株(河北株)多个靶抗原的复制型DNA疫苗:pSCK-CE1E2Y(核心蛋白Core、包膜蛋白E1、E2抗原)和pSCK-H155(Core、E1、E2、非结构蛋白NS3融合抗原),蛋白印迹试验分析靶抗原表达,皮内电转法免疫BALB/c小鼠后评价其免疫应答,采用表达异型( JFH1,2 a型) HCV多聚蛋白的重组痘苗病毒接种的小鼠攻击替代模型进行保护效果分析。结果蛋白印迹试验表明DNA疫苗中靶抗原体外可有效表达;两种DNA疫苗均可诱导多抗原特异的抗体反应及T细胞免疫应答;未检测到明显的交叉免疫保护。结论两种复制型DNA疫苗均可诱导针对多抗原的体液及细胞免疫应答,但不能诱导有效的交叉保护。本研究为HCV新型疫苗研制提供了一定参考。%Objective To investigate the immunogenicity and cross protective effects of two novel HCV DNA vaccines in a mice model.Methods Two self-replicating alphavirus vector-based HCV DNA vaccines, pSCK CE1E2Y and pSCK H155, were constructed based on the genes encoding the structural pro-teins (Core, E1 and E2) and structural and NS3 fusion proteins (Core, E1 , E2 and NS3) of a HCV strain isolated from a Chinese patient (genotype 1b, Hebei strain), respectively.Western blot analysis was per-formed to detect the expression of fusion antigens.The BALB/c mice were intradermally immunized with the recombinant DNA vaccines by using electroporation.The immune responses induced in mice and the cross protective effects of the recombinant DNA vaccines were evaluated.Results The DNA vaccines effectively expressed the target antigens in vitro.The antigen-specific antibody responses and specific T cell immune re-sponses were induced in mice by the immunization of replicative DNA vaccines.However, no effective cross

  1. Improvement in efficacy of DNA vaccine encoding HIV-1 Vif by LIGHT gene adjuvant.

    Science.gov (United States)

    Du, Jiani; Wu, Xiaoyu; Long, Fengying; Wen, Jiejun; Hao, Wenli; Chen, Ran; Kong, Xiaobo; Qian, Min; Jiang, Wenzheng

    2013-02-01

    DNA vaccine can induce the prolonged immune responses against the encoded antigen with the appropriate adjuvant. To study the immunogenicity of the HIV-1 vif DNA vaccine in inducing the humoral and cellular immune responses and the immunoadjuvant effect of LIGHT, which is a member of TNF superfamily and can stimulate the proliferation of naïve T cells as a co-stimulatory molecule, DNA vaccine plasmid pcDNA-Vif was constructed by inserting HIV-1 vif gene into the downstream of CMV promoter in eukaryotic expression vector pcDNA3.1(+). In vitro expression of HIV-1 Vif in pcDNA-Vif-transfected HeLa cells was confirmed in transcriptional and protein level by RT-PCR and Western blot, respectively. After BALB/c mice were injected muscularly with DNA vaccines for three times, the specific immune responses were analyzed. The data showed that anti-Vif antibody response, Vif-specific T cell proliferation, and CTL activities were induced in the mice that were inoculated with HIV-1 vif DNA vaccine plasmid. Interestingly, stronger humoral and cellular immune responses were detected in mice that were immunized with plasmid pcDNA-Vif and pcDNA-LIGHT together compared to the single immunization with plasmid pcDNA-Vif alone. Together, the results of the study suggest that candidate HIV-1 DNA vaccine can elicit HIV-1 Vif-specific immune responses in mice and that LIGHT plays the role of immunoadjuvant in co-immunization with DNA vaccine.

  2. 细菌影载体负载防龋DNA疫苗免疫小鼠的效果研究%Efficacy of immune responses induced by anti-caries DNA vaccine-loaded bacterial ghost in mice

    Institute of Scientific and Technical Information of China (English)

    刘高霞; 樊明文; 郭继华

    2014-01-01

    目的 研制鼠伤寒沙门菌细菌影,负载防龋DNA疫苗,探寻增强防龋DNA疫苗黏膜免疫效能的方法.方法将pREP4质粒和噬菌体PhiX基因E表达质粒同时转入鼠伤寒沙门菌减毒株J357中,加入异丙基硫代半乳糖苷(isopropyl β-D-1-thiogalactopyranoside,IPTG)诱导,收集洗涤,负载防龋DNA疫苗,分4组经鼻免疫小鼠,分别为:细菌影+pGJGLU/VAX组,细菌影负载5μg防龋DNA疫苗pGJGLU/VAX;细菌影+pVAX1组,细菌影负载5μg空载体pVAX1;pGJGLU/VAX组,布比卡因包裹5 μg pGJGLU/VAX; pVAX1组,布比卡因包裹5μg pVAX1.酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)法检测唾液抗体产生结果.结果 ELISA结果显示经鼻黏膜免疫鼠伤寒沙门菌J357细菌影负载的防龋DNA疫苗pGJGLU/VAX(细菌影+pGJGLU/VAX组)后,诱导了显著的唾液特异性抗葡聚糖结合区的IgA抗体,(x)±sx为(0.367 ±0.086) A/μg,与细菌影+pVAX1组[(0.122±0.077)A/μg]、pGJGLU/VAX组[(0.068±0.068)A/μg]和pVAX1组[(0.089±0.089) A/μg]相比,差异均有统计学意义(P值分别为0.028、0.012和0.030).结论 成功制备了鼠伤寒沙门菌细菌影,负载防龋DNA疫苗后经鼻黏膜途径免疫小鼠能有效提高免疫效能.%Objective To develop an anti-caries DNA vaccine-loaded Salmonella typhimurium(St) ghost and enhance the efficacy of immune responses induced by anti-caries DNA vaccine via mucosal route.Methods Both pREP4 and PhiX gene E expression plasmids were transformed into StJ357 and then induced with isopropyl β-D-1-thiogalactopyranoside (IPTG).The bacterial ghosts (BG) were collected after wash and loaded with anti-caries DNA vaccine pGJGLU/VAX.Mice were divided into four groups and immunized through the nasal route with pGJGLU/VAX-loaded BG(Group Ghost + pGJGLU/VAX),pVAX1-loaded BG (Group Ghost + pVAX1),pGJGLU/VAX-Bupivacaine complex (Group pGJGLU/VAX) and pVAX1-Bupivacaine complex (Group pVAX1),respectively.Enzyme-linked immunosorbent assay (ELISA) was used

  3. Influenza DNA vaccine:an update

    Institute of Scientific and Technical Information of China (English)

    陈则

    2004-01-01

    @@ A series of global studies on the influenza DNA vaccine have revealed that it is capable of eliciting persistent humoral and cell mediated immune responses to influenza following delivery by various routes. DNA vaccines may not only serve as potentially safer alternatives to immunization with certain live virus vaccines, but may also provide a promising approach to the development of effective vaccines. The suggestions, based on our experiment, that both hemagglutinin (HA)- and neuraminidase (NA)- DNAs (or both HA and NA molecules) are highly protective against the influenza virus and are useful in the development of a more efficient vaccine against the influenza virus. In this article, we reviewed DNA vaccine against the influenza A and B viruses and the characteristics of the immune response induced by the DNA vaccine. Moreover, we discussed the importance of neutralizing antibodies to protect the host against a lethal influenza infection.

  4. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene.

    Science.gov (United States)

    Changhong, Shi; Hai, Zhang; Limei, Wang; Jiaze, An; Li, Xi; Tingfen, Zhang; Zhikai, Xu; Yong, Zhao

    2009-01-01

    Use of therapeutic DNA vaccines is a promising strategy against tuberculosis (TB), however, their immunogenicity still needs to be improved. In this study, a plasmid DNA vaccine expressing heat shock protein 65 (HSP65) and the human interleukin 2 (IL-2) fusion gene was constructed. Immune responses induced by the vaccine in the mice and protection against Mycobacterium tuberculosis (MTB) were investigated, along with the therapeutic effect of the DNA vaccine on tuberculosis in mice. Administration of the HSP65-IL-2-DNA vaccine enhanced Th1-type cellular responses by producing greater amounts of interferon-gamma (IFN-gamma) and IL-2 with a higher titer of antigen-specific anti-Hsp65 IgG2a. Compared with the Bacille Calmette-Guérin (BCG) vaccine, the DNA vaccine was able to evoke both CD4 and CD8 T-cell responses, with an especially high percentage of CD8 T-cells. The DNA vaccine was also able to induce high antigen-specific cytotoxicity activity against target cells. When the mice were challenged with virulent MTB H37Rv, a dramatic decrease in the numbers of MTB colony forming units in the spleen and lungs was observed in the mice immunized with HSP65-IL-2-DNA (P<0.05). Meanwhile, the bacterial numbers in TB infected mice treated with the DNA vaccine were also significantly reduced. The protective and therapeutic effects of the HSP65-IL-2-DNA vaccine in the spleen and lungs were superior to that of the HSP65-DNA vaccine (P<0.05). These results suggest that the DNA vaccine expression of IL-2 and the HSP65 fusion gene enhances the immunogenicity and protective as well as therapeutic effects of the HSP65-DNA vaccine against TB in mice by improving the Th1-type response.

  5. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  6. Identification by genomic immunization of a pool of DNA vaccine candidates that confer protective immunity in mice against Neisseria meningitidis serogroup B.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Pérez, Yusleydis; Fariñas, Mildrey; Cobas, Karem; Diaz, Daiyana; Solis, Rosa L; Acosta, Armando; Brookes, Charlotte; Taylor, Stephen; Gorringe, Andrew

    2007-07-09

    We have shown previously that expression library immunization is viable alternative approach to induce protective immunity against Neisseria meningitidis serogroup B. In this study we report that few rounds of library screening allow identification of protective pools of defined antigens. A previously reported protective meningococcal library (L8, with 600 clones) was screened and two sub-libraries of 95 clones each were selected based on the induction of bactericidal and protective antibodies in BALB/c mice. After sequence analysis of each clone within these sub-libraries, we identified a pool of 20 individual antigens that induced protective immune responses in mice against N. meningitidis infection, and the observed protection was associated with the induction of bactericidal antibodies. Our studies demonstrate for the first time that ELI combined with sequence analysis is a powerful and efficient tool for identification of candidate antigens for use in a meningococcal vaccine.

  7. Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus the antibody response in mice

    Science.gov (United States)

    2017-04-06

    times at 3-week intervals using intramuscular electroporation. Blood samples collected at day 0 and 3 weeks after each vaccination were analyzed by...Tri-Grid Delivery System21. Prior to each vaccination and at week 9, blood was collected and serum was isolated by centrifugation for ELISA...binding of serum samples from mice, guinea pigs and rhesus macaques to amino acids in CLIPS. Blue indicates strong binding and tan indicates weaker

  8. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  9. PEB1-LTB DNA vaccine primer-protein boost enhances the immunization against Campylobacter ;jejuni in mice%抗空肠弯曲菌 PEB1-LTB 疫苗联合应用增强免疫应答的研究

    Institute of Scientific and Technical Information of China (English)

    刘琳琳

    2014-01-01

    Objective To develop novel and effective Campylobacter jejuni vaccine, we constructed Campylobacter jejuni gene PEB1 fused LTB. In present study, we determined if the pcDNA3.1(-)-PEB1-LTB DNA vaccines boosting with PEB1-LTB protein vaccines could enhance immunization in mice. Methods We immunized mice by intramuscular injection. The mice were inoculated with DNA vaccines and DNA boosting with protein at 0, 3, 6 week. The specific humoral and cellular immune responses were detected at 5,8 week. Results In the DNA vaccine prime-boost group after 3 times, the levels of IgG in serum, (14.392±0.579)μg/ml were higher than the others. The DNA vaccine boosting protein vaccine could enhance the humoral response. But the levels of IFN-γ, (1472.34±73.99)pg/ml in PEB1-LTB DNA vaccine were the highest. Conclusions DNA vaccines can induce different immunization, specially the better cellular immune responses, compared with DNA vaccines boosting with protein vaccines. The results provide a basis for ration design and application of the Campylobacter jejuni vaccine.%目的:为研制有效的空肠弯曲菌疫苗,构建 PEB1与 LTB 融合基因的空肠弯曲菌疫苗,并初步探讨pcDNA3.1(-)-PEB1-LTB核酸疫苗与蛋白疫苗联合免疫BALB/c小鼠的免疫应答水平。方法通过腿部肌肉注射免疫小鼠的方式,在第0、3、6周采用核酸单独免疫与核酸蛋白联合免疫小鼠的免疫程序,于第5、8周末,测量小鼠体液免疫应答和细胞免疫应答水平。结果3次免疫后,核酸蛋白免疫组诱导的IgG抗体含量[(14.392±0.579)μg/ml]是核酸疫苗单独免疫的2.43倍(P<0.05),说明核酸蛋白联合免疫诱导了更高的体液免疫应答水平;3次免疫后,核酸疫苗单独免疫组诱导的IFN-γ水平[(1472.34±73.99)pg/ml]是联合免疫组[(290.323±15.46)pg/ml]的5.07倍,说明PEB1-LTB核酸疫苗单独免疫诱导较高的细胞免疫应答。结论核酸疫苗能诱导较

  10. A combination DNA vaccine encoding nucleoside hydrolase 36 and glycoproteine 63 protects female but not male hamsters against Leishmania mexicana

    Directory of Open Access Journals (Sweden)

    Chalé-balboa W.G.

    2009-09-01

    Full Text Available Leishmaniasis is a group of diseases caused by protozoan parasites of the Leishmania genus. Previous studies have shown that a DNA vaccine encoding Leishmania donovani antigen nucleoside hydrolase 36 and L. mexicana glycoprotein 63 is protective in mice. We investigated here the efficacy of this DNA vaccine to induce protection in golden hamsters. Male hamsters were more susceptible to infection by Leishmania mexicana than females. Following immunization with two doses of the DNA vaccine, only females resulted protected while males developed normal lesions.

  11. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    Science.gov (United States)

    Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D

    2014-01-01

    The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.

  12. Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Brad Lewis

    Full Text Available The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.

  13. Survivin minigene DNA vaccination is effective against neuroblastoma.

    Science.gov (United States)

    Fest, Stefan; Huebener, Nicole; Bleeke, Matthias; Durmus, Tahir; Stermann, Alexander; Woehler, Anja; Baykan, Bianca; Zenclussen, Ana C; Michalsky, Elke; Jaeger, Ines S; Preissner, Robert; Hohn, Oliver; Weixler, Silke; Gaedicke, Gerhard; Lode, Holger N

    2009-07-01

    The inhibitor of apoptosis protein survivin is highly expressed in neuroblastoma (NB) and survivin-specific T cells were identified in Stage 4 patients. Therefore, we generated a novel survivin minigene DNA vaccine (pUS-high) encoding exclusively for survivin-derived peptides with superior MHC class I (H2-K(k)) binding affinities and tested its efficacy to suppress tumor growth and metastases in a syngeneic NB mouse model. Vaccination was performed by oral gavage of attenuated Salmonella typhimurium SL7207 carrying pUS-high. Mice receiving the pUS-high in the prophylactic setting presented a 48-52% reduction in s.c. tumor volume, weight and liver metastasis level in contrast to empty vector controls. This response was as effective as a survivin full-length vaccine and was associated with an increased target cell lysis, increased presence of CD8(+) T-cells at the primary tumor site and enhanced production of proinflammatory cytokines by systemic CD8(+) T cells. Furthermore, depletion of CD8(+) but not CD4(+) T-cells completely abrogated the pUS-high mediated primary tumor growth suppression, demonstrating a CD8(+) T-cell mediated effect. Therapeutic vaccination with pUS-high led to complete NB eradication in over 50% of immunized mice and surviving mice showed an over 80% reduction in primary tumor growth upon rechallenge in contrast to controls. In summary, survivin-based DNA vaccination is effective against NB and the rational minigene design provides a promising approach to circumvent potentially hazardous effects of using full length antiapoptotic genes as DNA vaccines.

  14. Recent advances towards the clinical application of DNA vaccines.

    Science.gov (United States)

    Bins, A D; van den Berg, J H; Oosterhuis, K; Haanen, J B A G

    2013-04-01

    DNA vaccination is an attractive method for therapeutic vaccination against intracellular pathogens and cancer. This review provides an introduction into the DNA vaccination field and discusses the pre-clinical successes and most interesting clinical achievements thus far. Furthermore, general attributes, mechanism of action and safety of DNA vaccination will be discussed. Since clinical results with DNA vaccination so far show room for improvement, possibilities to improve the delivery and immunogenicity of DNA vaccines are reviewed. In the coming years, these new developments should show whether DNA vaccination is able to induce clinically relevant responses in patients.

  15. Improving DNA vaccine performance through vector design.

    Science.gov (United States)

    Williams, James A

    2014-01-01

    DNA vaccines are a rapidly deployed next generation vaccination platform for treatment of human and animal disease. DNA delivery devices, such as electroporation and needle free jet injectors, are used to increase gene transfer. This results in higher antigen expression which correlates with improved humoral and cellular immunity in humans and animals. This review highlights recent vector and transgene design innovations that improve DNA vaccine performance. These new vectors improve antigen expression, increase plasmid manufacturing yield and quality in bioreactors, and eliminate antibiotic selection and other potential safety issues. A flowchart for designing synthetic antigen transgenes, combining antigen targeting, codon-optimization and bioinformatics, is presented. Application of improved vectors, of antibiotic free plasmid production, and cost effective manufacturing technologies will be critical to ensure safety, efficacy, and economically viable manufacturing of DNA vaccines currently under development for infectious disease, cancer, autoimmunity, immunotolerance and allergy indications.

  16. Antiparasitic DNA vaccines in 21st century.

    Science.gov (United States)

    Wedrychowicz, Halina

    2015-06-01

    Demands for effective vaccines to control parasitic diseases of humans and livestock have been recently exacerbated by the development of resistance of most pathogenic parasites to anti-parasitic drugs. Novel genomic and proteomic technologies have provided opportunities for the discovery and improvement of DNA vaccines which are relatively easy as well as cheap to fabricate and stable at room temperatures. However, their main limitation is rather poor immunogenicity, which makes it necessary to couple the antigens with adjuvant molecules. This paper review recent advances in the development of DNA vaccines to some pathogenic protozoa and helminths. Numerous studies were conducted over the past 14 years of 21st century, employing various administration techniques, adjuvants and new immunogenic antigens to increase efficacy of DNA vaccines. Unfortunately, the results have not been rewarding. Further research is necessary using more extensive combinations of antigens; alternate delivery systems and more efficient adjuvants based on knowledge of the immunomodulatory capacities of parasitic protozoa and helminths.

  17. Novel approaches to tuberculosis prevention: DNA vaccines.

    Science.gov (United States)

    Rivas-Santiago, Bruno; Cervantes-Villagrana, Alberto R

    2014-03-01

    It is estimated that there are approximately eight million new cases of active tuberculosis (TB) worldwide annually. There is only 1 vaccine available for prevention: bacillus Calmette-Guérin (BCG). This has variable efficacy and is only protective for certain extrapulmonary TB cases in children, therefore new strategies for the creation of novel vaccines have emerged. One of the promising approaches is the DNA vaccine, used as a direct vaccination or as a prime-boost vaccine. This review describes the experimental data obtained during the design of DNA vaccines for TB.

  18. A convenient cancer vaccine therapy with in vivo transfer of interleukin 12 expression plasmid using gene gun technology after priming with irradiated carcinoma cells.

    Science.gov (United States)

    Nishitani, Masa-aki; Sakai, Tohru; Ishii, Kazunari; Zhang, Manxin; Nakano, Yoko; Nitta, Yoshio; Miyazaki, Jun-ichi; Kanayama, Hiro-omi; Kagawa, Susumu; Himeno, Kunisuke

    2002-02-01

    We studied interleukin (IL)-12 gene therapy using a gene gun as a new autologous vaccination strategy for cancer. In the first experiment, BALB/c mice were inoculated with syngeneic murine renal cancer cells (Renca) intradermally in the abdomen. This was followed by an injection of IL-12 expression plasmid using the gene gun. About 40% of the mice exhibited rejection of the tumor after the treatment and these mice also acquired immunological resistance against a secondary challenge with Renca cells. Based on these results, we examined whether antitumor activity can be potentiated when mice undergo combination treatment with intradermal inoculation of irradiated Renca cells and transfection with IL-12 gene. Inoculation of irradiated Renca cells alone was partially effective in inducing antitumor immunity, whereas the combined treatment remarkably intensified this effect. Moreover, this combined treatment inhibited tumor establishment and enhanced survival of the mice with tumor infiltration by CD4(+) and CD8(+) T cells, even when the treatment was started after tumor-implantation at a distant site. This antitumor effect was antigen specific and we confirmed the induction of antitumor cytotoxic T cells by this treatment. These results show that local cutaneous transfer of IL-12 expression plasmid using gene gun technology enhances systemic and specific antitumor immunity primed by irradiated tumor cells.

  19. DNA vaccines and intradermal vaccination by DNA tattooing.

    Science.gov (United States)

    Oosterhuis, K; van den Berg, J H; Schumacher, T N; Haanen, J B A G

    2012-01-01

    Over the past two decades, DNA vaccination has been developed as a method for the induction of immune responses. However, in spite of high expectations based on their efficacy in preclinical models, immunogenicity of first generation DNA vaccines in clinical trials was shown to be poor, and no DNA vaccines have yet been licensed for human use. In recent years significant progress has been made in the development of second generation DNA vaccines and DNA vaccine delivery methods. Here we review the key characteristics of DNA vaccines as compared to other vaccine platforms, and recent insights into the prerequisites for induction of immune responses by DNA vaccines will be discussed. We illustrate the development of second generation DNA vaccines with the description of DNA tattooing as a novel DNA delivery method. This technique has shown great promise both in a small animal model and in non-human primates and is currently under clinical evaluation.

  20. Immunization against Egyptian Schistosoma mansoni infection by multivalent DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Mahmoud H Romeih; Hanem M Hassan; Tarek S Abou Shousha; Mohamed A Saber

    2008-01-01

    The development of multivalent vaccines consisting of several antigens is a novel approach to creating broad-range protection against different parasite strains and parasite life cycle stages. We have previously confirmed that the schistosome Sm21.7 and SmFimbrin (SmFim) proteins could induce protection in mice. Therefore, this study aimed to construct the multivalent DNA vaccine Sm21.7-SmFim/pBudCE4.1 and evaluate its immune efficacy. The open reading frames of two Schistosoma mansoni genes, Sm21.7 and SmFim, were inserted into the eukaryotic expression plasmid pBudCE4.1 designed for the independent expression of two genes in mammalian cells. To evaluate the in vitro expression of the multivalent Sm21.7-SmFim/pBudCE4.1 DNA vaccine and its immunological effect in mice, the recombinant plasmid Sm21.7-SmFim/pBudCE4.1 was used to transfect 293T cells, and the expression of mRNA and proteins was examined using reverse transcription-polymerase chain reaction and Western blot analysis. Then the ability of Sm21.7.SmFim/pBudCE4.1 to protect against S. mansoni challenge infections was analyzed according to worm burden and egg reduction rates after vaccination of mice. Vaccinated mice showed a significant level of protection (56%), and a decrease in the number and size, and change in the cellular profile, of granulomas. Egg reduction in liver and intestine was 41.53% and 55.63%,respectively, as determined relative to mice that received the empty vector only. In addition to reductions in worm viability,worm fecundity and egg hatching ability were observed following challenge infection in the immunized group.Results showed that Sm21.7-SmFim/pBudCE4.1 could express Sm 21.7 and SmFim mRN A and proteins. Enzyme-linked immunosorbent assay and Western blot analysis indicated that immunized mice generated specific immunoglobulin G against Sm21.7-SmFim/pBudCE4.1. These results suggest that vaccination with multivalent S. mansoni DNA vaccine (SmFim-Sm21.7/pBudCE4.1) not only induces a

  1. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  2. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.|info:eu-repo/dai/nl/304837016

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce an

  3. Immunogenicity and efficacy of codon optimized DNA vaccines encoding the F-protein of respiratory syncytial virus.

    Science.gov (United States)

    Ternette, Nicola; Tippler, Bettina; Uberla, Klaus; Grunwald, Thomas

    2007-10-10

    Respiratory syncytial virus F-protein (RSV-F) is poorly expressed from DNA expression plasmids containing the wild type RSV-F open reading frame. By codon optimization, premature polyadenylation signals were deleted and a striking enhancement of RSV-F expression levels was achieved. Therefore, the immunogenicity and efficacy of wild type DNA vaccines were compared to codon optimized expression plasmids encoding full-length RSV-F or its ectodomain. Mice were immunized twice with the different DNA vaccines followed by an RSV challenge. Only codon optimized DNA vaccines and in particular the one encoding the ectodomain of RSV-F induced substantial antibody levels and reduced viral load 13-170-fold. Thus, codon optimization enhances the immunogenicity and efficacy of RSV encoding DNA vaccines.

  4. Characterization of GD2 peptide mimotope DNA vaccines effective against spontaneous neuroblastoma metastases.

    Science.gov (United States)

    Fest, Stefan; Huebener, Nicole; Weixler, Silke; Bleeke, Matthias; Zeng, Yan; Strandsby, Anne; Volkmer-Engert, Rudolf; Landgraf, Christiane; Gaedicke, Gerhard; Riemer, Angelika B; Michalsky, Elke; Jaeger, Ines S; Preissner, Robert; Förster-Wald, Elisabeth; Jensen-Jarolim, Erika; Lode, Holger N

    2006-11-01

    Disialoganglioside GD2 is an established target for immunotherapy in neuroblastoma. We tested the hypothesis that active immunization against the glycolipid GD2 using DNA vaccines encoding for cyclic GD2-mimicking decapeptides (i.e., GD2 mimotopes) is effective against neuroblastoma. For this purpose, two GD2 peptide mimotopes (MA and MD) were selected based on docking experiments to anti-GD2 antibody ch14.18 (binding free energy: -41.23 kJ/mol for MA and -48.06 kJ/mol for MD) and Biacore analysis (K(d) = 12.3 x 10(-5) mol/L for MA and 5.3 x 10(-5) mol/L for MD), showing a higher affinity of MD over MA. These sequences were selected for DNA vaccine design based on pSecTag2-A (pSA) also including a T-cell helper epitope. GD2 mimicry was shown following transfection of CHO-1 cells with pSA-MA and pSA-MD DNA vaccines, with twice-higher signal intensity for cells expressing MD over MA. Finally, these DNA vaccines were tested for induction of tumor protective immunity in a syngeneic neuroblastoma model following oral DNA vaccine delivery with attenuated Salmonella typhimurium (SL 7207). Only mice receiving the DNA vaccines revealed a reduction of spontaneous liver metastases. The highest anti-GD2 humoral immune response and natural killer cell activation was observed in mice immunized with the pSA-MD, a finding consistent with superior calculated binding free energy, dissociation constant, and GD2 mimicry potential for GD2 mimotope MD over MA. In summary, we show that DNA immunization with pSA-MD may provide a useful strategy for active immunization against neuroblastoma.

  5. 1918 pandemic H1N1 DNA vaccine protects ferrets against 2007 H1N1 virus infection

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril Jean-Marie; Aasted, Bent

    of the H1N1 pandemic virus from 1918 induce protection in ferrets against infection with a H1N1 (A/New Caledonia/20/99(H1N1)) virus which was included in the conventional vaccine for the 2006-2007 season. The viruses are separated by a time interval of 89 years and differ by 21.2% in the HA1 protein......Influenza vaccines with the ability to induce immune responses cross-reacting with drifted virus variants would be of great advantage for vaccine development against seasonal and emerging new strains. We demonstrate that gene gun administrated DNA vaccine encoding HA and NA and/or NP and M proteins...

  6. Micro- and nanoparticulates for DNA vaccine delivery.

    Science.gov (United States)

    Farris, Eric; Brown, Deborah M; Ramer-Tait, Amanda E; Pannier, Angela K

    2016-05-01

    DNA vaccination has emerged as a promising alternative to traditional protein-based vaccines for the induction of protective immune responses. DNA vaccines offer several advantages over traditional vaccines, including increased stability, rapid and inexpensive production, and flexibility to produce vaccines for a wide variety of infectious diseases. However, the immunogenicity of DNA vaccines delivered as naked plasmid DNA is often weak due to degradation of the DNA by nucleases and inefficient delivery to immune cells. Therefore, biomaterial-based delivery systems based on micro- and nanoparticles that encapsulate plasmid DNA represent the most promising strategy for DNA vaccine delivery. Microparticulate delivery systems allow for passive targeting to antigen presenting cells through size exclusion and can allow for sustained presentation of DNA to cells through degradation and release of encapsulated vaccines. In contrast, nanoparticle encapsulation leads to increased internalization, overall greater transfection efficiency, and the ability to increase uptake across mucosal surfaces. Moreover, selection of the appropriate biomaterial can lead to increased immune stimulation and activation through triggering innate immune response receptors and target DNA to professional antigen presenting cells. Finally, the selection of materials with the appropriate properties to achieve efficient delivery through administration routes conducive to high patient compliance and capable of generating systemic and local (i.e. mucosal) immunity can lead to more effective humoral and cellular protective immune responses. In this review, we discuss the development of novel biomaterial-based delivery systems to enhance the delivery of DNA vaccines through various routes of administration and their implications for generating immune responses.

  7. GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates.

    Directory of Open Access Journals (Sweden)

    Peter T Loudon

    Full Text Available BACKGROUND: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a world-wide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99 HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun was analyzed in rhesus macaques. METHODOLOGY/PRINCIPAL FINDINGS: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particle-mediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. CONCLUSIONS/SIGNIFICANCE: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skin-delivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract.

  8. Approaches towards DNA vaccination against a skin ciliate parasite in fish.

    Directory of Open Access Journals (Sweden)

    Louise von Gersdorff Jørgensen

    Full Text Available Rainbow trout (Oncorhynchus mykiss were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(Gprotein (VHSV G were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens

  9. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    according to the manufacturer’s suggested values (see Note 6). 3. Draw DNA solution into syringe (see Note 7). 4. Anesthetize the animal with the...vaccination is an attractive method for inducing protective immunity to a variety of pathogens, but the low immunogenicity seen in larger animals and...for generating protective immunity against filovirus infection [11]. The demonstration of effective DNA vaccination in small animal models changed the

  10. Innate Immune Signaling by, Genetic Adjuvants for, DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Kouji Kobiyama

    2013-07-01

    Full Text Available DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  11. Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination.

    Science.gov (United States)

    Kobiyama, Kouji; Jounai, Nao; Aoshi, Taiki; Tozuka, Miyuki; Takeshita, Fumihiko; Coban, Cevayir; Ishii, Ken J

    2013-01-01

    DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  12. DNA vaccination in skin enhanced by electroporation.

    Science.gov (United States)

    Broderick, Kate E; Khan, Amir S; Sardesai, Niranjan Y

    2014-01-01

    DNA vaccines are a next generation branch of vaccines which offer major benefits over their conventional counterparts. However, to be effective in large mammals and humans, an enhancing delivery technology is required. Electroporation is a physical technique which results in improved delivery of large molecules through the cell membrane. In the case of plasmid DNA, electroporation enhances both the uptake and expression of the delivered DNA. The skin is an attractive tissue for DNA vaccination in a clinical setting due to the accessibility of the target, the ease of monitoring, and most importantly the immunocompetent nature of the dermis. Electroporation in the skin has the benefit of being minimally invasive and generally well tolerated. Previous studies have determined that optimized electroporation parameters (such as electrical field intensity, pulse length, pulse width, and plasmid formulation) majorly impact the efficiency of DNA delivery to the skin. We provide an overview of DNA vaccination in skin and muscle. In addition, we detail a protocol for the successful intradermal electroporation of plasmid DNA to guinea pig skin, an excellent dermatological animal model. The work detailed here suggests that the technique is safe and effective and could be highly applicable to a clinical setting.

  13. Antitumor Response to a Codon-Optimized HPV-16 E7/HSP70 Fusion Antigen DNA Vaccine.

    Science.gov (United States)

    Soleimanjahi, Hoorieh; Razavinikoo, Hadi; Fotouhi, Fatemeh; Ardebili, Abdollah

    2017-09-01

    Vaccines based on virus-like particles are effective against Human Papilloma Virus (HPV) infection; however, they have not shown a therapeutic effect against HPV-associated diseases. New immunotherapy strategies based on immune responses against tumor antigens can positively affect the clearance of HPV-associated lesions. To generate two therapeutic fusion DNA vaccines (optimizedE7/mouseHSP70 and wildE7/mouseHSP70) to induce antitumor specific responses in mice models. Mice were immunized with recombinant DNA vaccines. The splenocytes of immunized mice were collected and lactate dehydrogenase and IFN-γ productions were measured after three injections in order to evaluate cytotoxic T lymphocytes (CTLs) activity. MTT assay was carried out for lymphocyte stimulation. The fusion DNA vaccines, specifically uE7-HSP70, elicited varying levels of IFN-γ and CTLs responses compared to the control group (P<0.05). Furthermore, antitumor response and tumor size reduction in fusion DNA vaccines groups were significantly higher than in the negative control group (P<0.05). It is concluded that our fusion DNA vaccines considerably enhanced specific cellular responses against HPV tumor model. In addition, optimized E7 showed a notable immunogenicity and inhibitory effect on the reduction of tumor size.

  14. Adjuvant effect of polysaccharide from fruits of Physalis alkekengi L. in DNA vaccine against systemic candidiasis.

    Science.gov (United States)

    Yang, Huimin; Han, Shuying; Zhao, Danyang; Wang, Guiyun

    2014-08-30

    Adjuvant effect mediated by polysaccharide (PPSB) isolated from the fruits of Physalis alkekengi L. in DNA vaccine was evaluated in mice. Recombinant plasmid containing epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans (C. albican) was used as DNA vaccine (pD-HSP90C). The results indicated that PPSB significantly enhanced specific antibody titers IgG, IgG1, IgG2b, and concentration of IL-2 and IL-4 in sera of mice immunized with pD-HSP90C (p<0.05). More importantly, it was found that the mice immunized with pD-HSP90C/PPSB not only had fewer CFU (colony forming unites) in the kidneys than mice immunized with pD-HSP90C, but also a statistically significant higher survival rate over PBS-injected group (p<0.05) when the immunized mice were challenged with living C. albican cells. However, no statistically significant difference in survival rate was observed between pD-HSP90C-immunized group and PBS-injected group. Therefore, PPSB can be considered as a promising adjuvant eliciting both Th1 and Th2 responses to enhance the efficacy of DNA vaccines.

  15. Immunogenicity and protective efficacy study using combination of four tuberculosis DNA vaccines

    Institute of Scientific and Technical Information of China (English)

    蔡宏; 田霞; 呼西旦; 潘怡; 李国利; 庄玉辉; 朱玉贤

    2003-01-01

    Immune response and protective efficacy for the combination of four tuberculosis DNA vaccines were evaluated in this study. We obtained 1:200 antibody titers against Ag85B 21d after mice were vaccinated for the first time by four recombinant eukaryotic expression vectors containing coding sequences for Ag85B, MPT-64, MPT-63 and ESAT-6. The titers of Ag85B were elevated to 1:102400 after the second injection and decreased to 1:12800 after the third injection. Antibody titers for MPT-64 and MPT-63 reached 1:25600 21 d after the first vaccination, and were then decreased following the second and third injections. No antigen-specific antibody titer against ESAT-6 was detected in sera harvested from immunized mice at any time. These DNA vaccines evoked specific IFN-λ responses in the spleens of vaccinated mice as well. When challenged with M. tuberculosis H37Rv, we found that the lungs of the vaccinated mice produced 99.8% less bacterial counts than that of the empty-vector control group and the bacterial counts were also significantly less than that of the BCG group. Histopathological analyses showed that the lungs of vaccinated mice produced no obvious caseation while over 50%-70% of the pulmonary parenchyma tissue produced central caseation in the vector control group. Our results indicated that the combination of four tuberculosis DNA vaccines may generate high levels of immune responses and result in better animal protection.

  16. Preventive and therapeutic DNA vaccination partially protect dogs against an infectious challenge with Trypanosoma cruzi.

    Science.gov (United States)

    Quijano-Hernández, Israel A; Castro-Barcena, Alejandro; Vázquez-Chagoyán, Juan C; Bolio-González, Manuel E; Ortega-López, Jaime; Dumonteil, Eric

    2013-04-26

    American trypanosomiasis, or Chagas disease, is caused by Trypanosoma cruzi, and a vaccine would greatly improve disease control. While some studies in mice suggest that a vaccine is feasible, limited efficacy has been observed in dogs. We evaluated here the safety and efficacy of a DNA vaccine encoding TSA-1 and Tc24 antigens in a dog model of acute T. cruzi infection. Mongrel dogs were immunized with two doses of 500 μg of DNA vaccine, two weeks apart, and infected with T. cruzi (SylvioX10/4 strain) two weeks after the second vaccine dose. Another group of dogs was infected first and treated with the vaccine. Disease progression was monitored for up to 70 days post-infection. The vaccine did not induce any critical change in blood parameters, nor exacerbation of disease in vaccinated animals. On the contrary, it prevented anemia and a decrease in lymphocyte counts following T. cruzi infection in vaccinated dogs. Both preventive and therapeutic vaccination significantly reduced parasitemia, cardiac inflammation and cardiac parasite burden, and tended to reduce the development of cardiac arrhythmias. These results indicate that a preventive or therapeutic DNA vaccine encoding TSA-1 and Tc24 antigens is safe and may reduce both parasite transmission and the clinical progression of Chagas disease in vaccinated dogs. This DNA vaccine may thus be an excellent veterinary vaccine candidate. These data also further strengthen the feasibility of a Chagas disease vaccine for humans.

  17. Evaluation of a DNA Vaccine for Immunocontraceptive Potential Against Zona Pellucida Glycoproteins in Cattle

    Directory of Open Access Journals (Sweden)

    C. A. Foley

    2007-01-01

    Full Text Available Holstein cows were administered zona pellucida (ZP DNA vaccine and used to determine the potential of recombinant rabbit ZP glycoproteins (rZP as immunocontraceptive antigens. Zona pellucida proteins were purified and quantified. Cows were assigned to one of four treatment groups in which plasmids encoding rabbit ZP proteins were administered, i.d., using a gene gun (ZP55, n=2; ZP75, n=2; Hep55, n=2; and Control, n=3. Blood samples were taken before initial vaccination, once weekly for 5 wk and at 148 wk post-immunization. An ELISA was developed to assess anti-ZP titer levels in cow serum and ovarian function in cows was monitored using trans-rectal ultrasonography. Four of the six cows in ZP treatment groups developed antibody titer levels with similar linear responses over time. These cows also experienced reduced ovarian function as indicated by decreases in follicular and luteal activity. Estrous activity was observed in all cows and decreased in ZP treatment cows in comparison to Controls. Further research is needed to determine the relationship between ZP immunocontraception and ovarian function. Still, this study provides a basis for future researchers to use in developing a contraceptive vaccine for cattle.

  18. DNA vaccine prime and recombinant FPV vaccine boost: an important candidate immunization strategy to control bluetongue virus type 1.

    Science.gov (United States)

    Li, Junping; Yang, Tao; Xu, Qingyuan; Sun, Encheng; Feng, Yufei; Lv, Shuang; Zhang, Qin; Wang, Haixiu; Wu, Donglai

    2015-10-01

    Bluetongue virus (BTV) is the causative agent of bluetongue (BT), an important sheep disease that caused great economic loss to the sheep industry. There are 26 BTV serotypes based on the outer protein VP2. However, the serotypes BTV-1 and BTV-16 are the two most prevalent serotypes in China. Vaccination is the most effective method of preventing viral infections. Therefore, the need for an effective vaccine against BTV is urgent. In this study, DNA vaccines and recombinant fowlpox virus (rFPV) vaccines expressing VP2 alone or VP2 in combination with VP5 or co-expressing the VP2 and VP5 proteins of BTV-1 were evaluated in both mice and sheep. Several strategies were tested in mice, including DNA vaccine prime and boost, rFPV vaccine prime and boost, and DNA vaccine prime and rFPV vaccine boost. We then determined the best vaccine strategy in sheep. Our results indicated that a strategy combining a DNA vaccine prime (co-expressing VP2 and VP5) followed by an rFPV vaccine boost (co-expressing VP2 and VP5) induced a high titer of neutralizing antibodies in sheep. Therefore, our data suggest that a DNA vaccine consisting of a pCAG-(VP2+VP5) prime and an rFPV-(VP2+VP5) boost is an important candidate for the design of a novel vaccine against BTV-1.

  19. Enhancement of DNA vaccine-induced immune responses by a 72-bp element from SV40 enhancer

    Institute of Scientific and Technical Information of China (English)

    LI Hai-shan; XU Jian-qing; HONG Kun-xue; SHAO Yi-ming; LIU Yong; LI Ding-feng; ZHANG Ran-ran; TANG Hai-li; ZHANG Yu-wei; HUANG Wei; LIU Ying; PENG Hong

    2007-01-01

    Background Although DNA vaccine is considered as the next generation of vaccine, most DNA vaccine candidates are still suffering from the relatively weak immunogenicity despite the increased dosage of plasmid DNA administered. In order to enhance the immune responses elicited by a codon-optimized HIV gag DNA vaccine, a modified plasmid vector pDRVI1.0 and a booster immunization with replicating Tiantan vaccinia (RTV) strain expressing the same gene were employed.Methods Vector pDRVI1.0 was constructed through inserting the 72-bp element from the SV40 enhancer, which was reported promoting nuclear transport of plasmid DNA, to the upstream of cytomegalovirus enhancer/promoter region of the plasmid vector pVR1012. Gene expression levels from expression plasmids based on pDRVI1.0 and pVR1012 were tested. Humoral and cellular immune responses induced by DNA vaccine alone or DNA prime-RTV boost regimen were determined in mice.Results It was shown that the 72-bp element significantly enhanced the gene expression level in non-dividing cells.gag-specific humoral and cellular immune responses induced by DNA vaccination were both significantly improved, while the Th1/Th2 balance was not obviously affected by the 72-bp element. RTV boosting further significantly enhanced DNA vaccine-primed antibody and T cell responses in a Th1-biased manner.Conclusions The 72-bp SV40 enhancer element should be included in the DNA vaccine vector and RTV strain is a very efficient live vector for boosting immunization.

  20. Bacterial antigen expression is an important component in inducing an immune response to orally administered Salmonella-delivered DNA vaccines.

    Directory of Open Access Journals (Sweden)

    Michelle E Gahan

    Full Text Available BACKGROUND: The use of Salmonella to deliver heterologous antigens from DNA vaccines is a well-accepted extension of the success of oral Salmonella vaccines in animal models. Attenuated S. typhimurium and S. typhi strains are safe and efficacious, and their use to deliver DNA vaccines combines the advantages of both vaccine approaches, while complementing the limitations of each technology. An important aspect of the basic biology of the Salmonella/DNA vaccine platform is the relative contributions of prokaryotic and eukaryotic expression in production of the vaccine antigen. Gene expression in DNA vaccines is commonly under the control of the eukaryotic cytomegalovirus (CMV promoter. The aim of this study was to identify and disable putative bacterial promoters within the CMV promoter and evaluate the immunogenicity of the resulting DNA vaccine delivered orally by S. typhimurium. METHODOLOGY/PRINCIPAL FINDINGS: The results reported here clearly demonstrate the presence of bacterial promoters within the CMV promoter. These promoters have homology to the bacterial consensus sequence and functional activity. To disable prokaryotic expression from the CMV promoter a series of genetic manipulations were performed to remove the two major bacterial promoters and add a bacteria transcription terminator downstream of the CMV promoter. S. typhimurium was used to immunise BALB/c mice orally with a DNA vaccine encoding the C-fragment of tetanus toxin (TT under control of the original or the modified CMV promoter. Although both promoters functioned equally well in eukaryotic cells, as indicated by equivalent immune responses following intramuscular delivery, only the original CMV promoter was able to induce an anti-TT specific response following oral delivery by S. typhimurium. CONCLUSIONS: These findings suggest that prokaryotic expression of the antigen and co-delivery of this protein by Salmonella are at least partially responsible for the successful

  1. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... immunised by particle-mediated epidermal delivery (gene gun) with DNA vaccines based on the haemagglutinin (HA) and neuraminidase (NA) and/or the matrix (M) and nucleoprotein genes of the 1918 H1N1 Spanish influenza pandemic virus or the 1968 H3N2 Hong Kong influenza pandemic virus. The animals were...... challenged with contemporary H1N1 or H3N2 viruses. Results We demonstrated that DNA vaccines encoding proteins of the original 1918 H1N1 pandemic virus induced protective cross-reactive immune responses in ferrets against infection with a 1947 H1N1 virus and a recent 1999 H1N1 virus. Similarly, a DNA vaccine...

  2. Influenza Plasmid DNA Vaccines: Progress and Prospects.

    Science.gov (United States)

    Bicho, Diana; Queiroz, João António; Tomaz, Cândida Teixeira

    2015-01-01

    Current influenza vaccines have long been used to fight flu infectious; however, recent advances highlight the importance of produce new alternatives. Even though traditional influenza vaccines are safe and usually effective, they need to be uploaded every year to anticipate circulating flu viruses. This limitation together with the use of embryonated chicken eggs as the substrate for vaccine production, is time-consuming and could involve potential biohazards in growth of new virus strains. Plasmid DNA produced by prokaryote microorganisms and encoding foreign proteins had emerged as a promising therapeutic tool. This technology allows the expression of a gene of interest by eukaryotic cells in order to induce protective immune responses against the pathogen of interest. In this review, we discuss the strategies to choose the best DNA vaccine to be applied in the treatment and prevention of influenza. Specifically, we give an update of influenza DNA vaccines developments, all involved techniques, their main characteristics, applicability and technical features to obtain the best option against influenza infections.

  3. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    Institute of Scientific and Technical Information of China (English)

    Yi-Ping Li; Hye Na Kang; Lorne A Babiuk; Qiang Liu

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models.METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation,ELISPOT for the number of interferon-γ secreting cells,and cytotoxic T lymphocyte assays.RESULTS: Intradermal injection of E2 DNA vaccine induced strong Th1-like immune responses in mice. In piglets, E2 DNA vaccine elicited moderate and more balanced immune responses. A DNA vaccine prime and protein boost vaccination strategy induced significantly higher E2-specific antibody levels and shifted the immune response towards Th2-like ones in piglets.CONCLUSION: A DNA vaccine expressing a secreted form of HCV E2 protein elicited E2-specific immune responses in mice and piglets. Recombinant E2 protein vaccination following DNA immunization significantly increased the antibody response in piglets. These HCV E2 vaccines may represent promising hepatitis C vaccine candidates for further investigations.

  4. Therapeutic DNA vaccines against tuberculosis: a promising but arduous task

    Institute of Scientific and Technical Information of China (English)

    LI Jun-ming; ZHU Dao-yin

    2006-01-01

    Objective To review recent developments in therapeutic DNA vaccines against tuberculosis.Data sources The data used in this review were obtained mainly from the studies of therapeutic DNA vaccines against tuberculosis reported from 2000 to 2006.Study selection Relevant articles about studies of therapeutic DNA vaccines against tuberculosis were selected.Data extraction Data were mainly extracted from the 32 articles listed in the reference section of this review.Results Some DNA vaccines which previously showed to induce protective immunity against infection by Mycobacterium tuberculosis in a prophylactic manner are also surprisingly effective when used therapeutically,including persistent Mycobacterium tuberculosis and multidrug-resistant tuberculosis which are refractory to immune system and antibacterial chemotherapy alone. When used in combination with antibacterial drugs,therapeutic DNA vaccines could effectively eliminate residual bacteria in infected animals and shorten the therapy course of conventional chemotherapy. Detailed studies demonstrated that therapeutic effects of DNA vaccines may at least partly be due to the restoration of the Th1/Th2 balance. Some problems have also emerged along with these exciting results.Conclusions Therapeutic DNA vaccine is a promising strategy against tuberculosis, however developing an ideal DNA vaccine for therapy of tuberculosis will require further development.

  5. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and

  6. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and clini

  7. Licensed DNA Vaccines against Infectious Hematopoietic Necrosis Virus (IHNV).

    Science.gov (United States)

    Alonso, Marta; Leong, Jo-Ann C

    2013-04-01

    This article reviews some of the recent patents on DNA vaccines against fish viruses, in particular against the novirhabdovirus infectious hematopoitic necrosis virus (IHNV). Although very effective in protecting fish against IHNV, only one DNA vaccine has been approved to date for use in Canada. In Europe and in US, its commercialization is restricted due to safety concerns.

  8. Interleukin-12 as a Genetic Adjuvant Enhances Hepatitis C Virus NS3 DNA Vaccine Immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Malihe Naderi; Atefeh Saeedi; Abdolvahab Moradi; Mishar Kleshadi; Mohammad Reza Zolfaghari; Ali Gorji; Amir Ghaemi

    2013-01-01

    Hepatitis C virus (HCV) chronic infection is a worldwide health problem,and numerous efforts have been invested to develop novel vaccines.An efficient vaccine requires broad immune response induction against viral proteins.To achieve this goal,we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice.In this study,the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1 a.The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector,and gene expression was detected by western blot.The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice.After the final immunizations,lymphocyte proliferation,cytotoxicity,and cytokine levels were assessed to measure immune responses.Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05).Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05).Collectively,our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.

  9. CTL responses to Leishmania mexicana gp63-cDNA vaccine in a murine model.

    Science.gov (United States)

    Ali, S A; Rezvan, H; McArdle, S E; Khodadadi, A; Asteal, F A; Rees, R C

    2009-07-01

    Immunity to Leishmania is believed to be strongly dependent upon the activation of Th1 immune responses, although the exact role of cytotoxic T lymphocytes (CTLs) has not yet been determined. The aims of this study were to establish a suitable cytotoxicity assay to measure CTL activity and to compare immunity induced by Leishmania mexicana gp63 cDNA via i.m. injection and gene gun immunization in the BALB/c mouse model. The CTL activity was evaluated by short-term (51)Cr-release cytotoxicity assays against CT26 tumour cells transfected with L. mexicana gp63 cDNA and dendritic cells (DCs) loaded with soluble Leishmania antigen (SLA) as targets. The results clearly demonstrated that higher protection to L. mexicana infection was induced by gene gun DNA-immunization vs. i.m. injection. Cytotoxic T lymphocyte activity of splenocytes was observed in mice immunized either with L. mexicana gp63 cDNA or SLA and long-lived CTL activity was observed in immunized and/or re-challenged mice but not naïve mice infected with the parasite.

  10. Construction of Helicobacter pylori Lpp20 DNA vaccine and primary study of its immunocompetence in mice%幽门螺杆菌Lpp20核酸疫苗的构建及其免疫活性的初步研究

    Institute of Scientific and Technical Information of China (English)

    刘志杰; 张艳; 黎村艳; 邱宏; 余敏君

    2008-01-01

    目的 构建幽门螺杆菌脂蛋白Lpp20基因的真核表达载体pcDNA3.1(+)/Lpp20,并在HeLa细胞中进行表达.通过肌肉注射免疫C57BL/6小鼠,观察其诱导小鼠产生的体液免疫和细胞免疫应答水平.方法 用PCR法扩增Lpp20全基因,再将Lpp20基因克隆至pcDNA3.1(+)真核细胞表达载体构建pcDNA3.1(+)/Lpp20重组体,观察其在HeLa细胞中的表达.将核酸疫苗PcDNA3.1(+)/Lpp20、对照空质粒pcDNA3.1(+)及PBS分组通过肌肉注射免疫6周龄C57BL/6小鼠.隔2周免疫一次,共免疫4次.间接ELISA法测定小鼠血清中抗Lpp20 IgG抗体水平,双抗体夹心ELISA法检测脾淋巴细胞培养上清中IFN-γ水平,MTT比色法检测脾淋巴细胞增殖反应.通过PCR法检测小鼠肌细胞中Lpp20基因的存在.结果 小鼠接种pcDNA3.1(+)/Lpp20核酸疫苗后能产生特异性IgG抗体,6周后ELISA测定血清抗体A450值为0.74,效价为1:1024.核酸疫苗免疫组小鼠脾淋巴细胞经特异性抗原刺激后,培养上清中IFN-γ含量明显升高[(410.36±56.23)ps/ml],与空质粒组[(25.26±10.85)pg/ml]之间差异有统计学意义(P<0.01).脾淋巴细胞增殖反应测定,核酸疫苗组小鼠脾淋巴细胞经特异性抗原刺激后,刺激指数(2.37±0.22)明显高于空质粒组(1.53±0.47)和PBS组(1.20±0.13),P<0.01.PCR检测Lpp20基因可在小鼠肌细胞中存在.结论 成功构建了pcDNA3.1(+)/Lpp20核酸疫苗,且其在小鼠体内可诱导较强的特异性体液免疫和细胞免疫应答.为进一步研究该疫苗的免疫保护作用提供实验依据.%Objective To construct an eukaryotic expression plasmid PeDNA3.1 (+)/Lpp20 and to detect its expression in HeLa cells, and to observe the humoral and cellular immune responses in C57BL/6 mice induced by the Helicobacter pylori Lpp20 DNA vaccine injected intramuscularly. Methods The Lpp20 gene was amplified by PCR. PCR product was subcloned into the eukaryotic expression vector pcDNA3.1 (+)/ Lpp20, and the recombinant plasmid was

  11. A Multi-Agent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges

    Science.gov (United States)

    2016-07-26

    and 44 eastern equine encephalitis virus (EEEV) are recognized as significant biological defense threats . 45 There are currently no licensed human...stable (4). 75 Consequently, VEEV, WEEV, and EEEV represent significant potential biological defense 76 threats and are classified as Category B...obtained from vaccinated mice using 223 BD Falcon 100 µM nylon cell strainers ( Corning , Catalog # 352360) were resuspended in 224 complete RPMI 1640

  12. A DNA Vaccine for Crimean Congo Hemorrhagic Fever Protects Against Disease and Death in Two Lethal Mouse Models

    Science.gov (United States)

    2017-09-18

    currently no licensed vaccines to prevent CCHFV infection. We developed a DNA vaccine expressing the M-segment glycoprotein genes of CCHFV and assessed its...immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel...humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models.

  13. A recombinant DNA vaccine encoding C. andersoni oocyst wall protein induces immunity against experimental C. parvum infection.

    Science.gov (United States)

    Zheng, Jun; Ren, Wenzhi; Pan, Qingshan; Wang, Qiuyue; Elhag, I A Elfaki; Li, Jianhua; Li, Mingying; Gong, Pengtao; Liu, Yingli; Zhang, Xichen

    2011-06-30

    Cryptosporidium andersoni parasited in the abomasum has been demonstrated as a cause of reduction of milk production in dairy cow. In this study, a novel chimeric DNA vaccine pVAX1-AB was constructed and the efficacy against Cryptosporidium parvum was determined. BALB/c mice were divided into 3 groups and immunized with DNA vaccine expressing the oocyst wall protein, AB protein of C. andersoni, the recombinant plasmid containing the AB gene, respectively. After inoculation of 1 × 10(6) oocysts of C. parvum, the humoral and cellular immune responses were detected. Experimental results showed that the recombinant plasmid can induce corresponding specific antibody response, simultaneously influenced cellular immune responses, and provided greater protection rate (48.6%) than the other groups. These results indicated that chimeric DNA vaccine has a potential in Cryptosporidium vaccine development.

  14. Antitumor immunity induced by DNA vaccine encoding alpha-fetoprotein/heat shock protein 70

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Guo-Zhen Liu; Ai-Li Song; Hai-Yan Li; Yu Liu

    2004-01-01

    AIM: To construct a DNA vaccine encoding human alphafetoprotein (hAFP)/heat shock protein 70 (HSP70), and to study its ability to induce specific CTL response and its protective effect against AFP-expressing tumor.METHODS: A DNA vaccine was constructed by combining hAFP gene with HSP70 gene. SP2/0 cells were stably transfected with pBBS212-hAFP and pBBS212-hAFP/HSP70eukaryotic expression vectors. Mice were primed and boosted with DNA vaccine hAFP/HSP70 by intramuscular injection, whereas plasmid with hAFP or HSP70 was used as controls. ELISPOT and ELISA were used to detect IFN-γ-producing splenocytes and the level of serum anti-AFP antibody from immunized mice respectively. In vivo tumor challenge was measured to assess the immune effect of the DNA vaccine.RESULTS: By DNA vaccine immunization, the results of ELISPOT and ELISA showed that the number of IFN-γ-producing splenocytes and the level of serum anti-AFP antibody were significantly higher in rhAFP/HSP70 group than in hAFP and empty plasmid groups (95.50±10.90IFN-γ spots/106 cells vs 23.60±11.80 IFN-γ spots/106 cells,7.17±4.24 IFN-γ spots/106 cells, P<0.01; 126.50±8.22 μg/mL vs 51.72±3.40 μg/mL, 5.83±3.79 μg/mL, P<0.01). The tumor volume in rhAFP/HSP70 group was significantly smaller than that in pBBS212-hAFP and empty plasmid groups (37.41±7.34 mm3 vs381.13±15.48 mm3, 817.51±16.25 mm3,P<0.01).CONCLUSION: Sequential immunization with a recombinant DNA vaccine encoding AFP and heat shock protein70 could generate effective AFP-specific T cell responses and induce definite antitumor effects on AFP-producing tumors, which may be suitable for some clinical testing as a vaccine for HCC.

  15. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  16. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... no permanent tissue damage. To further investigate the ability of DNA-based vaccines to induce protective immunity in fish, viral haemorrhagic septicaemia virus G and N genes were cloned individually into an expression plasmid. Both G and N proteins produced in transfected fish cells appeared identical...... protein, killing the transfected host cells and ablating further expression of G protein and luciferase. Finally, young rainbow trout injected with the G construct, alone or together with the N construct, were strongly protected against challenge with live virus. These results suggest that DNA vaccines...

  17. Strategies and hurdles using DNA vaccines to fish.

    Science.gov (United States)

    Hølvold, Linn B; Myhr, Anne I; Dalmo, Roy A

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen - and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish.

  18. Polyclonal antibody cocktails generated using DNA vaccine technology protect in murine models of orthopoxvirus disease

    Directory of Open Access Journals (Sweden)

    Ballantyne John

    2011-09-01

    Full Text Available Abstract Background Previously we demonstrated that DNA vaccination of nonhuman primates (NHP with a small subset of vaccinia virus (VACV immunogens (L1, A27, A33, B5 protects against lethal monkeypox virus challenge. The L1 and A27 components of this vaccine target the mature virion (MV whereas A33 and B5 target the enveloped virion (EV. Results Here, we demonstrated that the antibodies produced in vaccinated NHPs were sufficient to confer protection in a murine model of lethal Orthopoxvirus infection. We further explored the concept of using DNA vaccine technology to produce immunogen-specific polyclonal antibodies that could then be combined into cocktails as potential immunoprophylactic/therapeutics. Specifically, we used DNA vaccines delivered by muscle electroporation to produce polyclonal antibodies against the L1, A27, A33, and B5 in New Zealand white rabbits. The polyclonal antibodies neutralized both MV and EV in cell culture. The ability of antibody cocktails consisting of anti-MV, anti-EV, or a combination of anti-MV/EV to protect BALB/c mice was evaluated as was the efficacy of the anti-MV/EV mixture in a mouse model of progressive vaccinia. In addition to evaluating weight loss and lethality, bioimaging technology was used to characterize the spread of the VACV infections in mice. We found that the anti-EV cocktail, but not the anti-MV cocktail, limited virus spread and lethality. Conclusions A combination of anti-MV/EV antibodies was significantly more protective than anti-EV antibodies alone. These data suggest that DNA vaccine technology could be used to produce a polyclonal antibody cocktail as a possible product to replace vaccinia immune globulin.

  19. A hantavirus pulmonary syndrome (HPS) DNA vaccine delivered using a spring-powered jet injector elicits a potent neutralizing antibody response in rabbits and nonhuman primates.

    Science.gov (United States)

    Kwilas, Steve; Kishimori, Jennifer M; Josleyn, Matthew; Jerke, Kurt; Ballantyne, John; Royals, Michael; Hooper, Jay W

    2014-01-01

    Sin Nombre virus (SNV) and Andes virus (ANDV) cause most of the hantavirus pulmonary syndrome (HPS) cases in North and South America, respectively. The chances of a patient surviving HPS are only two in three. Previously, we demonstrated that SNV and ANDV DNA vaccines encoding the virus envelope glycoproteins elicit high-titer neutralizing antibodies in laboratory animals, and (for ANDV) in nonhuman primates (NHPs). In those studies, the vaccines were delivered by gene gun or muscle electroporation. Here, we tested whether a combined SNV/ANDV DNA vaccine (HPS DNA vaccine) could be delivered effectively using a disposable syringe jet injection (DSJI) system (PharmaJet, Inc). PharmaJet intramuscular (IM) and intradermal (ID) needle-free devices are FDA 510(k)-cleared, simple to use, and do not require electricity or pressurized gas. First, we tested the SNV DNA vaccine delivered by PharmaJet IM or ID devices in rabbits and NHPs. Both IM and ID devices produced high-titer anti-SNV neutralizing antibody responses in rabbits and NHPs. However, the ID device required at least two vaccinations in NHP to detect neutralizing antibodies in most animals, whereas all animals vaccinated once with the IM device seroconverted. Because the IM device was more effective in NHP, the Stratis(®) (PharmaJet IM device) was selected for follow-up studies. We evaluated the HPS DNA vaccine delivered using Stratis(®) and found that it produced high-titer anti-SNV and anti-ANDV neutralizing antibodies in rabbits (n=8/group) as measured by a classic plaque reduction neutralization test and a new pseudovirion neutralization assay. We were interested in determining if the differences between DSJI delivery (e.g., high-velocity liquid penetration through tissue) and other methods of vaccine injection, such as needle/syringe, might result in a more immunogenic DNA vaccine. To accomplish this, we compared the HPS DNA vaccine delivered by DSJI versus needle/syringe in NHPs (n=8/group). We found

  20. A Hantavirus Pulmonary Syndrome (HPS) DNA Vaccine Delivered Using a Spring-powered Jet Injector Elicits a Potent Neutralizing Antibody
Response in Rabbits and Nonhuman Primates

    Science.gov (United States)

    Kwilas, Steve; Kishimori, Jennifer M.; Josleyn, Matthew; Jerke, Kurt; Ballantyne, John; Royals, Michael; Hooper, Jay W.

    2014-01-01

    Sin Nombre virus (SNV) and Andes virus (ANDV) cause most of the hantavirus pulmonary syndrome (HPS) cases in North and South America, respectively. The chances of a patient surviving HPS are only two in three. Previously, we demonstrated that SNV and ANDV DNA vaccines encoding the virus envelope glycoproteins elicit high-titer neutralizing antibodies in laboratory animals, and (for ANDV) in nonhuman primates (NHPs). In those studies, the vaccines were delivered by gene gun or muscle electroporation. Here, we tested whether a combined SNV/ANDV DNA vaccine (HPS DNA vaccine) could be delivered effectively using a disposable syringe jet injection (DSJI) system (PharmaJet, Inc). PharmaJet intramuscular (IM) and intradermal (ID) needle-free devices are FDA 510(k)-cleared, simple to use, and do not require electricity or pressurized gas. First, we tested the SNV DNA vaccine delivered by PharmaJet IM or ID devices in rabbits and NHPs. Both IM and ID devices produced high-titer anti-SNV neutralizing antibody responses in rabbits and NHPs. However, the ID device required at least two vaccinations in NHP to detect neutralizing antibodies in most animals, whereas all animals vaccinated once with the IM device seroconverted. Because the IM device was more effective in NHP, the Stratis® (PharmaJet IM device) was selected for follow-up studies. We evaluated the HPS DNA vaccine delivered using Stratis® and found that it produced high-titer anti-SNV and anti-ANDV neutralizing antibodies in rabbits (n=8/group) as measured by a classic plaque reduction neutralization test and a new pseudovirion neutralization assay. We were interested in determining if the differences between DSJI delivery (e.g., high-velocity liquid penetration through tissue) and other methods of vaccine injection, such as needle/syringe, might result in a more immunogenic DNA vaccine. To accomplish this, we compared the HPS DNA vaccine delivered by DSJI versus needle/syringe in NHPs (n=8/group). We found that

  1. SARS S603-620 epitope DNA vaccine could elicit humoral immune responses in BLAB/c mice%SARS S603-620表位核酸疫苗诱导BLAB/c小鼠产生特异性体液免疫应答

    Institute of Scientific and Technical Information of China (English)

    朱郇悯; 谢红艳; 陈殿慧; 罗雪平; 黄俊

    2012-01-01

    目的 构建SARSS抗原的B细胞表位核酸疫苗并观察其免疫效果.方法 将已经鉴定的SARS S抗原的B细胞表位S603-620的编码DNA序列插入真核表达载体PCI中,构建核酸疫苗(PCI-S603-620).使用EcoR Ⅰ和Xba Ⅰ酶切,电泳及DNA测序鉴定.使用脂质体将PCI-S603-620转入293A细胞,使用ELISA检测其在真核细胞中的表达.使用PCI-S60-620免疫小鼠,ELISA检测其诱导的抗体情况.结果 对PCI-S603-620进行酶切鉴定,电泳结果表明目的基因片段分子量为100 bp左右.PCI-S603-620的DNA测序结果表明其序列与设计序列吻合.PCI-S603-620能在转染的293A细胞中表达.PCI-S603-620免疫小鼠可以诱导特异性抗体产生,效价为1∶400.该抗体可以特异性识别SARS S抗原.结论 成功构建SARS S抗原的B细胞表位核酸疫苗(PCI-S603-620).%Objective To design B-Cell epitope DNA vaccine against S protein of severe acute respiratory syndrome coronavirus (SARS-CoV) and evaluate its immune effect in BLAB/c mice. Methods SARS S antigen B-Cell epitope S603-620 coding DNA sequence was cloned into eukaryotic expression vector PCI to construct recombinant DNA Vaccine (PCI-S603-620). It was verified by restriction enzymes cutting, electrophoresis experiment and DNA sequencing.The recombinant plasmid was transfected into 293A cells with liposome. ELISA was used to detect its expression. BLAB/c mice were inoculated with PCI-S603-620. The antibody was determined by ELISA. Results Restriction analysis enzymes cutting and electrophoresis experiment proved that target gene segment was about 100 bp. DNA sequencing showed that the sequence is the same with the designed sequence. PCI-S603-620 could express in transfected 293A cells. The titer of antibody it induced in BLAB/c mice was 1400, which could specifically recognize SARS S antigen. Conclusion B-Cell epitope DNA vaccine against S protein of SARS was successfully constructed.

  2. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice

    Science.gov (United States)

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  3. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Qing-tian LI; Yong-zhang ZHU; Jia-you CHU; Ke DONG; Ping HE; Chun-yan FENG; Bao-yu HU; Shu-min ZHANG; Xiao-kui GUO

    2006-01-01

    Aim: To investigate a new strategy to enhance the efficacy of a recombinant pertussis DNA vaccine. The strategy is co-injection with cytokine plasmids as prime, and boosted with purified homologous proteins. Method: A recombinant pertussis DNA vaccine containing the pertussis toxin subunit 1 (PTS1), fragments of the filamentous hemagglutinin (FHA) gene and pertactin (PRN) gene encoding filamentous hemagglutinin and pertactin were constructed. Balb/c mice were immunized with several DNA vaccines and antigen-specific antibodies anti-PTSl, anti-PRN, anti-FHA, cytokines interleukin (IL)-10, IL-4, IFN-γ, TNF-oc, and spleno-cyte-proliferation assay were used to describe immune responses. Results: The recombinant DNA vaccine could elicit similar immune responses in mice as that of separate plasmids encoding the 3 fragments, respectively. Mice immunized with DNA and boosted with the corresponding protein elicited more antibodies than those that received DNA as boost. In particular, when the mice were co-immunized with murine granulocyte-macrophage colony-stimulating factor plasmids and boosted with proteins, all 4 cytokines and the 3 antigen-specific antibodies were significantly increased compared to the pVAXl group. Anti-PTSl, anti-FHA, IL-4 and TNF-α elicited in the colony stimulating factor (CSF) prime-protein boost group showed significant increase compared to all the other groups. Conclusion: This prime and boost strategy has proven to be very useful in improving the immunogenicity of DNA vaccines against pertussis.

  4. Protective effect of DNA vaccine encoding pseudomonas exotoxin A and PcrV against acute pulmonary P. aeruginosa Infection.

    Directory of Open Access Journals (Sweden)

    Mingzi Jiang

    Full Text Available Infections with Pseudomonas aeruginosa have been a long-standing challenge for clinical therapy because of complex pathogenesis and resistance to antibiotics, thus attaching importance to explore effective vaccines for prevention and treatment. In the present study, we constructed a novel DNA vaccine by inserting mutated gene toxAm encoding Pseudomonas Exotoxin A and gene pcrV encoding tip protein of the type III secretion system into respective sites of a eukaryotic plasmid pIRES, named pIRES-toxAm-pcrV, and next evaluated the efficacy of the vaccine in murine acute Pseudomonas pneumonia models. Compared to DNA vaccines encoding single antigen, mice vaccinated with pIRES-toxAm-pcrV elicited higher levels of antigen-specific serum immunoglobulin G (IgG, enhanced splenic cell proliferation and cytokine secretion in response to Pseudomonas aeruginosa antigens, additionally PAO1 challenge in mice airway resulted in reduced bacteria burden and milder pathologic changes in lungs. Besides, it was observed that immunogenicity and protection could be promoted by the CpG ODN 1826 adjuvant. Taken together, it's revealed that recombinant DNA vaccine pIRES-toxAm-pcrV was a potential candidate for immunotherapy of Pseudomonas aeruginosa infection and the CpG ODN 1826 a potent stimulatory adjuvant for DNA vaccination.

  5. EFFECTS OF SEVERAL DNA VACCINES AGAINST SARS ON VITAL ORGANS OF BALB/c MICE: A HISTOPATHOLOGICAL STUDY%几种SARS DNA疫苗对BALB/c小鼠重要器官影响的组织病理学研究

    Institute of Scientific and Technical Information of China (English)

    刘向前; 高世同; 刘能保; 吴少庭; 秦莉; 袁仕善; 黄达娜; 雷明军; 潘晖榕; 林绮萍; 张仁利

    2006-01-01

    目的用组织病理学方法观察几种SARS DNA疫苗对BALB/c小鼠重要器官的影响,为研制安全有效的SARS DNA疫苗奠定基础. 方法用RT-PCR的方法从SARS冠状病毒(SARS-CoV)基因组中扩增出M片段、E片段、N片段和S基因的两个主要片段S1, S2,然后将这些基因片段分别亚克隆至pVAC真核表达载体,制备出几种SARS DNA疫苗pVAC-S1、 pVAC-S2、 pVAC-M、 pVAC-E、pVAC-N.用这些疫苗分别或联合免疫BALB/c小鼠后,取小鼠重要器官心、肝、脾、肺、肾,观察其组织病理学改变. 结果鼠心、脾和肾未见明显的组织病理学异常,但部分小鼠的肝和肺表现出下列病理变化:肝:出现片状肝细胞染色加深和肝细胞核固缩等凋亡早期改变,部分还可见到肝细胞水变性和肝窦变窄甚至消失等病变.肺:肺泡隔增厚,肺泡轮廓消失,或肺组织淤血水肿,甚至出现支气管肺炎改变.同时,在pVAC空质粒对照组也可见个别小鼠出现上述肝、肺病变. 结论由于对肝、肺产生组织病理学异常改变,制备高效、安全的SARS DNA疫苗还有待进一步研究和完善,载体的选择和质粒的用量也是必须加以考虑的问题.%Objective To observe the effect of several SARS DNA vaccines on vital organs of BALB/c mice by a histopathological method, so as to lay foundation for developing an effective and safe DNA vaccine against SARS. Methods The genes encoding M, E, N and S1, S2 (two main DNA fragments of S gene) were amplified from SARS-CoV genome RNA by RT-PCR method. Then several DNA vaccines, pVAC-S1, pVAC-S2, pVAC-M, pVAC-E, pVAC-N, were obtained by subcloning these DNA fragments into pVAC eukaryotic expression vector, respectively. After the BALB/c mice were immunized with these vaccines alone or in combination, the organs including heart, liver, spleen, lung and kidney were taken from the mice for histopathology study. Results No obvious changes were observed in heart, spleen and kidney, but part

  6. Targeting hepatitis B virus antigens to dendritic cells by heat shock protein to improve DNA vaccine potency

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate a novel DNA vaccination based upon expression of the HBV e antigen fused to a heat shock protein (HSP) as a strategy to enhance DNA vaccine potency.METHODS: A pCMV-HBeAg-HSP DNA vaccine and a control DNA vaccine were generated. Mice were immunized with these different construct. Immune responses were measured 2 wk after a second immunization by a T cell response assay, CTL cytotoxicity assay, and an antibody assay in C57BL/6 and BALB/c mice. CT26-HBeAg tumor cell challenge test in vivo was performed in BALB/c mice to monitor anti-tumor immune responses.RESULTS: In the mice immunized with pCMV-HBe-HSP DNA, superior CTL activity to target HBV-positive target cells was observed in comparison with mice immunized with pCMV-HBeAg (44% ± 5% vs 30% ± 6% in E: T > 50:1, P < 0.05). ELISPOT assays showed a stronger T-cell response from mice immunized with pCMV-HBe-HSP than that from pCMV-HBeAg immunized animals when stimulated either with MHC class Ⅰ or class Ⅱ epitopes derived from HBeAg (74% ± 9% vs 31% ± 6%, P < 0.01). ELISA assays revealed an enhanced HBeAg antibody response from mice immunized with pCMV-HBe-HSP than from those immunized with pCMV-HBeAg. The lowest tumor incidence and the slowest tumor growth were observed in mice immunized with pCMV-HBe-HSP when challenged with CT26-HBeAg.CONCLUSION: The results of this study demonstrate a broad enhancement of antigen-specific CD4+ helper,CD8+ cytotoxic T-cell, and B-cell responses by a novel DNA vaccination strategy. They also proved a stronger antigen-specific immune memory, which may be superior to currently described HBV DNA vaccination strategies for the treatment of chronic HBV infection.

  7. HIV DNA Vaccine: Stepwise Improvements Make a Difference

    Directory of Open Access Journals (Sweden)

    Barbara K. Felber

    2014-05-01

    Full Text Available Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.

  8. The past, current and future trends in DNA vaccine immunisations

    OpenAIRE

    Sidgi Syed Anwer Abdo Hasson; Juma Khalifa Zayid Al-Busaidi; Talal Abdulmalek Sallam

    2015-01-01

    This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can res...

  9. A comparative approach between heterologous prime-boost vaccination strategy and DNA vaccinations for rabies.

    Science.gov (United States)

    Borhani, Kiandokht; Ajorloo, Mehdi; Bamdad, Taravat; Mozhgani, Sayed Hamid Reza; Ghaderi, Mostafa; Gholami, Ali Reza

    2015-04-01

    Rabies is a widespread neurological zoonotic disease causing significant mortality rates, especially in developing countries. Although a vaccine for rabies is available, its production and scheduling are costly in such countries. Advances in recombinant DNA technology have made it a good candidate for an affordable vaccine. Among the proteins of rabies virus, the Glycoprotein (RVG) has been the major target for new vaccine development which plays the principal role in providing complete protection against RV challenge. The aim of this study is to produce recombinant RVG which could be a DNA vaccine candidate and to evaluate the efficiency of this construct in a prime-boost vaccination regimen, compared to commercial vaccine. Cloning to pcDNA3.1(+) and expression of rabies virus glycoprotein gene in BSR cell  line were performed followed by SDS-PAGE and Western blot analysis of the expressed glycoprotein. The resulting genetic construct was used as a DNA vaccine by injecting 80 µg of the plasmid to MNRI mice twice. Prime-Boost vaccination strategy was performed using 80 µg plasmid construct as prime dose and the second dose of an inactivated rabies virus vaccine. Production of rabies virus neutralizing antibody (RVNA) titers of the serum samples were determined by RFFIT. In comparisons between heterologous prime-boost vaccination strategy and DNA vaccinations, the potency of group D that received Prime-Boost vaccine with the second dose of pcDNA3.1(+)-Gp was enhanced significantly compared to the group C which had received pcDNA3.1(+)-Gp as first injection. In this study, RVGP expressing construct was used in a comparative approach between Prime-Boost vaccination strategy and DNA vaccination and compared with the standard method of rabies vaccination. It was concluded that this strategy could lead to induction of acceptable humoral immunity.

  10. A novel non-integrative single-cycle chimeric HIV lentivector DNA vaccine.

    Science.gov (United States)

    Moussa, Maha; Arrode-Brusés, Géraldine; Manoylov, Iliyan; Malogolovkin, Alexander; Mompelat, Dimitri; Ishimwe, Honorine; Smaoune, Amel; Ouzrout, Bilel; Gagnon, Jean; Chebloune, Yahia

    2015-05-05

    Novel HIV vaccine vectors and strategies are needed to control HIV/AIDS epidemic in humans and eradicate the infection. DNA vaccines alone failed to induce immune responses robust enough to control HIV-1. Development of lentivirus-based DNA vaccines deficient for integration and with a limited replication capacity is an innovative and promising approach. This type of vaccine mimics the early stages of virus infection/replication like the live-attenuated viruses but lacks the inconvenient integration and persistence associated with disease. We developed a novel lentivector DNA vaccine "CAL-SHIV-IN(-)" that undergoes a single round of replication in the absence of integration resulting in augmented expression of vaccine antigens in vivo. Vaccine gene expression is under control of the LTRs of a naturally attenuated lentivirus, Caprine arthritis encephalitis virus (CAEV) the natural goat lentivirus. The safety of this vaccine prototype was increased by the removal of the integrase coding sequences from the pol gene. We examined the functional properties of this lentivector DNA in cell culture and the immunogenicity in mouse models. Viral proteins were expressed in transfected cells, assembled into viral particles that were able to transduce once target permissive cells. Unlike the parental replication-competent SHIV-KU2 that was detected in DNA samples from any of the serial passage infected cells, CAL-SHIV-IN(-) DNA was detected only in target cells of the first round of infection, hence demonstrating the single cycle replication of the vaccine. A single dose DNA immunization of humanized NOD/SCID/β2 mice showed a substantial increase of IFN-γ-ELISPOT in splenocytes compared to the former replication and integration defective Δ4SHIV-KU2 DNA vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Comparison of protective properties of the smallpox DNA-vaccine based on the variola virus A30L gene and its variant with modified codon usage].

    Science.gov (United States)

    Maksiutov, R A; Shchelkunov, S N

    2011-01-01

    Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.

  12. DNA vaccination strategies against infectious diseases.

    Science.gov (United States)

    Watts, A M; Kennedy, R C

    1999-08-01

    DNA immunisation represents a novel approach to vaccine and immunotherapeutic development. Injection of plasmid DNA encoding a foreign gene of interest can result in the subsequent expression of the foreign gene products and the induction of an immune response within a host. This is relevant to prophylactic and therapeutic vaccination strategies when the foreign gene represents a protective epitope from a pathogen. The recent demonstration by a number of laboratories that these immune responses evoke protective immunity against some infectious diseases and cancers provides support for the use of this approach. In this article, we attempt to present an informative and unbiased representation of the field of DNA immunisation. The focus is on studies that impart information on the development of vaccination strategies against a number of human and animal pathogens. Investigations that describe the mechanism(s) of protective immunity induced by DNA immunisation highlight the advantages and disadvantages of this approach to developing vaccines within a given system. A variety of systems in which DNA vaccination has resulted in the induction of protective immunity, as well as the correlates associated with these protective immune responses, will be described. Particular attention will focus on systems involving parasitic diseases. Finally, the potential of DNA immunisation is discussed as it relates to veterinary medicine and its role as a possible vaccine strategy against animal coccidioses.

  13. The immune response induced by DNA vaccine expressing nfa1 gene against Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Lee, Sang-Hee; Sohn, Hae-Jin; Lee, Jinyoung; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2012-12-01

    The pathogenic free-living amoeba, Naegleria fowleri, causes fatal primary amoebic meningoencephalitis in experimental animals and in humans. The nfa1 gene that was cloned from N. fowleri is located on pseudopodia, especially amoebic food cups and plays an important role in the pathogenesis of N. fowleri. In this study, we constructed and characterized retroviral vector and lentiviral vector systems for nfa1 DNA vaccination in mice. We constructed the retroviral vector (pQCXIN) and the lentiviral vector (pCDH) cloned with the egfp-nfa1 gene. The expression of nfa1 gene in Chinese hamster ovary cell and human primary nasal epithelial cell transfected with the pQCXIN/egfp-nfa1 vector or pCDH/egfp-nfa1 vector was observed by fluorescent microscopy and Western blotting analysis. Our viral vector systems effectively delivered the nfa1 gene to the target cells and expressed the Nfa1 protein within the target cells. To evaluate immune responses of nfa1-vaccinated mice, BALB/c mice were intranasally vaccinated with viral particles of each retro- or lentiviral vector expressing nfa1 gene. DNA vaccination using viral vectors expressing nfa1 significantly stimulated the production of Nfa1-specific IgG subclass, as well as IgG levels. In particular, both levels of IgG2a (Th1) and IgG1 (Th2) were significantly increased in mice vaccinated with viral vectors. These results show the nfa1-vaccination induce efficiently Th1 type, as well as Th2 type immune responses. This is the first report to construct viral vector systems and to evaluate immune responses as DNA vaccination in N. fowleri infection. Furthermore, these results suggest that nfal vaccination may be an effective method for treatment of N. fowleri infection.

  14. Use of Staby(®) technology for development and production of DNA vaccines free of antibiotic resistance gene.

    Science.gov (United States)

    Reschner, Anca; Scohy, Sophie; Vandermeulen, Gaëlle; Daukandt, Marc; Jacques, Céline; Michel, Benjamin; Nauwynck, Hans; Xhonneux, Florence; Préat, Véronique; Vanderplasschen, Alain; Szpirer, Cédric

    2013-10-01

    The appearance of new viruses and the cost of developing certain vaccines require that new vaccination strategies now have to be developed. DNA vaccination seems to be a particularly promising method. For this application, plasmid DNA is injected into the subject (man or animal). This plasmid DNA encodes an antigen that will be expressed by the cells of the subject. In addition to the antigen, the plasmid also encodes a resistance to an antibiotic, which is used during the construction and production steps of the plasmid. However, regulatory agencies (FDA, USDA and EMA) recommend to avoid the use of antibiotics resistance genes. Delphi Genetics developed the Staby(®) technology to replace the antibiotic-resistance gene by a selection system that relies on two bacterial genes. These genes are small in size (approximately 200 to 300 bases each) and consequently encode two small proteins. They are naturally present in the genomes of bacteria and on plasmids. The technology is already used successfully for production of recombinant proteins to achieve higher yields and without the need of antibiotics. In the field of DNA vaccines, we have now the first data validating the innocuousness of this Staby(®) technology for eukaryotic cells and the feasibility of an industrial production of an antibiotic-free DNA vaccine. Moreover, as a proof of concept, mice have been successfully vaccinated with our antibiotic-free DNA vaccine against a deadly disease, pseudorabies (induced by Suid herpesvirus-1).

  15. DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity.

    Science.gov (United States)

    Lladser, Alvaro; Mougiakakos, Dimitrios; Tufvesson, Helena; Ligtenberg, Maarten A; Quest, Andrew Fg; Kiessling, Rolf; Ljungberg, Karl

    2011-03-01

    DNA vaccination is an attractive approach to induce antigen-specific cytotoxic CD8(+) T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be enhanced by codelivering gene-encoded adjuvants. Pattern recognition receptors (PRRs) that sense intracellular DNA could potentially be used to harness intrinsic immune-stimulating properties of plasmid DNA vaccines. Consequently, the cytosolic DNA sensor, DNA-dependent activator of interferon (IFN) regulatory factors (DAI), was used as a genetic adjuvant. In vivo electroporation (EP) of mice with a DAI-encoding plasmid (pDAI) promoted transcription of genes encoding type I IFNs, proinflammatory cytokines, and costimulatory molecules. Coimmunization with pDAI and antigen-encoding plasmids enhanced in vivo antigen-specific proliferation, and induction of effector and memory CTLs. Moreover, codelivery of pDAI effectively promoted CTL and CD4(+) Th1 responses to the TAA survivin. The DAI-enhanced CTL induction required nuclear factor κB (NF-κB) activation and type I IFN signaling, but did not involve the IFN regulatory factor 3 (IRF3). Codelivery of pDAI also increased CTL responses to the melanoma-associated antigen tyrosinase-related protein-2 (TRP2), enhanced tumor rejection and conferred long-term protection against B16 melanoma challenge. This study constitutes "proof-of-principle" validating the use of intracellular PRRs as genetic adjuvants to enhance DNA vaccine potency.

  16. Increasing a Robust Antigen-Specific Cytotoxic T Lymphocyte Response by FMDV DNA Vaccination with IL-9 Expressing Construct

    Directory of Open Access Journals (Sweden)

    Qiang Zou

    2010-01-01

    Full Text Available Various chemokines and cytokines as adjuvants can be used to improve efficacy of DNA vaccination. In this study, we sought to investigate if a DNA construct expressing IL-9 (designed as proV-IL9 as a molecular adjuvant enhance antigen specific immune responses elicited by the pcD-VP1 DNA vaccination. Mice immunized with pcD-VP1 combined with proV-IL9 developed a strong humoral response. In addition, the coinoculation induced significant higher level of antigen-specific cell proliferation and cytotoxic response. This agreed well with higher expression level of IFN-γ and perforin in CD8+ T cells, but not with IL-17 in these T cells. The results indicate that IL-9 induces the development of IFN-γ-producing CD8+ T cells (Tc1, but not the IL-17-producing CD8+ T cells (Tc17. Up-regulated expressions of BCL-2 and BCL-XL were exhibited in these Tc1 cells, suggesting that IL-9 may trigger antiapoptosis mechanism in these cells. Together, these results demonstrated that IL-9 used as molecular adjuvant could enhance the immunogenicity of DNA vaccination, in augmenting humoral and cellular responses and particularly promoting Tc1 activations. Thus, the IL-9 may be utilized as a potent Tc1 adjuvant for DNA vaccines.

  17. The site of administration influences both the type and the magnitude of the immune response induced by DNA vaccine electroporation.

    Science.gov (United States)

    Vandermeulen, Gaëlle; Vanvarenberg, Kevin; De Beuckelaer, Ans; De Koker, Stefaan; Lambricht, Laure; Uyttenhove, Catherine; Reschner, Anca; Vanderplasschen, Alain; Grooten, Johan; Préat, Véronique

    2015-06-22

    We investigated the influence of the site of administration of DNA vaccine on the induced immune response. DNA vaccines were administered by electroporation at three different sites: tibial cranial muscle, abdominal skin and ear pinna. Aiming to draw general conclusions about DNA vaccine delivery, we successively used several plasmids encoding either luciferase and ovalbumin as models or gp160 and P1A as vaccines against HIV and P815 mastocytoma, respectively. Low levels and duration of luciferase transgene expression were observed after electroporation of the abdominal skin, partly explaining its lower immunogenic performance as compared to the other sites of administration. Analyses of OT-I CD8+ and OT-II CD4+ T cell responses highlighted the differential impact of the delivery site on the elicited immune response. Muscle electroporation induced the strongest humoral immune response and both muscle and ear pinna sites induced cellular immunity against gp160. Ear pinna delivery generated the highest level of CTL responses against P1A but electroporation of muscle and ear pinna were equally efficient in delaying P815 growth and improving mice survival. The present study demonstrated that the site of administration is a key factor to be tested in the development of DNA vaccine.

  18. Immunogenicity of Virus Like Particle Forming Baculoviral DNA Vaccine against Pandemic Influenza H1N1.

    Directory of Open Access Journals (Sweden)

    Yong-Dae Gwon

    Full Text Available An outbreak of influenza H1N1 in 2009, representing the first influenza pandemic of the 21st century, was transmitted to over a million individuals and claimed 18,449 lives. The current status in many countries is to prepare influenza vaccine using cell-based or egg-based killed vaccine. However, traditional influenza vaccine platforms have several limitations. To overcome these limitations, many researchers have tried various approaches to develop alternative production platforms. One of the alternative approach, we reported the efficacy of influenza HA vaccination using a baculoviral DNA vaccine (AcHERV-HA. However, the immune response elicited by the AcHERV-HA vaccine, which only targets the HA antigen, was lower than that of the commercial killed vaccine. To overcome the limitations of this previous vaccine, we constructed a human endogenous retrovirus (HERV envelope-coated, baculovirus-based, virus-like-particle (VLP-forming DNA vaccine (termed AcHERV-VLP against pandemic influenza A/California/04/2009 (pH1N1. BALB/c mice immunized with AcHERV-VLP (1×107 FFU AcHERV-VLP, i.m. and compared with mice immunized with the killed vaccine or mice immunized with AcHERV-HA. As a result, AcHERV-VLP immunization produced a greater humoral immune response and exhibited neutralizing activity with an intrasubgroup H1 strain (PR8, elicited neutralizing antibody production, a high level of interferon-γ secretion in splenocytes, and diminished virus shedding in the lung after challenge with a lethal dose of influenza virus. In conclusion, VLP-forming baculovirus DNA vaccine could be a potential vaccine candidate capable of efficiently delivering DNA to the vaccinee and VLP forming DNA eliciting stronger immunogenicity than egg-based killed vaccines.

  19. Construction of multivalent DNA vaccines for Mycobacte-rium tuberculosis and its immunogenicity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The coding regions of Ag85B MPT-64, and ESAT-6 secreted proteins were cloned initially into the eukaryotic expression vector pJW4303, then transformed to E. coli Top 10 strain for plasmid DNA extraction and further analysis. Plasmids containing the right insertion were sequenced to confirm their identity. COS7 cells were transfected with a mixture containing serially diluted plasmid DNA encoding three secreted proteins and Lipofectin (Gibco). The supernatants and pellets prepared from various cell lines were run on SDS-PAGE gel and the expression of these proteins in COS7 cells were demonstrated by immunoblot using polyclonal or monoclonal antiserum of M.TBH37Rv. 21 days after first vaccination of C57BL-6 mice by all three recombinant eukaryotic expressing vectors, antibody titer for Ag85B reached 1∶3200. 21 days after second vaccination, the antibody titer reached 1∶102400. The highest antibody levels induced by multivalent vaccines after the second injection were equal to or even greater than the highest antibody levels of single DNA vaccine reported in literature after third injections. Antibody titer of MPT-64 was 1∶50 after the first injection and it reached 1∶200 after the second injection. No antigen-specific antibody against ESAT-6 was detected in sera harvested from immunized mice 21 days after both injections. Antigen-specific IFN-g level of Ag85B was 110 pg/mL while no antigen-specific IFN- g level of ESAT-6 and MPT-64 was detected even after third injections. To our knowledge, it is the first time that studies of polyvalent recombinant DNA vaccines against TB were carried out in C57BL-6 mice. Our results indicated that multiple DNA vaccines could be used to enhance protective responses against M.TB.

  20. DNA vaccination of poultry%禽核酸疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    唐静静; 周巧丽; 殷光文; 江和基; 黄志坚

    2016-01-01

    本文对禽用(鸡、鸭、火鸡)核酸疫苗的研究进行综述。首先描述禽用核酸疫苗的进展:病原,质粒以及免疫途径。其次,描述提高核酸疫苗免疫效果的方式:接种途径,疫苗剂量以及首免时间,增加宿主细胞对质粒的摄入,添加免疫增强分子,优化质粒骨架和密码子,疫苗抗原的选择,异源性的首免-加强免疫策略。最后,描述禽用核酸疫苗的其他特点:接种后质粒的去向,免疫反应的特点以及核酸疫苗的其他用途。%This review describes studies in this field performed exclusively on birds (chickens, ducks and turkeys). No evaluations of avian DNA vaccine efficacy performed on mice as preliminary tests have been taken into consideration. The review first describes the state of the art for DNA vaccination in poultry: pathogens targeted, plasmids used and different routes of vaccine administration. Sec-ond, it presents strategies designed to improve DNA vaccine efficacy:influence of the route of administration, plasmid dose and age of birds on their first inoculation; increasing plasmid uptake by host cells; addition of immunomodulators; optimization of plasmid back-bones and codon usage;association of vaccine antigens and finally, heterologous prime-boost regimens. The final part will indicate ad-ditional properties of DNA vaccines in poultry: fate of the plasmids upon inoculation, immunological considerations and the use of DNA vaccines for purposes other than preventing infectious diseases.

  1. Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors.

    Science.gov (United States)

    Sun, Y; Peng, S; Qiu, J; Miao, J; Yang, B; Jeang, J; Hung, C-F; Wu, T-C

    2015-07-01

    Therapeutic human papillomavirus (HPV) vaccines have the potential to inhibit the progression of an established HPV infection to precancer and cancer lesions by targeting HPV oncoproteins. We have previously developed a therapeutic DNA vaccine encoding calreticulin (CRT) linked to E7, CRT/E7 DNA vaccine, for use in the treatment of HPV-associated lesions. Since the transfection efficiency of DNA vaccines administered in vivo is typically low, we examined the use of electroporation as well as different routes of administration to enhance antigen-specific tumor control. We tested the effects of the CRT/E7 DNA vaccine administered intramuscularly or intravaginally, with or without electroporation, on the generation of CD8+ T-cell immunity and therapeutic antitumor effects in HPV16 E7-expressing cervicovaginal tumor-bearing mice. We found that intravaginal vaccination of CRT/E7 DNA followed by electroporation-induced potent E7-specific CD8(+) T-cell responses in the cervicovaginal tract, compared with intramuscular injection followed by electroporation. Furthermore, tumor-bearing mice vaccinated intravaginally followed by electroporation had an enhanced survival, antitumor effects and local production of IFN-γ+CD8+ T cells compared with those vaccinated intramuscularly with electroporation. Thus, we show that intravaginal CRT/E7 DNA vaccination followed by electroporation generates the most potent therapeutic antitumor effects against an orthotopic E7-expressing tumor model. The current study will have significant clinical implications once a clinically applicable electroporation device for intravaginal use becomes available.

  2. Construction and primary immune responses of a DNA vaccine encoding thioredoxin peroxidase gene of Dirofilaria immitis in mice%犬恶丝虫硫氧还蛋白过氧化物酶真核表达质粒的构建及初步免疫试验

    Institute of Scientific and Technical Information of China (English)

    罗洪林; 王豪举; 谌剑波; 周雪梅; 周容琼; 周作勇

    2013-01-01

    To evaluate the immunogenicity of a DNA vaccine encoding thioredoxin peroxidase (TPx) of Dirofilaria immitis, the TPx gene was amplified by RT-PCR and cloned into expression vector of pVAX1 to construct the pVAX1-TPx as DNA vaccine. The recombinant TPx was expressed in Cos7 cell line transfected with pVAX1-TPx and recognized by the specific TPx antibody prepared in mice with the prokaryotic expressed recombinant TPx. Furthermore, the mice were immunized with pVAX1-TPx via intramuscular injection and the antibody levels against TPx in mice immunized group were significantly higher than that in pVAX1 or blank control groups (p<0.05), and the expression levels of IL4 and IL13 were also significantly higher in immunized group than that in the control groups, respectively (p<0.05). In conclusion, the TPx was capable of stimulating the spleen cells proliferation, indicating that the TPx possessed promising immunogenicity agains D.immitis.%为评价犬恶丝虫硫氧还蛋白过氧化物酶(TPx)真核表达质粒的免疫原性,本实验利用RT-PCR方法扩增TPx基因,将其克隆于真核表达载体pVAX1中构建重组质粒pVAX1-TPx,并对其进行体外表达鉴定及通过特异性抗体水平及相关的免疫因子的检测,评价其在体内诱导的免疫反应.实验结果表明,将pVAX1-TPx转染于Cos7细胞中能够正确表达TPx,其分子量约为28 ku,并被阳性血清所识别.将pVAX1-TPx免疫BALB/c小鼠并采用ELISA检测结果显示,重组质粒免疫组的外周血中抗体、Th2细胞分泌的IL4及IL13细胞因子水平均显著高于空质粒及空白对照组(p<0.05);但Th1分泌的IFN-γ及IL2水平差异不显著.此外,淋巴细胞增殖试验结果也表明,pVAX1-TPx免疫组显著高于其他两个对照组(p<0.05).实验数据表明pVAX1-TPx免疫可以有效诱导特异性的体液和细胞免疫.

  3. Vector Design for Improved DNA Vaccine Efficacy, Safety and Production

    Directory of Open Access Journals (Sweden)

    James A. Williams

    2013-06-01

    Full Text Available DNA vaccination is a disruptive technology that offers the promise of a new rapidly deployed vaccination platform to treat human and animal disease with gene-based materials. Innovations such as electroporation, needle free jet delivery and lipid-based carriers increase transgene expression and immunogenicity through more effective gene delivery. This review summarizes complementary vector design innovations that, when combined with leading delivery platforms, further enhance DNA vaccine performance. These next generation vectors also address potential safety issues such as antibiotic selection, and increase plasmid manufacturing quality and yield in exemplary fermentation production processes. Application of optimized constructs in combination with improved delivery platforms tangibly improves the prospect of successful application of DNA vaccination as prophylactic vaccines for diverse human infectious disease targets or as therapeutic vaccines for cancer and allergy.

  4. DNA Vaccines against Protozoan Parasites: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Eric Dumonteil

    2007-01-01

    Full Text Available Over the past 15 years, DNA vaccines have gone from a scientific curiosity to one of the most dynamic research field and may offer new alternatives for the control of parasitic diseases such as leishmaniasis and Chagas disease. We review here some of the advances and challenges for the development of DNA vaccines against these diseases. Many studies have validated the concept of using DNA vaccines for both protection and therapy against these protozoan parasites in a variety of mouse models. The challenge now is to translate what has been achieved in these models into veterinary or human vaccines of comparable efficacy. Also, genome-mining and new antigen discovery strategies may provide new tools for a more rational search of novel vaccine candidates.

  5. DNA vaccines: a rational design against parasitic diseases.

    Science.gov (United States)

    Carvalho, Joana A; Rodgers, Jean; Atouguia, Jorge; Prazeres, Duarte M F; Monteiro, Gabriel A

    2010-02-01

    Parasitic diseases are one of the most devastating causes of morbidity and mortality worldwide. Although immunization against these infections would be an ideal solution, the development of effective vaccines has been hampered by specific challenges posed by parasitic pathogens. Plasmid-based DNA vaccines may prove to be promising immunization tools in this area because vectors can be designed to integrate several antigens from different stages of the parasite life cycle or different subspecies; vaccines, formulations and immunization protocols can be tuned to match the immune response that offers protective immunity; and DNA vaccination is an affordable platform for developing countries. Partial and full protective immunity have been reported following DNA vaccination against the most significant parasitic diseases in the world.

  6. ANTICANCER DNA VACCINATION: PRINCIPLE AND PERSPECTIVES OF THE METHOD

    Directory of Open Access Journals (Sweden)

    M. V. Stegantseva

    2017-01-01

    Full Text Available Conventional strategies for cancer treatment are close to their efficiency limits. Meanwhile, rapid development of experimental immunology and immunotherapy led to first successful experiences in antitumor vaccination. Over last decade, remarkable results were obtained by means of anticancer vaccination being implemented into clinical settings thus causing popularity and growth of interest to tumor-specific DNA vaccines. In this review, we discuss basic principles of a DNA vaccine construction, their structural characteristics and diversity, mechanisms of their biological action, pharmaceutical forms and delivery routes into the body. 

  7. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS).

    Science.gov (United States)

    Hooper, Jay W; Josleyn, Matthew; Ballantyne, John; Brocato, Rebecca

    2013-09-13

    Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever known as hantavirus pulmonary syndrome (HPS) in North America. There have been approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000 cases per year) but less pathogenic (case fatality rate 1-15%). Here, we report the construction and testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene gun were completely protected against SNV infection. This is the first vaccine of any kind that specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. A novel Sin Nombre virus DNA vaccine and its inclusion in a candidate pan-hantavirus vaccine against hantavirus pulmonary syndrome (HPS) and hemorrhagic fever with renal syndrome (HFRS)☆

    Science.gov (United States)

    Hooper, Jay W.; Josleyn, Matthew; Ballantyne, John; Brocato, Rebecca

    2014-01-01

    Sin Nombre virus (SNV; family Bunyaviridae, genus Hantavirus) causes a hemorrhagic fever known as hantavirus pulmonary syndrome (HPS) in North America. There have been approximately 200 fatal cases of HPS in the United States since 1993, predominantly in healthy working-age males (case fatality rate 35%). There are no FDA-approved vaccines or drugs to prevent or treat HPS. Previously, we reported that hantavirus vaccines based on the full-length M gene segment of Andes virus (ANDV) for HPS in South America, and Hantaan virus (HTNV) and Puumala virus (PUUV) for hemorrhagic fever with renal syndrome (HFRS) in Eurasia, all elicited high-titer neutralizing antibodies in animal models. HFRS is more prevalent than HPS (>20,000 cases per year) but less pathogenic (case fatality rate 1–15%). Here, we report the construction and testing of a SNV full-length M gene-based DNA vaccine to prevent HPS. Rabbits vaccinated with the SNV DNA vaccine by muscle electroporation (mEP) developed high titers of neutralizing antibodies. Furthermore, hamsters vaccinated three times with the SNV DNA vaccine using a gene gun were completely protected against SNV infection. This is the first vaccine of any kind that specifically elicits high-titer neutralizing antibodies against SNV. To test the possibility of producing a pan-hantavirus vaccine, rabbits were vaccinated by mEP with an HPS mix (ANDV and SNV plasmids), or HFRS mix (HTNV and PUUV plasmids), or HPS/HFRS mix (all four plasmids). The HPS mix and HFRS mix elicited neutralizing antibodies predominantly against ANDV/SNV and HTNV/PUUV, respectively. Furthermore, the HPS/HFRS mix elicited neutralizing antibodies against all four viruses. These findings demonstrate a pan-hantavirus vaccine using a mixed-plasmid DNA vaccine approach is feasible and warrants further development. PMID:23892100

  9. Elicitation of strong immune responses by a DNA vaccine expressing a secreted form of hepatitis C virus envelope protein E2 in murine and porcine animal models

    DEFF Research Database (Denmark)

    Li, Yiping; Kang, H.N.; Babiuk, L.A.

    2006-01-01

    AIM: To characterize the immunogenicity of a hepatitis C virus (HCV) E2 DNA vaccine alone or with a protein vaccine boost in murine and porcine animal models. METHODS: A DNA vaccine expressing a secreted form of HCV E2 protein was constructed and used to vaccinate mice and piglets with or without...... boosting with a recombinant E2 protein vaccine formulated with CpG ODN and 10% Emulsigen. The immunogenicity of HCV E2 vaccines was analyzed by ELISA for antibody responses, MTT assay for lymphocyte proliferation, ELISPOT for the number of interferon-gamma secreting cells, and cytotoxic T lymphocyte assays...

  10. Induction of strain-transcending immunity against Plasmodium chabaudi adami malaria with a multiepitope DNA vaccine.

    Science.gov (United States)

    Scorza, T; Grubb, K; Smooker, P; Rainczuk, A; Proll, D; Spithill, T W

    2005-05-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami.

  11. Cationic influenza virosomes as an adjuvanted delivery system for CTL induction by DNA vaccination

    NARCIS (Netherlands)

    Jamali, Abbas; Holtrop, Marijke; de Haan, Aalzen; Hashemi, Hamidreza; Shenagari, Mohammad; Memarnejadian, Arash; Roohvand, Farzin; Sabahi, Farzaneh; Kheiri, Masumeh Tavassoti; Huckriede, Anke

    2012-01-01

    DNA vaccines have emerged as an attractive approach to induce CTL responses against cancer and infectious agents in recent years. Although CTL induction by DNA vaccination would be a valuable strategy for controlling viral infections, increasing the potency of DNA vaccines is mandatory before DNA

  12. DNA vaccine encoding Der p2 allergen down-regulates STAT6 expression in mouse model of allergen-induced allergic airway inflammation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Activation of signal transducer and activator of transcription 6 (STAT6 ) plays a critical role in the late phase of Th2-dependent allergy induction. STAT6 is essential to Th2 cell differentiation, recruitment, and effector function. Our previous study confirmed that DNA vaccination inhibited STAT6 expression of spleen cells induced by allergen. In the present study, we determined whether DNA vaccine encoding Dermatophagoides pteronyssinus group 2 (Der p2 ) could down-regulate the expression and activation of STAT6 in lung tissue from asthmatic mice.Methods After DNA vaccine immunization, BALB/c mice were sensitized by intraperitoneal injection and challenged by intranasal instillation of rDer p2. The levels of the cytokines IL-4 and IL-13 in BAL fluid were measured by enzyme-linked immunosorbent assay. The lung tissue was assessed by immunohistochemical staining with anti-STAT6. The protein expression of STAT6 was determined by Western blot. The activation of STAT6 binding ability was analyzed with electrophoretic mobility shift assay.Results DNA vaccine encoding Der p2 allergen effectively decreased the levels of IL-4 and IL-13 in the asthmatic mice. Histological evidence and Western blot showed that the expression of STAT6 in the DNA treated mice was markedly attenuated. STAT6 binding to specific DNA motif in lung tissue from the gene vaccinated mice was inhibited.Conclusion DNA vaccine encoding Der p2 prevents allergic pulmonary inflammation probably by inhibiting the STAT6 signaling pathway in mice with Der p2 allergen-induced allergic airway inflammation.

  13. Leishmania Mexicana Gp63 cDNA Using Gene Gun Induced Higher Immunity to L. Mexicana Infection Compared to Soluble Leishmania Antigen in BALB/C

    Directory of Open Access Journals (Sweden)

    SA Ali

    2011-09-01

    Full Text Available Background: Leishmaniasis is a worldwide disease prevalent in tropical and sub tropical coun­tries. Many attempts have been made and different strategies have been approached to develop a potent vaccine against Leishmania. DNA immunisation is a method, which is shown to be effec­tive in Leishmania vaccination. Leishmania Soluble Antigen (SLA has also recently been used Leishmania vaccination.Methods: The immunity generated by SLA and L. mexicana gp63 cDNA was compared in groups of 6 mice, which were statistically analysed by student t- test with the P-value of 0.05. SLA was administered by two different methods; intramuscular injection and injection of den­dritic cells (DCs loaded with SLA. L. mexicana gp63 cDNA was administered by the gene gun.Results: Immunisation of BALB/c mice with L. mexicana gp63 resulted in high levels of Th1-type immune response and cytotoxic T lymphocytes (CTL activity, which were accompanied with protection induced by the immunisation against L. mexicana infection. In contrast, administra­tion of SLA, produced a mixed Th1/Th2-type immune responses as well as a high level of CTL activity but did not protect mice from the infection.Conclusion: The results indicate higher protection by DNA immunisation using L. mexicana gp63 cDNA compared to SLA, which is accompanied by a high level of Th1 immune response. However, the CTL activity does not necessarily correlate with the protection induced by the vac­cine. Also, gene gun immunisation is a potential approach in Leishmania vaccination. These find­ings would be helpful in opening new windows in Leishmania vaccine research.

  14. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Bo Sun; Zhao-Shen Li; Zhen-Xing Tu; Guo-Ming Xu; Yi-Qi Du

    2006-01-01

    AIM: To construct a live attenuated Salmonella typhimurium (S.typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity.METHODS: By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments.RESULTS: A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recompinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylor(i) whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response.CONCLUSION: The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  15. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    2010-01-01

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA v

  16. The past, current and future trends in DNA vaccine immunisations

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2015-05-01

    Full Text Available This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can result in the subsequent expression of its products and lead to the induction of an immune response within a host. This is pertinent to prophylactic and therapeutic vaccination approach when the peculiar gene produces a protective epitope from a pathogen. The recent studies demonstrated by a number of research centers showed that these immune responses evoke protective immunity against several infectious diseases and cancers, which provides adequate support for the use of this approach. We attempt in this review to provide an informative and unbiased overview of the general principles and concept of DNA vaccines technology with a summary of a novel approach to the DNA vaccine, present investigations that describe the mechanism(s of protective immunity provoked by DNA immunization and to highlight the advantages and disadvantages of DNA immunisation.

  17. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA

  18. The past, current and future trends in DNA vaccine immunisations

    Institute of Scientific and Technical Information of China (English)

    Sidgi; Syed; Anwer; Abdo; Hasson; Juma; Khalifa; Zayid; Al-Busaidi; Talal; Abdulmalek; Sallam

    2015-01-01

    This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can result in the subsequent expression of its products and lead to the induction of an immune response within a host. This is pertinent to prophylactic and therapeutic vaccination approach when the peculiar gene produces a protective epitope from a pathogen. The recent studies demonstrated by a number of research centers showed that these immune responses evoke protective immunity against several infectious diseases and cancers, which provides adequate support for the use of this approach. We attempt in this review to provide an informative and unbiased overview of the general principles and concept of DNA vaccines technology with a summary of a novel approach to the DNA vaccine, present investigations that describe the mechanism(s) of protective immunity provoked by DNA immunization and to highlight the advantages and disadvantages of DNA immunisation.

  19. Preclinical and clinical development of DNA vaccines for prostate cancer.

    Science.gov (United States)

    Colluru, V T; Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2016-04-01

    Prostate cancer is the most commonly diagnosed cancer in the United States. It is also the second leading cause of cancer-related death in men, making it one of the largest public health concerns today. Prostate cancer is an ideal disease for immunotherapies because of the generally slow progression, the dispensability of the target organ in the patient population, and the availability of several tissue-specific antigens. As such, several therapeutic vaccines have entered clinical trials, with one autologous cellular vaccine (sipuleucel-T) recently gaining Food and Drug Administration approval after demonstrating overall survival benefit in randomized phase III clinical trials. DNA-based vaccines are safe, economical, alternative "off-the-shelf" approaches that have undergone extensive evaluation in preclinical models. In fact, the first vaccine approved in the United States for the treatment of cancer was a DNA vaccine for canine melanoma. Several prostate cancer-specific DNA vaccines have been developed in the last decade and have shown promising results in early phase clinical trials. This review summarizes anticancer human DNA vaccine trials, with a focus on those conducted for prostate cancer. We conclude with an outline of special considerations important for the development and successful translation of DNA vaccines from the laboratory to the clinic.

  20. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human papil

  1. Using Plasmids as DNA Vaccines for Infectious Diseases.

    Science.gov (United States)

    Tregoning, John S; Kinnear, Ekaterina

    2014-12-01

    DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.

  2. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human papil

  3. DNA vaccines, electroporation and their applications in cancer treatment.

    Science.gov (United States)

    Lee, Si-Hyeong; Danishmalik, Sayyed Nilofar; Sin, Jeong-Im

    2015-01-01

    Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others include DNA manipulation, xenogeneic antigen use, immune stimulatory molecule and immune response regulator application, DNA prime-boost immunization strategy use and different DNA delivery methods. These strategies likely increase the immunogenicity of cancer DNA vaccines, thereby contributing to cancer eradication. However, cancer cells are heterogeneous and might become CTL-resistant. Thus, understanding the CTL resistance mechanism(s) employed by cancer cells is critical to develop counter-measures for this immune escape. In this review, the use of electroporation as a DNA delivery method, the strategies used to enhance the immune responses, the cancer antigens that have been tested, and the escape mechanism(s) used by tumor cells are discussed, with a focus on the progress of clinical trials using cancer DNA vaccines.

  4. Co-administration of the polysaccharide of Lycium barbarum with DNA vaccine of Chlamydophila abortus augments protection.

    Science.gov (United States)

    Ling, Yong; Li, Shaowen; Yang, Junjing; Yuan, Jilei; He, Cheng

    2011-01-01

    Lycium barbarum polysaccharides (LBP) can stimulate moderate immune responses therefore could potentially be used as a substitute for oil adjuvants in veterinary vaccines. In the present study, it was shown that the isolated active component of LBP3a, combined with a DNA vaccine encoding the major outer membrane protein (MOMP) of Chlamydophila abortus, induced protection in mice against challenge. Sixty BALB/c mice were randomly assigned to 5 groups. Sub-fractions of polysaccharide LBP3a, at 12.5, 25 and 50 mg/kg concentrations, respectively, were mixed with a pCI-neo::MOMP (pMOMP) vaccine. Mice administrated with pCI-neo + LBP3a were served as a control. All mice were inoculated at day 0, 14, and 28, and challenged on day 44. The effects of LBp3a on serum antibody levels, in vitro lymphocyte proliferation, the activity of interleaukin-2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor α(TNF-α)and chlamydia clearance were determined. A combination of DNA vaccine and LBP3a induced significantly higher antibody levels in mice, higher T cell proliferation and higher levels of IFN-γ and IL-2. Mice immunized with DNA and LBP3a also showed significantly higher levels of chlamydia clearance in mice spleens and a greater Th1 immune response. The immunoenhancement induced by 25 mg/kg LBP3a is more effective than that induced by a 12.5 and 50 mg/kg. This implies that LBP3a at 25 mg/kg has a high potential to be used as an effective adjuvant with a DNA vaccine against swine Chlamydophila abortus.

  5. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice.

    Science.gov (United States)

    Palma, Carla; Iona, Elisabetta; Giannoni, Federico; Pardini, Manuela; Brunori, Lara; Orefici, Graziella; Fattorini, Lanfranco; Cassone, Antonio

    2007-06-01

    Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression.

  6. THE CONSTRUCTION AND PRELIMINARY APPRAISEMENT OF HSV-2gD GENE DNA VACCINE

    Institute of Scientific and Technical Information of China (English)

    王军阳; 范桂香; 胜利; 袁育康

    2002-01-01

    Objective To prevent infection from herpes simplex virus type 2(HSV-2),and make the foundation for the construction of multi-valent DNA vaccine. Methods The complete DNA sequence,which encoded the amino acid sequence of the viral glycoprotein D(gD),was obtained from the HSV-2 genome by polymerase chain reaction(PCR).The fragment was inserted into the lower stream of Cytomegalovirus(CMV) promoter in the eukaryotic expression plasmid pcDNA3.1(+), then immunized mice by bilateral intramuscular injection into the rear legs with this recombinant plasmid and tested the specific antibodies against glycoprotein D by ELISA. Results Animal experiment have demonstrated that the recombinant plasmid(pcDNA-gD2)inoculated into mice could induce the production of specific antibodies against glycoprotein D. Conclusion The eukaryotic plasmid pcDNA-gD2 constructed by us could correctly express gD gene and induce the production of specific antibodies.

  7. 葎草花粉变应原核酸疫苗通过诱导Foxp3+Treg细胞分化介导对哮喘模型小鼠的免疫保护作用%Foxp3+Treg cells mediate immune protection of humulus pollen allergy DNA vaccine pcD-NA3.1-Hum in asthmatic mice

    Institute of Scientific and Technical Information of China (English)

    卢家美; 李满祥; 孙秀珍; 张永红; 刘昀; 徐晶; 张苏梅

    2014-01-01

    Objective To construct a humulus pollen allergy DNA vaccine pcDNA3.1-Hum and investigate its effect for immune protection mediated by Foxp3+Treg cells in asthmatic mice. Methods The target humulus gene obtained from pTripIEx2-Hum plasmid by double enzyme digestion was inserted sequentially into pcDNA3.1(-) vector to generate the recombinant plasmid pcDNA3.1-Hum, which was validated by sequencing. The pcDNA3.1-Hum plasmid was transfected into COS-7 cells and the expression of the ectopic protein was analyzed using Western blotting. Co-cultured dendritic cells and CD4+CD25-T cells were stimulated with the expressed protein to test its efficacy in inducing Foxp3+Treg cells. The levels of humulus-specific IgE and IgG2a were assayed to evaluate the allergenicity and immunogenicity of pcDNA3.1-Hum in mice. The immunoprotective effect of pcDNA3.1-Hum was assessed in a mouse model of humulus-specific asthma. Results The constructed pcDNA3.1-Hum plasmid was validated by sequencing and Western blotting, and the expressed protein was shown to induce Foxp3+Treg cells in the co-culture. In normal mice, pcDNA3.1-Hum induced a significant increase of humulus-specific IgG2a but had no effect on IgE. In the asthmatic mice, pcDNA3.1-Hum significantly decreased inflammatory cell counts and eosinophil percentages in the BALF, ameliorated lung inflammation, and lowered AHR and IL-4 levels; immunization of the mice with pcDNA3.1-Hum reversed humulus-induced reduction of serum IFN-γ and prevented the humulus-triggered reduction of Foxp3+Treg cell percentage in the spleen. Conclusion We have successfully constructed a highly immunogenic pcDNA3.1-Hum DNA vaccine that can mediate immune protection by inducing Foxp3+Treg cells.%目的:构建葎草花粉变应原核酸疫苗pcDNA3.1-Hum,并探讨其是否通过诱导Foxp3+Treg细胞分化介导对哮喘模型小鼠的免疫保护作用。方法双酶切pTripIEx2-Hum质粒以获取目的基因,定向插入pcDNA3.1(-)载

  8. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  9. Intranasal administration of HIV-DNA vaccine formulated with a polymer, carboxymethylcellulose, augments mucosal antibody production and cell-mediated immune response.

    Science.gov (United States)

    Hamajima, K; Sasaki, S; Fukushima, J; Kaneko, T; Xin, K Q; Kudoh, I; Okuda, K

    1998-08-01

    We previously reported that intramuscular (i.m.) immunization of DNA vaccine encoding human immunodeficiency virus type 1 (HIV-1)IIIB env and rev genes alone or in combination with appropriate adjuvant induces substantial and enhanced immune response against HIV-1. In the present study, we examined whether a polymer, low-viscosity carboxymethylcellulose sodium salt (CMCS-L), has an adjuvant effect on immune response induced by DNA vaccination. BALB/c mice were immunized with HIV-DNA vaccine formulated with CMCS-L via the intranasal (i.n.) and i.m. routes. The combination with the polymer elicited higher levels of antigen-specific serum IgG and fecal IgA antibodies than DNA vaccine alone. For cell-mediated immunity, HIV-specific delayed-type hypersensitivity response and cytotoxic T lymphocyte activity were measured by the footpad-swelling test and the 51Cr-release assay, respectively. Both were enhanced by the combination with CMCS-L via i.n. and i.m. inoculation. Cytokine analysis in culture media of bulk splenocytes harvested from immunized animals showed higher levels of IL-4 production in i.n. -immunized mice compared with i.m.-immunized mice. Nevertheless, the increased IFN-gamma production resulting from the combination with CMCS-L was observed only in i.n.-immunized mice. These data indicate that i.n. immunization of HIV-DNA vaccine formulated with CMCS-L enhances HIV-specific mucosal antibody (Ab) and systemic Ab and cell-mediated immune response.

  10. Gene gun bombardment-mediated expression and translocation of EGFP-tagged GLUT4 in skeletal muscle fibres in vivo

    DEFF Research Database (Denmark)

    Lauritzen, Hans P M M; Reynet, Christine; Schjerling, Peter

    2002-01-01

    the enhanced green fluorescent protein (EGFP) labelling technique with physical transfection methods in vivo: intramuscular plasmid injection or gene gun bombardment. During optimisation experiments with plasmid coding for the EGFP reporter alone EGFP-positive muscle fibres were counted after collagenase...... treatment of in vivo transfected flexor digitorum brevis (FDB) muscles. In contrast to gene gun bombardment, intramuscular injection produced EGFP expression in only a few fibres. Regardless of the transfection technique, EGFP expression was higher in muscles from 2-week-old rats than in those from 6-week......-old rats and peaked around 1 week after transfection. The gene gun was used subsequently with a plasmid coding for EGFP linked to the C-terminus of GLUT4 (GLUT4-EGFP). Rats were anaesthetised 5 days after transfection and insulin given i.v. with or without accompanying electrical hindleg muscle stimulation...

  11. HPV16E7-HSP70 Hybrid DNA Vaccine Induces E7-Specific Cytotoxic T Cells and Antitumor Immunity

    Institute of Scientific and Technical Information of China (English)

    ZHU Liqin; LI Hui; XIONG Jinhu; WANG Tongxiang; OU Xuan; WEI Yun; WU Xinxing

    2006-01-01

    Using human papillomavirus type 16 (HPV16) E7 as an antigen and Heat Shock Protein 70 as adjuvant, we constructed a DNA vaccine by linking HSP70 gene to E7C91G gene. Mice, after being immunized with E7C91G-HSP70, E7C91G/HSP70, E7C91G, and wild E7 DNA vaccines respectively, produced E7 specific CD8+ T-cell precursor frequencies oF280. 33±2.52, 144.34±4. 04, 164.34±5.13 and 82.33± 3.51 respectively within every 1 × 105 mouse splenocytes. This proves that E7C91G-HSP70 fusion vaccine can significantly enhance the E7 specific cellular immunity within the mice body(p<0.01). After being immunized with E7C91G-HSP70 fusion vaccine, tumor-bearing mice of the group being treated have significantly longer latency and survival periods, comparing with other three categories of E7 vaccines. Experiment shows that this vaccine has a significant effect on enhancing E7 positive tumor-treatment within mice body. After being immunized with E7C91G-HSP70 vaccine, there were no pathological changes found in livers, kidneys and spleens of the mice, which proves that the vaccine is quite safe. After all,E7C91G-HSP70 fusion vaccine has a much stronger tumor- treatment effect than that of wild type E7 DNA vaccine.

  12. Differential effects of IL-15 on the generation, maintenance and cytotoxic potential of adaptive cellular responses induced by DNA vaccination.

    Science.gov (United States)

    Li, Jinyao; Valentin, Antonio; Ng, Sinnie; Beach, Rachel Kelly; Alicea, Candido; Bergamaschi, Cristina; Felber, Barbara K; Pavlakis, George N

    2015-02-25

    IL-15 is an important cytokine for the regulation of lymphocyte homeostasis. However, the role of IL-15 in the generation, maintenance and cytotoxic potential of antigen specific T cells is not fully understood. Because the route of antigenic delivery and the vaccine modality could influence the IL-15 requirement for mounting and preserving cytotoxic T cell responses, we have investigated the immunogenicity of DNA-based vaccines in IL-15 KO mice. DNA vaccination with SIV Gag induced antigen-specific CD4(+) and CD8(+) T cells in the absence of IL-15. However, the absolute number of antigen-specific CD8(+) T cells was decreased in IL-15 KO mice compared to WT animals, suggesting that IL-15 is important for the generation of maximal number of antigen-specific CD8(+) T cells. Interestingly, antigen-specific memory CD8 cells could be efficiently boosted 8 months after the final vaccination in both WT and KO strains of mice, suggesting that the maintenance of antigen-specific long-term memory T cells induced by DNA vaccination is comparable in the absence and presence of IL-15. Importantly, boosting by DNA 8-months after vaccination revealed severely reduced granzyme B content in CD8(+) T cells of IL-15 KO mice compared to WT mice. This suggests that the cytotoxic potential of the long-term memory CD8(+) T cells is impaired. These results suggest that IL-15 is not essential for the generation and maintenance of adaptive cellular responses upon DNA vaccination, but it is critical for the preservation of maximal numbers and for the activity of cytotoxic CD8(+) T cells. Published by Elsevier Ltd.

  13. Assessment of delivery parameters with the multi-electrode array for development of a DNA vaccine against Bacillus anthracis.

    Science.gov (United States)

    Donate, Amy; Heller, Richard

    2013-12-01

    Gene electrotransfer (GET) enhances delivery of DNA vaccines by increasing both gene expression and immune responses. Our lab has developed the multi-electrode array (MEA) for DNA delivery to skin. The MEA was used at constant pulse duration (150 ms) and frequency (6.67 Hz). In this study, delivery parameters including applied voltage (5-45 V), amount of plasmid (100-300 μg), and number of treatments (2-3) were evaluated for delivery of a DNA vaccine. Mice were intradermally injected with plasmid expressing Bacillus anthracis protective antigen with or without GET and αPA serum titers measured. Within this experiment no significant differences were noted in antibody levels from varying dose or treatment number. However, significant differences were measured from applied voltages of 25 and 35 V. These voltages generated antibody levels between 20,000 and 25,000. Serum from animals vaccinated with these conditions also resulted in toxin neutralization in 40-60% of animals. Visual damage was noted at MEA conditions of 40 V. No damage was noted either visually or histologically from conditions of 35 V or below. These results reflect the importance of establishing appropriate electrical parameters and the potential for the MEA in non-invasive DNA vaccination against B. anthracis.

  14. Enhancing DNA vaccine potency against hantavirus by co-administration of interleukin-12 expression vector as a genetic adjuvant

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lan-yan; MOU Ling; LIN Song; LU Run-ming; LUO En-jie

    2005-01-01

    Background The heavy incidence and mortality of hemorrhagic fever with renal syndrome, as well as no specific drugs in curing the disease,clearly indicate the need for development of the more effective hantavirus vaccine. Refining the DNA vaccination strategy to elicit more clinically efficacious immune responses is now under intensive investigation. In the present study, we examined the effects of using an interleukin-12 expression plasmid as a genetic adjuvant to enhance the immune responses induced by a DNA vaccine based on the S gene encoding nucleocapsid protein against hantavirus. Methods BALB/c mice were immunized three times by intramuscular inoculations of DNA vaccine encoding of hantanvirus nucleocapsid protein alone or in combination with a plasmid expressing murine interleukin-12 (pcIL-12). Booster immunizations were employed 2 times at 2-week interval. To evaluate the humoral and cellular immune responses, antigen-specific lymphocyte proliferation and antibody production were assayed by MTT method and ELISA respectively. The level of interleukin-4 and interferon-γ in the splenic lymphocytic cultured supernatant were detected with ELISA kit at day 5, 10, 17, 35 and 42 after primary immunization.Conclusion Humoral and cytokine responses elicited by pcDNA3.1+S inoculation can be modulated by co-inoculation with pcIL-12 and efficiently induced Th1-dominant immune responses.

  15. Fusion of CTLA-4 with HPV16 E7 and E6 enhanced the potency of therapeutic HPV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Lili Gan

    Full Text Available Preventive anti-HPV vaccines are effective against HPV infection but not against existing HPV-associated diseases, including cervical cancer and other malignant diseases. Therefore, the development of therapeutic vaccines is urgently needed. To improve anti-tumor effects of therapeutic vaccine, we fused cytotoxic T-lymphocyte antigen 4 (CTLA-4 with HPV16 E7 and E6 as a fusion therapeutic DNA vaccine (pCTLA4-E7E6. pCTLA4-E7E6 induced significantly higher anti-E7E6 specific antibodies and relatively stronger specific CTL responses than the nonfusion DNA vaccine pE7E6 in C57BL/6 mice bearing with TC-1 tumors. pCTLA4-E7E6 showed relatively stronger anti-tumor effects than pE7E6 in therapeutic immunization. These results suggest that fusing CTLA-4 with E7E6 is a useful strategy to develop therapeutic HPV DNA vaccines. In addition, fusing the C-terminal of E7 with the N-terminal of E6 impaired the functions of both E7 and E6.

  16. Recombinant DNA technology for melanoma immunotherapy: anti-Id DNA vaccines targeting high molecular weight melanoma-associated antigen.

    Science.gov (United States)

    Barucca, A; Capitani, M; Cesca, M; Tomassoni, D; Kazmi, U; Concetti, F; Vincenzetti, L; Concetti, A; Venanzi, F M

    2014-11-01

    Anti-idiotypic MK2-23 monoclonal antibody (anti-Id MK2-23 mAb), which mimics the high molecular weight melanoma-associated antigen (HMW-MAA), has been used to implement active immunotherapy against melanoma. However, due to safety and standardization issues, this approach never entered extensive clinical trials. In the present study, we investigated the usage of DNA vaccines as an alternative to MK2-23 mAb immunization. MK2-23 DNA plasmids coding for single chain (scFv) MK2-23 antibody were constructed via the insertion of variable heavy (V H) and light (V L) chains of MK2-23 into the pVAC-1mcs plasmids. Two alternative MK2-23 plasmids format V H/V L, and V L/V H were assembled. We demonstrate that both polypeptides expressed by scFv plasmids in vitro retained the ability to mimic HMW-MAA antigen, and to elicit specific anti-HMW-MAA humoral and cellular immunoresponses in immunized mice. Notably, MK2-23 scFv DNA vaccines impaired the onset and growth of transplantable B16 melanoma cells not engineered to express HMW-MAA. This pilot study suggests that optimized MK2-23 scFv DNA vaccines could potentially provide a safer and cost-effective alternative to anti-Id antibody immunization, for melanoma immunotherapy.

  17. Overview of recent DNA vaccine development for fish

    Science.gov (United States)

    Kurath, G.; ,

    2005-01-01

    Since the first description of DNA vaccines for fish in 1996, numerous studies of genetic immunisation against the rhabdovirus pathogens infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) have established their potential as both highly efficacious biologicals and useful basic research tools. Single small doses of rhabdovirus DNA constructs provide extremely strong protection against severe viral challenge under a variety of conditions. DNA vaccines for several other important fish viruses, bacteria, and parasites are under investigation, but they have not yet shown high efficacy. Therefore, current research is focussed on mechanistic studies to understand the basis of protection, and on improvement of the nucleic acid vaccine applications against a wider range of fish pathogens.

  18. Current trends in separation of plasmid DNA vaccines: a review.

    Science.gov (United States)

    Ghanem, Ashraf; Healey, Robert; Adly, Frady G

    2013-01-14

    Plasmid DNA (pDNA)-based vaccines offer more rapid avenues for development and production if compared to those of conventional virus-based vaccines. They do not rely on time- or labour-intensive cell culture processes and allow greater flexibility in shipping and storage. Stimulating antibodies and cell-mediated components of the immune system are considered as some of the major advantages associated with the use of pDNA vaccines. This review summarizes the current trends in the purification of pDNA vaccines for practical and analytical applications. Special attention is paid to chromatographic techniques aimed at reducing the steps of final purification, post primary isolation and intermediate recovery, in order to reduce the number of steps necessary to reach a purified end product from the crude plasmid.

  19. Modulation of cellular and humoral immune responses to anHIV-1 DNA vaccine by interleukin-12 and interleukin-18 DNA immunization

    Institute of Scientific and Technical Information of China (English)

    孙永涛; 王福祥; 孙永年; 徐哲; 王临旭; 刘娟; 白雪帆; 黄长形

    2004-01-01

    Objective: To investigate the effect of interleukin-12 (IL-12) and interleukin-18 (IL-18)DNA immunization on immune response induced by HIV-1 DNA vaccine and to explore new strategies for therapeutic HIV DNA vaccine.Methods: The recombinant expression vector pCI-neoGAG was constructed by inserting HIV Gag gene into the eukaryotic expression vector pCI-neo. Balb/c mice were immunized with pCI-neoGAG alone or co-immunized with the DNA encoding for IL-12 or IL-18. Anti-HIV antibody and IFN-γ were tested by ELISA, and splenocytes were isolated for detecting antigen-specific lymphoproliferative responses and specific CTL response by MTT assay and LDH assay respectively. Results: The antiHIV antibody titers of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were lower than that of mice immunized with pCI-neoGAG alone( P < 0.01). In contrast, the IFN-γ level of mice co-immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 was higher than that of mice immunized with pCI-neoGAG alone ( P <0.01). Furthermore, compared with mice injected with pCI-neoGAG alone, the specific CTL cytotoxity activity and antigenspecific lymphoproliferative responses of mice immunized with pCI-neoGAG and the DNA encoding for IL-12 or IL-18 were significantly enhanced respectively ( P < 0.01). Conclusion: The DNA encoding for IL-12 or IL-18 together with HIV DNA vaccine may enhance specific Th-1 responses and cellular immune response elicited in mice. Hence, the DNA encoding for IL-12 or IL-18 are promising immune adjuvants for HIV-1 DNA vaccine.

  20. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i...

  1. Prophylactic and therapeutic DNA vaccines against Chagas disease.

    Science.gov (United States)

    Arce-Fonseca, Minerva; Rios-Castro, Martha; Carrillo-Sánchez, Silvia del Carmen; Martínez-Cruz, Mariana; Rodríguez-Morales, Olivia

    2015-01-01

    Chagas disease is a zoonosis caused by Trypanosoma cruzi in which the most affected organ is the heart. Conventional chemotherapy has a very low effectiveness; despite recent efforts, there is currently no better or more effective treatment available. DNA vaccines provide a new alternative for both prevention and treatment of a variety of infectious disorders, including Chagas disease. Recombinant DNA technology has allowed some vaccines to be developed using recombinant proteins or virus-like particles capable of inducing both a humoral and cellular specific immune response. This type of immunization has been successfully used in preclinical studies and there are diverse models for viral, bacterial and/or parasitic diseases, allergies, tumors and other diseases. Therefore, several research groups have been given the task of designing a DNA vaccine against experimental infection with T. cruzi. In this review we explain what DNA vaccines are and the most recent studies that have been done to develop them with prophylactic or therapeutic purposes against Chagas disease.

  2. Construction and immunogenicity of a codon-optimized Entamoeba histolytica Gal-lectin-based DNA vaccine.

    Science.gov (United States)

    Gaucher, Denis; Chadee, Kris

    2002-09-10

    Invasive amebiasis caused by Entamoeba histolytica is the third leading parasitic cause of mortality, and there are no vaccines available to help control the disease. The galactose-adherence lectin (Gal-lectin) is the parasite's major molecule allowing it to adhere to colonic mucin for colonization and to target cells for tissue destruction. It is immunodominant and is regarded as the most promising candidate molecule to be included in a subunit vaccine against amebiasis. In this study, we are reporting the construction of a codon-optimized DNA vaccine encoding a portion of the Gal-lectin heavy subunit that includes the carbohydrate recognition domain (CRD), and its in vivo testing in mice. The vaccine stimulated a Th1-type Gal-lectin-specific cellular immune response as well as the development of serum antibodies that recognized a recombinant portion of the heavy subunit, and that inhibited the adherence of trophozoites to target cells in vitro.

  3. Tumor antigens for cancer immunotherapy: therapeutic potential of xenogeneic DNA vaccines

    Directory of Open Access Journals (Sweden)

    Srinivasan Roopa

    2004-04-01

    Full Text Available Abstract Preclinical animal studies have convincingly demonstrated that tumor immunity to self antigens can be actively induced and can translate into an effective anti-tumor response. Several of these observations are being tested in clinical trials. Immunization with xenogeneic DNA is an attractive approach to treat cancer since it generates T cell and antibody responses. When working in concert, these mechanisms may improve the efficacy of vaccines. The use of xenogeneic DNA in overcoming immune tolerance has been promising not only in inbred mice with transplanted tumors but also in outbred canines, which present with spontaneous tumors, as in the case of human. Use of this strategy also overcomes limitations seen in other types of cancer vaccines. Immunization against defined tumor antigens using a xenogeneic DNA vaccine is currently being tested in early phase clinical trials for the treatment of melanoma and prostate cancers, with proposed trials for breast cancer and Non-Hodgkin's Lymphoma.

  4. Biolistic transfection of neuronal cultures using a hand-held gene gun.

    Science.gov (United States)

    O'Brien, John A; Lummis, Sarah C R

    2006-01-01

    Biolistic transfection is a technique in which subcellular-sized particles coated with DNA are accelerated to high velocity to propel them into cells. This method is applicable to tissues, cells and organelles, and can be used for both in vitro and in vivo transformations; with the right equipment, it is simple, rapid and efficient. Here we provide a detailed protocol for biolistic transfection of plasmids into cultured human embryonic kidney (HEK) 293 cells and organotypic brain slices using a hand-held gene gun. There are three major steps: (i) coating microcarriers with DNA, (ii) transferring the microcarriers into a cartridge to make a 'bullet', and (iii) firing the DNA-coated microcarriers into cells using a pulse of helium gas. The method can be readily adapted to other cell types and tissues. The protocol can be completed in 1-2 h.

  5. Foreign gene transfer into Chinese shrimps (Penaeus chinensis) with gene gun

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.

  6. Immunogenicity of a Candidate DNA Vaccine Based on the prM/E Genes of a Dengue Type 2 Virus Cosmopolitan Genotype Strain.

    Science.gov (United States)

    Putri, Dwi Hilda; Sudiro, Tjahjani Mirawati; Yunita, Rina; Jaya, Ungke Anton; Dewi, Beti Ernawati; Sjatha, Fithriyah; Konishi, Eiji; Hotta, Hak; Sudarmono, Pratiwi

    2015-01-01

    The development of a dengue virus vaccine is a major priority in efforts to control the diseases. Several researchers are currently using the Asian 1 and Asian 2 genotypes as vaccine candidates for dengue type 2 virus (DENV-2). However, in this study, we constructed a recombinant plasmid-based prM/E gene, from a DENV-2 Cosmopolitan genotype strain as a dengue DNA vaccine candidate. The protein expression of the recombinant plasmid in CHO cells was analyzed using an enzyme-linked immunosorbent assay, western blotting, and sucrose gradient sedimentation. After being used to immunize ddY mice three times at doses of 25 or 100 μg, the DNA vaccine induced humoral immune responses. There was no difference in the neutralizing antibody titer (focus reduction neutralization test 50% value) of mice immunized with 25 and 100 μg DNA vaccine doses. When challenged with 3 × 10(5) FFU DENV-2, immunized mice could raise anamnestic neutralizing antibody responses, which were observed at day 4 and day 8 post-challenge. Analysis of immunogenicity using BALB/c mice showed that their antibody neutralization titers were lower than those of ddY mice. In addition, the antibodies produced after immunization and challenge could also neutralize a DENV-2 Asian 2 genotype (New Guinea C) strain. Therefore, the DENV-2 Cosmopolitan genotype may be a DENV-2 vaccine candidate.

  7. Good Manufacturing Practices production and analysis of a DNA vaccine against dental caries

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Yu-hong LI; Ai-hua ZHANG; Lan BI; Ming-wen FAN

    2009-01-01

    Aim: To prepare a clinical-grade anti-caries DNA vaccine pGJA-P/VAX and explore its immune effect and protective efficacy against a cariogenic bacterial challenge.Methods: A large-scale industrial production process was developed under Good Manufacturing Practices (GMP) by combining and optimizing common unit operations such as alkaline lysis, precipitation, endotoxin removal and column chromatography. Quality controls of the purified bulk and final lyophilized vaccine were conducted according to authoritative guidelines. Mice and gnotobiotic rats were intranasally immunized with clinical-grade pGJA-P/VAX with chitosan. Antibody levels of serum IgG and salivary SlgA were assessed by an enzyme-linked immunosorbent assay (ELISA), and caries activity was evaluated by the Keyes method. pGJA-P/VAX and pVAX1 prepared by a laboratory-scale commercial kit were used as controls.Results: The production process proved to be scalable and reproducible. Impurities including host protein, residual RNA, genomic DNA and endotoxin in the purified plasmid were all under the limits of set specifications. Intranasal vaccination with clinical-grade pGJA-P/ VAX induced higher serum IgG and salivary SlgA in both mice and gnotobiotic rats. While in the experimental caries model, the enamel (E), dentinal slight (Ds), and dentinal moderate (Dm) caries lesions were reduced by 21.1%, 33.0%, and 40.9%, respectively. Conclusion: The production process under GMP was efficient in preparing clinical-grade pGJA-P/VAX with high purity and intended effectiveness, thus facilitating future clinical trials for the anti-caries DNA vaccine.

  8. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii

    Directory of Open Access Journals (Sweden)

    Zhou Jian

    2016-01-01

    Full Text Available We used bioinformatics approaches to identify B-cell and T-cell epitopes on the ROP19 protein of Toxoplasma gondii. Then, we constructed plasmids with ROP19 (pEGFP-C1-ROP19 and injected them into BALB/c mice to test the immunoprotection induced by this vaccine candidate. The results showed that immunization with pEGFP-C1-ROP19 induced effective cellular and humoral immune responses in mice; specifically, high serum levels of T. gondii-specific IgG and increased interferon-gamma production by splenocytes. Furthermore, the mice vaccinated with pROP19 had significantly fewer brain cysts (583 ± 160 than the mice injected with phosphate-buffered saline (1350 ± 243 or with the control plasmid, pEGFP-C1 (1300 ± 167. Compared with PBS-treated mice, those immunized with pROP19 had only 43% of the number of brain cysts. These results suggest that the DNA vaccine encoding ROP19 induced a significant immune response and provided protection against a challenge with T. gondii strain PRU cysts.

  9. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration.

    Science.gov (United States)

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Yanagi, Tetsuo; Tsuboi, Takafumi; Sasaki, Hitoshi; Hirayama, Kenji

    2011-11-08

    An important aspect in optimizing DNA vaccination is antigen delivery to the site of action. In this way, any alternative delivery system having higher transfection efficiency and eventual superior antibody production needs to be further explored. The novel nanoparticle, pDNA/PEI/γ-PGA complex, is one of a promising delivery system, which is taken up by cells and is shown to have high transfection efficiency. The immunostimulatory effect of this novel nanoparticle (NP) coated plasmid encoding Plasmodium yoelii MSP1-C-terminus was examined. Groups of C57BL/6 mice were immunized either with NP-coated MSP-1 plasmid, naked plasmid or NP-coated blank plasmid, by three different routes of administration; intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c). Mice were primed and boosted twice at 3-week intervals, then challenged 2 weeks after; and 100%, 100% and 50% mean of survival was observed in immunized mice with coated DNA vaccine by i.p., i.v. and s.c., respectively. Coated DNA vaccine showed significant immunogenicity and elicited protective levels of antigen specific IgG and its subclass antibody, an increased proportion of CD4(+) and CD8(+) T cells and INF-γ and IL-12 levels in the serum and cultured splenocyte supernatant, as well as INF-γ producing cells in the spleen. We demonstrate that, NP-coated MSP-1 DNA-based vaccine confers protection against lethal P. yoelii challenge in murine model across the various route of administration and may therefore, be considered a promising delivery system for vaccination.

  10. Metadherin/astrocyte elevated gene-1-based DNA vaccine suppresses progression and metastasis in prostate cancer of mice%异黏蛋白/星形细胞上调基因-1靶点的基因疫苗诱导免疫抑制小鼠前列腺癌生长及转移

    Institute of Scientific and Technical Information of China (English)

    张春; 李惠长; 钱本江; 刘昌明; 李国敏; 薛清平

    2013-01-01

    Objective To study the metadherin (MTDH)/astrocyte elevated gene-1 (AEG-1) as targets for gene vaccine inducing immunosuppression mice prostate cancer growth and metastasis of action research.Methods Male C57BL/6 mice (6-8 weekes old) were randomly divided into three groups (n =20),respectively,to phosphate buffered saline (PBS),Pub,Pub-MTDH/AEG-1 attenuated salmonella (1 × 10s cfu) of lavage servo immune; Immune once a week,a total of immune three times.Last one week after the immunization,all in three groups of mice prostate in situ (right and left dorsal lobe) vaccinated 10s RM-1 cell to build orthotopic transplantation tumor model of prostate,induced spontaneous pelvic cavity and retroperitoneal lymph node metastasis; Record each group mice with tumor size,pelvic cavity and retroperitoneal lymph node metastasis number [hematoxylin and eosin (HE) staining shall prevail],CD8 in through immunohistochemical method to detect in situ tumor,the expression of vascular endothelial growth factor (VEGF) and lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1) case,tumor cell apoptosis with TdT-mediated dUTP nick end labeling (TUNEL) method.Results pUb-MTDH/AEG-1 DNA vaccine group compared to the pUb,the PBS group could significantly stimulate CD8 + T cells and cytotoxic T lymphocyte (CTL) response; Effectively inhibit the growth of prostate cancer in situ in mice,MTDH group tumor volume (0.248 ± 0.102) compared with the Pub group (1.475 ± 0.314) (P < 0.01),pelvic cavity and retroperitoneal lymph node metastasis 77.78%,35.7% (P < 0.05) ; Significantly enhanced the expression of CD8 + in the in situ tumor molecular:MTDH group (3.56 ± 0.85),Pub group (5.12 ± 0.90) (P < 0.05),and promote tumor cell apoptosis:MTDH group (39.60 ± 3.28) %,Pub group (16.18 ±2.52)% (P<0.01).Conclusion MTDH/targets AEG-1 gene vaccine in mice prevention immune models,can effectively induce the body specificity immune response,enhance cellular immunity and humoral

  11. Immuno-protection of SJIR-2 DNA vaccine with microspheres adjuvant in mice challenged with Schistosoma japonicum%日本血吸虫SJIR-2纳米微球核酸疫苗的免疫保护性研究

    Institute of Scientific and Technical Information of China (English)

    王正印; 潘丽红; 汪学龙

    2016-01-01

    目的:研究日本血吸虫胰岛素受体-2( SJIR-2)纳米微球核酸疫苗对小鼠攻击感染的免疫保护效果。方法构建pEGFP-SJIR-2重组质粒,双酶切鉴定并测序,大量提取pEGFP-SJIR-2质粒,用壳聚糖( CHS)修饰的聚乳酸-羟基乙酸共聚物( PLGA)微球包裹,用包裹后的SJIR-2纳米微球免疫小鼠。将40只雌性BALB/c小鼠随机分为4组( n=10),分别注射 PBS、空 pEGFP 质粒、CHS-PLGA 微球和 CHS-PL-GA-pEGFP-SJIR-2微球各100μg免疫小鼠,末次免疫2周后,用日本血吸虫尾蚴攻击感染小鼠,每次免疫及感染尾蚴前收集各组小鼠血清,ELISA法检测各组小鼠血清内免疫球蛋白( IgG)水平的变化。小鼠感染尾蚴42 d后全部剖杀,收集成虫和虫卵并计算减虫率和减卵率。结果成功构建了pEGFP-SJIR-2重组质粒,与PBS组比较, CHS-PLGA-pEGFP-SJIR-2组的成虫数和虫卵数差异有统计学意义( P<0.01)。CHS-PLGA-pEGFP-SJIR-2组的减虫率和减卵率分别为37.36%和46.82%,和PBS组相比,CHS-PLGA-pEGFP-SJIR-2组小鼠血清内IgG水平比明显增高( P<0.01),而pEGFP组和CHS-PLGA组成虫数和虫卵数与PBS组比较差异无统计学意义。结论 SJIR-2纳米微球核酸疫苗对感染血吸虫的BALB/c小鼠有一定的免疫保护效果,对其潜在的候选抗原疫苗的价值尚需深入研究。%Objective To research the immuno-protection of SJIR-2 DNA vaccine with nanometer microspheres a-gainst Schistosoma japonicum infection in mice. Methods To construct eukaryotic expression plasmid pEGFP-SJIR-2, identified by double digestion and sequenced delivery. The recombinant plasmid pEGFP-SJIR-2 was ex-tracted and was encapsulated into PLGA nanometer microspheres which were modified by CHS. 40 female BALB/c mice were randomly divided into 4 groups (n=10), each group of mice were injected with PBS, empty pEGFP plasmid, CHS-PLGA nanometer microspheres and CHS-PLGA-pEGFP-SJIR-2 nanometer microspheres 100 μg, re-spectively. Two weeks

  12. Transposon leads to contamination of clinical pDNA vaccine.

    Science.gov (United States)

    van der Heijden, I; Gomez-Eerland, R; van den Berg, J H; Oosterhuis, K; Schumacher, T N; Haanen, J B A G; Beijnen, J H; Nuijen, B

    2013-07-11

    We report an unexpected contamination during clinical manufacture of a Human Papilomavirus (HPV) 16 E6 encoding plasmid DNA (pDNA) vaccine, with a transposon originating from the Escherichia coli DH5 host cell genome. During processing, presence of this transposable element, insertion sequence 2 (IS2) in the plasmid vector was not noticed until quality control of the bulk pDNA vaccine when results of restriction digestion, sequencing, and CGE analysis were clearly indicative for the presence of a contaminant. Due to the very low level of contamination, only an insert-specific PCR method was capable of tracing back the presence of the transposon in the source pDNA and master cell bank (MCB). Based on the presence of an uncontrolled contamination with unknown clinical relevance, the product was rejected for clinical use. In order to prevent costly rejection of clinical material, both in-process controls and quality control methods must be sensitive enough to detect such a contamination as early as possible, i.e. preferably during plasmid DNA source generation, MCB production and ultimately during upstream processing. However, as we have shown that contamination early in the process development pipeline (source pDNA, MCB) can be present below limits of detection of generally applied analytical methods, the introduction of "engineered" or transposon-free host cells seems the only 100% effective solution to avoid contamination with movable elements and should be considered when searching for a suitable host cell-vector combination.

  13. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Ganzhu Feng

    Full Text Available Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e and fms-like tyrosine kinase 3 ligand (FL genes (termed Esat-6/3e-FL, and was enveloped with chitosan (CS nanoparticles (nano-chitosan. The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.

  14. Interference of an ERM-vaccine with a VHS-DNA vaccine in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    Simultaneous vaccination of fish against several diseases is often desirable in order to minimise cost and handling of the fish. Intramuscular DNA-vaccination of rainbow trout against viral haemorrhagic septicaemia virus (VHSV) has proved to provide very good protection. However, preliminary...... results showed that intraperitoneal injection of a commercial vaccine against Enteric Redmouth Disease (ERM) based on formalin-killed bacteria in oil adjuvant immediately followed by intramuscular injection of an experimental DNA-vaccine against VHSV, decreased the protective effect of the DNA-vaccine...... against challenge with VHSV 11 weeks post vaccination (pv). This experiment was performed with rainbow trout of 30 g injected with 0.5 g VHS-DNA vaccine. The experiment was later repeated with smaller fish (2.5g) and using two different doses of DNA-vaccine, 1 g and 0.05 g. Both doses provided good...

  15. [Recent advances in DNA vaccines against allergic airway disease: a review].

    Science.gov (United States)

    Ou, Jin; Xu, Yu; Shi, Wendan

    2013-12-01

    DNA vaccine is used in infectious diseases initially, and later is applied in neoplastic diseases, allergic diseases and other fields with the further understanding of DNA vaccine and the development of genetic engineering. DNA vaccine transfers the genes encoding exogenous antigens to plasmid vector and then is introduced into organism. It controls the antigen proteins synthesis, thus induces specific humoral and cellular immune responses. So it has a broad application prospect in allergic diseases. Compared with the traditional protein vaccines used in specific immunotherapy, DNA vaccine has many advantages, including high purity and specificity, and improvement of patients' compliance etc. However, there are still two unsolved problems. First, the transfection rate of unmodified naked DNA plasmid is not high, Second, it's difficult to induce ideal immune response. In this study, we will review the progress of DNA vaccine applications in respiratory allergic diseases and its various optimization strategies.

  16. Enhancement of HIV-1 DNA vaccine immunogenicity by BCG-PSN, a novel adjuvant.

    Science.gov (United States)

    Sun, Jing; Hou, Jue; Li, Dingfeng; Liu, Yong; Hu, Ningzhu; Hao, Yanling; Fu, Jingjing; Hu, Yunzhang; Shao, Yiming

    2013-01-07

    Although the importance of DNA vaccines, especially as a priming immunization has been well established in numerous HIV vaccine studies, the immunogenictiy of DNA vaccines is generally moderate. Novel adjuvant is in urgent need for improving the immunogenicity of DNA vaccine. Polysaccharide and nucleic acid fraction extracted by hot phenol method from Mycobacterium bovis bacillus Calmette-Guérin, known as BCG-PSN, is a widely used immunomodulatory product in China clinical practice. In this study, we evaluated whether the BCG-PSN could serve as a novel adjuvant of DNA vaccine to trigger better cellular and humoral immune responses against the HIV-1 Env antigen in Balb/C mouse model. The BCG-PSN was mixed with 10 μg or 100 μg of pDRVI1.0gp145 (HIV-1 CN54 gp145 gene) DNA vaccine and intramuscularly immunized two or three times. We found that BCG-PSN could significantly improve the immunogenicity of DNA vaccine when co-administered with DNA vaccine. Further, at the same vaccination schedule, BCG-PSN co-immunization with 10 μg DNA vaccine could elicit cellular and humoral immune responses which were comparable to that induced by 100 μg DNA vaccine alone. Moreover, our results demonstrate that BCG-PSN can activate TLR signaling pathways and induce Th1-type cytokines secretion. These findings suggest that BCG-PSN can serve as a novel and effective adjuvant for DNA vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Molecular adjuvant interleukin-33 enhances the antifertility effect of Lagurus lagurus zona pellucida 3 DNA vaccine administered by the mucosal route

    Directory of Open Access Journals (Sweden)

    Y.X. Tu

    2013-12-01

    Full Text Available It has been shown that cytokines can act as molecular adjuvant to enhance the immune response induced by DNA vaccines, but it is unknown whether interleukin 33 (IL-33 can enhance the immunocontraceptive effect induced by DNA vaccines. In the present study, we explored the effects of murine IL-33 on infertility induced by Lagurus lagurus zona pellucida 3 (Lzp3 contraceptive DNA vaccine administered by the mucosal route. Plasmid pcD-Lzp3 and plasmid pcD-mIL-33 were encapsulated with chitosan to generate the nanoparticle chi-(pcD-Lzp3+pcD-mIL-33 as the DNA vaccine. Sixty female ICR mice, divided into 5 groups (n=12/group, were intranasally immunized on days 0, 14, 28, and 42. After intranasal immunization, the anti-LZP3-specific IgG in serum and IgA in vaginal secretions and feces were determined by ELISA. The results showed that chi-(pcD-Lzp3+pcD-mIL-33 co-immunization induced the highest levels of serum IgG, secreted mucosal IgA, and T cell proliferation. Importantly, mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33 had the lowest birth rate and mean litter size, which correlated with high levels of antibodies. Ovaries from infertile female mice co-immunized with chi-(pcD-Lzp3+pcD-mIL-33 showed abnormal development of ovarian follicles, indicated by atretic follicles and loss of oocytes. Our results demonstrated that intranasal delivery of the molecular adjuvant mIL-33 with chi-pcD-Lzp3 significantly increased infertility by enhancing both systemic and mucosal immune responses. Therefore, chi-(pcD-Lzp3+pcD-mIL-33 co-immunization could be a strategy for controlling the population of wild animal pests.

  18. Transient gene expression in tobacco using Gibson assembly and the Gene Gun.

    Science.gov (United States)

    Mattozzi, Matthew D; Voges, Mathias J; Silver, Pamela A; Way, Jeffrey C

    2014-04-18

    In order to target a single protein to multiple subcellular organelles, plants typically duplicate the relevant genes, and express each gene separately using complex regulatory strategies including differential promoters and/or signal sequences. Metabolic engineers and synthetic biologists interested in targeting enzymes to a particular organelle are faced with a challenge: For a protein that is to be localized to more than one organelle, the engineer must clone the same gene multiple times. This work presents a solution to this strategy: harnessing alternative splicing of mRNA. This technology takes advantage of established chloroplast and peroxisome targeting sequences and combines them into a single mRNA that is alternatively spliced. Some splice variants are sent to the chloroplast, some to the peroxisome, and some to the cytosol. Here the system is designed for multiple-organelle targeting with alternative splicing. In this work, GFP was expected to be expressed in the chloroplast, cytosol, and peroxisome by a series of rationally designed 5' mRNA tags. These tags have the potential to reduce the amount of cloning required when heterologous genes need to be expressed in multiple subcellular organelles. The constructs were designed in previous work(11), and were cloned using Gibson assembly, a ligation independent cloning method that does not require restriction enzymes. The resultant plasmids were introduced into Nicotiana benthamiana epidermal leaf cells with a modified Gene Gun protocol. Finally, transformed leaves were observed with confocal microscopy.

  19. FasL基因和屋尘螨过敏原基因共表达质粒DNA疫苗对屋尘螨致敏/激发小鼠气道炎症的作用%Effects of DNA vaccine encoding both FasL and house dust mite allergen Der p2 on the airway inflammations in mice sensitized/challenged with house dust mite

    Institute of Scientific and Technical Information of China (English)

    王彦; 林科雄; 王长征; 吴奎; 毕玉田

    2011-01-01

    目的:观察FasL基因和屋尘螨过敏原Der p2基因共表达质粒的DNA疫苗(DNA-FasL-Der p2)对屋尘螨致敏/激发小鼠气道炎症的作用.方法:DNA-FasL-Der p2肌注接种屋尘螨致敏/激发C57BL/6小鼠,再次激发后处死小鼠.观察肺组织病理变化,检测支气管肺泡灌洗液(BALF)细胞总数和分类计数,以及IL-5、IFN-γ水平.并与仅编码Der p2基因的DNA疫苗(DNA-Der p2)比较.结果:接种DNA-FasL-Der p2和DNA-Der p2均能显著减轻屋尘螨致敏/激发小鼠气道炎症.减少BALF中细胞总数和嗜酸粒细胞比例.降低BALF中IL-5水平,以DNA-FasL-Der p2更显著.结论:DNA-FasL-Derp2可有效抑制屋尘螨致敏/激发小鼠气道炎症,而且比DNA-Der p2更有效.%Objective To investigate the effects of DNA vaccine encoding both FasL and house dust mite (HDM) allergen Der p2 (DNA-FasL-Der p2) on the airway inflammation in mice challenged with HDM.Methods HDM sensitized and challenged C57BL/6 mice were immunized with DNA-FasL-Der p2 or DNA-Der p2 (without FasL)DNA vaccine,then they were re-challenged with HDM.Two days after the last challenge, bronchoalveolar lavage fluid (BALF) was collected and lung histology was examined.The levels of IL-5 and IFN-γ in BALF supematants were analyzed by ELISA, total cell count and differential cell count in BALF sediment were determined.Results Both DNA-FasL-Der p2 and DNA-Der p2 relieved airway inflammation and decreased the level of IL-5, total cell count and the percentage of eosinophils in BALF.The improvement of DNA-FasL-Der p2 was more significant than that of DNA-Der p2.Conclusion DNA-FasL-Der p2 could reduce airway allergic inflammation in HDM-challenged mice.And DNA-FasL-Der p2 was more effective than that of DNA-Der p2.

  20. Experimental gene therapy using p21Waf1 gene for esophageal squamous cell carcinoma by gene gun technology.

    Science.gov (United States)

    Tanaka, Yuichi; Fujii, Teruhiko; Yamana, Hideaki; Kato, Seiya; Morimatsu, Minoru; Shirouzu, Kazuo

    2004-10-01

    In our previous study, the proliferation rate of esophageal squamous cell carcinoma cell lines, which poorly expressed p21Waf1, was found to be regulated by p21Waf1 gene transfection using adenovirus vector. In the present study, in order to examine the effect of p21Waf1 gene therapy in esophageal cancer, we used gene gun technology, which proved to be a powerful method to introduce the p21Waf1 gene into esophageal cancer cells. p21Waf1 transfection to KE3 and YES2 cells (weakly expressed p21Waf1 protein cells) showed a high expression of p21Waf1 protein after applying this gene gun technique. In KE3 and YES2 cells, statistical significant growth inhibition was observed after p21Waf1 transfection compared with LacZ transfection (KE3, p=0.0009; YES2, pgun technique significantly inhibited the low basal p21Waf1 expressed esophageal cancer cell growth in vitro and in vivo. Furthermore, p21Waf1 transfection strongly enhanced the effect of 5Fu suggesting that p21Waf1 may prove beneficial in chemotherapy combined with gene therapy using gene gun technology in patients with esophageal cancer who have a low level of p21Waf1 expressed tumor.

  1. Development of an oral DNA vaccine against MG7-Ag of gastric cancer using attenuated salmonella typhimurium as carrier

    Institute of Scientific and Technical Information of China (English)

    Chang-Cun Guo; Jie Ding; Bo-Rong Pan; Zhao-Cai Yu; Quan-Li Han; Fan-Ping Meng; Na Liu; Dai-Ming Fan

    2003-01-01

    AIM: To develop an oral DNA vaccine against gastric cancer and evaluate its efficacy in mice.METHODS: The genes of the MG7-Ag mimotope and a universal Th epitope (Pan-DR epitope, PADRE) were included in the PCR primers. By PCR, the fusion gene of the two epitopes was amplified. The fusion gene was confirmed by sequencing and was then cloned into pcDNA3.1(+) plasmid. The pcDNA3.1 (+)-MG7/PADRE was used to transfect an attenuated Salrmonella typhimuriurm.C57BL/6 mice were orally immunized with 1x108 cfu Salrmonella transfectants. Salmonella harboring the empty pcDNA3.1(+) plasmid and phosphate buffer saline (PBS)were used as negative controls. At the 6th week, serum titer of MG7-Ag specific antibody was detected by ELtSA.At the 8th week cellular immunity was detected by an unprimed proliferation test of the spleenocytes by using a [3H]-thymidine incorporation assay. Ehrlich ascites carcinoma cells expressing MG7-Ag were used as a model in tumor challenge assay to evaluate the protective effect of the vaccine.RESULTS: Serum titer of antibody against MG7-Ag was significantly higher in mice immunized with the vaccine than that in control groups (0.841 vs 0.347, P<0.01; 0.841 vs 0.298,P<0.01), while in vitro unprimed proliferation assay of the spleenocytes showed no statistical difference between those three groups. Two weeks after tumor challenge, 2 in 7 immunized mice were tumor free, while all the mice in the control groups showed tumor formation. CONCLUSION: Oral DNA vaccine against the MG7-Ag momitope of gastric cancer is immunogenic. It can induce significant humoral immunity against tumor in mice, and the vaccine has partially protective effects.

  2. Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine.

    Science.gov (United States)

    Al-Deen, Fatin Nawwab; Ho, Jenny; Selomulya, Cordelia; Ma, Charles; Coppel, Ross

    2011-04-05

    Low efficiency is often observed in the delivery of DNA vaccines. The use of superparamagnetic nanoparticles (SPIONs) to deliver genes via magnetofection could improve transfection efficiency and target the vector to its desired locality. Here, magnetofection was used to enhance the delivery of a malaria DNA vaccine encoding Plasmodium yoelii merozoite surface protein MSP1(19) (VR1020-PyMSP1(19)) that plays a critical role in Plasmodium immunity. The plasmid DNA (pDNA) containing membrane associated 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 (PyMSP1(19)) was conjugated with superparamagnetic nanoparticles coated with polyethyleneimine (PEI) polymer, with different molar ratio of PEI nitrogen to DNA phosphate. We reported the effects of SPIONs-PEI complexation pH values on the properties of the resulting particles, including their ability to condense DNA and the gene expression in vitro. By initially lowering the pH value of SPIONs-PEI complexes to 2.0, the size of the complexes decreased since PEI contained a large number of amino groups that became increasingly protonated under acidic condition, with the electrostatic repulsion inducing less aggregation. Further reaggregation was prevented when the pHs of the complexes were increased to 4.0 and 7.0, respectively, before DNA addition. SPIONs/PEI complexes at pH 4.0 showed better binding capability with PyMSP1(19) gene-containing pDNA than those at neutral pH, despite the negligible differences in the size and surface charge of the complexes. This study indicated that the ability to protect DNA molecules due to the structure of the polymer at acidic pH could help improve the transfection efficiency. The transfection efficiency of magnetic nanoparticle as carrier for malaria DNA vaccine in vitro into eukaryotic cells, as indicated via PyMSP1(19) expression, was significantly enhanced under the application of external magnetic field, while the cytotoxicity was comparable to the benchmark nonviral

  3. Functional demonstration of adaptive immunity in zebrafish using DNA vaccination

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    studies have documented existence of a classical innate immune response, there is mainly indirect evidence of functional adaptive immunity. To address this aspect, groups of zebrafish were vaccinated with DNA-vaccines against the rhabdoviruses VHSV, IHNV and SVCV. Seven weeks later, the fish were...... challenged with SVCV by immersion. Despite some variability between replicate aquaria, there was a protective effect of the homologous vaccine and no effect of the heterologous vaccines. The results therefore confirm the existence of not only a well developed but also a fully functional adaptive immune......Due to the well characterized genome, overall highly synteny with the human genome and its suitability for functional genomics studies, the zebrafish is considered to be an ideal animal model for basic studies of mechanisms of diseases and immunity in vertebrates including humans. While several...

  4. Immunogenicity of candidate chimeric DNA vaccine against tuberculosis and leishmaniasis.

    Science.gov (United States)

    Dey, Ayan; Kumar, Umesh; Sharma, Pawan; Singh, Sarman

    2009-08-13

    Mycobacterium tuberculosis and Leishmania donovani are important intracellular pathogens, especially in Indian context. In India and other South East Asian countries, both these infections are highly endemic and in about 20% cases co-infection of these pathogens is reported. For both these pathogens cell mediated immunity plays most important role. The available treatment of these infections is either prolonged or cumbersome or it is ineffective in controlling the outbreaks and spread. Therefore, potentiation of a common host defense mechanism can be used to prevent both the infections simultaneously. In this study we have developed a novel chimeric DNA vaccine candidate comprising the esat-6 gene of M. tuberculosis and kinesin motor domain gene of L. donovani. After developing this novel chimera, its immunogenicity was studied in mouse model. The immune response was compared with individual constructs of esat-6 and kinesin motor domain. The results showed that immunization with chimeric DNA vaccine construct resulted in stronger IFN-gamma and IL-2 response against kinesin (3012+/-102 and 367.5+/-8.92pg/ml) and ESAT-6 (1334+/-46.5 and 245.1+/-7.72pg/ml) in comparison to the individual vaccine constructs. The reciprocal immune response (IFN-gamma and IL-2) against individual construct was lower (kinesin motor domain: 1788+/-36.48 and 341.8+/-9.801pg/ml and ESAT-6: 867.0+/-47.23 and 170.8+/-4.578pg/ml, respectively). The results also suggest that using the chimeric construct both proteins yielded a reciprocal adjuvant affect over each other as the IFN-gamma production against chimera vaccination is statistically significant (pleishmaniasis and tuberculosis and have important implication in future vaccine design.

  5. Construction of recombinant attenuated Salmonella typhimurium DNA vaccine expressing H pylori ureB and IL-2

    Institute of Scientific and Technical Information of China (English)

    Can Xu; Zhao-Shen Li; Yi-Qi Du; Yan-Fang Gong; Hua Yang; Bo Sun; Jing Jin

    2007-01-01

    AIM: To construct a recombinant live attenuated Salmonella typhimurium DNA vaccine encoding H pylori ureB gene and mouse IL-2 gene and to detect its immunogenicity in vitro and in vivo.METHODS: H pylori ureB and mouse IL-2 gene fragments were amplified by potymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified ureB and IL-2 genes was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions resulting in pIRES-ureB and pIRES-ureB-IL-2. The recombinant plasmids were used to transform competent E. Coli DH5a, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-ureB and pIRES-ureB-IL-2 were used to transform LB5000 and the recombinant plasmids extracted from LB5000 were finally introduced into the final host SL7207. After that, recombinant strains were grown in vitro repeatedly. In order to detect the immunogenicity of the vaccine in vitro, pIRES-ureB and pIRES-ureB-IL-2 were transfected to COS-7 cells using Lipofectamine TM 2000, the immunogenicity of expressed UreB and IL-2 proteins was assayed with SDS-PAGE and Western blot. C57BL/6 mice were orally immunized with 1 x 108 recombinant attenuated Salmonella typhimurium DNA vaccine. Four weeks after vaccination, mice were challenged with 1 x 107 CFU of live Hpylori SSI. Mice were sacrificed and the stomach was isolated for examination of H pylori 4 wk post-challenge.RESULTS: The 1700 base pair ureB gene fragment amplified from the genomic DNA was consistent with the sequence of H pylori ureB by sequence analysis. The amplified 510 base pair fragment was consistent with the sequence of mouse IL-2 in gene bank. It was confirmed by PCR and restriction enzyme digestion that H pylori ureB and mouse IL-2 genes were inserted into the eukaryotic expression vector pIRES. The experiments in vitro snowed that stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying

  6. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-07-01

    Full Text Available Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT. Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.

  7. Clitocybe nuda Activates Dendritic Cells and Acts as a DNA Vaccine Adjuvant

    Directory of Open Access Journals (Sweden)

    Mei-Hsing Chen

    2013-01-01

    Full Text Available This work represents the first evaluation of the effects of water extract of C. nuda (WE-CN, an edible mushroom, on murine bone marrow-derived dendritic cells (BMDCs and the potential pathway through which the effects are mediated. Our experimental results show that WE-CN could induce phenotypic maturation of DCs, as shown by the increased expression of MHC and costimulatory molecules. In addition, it also induced the proinflammatory cytokines expression on DCs and enhanced both the proliferation and IFN-γ secretion of allogenic T cells. Therefore, since WE-CN did not induce maturation of DCs generated from mice with mutated TLR-4 or TLR-2, suggesting that TLR4 and TLR2 might function as membrane receptors for WE-CN. Moreover, the mechanism of action of WE-CN may be mediated by increased phosphorylation of ERK, p38, and JNK mitogen-activated protein kinase (MAPK and increased NF-κB p65 activity, which are important signaling molecules downstream of TLR-4 and TLR-2. Finally, coimmunization of mice with WE-CN and a HER-2/neu DNA vaccine induced a HER-2/neu-specific Th1 response that resulted in significant inhibition of HER-2/neu overexpressing mouse bladder tumor (MBT-2 growth. These data suggest that WE-CN induces DC maturation through TLR-4 and/or TLR-2 and that WE-CN can be used as an adjuvant in cancer vaccine immunotherapy.

  8. Modulation of SIV and HIV DNA Vaccine Immunity by Fas-FasL Signaling

    Directory of Open Access Journals (Sweden)

    Jiabin Yan

    2015-03-01

    Full Text Available Signaling through the Fas/Apo-1/CD95 death receptor is known to affect virus-specific cell-mediated immune (CMI responses. We tested whether modulating the Fas-apoptotic pathway can enhance immune responses to DNA vaccination or lymphocytic choriomeningitis virus (LCMV infection. Mice were electroporated with plasmids expressing a variety of pro- or anti-apoptotic molecules related to Fas signaling and then either LCMV-infected or injected with plasmid DNA expressing SIV or HIV antigens. Whereas Fas or FasL knockout mice had improved CMI, down-regulation of Fas or FasL by shRNA or antibody failed to improve CMI and was accompanied by increases in regulatory T cells (Treg. Two “adjuvant” plasmids were discovered that significantly enhanced plasmid immunizations. The adjuvant effects of Fas-associated death domain (FADD and of cellular FLICE-inhibitory protein (cFLIP were consistently accompanied by increased effector memory T lymphocytes and increased T cell proliferation. This adjuvant effect was also observed when comparing murine infections with LCMV-Armstrong and its persisting variant LCMV-Clone 13. LCMV-Armstrong was cleared in 100% of mice nine days after infection, while LCMV-Clone 13 persisted in all mice. However, half of the mice pre-electroporated with FADD or cFLIP plasmids were able to clear LCMV-Clone 13 by day nine, and, in the case of cFLIP, increased viral clearance was accompanied by higher CMI. Our studies imply that molecules in the Fas pathway are likely to affect a number of events in addition to the apoptosis of cells involved in immunity.

  9. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96.

    Science.gov (United States)

    Pishraft-Sabet, Leila; Kosinska, Anna D; Rafati, Sima; Bolhassani, Azam; Taheri, Tahereh; Memarnejadian, Arash; Alavian, Seyed-Moayed; Roggendorf, Michael; Samimi-Rad, Katayoun

    2015-01-01

    Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.

  10. Comparison of Immune Responses against FMD by a DNA Vaccine Encoding the FMDV/O/IRN/2007 VP1 Gene and the Conventional Inactivated Vaccine in an Animal Model

    Institute of Scientific and Technical Information of China (English)

    Farahnaz Motamedi Sedeh; Hoorieh Soleimanjahi; AmirReza Jalilian; Homayoon Mahravani

    2012-01-01

    Foot-and-mouth disease virus (FMDV) is highly contagious and responsible for huge outbreaks among cloven hoofed animals.The aim of the present study is to evaluate a plasmid DNA immunization system that expresses the FMDV/O/IRN/2007 VP1 gene and compare it with the conventional inactivated vaccine in an animal model.The VP1 gene was sub-cloned into the unique Kpn I and BamH I cloning sites of the pcDNA3.1+ and pEGFP-N1 vectors to construct the VP1 gene cassettes.The transfected BHKT7 cells with sub-cloned pEGFP-N1-VP1 vector expressed GFP-VP1 fusion protein and displayed more green fluorescence spots than the transfected BHKT7 cells with pEGFP-N1 vector,which solely expressed the GFP protein.Six mice groups were respectively immunized by the sub-cloned pcDNA3.1+-VP1 gene cassette as the DNA vaccine,DNA vaccine and PCMV-SPORT-GMCSF vector (as molecular adjuvant) together,conventional vaccine,PBS (as negative control),pcDNA3.1+ vector (as control group) and PCMV-SPORT vector that contained the GMCSF gene (as control group).Significant neutralizing antibody responses were induced in the mice which were immunized using plasmid vectors expressing the VP1 and GMCSF genes together,the DNA vaccine alone and the conventional inactivated vaccine (P<0.05).Co-administration of DNA vaccine and GMCSF gene improved neutralizing antibody response in comparison with administration of the DNA vaccine alone,but this response was the most for the conventional vaccine group.However,induction of humeral immunity response in the conventional vaccine group was more protective than for the DNA vaccine,but T-cell proliferation and IFN-γ concentration were the most in DNA vaccine with the GMCSF gene.Therefore the group that was vaccinated by DNA vaccine with the GMCSF gene,showed protective neutralizing antibody response and the most Th1 cellular immunity.

  11. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Directory of Open Access Journals (Sweden)

    Adriana S Azevedo

    Full Text Available The dengue envelope glycoprotein (E is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2 and a chimeric yellow fever/dengue 2 virus (YF17D-D2. The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  12. The synergistic effect of combined immunization with a DNA vaccine and chimeric yellow fever/dengue virus leads to strong protection against dengue.

    Science.gov (United States)

    Azevedo, Adriana S; Gonçalves, Antônio J S; Archer, Marcia; Freire, Marcos S; Galler, Ricardo; Alves, Ada M B

    2013-01-01

    The dengue envelope glycoprotein (E) is the major component of virion surface and its ectodomain is composed of domains I, II and III. This protein is the main target for the development of a dengue vaccine with induction of neutralizing antibodies. In the present work, we tested two different vaccination strategies, with combined immunizations in a prime/booster regimen or simultaneous inoculation with a DNA vaccine (pE1D2) and a chimeric yellow fever/dengue 2 virus (YF17D-D2). The pE1D2 DNA vaccine encodes the ectodomain of the envelope DENV2 protein fused to t-PA signal peptide, while the YF17D-D2 was constructed by replacing the prM and E genes from the 17D yellow fever vaccine virus by those from DENV2. Balb/c mice were inoculated with these two vaccines by different prime/booster or simultaneous immunization protocols and most of them induced a synergistic effect on the elicited immune response, mainly in neutralizing antibody production. Furthermore, combined immunization remarkably increased protection against a lethal dose of DENV2, when compared to each vaccine administered alone. Results also revealed that immunization with the DNA vaccine, regardless of the combination with the chimeric virus, induced a robust cell immune response, with production of IFN-γ by CD8+ T lymphocytes.

  13. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine.

    Science.gov (United States)

    Kanagavelu, Saravana K; Snarsky, Victoria; Termini, James M; Gupta, Sachin; Barzee, Suzanne; Wright, Jacqueline A; Khan, Wasif N; Kornbluth, Richard S; Stone, Geoffrey W

    2012-01-17

    DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8+ and/or CD4+ T cells. Finally adjuvants SP

  15. Transcriptome Profiles Associated to VHSV Infection or DNA Vaccination in Turbot (Scophthalmus maximus)

    OpenAIRE

    Patricia Pereiro; Sonia Dios; Sebastián Boltaña; Julio Coll; Amparo Estepa; Simon Mackenzie; Beatriz Novoa; Antonio Figueras

    2014-01-01

    DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out...

  16. Construction and Nonclinical Testing of a Puumala Virus Synthetic M Gene-Based DNA Vaccine

    Science.gov (United States)

    2012-12-12

    DNA vaccine constructsf Amino acid positiona PUUV M segment amino acid DNA vaccine amino acid DTK/ Ufa -97b K27c P360d Hallnas B1e PUU- M(x22) PUU- M...G 1097 S S S S L L S a M gene segment open reading frame amino acid position. b DTK/ Ufa -97, PUUV strain DTK/ Ufa (GenBank accession no. BAF49040). c

  17. Expanded breadth of the T-cell response to mosaic HIV-1 envelope DNA vaccination

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Fischer, William [Los Alamos National Laboratory; Wallstrom, Timothy [Los Alamos National Laboratory

    2009-01-01

    An effective AIDS vaccine must control highly diverse circulating strains of HIV-1. Among HIV -I gene products, the envelope (Env) protein contains variable as well as conserved regions. In this report, an informatic approach to the design of T-cell vaccines directed to HIV -I Env M group global sequences was tested. Synthetic Env antigens were designed to express mosaics that maximize the inclusion of common potential Tcell epitope (PTE) 9-mers and minimize the inclusion of rare epitopes likely to elicit strain-specific responses. DNA vaccines were evaluated using intracellular cytokine staining (ICS) in inbred mice with a standardized panel of highly conserved 15-mer PTE peptides. I, 2 and 3 mosaic sets were developed that increased theoretical epitope coverage. The breadth and magnitude ofT-cell immunity stimulated by these vaccines were compared to natural strain Env's; additional comparisons were performed on mutant Env's, including gpl60 or gpl45 with or without V regions and gp41 deletions. Among them, the 2 or 3 mosaic Env sets elicited the optimal CD4 and CD8 responses. These responses were most evident in CD8 T cells; the 3 mosaic set elicited responses to an average of 8 peptide pools compared to 2 pools for a set of3 natural Env's. Synthetic mosaic HIV -I antigens can therefore induce T-cell responses with expanded breadth and may facilitate the development of effective T -cell-based HIV -1 vaccines.

  18. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control.

    Science.gov (United States)

    Kumar, A; Samant, M

    2016-05-01

    The visceral leishmaniasis (VL) caused by Leishmania donovani parasite severely affects large populations in tropical and subtropical regions of the world. The arsenal of drugs available is limited, and resistance is common in clinical field isolates. Therefore, vaccines could be an important alternative for prevention against VL. Recently, some investigators advocated the protective efficacy of DNA vaccines, which induces the T cell-based immunity against VL. The vaccine antigens are selected as conserved in various Leishmania species and provide a viable strategy for DNA vaccine development. Our understanding for DNA vaccine development against VL is not enough and much technological advancement is required. Improved formulations and methods of delivery are required, which increase the uptake of DNA vaccine by cells; optimization of vaccine vectors/encoded antigens to augment and direct the host immune response in VL. Despite the many genes identified as vaccine candidates, the disappointing potency of the DNA vaccines in VL underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. This review will provide a brief background of DNA vaccines including the insights gained about the design, strategy, safety issues, varied candidates, progress and challenges that play a role in their ability against VL.

  19. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine.

    Science.gov (United States)

    Porter, Kevin R; Ewing, Daniel; Chen, Lan; Wu, Shuenn-Jue; Hayes, Curtis G; Ferrari, Marilyn; Teneza-Mora, Nimfa; Raviprakash, Kanakatte

    2012-01-05

    A prototype dengue-1 DNA vaccine was shown to be safe and immunogenic in a previous Phase 1 clinical trial. Anti-dengue-1 neutralizing antibody responses were detectable only in the group of volunteers receiving the high dose of nonadjuvanted vaccine and the antibody titers were low. Vaxfectin(®), a lipid-based adjuvant, enhances the immunogenicity of DNA vaccines. We conducted a nonhuman primate study to evaluate the effect of Vaxfectin(®) on the immunogenicity of a tetravalent dengue DNA vaccine. Animals were immunized on days 0, 28 and 84, with each immunization consisting of 3mg of Vaxfectin(®)-adjuvanted tetravalent dengue DNA vaccine. The use of Vaxfectin(®) resulted in a significant increase in anti-dengue neutralizing antibody responses against dengue-1, -3 and -4. There was little to no effect on T cell responses as measured by interferon gamma ELISPOT assay. Animals immunized with the Vaxfectin(®)-formulated tetravalent DNA vaccine showed significant protection against live dengue-2 virus challenge compared to control animals (0.75 mean days of viremia vs 3.3 days). Animals vaccinated with nonadjuvanted DNA had a mean 2.0 days of viremia. These results support further evaluation of the Vaxfectin(®)-adjuvanted tetravalent dengue DNA vaccine in a Phase 1 clinical trial.

  20. DNA vaccination of small rainbow trout fry against VHSV

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil;

    2012-01-01

    Small rainbow trout fry were DNA vaccinated by intramuscular injection at 0.25g and other fish later at 0.5g. Vaccine groups included pcDNA3-vhsG, heterologous vaccine (pcDNA3-ihnG), empty vector (pcDNA3) and unhandled fish. Fry vaccinated at 0.25g were challenged with VHSV by immersion at 3wpv, 11......wpv and 21wpv. The challenge at 3wpv was started 1wpv, however as no mortality was observed, the fish were re-challenged 3wpv using a modified setup. Fry vaccinated at 0.5g were challenged with VHSV by immersion at11wpv. By early challenge (3wpv) of fish vaccinated at 0.25g both homologous...... and heterologous challenge (5% mortality). At 11 wpv an unspecific protection with 30 % mortality was observed. At 21 wpv protection against VHSV had dropped further (50 % mortality). Protection against IHNV was better (10 % mortality) but equal for both homologous and heterologous vaccines confirming previous...

  1. Improvement of cytomegalovirus pp65 DNA vaccine efficacy by co-administration of siRNAs targeting BAK and BAX.

    Science.gov (United States)

    Liu, Jixiao; Feng, Keke; Zhao, Lu; Luo, Haining; Zhu, Yingjun

    2017-06-01

    The efficacy of DNA vaccines may be improved by small interfering (si)RNA adjuvants targeting pro-apoptotic genes. The aim of the present study was to investigate the capacity of siRNAs targeting B-cell lymphoma 2 homologous antagonist killer (BAK) and B-cell lymphoma 2-associated X protein (BAX) to improve the efficacy of a cytomegalovirus (CMV) vaccine. BALB/c mice were divided into four groups (n=18 in each): unimmunized and immunized with pcDNA 3.1-pp65 expressing CMV 65 kDa matrix phosphoprotein and BAK + BAX siRNAs, pcDNA 3.1-pp65 and control siRNA, or control pcDNA 3.1 and BAK + BAX siRNAs. Immunizations were performed twice with an interval of 3 weeks. CMV-specific mouse splenocyte interferon (IFN)-γ secretion was assessed by ELISPOT; furthermore, an in vivo cytotoxic T lymphocyte assay was performed 2 weeks after the last immunization. After lethal CMV challenge of the mice, body weight, virus titers in the spleens and salivary glands as well as survival were recorded. The amount of splenocytes secreting IFN-γ in response to CMV pp65 peptides and specific lysis of peptide-pulsed target cells were significantly higher in mice administered pcDNA3.1-pp65 and BAK + BAX siRNAs than those in mice administered pcDNA3.1-pp65 and control siRNA (PBAX siRNAs were significantly lower than those in mice immunized with pcDNA3.1-pp65 and control siRNA (PBAX siRNAs survived for longer, and at 21 days after lethal CMV challenge, 66 and 100% of these mice survived, respectively. These mice also experienced less weight loss compared with mice immunized with pcDNA3.1-pp65 and control siRNA (PBAX improved the efficacy of CMV pp65 DNA vaccine.

  2. A Mage3/Heat Shock Protein70 DNA vaccine induces both innate and adaptive immune responses for the antitumor activity.

    Science.gov (United States)

    Wang, Lifeng; Rollins, Lisa; Gu, Qinlong; Chen, Si-Yi; Huang, Xue F

    2009-12-11

    Heat shock proteins (HSPs) are highly effective and versatile molecules in promoting antitumor immune responses. We tested whether a HSP-based DNA vaccine can induce effective immune response against Mage3, a cancer testis (CT) antigen frequently expressed in many human tumors, thereby controlling the Mage3-expressing tumor. The vaccine was constructed by linking human inducible HSP70 to the C-terminus of a modified Mage3 gene (sMage3) that was attached at its N-terminus with the signal leader sequence of the human RANTES for releasing the expressed fusion protein from the transduced cells. Intramuscular injection of sMage3Hsp DNA induced CD4(+)/CD8(+) T cell and antibody responses. Vaccination with sMage3Hsp DNA was more effective in inhibiting Mage3-expressing TC-1 tumors. When we dissected the antitumor activity of CD4(+) and CD8(+) T cells by immunizing CD4(+) and CD8(+) knockout mice with sMage3Hsp DNA, we found that both CD8(+) T and CD4(+) T cells played a role in control of inoculated tumor, but did not constitute the whole of immune protection in the prophylactic immunization. Instead, depletion of natural killer (NK) cells led to a major loss of antitumor activity in the immunized mice. These results indicate that the HSP-based Mage3 DNA vaccine can more effectively inhibit tumor growth by inducing both the innate immune responses and Mage3-specific adaptive immune responses via the Hsp-associated adjuvant function.

  3. Optimized codon usage enhances the expression and immunogenicity of DNA vaccine encoding Taenia solium oncosphere TSOL18 gene.

    Science.gov (United States)

    Wang, Yuan-Yuan; Chang, Xue-Lian; Tao, Zhi-Yong; Wang, Xiao-Li; Jiao, Yu-Meng; Chen, Yong; Qi, Wen-Juan; Xia, Hui; Yang, Xiao-Di; Sun, Xin; Shen, Ji-Long; Fang, Qiang

    2015-07-01

    Cysticercosis due to larval cysts of Taenia solium, is a serious public health problem affecting humans in numerous regions worldwide. The oncospheral stage-specific TSOL18 antigen is a promising candidate for an anti-cysticercosis vaccine. It has been reported that the immunogenicity of the DNA vaccine may be enhanced through codon optimization of candidate genes. The aim of the present study was to further increase the efficacy of the cysticercosis DNA vaccine; therefore, a codon optimized recombinant expression plasmid pVAX1/TSOL18 was developed in order to enhance expression and immunogenicity of TSOL18. The gene encoding TSOL18 of Taenia solium was optimized, and the resulting opt-TSOL18 gene was amplified and expressed. The results of the present study showed that the codon-optimized TSOL18 gene was successfully expressed in CHO-K1 cells, and immunized mice vaccinated with opt-TSOL18 recombinant expression plasmids demonstrated opt‑TSOL18 expression in muscle fibers, as determined by immunohistochemistry. In addition, the codon-optimized TSOL18 gene produced a significantly greater effect compared with that of TSOL18 and active spleen cells were markedly stimulated in vaccinated mice. 3H-thymidine incorporation was significantly greater in the opt-TSOL18 group compared with that of the TSOL18, pVAX and blank control groups (P<0.01). In conclusion, the eukaryotic expression vector containing the codon-optimized TSOL18 gene was successfully constructed and was confirmed to be expressed in vivo and in vitro. The expression and immunogenicity of the codon-optimized TSOL18 gene were markedly greater compared with that of the un-optimized gene. Therefore, these results may provide the basis for an optimized TSOL18 gene vaccine against cysticercosis.

  4. A candidate DNA vaccine elicits HCV specific humoral and cellular immune responses

    Institute of Scientific and Technical Information of China (English)

    Li-Xin Zhu; Jing Liu; Ye Ye; You-Hua Xie; Yu-Ying Kong; Guang-Di Li; Yuan Wang

    2004-01-01

    AIM: To investigate the immunogenicity of candidate DNA vaccine against hepatitis C virus (HCV) delivered by two plasmids expressing HCV envelope protein 1 (E1) and envelope protein 2 (E2) antigens respectively and to study the effect of CpG adjuvant on this candidate vaccine.METHODS: Recombinant plasmids expressing HCV E1 and E2 antigens respectively were used to simultaneously inoculate mice with or without CpG adjuvant. Antisera were then collected and titers of anti-HCV antibodies were analyzed by ELISA. One month after the last injection, animals were sacrificed to prepare single-cell suspension of splenocytes.These cells were subjected to HCVantigen specific proliferation assays and cytokine secretion assays to evaluate the cellular immune responses of the vaccinated animals.RESULTS: Antibody responses to HCV E1 and E2 antigens were detected in vaccinated animals. Animals receiving CpG adjuvant had slightly lower titers of anti-HCV antibodies in the sera, while the splenocytes from these animals showed higher HCV-antigen specific proliferation. Analysis of cytokine secretion from the splenocytes was consistent with the above results. While no antigen-specific IL-4 secretion was detected for all vaccinated animals, HCV antigen-specific INF-γ secretion was detected for the splenocytes of vaccinated animals. CpG adjuvant enhanced the secretion of INF-γ but did not change the profile of IL-4 secretion.CONCLUSION: Vaccination of mice with plasmids encoding HCV E1 and E2 antigens induces humoral and cellular immune responses. CpG adjuvant significantly enhances the cellular immune response.

  5. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    Science.gov (United States)

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Distribution and expression in vitro and in vivo of DNA vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus)

    Institute of Scientific and Technical Information of China (English)

    郑风荣; 孙修勤; 刘洪展; 吴兴安; 钟楠; 王波; 周国栋

    2010-01-01

    Lymphocystis disease,caused by the lymphocystis disease virus (LCDV),is a significant worldwide problem in fish industry causing substantial economic losses.In this study,we aimed to develop the DNA vaccine against LCDV,using DNA vaccination technology.We evaluated plasmid pEGFP-N2-LCDV1.3 kb as a DNA vaccine candidate.The plasmid DNA was transiently expressed after liposome transfection into the eukaryotic COS 7 cell line.The distribution and expression of the DNA vaccine (pEGFP-N2-LCDV1.3kb) were also ana...

  7. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  8. An oral DNA vaccine against MG7—Ag of gastric cancer using attenuated Salmonella typhimurium as carrier

    Institute of Scientific and Technical Information of China (English)

    ChangCunGuo; JieDing; 等

    2002-01-01

    Aims:To develop an oral DNA vaccine against gastric cancer and evaluate its efficacy in mice.Methods:The gene of the MG7-Ag mimotope and a universal Th epitop (Pan-DR epitope,PADRE) were included in the PCR primers.By PCR,the fusion gene of the two epitopes was amplified.The fusion gene was confirmed by sequencing and then cloned into pcDNA3.1(+) plasmid.The pcDNA3.1(+)-MG7/PADRE was used to transfect an anttenuatedf Salmonella typhimurium.C57BL/6 mice were orally immunized uated Salmonella typhimurium.C57BL/6 micr were orally immunized with 1×108 cfu Salmonella transfectants.Salmonella harboring the empty pcDNA3.1(+) plasmid and phosphate buffer saline (PBS) were used as negative control.At the 6th week,serum titer of MG7-Ag specific antibody was detected by ELISA.at the 8th week cellular immunity was detected by an unprimed proliferation test of the spleenocytes by using a [3H]-thymidine incorporation assay.Ehrlich ascites carcinoma cells expressing MG7-Ag were used as a model in tumor challenge assay to evaluate the protective of the vaccine.Results:Serum titer of antibody against MG7-Ag was significantly higher in mice immunized with the vaccine than control groups (0.841 vs 0.374,P<0.01;0.841 vs 0.298,P<0.01),while exvivo unprimed proliferation assay of the spleenocytes showed no statistical difference between those three groups.Two weeks after tumor challenge,2 in 7 immunized mice were tumor free,while all the mice in the control groups showed tumor formation.Conclusions:Oral DNA vaccine against the MG7-Ag mimotope of gastric cancer is immunogenic.It can induce significant humoral immunity against tumor in mice,and the vaccine has partially protective effects.

  9. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    Science.gov (United States)

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  10. Use of DNA vaccination for determination of onset of adaptive immunity in rainbow trout fry

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Skou; Lorenzen, Ellen; Kjær, Torben Egil

    2013-01-01

    that intramuscular injection of the DNA vaccine encoding the viral glycoprotein G induced protective immunity to VHS in rainbow trout fry of 0.5g.However, the vaccine is known to induce both innate and adaptive protection. The present work therefore aimed at determination of which type of protection the DNA vaccine...... to innate cross-reactive antiviral mechanisms of shorter duration. The critical size for induction of an adaptive immune response in rainbow trout to this type of vaccination thus appears to be between 0.25 and 0.5g. This work was supported by the “DAFINET” grant from the Danish Council for Strategic...... the duration and nature of the protective immunity induced by the vaccines in the fish. The present work aimed at determination of the smallest size at which specific immunity could be induced in rainbow trout fry by DNA vaccination against viral haemorrhagic septicaemia (VHS). Earlier experiments revealed...

  11. Increased humoral immunity by DNA vaccination using an alpha-tocopherol-based adjuvant

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Nielsen, Jens

    2017-01-01

    DNA vaccines induce broad immunity, which involves both humoral and strong cellular immunity, and can be rapidly designed for novel or evolving pathogens such as influenza. However, the humoral immunogenicity in humans and higher animals has been suboptimal compared to that of traditional vaccine......). The animals received two intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing alpha-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced...... constituent alpha-tocopherol plays an important role in this immunogenicity. This induction of a potent and balanced humoral response without impairment of cellular immunity constitutes an important advancement toward effective DNA vaccines....

  12. A DNA vaccine against extracellular domains 1-3 of flk-1 and its immune preventive and therapeutic effects against H22 tumor cell in vivo

    Institute of Scientific and Technical Information of China (English)

    Fan Lü; Zhao-Yin Qin; Wen-Bin Yang; Yin-Xin Qi; Yi-Min Li

    2004-01-01

    AIM: To construct a DNA vaccine against extracellular domains 1-3 of fetal liver kinase-1 (flk-1), and to investigate its preventive and therapeutic effect against H22 cellin vivo.METHODS: Flk-1 DNA vaccine was produced by cloning extracellular domains 1-3 of flk-1 and by inserting the cloned gene into pcDNA3.1 (+). Fifteen mice were divided into 3 groups and inoculated by vaccine, plasmid and saline respectively to detect specific T lymphocyte response. Thirty Mice were equally divided into preventive group and therapeutic group. Preventive group was further divided into V, P, and S subgroups, namely immunized by vaccine,pcDNA3.1 (+) and saline, respectively, and attacked by H22 cell. Therapeutical group was divided into 3 subgroups of V, P and S, and attacked by H22, then treated with vaccine, pcDNA3.1 (+) and saline, respectively. The tumor size, tumor weight, mice survival time and tumor latency period were compared within these groups. Furthermore,intratumoral microvessel density (MVD) was assessed by immunohistochemistry.RESULTS: DNA vaccine pcDNA3.1 (+) flk-1-domains 1-3 was successfully constructed and could raise specific CTL activity. In the preventive group and therapeutic group,tumor latency period and survival time were significantly longer in vaccine subgroup than that in P and S subgroups (P<0.05); the tumor size, weight and MVD were significantly less in vaccine subgroup than that in P and S subgroups (P<0.05). The survival time of therapeutic vaccine subgroup was significantly shorter than that of preventive vaccine subgroup (P<0.05); the tumor size, and MVD of therapeutic vaccine subgroup were significantly greater than that of preventive vaccine subgroup (P<0.05).CONCLUSION: DNA vaccine against flk-1 domains 1-3 can stimulate potent specific CTL activity; and has distinctive prophylactic effect on tumor H22; and also can inhibit the tumor growthin vivo. This vaccine may be used as an adjuvant therapy because it is less effective on

  13. The anti-tumour effect of a DNA vaccine carrying a fusion gene of human VEGFR2 and IL-12

    Directory of Open Access Journals (Sweden)

    Sha Wen

    2016-09-01

    Full Text Available Because of tumour dependence on angiogenesis, anti-angiogenic therapy has become the most attractive area of basic and clinical study in the field of cancer research. In order to create a synergistic effect on angiogenesis and immune regulation, we designed and constructed a new type of DNA vaccine that can express VEGFR2 (vascular endothelial growth factor receptor 2 and the prostate cancer antigen IL-12 (interleukin 12 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of a eukaryotic expression plasmid carrying a fusion gene of human VEGFR2 and IL-12. According to the gene sequences in GenBank, we synthesized the human VEGFR2 and IL-12 genes. VEGFR2 and IL-12 were joined by a sequence encoding a Furin recognition site and a 2A cleavage site, and the resulting fusion gene was cloned into the eukaryotic expression vector pVAX1 to construct the expression plasmid pVAX1-VEGFR2-F2A-IL-12. The expression of VEGFR2 and IL-12 could be detected in 293T cells transfected with pVAX1-VEGFR2-F2A-IL-12 by enzyme-linked immunosorbent assay. Each of these proteins, and in particular co-expression of both proteins, can result in humoral and cellular immune responses in C57BL/6 mice. After injection into the tumour-bearing mouse model, the plasmid showed stronger inhibition of tumour growth than a plasmid expressing VEGFR2 alone. Our results demonstrate that a DNA vaccine carrying a fusion gene of human VEGFR2 and IL-12 could represent a promising approach for tumour immunotherapy.

  14. An Epitope-Substituted DNA Vaccine Improves Safety and Immunogenicity against Dengue Virus Type 2.

    Directory of Open Access Journals (Sweden)

    Chung-Tao Tang

    Full Text Available Dengue virus (DENV, a global disease, is divided into four serotypes (DENV1-4. Cross-reactive and non-neutralizing antibodies against envelope (E protein of DENV bind to the Fcγ receptors (FcγR of cells, and thereby exacerbate viral infection by heterologous serotypes via antibody-dependent enhancement (ADE. Identification and modification of enhancing epitopes may mitigate enhancement of DENV infection. In this study, we characterized the cross-reactive DB21-6 and DB39-2 monoclonal antibodies (mAbs against domain I-II of DENV; these antibodies poorly neutralized and potently enhanced DENV infection both in vitro and in vivo. In addition, two enhancing mAbs, DB21-6 and DB39-2, were observed to compete with sera antibodies from patients infected with dengue. The epitopes of these enhancing mAbs were identified using phage display, structural prediction, and mapping of virus-like particle (VLP mutants. N8, R9, V12, and E13 are the reactive residues of DB21-6, while N8, R9, and E13 are the reactive residues of DB39-2. N8 substitution tends to maintain VLP secretion, and decreases the binding activity of DB21-6 and DB39-2. The immunized sera from N8 substitution (N8R DNA vaccine exerted greater neutralizing and protective activity than wild-type (WT-immunized sera, both in vitro and in vivo. Furthermore, treatment with N8R-immunized sera reduced the enhancement of mortality in AG129 mice. These results support identification and substitution of enhancing epitope as a novel strategy for developing safe dengue vaccines.

  15. Neutralizing antibodies respond to a bivalent dengue DNA vaccine or/and a recombinant bivalent antigen.

    Science.gov (United States)

    Zhang, Zhi-Shan; Weng, Yu-Wei; Huang, Hai-Long; Zhang, Jian-Ming; Yan, Yan-Sheng

    2015-02-01

    There is currently no effective vaccine to prevent dengue infection, despite the existence of multiple studies on potential methods of immunization. The aim of the present study was to explore the effect of DNA and/or recombinant protein on levels of neutralizing antibodies. For this purpose, envelope domain IIIs of dengue serotypes 1 and 2 (DEN-1/2)were spliced by a linker (Gly‑Gly‑Ser‑Gly‑Ser)3 and cloned into the prokaryotic expression plasmid pET30a (+) and eukaryotic vector pcDNA3.1 (+). The chimeric bivalent protein was expressed in Escherichia coli, and one‑step purification by high‑performance liquid chromatography was conducted. Protein expression levels of the DNA plasmid were tested in BHK‑21 cells by indirect immunofluorescent assay. In order to explore a more effective immunization strategy and to develop neutralizing antibodies against the two serotypes, mice were inoculated with recombinant bivalent protein, the DNA vaccine, or the two given simultaneously. Presence of the specific antibodies was tested by ELISA and the presence of the neutralizing antibodies was determined by plaque reduction neutralization test. Results of the analysis indicated that the use of a combination of DNA and protein induced significantly higher titers of neutralizing antibodies against either DEN‑1 or DEN‑2 (1:64.0 and 1:76.1, respectively) compared with the DNA (1:24.7 and 1:26.9, DEN‑1 and DEN‑2, respectively) or the recombinant protein (1:34.9 and 1:45.3 in DEN‑1 and DEN‑2, respectively). The present study demonstrated that the combination of recombinant protein and DNA as an immunization strategy may be an effective method for the development of a vaccine to prevent dengue virus infection.

  16. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  17. Anti-tumor effects of a human VEGFR-2-based DNA vaccine in mouse models

    OpenAIRE

    XIE, KE; Bai, Rui-Zhen; Wu, Yang; Liu, Quan; Liu,Kang; Wei, Yu-Quan

    2009-01-01

    Background Vascular endothelial growth factor (VEGF) and its receptor, VEGFR-2 (Flk-1/KDR), play a key role in tumor angiogenesis. Blocking the VEGF-VEGFR-2 pathway may inhibit tumor growth. Here, we used human VEGFR-2 as a model antigen to explore the feasibility of immunotherapy with a plasmid DNA vaccine based on a xenogeneic homologue of this receptor. Methods The protective effects and therapeutic anti-tumor immunity mediated by the DNA vaccine were investigated in mouse models. Anti-ang...

  18. Clinical development of intramuscular electroporation: providing a "boost" for DNA vaccines.

    Science.gov (United States)

    Khan, Amir S; Broderick, Kate E; Sardesai, Niranjan Y

    2014-01-01

    The development of effective vaccines has helped to eradicate or control the spread of numerous infectious diseases. However, there are many more diseases that have proved more difficult to eliminate using conventional vaccines. The recent innovation of DNA vaccines may provide a "boost" to the development efforts. While the early efforts of DNA vaccines in the clinic were disappointing, the use of in vivo electroporation has helped to provide some basis for optimism. Now, there are several ongoing clinical studies of vaccines against such diseases as malaria, HIV, hepatitis C, and even various types of cancer. This review will highlight three recently published clinical studies using intramuscular DNA administration with electroporation.

  19. Immunological evaluation of a DNA cocktail vaccine with co-delivery of calcium phosphate nanoparticles (CaPNs) against the Toxoplasma gondii RH strain in BALB/c mice.

    Science.gov (United States)

    Rahimi, Mohammad Taghi; Sarvi, Shahabeddin; Sharif, Mahdi; Abediankenari, Saeid; Ahmadpour, Ehsan; Valadan, Reza; Ramandie, Mahdi Fasihi-; Hosseini, Seyed-Abdollah; Daryani, Ahmad

    2017-02-01

    Many recent studies have been conducted to evaluate protective immunity mediated by DNA vaccines against toxoplasmosis. Cocktail DNA vaccines showed better immune responses compared to single vaccines. The objective of the current study was to evaluate the protective efficacy of rhomboid 4 (ROM4) and cocktail DNA vaccines (ROM4 + GRA14) of the Toxoplasma gondii RH strain with or without coated calcium phosphate nanoparticles (CaPNs) as the adjuvant to improve the immunogenicity against the T. gondii RH strain in BALB/c mice. Cocktail DNA vaccines of pcROM4 + pcGRA14 of the T. gondii RH strain were constructed. CaPNs were synthesized and the cocktail DNA vaccine was coated with the adjuvant of CaPNs. Immunogenicity and the protective effects of cocktail DNA vaccines with or without CaPNs against lethal challenge were evaluated in BALB/c mice. pcROM4 and cocktail DNA vaccine coated with CaPNs significantly enhanced cellular and humoral immune responses against Toxoplasma compared to pcROM4 and cocktail DNA vaccine without CaPNs (p < 0.05). These findings indicate that the survival time of immunized mice after challenge with the RH strain of T. gondii was increased compared to that of controls and the DNA vaccine provided significant protection in mice (p < 0.05). The CaPN-based cocktail DNA vaccine of pcROM4 + pcGRA14 showed the longest survival time compared to the other groups. Co-immunization with CaPN-based cocktail DNA vaccine (pcROM4 + pcGRA14) boosted immune responses and increased the protective efficacy against acute toxoplasmosis in BALB/c mice compared to both single gene and bivalent DNA vaccine without nano-adjuvants.

  20. Immune protection duration and efficacy stability of DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 against coccidiosis.

    Science.gov (United States)

    Song, Xiaokai; Zhao, Xiaofang; Xu, Lixin; Yan, Ruofeng; Li, Xiangrui

    2017-04-01

    In our previous study, an effective DNA vaccine encoding Eimeria tenella TA4 and chicken IL-2 was constructed. In the present study, the immunization dose of the DNA vaccine pVAX1.0-TA4-IL-2 was further optimized. With the optimized dose, the dynamics of antibodies induced by the DNA vaccine was determined using indirect ELISA. To evaluate the immune protection duration of the DNA vaccine, two-week-old chickens were intramuscularly immunized twice and the induced efficacy was evaluated by challenging with E. tenella at 5, 9, 13, 17 and 21weeks post the last immunization (PLI) separately. To evaluate the efficacy stability of the DNA vaccine, two-week-old chickens were immunized with 3 batches of the DNA vaccine, and the induced efficacy was evaluated by challenging with E. tenella. The results showed that the optimal dose was 25μg. The induced antibody level persisted until 10weeks PPI. For the challenge time of 5 and 9weeks PLI, the immunization resulted in ACIs of 182.28 and 162.23 beyond 160, showing effective protection. However, for the challenge time of 13, 17 and 21weeks PLI, the immunization resulted in ACIs below 160 which means poor protection. Therefore, the immune protection duration of the DNA vaccination was at least 9weeks PLI. DNA immunization with three batches DNA vaccine resulted in ACIs of 187.52, 191.57 and 185.22, which demonstrated that efficacies of the three batches DNA vaccine were effective and stable. Overall, our results indicate that DNA vaccine pVAX1.0-TA4-IL-2 has the potential to be developed as effective vaccine against coccidiosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Pilot study of p62 DNA vaccine in dogs with mammary tumors.

    Science.gov (United States)

    Gabai, Vladimir; Venanzi, Franco M; Bagashova, Elena; Rud, Oksana; Mariotti, Francesca; Vullo, Cecilia; Catone, Giuseppe; Sherman, Michael Y; Concetti, Antonio; Chursov, Andrey; Latanova, Anastasia; Shcherbinina, Vita; Shifrin, Victor; Shneider, Alexander

    2014-12-30

    Our previous data demonstrated profound anti-tumor and anti-metastatic effects of p62 (sqstm1) DNA vaccine in rodents with various types of transplantable tumors. Testing anti-cancer medicine in dogs as an intermediary step of translational research program provides two major benefits. First, clinical data collected in target animals is required for FDA/USDA approval as a veterinary anti-cancer drug or vaccine. It is noteworthy that the veterinary community is in need of novel medicine for the prevention and treatment of canine and feline cancers. The second more important benefit of testing anti-cancer vaccines in dogs is that spontaneous tumors in dogs may provide invaluable information for human trials. Here, we evaluated the effect(s) of p62 DNA vaccine on mammary tumors of dogs. We found that p62 DNA vaccine administered i.m. decreased or stabilized growth of locally advanced lesions in absence of its overall toxic effects. The observed antitumor activity was associated with lymphocyte infiltration and tumor encapsulation via fibrotic reaction. This data justifies both human clinical trials and veterinary application of p62 DNA vaccine.

  2. Adverse effects of feline IL-12 during DNA vaccination against feline infectious peritonitis virus

    NARCIS (Netherlands)

    Horzinek, M.C.; Haagmans, B.L.; Lintelo, E.G. te; Egberink, H.F.; Duquesne, V.; Aubert, A.; Rottier, P.J.M.

    2002-01-01

    Cell-mediated immunity is thought to play a decisive role in protecting cats against feline infectious peritonitis (FIP), a progressive and lethal coronavirus disease. In view of the potential of DNA vaccines to induce cell-mediated responses, their efficacy to induce protective immunity in cats was

  3. Research Progress of DNA Vaccine%DNA疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨海; 王芳宇

    2013-01-01

    DNA疫苗是在分子生物学技术基础上发展起来的第3代新型疫苗,已体现出其竞争优势和应用潜能.同传统的疫苗相比,DNA疫苗具有免疫效果好、生产成本低、临床应用方便等优点,但同样存在安全性的担忧.文章回顾了DNA疫苗的发展简史,阐述了DNA疫苗的免疫机理,分析了DNA疫苗研究现状,并对DNA疫苗的安全性提出了自己的观点与看法,旨在为DNA疫苗研究提供参考.%DNA vaccine was the third generation of vaccine, and had reflected the competitive advantages and application potential in the past. DNA vaccine was developed on the basis of molecular biology technologies. Compared with traditional vaccines, it had more advantages,such as good immune effect, low production cost, and convenient for the clinical application, but it also could be found safety concerns. To provide the references for DNA vaccine researchers, the DNA vaccine history, immune mechanism and research status quo were summarized, and the viewpoint about its security was presented in present paper.

  4. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer.

    Science.gov (United States)

    Fioretti, Daniela; Iurescia, Sandra; Rinaldi, Monica

    2014-01-01

    A variety of clinical trials for vaccines against cancer have provided evidence that DNA vaccines are well tolerated and have an excellent safety profile. DNA vaccines require much improvement to make them sufficiently effective against cancer in the clinic. Nowadays, it is clear that an increased antigen expression correlates with improved immunogenicity and it is critical to vaccine performance in large animals and humans. Similarly, additional strategies are required to activate effective immunity against poorly immunogenic tumour antigens. This review discusses very recent scientific references focused on the development of sophisticated DNA vaccines against cancer. We report a selection of novel and relevant patents employed to improve their immunogenicity through several strategies such as the use of tissue-specific transcriptional elements, nuclear localisation signalling, codon-optimisation and by targeting antigenic proteins to secretory pathway. Recent patents validating portions or splice variants of tumour antigens as candidates for cancer DNA vaccines with improved specificity, such as mesothelin and hTERT, are also discussed. Lastly, we review novel patents on the use of genetic immunomodulators, such as "universal" T helper epitopes derived from tetanus toxin, E. coli heat labile enterotoxin and vegetable proteins, as well as cytokines, chemokines or costimulatory molecules such as IL-6, IL-15, IL- 21 to amplify immunity against cancer.

  5. Evaluation of a prototype dengue-1 DNA vaccine in a Phase 1 clinical trial.

    Science.gov (United States)

    Beckett, Charmagne G; Tjaden, Jeffrey; Burgess, Timothy; Danko, Janine R; Tamminga, Cindy; Simmons, Monika; Wu, Shuenn-Jue; Sun, Peifang; Kochel, Tadeusz; Raviprakash, Kanakatte; Hayes, Curtis G; Porter, Kevin R

    2011-01-29

    Candidate dengue DNA vaccine constructs for each dengue serotype were developed by incorporating pre-membrane and envelope genes into a plasmid vector. A Phase 1 clinical trial was performed using the dengue virus serotype-1 (DENV-1) vaccine construct (D1ME(100)). The study was an open-label, dose-escalation, safety and immunogenicity trial involving 22 healthy flavivirus-naïve adults assigned to one of two groups. Each group received three intramuscular injections (0, 1, and 5 months) of either a high dose (5.0mg, n=12) or a low dose (1.0mg, n=10) DNA vaccine using the needle-free Biojector(®) 2000. The most commonly reported solicited signs and symptoms were local mild pain or tenderness (10/22, 45%), local mild swelling (6/22, 27%), muscle pain (6/22, 27%) and fatigue (6/22, 27%). Five subjects (41.6%) in the high dose group and none in the low dose group developed detectable anti-dengue neutralizing antibodies. T-cell IFN gamma responses were detected in 50% (4/8) and 83.3% (10/12) of subjects in the low and high dose groups, respectively. The safety profile of the DENV-1 DNA vaccine is acceptable at both doses administered in the study. These results demonstrate a favorable reactogenicity and safety profile of the first in human evaluation of a DENV-1 DNA vaccine.

  6. Identification of CD4+ T-cell Epitopes on Mycobacterium Tuberculosis- Secreted MPB51 Protein in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    A.R. Rafiei

    2006-01-01

    Full Text Available Introduction & Objective: Both CD4+ type 1 helper (Th1 cells and CD8+ T cells play effective roles in protection against Mycobacterium tuberculosis infection. DNA vaccine encoding MPB51 can induce Th1-type immune responses and protective immunity upon challenge with M.tuberculosis. This study address to identify T-cell immunodominant epitopes on MPB51 in C57BL/6 mice.Materials & Methods : We cloned DNA encoding MPB51 molecule in pCI plasmid. After constructing MPB51 DNA-covered gold cartridge, C57BL/6 mice were immunized by using a gene gun system. Two weeks after the last immunization, the immune spleen cells were cultured in the presence of a synthetic overlapping library peptides covering the mature MPB51 sequence or medium alone. Intracellular and cell culture supernatant gamma interferon (IFN- production was analyzed using flow cytometry and ELISA, respectively.Results : Mapping of T-cell epitopes on MPB51 molecule was performed in the spleen lymphocytes restimulated by 20-mer overlapping synthetic peptides of mature MPB51 sequence. Flow cytometric analysis with intracellular IFN- and the T-cell phenotype revealed that P171-190 and P191-210 peptides contain immunodominant CD4+ T-cell epitopes. Further analysis by using T-cell subset depletion and serial peptide dilution revealed that P171 and p191 are H2-Ab-restricted dominant and subdominant CD4+ T cell epitopes, respectively. Conclusion: This study proved that vaccination with plasmid DNA encoding M. tuberculosis-secreted MPB51 protein not only induce CD4+ T cells immune response but also is an appropriate method for identifying immunogenic peptides.

  7. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53.

    Directory of Open Access Journals (Sweden)

    Ruey-Shyang Soong

    Full Text Available The pivotal role of p53 as a tumor suppressor protein is illustrated by the fact that this protein is found mutated in more than 50% of human cancers. In most cases, mutations in p53 greatly increase the otherwise short half-life of this protein in normal tissue and cause it to accumulate in the cytoplasm of tumors. The overexpression of mutated p53 in tumor cells makes p53 a potentially desirable target for the development of cancer immunotherapy. However, p53 protein represents an endogenous tumor-associated antigen (TAA. Immunization against a self-antigen is challenging because an antigen-specific immune response likely generates only low affinity antigen-specific CD8(+ T-cells. This represents a bottleneck of tumor immunotherapy when targeting endogenous TAAs expressed by tumors. The objective of the current study is to develop a safe cancer immunotherapy using a naked DNA vaccine. The vaccine employs a xenogeneic p53 gene to break immune tolerance resulting in a potent therapeutic antitumor effect against tumors expressing mutated p53. Our study assessed the therapeutic antitumor effect after immunization with DNA encoding human p53 (hp53 or mouse p53 (mp53. Mice immunized with xenogeneic full length hp53 DNA plasmid intramuscularly followed by electroporation were protected against challenge with murine colon cancer MC38 while those immunized with mp53 DNA were not. In a therapeutic model, established MC38 tumors were also well controlled by treatment with hp53 DNA therapy in tumor bearing mice compared to mp53 DNA. Mice vaccinated with hp53 DNA plasmid also exhibited an increase in mp53-specific CD8(+ T-cell precursors compared to vaccination with mp53 DNA. Antibody depletion experiments also demonstrated that CD8(+ T-cells play crucial roles in the antitumor effects. This study showed intramuscular vaccination with xenogeneic p53 DNA vaccine followed by electroporation is capable of inducing potent antitumor effects against tumors

  8. Co-expression of Japanese encephalitis virus prM-E-NS1 antigen with granulocyte-macrophage colony-stimulating factor enhances humoral and anti-virus immunity after DNA vaccination.

    Science.gov (United States)

    Gao, Na; Chen, Wei; Zheng, Qun; Fan, Dong-ying; Zhang, Jun-lei; Chen, Hui; Gao, George F; Zhou, De-shan; An, Jing

    2010-03-10

    Japanese encephalitis virus (JEV) is an agent of Japanese encephalitis, and granulocyte-macrophage colony-stimulating factor (GM-CSF) is an attractive DNA vaccine adjuvant for its antigen presentation. In the present study, we have constructed DNA vaccines that carried JEV prM-E-NS1 genes with or without the GM-CSF gene. Immunization with the bicistronic plasmid pCAG-JEGM that co-expresses GM-CSF and viral prM-E-NS1, resulted in the highest IgG response and sufficient protection against virus-challenged BALB/c mice. However, much to our surprise, co-inoculation of the GM-CSF plasmid with the pCAG-JE plasmid expressing viral prM-E-NS1 lead to a low antibody titer and a relatively low survival rate. Moreover, anamnestic antibody-mediated protection played a dominant role in the mice JEV challenge model, according to the enhancement of post-challenge neutralizing antibody titers and further adoptive transfer experiments. Taken together, this study should encourage further development of JEV DNA vaccine strategies and caution against the use of cytokines as an adjuvant.

  9. Chicken HSP70 DNA vaccine inhibits tumor growth in a canine cancer model.

    Science.gov (United States)

    Yu, Wen-Ying; Chuang, Tien-Fu; Guichard, Cécile; El-Garch, Hanane; Tierny, Dominique; Laio, Albert Taiching; Lin, Ching-Si; Chiou, Kuo-Hao; Tsai, Cheng-Long; Liu, Chen-Hsuan; Li, Wen-Chiuan; Fischer, Laurent; Chu, Rea-Min

    2011-04-18

    Immunization with xenogeneic DNA is a promising cancer treatment to overcome tolerance to self-antigens. Heat shock protein 70 (HSP70) is over-expressed in various kinds of tumors and is believed to be involved in tumor progression. This study tested a xenogeneic chicken HSP70 (chHSP70) DNA vaccine in an experimental canine transmissible venereal tumor (CTVT) model. Three vaccination strategies were compared: the first (PE) was designed to evaluate the prophylactic efficacy of chHSP70 DNA vaccination by delivering the vaccine before tumor inoculation in a prime boost setting, the second (T) was designed to evaluate the therapeutic efficacy of the same prime boost vaccine by vaccinating the dogs after tumor inoculation; the third (PT) was similar to the first strategy (PE), with the exception that the electroporation booster injection was replaced with a transdermal needle-free injection. Tumor growth was notably inhibited only in the PE dogs, in which the vaccination program triggered tumor regression significantly sooner than in control dogs (NT). The CD4(+) subpopulation of tumor-infiltrating lymphocytes and canine HSP70 (caHSP70)-specific IFN-γ-secreting lymphocytes were significantly increased during tumor regression in the PE dogs as compared to control dogs, demonstrating that specific tolerance to caHSP70 has been overcome. In contrast, no benefit of the therapeutic strategy (T) could be noticed and the (PT) strategy only led to partial control of tumor growth. In summary, antitumor prophylactic activity was demonstrated using the chHSP70 DNA vaccine including a boost via electroporation. Our data stressed the importance of DNA electroporation as a booster to get the full benefit of DNA vaccination but also of cancer immunotherapy initiation as early as possible. Xenogeneic chHSP70 DNA vaccination including an electroporation boost is a potential vaccine to HSP70-expressing tumors, although further research is still required to better understand true

  10. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: a biotech's challenge.

    Science.gov (United States)

    Iurescia, Sandra; Fioretti, Daniela; Fazio, Vito Michele; Rinaldi, Monica

    2012-01-01

    DNA vaccination has been widely explored to develop new, alternative and efficient vaccines for cancer immunotherapy. DNA vaccines offer several benefits such as specific targeting, use of multiple genes to enhance immunity and reduced risk compared to conventional vaccines. Rapid developments in molecular biology and immunoinformatics enable rational design approaches. These technologies allow construction of DNA vaccines encoding selected tumor antigens together with molecules to direct and amplify the desired effector pathways, as well as highly targeted vaccines aimed at specific epitopes. Reliable predictions of immunogenic T cell epitope peptides are crucial for rational vaccine design and represent a key problem in immunoinformatics. Computational approaches have been developed to facilitate the process of epitope detection and show potential applications to the immunotherapeutic treatment of cancer. In this review a number of different epitope prediction methods are briefly illustrated and effective use of these resources to support experimental studies is described. Epitope-driven vaccine design employs these bioinformatics algorithms to identify potential targets of vaccines against cancer. In this paper the selection of T cell epitopes to develop epitope-based vaccines, the need for CD4(+) T cell help for improved vaccines and the assessment of vaccine performance against tumor are reviewed. We focused on two applications, namely prediction of novel T cell epitopes and epitope enhancement by sequence modification, and combined rationale design with bioinformatics for creation of new synthetic mini-genes. This review describes the development of epitope-based DNA vaccines and their antitumor effects in preclinical research against B-cell lymphoma, corroborating the usefulness of this platform as a potential tool for cancer therapy. Achievements in the field of DNA vaccines allow to overcome hurdles to clinical translation. In a scenario where the vaccine

  11. Impaired autoimmune T helper 17 cell responses following DNA vaccination against rat experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Asa Andersson

    Full Text Available BACKGROUND: We have previously shown that vaccination with DNA encoding the encephalitogenic peptide myelin oligodendrocyte glycoprotein (MOG(91-108 (pMOG suppresses MOG(91-108-induced rat Experimental Autoimmune Encephalomyelitis (EAE, a model for human Multiple Sclerosis (MS. The suppressive effect of pMOG is dependent on inclusion of CpG DNA in the plasmid backbone and is associated with early induction of Interferon (IFN-beta. PRINCIPAL FINDINGS: In this study we examined the mechanisms underlying pMOG-induced protection. We found that in the DNA vaccinated cohort proinflammatory Interleukin (IL-17 and IL-21 responses were dramatically reduced compared to in the control group, but that the expression of Foxp3 and Tumor Growth Factor (TGF-beta1, which are associated with regulatory T cells, was not enhanced. Moreover, genes associated with Type I IFNs were upregulated. To delineate the role of IFN-beta in the protective mechanism we employed short interfering RNA (siRNA to IFN-beta in the DNA vaccine. SiRNA to IFN-beta completely abrogated the protective effects of the vaccine, demonstrating that a local early elaboration of IFN-beta is important for EAE protection. IL-17 responses comparable to those in control rats developed in rats injected with the IFN-beta-silencing DNA vaccine. CONCLUSIONS: We herein demonstrate that DNA vaccination protects from proinflammatory Th17 cell responses during induction of EAE. The mechanism involves IFN-beta as IL-17 responses are rescued by silencing of IFN-beta during DNA vaccination.

  12. A DNA vaccine encoding mutated HPV58 mE6E7-Fc-GPI fusion antigen and GM-CSF and B7.1

    Directory of Open Access Journals (Sweden)

    Wang H

    2015-10-01

    Full Text Available He Wang,1 Jiyun Yu,2 Li Li1 1Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 2Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, People’s Republic of China Background: Persistent infection with high-risk human papillomavirus (HPV is a predominant cause of cervical cancer, and HPV58 is the third most common virus detected in the patients with cervical cancer in Asia. E6 and E7 are the viral oncogenes which are constitutively expressed in HPV-associated tumor cells and can be used as target antigens for related immunotherapy. In this study, we modified the HPV58 E6 and E7 oncogenes to eliminate their oncogenic potential and constructed a recombinant DNA vaccine that coexpresses the sig-HPV58 mE6E7-Fc-GPI fusion antigen in addition to granulocyte-macrophage colony-stimulating factor (GM-CSF and B7.1 as molecular adjuvants (PVAX1-HPV58 mE6E7FcGB for the treatment of HPV58 (+ cancer. Methods: PVAX1-HPV58 mE6E7FcGB recombinant DNA vaccine was constructed to express a fusion protein containing a signal peptide, a modified HPV58 mE6E7 gene, and human IgG Fc and glycosylphosphatidylinositol (GPI-anchoring sequences using the modified DNA vaccine vector PVAX1-IRES-GM/B7.1 that coexpresses GM-CSF, and B7.1. C57BL/6 mice were challenged by HPV58 E6E7-expressing B16-HPV58 E6E7 cells, followed by immunization by PVAX1-HPV58 mE6E7FcGB vaccine on days 7, 14, 21 after tumor challenge. The cellular immune responses in immunized mice were assessed by measuring IFN-γ production in splenocytes upon stimulation by HPV58 E6E7-GST protein and the lysis of B16-HPV58 E6E7 target cells by splenocytes after restimulation with HPV58 E6E7-GST protein. The antitumor efficacy was evaluated by monitoring the growth of the tumor. Results: PVAX1-HPV58 mE6E7FcGB elicited varying levels of IFN-lsgdB58onn T-cell immune responses and lysis of target cell in mice in response to the

  13. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  14. Novel recombinant DNA vaccine candidates for human respiratory syncytial virus: Preclinical evaluation of immunogenicity and protection efficiency.

    Science.gov (United States)

    Farrag, Mohamed A; Amer, Haitham M; Öhlschläger, Peter; Hamad, Maaweya E; Almajhdi, Fahad N

    2017-03-08

    The development of safe and potent vaccines for human respiratory syncytial virus (HRSV) is still a challenge for researchers worldwide. DNA-based immunization is currently a promising approach that has been used to generate human vaccines for different age groups. In this study, novel HRSV DNA vaccine candidates were generated and preclinically tested in BALB/c mice. Three different versions of the codon-optimized HRSV fusion (F) gene were individually cloned into the pPOE vector. The new recombinant vectors either express full-length (pPOE-F), secretory (pPOE-TF), or M282-90 linked (pPOE-FM2) forms of the F protein. Distinctive expression of the F protein was identified in HEp-2 cells transfected with the different recombinant vectors using ELISA and immunofluorescence. Mice immunization verified the potential for recombinant vectors to elicit significant levels of neutralizing antibodies and CD8(+) T-cell lymphocytes. pPOE-TF showed higher levels of gene expression in cell culture and better induction of the humoral and cellular immune responses. Following virus challenge, mice that had been immunized with the recombinant vectors were able to control virus replication and displayed lower inflammation compared with mice immunized with empty pPOE vector or formalin-inactivated HRSV vaccine. Moreover, pulmonary cytokine profiles of mice immunized with the 3 recombinant vectors were similar to those of the mock infected group. In conclusion, recombinant pPOE vectors are promising HRSV vaccine candidates in terms of their safety, immunogenicity and protective efficiency. These data encourage further evaluation in phase I clinical trials.

  15. [Experimental gene therapy using p21/WAF1 gene in esophageal squamous cell carcinoma--adenovirus infection and gene gun technology].

    Science.gov (United States)

    Fujii, T; Tanaka, Y; Tanaka, T; Matono, S; Sueyoshi, S; Fujita, H; Shirouzu, K; Kato, S; Yamana, H

    2001-10-01

    p21/WAF1 (p21) inhibits the activity of the cyclin/cdk complex and controls the G1 to S cell phase transition. In the present study, we used a recombinant adenoviral approach and gene gun technology to introduce p21 into esophageal cancer cells in order to assess the effect of p21 on cell growth. Infection with the p21 adenovirus (AdV) using gene gun technology resulted in inhibition of TE9 and KE3 cell growth. The levels of involucrin, which is a marker of squamous epithelium differentiation, markedly increased at 48 h and 72 h after p21 AdV infection in TE9 cells. These results indicate that p21 plays an important role in esophageal cancer cell proliferation. Overexpression of the p21 gene can inhibit cell growth and induce differentiation in esophageal cancer cells. p21 gene therapy may prove beneficial in the treatment of esophageal cancer.

  16. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward...... a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use...... acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge...

  17. An active DNA vaccine against infectious pancreatic necrosis virus (IPNV) with a different mode of action than fish rhabdovirus DNA vaccines.

    Science.gov (United States)

    Cuesta, A; Chaves-Pozo, E; de Las Heras, A I; Saint-Jean, S Rodríguez; Pérez-Prieto, S; Tafalla, C

    2010-04-26

    Although there are some commercial vaccines available against infectious pancreatic necrosis virus (IPNV), the disease still continues to be a major problem for aquaculture development worldwide. In the current work, we constructed a DNA vaccine against IPNV (pIPNV-PP) by cloning the long open reading frame of the polyprotein encoded by the viral RNA segment A. In vitro, the vaccine is properly translated giving the functional IPNV polyprotein since preVP2, VP2 and VP3 proteins were detected because of the VP4-protease cleavage. EPC cells transfected with the vaccine plasmid expressed the viral proteins and induced the expression of type I interferon (IFN)-induced Mx genes. Furthermore, IPNV synthesized proteins seemed to assemble in virus-like particles as evidenced by electron microscopy. In vivo, rainbow trout specimens were intramuscularly injected with the vaccine and expression of immune-relevant genes, the presence of neutralizing antibodies and effect on viral load was determined. The pIPNV-PP vaccine was expressed at the injection site and up-regulated MHC Ialpha, MHC IIalpha, type-I interferon (IFN), Mx, CD4 and CD8alpha gene expression in the muscle, head kidney or spleen, although to a much lower extent than the up-regulations observed in response to an effective DNA vaccine against viral hemorrhagic septicaemia virus (VHSV). However, the IPNV vaccine was also very effective in terms of acquired immunity since it elicited neutralizing antibodies (in 6 out of 8 trout fingerlings) and decreased 665-fold the viral load after IPNV infection. The effectiveness of this new IPNV DNA vaccine and its possible mechanism of action are discussed and compared to other viral vaccines.

  18. Water-soluble polysaccharide isolated with alkali from the stem of Physalis alkekengi L.: structural characterization and immunologic enhancement in DNA vaccine.

    Science.gov (United States)

    Yang, Jingjing; Yang, Fan; Yang, Huimin; Wang, Guiyun

    2015-05-05

    A water-soluble polysaccharide (WSPA) was isolated with alkali and purified from the mature stem of Physalis alkekengi L. WSPA (Mw=31kDa) was an acid heteropolysaccharide, which consisted of Rha, Ara, Xyl, Gal, Glc and GalA in ratio of 1.0:2.5:0.8:2.7:4.4:1.4. The results from structural analysis indicated backbone and branches of WSPA were composed of (1→3)-linked Glc, (1→3)-linked Gal, (1→2)-linked Xyl, (1→2)-linked Ara, and (1→2)-linked Rha residues. However, GalA was distributed only in the backbone of WSPA. All branches of WSPA were at O-2 of (1→6)-linked Gal and terminated with Glc. More importantly, it was found that WSPA significantly enhanced specific antibody IgG response with higher titers of IgG1 as well as IgG2b (p<0.05) in mice immunized with DNA vaccine. Therefore, WSPA can be considered as a potential adjuvant candidate in DNA vaccine.

  19. Protection against Vibrio alginolyticus in crimson snapper Lutjanus erythropterus immunized with a DNA vaccine containing the ompW gene.

    Science.gov (United States)

    Cai, Shuang-Hu; Lu, Yi-Shan; Jian, Ji-Chang; Wang, Bei; Huang, Yu-Cong; Tang, Ju-Fen; Ding, Yu; Wu, Zao-He

    2013-09-24

    The outer membrane proteins of Vibrio alginolyticus play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In the present study, the ompW gene was cloned, expressed and purified. A DNA vaccine was constructed by inserting the ompW gene into a pcDNA plasmid. Crimson snapper Lutjanus erythropterus (Bloch) were injected intramuscularly with the recombinant plasmid pcDNA-ompW. The expression of the DNA vaccine was detected in gill, head kidney, heart, liver, spleen and injection site muscle of crimson snapper by RT-PCR 7 and 28 d post-vaccination. The ELISA results demonstrated that the DNA vaccine produced an observable antibody response in all sera of the vaccinated fish. In addition, crimson snapper immunized with the DNA vaccine showed a relative percentage survival (RPS) of 92.53%, indicating effective protection against V. alginolyticus infection.

  20. [A study on the construction, expression and immunosterility of Lagurus laguru zona pellucida 3 DNA vaccine pVAX1-sig-LTB-lZP3-C3d3].

    Science.gov (United States)

    Li, Chen-Chen; Yu, Ji-Yun; Jiang, Min; Tu, Yi-Xian; Ma, Xiao-Lin; Zhang, Fu-Chun

    2011-09-01

    To enhance the immunocontraceptive effect of Lagurus lagurus zona pellucida 3 DNA vaccine, and to achieve the prospect of application through the pVAX1-sig-LTB-lZP3-C3d3 different immunity pathway. Two adjuvant molecules were constructed into the recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 as DNA vaccine which contains Escherichia coli heat-labile enterotoxin B subunit and the molecular adjuvant 3 copies of C3d. The results of RT-PCR and western blot showed that the DNA vaccine was expressed in mRNA and protein level. The female C57BL/6 mice were immunized by three ways: intramuscular injection, intranasal or oral route.Antibody levels and types were detected by ELISA. ELISA results showed that recombinant plasmid pVAX1-sig-LTB-lZP3-C3d3 immunization induced specific IgG, IgA levels were significantly different comparing with control (Psig-LTB-lZP3-C3d3 can induce the specific immune response efficiently and enhance the immunocontraceptive effects.

  1. Improved humoral and cellular immune responses against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatitis B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A; Nielsen, H V; Bryder, K

    1998-01-01

    with the HIV MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...... response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V3/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL......-2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2 + S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation...

  2. Improved humoral and cellular immune response against the gp120 V3 loop of HIV-1 following genetic immunization with a chimeric DNA vaccine encoding the V3 inserted into the hepatites B surface antigen

    DEFF Research Database (Denmark)

    Fomsgaard, A.; Nielsen, H.V.; Bryder, K.

    1998-01-01

    MN gp160 envelope plasmid induced a slow and low titred anti-MN V3 antibody response at 12 weeks post-inoculation (p.i.) and a late appearing (7 weeks), weak and variable CTL response. In contrast, DNA vaccination with the HBsAg-encoding plasmid induced a rapid and high titred anti-HBsAg antibody...... response and a uniform strong anti-HBs CTL response already 1 week p.i. in all mice. DNA vaccination with the chimeric MN V2/HBsAg plasmid elicited humoral responses against both viruses within 3-6 weeks which peaked at 6-12 weeks and remained stable for at least 25 weeks. In addition, specific CTL......-2d-restricted cytotoxic T lymphocyte (CTL) epitope. In an attempt to improve the immunogenicity of V3 in DNA vaccines, a plasmid expressing MN V3 as a fusion protein with the highly immunogenic middle (pre-S2+S) surface antigen of hepatitis B virus (HBsAg) was constructed. Epidermal inoculation...

  3. What you always needed to know about electroporation based DNA vaccines

    DEFF Research Database (Denmark)

    Gothelf, Anita Birgitte; Gehl, Julie

    2012-01-01

    Vaccinations are increasingly used to fight infectious disease, and DNA vaccines offer considerable advantages, including broader possibilities for vaccination and lack of need for cold storage. It has been amply demonstrated, that electroporation augments uptake of DNA in both skin and muscle......, and it is foreseen that future DNA vaccination may to a large extent be coupled with and dependent upon electroporation based delivery. Understanding the basic science of electroporation and exploiting knowledge obtained on optimization of DNA electrotransfer to muscle and skin, may greatly augment efforts...... on vaccine development. The purpose of this review is to give a succinct but comprehensive overview of electroporation as a delivery modality including electrotransfer to skin and muscle. As well, this review will speculate and discuss future uses for this powerful electrotransfer technology....

  4. THE PROTECTIVE MECHANISMS INDUCED BY A FISH RHABDOVIRUS DNA-VACCINE DEPENDS ON TTEMPERATURE

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    DNA-vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis virus (IHNV) have proved highly efficient in rainbow trout (Oncorhynchus mykiss) under experimental conditions. In the early phase following vaccination, innate cross-protective...... mechanisms are dominating but the protection becomes highly specific within 3-4 weeks at 12-15C. Temperature is known as an important external parameter affecting the immune response in fish and the present study aimed at characterizing temperature effects on the immune response to a VHS DNA vaccine....... Rainbow trout fingerlings acclimated at 5°C, 10°C or 15C, were given an intramuscular injection of 1g purified plasmid DNA and challenged with virulent VHSV 9 or 36-40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer...

  5. The Protective Mechanisms Induced by a DNA Vaccine in Fish Depend on Temperature

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou;

    2011-01-01

    In veterinary vaccinology, DNA-vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis virus (IHNV) have proved highly efficient in fish under experimental conditions. In the early phase following vaccination, innate cross-protective...... mechanisms are dominating but the protection becomes highly specific within 3–4 weeks at 12–15 C. Temperature is known as an important external parameter affecting the immune response in fish and the present study aimed at characterizing temperature effects on the immune response to a VHS DNA vaccine....... Rainbow trout fingerlings acclimated at 5, 10 or 15 C, were given an intramuscular injection of 1 lg purified plasmid DNA and challenged with virulent VHSV 9 or 36–40 days later. The vaccine protected the fish well at all three temperatures, however the non-specific mechanisms lasted for a longer period...

  6. Antiviral immunity in fish – functional analysis using DNA vaccination as a tool

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2013-01-01

    CpG motifs in the plasmid backbone sequence might play a role, the viral G protein appears to have an inherent ability to stimulate innate immune mechanisms by receptors and pathways that still remain to be characterized in detail. Immunity to VHS in rainbow trout can be induced by DNA vaccination......In fish, DNA vaccines encoding the glycoproteins (G proteins) of the salmonid rhabdoviruses VHSV and IHNV have proved very efficient under experimental conditions. Nano-gram amounts of plasmid DNA can induce long-lasting protective immunity when delivered by intramuscular injection in rainbow trout...... fingerlings. Vaccination of fish at an early stage appears advantageous, since larger fish require higher doses of vaccine to be protected. Even in fish with an average size of 0.5 g at the time of vaccination, good protection can be obtained. Interestingly, immunity is established already a few days after...

  7. The protective mechanisms induced by a fish rhabdovirus DNA vaccine depend on temperature

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    2009-01-01

    an intramuscular injection of 1 mu g purified plasmid DNA and challenged with virulent VHSV 8 or 36-40 days later. The vaccine protected the fish well at all three temperatures, but the involvement of innate and adaptive mechanisms differed: at low temperature. non-specific protection lasted longer and at 36 dpv......DNA vaccines encoding the viral glycoproteins of viral haemorrhagic septicaemia virus (VHSV) and infectious haematopoietic necrosis Virus (IHNV) have proved highly efficient in rainbow trout (Oncorhynchus mykiss) under experimental conditions. Non-specific as well as specific immune mechanisms seem...... to be activated. Temperature is an important external parameter affecting the immune response in fish. The present study aimed at determining the effectiveness of a DNA vaccine against VHS at different temperatures. Rainbow trout fingerlings acclimated at 5 degrees C, 10 degrees C or 15 degrees C, were given...

  8. 马疱疹病毒1型gD 基因的真核表达及其蛋白质与重组质粒联合免疫小鼠效果分析%Preliminary Study on Combined Immunization with DNA Vaccine and Prokaryotic Protein of gD gene of Equine Herpesvirus 1 in Mice

    Institute of Scientific and Technical Information of China (English)

    陈卓; 杜润慈; 宋焕堂; 刘建华; 冉多良

    2015-01-01

    为研究马疱疹病毒1型gD 基因重组质粒与原核表达蛋白联合免疫效果,构建了真核表达载体 pVAX1-gD,将其转染至BHK-21细胞,经Western blot证实该基因可在BHK-21细胞中表达。将构建的gD 基因重组质粒与纯化后的gD蛋白质免疫小鼠,ELISA检测免疫小鼠血清抗体效价,用 MTT检测小鼠二免后的淋巴细胞增殖情况。结果表明,与对照组相比该联合免疫能有效的诱导免疫小鼠特异性抗体的产生,同时显著促进了特异性淋巴细胞的增殖。%In order to study the immunological effect of combined immunization with the gD gene and its prokaryotic expressed protein,the eukaryotic expression vector was constructed and transfected BHK-21 cells,the expression of gD was confirmed by Western-Blot.The construction of gD recombinant plasmid and purified gD protein were used to immunize mice,the mice serum antibody titer was tested by ELISA, the mice lymphocyte proliferation was tested by MTT after second immunization.Our results indicatied that the combined immunization can effectively induce mice specific antibody and significantly promoted lymphocyte proliferation.

  9. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference.

    Science.gov (United States)

    Chaudhari, Aparna; Pathakota, Gireesh-Babu; Annam, Pavan-Kumar

    2016-01-01

    DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.

  10. Transcriptome profiles associated to VHSV infection or DNA vaccination in turbot (Scophthalmus maximus).

    Science.gov (United States)

    Pereiro, Patricia; Dios, Sonia; Boltaña, Sebastián; Coll, Julio; Estepa, Amparo; Mackenzie, Simon; Novoa, Beatriz; Figueras, Antonio

    2014-01-01

    DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules with a potential

  11. Construction of a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA.

    Science.gov (United States)

    Xu, Can; Li, Zhao-Shen; Du, Yi-Qi; Tu, Zhen-Xing; Gong, Yan-Fang; Jin, Jing; Wu, Hong-Yu; Xu, Guo-Ming

    2005-01-07

    To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity. Genomic DNA of the standard H pylori strain 17 874 was isolated as the template, hpaA gene fragment was amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified hpaA gene was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions. The recombinant plasmid was used to transform competent Escherichia coli DH5alpha, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-hpaA was used to transform LB5000 and the recombinant plasmid isolated from LB5000 was finally used to transform SL7207. After that, the recombinant strain was grown in vitro repeatedly. In order to identify the immunogenicity of the vaccine in vitro, the recombinant pIRES-hpaA was transfected to COS-7 cells using Lipofectamine2000, the immunogenicity of expressed HpaA protein was detected with SDS-PAGE and Western blot. The 750-base pair hpaA gene fragment was amplified from the genomic DNA and was consistent with the sequence of H pylori hpaA by sequence analysis. It was confirmed by PCR and restriction enzyme digestion that H pylori hpaA gene was inserted into the eukaryotic expression vector pIRES and a stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying H pylori hpaA gene was successfully constructed and the specific strip of HpaA expressed by pIRES-hpaA was detected through Western blot. The recombinant attenuated Salmonella typhimurium DNA vaccine strain expressing HpaA protein with immunogenicity can be constructed and it may be helpful for further investigating the immune action of DNA vaccine in vivo.

  12. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses

    OpenAIRE

    Kichaev, Gleb; Mendoza, Janess M; Amante, Dinah; Smith, Trevor RF; McCoy, Jay R; Sardesai, Niranjan Y.; Kate E. Broderick

    2013-01-01

    In vivo electroporation (EP) has been shown to be a highly efficient non-viral method for enhancing DNA vaccine delivery and immunogenicity, when the site of immunization is the skin or muscle of animals and humans. However, the route of entry for many microbial pathogens is via the mucosal surfaces of the human body. We have previously reported on minimally invasive, surface and contactless EP devices for enhanced DNA delivery to dermal tissue. Robust antibody responses were induced followin...

  13. DNA vaccines used for biodefense%生物防御用DNA疫苗

    Institute of Scientific and Technical Information of China (English)

    刘文宇; 朱晓斐; 戚中田

    2011-01-01

    Most of the recent biodefense work has been focused on developing DNA vaccines,which are safe to both human and environment and cost-effective,and delivery of the combined DNA vaccines can offer the potential for multiple protection.Consequently,the DNA vaccines have good prospects for research,development and applications,but their immunogenicity and delivery methods remain to be improved.This review summarizes the research status of the DNA vaccines against several biodefense pathogens listed on both the NIH priority pathogen and CDC bioterrorism registries:Bacillus anthracis,Ebola and Marburg viruses,monkeypox virus,smallpox virus,and Venezuelan equine encephalitis virus.%近年的生物防御疫苗研究集中于DNA疫苗.DNA疫苗对人以及环境相对安全、经济,并且多价联合DNA疫苗还可以提供多重保护,因此有良好的研发前景和潜在的实用价值,但也存在免疫原性不强和接种方式有待改进等问题.此文就炭疽杆菌、埃博拉病毒、马尔堡病毒、猴痘病毒、天花病毒和委内瑞拉马脑炎病毒等几种被美国NIH和CDC列为重要生物战剂的DNA疫苗研发现状作一综述.

  14. Construction of a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA

    Institute of Scientific and Technical Information of China (English)

    Can Xu; Zhao-Shen Li; Yi-Qi Du; Zhen-Xing Tu; Yan-Fang Gong; Jing Jin; Hong-Yu Wu; Guo-Ming Xu

    2005-01-01

    AIM: To construct a recombinant attenuated Salmonella typhimurium DNA vaccine carrying Helicobacter pylori hpaA gene and to detect its immunogenicity.METHODS: Genomic DNA of the standard H pylori strain 17 874 was isolated as the template, hpaA gene fragment was amplified by polymerase chain reaction (PCR) and cloned into pUCmT vector. DNA sequence of the amplified hpaA gene was assayed, then cloned into the eukaryotic expression vector pIRES through enzyme digestion and ligation reactions. The recombinant plasmid was used to transform competent Escherichia coliDH5α, and the positive clones were screened by PCR and restriction enzyme digestion. Then, the recombinant pIRES-hpaA was used to transform LB5000 and the recombinant plasmid isolated from LB5000 was finally used to transform SL7207. After that, the recombinant strain was grown in vitrorepeatedly. In order to iclentify the immunogenicity of the vaccinein vitro, the recombinant pIRES-hpaA was transfected to COS-7 cells using LipofectamineTM2000, the immunogenicity of expressed HpaA protein was detected with SDS-PAGE and Western blot.RESULTS: The 750-base pair hpaA gene fragment was amplified from the genomic DNA and was consistent with the sequence of H pylori hpaA by sequence analysis. It was confirmed by PCR and restriction enzyme digestion that H pylori hpaA gene was inserted into the eukaryotic expression vector pIRES and a stable recombinant live attenuated Salmonella typhimurium DNA vaccine carrying H pylori hpaA gene was successfully constructed and the specific strip of HpaA expressed by pIRES-hpaA was detected through Western blot.CONCLUSION: The recombinant attenuated Salmonella typhimurium DNA vaccine strain expressing HpaA protein with immunogenicity can be constructed and it may be helpful for further investigating the immune action of DNA vaccine in vivo.

  15. Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems.

    Science.gov (United States)

    Kalariya, Mayurkumar; Amiji, Mansoor M

    2013-09-10

    The purpose of this study was to develop a water-in-oil-in-water (W/O/W) multiple emulsions-based vaccine delivery system for plasmid DNA encoding the gp100 peptide antigen for melanoma immunotherapy. The gp100 encoding plasmid DNA was encapsulated in the inner-most aqueous phase of squalane oil containing W/O/W multiple emulsions using a two-step emulsification method. In vitro transfection ability of the encapsulated plasmid DNA was investigated in murine dendritic cells by transgene expression analysis using fluorescence microscopy and ELISA methods. Prophylactic immunization using the W/O/W multiple emulsions encapsulated the gp100 encoding plasmid DNA vaccine significantly reduced tumor volume in C57BL/6 mice during subsequent B16-F10 tumor challenge. In addition, serum Th1 cytokine levels and immuno-histochemistry of excised tumor tissues indicated activation of cytotoxic T-lymphocytes mediated anti-tumor immunity causing tumor growth suppression. The W/O/W multiple emulsions-based vaccine delivery system efficiently delivers the gp100 plasmid DNA to induce cell-mediated anti-tumor immunity.

  16. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Directory of Open Access Journals (Sweden)

    Viktoria Stab

    Full Text Available The Respiratory Syncytial Virus (RSV and Influenza A Virus (IAV are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  17. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus.

    Science.gov (United States)

    Stab, Viktoria; Nitsche, Sandra; Niezold, Thomas; Storcksdieck Genannt Bonsmann, Michael; Wiechers, Andrea; Tippler, Bettina; Hannaman, Drew; Ehrhardt, Christina; Uberla, Klaus; Grunwald, Thomas; Tenbusch, Matthias

    2013-01-01

    The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.

  18. Immunization of olive flounder (Paralichthys olivaceus) with an auxotrophic Edwardsiella tarda mutant harboring the VHSV DNA vaccine.

    Science.gov (United States)

    Choi, Seung Hyuk; Kim, Min Sun; Kim, Ki Hong

    2012-09-01

    The aims of the present study were to find more powerful promoter for DNA vaccines in olive flounder (Paralichthys olivaceus) and to evaluate the availability of the auxotrophic Edwardsiella tarda mutant (Δalr Δasd E. tarda) as a delivery vehicle for DNA vaccine against VHSV in olive flounder. The marine medaka (Oryzias dancena) β-actin promoter was clearly stronger than cytomegalovirus (CMV) promoter when the vectors were transfected to Epithelioma papulosum cyprini (EPC) cells or injected into the muscle of olive flounder, suggesting that marine medaka β-actin promoter would be more appropriate promoter for DNA vaccines in olive flounder than CMV promoter. Olive flounder immunized with the Δalr Δasd E. tarda harboring viral hemorrhagic septicemia virus (VHSV) DNA vaccine vector driven by the marine medaka β-actin promoter showed significantly higher serum neutralization titer and higher survival rates against challenge with VHSV than fish immunized with the bacteria carrying VHSV DNA vaccine vector driven by CMV promoter. These results indicate that auxotrophic E. tarda mutant harboring marine medaka β-actin promoter-driven DNA vaccine vectors would be a potential system for prophylactics of infectious diseases in olive flounder.

  19. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life.

  20. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    Science.gov (United States)

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p vaccine construct containing a luciferase reporter gene and to non-vaccinated controls in fish ranging in age from 3 to 14 months. In all trials, the SVCV-G DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  1. Advances and challenges in the development of therapeutic DNA vaccines against hepatitis B virus infection.

    Science.gov (United States)

    Cova, Lucyna

    2014-01-01

    Despite the existence of an effective prophylactic vaccine, chronic hepatitis B virus (HBV) infection remains a major public health problem. Because very weak and functionally impaired virus-specific immune responses play a key role in the persistence of HBV infection, the stimulation of these responses appears to be of particular importance for virus clearance. In this regard DNA-based vaccination has emerged as novel, promising therapeutic approach for chronic hepatitis B. This review provides an update of preclinical studies in animal models (mouse, chimpanzee, duck, woodchuck), which evaluated the ability of DNA vaccines targeting hepadnaviral proteins to induce potent and sustained immune responses in naïve animals and to enhance virus clearance and break immune tolerance in chronic virus-carriers. Different strategies have been developed and evaluated in these models to optimize DNA vaccine including genetic adjuvants, combination with antiviral drugs, prime-boost regimens and plasmid delivery. The delivery of DNA by in vivo electroporation appears to be of particular interest for increase of vaccine potency in both small and large animal models. Based on the promising results generated in preclinical studies, first clinical trials of DNA vaccines have been initiated, although effective therapy of chronic hepatitis B awaits further improvements in vaccine efficacy.

  2. Do uncertainty analyses reveal uncertainties? Using the introduction of DNA vaccines to aquaculture as a case.

    Science.gov (United States)

    Gillund, Frøydis; Kjølberg, Kamilla A; von Krauss, Martin Krayer; Myhr, Anne I

    2008-12-15

    The Walker and Harremoës (W&H) uncertainty framework is a tool to systematically identify scientific uncertainty. We applied the W&H uncertainty framework to elicit scientists' judgements of potential sources of uncertainty associated with the use of DNA vaccination in aquaculture. DNA vaccination is considered a promising solution to combat pathological fish diseases. There is, however, lack of knowledge regarding its ecological and social implications. Our findings indicate that scientists are open and aware of a number of uncertainties associated with DNA vaccination e.g. with regard to immune response, degradation and distribution of the DNA plasmid after injection and environmental release, and consider most of these uncertainties to be adequately reduced through more research. We proceed to discuss our experience of using the W&H uncertainty framework. Some challenges related to the application of the framework were recognised. This was especially related to the respondents' unfamiliarity with the concepts used and their lack of experience in discussing qualitative aspects of uncertainties. As we see it, the W&H framework should be considered as a useful tool to stimulate reflection on uncertainty and an important first step in a more extensive process of including and properly dealing with uncertainties in science and policymaking.

  3. Nano-Delivery Vehicles/Adjuvants for DNA Vaccination Against HIV.

    Science.gov (United States)

    Dong, Yaqiong; Yang, Jun; Zhang, Jinchao; Zhang, Xin

    2016-03-01

    More than 75 million people has been infected HIV and it is responsible for nearly 36 million deaths on a global scale. As one of the deadliest infectious diseases, HIV is becoming the urgent issue of the global epidemic to tackle. In order to settle this problem from the source, some effective prevention strategies should be developed to control the pandemic of HIV. Vaccines, especially DNA vaccines, could be the optimal way to control the spread of HIV due to the unparalleled superiority that DNA vaccines could generate long-term humoral and cellular immune responses which could provide protective immunity for HIV. But the naked DNA could hardly enter into cells and is easily degraded by DNases and lysosomes, so designing effective delivery system is a promising strategy. Since delivery system could be constructed to promote efficient delivery of DNA into mammalian cells, protect them from degradation, and also could be established to be a target system to arrive at certain position of expectation. The current review discusses the potential of various nano-delivery vehicles/adjuvants such as polymer, lipid, liposome, peptide and inorganic material in improving efficiency of diverse modalities available for HIV DNA vaccines.

  4. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  5. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  6. 一种含不同流感病毒血凝素抗原表位的核酸疫苗%A DNA Vaccine Containing Different Influenza Hemagglutinin Epitopes

    Institute of Scientific and Technical Information of China (English)

    彭波; 常海艳; 张风华; 李小曼; 陈则; 方芳

    2011-01-01

    流感病毒表面抗原血凝素( hemagglutinin,HA)是流感核酸疫苗重要的靶抗原,针对HA的保护性中和抗体主要由HA上的五个抗原表位诱导产生.在本文中,我们构建了一种以新甲型H1N1流感病毒HA1为骨架的含2个A/PR/8( H1N1)流感病毒HA抗原表位和3个新甲型H1N1流感病毒HA抗原表位的核酸疫苗,并在BALB/c小鼠致死量病毒攻击模型中检验其免疫保护效果.结果显示,两次电击免疫后,该核酸疫苗对新甲型H1N1流感病毒和A/PR/8流感病毒的攻击都能提供完全的保护,达到了和含相应病毒株全长HA的核酸疫苗相同的效果.因此我们认为,含流感病毒血凝素不同抗原表位的核酸疫苗可以作为一种新型的具有交叉保护效果的流感疫苗.%Hemagglutinin (HA) , the surface antigen of influenza virus, is a very important target for influenza DNA vaccines. On the surface of the protein, there are five main neutralizing epitopes that induce protective antibodies against influenza. In this paper, a DNA vaccine was constructed based on the HA1 from the new influenza A (H1N1) virus, which contains two epitopes of the A/PR/8 (H1N1) influenza virus HA. Female BALB/c mice were immunized twice by electroporation before challenged with a lethal dose of new influenza A ( H1N1) virus or A/PR/8 influenza virus. The result showed that the DNA vaccine could provide mice a complete cross-protection against these two influenza viruses. The protective effects were comparable to those provided by DNA vaccines containing an intact HA gene. Thus, a DNA vaccine that contains epitopes of different HA genes from influenza viruses of the same subtype could be a new influenza vaccine to offer cross-protection against influenza antigenic drift.

  7. Block copolymer/DNA vaccination induces a strong allergen-specific local response in a mouse model of house dust mite asthma.

    Directory of Open Access Journals (Sweden)

    Camille Rolland-Debord

    Full Text Available BACKGROUND: Allergic asthma is caused by abnormal immunoreactivity against allergens such as house dust mites among which Dermatophagoides farinae (Der f is a common species. Currently, immunotherapy is based on allergen administration, which has variable effect from patient to patient and may cause serious side effects, principally the sustained risk of anaphylaxis. DNA vaccination is a promising approach by triggering a specific immune response with reduced allergenicity. OBJECTIVE: The aim of the study is to evaluate the effects of DNA immunization with Der f1 allergen specific DNA on allergic sensitization, inflammation and respiratory function in mice. METHODS: Mice were vaccinated 28 and 7 days before allergen exposure with a Der f1-encoding plasmid formulated with a block copolymer. Asthma was induced by skin sensitization followed by intra-nasal challenges with Der f extract. Total lung, broncho-alveolar lavage (BAL and spleen cells were analyzed by flow cytometry for their surface antigen and cytokine expression. Splenocytes and lung cell IFN-γ production by CD8+ cells in response to Der f CMH1-restricted peptides was assessed by ELISPOT. IgE, IgG1 and IgG2a were measured in serum by ELISA. Specific bronchial hyperresponsiveness was assessed by direct resistance measurements. RESULTS: Compared to animals vaccinated with an irrelevant plasmid, pVAX-Der f1 vaccination induced an increase of B cells in BAL, and an elevation of IL-10 and IFN-γ but also of IL-4, IL-13 and IL-17 producing CD4+ lymphocytes in lungs and of IL-4 and IL-5 in spleen. In response to CD8-restricted peptides an increase of IFN-γ was observed among lung cells. IgG2a levels non-specifically increased following block copolymer/DNA vaccination although IgE, IgG1 levels and airways resistances were not impacted. CONCLUSIONS & CLINICAL RELEVANCE: DNA vaccination using a plasmid coding for Der f1 formulated with the block copolymer 704 induces a specific immune response

  8. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    Science.gov (United States)

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria.

  9. Evaluation of the persistence and gene expression of an anti-Chlamydophila psittaci DNA vaccine in turkey muscle

    Directory of Open Access Journals (Sweden)

    Vanrompay Daisy

    2006-06-01

    Full Text Available Abstract Background DNA vaccination has been shown to elicit specific cellular and humoral immune responses to many different agents in a broad variety of species. However, looking at a commercial use, the duration of the immune response against the vaccine is critical. Therefore the persistence of the DNA vaccine, as well as its expression, should be investigated. We conducted these investigations on a DNA vaccine against Chlamydophila psittaci, a Gram-negative intracellular bacterium which causes respiratory disease in turkeys and humans. Previous studies showed that the DNA vaccine confers partial protection against C. psittaci infection in turkeys. Turkeys were injected intramuscularly with the DNA vaccine : a eukaryotic expression vector (pcDNA1::MOMP expressing the major outer membrane protein (MOMP of an avian C. psittaci serovar D strain. Over a period of 11 weeks, cellular uptake of the DNA vaccine was examined by PCR, transcription of the insert by reverse transcript-PCR (RT-PCR and mRNA translation by immunofluorescence staining of muscle biopsies. Results The results indicate that the DNA vaccine persists in turkey muscle for at least 10 weeks. Moreover, during this period of time MOMP was continuously expressed, as evidenced by the immunofluorescence staining and RT-PCR. Conclusion Since C. psittaci infections occur at the age of 3 to 6 and 8 to 12 weeks, a vaccine persistence of 10 weeks seems adequate. Therefore, further research should concentrate on improving the elicited immune response, more specifically the cell-mediated immune response, rather than prolonging the lifespan of the plasmid.

  10. Influence of electroporation on immunogenicity of the DNA vaccine pVAX-tG250FcGB%电穿孔技术对DNA疫苗pVAX-tG250FcGB免疫效果的影响

    Institute of Scientific and Technical Information of China (English)

    肖毅; 于继云; 高昆; 杨勇; 阎瑾琦; 张亮; 王宇; 徐元基; 田仁礼; 杜芝燕

    2013-01-01

    Objective To investigate the influence of electroporation on the immunogenicity of the DNA vaccine pVAX-tG250FcGB. Methods The DNA vaccine pVAX-tG250FcGB was constructed by inserting the coding gene of tG250 fusion genes into the expression vector pVAX. The DNA vaccine was delivered in BALB/c mouse by electroporation or intramuscular injection, and the induced antigen specific immune responses were compared. Results The vaccine delivered by electroporation and intramuscular injection both induced immune responses in BALB/c mouse, but electroporation produced an obviously stronger effect than intramuscular injection. Conclusion Electroporation-mediated DNA vaccine delivery can produce strong immune response in mice and is an effective means for studying the immunogenic effect of DNA vaccine pVAX-tG250FcGB.%目的:探讨应用电穿孔技术对DNA疫苗pVAX-tG250FcGB免疫效果的影响。方法构建肾癌DNA疫苗pVAX-tG250FcGB,通过体内电穿孔技术或普通肌肉注射途径,将DNA疫苗导入到BALB/c小鼠体内,探讨电穿孔免疫途径诱导抗原特异性免疫应答的效果。结果电穿孔技术或普通肌肉注射均能在小鼠体内诱导出抗原特异性的体液免疫应答和细胞免疫应答,电穿孔技术的免疫效果明显优于普通肌肉注射途径。结论电穿孔技术介导的DNA疫苗pVAX-tG250FcGB免疫具有较强的诱导免疫应答的能力,是研究DNA疫苗pVAX-tG250FcGB免疫效果的一种有效途径。

  11. Efficacy of an autophagy-targeted DNA vaccine against avian leukosis virus subgroup J.

    Science.gov (United States)

    Dai, Zhenkai; Huang, Jianfei; Lei, Xiaoya; Yan, Yiming; Lu, Piaopiao; Zhang, Huanmin; Lin, Wencheng; Chen, Weiguo; Ma, Jingyun; Xie, Qingmei

    2017-02-01

    Infection with the avian leukosis virus subgroup J (ALV-J) can lead to neoplastic disease in chickens, inflicting significant economic losses to the poultry industry. Recent reports have identified inhibitory effects of ALV-J on autophagy, a process involving in innate and adaptive immunity. Inspired by this connection between autophagy and immunity, we developed a novel DNA vaccine against ALV-J which includes co-administration of rapamycin to stimulate autophagy. To measure the efficacy of the developed prototype vaccine, five experimental groups of seven-day-old chickens was immunized three times at three-week intervals respectively with vector, pVAX1-gp85, pVAX1-gp85-LC3, pVAX1-gp85+rapamycin and pVAX1-gp85-LC3+rapamycin through electroporation. We then tested their antibody titers, cytokine levels and cellular immune responses. The immunoprotective efficacy of the prototype vaccines against the challenge of the ALV-J GD1109 strain was also examined. The results showed that the combination of pVAX1-gp85-LC3 and rapamycin was able to induce the highest antibody titers, and enhance interleukin(IL)-2, IL-10 and interferon (IFN)-γ expression, and the chickens immunized with the combination of pVAX1-gp85-LC3 and rapamycin showed the highest percentage of CD3+CD8+T lymphocytes. Based on our results, we suggest that stimulating autophagy can improve the efficacy of DNA vaccines and that our DNA vaccine shows the potential of being a candidate vaccine against ALV-J. This study provides a novel strategy for developing vaccines against ALV-J.

  12. Evaluation of a novel non-penetrating electrode for use in DNA vaccination.

    Directory of Open Access Journals (Sweden)

    Amy Donate

    Full Text Available Current progress in the development of vaccines has decreased the incidence of fatal and non-fatal infections and increased longevity. However, new technologies need to be developed to combat an emerging generation of infectious diseases. DNA vaccination has been demonstrated to have great potential for use with a wide variety of diseases. Alone, this technology does not generate a significant immune response for vaccination, but combined with delivery by electroporation (EP, can enhance plasmid expression and immunity. Most EP systems, while effective, can be invasive and painful making them less desirable for use in vaccination. Our lab recently developed a non-invasive electrode known as the multi-electrode array (MEA, which lies flat on the surface of the skin without penetrating the tissue. In this study we evaluated the MEA for its use in DNA vaccination using Hepatitis B virus as the infectious model. We utilized the guinea pig model because their skin is similar in thickness and morphology to humans. The plasmid encoding Hepatitis B surface antigen (HBsAg was delivered intradermally with the MEA to guinea pig skin. The results show increased protein expression resulting from plasmid delivery using the MEA as compared to injection alone. Within 48 hours of treatment, there was an influx of cellular infiltrate in experimental groups. Humoral responses were also increased significantly in both duration and intensity as compared to injection only groups. While this electrode requires further study, our results suggest that the MEA has potential for use in electrically mediated intradermal DNA vaccination.

  13. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available BACKGROUND: Although the Newcastle disease virus (NDV inactivated vaccines and attenuated live vaccines have been used to prevent and control Newcastle disease (ND for years, there are some disadvantages. Recently, newly developed DNA vaccines have the potential to overcome these disadvantages. The low delivery efficiency, however, hindered the application of DNA vaccines for ND in practice. METHODOLOGY/PRINCIPAL FINDINGS: The eukaryotic expression plasmid pVAX1-F (o DNA that expressed the F gene of NDV encapsulated in PLGA nanoparticles (pFNDV-PLGA-NPs were prepared by a double emulsion-solvent evaporation method and optimal preparation conditions of the pFNDV-PLGA-NPs were determined. Under the optimal conditions, the pFNDV-PLGA-NPs were produced in good morphology and had high stability with a mean diameter of 433.5 ± 7.5 nm, with encapsulation efficiency of 91.8 ± 0.3% and a Zeta potential of +2.7 mV. Release assay in vitro showed that the fusion gene plasmid DNA could be sustainably released from the pFNDV-PLGA-NPs up to 93.14% of the total amount. Cell transfection test indicated that the vaccine expressed and maintained its bioactivity. Immunization results showed that better immune responses of SPF chickens immunized with the pFNDV-PLGA-NPs were induced compared to the chickens immunized with the DNA vaccine alone. In addition, the safety of mucosal immunity delivery system of the pFNDV-PLGA-NPs was also tested in an in vitro cytotoxicity assay. CONCLUSIONS/SIGNIFICANCE: The pFNDV-PLGA-NPs could induce stronger cellular, humoral, and mucosal immune responses and reached the sustained release effect. These results laid a foundation for further development of vaccines and drugs in PLGA nanoparticles.

  14. [Problems and prospects of gene therapeutics and DNA vaccines development and application].

    Science.gov (United States)

    Kibirev, Ia A; Drobkov, B I; Marakulin, I V

    2010-01-01

    The review is summarized foreign publications devoted to different aspects of DNA vaccines and gene therapeutics' biological safety. In spite of incomprehension in their action, numerous prototype DNA-based biopharmaceuticals are in advanced stages of human clinical trials. This review is focused on some safety concerns of gene formulations vaccines relate to toxic effects, vertical transmission possibility, genome integration complications, immunologic and immunopathologic effects and environmental spread. It is noted that necessity of national regulatory documents development related to gene therapy medicinal products is significant condition of their application to medical practice.

  15. Transcriptome profiles associated to VHSV infection or DNA vaccination in turbot (Scophthalmus maximus.

    Directory of Open Access Journals (Sweden)

    Patricia Pereiro

    Full Text Available DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV in turbot (Scophthalmus maximus we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4 and DNA vaccine (pMCV1.4-G860 intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules

  16. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot

    DEFF Research Database (Denmark)

    Sommerset, I.; Lorenzen, Ellen; Lorenzen, Niels;

    2003-01-01

    A DNA vaccine encoding the envelope glycoprotein from a fish rhabdovirus, viral hemorrhagic septicemia virus (VHSV), has previously been shown to induce both early and long time protection against the virus in rainbow trout. Challenge experiments have revealed that the immunity established shortly...... after vaccination is cross-protective against heterologous fish rhabdoviruses. In this study, we show that the DNA vaccine encoding the VHSV glycoprotein also induces early protection against a non-enveloped, positive-sense RNA vir-us belonging to the Nodavirus family, the Atlantic halibut nodavirus...... (AHNV). In a vaccine. efficacy test using juvenile turbot as model fish, the fish injected with the VHSV vaccine were completely protected against a nodavirus challenge performed 8 days post vaccination, while the cumulative mortality in the control group reached 54%. A DNA vaccine carrying the gene...

  17. Altering an artificial Gagpolnef polyprotein and mode of ENV co-administration affects the immunogenicity of a clade C HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Katharina Böckl

    Full Text Available HIV-1 candidate vaccines expressing an artificial polyprotein comprising Gag, Pol and Nef (GPN and a secreted envelope protein (Env were shown in recent Phase I/II clinical trials to induce high levels of polyfunctional T cell responses; however, Env-specific responses clearly exceeded those against Gag. Here, we assess the impact of the GPN immunogen design and variations in the formulation and vaccination regimen of a combined GPN/Env DNA vaccine on the T cell responses against the various HIV proteins. Subtle modifications were introduced into the GPN gene to increase Gag expression, modify the expression ratio of Gag to PolNef and support budding of virus-like particles. I.m. administration of the various DNA constructs into BALB/c mice resulted in an up to 10-fold increase in Gag- and Pol-specific IFNγ(+ CD8(+ T cells compared to GPN. Co-administering Env with Gag or GPN derivatives largely abrogated Gag-specific responses. Alterations in the molar ratio of the DNA vaccines and spatially or temporally separated administration induced more balanced T cell responses. Whereas forced co-expression of Gag and Env from one plasmid induced predominantly Env-specific T cells responses, deletion of the only H-2(d T cell epitope in Env allowed increased levels of Gag-specific T cells, suggesting competition at an epitope level. Our data demonstrate that the biochemical properties of an artificial polyprotein clearly influence the levels of antigen-specific T cells, and variations in formulation and schedule can overcome competition for the induction of these responses. These results are guiding the design of ongoing pre-clinical and clinical trials.

  18. Interaction of a C-terminal Truncated Hepatitis C Virus Core Protein with Plasmid DNA Vaccine Leads to in vitro Assembly of Heterogeneous Virus-like Particles

    Directory of Open Access Journals (Sweden)

    Nelson Acosta-Rivero

    2005-01-01

    Full Text Available Recently, it has been shown that HCV core proteins (HCcAg with C-terminal deletions assemble in vitro into virus-like particles (VLPs in the presence of structured RNA molecules. Results presented in this work showed that a truncated HCcAg variant covering the first 120 aa (HCcAg.120 with a 32 aa N-terminal fusion peptide (6xHistag-XpressTMepitope interacts with plasmid DNA vaccine. Interestingly, the buoyant density of VLPs containing HCcAg.120 in CsCl gradients changed from 1.15-1,17 g mLˉ1 to 1.30-1.34 g mLˉ1 after addition of plasmid DNA to assembly reactions. In addition, a delay in electrophoretic mobility of HCcAg.120-plasmid samples on agarose gels was observed indicating a direct interaction between VLPs and nucleic acids. Remarkably, addition of either plasmid DNA or tRNA to assembly reactions leaded to heterogeneous and larger VLPs formation than those observed in HCcAg.120 assembly reactions. VLPs containing HCcAg.120 induced a specific IgG antibodies in mice that reacted with hepatocytes from HCV-infected patients. VLPs obtained in this work would be important to elucidate the mechanisms behind the ability of HCcAg to assemble into a nucleocapsid structure. Besides, the capacity of particles containing HCcAg.120 to interact with nucleic acids could be used in the development of DNA vaccines and viral vectors based on these particles.

  19. Dose-Dependent Protection against or Exacerbation of Disease by a Polylactide Glycolide Microparticle-Adsorbed, Alphavirus-Based Measles Virus DNA Vaccine in Rhesus Macaques▿

    Science.gov (United States)

    Pan, Chien-Hsiung; Nair, Nitya; Adams, Robert J.; Zink, M. Christine; Lee, Eun-Young; Polack, Fernando P.; Singh, Manmohan; O'Hagan, Derek T.; Griffin, Diane E.

    2008-01-01

    Measles remains an important cause of vaccine-preventable child mortality. Development of a low-cost, heat-stable vaccine for infants under the age of 6 months could improve measles control by facilitating delivery at the time of other vaccines and by closing a window of susceptibility prior to immunization at 9 months of age. DNA vaccines hold promise for development, but achieving protective levels of antibody has been difficult and there is an incomplete understanding of protective immunity. In the current study, we evaluated the use of a layered alphavirus DNA/RNA vector encoding measles virus H (SINCP-H) adsorbed onto polylactide glycolide (PLG) microparticles. In mice, antibody and T-cell responses to PLG-formulated DNA were substantially improved compared to those to naked DNA. Rhesus macaques received two doses of PLG/SINCP-H delivered either intramuscularly (0.5 mg) or intradermally (0.5 or 0.1 mg). Antibody and T-cell responses were induced but not sustained. On challenge, the intramuscularly vaccinated monkeys did not develop rashes and had lower viremias than vector-treated control monkeys. Monkeys vaccinated with the same dose intradermally developed rashes and viremia. Monkeys vaccinated intradermally with the low dose developed more severe rashes, with histopathologic evidence of syncytia and intense dermal and epidermal inflammation, eosinophilia, and higher viremia compared to vector-treated control monkeys. Protection after challenge correlated with gamma interferon-producing T cells and with early production of high-avidity antibody that bound wild-type H protein. We conclude that PLG/SINCP-H is most efficacious when delivered intramuscularly but does not provide an advantage over standard DNA vaccines for protection against measles. PMID:18287579

  20. Production and purification of plasmid DNA vaccines: is there scope for further innovation?

    Science.gov (United States)

    Xenopoulos, Alex; Pattnaik, Priyabrata

    2014-12-01

    The demand for plasmid DNA (pDNA) has vastly increased over the past decade in response to significant advances that have been made in its application for gene therapy and vaccine development. Plasmid DNA-based vaccines are experiencing a resurgence due to success with prime-boost immunization strategies. The challenge has always been poor productivity and delivery of pDNA. Plasmid DNA-based vaccines have traditionally required milligram scale of GMP-grade product for vaccination due to the relatively low efficacy and duration of gene expression. However, efforts to increase pDNA vaccine effectiveness are evolving in genetic manipulations of bacterial host, improvements in product recovery and innovative delivery methods. This review summarizes recent advances in large-scale pDNA vaccine manufacturing, ranging from upstream processing, downstream processing and formulation, as such information is usually not available to the scientific community. The article will highlight technology gaps and offer insight on further scope of innovation.

  1. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    Science.gov (United States)

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria.

  2. Advances in host and vector development for the production of plasmid DNA vaccines.

    Science.gov (United States)

    Mairhofer, Juergen; Lara, Alvaro R

    2014-01-01

    Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.

  3. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  4. The safety of DNA vaccines%DNA 疫苗接种的安全性

    Institute of Scientific and Technical Information of China (English)

    靳彦文; 马清钧

    2001-01-01

    Three major issues have been raised with respect to the safety of DNA vaccines .These are the potential for inducing a transformational event, possible unexpected adverse consequences of the persistent expression of a foreign antigen and the formation of anti DNA antibodies. The review based on the relevent research articles give a summary of knowledge of DNA vaccines' safety published during past years.%DNA疫苗的安全性问题主要有三个方面:转入体内的外源DNA有可能整合到宿主细胞基因组上,使宿主细胞抑癌基因失活或癌基因活化,使宿主细胞转化成癌细胞;外源抗原持续表达产生的不良后果;质粒DNA诱导的自身免疫反应。本文综合近年来有关文献对DNA疫苗安全性的研究作一概括性介绍。

  5. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available BACKGROUND: DNA-based vaccines have been safe but weakly immunogenic in humans to date. METHODS AND FINDINGS: We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines. CONCLUSIONS: This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate. TRIAL REGISTRATION: ClinicalTrials.gov NCT00545987.

  6. Efficacy of a DNA vaccine carrying Eimeria maxima Gam56 antigen gene against coccidiosis in chickens.

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan; Tao, Jianping

    2013-04-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×10(4) sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (Pcoccidiosis control.

  7. The protective efficacy of chimeric SO7/IL-2 DNA vaccine against coccidiosis in chickens.

    Science.gov (United States)

    Song, Hongyan; Qiu, Baofeng; Yan, Ruofeng; Xu, Lixin; Song, Xiaokai; Li, Xiangrui

    2013-06-01

    The protective efficacy of recombinant vaccines encoding an Eimeria refractile body antigen SO7 was assessed in broiler chickens following oral infection with Eimeria tenella. The SO7 and chicken IL-2 genes were cloned into the expression vector pVAX1 consecutively to construct DNA vaccines pVAX-SO7 and pVAX-SO7-IL-2. Expression of SO7 and IL-2 gene transcripts and proteins encoded by the plasmid DNAs in vivo was detected by reverse transcription-polymerase chain reaction and Western blot. Chickens were inoculated with 100 μg of plasmids pVAX-SO7 or pVAX-SO7-IL-2, or 200 μg of recombinant SO7 protein or chicken IL-2 protein by leg intramuscular injection. At 28days of age, all chickens except the unchallenged control group were challenged orally with 5×10(4) sporulated oocysts of E. tenella. All chickens were euthanized to determine the effects of immunization on the 7th day post-challenge. The results showed that both DNA vaccines containing the SO7 gene and the recombinant SO7 protein could obviously alleviate body weight loss and cecal lesions compared with unvaccinated and challenged control. These findings also suggested that chicken IL-2 could effectively enhance the immunity of SO7 against E. tenella challenge compared with vaccination using pVAX-SO7 alone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Advances in research of DNA vaccine%DNA 疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    郭杨(综述); 方刚(审校)

    2013-01-01

    DNA疫苗是20世纪90年代初出现的一种新型疫苗,近年来发展迅速,在预防和治疗病毒性疾病及肿瘤等方面效果显著。同传统的疫苗相比,DNA疫苗具有免疫效果好、生产成本低、临床应用方便等优点,但同样存在安全性的担忧。对DNA疫苗的发展及其作用机制、优势进行了综述,并对DNA疫苗的安全性提出了自己的观点与看法,可供DNA疫苗的研究者参考。%As a novel vaccine set up in early 1990 s, DNA vaccine has been developed rapidly in recent years and played an important role in the prevention and treatment of viral diseases and tumor .Compared with the traditional vaccines , it had some advantages , such as good immune effect , low production cost , and convenient usage for the clinical application , but it could also be found safety concerns .To provide the references for DNA vaccine researchers , the development , mecha-nism, and advantage are reviewed in this paper , and my personal viewpoint about its safety is presented as well .

  9. Protection of tree shrews by pVAX-PS DNA vaccine against HBV infection.

    Science.gov (United States)

    Zhou, Feng-Juan; Hu, Zhen-Lin; Dai, Jian-Xin; Chen, Rui-Wen; Shi, Ke; Lin, Yi; Sun, Shu-Han

    2003-07-01

    The immunological protection of pVAX-PS, a DNA vaccine, was assessed in the tree shrews model. pVAX-PS was constructed by inserting the gene encoding the middle (pre-S2 plus S) envelope protein of HBV into a plasmid vector pVAX1. Tree shrews (Tupaia belangeri chinenesis) were experimentally infected with human HBV by inoculation with human serum positive for HBV markers. DNA vaccination-induced seroconversion and antibody to HBV surface antigen (anti-HBs) were analyzed by ELISA, and protective effects elicited by pVAX-PS vaccination against subsequent HBV challenge were evaluated by detection of HBV seromarkers and observation of hepatic lesions in HBV-infected tree shrews. The results shown that anti-HBs were detectable in serum at week 2 after pVAX-PS vaccination and peaked at week 4, and immunization with pVAX-PS decreased the positive conversion rate of HBV seromarkers and relieved hepatic lesions in tree shrews challenged with HBV. These results indicated that pVAX-PS immunization could induce remarkable humoral immune response and prevent the experimental tree shrews from infection of HBV.

  10. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  11. Nonstructural protein 2 (nsP2) of Chikungunya virus (CHIKV) enhances protective immunity mediated by a CHIKV envelope protein expressing DNA Vaccine.

    Science.gov (United States)

    Bao, Huihui; Ramanathan, Aarti A; Kawalakar, Omkar; Sundaram, Senthil G; Tingey, Colleen; Bian, Charoran B; Muruganandam, Nagarajan; Vijayachari, Paluru; Sardesai, Niranjan Y; Weiner, David B; Ugen, Kenneth E; Muthumani, Karuppiah

    2013-02-01

    Chikungunya virus (CHIKV) is an important emerging mosquito-borne alphavirus, indigenous to tropical Africa and Asia. It can cause epidemic fever and acute illness characterized by fever and arthralgias. The epidemic cycle of this infection is similar to dengue and urban yellow fever viral infections. The generation of an efficient vaccine against CHIKV is necessary to prevent and/or control the disease manifestations of the infection. In this report, we studied immune response against a CHIKV-envelope DNA vaccine (pEnv) and the role of the CHIKV nonstructural gene 2 (nsP2) as an adjuvant for the induction of protective immune responses in a relevant mouse challenge model. When injected with the CHIKV pEnv alone, 70% of the immunized mice survived CHIKV challenge, whereas when co-injected with pEnv+pnsP2, 90% of the mice survived viral challenge. Mice also exhibited a delayed onset signs of illness, and a marked decrease in morbidity, suggesting a nsP2 mediated adjuvant effect. Co-injection of the pnsP2 adjuvant with pEnv also qualitatively and quantitatively increased antigen specific neutralizing antibody responses compared to vaccination with pEnv alone. In sum, these novel data imply that the addition of nsP2 to the pEnv vaccine enhances anti-CHIKV-Env immune responses and maybe useful to include in future CHIKV clinical vaccination strategies.

  12. Effects of optimized hα-synuclein DNA vaccine on cyclooxygenase-2 expression in substantia nigra in a murine model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Chen-yong ZHAO

    2011-03-01

    Full Text Available Objective To explore the effects of prophylactic inoculation of optimized hα-synuclein(hα-syn DNA vaccine on the dopaminergic neurons suffering from acute neurotoxin injury.Methods The optimized DNA vaccine,designated as pVAX1-IL-4/SYN-B,was prepared.The C57BL mice were grouped as pVAX1-IL-4/SYN-B group,pVAX1 group and PBS group.Animals in each group received 3 times of 50μl injection of plasmid pVAX1-IL-4/SYN-B,plasmid pVAX1 or PBS,respectively,in the anterior tibial muscle of either posterior limb.Two weeks after the last injection,all the mice were then given intraperitoneal injection of 20mg/kg MPTP with an attempt to reproduce the model of Parkinson’s disease(PD 4 times with a 2h interval.The changes in behavior of mice were observed when the model was being reproduced to verify if the model was reproduced.Mice were sacrificed at 1st,3rd and 7th day(6 each after the last injection of MPTP.The expression of COX-2 mRNA at each time point was detected by RT-PCR,and the expressive changes in COX-2 and CD11b(representing the activated state of microglia were detected with immunohistochemistry assay.Results The PD mouse model was successfully reproduced.The number of positive COX-2 and CD11b cells was remarkably decreased in pVAX1-IL-4/SYN-B group than in pVAX1 group and PBS group,while no significant difference was found between the latter 2 groups(P > 0.05.The results of RT-PCR showed that COX-2 mRNA expression in all the 3 groups at the 1st,3rd and 7th day after last injection of MPTP was slight on the 1st day,peak value appeared on the 3rd day,and it then declined on the 7th day.At each time point,the COX-2 mRNA expression in pVAX1-IL-4/SYN-B group(0.28±0.07,0.59±0.07 and 0.45±0.05 at day 1,3 and 7 was significantly lower(P 0.05.Conclusion Prophylactic inoculation of optimized hα-syn DNA vaccine may inhibit the expression of COX-2 and the activation of microglia,showing a protective effect on dopaminergic neurons.

  13. Immunotherapy with an HIV-DNA Vaccine in Children and Adults

    Directory of Open Access Journals (Sweden)

    Paolo Palma

    2014-07-01

    Full Text Available Therapeutic HIV immunization is intended to induce new HIV-specific cellular immune responses and to reduce viral load, possibly permitting extended periods without antiretroviral drugs. A multigene, multi-subtype A, B, C HIV-DNA vaccine (HIVIS has been used in clinical trials in both children and adults with the aim of improving and broadening the infected individuals’ immune responses. Despite the different country locations, different regimens and the necessary variations in assays performed, this is, to our knowledge, the first attempt to compare children’s and adults’ responses to a particular HIV vaccine. Ten vertically HIV-infected children aged 4–16 years were immunized during antiretroviral therapy (ART. Another ten children were blindly recruited as controls. Both groups continued their antiretroviral treatment during and after vaccinations. Twelve chronically HIV-infected adults were vaccinated, followed by repeated structured therapy interruptions (STI of their antiretroviral treatment. The adult group included four controls, receiving placebo vaccinations. The HIV-DNA vaccine was generally well tolerated, and no serious adverse events were registered in any group. In the HIV-infected children, an increased specific immune response to Gag and RT proteins was detected by antigen-specific lymphoproliferation. Moreover, the frequency of HIV-specific CD8+ T-cell lymphocytes releasing perforin was significantly higher in the vaccinees than the controls. In the HIV-infected adults, increased CD8+ T-cell responses to Gag, RT and viral protease peptides were detected. No augmentation of HIV-specific lymphoproliferative responses were detected in adults after vaccination. In conclusion, the HIV-DNA vaccine can elicit new HIV-specific cellular immune responses, particularly to Gag antigens, in both HIV-infected children and adults. Vaccinated children mounted transient new HIV-specific immune responses, including both CD4+ T

  14. IFN-γ increases efficiency of DNA vaccine in protecting ducks against infection

    Institute of Scientific and Technical Information of China (English)

    Jian-Er Long; Li-Na Huang; Zhi-Qiang Qin; Wen-Yi Wang; Di Qu

    2005-01-01

    AIM: To detect the effects of DNA vaccines in combination with duck IFN-γ gene on the protection of ducks against duck hepatitis B virus (DHBV) infection.METHODS: DuIFN-γ cDNA was cloned and expressed in COS-7 cells, and the antiviral activity of DuIFN-γ was detected and neutralized by specific antibodies. Ducks were vaccinated with DHBpreS/S DNA alone or coimmunized with plasmid expressing DuIFN-γ. DuIFN-γmRNA in peripheral blood mononuclear cells (PBMCs) from immunized ducks was detected by semi-quantitative competitive RT-PCR. Anti-DHBpreS was titrated by enzyme-linked immunosorbent assay (ELISA). DHBV DNA in sera and liver was detected by Southern blot hybridization, after ducks were challenged with high doses of DHBV.RESULTS: DuIFN-γ expressed by COS-7 was able to protect duck fibroblasts against vesicular stomatitis virus (VSV) infection in a dose-dependent fashion, and antiDuIFN-γ antibodies neutralized the antiviral effects. DuIFN-γin the supernatant also inhibited the release of DHBV DNA from LMH-D2 cells. When ducks were co-immunized with DNA vaccine expressing DHBpreS/S and DuIFN-γ gene as an adjuvant, the level of DuIFN-γ mRNA in PBMCs was higher than that in ducks vaccinated with DHBpreS/S DNA alone. However, the titer of anti-DHBpreS elicited by DHBpreS/S DNA alone was higher than that co-immunized with DuIFN-γ gene and DHBpreS/S DNA. After being challenged with DHBV at high doses, the load of DHBV in sera dropped faster, and the amount of total DNA and cccDNA in the liver decreased more significantly in the group of ducks co-immunized with DuIFN-γ gene and DHBpreS/S DNA than in other groups.CONCLUSION: DHBV preS/S DNA vaccine can protect ducks against DHBV infection, DuIFN-γ gene as an immune adjuvant enhances its efficacy.

  15. Enhanced efficacy of CTLA-4 fusion anti-caries DNA vaccines in gnotobiotic hamsters

    Institute of Scientific and Technical Information of China (English)

    Feng ZHANG; Yu-hong LI; Ming-wen FAN; Rong JIA; Qing-an XU; Ji-hua GUO; Fei YU; Qi-wei TIAN

    2007-01-01

    Aim:To evaluate the comparative immunogenicity and protective efficacy of the cytotoxic T-lymphocyte.associated antigen 4(CTLA-4)fusion anti-caries DNA vaccines pGJA-P/VAX1,pGJA-P,and non-fusion anti-caries DNA construct pGLUA-P in hamsters.In addition,the ability of CTLA-4 to target pGJA-P/VAX1-encoding antigen to dendritic cells was tested in vitro.Methods:All DNA constructs contain genes encoding the A-P regions of a cell surface protein(PAc) and the glucan binding(GLU) domain of glucosyltransferases(GTFs)of cari-ogenic organism Streptococcus mutans.Human dendritic cells were mixed with the CTLA-4-Ig-GLU-A-P protein expressed by pGJA-P/VAX1-transfected cells and analyzed by flow cytometry.Gnotobiotic hamsters were immunized with anti-caries DNA vaccines by intramuscular injection or intranasal administration.Antibody responses to a representative antigen PAc were assayed by ELlSA,and caries protection was evaluated by Keyes caries scores.Results:A flow cytometric analysis demonstrated that CTLA-4-Ig-GLU-A-P protein was capable of bind-ing to human dendritic cells.pGJA-P/VAX1 and pGJA-P induced significantly higher specific salivary and serum anti-PAc antibody responses than pGLUA-R.Significantly fewet caries lesions were alSO observed in hamsters immunized with pGJA-P/VAX1 and pGJA-p There was no significant difference in the anti-PAC antibody level or caries scores between pGJA-P/VAX1 and pGJA-P-immunized groups.Conclusion:Antigen encoded by CTLA-4 fusion anti-caries DNA vac-cine pGJA-P/VAX1 could specifically bind to human dendritic cells through the interaction of CTLA-4 and B7 molecules.Fusing antigen to CTLA-4 has been proven to greatly enhance the immunogenicity and protective efficacy of anti-caries DNA vaccines.

  16. Evaluation of a DNA vaccine candidate expressing prM-E-NS1 antigens of dengue virus serotype 1 with or without granulocyte-macrophage colony-stimulating factor (GM-CSF) in immunogenicity and protection.

    Science.gov (United States)

    Zheng, Qun; Fan, Dongying; Gao, Na; Chen, Hui; Wang, Juan; Ming, Ying; Li, Jieqiong; An, Jing

    2011-01-17

    Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.

  17. DNA vaccination in fish promotes an early chemokine-related recruitment of B cells to the muscle

    DEFF Research Database (Denmark)

    Castro, R.; Martínez-Alonso, S.; Fischer, U.

    2013-01-01

    might explain the recruitment of immune cells to the site of DNA injection. Our results suggest that B cells are involved in the initial phase of the immune response to intramuscular DNA vaccination against VHSV. This appears to be a major difference to what we know from mammalian models where T cells...

  18. Temperature influences the expression profiling of immune response genes in rainbow trout following DNA vaccination and VHS virus infection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Gautier, Laurent; Rasmussen, Jesper Skou

    A DNA vaccine encoding the glycoprotein (G) genes of the salmonid rhabdovirus viral haemorrhagic septicaemia virus (VHSV) has proven highly efficient against the disease caused by this virus in rainbow trout (Oncorhynchus mykiss). Several studies have demonstrated that this vaccine induces both...

  19. A DNA vaccine targeting TcdA and TcdB induces protective immunity against Clostridium difficile.

    Science.gov (United States)

    Zhang, Bao-Zhong; Cai, Jianpiao; Yu, Bin; Hua, Yanhong; Lau, Candy Choiyi; Kao, Richard Yi-Tsun Tsun; Sze, Kong-Hung; Yuen, Kwok-Yung; Huang, Jian-Dong

    2016-10-22

    Clostridium difficile-associated disease (CDAD) constitutes a great majority of hospital diarrhea cases in industrialized countries and is induced by two types of large toxin molecules: toxin A (TcdA) and toxin B (TcdB). Development of immunotherapeutic approaches, either active or passive, has seen a resurgence in recent years. Studies have described vaccine plasmids that express either TcdA and/or TcdB receptor binding domain (RBD). However, the effectiveness of one vector encoding both toxin RBDs against CDAD has not been evaluated. In the study, we constructed highly optimized plasmids to express the receptor binding domains of both TcdA and TcdB from a single vector. The DNA vaccine was evaluated in two animal models for its immunogenicity and protective effects. The DNA vaccine induced high levels of serum antibodies to toxin A and/or B and demonstrated neutralizing activity in both in vitro and in vivo systems. In a C. difficile hamster infection model, immunization with the DNA vaccine reduced infection severity and conferred significant protection against a lethal C. difficile strain. This study has demonstrated a single plasmid encoding the RBD domains of C. difficile TcdA and TcdB as a DNA vaccine that could provide protection from C. difficile disease.

  20. Recombinant invasive Lactococcus lactis can transfer DNA vaccines either directly to dendritic cells or across an epithelial cell monolayer

    NARCIS (Netherlands)

    Azevedo, de Marcela; Meijerink, Marjolein; Taverne, Nico; Pereira, Vanessa Bastos; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Langella, Philippe; Wells, J.M.; Chatel, Jean Marc

    2015-01-01

    Lactococcus lactis (L. lactis), a generally regarded as safe (GRAS) bacterium has recently been investigated as a mucosal delivery vehicle for DNA vaccines. Because of its GRAS status, L. lactis represents an attractive alternative to attenuated pathogens. Previous studies showed that eukaryotic

  1. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension.

  3. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    DEFF Research Database (Denmark)

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.;

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15 degreesC. Nearly complete protection was also observed at late...

  4. Progress of research on DNA vaccines against parasitosis%寄生虫病DNA疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    齐文娟; 方强

    2011-01-01

    寄生虫病防治策略之一是研制安全有效的疫苗,DNA疫苗是近10多年发展起来的新型疫苗.近年来寄生虫病DNA疫苗研究取得了很大进展.本文就DNA疫苗的免疫机理、构建与优化、佐剂、递送途径,以及疟疾、血吸虫病、囊尾蚴病、弓形虫病等重要寄生虫病DNA疫苗的研究进展作一综述.%One of the effective prevention and treatment strategies to parasitosis is to develop safe and effective vaccines. The DNA vaccine is a new kind of vaccine developed in last 10 years. In recent years, many advances in DNA vaccines against parasitosis have been made. This article reviews the advances in the mechanism, construction , optimization , adjuvants and delivery ways of DNA vaccines and the advances in the study of DNA vaccines against some parasitosis including malaria, schistosomiasis, cysti-cercosis and toxoplasmosis in recent years.

  5. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon.

    Science.gov (United States)

    Garver, Kyle A; LaPatra, Scott E; Kurath, Gael

    2005-04-06

    The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.

  6. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    complications. Although several strategies have been suggested for making a vaccine, none is currently available. Here, we investigate the protection conferred by DNA vaccination with two constructs, pcEC2 (MIC2-MIC3-SAG1) and pcEC3 (GRA3-GRA7-M2AP), encoding chimeric proteins containing multiple antigenic...

  7. 猪繁殖与呼吸综合征和猪2型圆环病毒病二联核酸疫苗的构建及其免疫效力%Construction and Immunogenicity of Associated DNA Vaccine of PRRS and PCV-2 Disease

    Institute of Scientific and Technical Information of China (English)

    隋慧; 杨金生

    2009-01-01

    [Objective] The aim of the study was to construct associated DNA vaccine of PRRS (Porcine reproductive and respiratory syndrome) and PCV-2 (Porcine circovirus type 2) disease and study its immunogenicity. [Method] In this study, the ORF 5 gene of PRRSV isolated in Liaoning was cloned into pIRES-neo expression vector, and the neo gene of pIRES-neo expression vector was substituted by the ORF 2 gene of the PCV-2 Mongolia strain to construct the recombinant expression vector. The expression in BHK cells was detected through Western blot and IFA. Then the ELISA antibody level and the number of spleen T lymphocytes were detected after Balb/c mice were immunized with this DNA vaccine. [Result] The recombinant plasmid pIRES-ORF2-ORF5 was constructed successfully and could express the target proteins in BHK cells, as indicated by Western blot and IFA. There was no significant difference in ELISA antibody between pIRES-ORF2-ORF5 immunized group and inactived vaccine immunized groups, while the number of spleen T lymphocytes induced by DNA vaccine was higher than that induced by inactived vaccine. [Conclusion] The recombinant plasmid pIRES-ORF2-ORF5 should induce good humoral immune response and cellular immune response in mice, providing the conditions for better prevention and control of PRRS and PCV-2 disease.

  8. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  9. Evaluation of attenuated Salmonella choleraesuis-mediated inhibin recombinant DNA vaccine in rats.

    Science.gov (United States)

    Hui, F M; Meng, C L; Guo, N N; Yang, L G; Shi, F X; Mao, D G

    2014-08-07

    DNA vaccination has been studied intensively as a potential vaccine technology. We evaluated the effect of an attenuated Salmonella choleraesuis-mediated inhibin DNA vaccine in rats. First, 15 rats were treated with different doses of an inhibin vaccine to evaluate vaccine safety. Next, 30 rats were divided into 3 groups and injected intramuscularly with the inhibin vaccine two (T1) or three times (T2) or with control bacteria (Con) at 4-week intervals. The inhibin antibody levels increased [positive/negative well (P/N) value: T1 vs Con = 2.39 ± 0.01 vs 1.08 ± 0.1; T2 vs Con = 2.36 ± 0.1 vs 1.08 ± 0.1, P < 0.05] at week 2 and were maintained at a high level in T1 and T2 until week 8, although a small decrease in T2 was observed at week 10. Rats in the T1 group showed more corpora lutea compared with the Con group (10.50 ± 0.87 vs 7.4 ± 0.51, P < 0.05). Estradiol (0.439 ± 0.052 vs 0.719 ± 0.063 ng/mL, P < 0.05) and progesterone (1.315 ± 0.2 vs 0.737 ± 0.11 ng/mL, P < 0.05) levels differed significantly at metestrus after week 10 between rats in the T1 and Con groups. However, there were no significant differences in body, ovary, uterus weights, or pathological signs in the ovaries after immunization, indicating that this vaccine is safe. In conclusion, the attenuated S. choleraesuis-mediated inhibin vaccine may be an alternative to naked inhibin plasmids for stimulating ovarian follicular development to increase the ovulation rate in rats.

  10. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine.

    Science.gov (United States)

    Yan, Jian; Villarreal, Daniel O; Racine, Trina; Chu, Jaemi S; Walters, Jewell N; Morrow, Matthew P; Khan, Amir S; Sardesai, Niranjan Y; Kim, J Joseph; Kobinger, Gary P; Weiner, David B

    2014-05-19

    Despite an intensive vaccine program influenza infections remain a major health problem, due to the viruses' ability to change its envelope glycoprotein hemagglutinin (HA), through shift and drift, permitting influenza to escape protection induced by current vaccines or natural immunity. Recently a new variant, H7N9, has emerged in China causing global concern. First, there have been more than 130 laboratory-confirmed human infections resulting in an alarmingly high death rate (32.3%). Second, genetic changes found in H7N9 appear to be associated with enabling avian influenza viruses to spread more effectively in mammals, thus transmitting infections on a larger scale. Currently, no vaccines or drugs are effectively able to target H7N9. Here, we report the rapid development of a synthetic consensus DNA vaccine (pH7HA) to elicit potent protective immunity against the H7N9 viruses. We show that pH7HA induces broad antibody responses that bind to divergent HAs from multiple new members of the H7N9 family. These antibody responses result in high-titer HAI against H7N9. Simultaneously, this vaccine induces potent polyfunctional effector CD4 and CD8T cell memory responses. Animals vaccinated with pH7HA are completely protected from H7N9 virus infection and any morbidity associated with lethal challenge. This study establishes that this synthetic consensus DNA vaccine represents a new tool for targeting emerging infection, and more importantly, its design, testing and development into seed stock for vaccine production in a few days in the pandemic setting has significant implications for the rapid deployment of vaccines protecting against emerging infectious diseases.

  11. The larval specific lymphatic filarial ALT-2: induction of protection using protein or DNA vaccination.

    Science.gov (United States)

    Ramachandran, Sabarinathan; Kumar, Mishra Pankaj; Rami, Reddy Maryada Venkata; Chinnaiah, Harinath Basker; Nutman, Thomas; Kaliraj, Perumal; McCarthy, James

    2004-01-01

    Genes from the infective stage of lymphatic filarial parasites expressed at the time of host invasion have been identified as potential vaccine candidates. By screening an L3 cDNA library with sera from uninfected longstanding residents of an area endemic for onchocerciasis, so-called "endemic normals" (EN), we have cloned and characterized one such gene termed the abundant larval transcript two (ALT-2). The stage specificity of ALT-2 gene transcription and protein synthesis was confirmed by PCR using genespecific primers, and by western blot analysis of protein extracts from various stages of the parasite life cycle using specific antisera. Significant differences in antibody response to the recombinant ALT-2 were observed in endemic populations with differing clinical manifestations of lymphatic filariasis with an antibody response present in sera from 18 of 25 (72%) EN subjects compared to 9 of 25 (36%) with subclinical microfilaracmia (MF) and 14 of 25 (52%) of those with chronic lymphatic obstruction (CP) (P=0.01 for comparison of EN to CP or to MF). This differential responsiveness suggests that the protective immunity postulated to account for their uninfected status might be associated with a response to this protein. When the utility of ALT-2 as a vaccine candidate was tested in a murine model using either recombinant protein or a DNA vaccine construct, statistically significant protection was observed when compared to a control filarial gene product expressed across all stages of the parasite lifecycle (SXP-1; P=0.02 for protein and P=0.01 for the DNA vaccine) or compared to adjuvant alone. This level of protection indicates that this vaccine is a promising candidate for further development.

  12. Recombinant Saccharomyces cerevisiae serves as novel carrier for oral DNA vaccines in Carassius auratus.

    Science.gov (United States)

    Yan, Nana; Xu, Kun; Li, Xinyi; Liu, Yuwan; Bai, Yichun; Zhang, Xiaohan; Han, Baoquan; Chen, Zhilong; Zhang, Zhiying

    2015-12-01

    Oral delivery of DNA vaccines represents a promising vaccinating method for fish. Recombinant yeast has been proved to be a safe carrier for delivering antigen proteins and DNAs to some species in vivo. However, whether recombinant yeast can be used to deliver functional DNAs for vaccination to fish is still unknown. In this study, red crucian carp (Carassius auratus) was orally administrated with recombinant Saccharomyces cerevisiae harboring CMV-EGFP expression cassette. On day 5 post the first vaccination, EGFP expression in the hindgut was detected under fluorescence microscope. To further study whether the delivered gene could induce specific immune responses, the model antigen ovalbumin (OVA) was used as immunogen, and oral administrations were conducted with recombinant S. cerevisiae harboring pCMV-OVA mammalian gene expression cassette as gene delivery or pADH1-OVA yeast gene expression cassette as protein delivery. Each administration was performed with three different doses, and the OVA-specific serum antibody was detected in all the experimental groups by western blotting and enzyme-linked immunosorbent assay (ELISA). ELISA assay also revealed that pCMV-OVA group with lower dose (pCMV-OVA-L) and pADH1-OVA group with moderate dose (pADH1-OVA-M) triggered relatively stronger antibody response than the other two doses. Moreover, the antibody level induced by pCMV-OVA-L group was significantly higher than pADH1-OVA-M group at the same serum dilutions. All the results suggested that recombinant yeast can be used as a potential carrier for oral DNA vaccines and would help to develop more practical strategies to control infectious diseases in aquaculture.

  13. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Directory of Open Access Journals (Sweden)

    Johanna Poecheim

    2015-12-01

    Full Text Available Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA. The formulations included (1 trimethyl chitosan (TMC nanoparticles, (2 a squalene-in-water nanoemulsion, and (3 a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9. In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2 was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

  14. Therapeutic targeting of liver cancer with a recombinant DNA vaccine containing the hemagglutinin-neuraminidase gene of Newcastle disease virus via apoptotic-dependent pathways.

    Science.gov (United States)

    Chen, Li-Gang; Liu, Yuan-Sheng; Zheng, Tang-Hui; Chen, Xu; Li, Ping; Xiao, Chuan-Xing; Ren, Jian-Lin

    2016-11-01

    A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.

  15. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  16. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination.

    Science.gov (United States)

    Stifter, Katja; Schuster, Cornelia; Schlosser, Michael; Boehm, Bernhard Otto; Schirmbeck, Reinhold

    2016-07-11

    DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3(+) CD25(+) CD4(+) Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8(+) T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced K(b)/A12-21-monospecific CD8(+) T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical K(b)/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3(+) CD25(+) Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3(+) CD25(+) Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1(-/-) hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76-90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8(+) T cells in this diabetes model.

  17. Construction of a novel porcine circovirus type 2 infectious clone as a basis for the development of a PCV2 iDNA vaccine.

    Science.gov (United States)

    Wang, Wei-Cheng; Zeng, Zhi-Yong; Tang, De-Yuan; Liang, Hai-Ying; Liu, Zhao; Dai, Zhen-Jiang

    2015-08-01

    Porcine circovirus-associated disease is a highly contagious disease that has significant economic consequences. The disease is prevalent in many countries and regions. To generate a genetic marker strain of PCV2, a Sal I restriction enzyme site was inserted into the PCV2 clone as a genetic marker by applying iDNA infectious clone technology. The iDNA represents plasmids that encode the full-length DNA genome of PCV2 assembled in a pcDNA3.1-based vectors. The mutant PCV2 was rescued by transfecting an infectious clone into PK-15 cells and was characterised by an immunoperoxidase monolayer assay (IPMA). The viral genome could be differentiated from the wild-type parent by PCR and restriction fragment length polymorphism (PCR-RFLP). Kunming mice were inoculated with the PCV2 infectious clone or rescued virus via intranasal and intraperitoneal routes. Seroconversion to PCV2-specific antibody appeared in the majority of mice from the two inoculated groups at 7 days postinoculation (DPI), and the specific antibody level was steady for at least 42 days. Viraemia, beginning at 7 DPI and lasting 4 weeks, was detected in the majority of the pigs from the two inoculated groups. The animal experiments revealed that the PCV2 infectious clone and rescued virus both could replicate in mice and induce mice to generate anti-PCV2 antibodies. The infectious clones of PCV2 will be useful for further research investigating a potential tractable iDNA vaccine by reverse genetics technology for attenuated virulance.

  18. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhao K

    2014-01-01

    Full Text Available Kai Zhao,1,2,* Yang Zhang,1,2,* Xiaoyan Zhang,1,* Wei Li,1 Ci Shi,1,2 Chen Guo,1 Chunxiao Dai,3 Qian Chen,1 Zheng Jin,3 Yan Zhao,2 Hongyu Cui,2 Yunfeng Wang2 1College of Life Science, Heilongjiang University, 2Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, 3Key Laboratory of Chemical Engineering Process and Technology for High-Efficiency Conversion, Heilongjiang University, Harbin, People's Republic of China *These authors contributed equally to this work Abstract: Optimal preparation conditions of Newcastle disease virus (NDV F gene deoxyribonucleic acid (DNA vaccine encapsulated in chitosan nanoparticles (pFNDV-CS-NPs were determined. The pFNDV-CS-NPs were prepared according to a complex coacervation method. The pFNDV-CS-NPs were produced with good morphology, high stability, a mean diameter of 199.5 nm, encapsulation efficiency of 98.37%±0.87%, loading capacity of 36.12%±0.19%, and a zeta potential of +12.11 mV. The in vitro release assay showed that the plasmid DNA was sustainably released from the pFNDV-CS-NPs, up to 82.9%±2.9% of the total amount. Cell transfection test indicated that the vaccine expressed the F gene in cells and maintained good bioactivity. Additionally, the safety of mucosal immunity delivery system of the pFNDV-CS-NPs was also tested in vitro by cell cytotoxicity and in vivo by safety test in chickens. In vivo immunization showed that better immune responses of specific pathogen-free chickens immunized with the pFNDV-CS-NPs were induced, and prolonged release of the plasmid DNA was achieved compared to the chickens immunized with the control plasmid. This study lays the foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles. Keywords: Newcastle disease, DNA vaccine, chitosan nanoparticles, mucosal immunity delivery system, immune effectiveness

  19. Development of new plasmid DNA vaccine vectors with R1-based replicons

    Directory of Open Access Journals (Sweden)

    Bower Diana M

    2012-08-01

    Full Text Available Abstract Background There has been renewed interest in biopharmaceuticals based on plasmid DNA (pDNA in recent years due to the approval of several veterinary DNA vaccines, on-going clinical trials of human pDNA-based therapies, and significant advances in adjuvants and delivery vehicles that have helped overcome earlier efficacy deficits. With this interest comes the need for high-yield, cost-effective manufacturing processes. To this end, vector engineering is one promising strategy to improve plasmid production. Results In this work, we have constructed a new DNA vaccine vector, pDMB02-GFP, containing the runaway R1 origin of replication. The runaway replication phenotype should result in plasmid copy number amplification after a temperature shift from 30°C to 42°C. However, using Escherichia coli DH5α as a host, we observed that the highest yields of pDMB02-GFP were achieved during constant-temperature culture at 30°C, with a maximum yield of approximately 19 mg pDNA/g DCW being observed. By measuring mRNA and protein levels of the R1 replication initiator protein, RepA, we determined that RepA may be limiting pDMB02-GFP yield at 42°C. A mutant plasmid, pDMB-ATG, was constructed by changing the repA start codon from the sub-optimal GTG to ATG. In cultures of DH5α[pDMB-ATG], temperature-induced plasmid amplification was more dramatic than that observed with pDMB02-GFP, and RepA protein was detectable for several hours longer than in cultures of pDMB02-GFP at 42°C. Conclusions Overall, we have demonstrated that R1-based plasmids can produce high yields of high-quality pDNA without the need for a temperature shift, and have laid the groundwork for further investigation of this class of vectors in the context of plasmid DNA production.

  20. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja;

    2002-01-01

    It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...... whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non...

  1. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus

    DEFF Research Database (Denmark)

    Bela-ong, Dennis Berbulla; Schyth, Brian Dall; Zou, Jun

    2015-01-01

    Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse...... trout infected with VHSV. In this study, we analyzed the expression of these miRNAs in fish following administration of the DNA vaccine and their potential functions. Quantitative RT-PCR analysis revealed the increased levels of miR-462, and miR-731 in the skeletal muscle tissue at the site of vaccine...... administration and in the liver of vaccinated fish relative to empty plasmid backbone-injected controls. The increased expression of these miRNAs in the skeletal muscle correlated with the increased levels of the type I interferon (IFN)-inducible gene Mx, type I IFN and IFN-γ genes at the vaccination site...

  2. DNA Vaccines delivered by dermal electroporation elicit durable protective immunity against individual or simultaneous infections with lassa and ebola viruses in guinea pigs.

    Science.gov (United States)

    2017-08-22

    DNA vaccines elicit durable protective immunity against individual or simultaneous 1  infections with Lassa and Ebola viruses in guinea pigs 2  3...previously developed optimized DNA vaccines against both Lassa fever and Ebola 15  hemorrhagic fever viruses and demonstrated that they were protective...individually in 16  guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 17  13 guinea pigs two times, four weeks apart

  3. Directed Molecular Evolution Improves the Immunogenicity and Protective Efficacy of a Venezuelan Equine Encephalitis Virus DNA Vaccine

    Science.gov (United States)

    2009-05-01

    developed by serial passage of the virulent Trinidad donkey strain in cultures of guinea pig heart cells [5]. Although TC-83 is gen- erally safe and...vaccinated with plasmid DNA 18]. In addition, improvements in the immunogenicity and cross- eactivity of DNA vaccine candidates for HIV -1 and the malaria...antibodies to the VEEV E2 protein. Consequently, we used pools of the day 63 pre-challenge sera from each vaccination group of the pathogen challenge

  4. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  5. Advances in the research of adjuvants for plasmid DNA vaccines%DNA疫苗佐剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋丽明; 叶琳

    2009-01-01

    DNA疫苗是一种很有希望的免疫方法,经多途径接种质粒DNA能引起有效的免疫应答,重复给予不会产生抗载体免疫.然而,质粒DNA疫苗在小型实验动物中诱导的免疫应答远强于在人类和其他非人灵长类动物中.已设计多种佐剂通过直接刺激免疫系统或增强DNA表达来提高疫苗的免疫原性,这些佐剂包括免疫协同刺激分子、细胞因子、补体分子、脂质体、核酸、聚合物、纳米粒和微粒类佐剂.此文对DNA疫苗佐剂的研究进展作一综述.%Plasmid DNA vaccine is a promising modality for immunization. Immunization with plasmid DNA by various routes can trigger effective iimnune responses. The immunogens can be administered repeatedly without inducing anti-vector immunity. However, the immune responses induced by plasmid DNA vaccines are much stronger in small laboratory animal models than in non-human primates and humans. A number of adjuvants, including immune co-stimulatory molecules, cytokines, complement molecules, liposomes, nucleic acids, polymers, micro-and nano-particles, have been designed to improve the immunogenicity of DNA vaccines by directly stimulating the immune system or by enhancing plasmid DNA expression. This review introduces the progress in development of these adjuvants for plasmid DNA vaccines.

  6. Quantitative expression profiling of immune response genes in rainbow trout following infectious haematopoietic necrosis virus (IHNV) infection or DNA vaccination

    Science.gov (United States)

    Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.

    2004-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.

  7. DNA vaccine-derived human IgG produced in transchromosomal bovines protect in lethal models of hantavirus pulmonary syndrome.

    Science.gov (United States)

    Hooper, Jay W; Brocato, Rebecca L; Kwilas, Steven A; Hammerbeck, Christopher D; Josleyn, Matthew D; Royals, Michael; Ballantyne, John; Wu, Hua; Jiao, Jin-an; Matsushita, Hiroaki; Sullivan, Eddie J

    2014-11-26

    Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS). A needle-free jet injection device was used to vaccinate TcB, and high-titer neutralizing antibodies (titers >1000) against both viruses were produced within 1 month. Plasma collected at day 10 after the fourth vaccination was used to produce purified α-HPS TcB human IgG. Treatment with 20,000 neutralizing antibody units (NAU)/kg starting 5 days after challenge with ANDV protected seven of eight animals, whereas zero of eight animals treated with the same dose of normal TcB human IgG survived. Likewise, treatment with 20,000 NAU/kg starting 5 days after challenge with SNV protected immunocompromised hamsters from lethal HPS, protecting five of eight animals. Our findings that the α-HPS TcB human IgG is capable of protecting in animal models of lethal HPS when administered after exposure provides proof of concept that this approach can be used to develop candidate next-generation polyclonal immunoglobulin-based medical products without the need for human donors, despeciation protocols, or inactivated/attenuated vaccine antigen. Copyright © 2014, American Association for the Advancement of Science.

  8. Ex vivo transfection of trout pronephros leukocytes, a model for cell culture screening of fish DNA vaccine candidates.

    Science.gov (United States)

    Ortega-Villaizan, M; Martinez-Lopez, A; Garcia-Valtanen, P; Chico, V; Perez, L; Coll, J M; Estepa, A

    2012-09-07

    DNA vaccination opened a new era in controlling and preventing viral diseases since DNA vaccines have shown to be very efficacious where some conventional vaccines have failed, as it occurs in the case of the vaccines against fish novirhabdoviruses. However, there is a big lack of in vitro model assays with immune-related cells for preliminary screening of in vivo DNA vaccine candidates. In an attempt to solve this problem, rainbow trout pronephros cells in early primary culture were transfected with two plasmid DNA constructions, one encoding the green fluorescent protein (GFP) and another encoding the viral haemorrhagic septicaemia virus (VHSV) glycoprotein G (G(VHSV)) - the only viral antigen which has conferred in vivo protection. After assessing the presence of GFP- and G(VHSV)-expressing cells, at transcription and protein levels, the immune response in transfected pronephros cells was evaluated. At 24h post-transfection, G(VHSV) up-regulated migm and tcr transcripts expression, suggesting activation of B and T cells, as well, a high up-regulation of tnfα gene was observed. Seventy-two hours post-transfection, we detected the up-regulation of mx and tnfα genes transcripts and Mx protein which correlated with the induction of an anti-VHSV state. All together we have gathered evidence for successful transfection of pronephros cells with pAE6G, which correlates with in vivo protection results, and is less time-consuming and more rapid than in vivo assays. Therefore, this outcome opens the possibility to use pronephros cells in early primary culture for preliminary screening fish DNA vaccines as well as to further investigate the function that these cells perform in fish immune response orchestration after DNA immunisation.

  9. Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper

    DEFF Research Database (Denmark)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent;

    2009-01-01

    Young mink kits (n = 8)were vaccinated withDNA plasmids encoding the viral haemagglutinin protein (H) of a vaccine strain of Canine distemper virus (CDV). Virus neutralising (VN) antibodieswere induced after 2 immunisations and after the third immunisation all kits had high VN antibody titres...... demonstrate that early life DNA vaccination with the H gene of a CDV vaccine strain induced robust protective immunity against a recent wild type CDV....

  10. É possível uma vacina gênica auxiliar no controle da tuberculose? Could a DNA vaccine be useful in the control of tuberculosis?

    Directory of Open Access Journals (Sweden)

    José Maciel Rodrigues Júnior

    2004-08-01

    vaccines currently under pre-clinical and clinical development may prove to be important tools in combating infectious diseases, such as tuberculosis, for which no safe and effective form of prevention has yet been developed. In recent years, several studies have aimed to develop a DNA vaccine encoding mycobacterial proteins such as antigen 85 (Ag85 and the 65-kDa mycobacterial heat shock protein (hsp65. The latter is protective against virulent infection with Mycobacterium tuberculosis (including multidrug-resistant strains. The hsp65 DNA vaccine, currently under clinical evaluation in Brazil for cancer therapy, is able to induce the secretion of Th1 cytokines, such as gamma-interferon, associated with disease control. Furthermore, this vaccine stimulates cytotoxic CD8 and CD4 T-cell clones that can be characterized as memory cells, which are responsible for effective and long-lasting immunity against tuberculosis. When used as a therapeutic agent in inoculated mice, the hsp65 DNA vaccine promotes changes in the immunity profile, triggering the secretion of Th1 cytokines and establishing a favorable environment for the elimination of bacilli. The results also demonstrate that the route of administration, as well as the formulation in which the vaccine is administered, fundamentally influence the pattern and duration of the immune response induced. Taking all currently available data into account, we can conclude that a DNA vaccine against tuberculosis could contribute significantly to the control of the disease.

  11. Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling.

    Directory of Open Access Journals (Sweden)

    Fahad N Almajhdi

    Full Text Available Persistent infection with the high-risk Human Papillomavirus type 16 (HPV 16 is the causative event for the development of cervical cancer and other malignant tumors of the anogenital tract and of the head and neck. Despite many attempts to develop therapeutic vaccines no candidate has entered late clinical trials. An interesting approach is a DNA based vaccine encompassing the nucleotide sequence of the E6 and E7 viral oncoproteins. Because both proteins are consistently expressed in HPV infected cells they represent excellent targets for immune therapy. Here we report the development of 8 DNA vaccine candidates consisting of differently rearranged HPV-16 E6 and E7 sequences within one molecule providing all naturally occurring epitopes but supposedly lacking transforming activity. The HPV sequences were fused to the J-domain and the SV40 enhancer in order to increase immune responses. We demonstrate that one out of the 8 vaccine candidates induces very strong cellular E6- and E7- specific cellular immune responses in mice and, as shown in regression experiments, efficiently controls growth of HPV 16 positive syngeneic tumors. This data demonstrates the potential of this vaccine candidate to control persistent HPV 16 infection that may lead to malignant disease. It also suggests that different sequence rearrangements influence the immunogenecity by an as yet unknown mechanism.

  12. Targeted Collection of Plasmid DNA in Large and Growing Animal Muscles 6 Weeks after DNA Vaccination with and without Electroporation

    Directory of Open Access Journals (Sweden)

    Daniel Dory

    2015-01-01

    Full Text Available DNA vaccination has been developed in the last two decades in human and animal species as a promising alternative to conventional vaccination. It consists in the injection, in the muscle, for example, of plasmid DNA encoding the vaccinating polypeptide. Electroporation which forces the entrance of the plasmid DNA in cells at the injection point has been described as a powerful and promising strategy to enhance DNA vaccine efficacy. Due to the fact that the vaccine is composed of DNA, close attention on the fate of the plasmid DNA upon vaccination has to be taken into account, especially at the injection point. To perform such studies, the muscle injection point has to be precisely recovered and collected several weeks after injection. This is even more difficult for large and growing animals. A technique has been developed to localize precisely and collect efficiently the muscle injection points in growing piglets 6 weeks after DNA vaccination accompanied or not by electroporation. Electroporation did not significantly increase the level of remaining plasmids compared to nonelectroporated piglets, and, in all the cases, the levels were below the limit recommended by the FDA to research integration events of plasmid DNA into the host DNA.

  13. PRELIMINARY STUDY OF A NOVEL HUMAN PAPILLOMAVIRUS TYPE 16 L1/E6-E7 CHIMERIC RECOMBINANT DNA VACCINE

    Institute of Scientific and Technical Information of China (English)

    郑瑾; 马军; 张福萍; 杨筱凤; 董小平; 司履生; 王一理

    2004-01-01

    Objective Preparations of HPV16 L1/E6 and L1/E7 prophylactic and therapeutic DNA vaccines. Methods The nucleotides within HPV16 E6 and E7 genes, which are responsible for viral transforming activity, were mutated by mage primer site-directed mutagenesis method. The correctly mutated E6 and E7 fragments were separately cloned into an eukaryotic expression vector pVAX1, together with HPV16 L1 gene, generating chimeric recombinants plasmids 1MpVAX1-L1E6, 2MpVAX1-L1E6, 1MpVAX1-L1E7, 2MpVAX1-L1E7 and 3MpVAX1-L1E7. CHO cells were transiently transfected with the individual DNA vaccines by calcium phosphate method. Target protein expressions in the extracts of the transfected cell lines were measured by ELISA and immunohistochemistry, with HPV16 L1 and E6 specific monoclonal antibodies. Results ELISA assays showed the P/N ratios in the cell extracts transfected with L1E6 and L1E7 plasmids were more than 2.1. Immunohistochemistry revealed brownish precipitant signal in cytoplasm and nuclei of the transfected cells. Conclusion Successful constructions of prophylactic and therapeutic DNA vaccine plasmids lay solid foundation for future animal experiment and clinical trial.

  14. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  15. Eimeria maxima microneme protein 2 delivered as DNA vaccine and recombinant protein induces immunity against experimental homogenous challenge.

    Science.gov (United States)

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    E. maxima is one of the seven species of Eimeria that infects chicken. Until now, only a few antigenic genes of E. maxima have been reported. In the present study, the immune protective effects against E. maxima challenge of recombinant protein and DNA vaccine encoding EmMIC2 were evaluated. Two-week-old chickens were randomly divided into five groups. The experimental group of chickens was immunized with 100 μg DNA vaccine pVAX1-MIC2 or 200 μg rEmMIC2 protein while the control group of chickens was injected with pVAX1 plasmid or sterile PBS. The results showed that the anti-EmMIC2 antibody titers of both rEmMIC2 protein and pVAX1-MIC2 groups were significantly higher as compared to PBS and pVAX1 control (Precombinant protein and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss, increase oocyst, decrease ratio and provide ACIs of more than 165. All the above results suggested that immunization with EmMIC2 was effective in imparting partial protection against E. maxima challenge and it could be an effective antigen candidate for the development of new vaccines against E. maxima.

  16. Co-administration of a DNA vaccine encoding the prostate specific membrane antigen and CpG oligodeoxynucleotides suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Zhang Lin

    2004-09-01

    Full Text Available Abstract Background Prostate-specific membrane antigen (PSMA is a well characterized prostate-specific tumor associated antigen. Its expression is elevated in prostate carcinoma, particularly in metastatic and recurrent lesions. These observations suggest that PSMA can be used as immune target to induce tumor cell-specific recognition by the host and, consequently tumor rejection. We utilized a DNA-based vaccine to specifically enhance PSMA expression. An immune modulator, such as CpG oligodeoxynucleotides which promote Th1-type immune responses was combined to increase the efficacy of tumor recognition and elimination. Methods A eukaryotic expression plasmid pCDNA3.1-PSMA encoding full-length PSMA was constructed. C57BL/6 mice were immunized with endotoxin-free pCDNA3.1-PSMA alone or in combination with CpG oligodeoxynucleotides by intramuscular injection. After 4 immunizations, PSMA specific antibodies and cytotoxic T lymphocyte reactivity were measured. Immunized C57BL/6 mice were also challenged subcutaneously with B16 cells transfected with PSMA to evaluate suppression of tumor growth. Results Vaccine-specific cytotoxic T lymphocytes reactive with B16 cells expressing PSMA could be induced with this treatment schedule. Immune protection was observed in vaccinated mice as indicated by increased tumor growth in the control group (100% compared with the groups vaccinated with DNA alone (66.7% or DNA plus CpG oligodeoxynucleotides (50% respectively. Average tumor volume was smaller in vaccinated groups and tumor-free survival time was prolonged by the vaccination. Conclusion The current findings suggest that specific anti-tumor immune response can be induced by DNA vaccines expressing PSMA. In addition, the suppression of in vivo growth of tumor cells expressing PSMA was augmented by CpG oligodeoxynucleotides. This strategy may provide a new venue for the treatment of carcinoma of prostate after failure of standard therapy.

  17. Co-administration of a DNA vaccine encoding the prostate specific membrane antigen and CpG oligodeoxynucleotides suppresses tumor growth.

    Science.gov (United States)

    Ren, Jiaqiang; Zheng, Li; Chen, Qi; Li, Hua; Zhang, Lin; Zhu, Hongguang

    2004-09-09

    BACKGROUND: Prostate-specific membrane antigen (PSMA) is a well characterized prostate-specific tumor associated antigen. Its expression is elevated in prostate carcinoma, particularly in metastatic and recurrent lesions. These observations suggest that PSMA can be used as immune target to induce tumor cell-specific recognition by the host and, consequently tumor rejection. We utilized a DNA-based vaccine to specifically enhance PSMA expression. An immune modulator, such as CpG oligodeoxynucleotides which promote Th1-type immune responses was combined to increase the efficacy of tumor recognition and elimination. METHODS: A eukaryotic expression plasmid pCDNA3.1-PSMA encoding full-length PSMA was constructed. C57BL/6 mice were immunized with endotoxin-free pCDNA3.1-PSMA alone or in combination with CpG oligodeoxynucleotides by intramuscular injection. After 4 immunizations, PSMA specific antibodies and cytotoxic T lymphocyte reactivity were measured. Immunized C57BL/6 mice were also challenged subcutaneously with B16 cells transfected with PSMA to evaluate suppression of tumor growth. RESULTS: Vaccine-specific cytotoxic T lymphocytes reactive with B16 cells expressing PSMA could be induced with this treatment schedule. Immune protection was observed in vaccinated mice as indicated by increased tumor growth in the control group (100%) compared with the groups vaccinated with DNA alone (66.7%) or DNA plus CpG oligodeoxynucleotides (50%) respectively. Average tumor volume was smaller in vaccinated groups and tumor-free survival time was prolonged by the vaccination. CONCLUSION: The current findings suggest that specific anti-tumor immune response can be induced by DNA vaccines expressing PSMA. In addition, the suppression of in vivo growth of tumor cells expressing PSMA was augmented by CpG oligodeoxynucleotides. This strategy may provide a new venue for the treatment of carcinoma of prostate after failure of standard therapy.

  18. A DNA vaccine encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Daniela Santoro Rosa

    Full Text Available T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+ T cells are important for the generation and maintenance of functional CD8(+ cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18, capable of eliciting broad CD4(+ T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+/CD8(+ T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+ and CD8(+ T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2 simultaneously in response to HIV-1 peptides. For CD4(+ T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2. The vaccine also generated long-lived central and effector memory CD4(+ T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+ T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+ T cells and antibody responses- elicited by other HIV immunogens.

  19. Attenuated Salmonella typhimurium SV4089 as a potential carrier of oral DNA vaccine in chickens.

    Science.gov (United States)

    Jazayeri, Seyed Davoud; Ideris, Aini; Zakaria, Zunita; Omar, Abdul Rahman

    2012-01-01

    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  20. Chitosan Microparticles Intended for Anti-caries DNA Vaccine Mucosal Delivery: Synthesis, Characterization and Transfection

    Institute of Scientific and Technical Information of China (English)

    LI Yuhong; FAN Mingwen; BIAN Zhuan; CHEN Zhi; Zhang Qi

    2005-01-01

    In order to enhance the mucosal immunity of anti-caries DNA vaccine, chitosan-DNA microparticles for musocal vaccination were prepared by a coacervation method. The physicochemical structure of microparticles was investigated by a scanning electron microscope (SEM) and a cofocal laser scanning microscope (CLSM). For in-vitro studies, Hela cell was transfected by chitosan-DNA microparticles.The expression of proteins was measured by the immunohistochemical methods, and the cytotocity of chitosan in Hela cell line was determined by the MTT assay. The experimental results show that the microparticles are about 2-6 μm in size and spherical in shape. The encapsulation efficiency is 99%, and the DNA is almost captured in the micropraticles. Plasmid loaded into chitosan microparticles is distributed throughout these particles. The number of positive staining cells of chitosan-pGJA-P transfected cell is more than that of naked plasmid transfect cells, but less than that of Lipofect-DNA complex group. Chitosan was found to be less cytotoxic compared with lipofectin (p<0.01).

  1. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles.

    Science.gov (United States)

    Zhao, Kai; Zhang, Yang; Zhang, Xiaoyan; Li, Wei; Shi, Ci; Guo, Chen; Dai, Chunxiao; Chen, Qian; Jin, Zheng; Zhao, Yan; Cui, Hongyu; Wang, Yunfeng

    2014-01-01

    Optimal preparation conditions of Newcastle disease virus (NDV) F gene deoxyribonucleic acid (DNA) vaccine encapsulated in chitosan nanoparticles (pFNDV-CS-NPs) were determined. The pFNDV-CS-NPs were prepared according to a complex coacervation method. The pFNDV-CS-NPs were produced with good morphology, high stability, a mean diameter of 199.5 nm, encapsulation efficiency of 98.37% ± 0.87%, loading capacity of 36.12% ± 0.19%, and a zeta potential of +12.11 mV. The in vitro release assay showed that the plasmid DNA was sustainably released from the pFNDV-CS-NPs, up to 82.9% ± 2.9% of the total amount. Cell transfection test indicated that the vaccine expressed the F gene in cells and maintained good bioactivity. Additionally, the safety of mucosal immunity delivery system of the pFNDV-CS-NPs was also tested in vitro by cell cytotoxicity and in vivo by safety test in chickens. In vivo immunization showed that better immune responses of specific pathogen-free chickens immunized with the pFNDV-CS-NPs were induced, and prolonged release of the plasmid DNA was achieved compared to the chickens immunized with the control plasmid. This study lays the foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.

  2. The Protection Efficacity of DNA Vaccine Encoding Hemagglutinin of H5 Subtype Avian Influenza Virus

    Institute of Scientific and Technical Information of China (English)

    JIANG Yong-ping; YU Kang-zhen; DENG Guo-hua; TIAN Guo-bin; QIAO Chuan-ling; CHEN Hua-lan

    2004-01-01

    The DNA vaccine pCIHA5 encoding hemagglutinin can protect SPF chicken against lethal H5N1 avian influenza virus challenge. The more characters about its protection efficacity were studied. The protective rates in 10, 40, 70, 100 and 150μg groups immunized with pCIHA5 were 12.5 (1/8), 58.3 (7/12), 72.7 (8/11), 50.0 (6/12) and 66.7% (8/12), respectively. The protective rates in 5, 20, 35 and 50μg groups were 145.5 (5/11), 58.3 (7/12), 58.3 (7/12) and 91.7% (11/12), respectively. The 70, 100 and 5μg groups have virus shedding of 1/8, 2/6 and 1/5. Though the inactived oil-emulsion vaccine has high HI antibody titers and 100% protective rate, the AGP antibody could be detected after vaccination. Results show that the pCIHA5 is fit to boost by intramuscular injection. This would be useful to the study on gene engineering vaccine of avian influenza virus.

  3. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Rebecca Brocato

    Full Text Available Andes virus (ANDV is the predominant cause of hantavirus pulmonary syndrome (HPS in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35-40%. Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos. The natural "despeciation" of the duck IgY (i.e., Fc removed results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥ 5,000 neutralizing antibody units (NAU/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT. Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This

  4. DNA Vaccine-Generated Duck Polyclonal Antibodies as a Postexposure Prophylactic to Prevent Hantavirus Pulmonary Syndrome (HPS)

    Science.gov (United States)

    Brocato, Rebecca; Josleyn, Matthew; Ballantyne, John; Vial, Pablo; Hooper, Jay W.

    2012-01-01

    Andes virus (ANDV) is the predominant cause of hantavirus pulmonary syndrome (HPS) in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35–40%). Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP) from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos). The natural “despeciation" of the duck IgY (i.e., Fc removed) results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥5,000 neutralizing antibody units (NAU)/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT). Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This is the

  5. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    Science.gov (United States)

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (pmuscle regulatory factors, neurite outgrowth factors (IGF-1, GAP43) and acetylcholine receptors was observed. Our results demonstrate that myostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Enhancement of HIV-1 DNA vaccine immunogenicity with CpG adjuvant%一种CpG佐剂增强HIV-1DNA疫苗免疫原性的研究

    Institute of Scientific and Technical Information of China (English)

    侯爵; 刘颖; 刘勇; 邵一鸣

    2011-01-01

    Objective To explore the capacity of CpG as adjuvant in improving HIV-1 DNA vaccine immunogenicity in animal models. Methods Balb/c mice were administrated thrice intramuscularly with CpG oligonucleotide adjuvanted HIV-1 DNA vaccine. pDRVI1. 0-gp1455m· Cellular immune response was evaluated by detecting IFN-γ and IL-2 with ELISPOT. Humoral immune response was evaluated with Env-specific ELISA and avidity ELISA. The activation efficacy of bone marrow-derived dendritic cells (BMDC) was measured by the expression of surface molecules and the secretion of several cytokines after being exposed to CpG adjuvant in vitro. Results The results demonstrated that CpG increased HIV specific cellular response and reduced the dosage of DNA vaccine. In vitro. CpG adjuvant activated BMDC and up-regulated the expression of CD40, CD80, CD86 and MHC-I. CpG adjuvanted HIV DNA vaccine also promoted Th1-type immunological response and induced inflammation. Conclusion CpG is a promising adjuvant for the development of HIV DNA vaccine.%目的 以一种CpG寡聚核苷酸为HIV-1 DNA疫苗候选佐剂,研究该CpG佐剂增强DNA疫苗免疫原性,体外促进DC细胞成熟等特点.方法 在Balb/c小鼠模型上连续3次联合免疫HIV-1DNA疫苗及CpG佐剂,通过IFN-γ、IL-2 ELISPOT及ELISA检测HIV特异性细胞免疫反应及体液免疫应答强度;体外制备小鼠骨髓来源的树突状细胞,通过FACS技术、高通量细胞因子检测等方法评价CpG佐剂刺激活化DC的能力.结果 CpG能够增强HIV-1 DNA疫苗诱导的特异性细胞免疫反应水平,降低DNA疫苗使用剂量;CpG体外刺激原代小鼠骨髓来源的树突状细胞(BMDC),能显著上调CD40、CD80、CD86等BMDC表面共刺激分子的表达,活化BMDC并分泌各型细胞因子IL-5、IL-12p70,促炎症因子IL-1α、IL-1β、IL-6、IL-10、MIP-2、KC、MIG、Eotaxin、GM-CSF等以发挥佐剂效应.结论 综合体内体外实验数据,证实该型CpG能够充分活化BMDC,显著提高HIV-1

  7. Evaluation of chimeric DNA vaccines consisting of premembrane and envelope genes of Japanese encephalitis and dengue viruses as a strategy for reducing induction of dengue virus infection-enhancing antibody response.

    Science.gov (United States)

    Sjatha, Fithriyah; Kuwahara, Miwa; Sudiro, T Mirawati; Kameoka, Masanori; Konishi, Eiji

    2014-02-01

    Neutralizing antibodies induced by dengue virus (DENV) infection show viral infection-enhancing activities at sub-neutralizing doses. On the other hand, preimmunity against Japanese encephalitis virus (JEV), a congener of DENV, does not increase the severity of DENV infection. Several studies have demonstrated that neutralizing epitopes in the genus Flavivirus are mainly located in domain III (DIII) of the envelope (E) protein. In this study, chimeric premembrane and envelope (prM-E) gene-based expression plasmids of JEV and DENV1 with DIII substitution of each virus were constructed for use as DNA vaccines and their immunogenicity evaluated. Sera from C3H/He and ICR mice immunized with a chimeric gene containing DENV1 DIII on a JEV prM-E gene backbone showed high neutralizing antibody titers with less DENV infection-enhancing activity. Our results confirm the applicability of this approach as a new dengue vaccine development strategy.

  8. Aβ42 gene vaccine prevents Aβ42 deposition in brain of double transgenic mice

    Science.gov (United States)

    Qu, Bao-Xi; Xiang, Qun; Li, Liping; Johnston, Stephen Albert; Hynan, Linda S.; Rosenberg, Roger N.

    2008-01-01

    Aβ42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer’s disease (AD). Gene-gun mediated gene vaccination targeting Aβ42 is a potential method to prevent and treat AD. APPswe/PS1ΔE9 transgenic (Tg) mice were immunized with an Aβ42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Aβ42. The Aβ42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with control mice as assessed by ELISA analysis. Aβ42 plaque deposits in cerebral cortex and hippocampus were reduced by 51% and 52%, respectively, as shown by quantitative immunolabeling. Glial cell activation was also significantly attenuated in vaccinated compared with control mice. One rhesus monkey was vaccinated and developed anti-Aβ42 antibody. These new findings advance significantly our knowledge that gene-gun mediated Aβ42 gene immunization effectively induces a Th2 immune response and reduces the Aβ42 levels in brain in APPswe/PS1ΔE9 mice. Aβ42 gene vaccination may be safe and efficient immunotherapy for AD. PMID:17574274

  9. A triclade DNA vaccine designed on the basis of a comprehensive serologic study elicits neutralizing antibody responses against all clades and subclades of highly pathogenic avian influenza H5N1 viruses.

    Science.gov (United States)

    Zhou, Fan; Wang, Guiqin; Buchy, Philippe; Cai, Zhipeng; Chen, Honglin; Chen, Zhiwei; Cheng, Genhong; Wan, Xiu-Feng; Deubel, Vincent; Zhou, Paul

    2012-06-01

    Because of their rapid evolution, genetic diversity, broad host range, ongoing circulation in birds, and potential human-to-human transmission, H5N1 influenza viruses remain a major global health concern. Their high degree of genetic diversity also poses enormous burdens and uncertainties in developing effective vaccines. To overcome this, we took a new approach, i.e., the development of immunogens based on a comprehensive serologic study. We constructed DNA plasmids encoding codon-optimized hemagglutinin (HA) from 17 representative strains covering all reported clades and subclades of highly pathogenic avian influenza H5N1 viruses. Using DNA plasmids, we generated the corresponding H5N1 pseudotypes and immune sera. We performed an across-the-board pseudotype-based neutralization assay and determined antigenic clusters by cartography. We then designed a triclade DNA vaccine and evaluated its immunogenicity and protection in mice. We report here that (sub)clades 0, 1, 3, 4, 5, 6, 7.1, and 9 were grouped into antigenic cluster 1, (sub)clades 2.1.3.2, 2.3.4, 2.4, 2.5, and 8 were grouped into another antigenic cluster, with subclade 2.2.1 loosely connected to it, and each of subclades 2.3.2.1 and 7.2 was by itself. Importantly, the triclade DNA vaccine encoding HAs of (sub)clades 0, 2.3.2.1, and 7.2 elicited broadly neutralizing antibody responses against all H5 clades and subclades and protected mice against high-lethal-dose heterologous H5N1 challenge. Thus, we conclude that broadly neutralizing antibodies against all H5 clades and subclades can indeed be elicited with immunogens on the basis of a comprehensive serologic study. Further evaluation and optimization of such an approach in ferrets and in humans is warranted.

  10. Protection of Guinea Pigs against Leptospira interrogans Serovar Lai by LipL21 DNA Vaccine

    Institute of Scientific and Technical Information of China (English)

    Hanjiang He; Wenyu Wang; Zhongdao Wu; Zhiyue Lv; Jun Li; Lizhi Tan

    2008-01-01

    In this study,the full lipL21 gene fragment encoding outer membrane protein LipL21 was cloned from L. Interrogans serovar Lai and inserted into eukaryotic expression vector pcDNA3.1(+).The guinea pigs were immunized with pcDNA3.1(+)-lipL21,pcDNA3.1(+) or PBS.Six weeks after the second immunization,the splenocytes were isolated to detect their proliferative ability by lymphocyte transformation experiments.In addition,microscopic agglutination test was used for quantitative detection of specific antibodies.The rest guinea pigs were challenged intraperitoneally with L.interogans sorevar Lai.Then,protective effect was evaluated on the basis of survival and histopathological lesions in the kidneys,lungs,and liver.The lipL21 gene Was successfully expressed in COS-7 cells through recombinant pcDNA3.1(+)-lipL21.The titer of specific antibodies substantially increased,and the stimulation index of splenocytes increased significantly.Hence,the pcDNA3.1(+)-lipL21 could protect the immunized guinea pigs from homotypic Leptospira infection.Furthermore,no obvious pathologic changes were observed in the pcDNA3.1(+)-lipL21 immunized guinea pigs.The results showed that the protective effect with pathogenic strains of Leptospira was shared by LipL21 mediated through a plasmid vector. Consequently,these results indicated that the lipL21 DNA vaccine Was a promising candidate for the prevention of leptospirosis.

  11. The immunogenicity of viral haemorragic septicaemia rhabdovirus (VHSV) DNA vaccines can depend on plasmid regulatory sequences.

    Science.gov (United States)

    Chico, V; Ortega-Villaizan, M; Falco, A; Tafalla, C; Perez, L; Coll, J M; Estepa, A

    2009-03-18

    A plasmid DNA encoding the viral hemorrhagic septicaemia virus (VHSV)-G glycoprotein under the control of 5' sequences (enhancer/promoter sequence plus both non-coding 1st exon and 1st intron sequences) from carp beta-actin gene (pAE6-G(VHSV)) was compared to the vaccine plasmid usually described the gene expression is regulated by the human cytomegalovirus (CMV) immediate-early promoter (pMCV1.4-G(VHSV)). We observed that these two plasmids produced a markedly different profile in the level and time of expression of the encoded-antigen, and this may have a direct effect upon the intensity and suitability of the in vivo immune response. Thus, fish genetic immunisation assays were carried out to study the immune response of both plasmids. A significantly enhanced specific-antibody response against the viral glycoprotein was found in the fish immunised with pAE6-G(VHSV). However, the protective efficacy against VHSV challenge conferred by both plasmids was similar. Later analysis of the transcription profile of a set of representative immune-related genes in the DNA immunized fish suggested that depending on the plasmid-related regulatory sequences controlling its expression, the plasmid might activate distinct patterns of the immune system. All together, the results from this study mainly point out that the selection of a determinate encoded-antigen/vector combination for genetic immunisation is of extraordinary importance in designing optimised DNA vaccines that, when required for inducing protective immune response, could elicit responses biased to antigen-specific antibodies or cytotoxic T cells generation.

  12. 中国HIV-1 CRF01_AE流行株结构基因和调节/辅助基因DNA疫苗的构建和免疫原性研究%Immunogenicity of DNA vaccines encoding structural proteins and regulatory/accessory proteins derived from an HIV-1 CRF01_AE isolate circulating in China

    Institute of Scientific and Technical Information of China (English)

    袁松华; 徐建青; 万延民; 仇超; 张聪优; 黄杨; 乔勇; 叶芮琪; 邱趁丽; 张晓燕

    2010-01-01

    目的 构建表达gag-env融合基因和tat-rev-integrase(c-holf)-vif-nef融合基因的DNA疫苗,并评价其免疫原性.方法 按人源密码子使用频率对AE2f株的gag、env、tat、rev、integrase、vif和nef基因序列进行优化,构建真核表达质粒.用Western blot法验证体外表达情况;用ELISPOT法检测小鼠的细胞免疫反应.结果 限制性酶切及DNA测序结果表明两个融合基因质粒构建正确,可以表达相应的融合蛋白.ELISPOT结果显示,Gag-Env特异性的T细胞反应强度为(3010±566)SFC/10~6脾细胞;Tat-Rev-Integrase(C-half)-Vif-Nef融合蛋白特异性的T细胞反应为(948±737)SFC/10~6脾细胞,均显著高于空载体组.结论 构建的表达HIV-1 CRF01_AE流行株gag-env融合基因和tat-rev-integrase(c-half)-vif-nef融合基因的DNA疫苗可以正确表达所编码的融合蛋白并有效地激活机体的T细胞免疫反应.%Objective To construct two DNA vaccines encoding Gag-Env fusion protein and Tat-Rev-Integrase(C-half)-Vif-Nef fusion protein derived from the first HIV-1 CRF01_AE isolate(AE2f) in Chi-na and to evaluate the immunogenicity in mice. Methods Two DNA vaccines were constructed by inserting the codon optimized and synthesized gag-env fusion gene and tat-rev-integrase(c-half)-vif-nef fusion gene de-rived from AE2f into mammalian expression vector pDRVISV1. 0, the generated DNA vaccines were desig-nated as pSVAE/GE and pSVAE/TRIVN, respectively, and their in vitro expression were determined by Western blot with transfected 293T cells. Mice were i. m. immunized with either pDRVI1.0 as mock control, pSVAE/GE or pSYAE/TRIVN for 4 times at two-week interval. Two weeks following the final im-munization, cellular responses to pool of HIV-1 Env, Gag, Tat, Rev, Intergrase, Vif and Nef peptides were evaluated by ELISPOT assay. Results The construction of DNA vaccine pSVAE/GE and pSVAE/TRIVN was validated by restriction enzyme digestion and bidirectional sequencing. Western blot showed a

  13. Increasing versatility of the DNA vaccines through modification of the subcellular location of plasmid-encoded antigen expression in the in vivo transfected cells.

    Science.gov (United States)

    Martinez-Lopez, Alicia; García-Valtanen, Pablo; Ortega-Villaizan, María Del Mar; Chico, Verónica; Medina-Gali, Regla María; Perez, Luis; Coll, Julio; Estepa, Amparo

    2013-01-01

    The route of administration of DNA vaccines can play a key role in the magnitude and quality of the immune response triggered after their administration. DNA vaccines containing the gene of the membrane-anchored glycoprotein (gpG) of the fish rhabdoviruses infectious haematopoietic necrosis virus (IHNV) or viral haematopoietic septicaemia virus (VHSV), perhaps the most effective DNA vaccines generated so far, confer maximum protection when injected intramuscularly in contrast to their low efficacy when injected intraperitoneally. In this work, taking as a model the DNA vaccine against VHSV, we focused on developing a more versatile DNA vaccine capable of inducing protective immunity regardless of the administration route used. For that, we designed two alternative constructs to gpG₁₋₅₀₇ (the wild type membrane-anchored gpG of VHSV) encoding either a soluble (gpG₁₋₄₆₂) or a secreted soluble (gpG(LmPle20-462)) form of the VHSV-gpG. In vivo immunisation/challenge assays showed that only gpG(LmPle20-462) (the secreted soluble form) conferred protective immunity against VHSV lethal challenge via both intramuscular and intraperitoneal injection, being this the first description of a fish viral DNA vaccine that confers protection when administered intraperitoneally. Moreover, this new DNA vaccine construct also conferred protection when administered in the presence of an oil adjuvant suggesting that DNA vaccines against rhabdoviruses could be included in the formulation of current multicomponent-intaperitoneally injectable fish vaccines formulated with an oil adjuvant. On the other hand, a strong recruitment of membrane immunoglobulin expressing B cells, mainly membrane IgT, as well as t-bet expressing T cells, at early times post-immunisation, was specifically observed in the fish immunised with the secreted soluble form of the VHSV-gpG protein; this may indicate that the subcellular location of plasmid-encoded antigen expression in the in vivo

  14. Increasing versatility of the DNA vaccines through modification of the subcellular location of plasmid-encoded antigen expression in the in vivo transfected cells.

    Directory of Open Access Journals (Sweden)

    Alicia Martinez-Lopez

    Full Text Available The route of administration of DNA vaccines can play a key role in the magnitude and quality of the immune response triggered after their administration. DNA vaccines containing the gene of the membrane-anchored glycoprotein (gpG of the fish rhabdoviruses infectious haematopoietic necrosis virus (IHNV or viral haematopoietic septicaemia virus (VHSV, perhaps the most effective DNA vaccines generated so far, confer maximum protection when injected intramuscularly in contrast to their low efficacy when injected intraperitoneally. In this work, taking as a model the DNA vaccine against VHSV, we focused on developing a more versatile DNA vaccine capable of inducing protective immunity regardless of the administration route used. For that, we designed two alternative constructs to gpG₁₋₅₀₇ (the wild type membrane-anchored gpG of VHSV encoding either a soluble (gpG₁₋₄₆₂ or a secreted soluble (gpG(LmPle20-462 form of the VHSV-gpG. In vivo immunisation/challenge assays showed that only gpG(LmPle20-462 (the secreted soluble form conferred protective immunity against VHSV lethal challenge via both intramuscular and intraperitoneal injection, being this the first description of a fish viral DNA vaccine that confers protection when administered intraperitoneally. Moreover, this new DNA vaccine construct also conferred protection when administered in the presence of an oil adjuvant suggesting that DNA vaccines against rhabdoviruses could be included in the formulation of current multicomponent-intaperitoneally injectable fish vaccines formulated with an oil adjuvant. On the other hand, a strong recruitment of membrane immunoglobulin expressing B cells, mainly membrane IgT, as well as t-bet expressing T cells, at early times post-immunisation, was specifically observed in the fish immunised with the secreted soluble form of the VHSV-gpG protein; this may indicate that the subcellular location of plasmid-encoded antigen expression in the in

  15. 葎草花粉主要变应原核酸疫苗pcDNA3.1-LC2的真核细胞表达和免疫分析%Eukaryotic expression and immunization analysis of the DNA vaccine of the major grass pollen allergen of humulus scandens

    Institute of Scientific and Technical Information of China (English)

    卢家美; 孙秀珍; 李满祥; 刘昀; 徐晶; 张永红; 吴媛媛

    2011-01-01

    Objective To test whether the DNA vaccine of the major grass pollen allergen of humulus scandens (pcDNA3.1-LC2) can be expressed in eukaryatic cells and to further analyze its immunogenicity, immune protection and safety. Methods HEK293 cells were transfected with the DNA vaccine of the major grass pollen allergen of humulus scandens using Ca3 (PO4)2. RNA was extracted and used for RT-PCR. Products of PCR were separated on agarose gel electrophoresis. The normal BALB/C mice were immunized with the DNA vaccine. The concentration of IgG, IgE, IL-4 and IFN-γ was measured. BALB/C mice of asthma model were immunized with the DNA vaccine. Lung pathology and BALF cell sediment drop films were advanced; cell count and differential count of eosinophils were conducted, too. The concentration of IL-4 and IFN-γ in the BALF was measured. The concentration of IgG and IgE in the serum was measured at the same time. Results Our study showed a clear strip at 750 bp and confirmed the expression of the DNA vaccine of the major grass pollen allergen of humulus scandens in eukaryotic cells using agarose gel electrophoresis. The normal mice could produce IgG rather than lgE after being immunized with the DNA vaccine, which suggested the immunogenicity of it. At the same time, IFN-γconcentration increased and IL-4 concentration decreased. Allergic reactions, immune injury and acute lung injury were not caused in the immune process, which suggested that the potential injury risk of the DNA vaccine did not exist. It caused the following changes after the model of asthma of BALB/C mice being immunized with the DNA vaccine: Levels of lung inflammation and infiltration of inflammatory cells and the percentage of eosinophils were significantly reduced. The generation of IL-4 and IgE was inhibited and the generation of IgG and IFN-γ was evoked significantly. The symptoms were relieved greatly if the mice were excited again after being immunized with the DNA vaccine. Cornclusion The DNA

  16. Improving the safety of viral DNA vaccines: development of vectors containing both 5' and 3' homologous regulatory sequences from non-viral origin.

    Science.gov (United States)

    Martinez-Lopez, A; Encinas, P; García-Valtanen, P; Gomez-Casado, E; Coll, J M; Estepa, A

    2013-04-01

    Although some DNA vaccines have proved to be very efficient in field trials, their authorisation still remains limited to a few countries. This is in part due to safety issues because most of them contain viral regulatory sequences to driving the expression of the encoded antigen. This is the case of the only DNA vaccine against a fish rhabdovirus (a negative ssRNA virus), authorised in Canada, despite the important economic losses that these viruses cause to aquaculture all over the world. In an attempt to solve this problem and using as a model a non-authorised, but efficient DNA vaccine against the fish rhabdovirus, viral haemorrhagic septicaemia virus (VHSV), we developed a plasmid construction containing regulatory sequences exclusively from fish origin. The result was an "all-fish vector", named pJAC-G, containing 5' and 3' regulatory sequences of β-acting genes from carp and zebrafish, respectively. In vitro and in vivo, pJAC-G drove a successful expression of the VHSV glycoprotein G (G), the only antigen of the virus conferring in vivo protection. Furthermore, and by means of in vitro fusion assays, it was confirmed that G protein expressed from pJAC-G was fully functional. Altogether, these results suggest that DNA vaccines containing host-homologous gene regulatory sequences might be useful for developing safer DNA vaccines, while they also might be useful for basic studies.

  17. Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins.

    Science.gov (United States)

    Polack, Fernando P; Lydy, Shari L; Lee, Sok-Hyong; Rota, Paul A; Bellini, William J; Adams, Robert J; Robinson, Harriet L; Griffin, Diane E

    2013-02-01

    A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.

  18. 捻转血矛线虫Hc38基因DNA疫苗对绵羊免疫保护性效果评价%Protective effects of Hc38 DNA vaccines against Haemonchus contortus in sheep

    Institute of Scientific and Technical Information of China (English)

    郑金海; 段正秀; 赵军明; 薄新文; 钟发刚; 张慧

    2009-01-01

    To study protective effects of Hc38 DNA vaccines against Haemonchus contortus in sheep, we constructed DNA vaccines containing conserved Hc38 protein domain. The Hc38 gene was inserted into pcDNA3.1 and administered to mice. Transcriptions of the vaccines were confirmed by RT-PCR in mouse muscles. Sheep were immunized with DNA vaccine and antibody (IgG) production was analyzed by western blot and ELISA. After 2 weeks, all sheep were challenged by 10000 H. Contortus L3 strain. The results showed that EPG (eggs per gram feces) and worm burdens in immunized sheep reduced by 66.6 % and 33.1%, compared to the control group. Vaccination by intravenous injection induced highest antibody level and resulted in lowest EPG and worm burdens in sheep.%为了研究基因疫苗对绵羊的免疫保护效果,本研究构建了捻转血矛线虫(H.contortus)Hc38基因DNA疫苗.将H.contortus Hc38基因保守结构域克隆到真核表达载体pcDNA3.1中,免疫鼠8d后用RT-PCR检测到该疫苗在鼠肌肉组织中进行了转录.将纯化的DNA疫苗免疫绵羊后,用western blot和ELISA方法检测疫苗在绵羊体内的翻译和诱导IgG的产生.二免后2周用10 000条H.contortus第3期幼虫攻击实验动物,检测绵羊粪便虫卵排出、成虫数量等免疫保护性指标.该H.contortus Hc38 DNA疫苗与对照组比较,免疫组绵羊排出虫卵减少66.6%、成虫减少33.1%.特别值得注意的是免疫组的静脉注射方式产生抗体最高,相应羊的虫卵数和成虫数低.本实验证明Hc38基因DNA疫苗对绵羊虫卵及成虫发育具有明显的抑制作用.

  19. PRRS聚乳酸乙醇酸微粒DNA疫苗的制备及其免疫原性%Preparation and Immunogenicity of Ploy (Lactide-Co-Glycolide) Microparticles DNA Vaccine against Porcine Reproductive and Respiratory Syndrome

    Institute of Scientific and Technical Information of China (English)

    张辉; 王光利; 韩秀英; 周磊

    2013-01-01

    为增强DNA疫苗的免疫效果,采用溶媒挥发法制备聚乳酸乙醇酸[poly(lactide-co-glycolide)(PLGA)]微粒,将猪繁殖与呼吸综合征(PRRS) DNA疫苗pCI-ORF5吸附到该微粒表面,检测PLGA微粒对DNA的吸附量、体外释放情况以及在小鼠体内的免疫原性.结果表明在6h内PLGA微粒的DNA吸附量可达到0.9%,在体外的释放情况受到CTAB含量、PLGA分子量、PLGA浓度和内水相体积等诸多因素的影响.与裸DNA疫苗同时免疫小鼠后,发现PLGA微粒可显著增强所吸附DNA疫苗诱导的体液免疫和细胞免疫,显示其作为载体递送DNA疫苗方面具有较好的应用前景.%To enhance immune response induced by DNA vaccines,porcine reproductive and respiratory syndrome (PRRS) DNA vaccines pCI-ORF5 was adsorbed on the surface of poly(lactide-co-glycolide) (PLGA) microparticles.The microparticles were prepared using a solvent evaporation method and the adsorption amount,in vitro release profiles and in vivo immunogenicity were evaluated.The results indicated that the DNA adsorbed on PLGA microparticles was about 0.9% in 6 hours,and the release behaviors were influenced by some parameters such as CTAB content,PLGA molecular weight,PLGA concentration,internal aqueous phase volume.The PLGA microparticles with adsorbed DNA induced significantly enhanced humoral and cellular response in comparison to naked DNA in mice.It suggests that PLGA microparticles could be a promising vector for the delivery of DNA vaccines.

  20. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  1. Dual DNA vaccination of rainbow trout (Oncorhynchus mykiss) against two different rhabdoviruses, VHSV and IHNV, induces specific divalent protection

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Delgado, L.; Lorenzen, Ellen;

    2009-01-01

    DNA vaccines encoding the glycoprotein genes of the salmonid rhabdoviruses VHSV and IHNV are very efficient in eliciting protective immune responses against their respective diseases in rainbow trout (Oncorhynchus mykiss). The early anti-viral response (EAVR) provides Protection by 4 days post...... vaccination and is non-specific and transient while the specific anti-viral response (SAVR) is long lasting and highly specific. Since both VHSV and IHNV are endemic in rainbow trout in several geographical regions of Europe and Atlantic salmon (Salmo salar) on the Pacific coast of North America, co...

  2. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen.

    Directory of Open Access Journals (Sweden)

    Antônio J S Gonçalves

    2015-12-01

    Full Text Available Dengue virus (DENV is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA fused to the DENV2 NS1 gene (pcTPANS1 induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus load (4 LD50, which was abrogated with the increase of viral dose (40 LD50. The pcTPANS1 also induced activation of CD4+ and CD8+ T cells. We detected production of IFN-γ and a cytotoxic activity by CD8+ T lymphocytes induced by this vaccine, although its contribution in the protection was not so evident when compared to CD4+ cells. Depletion of CD4+ cells in immunized mice completely abolished protection. Furthermore, transfer experiments revealed that animals receiving CD4+ T cells combined with anti-NS1 antiserum, both obtained from vaccinated mice, survived virus infection with survival rates not significantly different from pcTPANS1-immunized animals. Taken together, results showed that the protective immune response induced by the expression of NS1 antigen mediated by the pcTPANS1 requires a cooperation between CD4+ T cells and the humoral immunity.

  3. Cooperation between CD4+ T Cells and Humoral Immunity Is Critical for Protection against Dengue Using a DNA Vaccine Based on the NS1 Antigen.

    Science.gov (United States)

    Gonçalves, Antônio J S; Oliveira, Edson R A; Costa, Simone M; Paes, Marciano V; Silva, Juliana F A; Azevedo, Adriana S; Mantuano-Barradas, Marcio; Nogueira, Ana Cristina M A; Almeida, Cecília J; Alves, Ada M B

    2015-12-01

    Dengue virus (DENV) is spread through most tropical and subtropical areas of the world and represents a serious public health problem. At present, the control of dengue disease is mainly hampered by the absence of antivirals or a vaccine, which results in an estimated half worldwide population at risk of infection. The immune response against DENV is not yet fully understood and a better knowledge of it is now recognized as one of the main challenge for vaccine development. In previous studies, we reported that a DNA vaccine containing the signal peptide sequence from the human tissue plasminogen activator (t-PA) fused to the DENV2 NS1 gene (pcTPANS1) induced protection against dengue in mice. In the present work, we aimed to elucidate the contribution of cellular and humoral responses elicited by this vaccine candidate for protective immunity. We observed that pcTPANS1 exerts a robust protection against dengue, inducing considerable levels of anti-NS1 antibodies and T cell responses. Passive immunization with anti-NS1 antibodies conferred partial protection in mice infected with low virus lo