WorldWideScience

Sample records for gene-encoding mitochondrial d310

  1. A novel approach for rapid screening of mitochondrial D310 polymorphism

    Directory of Open Access Journals (Sweden)

    Güllüoğlu Bahadır M

    2006-01-01

    Full Text Available Abstract Background Mutations in the mitochondrial DNA (mtDNA have been reported in a wide variety of human neoplasms. A polynucleotide tract extending from 303 to 315 nucleotide positions (D310 within the non-coding region of mtDNA has been identified as a mutational hotspot of primary tumors. This region consists of two polycytosine stretches interrupted by a thymidine nucleotide. The number of cytosines at the first and second stretches are 7 and 5 respectively, according to the GeneBank sequence. The first stretch exhibits a polymorphic length variation (6-C to 9-C among individuals and has been investigated in many cancer types. Large-scale studies are needed to clarify the relationship between cytosine number and cancer development/progression. However, time and money consuming methods such as radioactivity-based gel electrophoresis and sequencing, are not appropriate for the determination of this polymorphism for large case-control studies. In this study, we conducted a rapid RFLP analysis using a restriction enzyme, BsaXI, for the single step simple determination of 7-C carriers at the first stretch in D310 region. Methods 25 colorectal cancer patients, 25 breast cancer patients and 41 healthy individuals were enrolled into the study. PCR amplification followed by restriction enzyme digestion of D310 region was performed for RFLP analysis. Digestion products were analysed by agarose gel electrophoresis. Sequencing was also applied to samples in order to confirm the RFLP data. Results Samples containing 7-C at first stretch of D310 region were successfully determined by the BsaXI RFLP method. Heteroplasmy and homoplasmy for 7-C content was also determined as evidenced by direct sequencing. Forty-one percent of the studied samples were found to be BsaXI positive. Furthermore, BsaXI status of colorectal cancer samples were significantly different from that of healthy individuals. Conclusion In conclusion, BsaXI RFLP analysis is a simple and

  2. Mitochondrial D310 D-Loop instability and histological subtypes in radiation-induced cutaneous basal cell carcinomas.

    Science.gov (United States)

    Boaventura, Paula; Pereira, Dina; Mendes, Adélia; Batista, Rui; da Silva, André Ferreira; Guimarães, Isabel; Honavar, Mrinalini; Teixeira-Gomes, José; Lopes, José Manuel; Máximo, Valdemar; Soares, Paula

    2014-01-01

    Basal cell carcinoma (BCC) is the most frequent skin cancer. An elevated prevalence of BCC has been associated with radiation, namely after the Tinea capitis epilation treatment, being these tumors described as more aggressive. Mitochondrial DNA (mtDNA) mutations have been reported in many human tumors, but their occurrence in BCC is poorly documented. The purpose of this work was to evaluate BCC histological subtypes in individuals subjected to X-ray epilation for Tinea capitis treatment when compared to non-irradiated patients. Moreover we also wanted to evaluate mitochondrial D-Loop instability in both groups of BCCs in order to compare the frequency of D-Loop mutations in post-irradiation BCC versus sporadic BCC. 228 histological specimens corresponding to BCCs from 75 irradiated patients and 60 non-irradiated patients were re-evaluated for histological subtype. Subsequently, we sequenced the D-Loop 310 repeat in blood, oral mucosa, tumor lesions and, whenever available, non-tumoral adjacent tissue from these patients. The infiltrative subtype of BCC, considered to be more aggressive, was significantly more frequent in irradiated patients. BCC D-Loop D310 mutation rate was significantly higher in irradiated BCCs than in the non-irradiated ones. Moreover, it was associated with a higher irradiation dose. The presence of mtDNA heteroplasmy in patients' blood was associated with a higher mutation rate in the BCCs suggesting that a more unstable genotype could predispose to mtDNA somatic mutation. Our results suggest that radiation-induced BCCs may be considered to be more aggressive tumors. Further studies are needed to clarify the role of mtDNA D-Loop mutations in tumors from irradiated patients. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases.

    Science.gov (United States)

    Chatton, B; Walter, P; Ebel, J P; Lacroute, F; Fasiolo, F

    1988-01-05

    S1 mapping on the VAS1 structural gene indicates the existence of two classes of transcripts initiating at distinct in-frame translation start codons. The longer class of VAS1 transcripts initiates upstream of both ATG codons located 138 base pairs away and the shorter class downstream of the first ATG. A mutation that destroys the first AUG on the long message results in respiratory deficiency but does not affect viability. Mutation of the ATG at position 139 leads to lethality because the initiating methionine codon of the essential cytoplasmic valyl-tRNA synthetase has been destroyed. N-terminal protein sequence data further confirm translation initiation at ATG-139 for the cytoplasmic valyl-tRNA synthetase. From these results, we conclude that the VAS1 single gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. The presequence of the mitochondrial valyl-tRNA synthetase shows amino acid composition but not the amphiphilic character of imported mitochondrial proteins. From mutagenesis of the ATG-139 we conclude that the presequence specifically targets the cytoplasmically synthesized mitochondrial valyl-tRNA synthetase to the mitochondrial outer membrane and prevents binding of the enzyme core to cytoplasmic tRNAVal.

  4. Allotopic Expression of a Gene Encoding FLAG Tagged-subunit 8 of Yeast Mitochondrial ATP Synthase

    Directory of Open Access Journals (Sweden)

    I MADE ARTIKA

    2006-03-01

    Full Text Available Subunit 8 of yeast mitochondrial ATP synthase is a polypeptide of 48 amino acids encoded by the mitochondrial ATP8 gene. A nuclear version of subunit 8 gene has been designed to encode FLAG tagged-subunit 8 fused with a mitochondrial signal peptide. The gene has been cloned into a yeast expression vector and then expressed in a yeast strain lacking endogenous subunit 8. Results showed that the gene was successfully expressed and the synthesized FLAG tagged-subunit 8 protein was imported into mitochondria. Following import, the FLAG tagged-subunit 8 protein assembled into functional mitochondrial ATP synthase complex. Furthermore, the subunit 8 protein could be detected using anti-FLAG tag monoclonal antibody.

  5. Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein.

    Science.gov (United States)

    Tiranti, Valeria; D'Adamo, Pio; Briem, Egill; Ferrari, Gianfrancesco; Mineri, Rossana; Lamantea, Eleonora; Mandel, Hanna; Balestri, Paolo; Garcia-Silva, Maria-Teresa; Vollmer, Brigitte; Rinaldo, Piero; Hahn, Si Houn; Leonard, James; Rahman, Shamima; Dionisi-Vici, Carlo; Garavaglia, Barbara; Gasparini, Paolo; Zeviani, Massimo

    2004-02-01

    Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated that the D83198 protein product is targeted to mitochondria and internalized into the matrix after energy-dependent cleavage of a short leader peptide. The gene had previously been known as "HSCO" (for hepatoma subtracted clone one). However, given its role in EE, the name of the gene has been changed to "ETHE1." The severe consequences of its malfunctioning indicate an important role of the ETHE1 gene product in mitochondrial homeostasis and energy metabolism.

  6. Mitochondrial DNA polymorphism in genes encoding ND1, COI and CYTB in canine malignant cancers.

    Science.gov (United States)

    Slaska, Brygida; Grzybowska-Szatkowska, Ludmila; Nisztuk, Sylwia; Surdyka, Magdalena; Rozanska, Dorota

    2015-06-01

    The aim of the study was to identify DNA changes in mitochondrial gene fragments: NADH dehydrogenase subunit 1 (ND1), cytochrome c oxidase subunit I (COI) and cytochrome b (CYTB) in tumor tissue, normal tissue and blood, and to define their association with the tumor type in dogs. Molecular analysis included 144 tests in total. A functional effect of the non-synonymous protein coding SNP was predicted. The presence of polymorphisms in all tested gene fragments in individual tissues of dogs was observed. Heteroplasmic changes were found in ND1 and CYTB in epithelioma glandulae sebacei and in CYTB in lymphoma centroblasticum. The results of in silico analysis show the impact of these alleles (COI: 507, ND1: 450, 216, CYTB: 748) on the functioning of proteins and thus their potential role in carcinogenesis. The possible harmful effects of changes in polypeptides in positions T193N, V98M, V118M and H196P were evaluated. It seems that polymorphisms occurring in cells can have a negative impact on functioning of proteins. This promotes disorders of the energy level in cells.

  7. Significant prognostic values of nuclear genes encoding mitochondrial complex I subunits in tumor patients.

    Science.gov (United States)

    Li, L D; Sun, H F; Bai, Y; Gao, S P; Jiang, H L; Jin, W

    2016-01-01

    In cancer biology, it remains still open question concerning the oncogenic versus oncosuppressor behavior of metabolic genes, which includes those encoding mitochondrial complex I (CI) subunits. The prognostic value of nuclear genome mRNAs expression of CI subunits is to be evaluated in the tumor patients. We used the Kaplan Meier plotter database, the cBio Cancer Genomics Portal, and the Oncomine in which gene expression data and survival information were from thousands of tumor patients to assess the relevance of nuclear genome mRNAs level of CI subunits to patients' survival, as well as their alterations in gene and expression level in tumors. We presented that the relative expression level of overwhelming majority of the nuclear genes of CI subunits with survival significance (overall survival, relapse free survival, progression free survival, distant metastasis free survival, post progression survival, and first progression), had consistent effects for patients in each type of four tumors separately, including breast cancer, ovarian cancer, lung cancer, and gastric cancer. However, in gene level, frequent cumulative or individual alteration of these genes could not significantly affect patients' survival and the overexpression of the individual gene was not ubiquitous in tumors versus normal tissues. Given that reprogrammed energy metabolism was viewed as an emerging hallmark of tumor, thus tumor patients' survival might potentially to be evaluated by certain threshold for overall expression of CI subunits. Comprehensive understanding of the nuclear genome encoded CI subunits may have guiding significance for the diagnosis and prognosis in tumor patients.

  8. IRE1 KNOCKDOWN MODIFIES THE GLUTAMINE AND GLUCOSE DEPRIVATION EFFECT ON THE EXPRESSION OF NUCLEAR GENES ENCODING MITOCHONDRIAL PROTEINS IN U87 GLIOMA CELLS

    Directory of Open Access Journals (Sweden)

    O. O.

    2016-04-01

    Full Text Available We have studied the glucose and glutamine deprivation effect on the expression of nuclear genes encoding mitochondrial proteins in U87 glioma cells in relation to inhibition of inositol requiring enzyme-1 (IRE1. It was shown that glutamine deprivation down-regulated the expression of mitochondrial (NADP+-dependent isocitrate dehydrogenase 2 (IDH2, malic enzyme 2 (ME2, mitochondrial aspartate aminotransferase (GOT2, and subunit B of succinate dehydrogenase (SDHB genes in control glioma cells in gene specific manner. At the same time, the expression level of malate dehydrogenase 2 (MDH2 and subunit D of succinate dehydrogenase (SDHD genes in these cells was not changed upon glutamine deprivation. It was also shown that inhibition of ІRE1 signaling enzyme function in U87 glioma cells modified the glutamine deprivation effect on the expression of all studied genes. Furthermore, the expression of the majority of studied genes was resistant to glucose deprivation, except IDH2 and SDHB genes, which expression levels were slightly down-regulated. Inhibition of IRE1 modified the effect of glucose deprivation on ME2, SDHB, SDHD, and GOT2 genes expression. Therefore, glucose and glutamine deprivation affected the expression level of the majority of nuclear genes encoding mitochondrial proteins in relation to the functional activity of IRE1 enzyme, which is a central mediator of endoplasmic reticulum stress and controls cell proliferation and tumor growth.

  9. The Saccharomyces cerevisiae ICL2 Gene Encodes a Mitochondrial 2-Methylisocitrate Lyase Involved in Propionyl-Coenzyme A Metabolism

    NARCIS (Netherlands)

    Luttik, Marijke A.H.; Kötter, Peter; Salomons, Florian A.; Klei, Ida J. van der; Dijken, Johannes P. van; Pronk, Jack T.

    2000-01-01

    The Saccharomyces cerevisiae ICL1 gene encodes isocitrate lyase, an essential enzyme for growth on ethanol and acetate. Previous studies have demonstrated that the highly homologous ICL2 gene (YPR006c) is transcribed during the growth of wild-type cells on ethanol. However, even when multiple copies

  10. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria.

    Science.gov (United States)

    Spelbrink, J N; Li, F Y; Tiranti, V; Nikali, K; Yuan, Q P; Tariq, M; Wanrooij, S; Garrido, N; Comi, G; Morandi, L; Santoro, L; Toscano, A; Fabrizi, G M; Somer, H; Croxen, R; Beeson, D; Poulton, J; Suomalainen, A; Jacobs, H T; Zeviani, M; Larsson, C

    2001-07-01

    The gene products involved in mammalian mitochondrial DNA (mtDNA) maintenance and organization remain largely unknown. We report here a novel mitochondrial protein, Twinkle, with structural similarity to phage T7 gene 4 primase/helicase and other hexameric ring helicases. Twinkle colocalizes with mtDNA in mitochondrial nucleoids. Screening of the gene encoding Twinkle in individuals with autosomal dominant progressive external ophthalmoplegia (adPEO), associated with multiple mtDNA deletions, identified 11 different coding-region mutations co-segregating with the disorder in 12 adPEO pedigrees of various ethnic origins. The mutations cluster in a region of the protein proposed to be involved in subunit interactions. The function of Twinkle is inferred to be critical for lifetime maintenance of human mtDNA integrity.

  11. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2009-02-01

    Full Text Available Abstract Background Analyses based on phylogenetic and ultrastructural data have suggested that euglenids (such as Euglena gracilis, trypanosomatids and diplonemids are members of a monophyletic lineage termed Euglenozoa. However, many uncertainties are associated with phylogenetic reconstructions for ancient and rapidly evolving groups; thus, rare genomic characters become increasingly important in reinforcing inferred phylogenetic relationships. Findings We discovered that the iron-sulfur subunit (SdhB of mitochondrial succinate dehydrogenase is encoded by a split and rearranged nuclear gene in Euglena gracilis and trypanosomatids, an example of a rare genomic character. The two subgenic modules are transcribed independently and the resulting mRNAs appear to be independently translated, with the two protein products imported into mitochondria, based on the presence of predicted mitochondrial targeting peptides. Although the inferred protein sequences are in general very divergent from those of other organisms, all of the required iron-sulfur cluster-coordinating residues are present. Moreover, the discontinuity in the euglenozoan SdhB sequence occurs between the two domains of a typical, covalently continuous SdhB, consistent with the inference that the euglenozoan 'half' proteins are functional. Conclusion The discovery of this unique molecular marker provides evidence for the monophyly of Euglenozoa that is independent of evolutionary models. Our results pose questions about the origin and timing of this novel gene arrangement and the structure and function of euglenozoan SdhB.

  12. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database.

    Science.gov (United States)

    Tiranti, V; Savoia, A; Forti, F; D'Apolito, M F; Centra, M; Rocchi, M; Zeviani, M

    1997-04-01

    A gene cloning strategy based on the screening of the Expressed Sequence Tags database (dbEST) using sequences of mitochondrial housekeeping proteins of yeast was employed to identify the cDNA encoding the precursor of the human mitochondrial RNA polymerase (h-mtRPOL). The 3831 bp h-mtRPOL cDNA is located on chromosome 19p13.3 and encodes a protein of 1230 amino acid residues. The protein sequence shows significant homologies with sequences corresponding to mitochondrial RNA polymerases from lower eukaryotes, and to RNA polymerases from several bacteriophages. The mitochondrial RNA polymerase carries out the central activity of mitochondrial gene expression and, by providing the RNA primers for replication-initiation, is also implicated in the maintenance and propagation of the mitochondrial genome. Genes involved in the control of mtDNA replication and gene expression are attractive candidates for human disorders due to abnormalities of nucleo-mitochondrial intergenomic signalling. The availability of the h-mtRPOL cDNA will allow us to test its role in mitochondrial pathology. In addition, we propose the 'cyberscreening' of dbEST, based on yeast/human cross-species comparison, as a powerful, simple, rapid and inexpensive method, that may accelerate several-fold the molecular dissection of the human mitochondrial proteome.

  13. Disease-Associated Mutations in the HSPD1 Gene Encoding the Large Subunit of the Mitochondrial HSP60/HSP10 Chaperonin Complex

    DEFF Research Database (Denmark)

    Bross, Peter; Fernandez-Guerra, Paula

    2016-01-01

    Heat shock protein 60 (HSP60) forms together with heat shock protein 10 (HSP10) double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missen...

  14. Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway.

    Science.gov (United States)

    Puisac, Beatriz; Ramos, Mónica; Arnedo, María; Menao, Sebastián; Gil-Rodríguez, María Concepción; Teresa-Rodrigo, María Esperanza; Pié, Angeles; de Karam, Juan Carlos; Wesselink, Jan-Jaap; Giménez, Ignacio; Ramos, Feliciano J; Casals, Nuria; Gómez-Puertas, Paulino; Hegardt, Fausto G; Pié, Juan

    2012-04-01

    The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.

  15. Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex

    Directory of Open Access Journals (Sweden)

    Peter Bross

    2016-08-01

    Full Text Available Heat shock protein 60 (HSP60 forms together with heat shock protein 10 (HSP10 double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missense mutations in the HSPD1 gene that encodes the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the molecular mechanisms underlying these disorders have revealed that different degrees of reduced HSP60 function produce distinct neurological phenotypes. While mutations with deleterious or strong dominant negative effects are not compatible with life, HSPD1 gene variations found in the human population impair HSP60 function and depending on the mechanism and degree of HSP60 dys- and malfunction cause different phenotypes. We here summarize the knowledge on the effects of disturbances of the function of the HSP60/HSP10 chaperonin complex by disease-associated mutations.

  16. Mitochondrial D310 mutation as clonal marker for solid tumors

    NARCIS (Netherlands)

    W.R.R. Geurts-Giele (Ina); G.H.G.K. Gathier (Gerard H. G. K.); P.N. Atmodimedjo; H.J. Dubbink (Erik Jan); W.N.M. Dinjens (Winand)

    2015-01-01

    textabstractPatients with multiple tumors, either synchronous or metachronous, can have metastatic disease or suffer from multiple independent primary tumors. While proper diagnosis of these patients is important for prognosis and treatment, this can be challenging using only clinical and histologic

  17. Transcriptional regulation of the nuclear gene encoding the alpha-subunit of the mammalian mitochondrial F1F0 ATP synthase complex: role for the orphan nuclear receptor, COUP-TFII/ARP-1.

    Science.gov (United States)

    Jordan, Elzora M; Worley, Teri; Breen, Gail A M

    2003-03-11

    Our laboratory has been studying the transcriptional regulation of the nuclear gene (ATPA) that encodes the alpha-subunit of the mammalian mitochondrial F1F0 ATP synthase complex. We have previously determined that the regulatory factor, upstream stimulatory factor 2 (USF2), can stimulate transcription of the ATPA gene through the cis-acting regulatory element 1 in the upstream promoter of this gene. In this study, we used the yeast one-hybrid screening method to identify another factor, COUP-TFII/ARP-1, which also binds to the ATPA cis-acting regulatory element 1. Binding of the orphan nuclear receptor, COUP-TFII/ARP-1, to the ATPA regulatory element 1 was confirmed using electrophoretic mobility shift experiments, and COUP-TFII/ARP-1-containing complexes were detected in HeLa cell nuclear extracts. A mutational analysis indicated that the binding site for COUP-TFII/ARP-1 in the ATPA regulatory element 1 is an imperfect direct repeat of a nuclear receptor response element (A/GGGTCA) with a spacer of three nucleotides. Functional assays in HeLa cells showed that COUP-TFII/ARP-1 represses the ATPA promoter activity in a dose- and sequence-dependent manner. Furthermore, cotransfection assays demonstrated that COUP-TFII/ARP-1 inhibits the USF2-mediated activation of the wild-type ATPA gene promoter but not a mutant promoter that is defective in COUP-TFII/ARP-1-binding. Overexpression of USF2 reversed the COUP-TFII/ARP-1-mediated repression of the ATPA promoter. Mobility shift assays revealed that COUP-TFII/ARP-1 and USF2 compete for binding to the ATPA regulatory element 1. Thus, the ATPA gene is regulated by a multifunctional binding site through which the transcription factors, COUP-TFII/ARP-1 and USF2, bind and exert their antagonistic effects.

  18. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  19. Improvement of D310 Body Production Line Based on Fundamental Industrial Engineering%基于基础IE的D310车身生产线改进

    Institute of Scientific and Technical Information of China (English)

    李峰; 董晓光; 周清华; 张维

    2015-01-01

    The improvement scheme was proposed for D310 Body Production line. The work time of vari⁃ous stations in production lines was measured by the method of the second watch measuring time, and the bottle-neck station effecting on the line production capability was found out. Problems existed in equipment capability, manpower, task distribution, technology and production lines layout were ana⁃lyzed by using the 5W1H check list and work study methods. The making period of D310 body produc⁃tion line was shortened by applying fundamental industrial engineering(IE)and the line balancing the⁃ory. The application shows the improvement scheme has obvious effect.%提出了D310车身生产线的改善方案。运用秒表测时方法测定流水线各工位的作业时间,找出影响流水线生产能力的瓶颈工位,运用“5W1H”提问技术和工作研究方法,分析流水线在设备能力、定员、任务分配、工艺内容及流水线布局等方面存在的问题。应用基础IE的方法及流水线平整理论缩短D310车身生产线的制造周期,实践证明改进效果明显。

  20. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  1. 云南保山和普洱地区带绦虫线粒体DNA基因编码核糖体RNA小亚基基因序列分析%Analysis of the mitochondrial DNA-gene encoding ribosomal RNA small subunit gene sequence of Taenia cestode from Baoshan and Puer areas in Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    刘爱波; 杨毅梅

    2011-01-01

    Objective To identify Taenia cestodes specimens collected from Baoshan and Puer regions of Yunnan Province by analyzing mitochondrial DNA gene encoding ribosomal RNA small subunit (mtDNA-12S rRNA) gene sequence. Methods The adult Taenia cestode samples were collected from Baoshan and Puer regions of Yunnan Province. The genomic DNA was extracted and mtDNA-12S rRAN gene was amplified by polymerase chain reaction (PCR), then sequenced.Combined with the known mtDNA-12S rRNA gene sequence of Taenia solium, Taenia saginata,Taenia asiatica in GenBank, homology tree and phylogenetic tree were constructed by DNA MAN software. Results Taenia cestode homology tree and phylogenetic tree showed that gene sequences of BS1, BS2, BS4 and BS5 were most close to YZ with identity of 99% and those of BS3, BS6, BST,PE1 and PE2 were most close to ND with identity of 99%. Conclusions Taenia saginata and Taenia asiatica can be found in Baoshan area, while Taenia saginata can be found in Puer area. The gene sequence of mtDNA-12S rRNA can be used for clarifying the three types of Taenia cestode.%目的 利用线粒体DNA基因编码核糖体RNA小亚基(mtDNA-12S rRNA)基因序列分析对采自云南保山、普洱地区的带绦虫标本进行鉴定.方法 选取保山(7条,BS1-BS7)、普洱(2条,PE1~PE2)带绦虫成虫节片,抽提基因组DNA,PCR扩增mtDNA-12S rRNA基因序列,并测序;结合GenBank中已知的猪带绦虫(ZD)、牛带绦虫(ND)、亚洲带绦虫(YZ)mtDNA-12S rRNA基因序列,经DNA MAN软件处理后构建同源树状图与系统发育树状图.结果 带绦虫同源树与系统发育树状图显示,BS1、BS2、BS4、BS5与YZ的同源性最近(99%).BS3、BS6、BS7、PE1、PE2与ND的同源性最近(99%).结论 云南保山存在牛带绦虫与亚洲带绦虫,普洱存在牛带绦虫,mtDNA-12S rRNA基因序列可用于三种带绦虫的分类研究.

  2. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C;

    1993-01-01

    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  3. Selection for Genes Encoding Secreted Proteins and Receptors

    Science.gov (United States)

    Klein, Robert D.; Gu, Qimin; Goddard, Audrey; Rosenthal, Arnon

    1996-07-01

    Extracellular proteins play an essential role in the formation, differentiation, and maintenance of multicellular organisms. Despite that, the systematic identification of genes encoding these proteins has not been possible. We describe here a highly efficient method to isolate genes encoding secreted and membrane-bound proteins by using a single-step selection in yeast. Application of this method, termed signal peptide selection, to various tissues yielded 559 clones that appear to encode known or novel extracellular proteins. These include members of the transforming growth factor and epidermal growth factor protein families, endocrine hormones, tyrosine kinase receptors, serine/threonine kinase receptors, seven transmembrane receptors, cell adhesion molecules, extracellular matrix proteins, plasma proteins, and ion channels. The eventual identification of most, or all, extracellular signaling molecules will advance our understanding of fundamental biological processes and our ability to intervene in disease states.

  4. [Mutations in the gene encoding filaggrin cause ichthyosis vulgaris].

    Science.gov (United States)

    Prasad, Sumangali Chandra; Rasmussen, Kirsten; Bygum, Anette

    2011-02-14

    Ichthyosis vulgaris is a common genetic skin disorder with an estimated prevalence of 1:250 caused by mutations in the gene encoding filaggrin. This disorder manifests itself within the first year of life and is clinically characterized by dry, scaly skin, keratosis pilaris, palmar hyperlinearity and atopic manifestations. Patients with a severe phenotype are homozygous or compound heterozygous for the mutations, whereas heterozygous patients show mild disease, suggesting semidominant inheritance with incomplete penetrance. We present a patient with classic severe ichthyosis vulgaris, atopic eczema and two loss-of-function mutations.

  5. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  6. Expression of genes encoding extracellular matrix proteins: a macroarray study.

    Science.gov (United States)

    Futyma, Konrad; Miotła, Paweł; Różyńska, Krystyna; Zdunek, Małgorzata; Semczuk, Andrzej; Rechberger, Tomasz; Wojcierowski, Jacek

    2014-12-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.

  7. Bacillus caldolyticus prs gene encoding phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-1-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  8. Structure of the gene encoding columbid annexin Icp35.

    Science.gov (United States)

    Hitti, Y S; Horseman, N D

    1991-07-22

    The cp35 gene, encoding an annexin I (AnxI) cropsac 35-kDa protein (cp35) from the pigeon, consists of 13 exons and twelve introns. The borders of exons 2-13 were mapped by comparison with the known cDNA sequence. A 5-kb sequence containing exons 1, 2, and 3, and 1.4 kb of 5'-flanking DNA, is presented. The transcription start point was mapped by S1 nuclease protection. The region of the cp35 mRNA sequence, which we had previously shown to be profoundly different from mammalian anxI, is located in the first half of exon 3. Whereas human anxI is known to be single copy, Southern analysis of pigeon genomic DNA and genomic clones demonstrated multiple anxI genes in the pigeon, diverging significantly in their 5'-termini. Pigeon vimentin, on the other hand, is encoded by a single-copy gene as it is in other birds and mammals. These experiments have demonstrated that the cp35 mRNA is transcribed from its individual gene and is not a product of alternative processing of the pigeon homolog of mammalian anxI. We speculate that the diversification of anxI genes in Columbid birds allowed the recruitment of one of these genes (cp35) for unique regulation by prolactin in the absence of post-translational regulation via residues encoded by exons 2 and 3.

  9. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    from Geobacillus. It is selected from SEQ ID NO. 1-17. Sequences not defined here may be found at ftp://ftp.wipo.int/pub/publishedpctsequences/publication. The heterologous gene encoding glycerol dehydrogenase has been incorporated into the chromosome of the bacterium, or is inserted into a lactate...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... selected from glycerol dehydrogenase (E.C 1.1.1.6); glycerol dehydrogenase (NADP(+)) (E.C. 1.1.1.72); glycerol 2-dehydrogenase (NADP(+)) (E.C. 1.1.1.156); and glycerol dehydrogenase (acceptor) (E.C. 1.1.99.22). The heterologous gene encoding a glycerol dehydrogenase is derived from Thermotoga or is derived...

  10. Ethylmalonic Encephalopathy Is Caused by Mutations in ETHE1, a Gene Encoding a Mitochondrial Matrix Protein

    OpenAIRE

    2004-01-01

    Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated t...

  11. Evidence for Lateral Transfer of Genes Encoding Ferredoxins, Nitroreductases, NADH Oxidase, and Alcohol Dehydrogenase 3 from Anaerobic Prokaryotes to Giardia lamblia and Entamoeba histolytica

    Science.gov (United States)

    Nixon, Julie E. J.; Wang, Amy; Field, Jessica; Morrison, Hilary G.; McArthur, Andrew G.; Sogin, Mitchell L.; Loftus, Brendan J.; Samuelson, John

    2002-01-01

    Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica. PMID

  12. Pathogenic mutations of nuclear genes associated with mitochondrial disorders

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Zhu; Xuerui Peng; Min-Xin Guan; Qingfeng Yan

    2009-01-01

    Mitochondrial disorders are clinical phenotypes associated with mitochondrial dysfunction, which can be caused by mutations in mitochondrial DNA (mtDNA) or nuclear genes. In this review, we summarized the pathogenic mutations of nuclear genes associated with mitochondrial disorders. These nuclear genes encode, components of mitochondrial translational machinery and structural subunits and assembly factors of the oxidative phosphorylation, that complex. The molecular mechanisms, that nuclear modifier genes modulate the phenotypic expression of mtDNA mutations, are discussed in detail.

  13. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... fragments coupled with matrix assisted laser desorption mass spectrometry. The sequenced peptide fragments cover 70% of the entire protein sequence, which shows 62% and 77% identity to that of starch debranching enzymes from spinach and rice and 37% identity to Klebsiella pullulanase. Sequence alignment...

  14. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes.

    Science.gov (United States)

    Bourges, Ingrid; Mucchielli, Marie-Helene; Herbert, Christopher J; Guiard, Bernard; Dujardin, Geneviève; Meunier, Brigitte

    2009-04-17

    Respiratory complexes III, IV and V are formed by components of both nuclear and mitochondrial origin and are embedded in the inner mitochondrial membrane. Their assembly requires the auxiliary factor Oxa1, and the absence of this protein has severe consequences on these three major respiratory chain enzymes. We have studied, in the yeast Saccharomyces cerevisiae, the effect of the loss of Oxa1 function and of other respiratory defects on the expression of nuclear genes encoding components of the respiratory complexes and tricarboxylic acid cycle enzymes. We observed that the concomitant decrease in the level of two respiratory enzymes, complexes III and IV, led to their repression. These genes are known targets of the transcriptional activator complex Hap2/3/4/5 that plays a central role in the reprogramming of yeast metabolism when cells switch from a fermenting, glucose-repressed state to a respiring, derepressed state. We found that the Hap4 protein, the regulatory subunit of the transcriptional complex, was present at a lower level in the oxa1 mutants whereas no change in HAP4 transcript level was observed, suggesting a posttranscriptional modulation. In addition, an altered mitochondrial morphology was observed in mutants with decreased expression of Hap2/3/4/5 target genes. We suggest that the aberrant mitochondrial morphology, presumably caused by the severely decreased level of at least two respiratory enzymes, might be part of the signalling pathway linking the mitochondrial defect and Hap2/3/4/5.

  15. A multiplex PCR for detection of genes encoding exfoliative toxins from Staphylococcus hyicus

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Ahrens, Peter

    2004-01-01

    Aims: To develop a multiplex PCR for detection of genes encoding the exfoliative toxins ExhA, ExhB, ExhC and ExhD from Staphylococcus hyicus and to estimate the prevalence of exfoliative toxins among Staph. hyicus isolates from Danish pig herds with exudative epidermitis (EE). Methods and Results...

  16. Phenotypical Manifestations of Mutations in the Genes Encoding Subunits of the Cardiac Sodium Channel

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Brugada, Ramon

    2011-01-01

    Variations in the gene encoding for the major sodium channel (Na(v)1.5) in the heart, SCN5A, has been shown to cause a number of arrhythmia syndromes (with or without structural changes in the myocardium), including the long-QT syndrome (type 3), Brugada syndrome, (progressive) cardiac conduction di

  17. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    2008-01-01

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT ge

  18. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome.

    NARCIS (Netherlands)

    Dauwerse, J.G.; Dixon, J.; Seland, S.; Ruivenkamp, C.A.; Haeringen, A. van; Hoefsloot, L.H.; Peters, D.J.; Boers, A.C.; Daumer-Haas, C.; Maiwald, R.; Zweier, C.; Kerr, B.; Cobo, A.M.; Toral, J.F.; Hoogeboom, A.J.M.; Lohmann, D.R.; Hehr, U.; Dixon, M.J.; Breuning, M.H.; Wieczorek, D.

    2011-01-01

    We identified a deletion of a gene encoding a subunit of RNA polymerases I and III, POLR1D, in an individual with Treacher Collins syndrome (TCS). Subsequently, we detected 20 additional heterozygous mutations of POLR1D in 252 individuals with TCS. Furthermore, we discovered mutations in both allele

  19. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding the...

  20. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    2008-01-01

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT ge

  1. Escherichia coli rpiA> gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque...

  2. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAKASHIMA; Yuka KURODA

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, He, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.

  3. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  4. Chromosomal location of the gene encoding phosphoribosylpyrophosphate synthetase in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    1983-01-01

    by conjugation. Transductional analysis of the prs region established the gene order as purB-fadR-dadR-tre-pth-prs-hemA-trp. Two additional mutations were identified in the mutant: one in gsk, the gene encoding guanosine kinase, and one in lon, conferring a mucoid colony morphology. The contribution of each...

  5. Isolation and molecular characterisation of the gene encoding eburicol 14α-demethylase (CYP51) from Penicillium italicum

    NARCIS (Netherlands)

    Nistelrooy, J.G.M. van; Brink, J.M. van den; Kan, J.A.L. van; Gorcom, R.F.M. van; Waard, M.A. de

    1996-01-01

    The CYP51 gene encoding eburicol 14α-demethylase (P450(14DM)) was cloned from a genomic library of the filamentous fungal plant pathogen Penicillium italicum, by heterologous hybridisation with the corresponding gene encoding lanosterol 14α-demethylase from the yeast Candida tropicalis. The nucleoti

  6. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Shi, Jin; Wang, Jinfang; Li, Ren; Li, Dianbo; Xu, Fengfeng; Sun, Qianqian; Zhao, Bin; Mao, Ai-Jun; Guo, Yang-Dong

    2015-11-01

    Aquaporins are membrane channels precisely regulating water movement through cell membranes in most living organisms. Despite the advances in the physiology of fruit development, their participation during fruit development in cucumber still barely understood. In this paper, the expressions of 12 genes encoding plasma membrane intrinsic proteins (PIPs) were analyzed during cucumber fruit development in our work. Based on the homology search with known PIPs from rice, Arabidopsis and strawberry, 12 cucumber PIP genes subfamily members were identified. Cellular localization assays indicated that CsPIPs were localized in the plasma membrane. The qRT-PCR analysis of CsPIPs showed that 12 CsPIPs were differentially expressed during fruit development. These results suggest that 12 genes encoding plasma membrane intrinsic proteins (CsPIPs) play very important roles in cucumber life cycle and the data generated will be helpful in understanding their precise roles during fruit development in cucumber.

  7. In silicio search for genes encoding peroxisomal proteins in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kal, A J; Hettema, E H; van den Berg, M; Koerkamp, M G; van Ijlst, L; Distel, B; Tabak, H F

    2000-01-01

    The biogenesis of peroxisomes involves the synthesis of new proteins that after, completion of translation, are targeted to the organelle by virtue of peroxisomal targeting signals (PTS). Two types of PTSs have been well characterized for import of matrix proteins (PTS1 and PTS2). Induction of the genes encoding these matrix proteins takes place in oleate-containing medium and is mediated via an oleate response element (ORE) present in the region preceding these genes. The authors have searched the yeast genome for OREs preceding open reading frames (ORFs), and for ORFs that contain either a PTS1 or PTS2. Of the ORFs containing an ORE, as well as either a PTS1 or a PTS2, many were known to encode bona fide peroxisomal matrix proteins. In addition, candidate genes were identified as encoding putative new peroxisomal proteins. For one case, subcellular location studies validated the in silicio prediction. This gene encodes a new peroxisomal thioesterase.

  8. Variation in genes encoding eosinophil granule proteins in atopic dermatitis patients from Germany

    Directory of Open Access Journals (Sweden)

    Epplen Jörg T

    2008-11-01

    Full Text Available Abstract Background Atopic dermatitis (AD is believed to result from complex interactions between genetic and environmental factors. A main feature of AD as well as other allergic disorders is serum and tissue eosinophilia. Human eosinophils contain high amounts of cationic granule proteins, including eosinophil cationic protein (ECP, eosinophil-derived neurotoxin (EDN, eosinophil peroxidase (EPO and major basic protein (MBP. Recently, variation in genes encoding eosinophil granule proteins has been suggested to play a role in the pathogenesis of allergic disorders. We therefore genotyped selected single nucleotide polymorphisms within the ECP, EDN, EPO and MBP genes in a cohort of 361 German AD patients and 325 healthy controls. Results Genotype and allele frequencies did not differ between patients and controls for all polymorphisms investigated in this study. Haplotype analysis did not reveal any additional information. Conclusion We did not find evidence to support an influence of variation in genes encoding eosinophil granule proteins for AD pathogenesis in this German cohort.

  9. Enterotoxigenicity of Vibrio parahaemolyticus with and without genes encoding thermostable direct hemolysin.

    OpenAIRE

    Nishibuchi, M.; Fasano, A; Russell, R G; Kaper, J B

    1992-01-01

    Vibrio parahaemolyticus produces a thermostable direct hemolysin (TDH) that has been implicated in the pathogenesis of diarrheal disease caused by this organism. However, previous studies attempting to demonstrate the contribution of the hemolysin to virulence have been inconclusive. We investigated this putative virulence factor by using an isogenic TDH-negative (TDH-) strain constructed by specifically inactivating the two copies of the tdh gene encoding TDH. The enterotoxigenicities of the...

  10. Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge.

    Science.gov (United States)

    Shrestha, Sony; Park, Yoonseong; Stanley, David; Kim, Yonggyun

    2010-03-01

    We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  11. Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum.

    Science.gov (United States)

    Maresca, Julia A; Bryant, Donald A

    2006-09-01

    The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait.

  12. Mitochondrial proteome evolution and genetic disease.

    NARCIS (Netherlands)

    Huynen, M.A.; Hollander, M. de; Szklarczyk, R.J.

    2009-01-01

    Mitochondria are an essential organelle, not only to the human cell, but to all eukaryotic life. This essentiality is reflected in the large number of mutations in genes encoding mitochondrial proteins that lead to disease. Aside from their relevance to disease, mitochondria are, given their endosym

  13. Analysis of the Genes Encoding the Histones of Microsporidia Nosema bombycis

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2013-02-01

    Full Text Available Histone proteins are essential components of eukaryotic chromosomes, the objective of the study is to provide some new insights into its evolution through analysis of N. bombycis Histone genes at genomic level. In the study, genes encoding core Histone H2A, H2B, H3 and H4 from Nosema bombycis were analyzed by multiple sequence alignments. Analysis showed that: each type of the core Histone genes, sharing high similarity with each other in both coding and non-coding regions, has low copy number. Multiple sequence alignments showed N. bombycis core Histones diverge obviously, relative-rate test revealed Histone proteins have accelerated in the evolutionary rate of amino acid substitution. The distance between the stop codon and consensus poly (A signal is compacted, no conserved hair-pin element was found in 3'-untranslated regions of Histone mRNAs and overlapping gene transcription was observed in the downstream region of Histone variant H3_3, that implies there maybe have only single class of core Histone genes encoding replication-independent Histones in N. bombycis. Surveying the upstream of the coding region of all core Histone genes, there were no canonical TATA or CAAT boxes except that a common Histone motif (TTTCCCTCC was discovered. Moreover, no similar Histone motif mentioned above existed in Encephalitozoon cuniculi, the closely related organisms. That means that similar Histone motif maybe exists in microsporidian last common ancestor, N. bombycis retained Histone motif, while E. cuniculi have lost Histone motif after the differentiation from the common ancestor with the change of the host. Therefore the analysis of the genes encoding the Histones ofN. bombycis revealed that there maybe have two evolution directions in microsporidia, that is, genome extreme compact and mild compact, during the course of evolution. It contributes us to have the knowledge of that there have different genome size in microsporidia and provide useful

  14. Characterization of genes encoding for acquired bacitracin resistance in Clostridium perfringens.

    Directory of Open Access Journals (Sweden)

    Audrey Charlebois

    Full Text Available Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC(90 (>256 µg/ml was identical for both turkey and chicken isolates; whereas MIC(50 was higher in turkey isolates (6 µg/ml than in chicken isolates (3 µg/ml. Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 µg/ml and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens.

  15. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters

    DEFF Research Database (Denmark)

    Nour-Eldin, Hussam Hassan; Madsen, Svend Roesen; Engelen, Steven

    2017-01-01

    The nutritional value of Brassica seed meals is reduced by the presence of glucosinolates, which are toxic compounds involved in plant defense. Mutation of the genes encoding two glucosinolate transporters (GTRs) eliminated glucosinolates from Arabidopsis thaliana seeds, but translation of loss...... over multiple generations and maintained in field trials of two mutant populations at three locations. Successful translation of the gtr loss-of-function phenotype from model plant to two Brassica crops suggests that our transport engineering approach could be broadly applied to reduce seed...

  16. Identification and characterization of the Vibrio anguillarum prtV gene encoding a new metalloprotease

    Institute of Scientific and Technical Information of China (English)

    莫照兰; 郭东升; 茅云翔; 叶旭红; 邹玉霞; 肖鹏; 郝斌

    2010-01-01

    We cloned and sequenced a prtV-like gene from Vibrio anguillarum M3 strain.This prtV gene encodes a putative protein of 918 amino acids,and is highly homologous to the V.cholerae prtV gene.We found that a prtV insertion mutant strain displayed lower gelatinase activity on gelatin agar,lower protease activity against azocasein,and lower activity for four glycosidases.This prtV mutant strain also had increased activity for two esterases in its extracellular products,as analyzed by the API ZYM system.In additi...

  17. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    Science.gov (United States)

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits.

  18. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...... construction of an internal deletion, a upp mutant was constructed by a double-crossover event. This implicated the utilization of a plasmid with a thermosensitive origin of replication and a new and easy way to screen for double crossover events in both gram-positive and gram-negative bacterial strains...

  19. Biovar diversity is reflected by variations of genes encoding urease of Ureaplasma urealyticum.

    Science.gov (United States)

    Ruifu, Y; Minli, Z; Guo, Z; Wang, X

    1997-01-01

    Five oligonucleotide primers derived from the gene encoding urease of Ureaplasma urealyticum were designed to evaluate the relationship between the urease gene and biovar diversity of this organism. Five combinations of these primers were tested by PCR and the result revealed that there were variations in urease genes among different serovars of U. urealyticum. This result, in agreement with other PCRs based on other functionally unrelated (rRNA and MB antigen) genes, may reflect the phylogenetic relationship among organisms taxonomically classified as U. urealyticum.

  20. [Cloning and structure of gene encoded alpha-latrocrustoxin from the Black widow spider venom].

    Science.gov (United States)

    Danilevich, V N; Luk'ianov, S A; Grishin, E V

    1999-07-01

    The primary structure of the crusta gene encoding alpha-latrocrustoxin (alpha-LCT), a high molecular mass neurotoxin specific to crustaceans, was determined in the black widow spider Latrodectus mactans tredicimguttatus genome. The total length of the sequenced DNA was 4693 bp. The structural part of the black widow spider chromosome gene encoding alpha-LCT does not contain introns. The sequenced DNA contains a single extended open reading frame (4185 bp) and encodes a protein precursor of alpha-LCT, comprising 1395 aa. We assume the Met residue at position -10 relative to the N-terminal residue of Glu1 of the mature toxin to be the first one in the protein precursor. The calculated molecular mass of the precursor (156147 Da) exceeds that of the mature toxin by approximately 30 kDa. These data are in agreement with the notion that over the course of maturation the protein precursor undergoes double processing--cleavage of a decapeptide from the N-terminal part and of a approximately 200-aa fragment from the C-terminal part. alpha-LCT displayed a number of imperfect ankyrin-like repeats and areas of structural homology with earlier studied latrotoxins; the highest homology degree (62%) was revealed with alpha-latroinsectotoxin (alpha-LIT).

  1. Life without putrescine: disruption of the gene-encoding polyamine oxidase in Ustilago maydis odc mutants.

    Science.gov (United States)

    Valdés-Santiago, Laura; Guzmán-de-Peña, Doralinda; Ruiz-Herrera, José

    2010-11-01

    In previous communications the essential role of spermidine in Ustilago maydis was demonstrated by means of the disruption of the genes encoding ornithine decarboxylase (ODC) and spermidine synthase (SPE). However, the assignation of specific roles to each polyamine in different cellular functions was not possible because the spermidine added to satisfy the auxotrophic requirement of odc/spe double mutants is partly back converted into putrescine. In this study, we have approached this problem through the disruption of the gene-encoding polyamine oxidase (PAO), required for the conversion of spermidine into putrescine, and the construction of odc/pao double mutants that were unable to synthesize putrescine by either ornithine decarboxylation or retroconversion from spermidine. Phenotypic analysis of the mutants provided evidence that putrescine is only an intermediary in spermidine biosynthesis, and has no direct role in cell growth, dimorphic transition, or any other vital function of U. maydis. Nevertheless, our results show that putrescine may play a role in the protection of U. maydis against salt and osmotic stress, and possibly virulence. Evidence was also obtained that the retroconversion of spermidine into putrescine is not essential for U. maydis growth but may be important for its survival under natural conditions.

  2. A corm-specific gene encodes tarin, a major globulin of taro (Colocasia esculenta L. Schott).

    Science.gov (United States)

    Bezerra, I C; Castro, L A; Neshich, G; de Almeida, E R; de Sá, M F; Mello, L V; Monte-Neshich, D C

    1995-04-01

    A gene encoding a globulin from a major taro (Colocasia esculenta L. Schott) corm protein family, tarin (G1, ca. 28 kDa) was isolated from a lambda Charon 35 library, using a cDNA derived from a highly abundant corm-specific mRNA, as probe. The gene, named tar1, and the corresponding cDNA were characterized and compared. No introns were found. The major transcription start site was determined by primer extension analysis. The gene has an open reading frame (ORF) of 765 bp, and the deduced amino acid sequence indicated a precursor polypeptide of 255 residues that is post-translationally processed into two subunits of about 12.5 kDa each. The deduced protein is 45% homologous to curculin, a sweet-tasting protein found in the fruit pulp of Curculigo latifolia and 40% homologous to a mannose-binding lectin from Galanthus nivalis. Significant similarity was also found at the nucleic acid sequence level with genes encoding lectins from plant species of the Amaryllidaceae and Lilliaceae families.

  3. Transcriptional analysis of genes encoding β-glucosidase of Schizophyllum commune KUC9397 under optimal conditions.

    Science.gov (United States)

    Lee, Young Min; Lee, Hanbyul; Heo, Young Mok; Lee, Hwanhwi; Hong, Joo-Hyun; Kim, Jae-Jin

    2017-05-01

    The present study was conducted to determine the gene responsible for beta-glucosidase (BGL) production and to generate a full-length complementary DNA (cDNA) of one of the putative BGL genes, which showed a significant expression level when Schizophyllum commune KUC9397 was grown in optimized medium. The relative expression levels of seven genes encoding BGL of S. commune KUC9397 were determined with real-time quantitative reverse transcription PCR in cellulose-containing optimized medium (OM) compared to glucose-containing basal medium (BM). The most abundant transcript was bgl3a in OM. The transcript number of the bgl3a increased more than 57.60-fold when S. commune KUC9397 was grown on cellulose-containing OM compared to that on glucose-containing BM. The bgl3a was identified, and a deduced amino acid sequence of bgl3a shared homology (97%) with GH3 BGL of S. commune H4-8. This is the first report showing the transcription levels of genes encoding BGL and identification of full-length cDNA of glycoside hydrolase 3 (GH3) BGL from S. commune. Furthermore, this study is one of the steps for consolidated bioprocessing of lignocellulosic biomass to bioethanol.

  4. A gene encoding a new cold-active lipase from an Antarctic isolate of Penicillium expansum.

    Science.gov (United States)

    Mohammed, Suja; Te'o, Junior; Nevalainen, Helena

    2013-08-01

    Cold-active lipases are of significant interest as biocatalysts in industrial processes. We have identified a lipase that displayed activity towards long carbon-chain-p-nitrophenyl substrates (C12-C18) at 25 °C from the culture supernatant of an Antarctic Penicillium expansum strain assigned P. expansum SM3. Zymography revealed a protein band of around 30 kDa with activity towards olive oil. DNA fragments of a lipase gene designated as lipPE were isolated from the genomic DNA of P. expansum SM3 by genomic walking PCR. Subsequently, the complete genomic lipPE gene was amplified using gene-specific primers designed from the 5'- and 3'-regions. Reverse transcription PCR was used to amplify the lipPE cDNA. The deduced amino acid sequence consisted of 285 residues that included a predicted signal peptide. Three peptides identified by LC/MS/MS analysis of the proteins in the culture supernatant of P. expansum were also present in the deduced amino acid sequence of the lipPE gene suggesting that this gene encoded the lipase identified by initial zymogram activity analysis. Full analysis of the nucleotide and the deduced amino acid sequences indicated that the lipPE gene encodes a novel P. expansum lipase. The lipPE gene was expressed in E. coli for further characterization of the enzyme with a view of assessing its suitability for industrial applications.

  5. Structures of genes encoding TATA box-binding proteins from Trimeresurus gramineus and T. flavoviridis snakes.

    Science.gov (United States)

    Nakashima, K; Nobuhisa, I; Deshimaru, M; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, M; Sakaki, Y; Hattori, S; Ohno, M

    1995-01-23

    A cDNA encoding the Trimeresurus gramineus (Tg; green habu snake) TATA-box-binding protein (TgTBP) was cloned and sequenced. The cDNA encodes a 33-kDa protein with an extensive sequence similarity to those derived from other organisms, except for the N-terminal domain. Genes encoding TgTBP and Trimeresurus flavoviridis (Tf; habu snake) TBP (TfTBP) were isolated using a TgTBP cDNA and their nt sequences were determined. They are the first TBP genes entirely sequenced in higher animals. Both genes span over 15 kb and are constructed from eight exons and seven introns. Comparison of the loci of introns on the aligned amino-acid sequences of TBP from six organisms (Tg, Tf, mouse, Arabidopsis thaliana, Schizosaccharomyces pombe and Acanthamoeba castellanii) indicated that there are three highly conserved loci in the C-terminal domain.

  6. Unusually high frequency of genes encoding vegetative insecticidal proteins in an Australian Bacillus thuringiensis collection.

    Science.gov (United States)

    Beard, Cheryl E; Court, Leon; Boets, Annemie; Mourant, Roslyn; Van Rie, Jeroen; Akhurst, Raymond J

    2008-09-01

    Of 188 Australian Bacillus thuringiensis strains screened for genes encoding soluble insecticidal proteins by polymerase chain reaction/restriction-length fragment polymorphism (RFLP) analysis, 87% showed the presence of such genes. Although 135 isolates (72%) produced an RFLP pattern identical to that expected for vip3A genes, 29 isolates possessed a novel vip-like gene. The novel vip-like gene was cloned from B. thuringiensis isolate C81, and sequence analysis demonstrated that it was 94% identical to the vip3Ba1 gene. The new gene was designated vip3Bb2. Cell-free supernatants from both the B. thuringiensis strain C81 and from Escherichia coli expressing the Vip3Bb2 protein were toxic for the cotton bollworm, Helicoverpa armigera.

  7. Identification and characterization of the Vibrio anguillarum prtV gene encoding a new metalloprotease

    Science.gov (United States)

    Mo, Zhaolan; Guo, Dongsheng; Mao, Yunxiang; Ye, Xuhong; Zou, Yuxia; Xiao, Peng; Hao, Bin

    2010-01-01

    We cloned and sequenced a prtV-like gene from Vibrio anguillarum M3 strain. This prtV gene encodes a putative protein of 918 amino acids, and is highly homologous to the V. cholerae prtV gene. We found that a prtV insertion mutant strain displayed lower gelatinase activity on gelatin agar, lower protease activity against azocasein, and lower activity for four glycosidases. This prtV mutant strain also had increased activity for two esterases in its extracellular products, as analyzed by the API ZYM system. In addition, the prtV mutant strain exhibited decreased growth in turbot intestinal mucus and reduced hemolytic activity on turbot erythrocytes. Infection experiments showed that the LD50 of the prtV mutant strain increased by at least 1 log compared to the wild-type in turbot fish. We propose that prtV plays an important role in the pathogenesis of V. anguillarum.

  8. Human subtelomeric WASH genes encode a new subclass of the WASP family.

    Directory of Open Access Journals (Sweden)

    Elena V Linardopoulou

    2007-12-01

    Full Text Available Subtelomeres are duplication-rich, structurally variable regions of the human genome situated just proximal of telomeres. We report here that the most terminally located human subtelomeric genes encode a previously unrecognized third subclass of the Wiskott-Aldrich Syndrome Protein family, whose known members reorganize the actin cytoskeleton in response to extracellular stimuli. This new subclass, which we call WASH, is evolutionarily conserved in species as diverged as Entamoeba. We demonstrate that WASH is essential in Drosophila. WASH is widely expressed in human tissues, and human WASH protein colocalizes with actin in filopodia and lamellipodia. The VCA domain of human WASH promotes actin polymerization by the Arp2/3 complex in vitro. WASH duplicated to multiple chromosomal ends during primate evolution, with highest copy number reached in humans, whose WASH repertoires vary. Thus, human subtelomeres are not genetic junkyards, and WASH's location in these dynamic regions could have advantageous as well as pathologic consequences.

  9. Molecular cloning and chromosomal localization of the ADH7 gene encoding human class IV ({sigma}) ADH

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hirokazu; Baraona, E.; Lieber, C.S. [Mount Sinai School of Medicine, Bronx, NY (United States)

    1996-01-15

    The ADH7 gene encoding human Class IV ({sigma}) alcohol dehydrogenase (ADH) was cloned from a Caucasian genomic DNA library and characterized. It has nine exons and eight introns that span about 22 kb, and its intron insertion is identical to that of the other ADH genes (ADH1 to ADH5). The nucleotide sequences of the exons encoding 374 amino acids are identical to the previously reported cDNA sequence of {sigma} ADH. Fluorescence in situ hybridization analysis showed that ADH7 is located on human chromosome 4q23-q24, close to the ADH cluster locus (4q21-q25). These data are consistent with the view that Class IV ADH is a member of the ADH family and is phylogenetically close to the other ADHs. 15 refs., 2 figs., 1 tab.

  10. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M.; Swanson, Johanna; Selker, Eric U.

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  11. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M.; Swanson, Johanna; Selker, Eric U.

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  12. Genes encoding FAD-binding proteins in Volvariella volvacea exhibit differential expression in homokaryons and heterokaryons.

    Science.gov (United States)

    Meng, Li; Yan, Junjie; Xie, Baogui; Li, Yu; Chen, Bingzhi; Liu, Shuyan; Li, Dan; Yang, Zhiyun; Zeng, Xiancheng; Deng, Youjin; Jiang, Yuji

    2013-10-01

    Flavin adenine dinucleotide (FAD)-binding proteins play a vital role in energy transfer and utilization during fungal growth and mycelia aggregation. We sequenced the genome of Volvariella volvacea, an economically important edible fungus, and discovered 41 genes encoding FAD-binding proteins. Gene expression profiles revealed that the expression levels of four distinctly differentially expressed genes in heterokaryotic strain H1521 were higher than in homokaryotic strains PYd15 and PYd21 combined. These observations were validated by quantitative real-time PCR. The results suggest that the differential expression of FAD-binding proteins may be important in revealing the distinction between homokaryons and heterokaryons on the basis of FAD-binding protein functionality.

  13. Cloning and sequencing of the gene encoding LipL21 in the vaccinal leptospira serovars

    Directory of Open Access Journals (Sweden)

    Rasoul Hoseinpur

    2016-01-01

    Full Text Available Background: Leptospirosis is a zoonotic disease in humans and animals, caused by the bacterium Leptospira interrogans. Gene expressing LipL21 is one of the genes identified in the bacterium, existing only in the pathogenic strains. The aim of this study was to cloning and analyzing the sequence of the gene encoding surface lipoprotein, LipL21, in five vaccinal leptospira serovars in Iran. Material and Methods: Pathogenic Leptospira interrogans serovars were cultured in EMJH medium with 10% rabbit serum. After genomic DNA extraction, PCR with specific primers was employed and the resulting product inserted in a vector then transferred into E. Coli DH5&alpha. The recombinant plasmids were finally sent for sequencing. Results: The analysis of gene lipL21 in domestic vaccinal serovars and comparison of them with other serovars in the GenBank database revealed that three vaccinal serovars serjo hardjo, canicola and pomona had 100% similarity with each other and grippotyphosa serovar had the highest difference with the vaccinal serovars. In general, the results showed that this gene is a highly conserved gene in the domestic vaccinal serovars and serovars in the GenBank database with more than 95.7 percent similarity. Conclusion: These results showed that the gene, lipL21, is highly conserved in the vaccinal serovars (similarities > 96.4 %. Therefore, the gene encoding surface protein LipL21 can serve as a useful serologic test with high specificity and sensitivity for diagnosis of leptospirosis in clinical samples and in future as an effective subunit vaccine candidate to be used.

  14. Isolation and Functional Characterisation of the Genes Encoding △8-Sphingolipid Desaturase from Brassica rapa

    Institute of Scientific and Technical Information of China (English)

    Shu-Fen Li; Li-Ying Song; Wei-Bo Yin; Yu-Hong Chen; Liang Chen; Ji-Lin Li; Richard R.-C. Wang; Zan-Min Hu

    2012-01-01

    △8-Sphingolipid desaturase is the key enzyme that catalyses desaturation at the C8 position of the long-chain base of sphingolipids in higher plants.There have been no previous studies on the genes encoding △8-sphingolipid desaturases in Brassica rapa.In this study,four genes encoding △8-sphingolipid desaturases from B.rapa were isolated and characterised.Phylogenetic analyses indicated that these genes could be divided into two groups:BrD8A,BrD8C and BrD8D in group Ⅰ,and BrD8B in group Ⅱ.The two groups of genes diverged before the separation of Arabidopsis and Brassica.Though the four genes shared a high sequence similarity,and their coding desaturases all located in endoplasmic reticulum,they exhibited distinct expression patterns.Heterologous expression in Saccharomyces cerevisiae revealed that BrD8A/B/C/D were functionally diverse △8-sphingolipid desaturases that catalyse different ratios of the two products 8(Z)- and 8(E)-C18-phytosphingenine.The aluminium tolerance of transgenic yeasts expressing BrD8A/B/C/D was enhanced compared with that of control cells.Expression of BrD8A in A rabidopsis changed the ratio of 8(Z):8(E)-C 18-phytosphingenine in transgenic plants.The information reported here provides new insights into the biochemical functional diversity and evolutionary relationship of △8-sphingolipid desaturase in plants and lays a foundation for further investigation of the mechanism of 8(Z)- and 8(E)-C18-phytosphingenine biosynthesis.

  15. Leukocyte Mitochondrial DNA Alteration in Systemic Lupus Erythematosus and Its Relevance to the Susceptibility to Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yau-Huei Wei

    2012-07-01

    Full Text Available The role of mitochondrial DNA (mtDNA alterations in the pathophysiology of systemic lupus erythematosus (SLE remains unclear. We investigated sequence variations in the D310 region and copy number change of mtDNA in 85 SLE patients and 45 normal subjects. Leukocyte DNA and RNA were extracted from leukocytes of the peripheral venous blood. The D310 sequence variations and copy number of mtDNA, and mRNA expression levels of mtDNA-encoded genes in leukocytes were determined by quantitative real-time polymerase chain reaction (Q-PCR and PCR-based direct sequencing, respectively. We found that leukocyte mtDNA in SLE patients exhibited higher frequency of D310 heteroplasmy (69.4% vs. 48.9%, p = 0.022 and more D310 variants (2.2 vs. 1.7, p = 0.014 than those found in controls. Among normal controls and patients with low, medium or high SLE disease activity index (SLEDAI, an ever-increasing frequency of D310 heteroplasmy was observed (p = 0.021. Leukocyte mtDNA copy number tended to be low in patients of high SLEDAI group (p = 0.068, especially in those harboring mtDNA with D310 heteroplasmy (p = 0.020. Moreover, the mtDNA copy number was positively correlated with the mRNA level of mtDNA-encoded ND1 (NADH dehydrogenase subunit 1 (p = 0.041 and ATPase 6 (ATP synthase subunit 6 (p = 0.030 genes. Patients with more D310 variants were more susceptible to lupus nephritis (p = 0.035. Taken together, our findings suggest that decrease in the mtDNA copy number and increase in D310 heteroplasmy of mtDNA are related to the development and progression of SLE, and that the patients harboring more D310 variants of mtDNA are more susceptible to lupus nephritis.

  16. [Expression of genes encoding defense factors in the snail Planorbarius corneus (Gastropoda, Pulmonata) infested with trematodes].

    Science.gov (United States)

    Prokhorova, E E; Tsymbalenko, N V; Ataev, G L

    2010-01-01

    Because many species of gastropods are intermediate hosts for trematodes, these molluscs are often used as model-organisms in the studies of invertebrate immune system. Revealing of the ways in which the defense factors functioning became possible due to the use of the methods of molecular biology. Contemporary molecular methods allow analyzing the defense factors allocations and levels of their expression. We investigated the expression of genes encoding defense factors in gastropods by the example of the snail Planorbarius corneus from water bodies of the Leningrad Oblast under infestation with trematods. The snails naturally infested with the parthenites of trematode species belonging to the families Strigeidae, Notocotylidae, Plagiorchiidae, and Schistosomatida were used as the experimental sample. Uninfested snails were used as a control sample. Several genes encoding the factors, which have been recently found involved in the anti-trematode defense reactions in pulmonates, were chosen, namely fibrinogen-related protein, C-lectin, calcium-binding protein, and cystatin-like protein. The genes' expression was analyzed on total mRNA samples by the reverse transcription with the polymerase chain reaction. It was shown than expression levels of the genes under consideration are different in uninfested snails and in the snails infested with different trematode species. Thus, in the mollusks infested with the parthenites of Cotylurus sp. and Bilharziella polonica, the expression levels of the genes of all factors under study were increased, while in the infested Notocotylus sp. n Plagiorchis sp., only expression levels of C-lectin and cystatin-like protein were increased. Results of the expression analysis confirm the role of hemocytes and cells of hepatopancreas in the production of humoral defense factors. In the snails infested with trematodes, the expression levels of C-lectin and calcium-binding protein genes are increased in haemocytes, while the genes of

  17. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.

    Science.gov (United States)

    van Patot, Martha C Tissot; Gassmann, Max

    2011-01-01

    Living at high altitude is demanding and thus drives adaptational mechanisms. The Tibetan population has had a longer evolutionary period to adapt to high altitude than other mountain populations such as Andeans. As a result, some Tibetans living at high altitudes do not show markedly elevated red blood cell production as compared to South American high altitude natives such as Quechuas or Aymaras, thereby avoiding high blood viscosity creating cardiovascular risk. Unexpectedly, the responsible mutation(s) reducing red blood cell production do not involve either the gene encoding the blood hormone erythropoietin (Epo), or the corresponding regulatory sequences flanking the Epo gene. Similarly, functional mutations in the hypoxia-inducible transcription factor 1α (HIF-1α) gene that represents the oxygen-dependent subunit of the HIF-1 heterodimer, the latter being the main regulator of over 100 hypoxia-inducible genes, have not been described so far. It was not until very recently that three independent groups showed that the gene encoding HIF-2α, EPAS-1 (Wenger et al. 1997), represents a key gene mutated in Tibetan populations adapted to living at high altitudes (Beall et al. 2010 , Yi et al. 2010 , Simonson et al. 2010). Hypoxia-inducible transcription factors were first identified by the description of HIF-1 (Semenza et al. 1991 , 1992), which was subsequently found to enhance transcription of multiple genes that encode proteins necessary for rescuing from hypoxic exposure, including erythropoietic, angiogenic and glycolytic proteins. Then HIF-2 was identified (Ema et al. 1997 ; Flamme et al. 1997 ; Hogenesch et al. 1997 ; and Tian et al. 1997) and although it is highly similar to HIF-1 and has the potential to bind (Camenisch et al. 2001) and mediate (Mole et al. 2009) many of the same genes as HIF-1, its biological actions in response to hypoxia are distinct from those of HIF-1 (reviewed by Loboda et al. 2010). By now, several of these HIF-2 mediated

  18. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    Science.gov (United States)

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  19. Expression of genes encoding F-1-ATPase results in uncoupling of glycolysis from biomass production in Lactococcus lactis

    DEFF Research Database (Denmark)

    Købmann, Brian Jensen; Solem, Christian; Pedersen, M.B.

    2002-01-01

    We studied how the introduction of an additional ATP-consuming reaction affects the metabolic fluxes in Lactococcus lactis. Genes encoding the hydrolytic part of the F-1 domain of the membrane-bound (F1F0) H+-ATPase were expressed from a range of synthetic constitutive promoters. Expression...

  20. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T;

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding "...

  1. Cloning and functional expression in Escherichia coli of the gene encoding the di- and tripeptide transport protein of Lactobacillus helveticus

    NARCIS (Netherlands)

    Nakajima, H.; Hagting, A; Kunji, E.R S; Poolman, B.; Konings, W.N

    1997-01-01

    The gene encoding the di- and tripeptide transport protein (DtpT) of Lactobacillus helveticus (DtpT(LH)) was cloned with the aid of the inverse PCR technique and used to complement the dipeptide transport-deficient and proline-auxotrophic Escherichia coil E1772. Functional expression of the peptide

  2. Evidence for negative selection on the gene encoding rhoptry-associated protein 1 (RAP-1) in Plasmodium spp.

    Science.gov (United States)

    Pacheco, M Andreína; Ryan, Elizabeth M; Poe, Amanda C; Basco, Leonardo; Udhayakumar, Venkatachalam; Collins, Williams E; Escalante, Ananias A

    2010-07-01

    Assessing how natural selection, negative or positive, operates on genes with low polymorphism is challenging. We investigated the genetic diversity of orthologous genes encoding the rhoptry-associated protein 1 (RAP-1), a low polymorphic protein of malarial parasites that is involved in erythrocyte invasion. We applied evolutionary genetic methods to study the polymorphism in RAP-1 from Plasmodium falciparum (n=32) and Plasmodium vivax (n=6), the two parasites responsible for most human malaria morbidity and mortality, as well as RAP-1 orthologous in closely related malarial species found in non-human primates (NHPs). Overall, genes encoding RAP-1 are highly conserved in all Plasmodium spp. included in this investigation. We found no evidence for natural selection, positive or negative, acting on the gene encoding RAP-1 in P. falciparum or P. vivax. However, we found evidence that the orthologous genes in non-human primate parasites (Plasmodium cynomolgi, Plasmodium inui, and Plasmodium knowlesi) are under purifying (negative) selection. We discuss the importance of considering negative selection while studying genes encoding proteins with low polymorphism and how selective pressures may differ among orthologous genes in closely related malarial parasites species. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis.

    Directory of Open Access Journals (Sweden)

    Howard S Judelson

    Full Text Available Zoospores are central to the life cycles of most of the eukaryotic microbes known as oomycetes, but some genera have lost the ability to form these flagellated cells. In the plant pathogen Phytophthora infestans, genes encoding 257 proteins associated with flagella were identified by comparative genomics. These included the main structural components of the axoneme and basal body, proteins involved in intraflagellar transport, regulatory proteins, enzymes for maintaining ATP levels, and others. Transcripts for over three-quarters of the genes were up-regulated during sporulation, and persisted to varying degrees in the pre-zoospore stage (sporangia and motile zoospores. Nearly all of these genes had orthologs in other eukaryotes that form flagella or cilia, but not species that lack the organelle. Orthologs of 211 of the genes were also absent from a sister taxon to P. infestans that lost the ability to form flagella, the downy mildew Hyaloperonospora arabidopsidis. Many of the genes retained in H. arabidopsidis were also present in other non-flagellates, suggesting that they play roles both in flagella and other cellular processes. Remnants of the missing genes were often detected in the H. arabidopsidis genome. Degradation of the genes was associated with local compaction of the chromosome and a heightened propensity towards genome rearrangements, as such regions were less likely to share synteny with P. infestans.

  4. Structure and expression of the gene encoding the vasoactive intestinal peptide precursor

    Energy Technology Data Exchange (ETDEWEB)

    Linder, S.; Barkhem, T.; Norberg, A.; Persson, H.; Schalling, M.; Hoekfelt, T.; Magnusson, G.

    1987-01-01

    The gene encoding the human vasoactive intestinal peptide (VIP) and the histidine-methionine amide (PHM-27) peptide hormone was isolated from lambda phage libraries. The human gene was found to be composed of seven exons spanning approx. = 9 kilobase pairs. The first exon codes for an untranslated leader sequence, and the second exon codes for a putative signal peptide. DNA sequences coding for the VIP and PHM-27 hormones are located in two different exons. Southern blot analysis with genomic DNA suggested that a single copy of the VIP/PHM-27 gene is present in the human haploid genome. The expression of VIP/PHM-27 precursor mRNA in various tissues in the rate was analyzed by RNA gel blot hybridization. In the organs examined, expression was only detected in the brain and duodenum. RNA isolated from various regions of the rat brain - including the cortex, hypothalamus, and hippocampus - hybridized to both VIP- and PHM-27-specific probes. The same pattern of hybridization was found when VIP- and PHM-27-specific probes were used, suggested that possible differences in the localization of VIP and PHM-27 peptides between different brain regions cannot be accounted for by differential RNA processing.

  5. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  6. Cloning of the Gene Encoding Urease Subunit A in Helicobacter Pylori

    Institute of Scientific and Technical Information of China (English)

    施理; 张宜俊; 陈劼; 候晓华

    2004-01-01

    Summary: The gene encoding urease subunit A (ureA) of Helicobacter pylori (H. pylori) was cloned from H. pylori isolate by polymerase chain reaction (PCR). Sterile distilled water instead of DNA served as negative control. The nucleotide sequence of the amplified product was determined.Homologous analysis of the ureA against that reported by Clayton CL and the GenBank and SwissProt databases were performed with the BLAST program at the Genome Net through the Internet.0.8 kb PCR product was amplified from all H. pylori clinical isolators. The nucleotide sequence of the ureA was determined. The nucleotide sequence of the ureA began with ATG as the initiation codon and terminated in TAA as stop codon. The coding regions had a 44 % G+ C content. The DNA sequence was 98 % homologous to that reported by Clayton CL (688 out of 702 residues were identical). The derived amino-acid sequences of the ureA were 99 % homologous to that reported by Clayton CL (232 out of 234 residues were identical). The nucleotide sequence and the predicted protein showed significant homology to ureA of H. pylori in the NCBI Entrez database.

  7. Construction, cloning, and expression of synthetic genes encoding spider dragline silk.

    Science.gov (United States)

    Prince, J T; McGrath, K P; DiGirolamo, C M; Kaplan, D L

    1995-08-29

    Synthetic genes encoding recombinant spider silk proteins have been constructed, cloned, and expressed. Protein sequences were derived from Nephila clavipes dragline silk proteins and reverse-translated to the corresponding DNA sequences. Codon selection was chosen to maximize expression levels in Escherichia coli. DNA "monomer" sequences were multimerized to encode high molecular weight synthetic spider silks using a "head-to-tail" construction strategy. Multimers were cloned into a prokaryotic expression vector and the encoded silk proteins were expressed in E. coli upon induction with IPTG. Four multimer, ranging in size from 14.7 to 41.3 kDa, were chosen for detailed analysis. These proteins were isolated by immobilized metal affinity chromatography and purified using reverse-phase HPLC. The composition and identity of the purified proteins were confirmed by amino acid composition analysis, N-terminal sequencing, laser desorption mass spectroscopy, and Western analysis using antibodies reactive to native spider dragline silk. Circular dichroism measurements indicate that the synthetic spider silks have substantial beta-sheet structure.

  8. Molecular characterization of genes encoding the quinolone resistance determining regions of Malaysian Streptococcus pneumoniae strains

    Directory of Open Access Journals (Sweden)

    Kumari N

    2008-01-01

    Full Text Available Genes encoding the quinolones resistance determining regions (QRDRs in Streptococcus pneumoniae were detected by PCR and the sequence analysis was carried out to identify point mutations within these regions. The study was carried out to observe mutation patterns among S. pneumoniae strains in Malaysia. Antimicrobial susceptibility testing of 100 isolates was determined against various antibiotics, out of which 56 strains were categorised to have reduced susceptibility to ciprofloxacin (≥2 μg/mL. These strains were subjected to PCR amplification for presence of the gyrA, parC , gyrB and parE genes. Eight representative strains with various susceptibilities to fluoroquinolones were sequenced. Two out of the eight isolates that were sequenced were shown to have a point mutation in the gyrA gene at position Ser81. The detection of mutation at codon Ser81 of the gyrA gene suggested the potential of developing fluoroquinolone resistance among S. pneumoniae isolates in Malaysia. However, further experimental work is required to confirm the involvement of this mutation in the development of fluoroquinolone resistance in Malaysia.

  9. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.

    Science.gov (United States)

    Smith, Frances J D; Irvine, Alan D; Terron-Kwiatkowski, Ana; Sandilands, Aileen; Campbell, Linda E; Zhao, Yiwei; Liao, Haihui; Evans, Alan T; Goudie, David R; Lewis-Jones, Sue; Arseculeratne, Gehan; Munro, Colin S; Sergeant, Ann; O'Regan, Gráinne; Bale, Sherri J; Compton, John G; DiGiovanna, John J; Presland, Richard B; Fleckman, Philip; McLean, W H Irwin

    2006-03-01

    Ichthyosis vulgaris (OMIM 146700) is the most common inherited disorder of keratinization and one of the most frequent single-gene disorders in humans. The most widely cited incidence figure is 1 in 250 based on a survey of 6,051 healthy English schoolchildren. We have identified homozygous or compound heterozygous mutations R501X and 2282del4 in the gene encoding filaggrin (FLG) as the cause of moderate or severe ichthyosis vulgaris in 15 kindreds. In addition, these mutations are semidominant; heterozygotes show a very mild phenotype with incomplete penetrance. The mutations show a combined allele frequency of approximately 4% in populations of European ancestry, explaining the high incidence of ichthyosis vulgaris. Profilaggrin is the major protein of keratohyalin granules in the epidermis. During terminal differentiation, it is cleaved into multiple filaggrin peptides that aggregate keratin filaments. The resultant matrix is cross-linked to form a major component of the cornified cell envelope. We find that loss or reduction of this major structural protein leads to varying degrees of impaired keratinization.

  10. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity.

  11. The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ian G Woods

    2005-03-01

    Full Text Available Hedgehog signaling is required for many aspects of development in vertebrates and invertebrates. Misregulation of the Hedgehog pathway causes developmental abnormalities and has been implicated in certain types of cancer. Large-scale genetic screens in zebrafish have identified a group of mutations, termed you-class mutations, that share common defects in somite shape and in most cases disrupt Hedgehog signaling. These mutant embryos exhibit U-shaped somites characteristic of defects in slow muscle development. In addition, Hedgehog pathway mutations disrupt spinal cord patterning. We report the positional cloning of you, one of the original you-class mutations, and show that it is required for Hedgehog signaling in the development of slow muscle and in the specification of ventral fates in the spinal cord. The you gene encodes a novel protein with conserved EGF and CUB domains and a secretory pathway signal sequence. Epistasis experiments support an extracellular role for You upstream of the Hedgehog response mechanism. Analysis of chimeras indicates that you mutant cells can appropriately respond to Hedgehog signaling in a wild-type environment. Additional chimera analysis indicates that wild-type you gene function is not required in axial Hedgehog-producing cells, suggesting that You is essential for transport or stability of Hedgehog signals in the extracellular environment. Our positional cloning and functional studies demonstrate that You is a novel extracellular component of the Hedgehog pathway in vertebrates.

  12. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.

  13. Structure and expression of nuclear genes encoding rubisco activase. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, R.E.

    1994-06-01

    Rubisco activase (Rca) is a soluble chloroplast protein that catalyzes the activation of rubisco, the enzyme that initiates the photosynthetic carbon reduction cycle, to catalytic competency. Rca in barley consists of three polypeptides, one of 46- and two of 42-kDa, but the quaternary structure of the protein is not known. The authors have isolated and completely sequenced 8.8 kb of barley genomic DNA containing two, tandemly oriented activase genes (RcaA and RcaB) and three different cDNAs encoding the 42- and 46-kDa Rca polypeptide isoforms. Genomic Southern blot assays indicate that these sequences represent the entire Rca gene family in barley. Pre-mRNAs transcribed from the RcaA gene are alternatively spliced to give mRNAs encoding both 46- (RcaA1) and 42-kDa (RcaA2) Rca isoforms. The RcaB gene encodes a single polypeptide of 42 kDa. Primer extension and northern blot assays indicate that RcaB mRNA is expressed at a level that is 10- to 100-fold lower than RcaA mRNA. Analyses at the mRNA and protein level showed that Rca gene expression is coordinated by that of the rubisco subunits during barley leaf development.

  14. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides.

    Science.gov (United States)

    van Heel, Auke J; de Jong, Anne; Montalbán-López, Manuel; Kok, Jan; Kuipers, Oscar P

    2013-07-01

    Identifying genes encoding bacteriocins and ribosomally synthesized and posttranslationally modified peptides (RiPPs) can be a challenging task. Especially those peptides that do not have strong homology to previously identified peptides can easily be overlooked. Extensive use of BAGEL2 and user feedback has led us to develop BAGEL3. BAGEL3 features genome mining of prokaryotes, which is largely independent of open reading frame (ORF) predictions and has been extended to cover more (novel) classes of posttranslationally modified peptides. BAGEL3 uses an identification approach that combines direct mining for the gene and indirect mining via context genes. Especially for heavily modified peptides like lanthipeptides, sactipeptides, glycocins and others, this genetic context harbors valuable information that is used for mining purposes. The bacteriocin and context protein databases have been updated and it is now easy for users to submit novel bacteriocins or RiPPs. The output has been simplified to allow user-friendly analysis of the results, in particular for large (meta-genomic) datasets. The genetic context of identified candidate genes is fully annotated. As input, BAGEL3 uses FASTA DNA sequences or folders containing multiple FASTA formatted files. BAGEL3 is freely accessible at http://bagel.molgenrug.nl.

  15. Sudden infant death syndrome caused by cardiac arrhythmias: only a matter of genes encoding ion channels?

    Science.gov (United States)

    Sarquella-Brugada, Georgia; Campuzano, Oscar; Cesar, Sergi; Iglesias, Anna; Fernandez, Anna; Brugada, Josep; Brugada, Ramon

    2016-03-01

    Sudden infant death syndrome is the unexpected demise of a child younger than 1 year of age which remains unexplained after a complete autopsy investigation. Usually, it occurs during sleep, in males, and during the first 12 weeks of life. The pathophysiological mechanism underlying the death is unknown, and the lethal episode is considered multifactorial. However, in cases without a conclusive post-mortem diagnosis, suspicious of cardiac arrhythmias may also be considered as a cause of death, especially in families suffering from any cardiac disease associated with sudden cardiac death. Here, we review current understanding of sudden infant death, focusing on genetic causes leading to lethal cardiac arrhythmias, considering both genes encoding ion channels as well as structural proteins due to recent association of channelopathies and desmosomal genes. We support a comprehensive analysis of all genes associated with sudden cardiac death in families suffering of infant death. It allows the identification of the most plausible cause of death but also of family members at risk, providing cardiologists with essential data to adopt therapeutic preventive measures in families affected with this lethal entity.

  16. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  17. Tomato Ve disease resistance genes encode cell surface-like receptors

    Science.gov (United States)

    Kawchuk, Lawrence M.; Hachey, John; Lynch, Dermot R.; Kulcsar, Frank; van Rooijen, Gijs; Waterer, Doug R.; Robertson, Albert; Kokko, Eric; Byers, Robert; Howard, Ronald J.; Fischer, Rainer; Prüfer, Dirk

    2001-01-01

    In tomato, Ve is implicated in race-specific resistance to infection by Verticillium species causing crop disease. Characterization of the Ve locus involved positional cloning and isolation of two closely linked inverted genes. Expression of individual Ve genes in susceptible potato plants conferred resistance to an aggressive race 1 isolate of Verticillium albo-atrum. The deduced primary structure of Ve1 and Ve2 included a hydrophobic N-terminal signal peptide, leucine-rich repeats containing 28 or 35 potential glycosylation sites, a hydrophobic membrane-spanning domain, and a C-terminal domain with the mammalian E/DXXXLφ or YXXφ endocytosis signals (φ is an amino acid with a hydrophobic side chain). A leucine zipper-like sequence occurs in the hydrophobic N-terminal signal peptide of Ve1 and a Pro-Glu-Ser-Thr (PEST)-like sequence resides in the C-terminal domain of Ve2. These structures suggest that the Ve genes encode a class of cell-surface glycoproteins with receptor-mediated endocytosis-like signals and leucine zipper or PEST sequences. PMID:11331751

  18. Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes.

    Science.gov (United States)

    Gaines, W A; Marcotte, W R

    2008-09-01

    Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSps) that consist of a large repeat array flanked by nonrepetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species.

  19. Cloning and sequence analysis of a gene encoding polygalacturonase-inhibiting protein from cotton

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Polygalacturonase-inhibiting proteins (PGIP) play important roles in plant defense of pathogen, especially fungi. A pair of degenerated primers is designed based on the conserved sequence of 20 other known pgip genes and used to amplify Gossypium barbadense cultivation 7124 cDNA library by touch-down PCR. A 561 bp internal fragment of the pgip gene is obtained and used to design the primers for rapid amplification of cDNA ends. A composite pgip gene sequence is constructed from the products of 5′ and 3′ RACE, which are 666 bp and 906 bp respectively. Analysis of nucleic acid sequence shows 69.2% and 68.7% similarity to Citrus and Poncirus pgip genes, respectively. Its open reading frame of the gene encodes a polypeptide of 330 amino acids, in which 10 leucine-rich repeats arrange tandemly. A new set of primers is designed to the 5′ and 3′ ends of the gene, which allows amplification of the full-length gene from the cotton cDNA library. Genomic DNA analysis reveals that this gene has no intron.

  20. Cloning and sequence analysis of gene encoding plasma aquaporin of Tamarix albiflonum

    Institute of Scientific and Technical Information of China (English)

    DONG Yuzhi; YANG Chuanping; ZHANG Daoyuan; WANG Yucheng

    2007-01-01

    Plant aquaporins are water-selected-channels in plants and are involved in seed germination,cell elongation,stoma movement,fertilization and so on.Some plant aquapotins also play an important role in drought stress response.In this paper,the gene encoding the Tamarix albiflonum Aquaporin (AQP) was amplified by 5'rapid amplification of cDNA end (RACE) on the basis of the sequence information obtained from the expressed sequence tag of the subtractive hybridization library constructed under PEG6000 stress.The cDNA of the T.albiflonum AQP gene is 1,043 bp long,encoding a protein of 287 amino acids with a predicted molecular mass of 30.9 kDa,has 6 transmembrane regions,and possessing the major intrinsic protein (MIP) family signal consensus sequence SGXHXNPAVT and the higher plant plasma membrane intrinsic protein (PIP) highly conservative sequence GGGANXXXXGY and TGI/TNPARSL /FGAA I/VI/VF/YN.A comparative molecular analysis of the nucleotide sequence in National Center for Biotechnology Information (NCBI) databases showed that it shared 95% homology with the gene ofArabidopsis thaliana (MIP-C),with a theoretical isoelectric point 8.84.

  1. Characterization of a Soil Metagenome-Derived Gene Encoding Wax Ester Synthase.

    Science.gov (United States)

    Kim, Nam Hee; Park, Ji-Hye; Chung, Eunsook; So, Hyun-Ah; Lee, Myung Hwan; Kim, Jin-Cheol; Hwang, Eul Chul; Lee, Seon-Woo

    2016-02-01

    A soil metagenome contains the genomes of all microbes included in a soil sample, including those that cannot be cultured. In this study, soil metagenome libraries were searched for microbial genes exhibiting lipolytic activity and those involved in potential lipid metabolism that could yield valuable products in microorganisms. One of the subclones derived from the original fosmid clone, pELP120, was selected for further analysis. A subclone spanning a 3.3 kb DNA fragment was found to encode for lipase/esterase and contained an additional partial open reading frame encoding a wax ester synthase (WES) motif. Consequently, both pELP120 and the full length of the gene potentially encoding WES were sequenced. To determine if the wes gene encoded a functioning WES protein that produced wax esters, gas chromatography-mass spectroscopy was conducted using ethyl acetate extract from an Escherichia coli strain that expressed the wes gene and was grown with hexadecanol. The ethyl acetate extract from this E. coli strain did indeed produce wax ester compounds of various carbon-chain lengths. DNA sequence analysis of the full-length gene revealed that the gene cluster may be derived from a member of Proteobacteria, whereas the clone does not contain any clear phylogenetic markers. These results suggest that the wes gene discovered in this study encodes a functional protein in E. coli and produces wax esters through a heterologous expression system.

  2. The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme.

    Science.gov (United States)

    Teste, M A; Enjalbert, B; Parrou, J L; François, J M

    2000-12-01

    The YPR184w gene encodes a 1536-amino acid protein that is 34-39% identical to the mammal, Drosophila melanogaster and Caenorhabditis elegans glycogen debranching enzyme. The N-terminal part of the protein possesses the four conserved sequences of the alpha-amylase superfamily, while the C-terminal part displays 50% similarity with the C-terminal of other eukaryotic glycogen debranching enzymes. Reliable measurement of alpha-1,4-glucanotransferase and alpha-1, 6-glucosidase activity of the yeast debranching enzyme was determined in strains overexpressing YPR184w. The alpha-1, 4-glucanotransferase activity of a partially purified preparation of debranching enzyme preferentially transferred maltosyl units than maltotriosyl. Deletion of YPR184w prevents glycogen degradation, whereas overexpression had no effect on the rate of glycogen breakdown. In response to stress and growth conditions, the transcriptional control of YPR184w gene, renamed GDB1 (for Glycogen DeBranching gene), is strictly identical to that of other genes involved in glycogen metabolism.

  3. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  4. The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain.

    Science.gov (United States)

    Cullingford, Tim E; Dolphin, Colin T; Sato, Hitoshi

    2002-04-01

    Activated peroxisome proliferator activated receptor alpha (PPAR alpha) protects against the cellular inflammatory response, and is central to fatty acid-mediated upregulation of the gene encoding the key ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS). We have previously demonstrated both PPAR alpha and mHS expression in brain, implying that brain-targeted PPAR alpha activators may likewise up-regulate mHS expression in brain. Thus, to attempt pharmacological activation of brain PPAR alpha in vivo, we have administered to rats two drugs with previously defined actions in rat brain, namely the PPAR alpha-selective activator ciprofibrate and the pan-PPAR activator valproate. Using the sensitive and discriminatory RNase protection co-assay, we demonstrate that both ciprofibrate and valproate induce mHS expression in liver, the archetypal PPAR alpha-expressing organ. Furthermore, ciprofibrate potently increases mHS mRNA abundance in rat brain, together with lesser increases in two other PPAR alpha-regulated mRNAs. Thus we demonstrate, for the first time, up-regulation of expression of PPAR alpha-dependent genes including mHS in brain, with implications in the increased elimination of neuro-inflammatory lipids and concomitant increased production of neuro-protective ketone bodies.

  5. Mitochondrial dynamics in peripheral neuropathies.

    Science.gov (United States)

    Sajic, Marija

    2014-08-01

    Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.

  6. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  7. Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum

    Institute of Scientific and Technical Information of China (English)

    SHEN Fafu; YU Shuxun; HAN Xiulan; FAN Shuli

    2004-01-01

    A gene encoding a cysteine proteinase was isolated from senescent leave of cotton (Gossypium hirsutum) cv liaomian No. 9 by utilizing rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR), and a set of consensus oligonucleotide primers was designed to anneal the conserved sequences of plant cysteine protease genes. The cDNA, which designated Ghcysp gene, contained 1368 bp terminating in a poly(A)+ trail, and included a putative 5′(98 bp) and a 3′(235 bp) non-coding region. The opening reading frame (ORF) encodes polypeptide 344 amino acids with the predicted molecular mass of 37.88 kD and theoretical pI of 4.80. A comparison of the deduced amino acid sequence with the sequence in the GenBank database has shown considerable sequence similarity to a novel family of plant cysteine proteases. This putative cotton Ghcysp protein shows from 67% to 82% identity to the other plants. All of them share catalytic triad of residues, which are highly conserved in three regions. Hydropaths analysis of the amino acid sequence shows that the Ghcysp is a potential membrane protein and localizes to the vacuole, which has a transmembrane helix between resides 7-25. A characteristic feature of Ghcysp is the presence of a putative vacuole-targeting signal peptide of 19-amino acid residues at the N-terminal region. The expression of Ghcysp gene was determined using northern blot analysis. The Ghcysp mRNA levels are high in development senescent leaf but below the limit of detection in senescent root, hypocotyl, faded flower, 6 d post anthesis ovule, and young leaf.

  8. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum.

    Science.gov (United States)

    Coleman, Jeffrey J; Wasmann, Catherine C; Usami, Toshiyuki; White, Gerard J; Temporini, Esteban D; McCluskey, Kevin; VanEtten, Hans D

    2011-12-01

    The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify pisatin produced as a defense response by pea, and the gene encoding this detoxification mechanism, FoPDA1, was 82% identical to the cytochrome P450 pisatin demethylase PDA1 gene in Nectria haematococca. A survey of F. oxysporum f. sp. pisi isolates demonstrated that, as in N. haematococca, the PDA gene of F. oxysporum f. sp. pisi is generally located on a small chromosome. In N. haematococca, PDA1 is in a cluster of pea pathogenicity (PEP) genes. Homologs of these PEP genes also were found in the F. oxysporum f. sp. pisi isolates, and PEP1 and PEP5 were sometimes located on the same small chromosomes as the FoPDA1 homologs. Transforming FoPDA1 into a pda(?) F. oxysporum f. sp. lini isolate conferred pda activity and promoted pathogenicity on pea to some transformants. Different hybridization patterns of FoPDA1 were found in F. oxysporum f. sp. pisi but these did not correlate with the races of the fungus, suggesting that races within this forma specialis arose independently of FoPDA1. FoPDA1 also was present in the formae speciales lini, glycines, and dianthi of F. oxysporum but they had mutations resulting in nonfunctional proteins. However, an active FoPDA1 was present in F. oxysporum f. sp. phaseoli and it was virulent on pea. Despite their evolutionary distance, the amino acid sequences of FoPDA1 of F. oxysporum f. sp. pisi and F. oxysporum f. sp. phaseoli revealed only six amino acid differences, consistent with a horizontal gene transfer event accounting for the origin of these genes.

  9. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  10. Molecular characterization of genes encoding inward rectifier potassium (Kir) channels in the bed bug (Cimex lectularius).

    Science.gov (United States)

    Mamidala, Praveen; Mittapelly, Priyanka; Jones, Susan C; Piermarini, Peter M; Mittapalli, Omprakash

    2013-04-01

    The molecular genetics of inward-rectifier potassium (Kir) channels in insects is poorly understood. To date, Kir channel genes have been characterized only from a few representative dipterans (i.e., fruit flies and mosquitoes). The goal of the present study was to characterize Kir channel cDNAs in a hemipteran, the bed bug (Cimex lectularius). Using our previously reported bed bug transcriptome (RNA-seq), we identified two cDNAs that encode putative Kir channels. One was a full-length cDNA that encodes a protein belonging to the insect 'Kir3' clade, which we designate as 'ClKir3'. The other was a partial cDNA that encodes a protein with similarity to both the insect 'Kir1' and 'Kir2' clades, which we designate as 'ClKir1/2'. Quantitative real-time PCR analysis revealed that ClKir1/2 and ClKir3 exhibited peak expression levels in late-instar nymphs and early-instar nymphs, respectively. Furthermore, ClKir3, but not ClKir1/2, showed tissue-specific expression in Malpighian tubules of adult bed bugs. Lastly, using an improved procedure for delivering double-stranded RNA (dsRNA) to male and female bed bugs (via the cervical membrane) we demonstrate rapid and systemic knockdown of ClKir3 transcripts. In conclusion, we demonstrate that the bed bug possesses at least two genes encoding Kir channels, and that RNAi is possible for at least Kir3, thereby offering a potential approach for elucidating the roles of Kir channel genes in bed bug physiology.

  11. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.

    Science.gov (United States)

    Rust, S; Rosier, M; Funke, H; Real, J; Amoura, Z; Piette, J C; Deleuze, J F; Brewer, H B; Duverger, N; Denèfle, P; Assmann, G

    1999-08-01

    Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.

  12. Analysis of Genes Encoding Penicillin-Binding Proteins in Clinical Isolates of Acinetobacter baumannii ▿ †

    Science.gov (United States)

    Cayô, Rodrigo; Rodríguez, María-Cruz; Espinal, Paula; Fernández-Cuenca, Felipe; Ocampo-Sosa, Alain A.; Pascual, Álvaro; Ayala, Juan A.; Vila, Jordi; Martínez-Martínez, Luis

    2011-01-01

    There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals. PMID:21947403

  13. Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase.

    Science.gov (United States)

    Tan, Fui-Ching; Cheng, Qi; Saha, Kaushik; Heinemann, Ilka U; Jahn, Martina; Jahn, Dieter; Smith, Alison G

    2008-03-01

    UROS (uroporphyrinogen III synthase; EC 4.2.1.75) is the enzyme responsible for the formation of uroporphyrinogen III, the precursor of all cellular tetrapyrroles including haem, chlorophyll and bilins. Although UROS genes have been cloned from many organisms, the level of sequence conservation between them is low, making sequence similarity searches difficult. As an alternative approach to identify the UROS gene from plants, we used functional complementation, since this does not require conservation of primary sequence. A mutant of Saccharomyces cerevisiae was constructed in which the HEM4 gene encoding UROS was deleted. This mutant was transformed with an Arabidopsis thaliana cDNA library in a yeast expression vector and two colonies were obtained that could grow in the absence of haem. The rescuing plasmids encoded an ORF (open reading frame) of 321 amino acids which, when subcloned into an Escherichia coli expression vector, was able to complement an E. coli hemD mutant defective in UROS. Final proof that the ORF encoded UROS came from the fact that the recombinant protein expressed with an N-terminal histidine-tag was found to have UROS activity. Comparison of the sequence of AtUROS (A. thaliana UROS) with the human enzyme found that the seven invariant residues previously identified were conserved, including three shown to be important for enzyme activity. Furthermore, a structure-based homology search of the protein database with AtUROS identified the human crystal structure. AtUROS has an N-terminal extension compared with orthologues from other organisms, suggesting that this might act as a targeting sequence. The precursor protein of 34 kDa translated in vitro was imported into isolated chloroplasts and processed to the mature size of 29 kDa. Confocal microscopy of plant cells transiently expressing a fusion protein of AtUROS with GFP (green fluorescent protein) confirmed that AtUROS was targeted exclusively to chloroplasts in vivo.

  14. Isolation of cDNA Fragment of Gene Encoding for Actin from Melastoma malabthricum.

    Directory of Open Access Journals (Sweden)

    Suharsono

    2010-11-01

    Full Text Available Isolation of cDNA Fragment of Gene Encoding for Actin from Melastoma malabthricum. M. malabathricumgrows well in acidic soil with high Al solubility, thereby it can be used as a model plant for tolerance to aluminum andacid stresses. Actin is housekeeping gene used as an internal control for gene expression analysis. The objective of thisresearch was to isolate and clone the cDNA fragments of MmACT encoding for actin of M. malabathricum. Total RNAwas isolated and used as the template for cDNA synthesis by reverse transcription. Four cDNA fragments of MmACT,called MmACT1, MmACT2, MmACT3, and MmACT4, had been isolated and inserted into pGEM-T Easy plasmid.Nucleotide sequence analysis showed that the size of MmACT1 and MmACT2 is 617 bp, whereas MmACT3 andMmACT4 is 735 bp. The similarity among these four MmACT is about 78%-99% based on nucleotide sequence andabout 98%-100% based on amino acid sequence. Phylogenetic analysis based on amino acid sequence showed that at1% dissimilarity, the MmACT1, MmACT2, MmACT3 and the ACT5 Populus trichocarpha are clustered in one group,while the MmACT4 is grouped with ACT9 P. trichocarpa and ACT1 Gossypium hirsutum, and these two groups areseparated from actin group of monocotyledonous plants. The sequence of MmACT fragments were registered inGenBank/EMBL/DDBJ database with accession numbers AB500686, AB500687, AB500688, and AB500689.

  15. The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.

    Science.gov (United States)

    Li, Yan-Ping; Tang, Xiao; Wu, Wei; Xu, Yang; Huang, Zhi-Bing; He, Qing-Hua

    2015-01-01

    Citrinin, a fungal secondary metabolite of polyketide origin, is moderately nephrotoxic to vertebrates, including humans. Citrinin is synthesised by condensation of acetyl-CoA and malonyl-CoA. Six genes involved in the citrinin biosynthesis, including pksCT, ctnA and ctnB, have been cloned in Monascus purpureus. The pksCT gene encodes a polyketide synthase; ctnA is a regulatory factor; and ctnB encodes an oxidoreductase. When the three genes were respectively disrupted, the disruption strains drastically decreased citrinin production or barely produced citrinin. Ten new genes have been discovered in Monascus aurantiacus besides the above six genes. One of these gene displayed the highest similarity to the β-carbonic anhydrase gene from Aspergillus oryzae (74% similarity) and was designated ctnG. To learn more about the citrinin biosynthetic pathway, a ctnG-replacement vector was constructed to disrupt ctnG with the hygromycin resistance gene as the selection marker, then transformed into M. aurantiacus Li AS3.4384 by a protoplast-PEG method. The citrinin content of three disruptants was reduced to about 50%, meanwhile pigment production decreased by 23%, respectively, over those of the wild-type strains. ctnG was deduced to be involved in the formation of malonyl-CoA as a common precursor of red pigments and citrinin. Therefore, the disruption of the ctnG gene decreased citrinin and pigment production. M. aurantiacus Li AS3.4384 can produce higher concentrations of citrinin than other strains such as M. purpureus and M. ruber. Establishing the function of citrinin biosynthetic genes in M. aurantiacus is helpful in understanding the citrinin synthetic pathway and adopting some strategies to control contamination.

  16. Zen and the art of mitochondrial DNA maintenance.

    Science.gov (United States)

    Holt, Ian J

    2010-03-01

    Because mitochondrial genes encode proteins essential for aerobic ATP production, mitochondrial DNA defects can cause an energy crisis. These defects fall into two broad categories: primary mutations in mitochondrial DNA and mutations in nuclear genes, whose protein products are involved in mitochondrial DNA maintenance. Evidence is accumulating that both types of defects can cause mitochondrial DNA loss. Hence, regulatory factors, which determine whether mitochondrial DNA molecules are maintained or lost, potentially play a more important role in these disorders than hitherto recognised. Candidates include reactive oxygen species (ROS) and the tumour suppressor p53. The cell might not always be the best judge of when to dispense with the services of mitochondrial DNA, and so interventions that favour its retention could potentially limit the adverse effects of pathological mitochondrial DNAs.

  17. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...... to be an isolated transcriptional unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy...... the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame...

  18. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  19. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ida, Yoshihiro; Furusawa, Chikara; Hirasawa, Takashi; Shimizu, Hiroshi

    2012-02-01

    We analyzed the effects of the deletions of genes encoding alcohol dehydrogenase (ADH) isozymes of Saccharomyces cerevisiae. The decrease in ethanol production by ADH1 deletion alone could be partially compensated by the upregulation of other isozyme genes, while the deletion of all known ADH isozyme genes stably disrupted ethanol production. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Variation in the Gene Encoding the Serotonin Transporter is Associated with a Measure of Sociopathy in Alcoholics

    OpenAIRE

    Herman, Aryeh I.; Conner, Tamlin S.; Anton, Raymond F; Gelernter, Joel; Kranzler, Henry R.; Covault, Jonathan

    2011-01-01

    The present study examined the association between a measure of sociopathy and 5-HTTLPR genotype in a sample of individuals from Project MATCH, a multi-center alcohol treatment trial. 5-HTTLPR, an insertion/deletion polymorphism in SLC6A4, the gene encoding the serotonin transporter protein, results in functionally distinct long (L) and short (S) alleles. The S allele has been associated with a variety of psychiatric disorders and symptoms including alcohol dependence, but it is unknown wheth...

  1. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts.

    OpenAIRE

    Bayne, M L; Cascieri, M A; Kelder, B; Applebaum, J; Chicchi, G; Shapiro, J A; Pasleau, F.; Kopchick, J. J.

    1987-01-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fi...

  2. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice.

    Science.gov (United States)

    Simon, Carola; Herath, Judith; Rockstroh, Stephanie; Daniel, Rolf

    2009-05-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  3. Rapid Identification of Genes Encoding DNA Polymerases by Function-Based Screening of Metagenomic Libraries Derived from Glacial Ice▿

    OpenAIRE

    2009-01-01

    Small-insert and large-insert metagenomic libraries were constructed from glacial ice of the Northern Schneeferner, which is located on the Zugspitzplatt in Germany. Subsequently, these libraries were screened for the presence of DNA polymerase-encoding genes by complementation of an Escherichia coli polA mutant. Nine novel genes encoding complete DNA polymerase I proteins or domains typical of these proteins were recovered.

  4. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1.

    Science.gov (United States)

    Tishkoff, D X; Johnson, A W; Kolodner, R D

    1991-05-01

    Vegetatively grown Saccharomyces cerevisiae cells contain an activity that promotes a number of homologous pairing reactions. A major portion of this activity is due to strand exchange protein 1 (Sep1), which was originally purified as a 132,000-Mr species (R. Kolodner, D. H. Evans, and P. T. Morrison, Proc. Natl. Acad. Sci. USA 84:5560-5564, 1987). The gene encoding Sep1 was cloned, and analysis of the cloned gene revealed a 4,587-bp open reading frame capable of encoding a 175,000-Mr protein. The protein encoded by this open reading frame was overproduced and purified and had a relative molecular weight of approximately 160,000. The 160,000-Mr protein was at least as active in promoting homologous pairing as the original 132,000-Mr species, which has been shown to be a fragment of the intact 160,000-Mr Sep1 protein. The SEP1 gene mapped to chromosome VII within 20 kbp of RAD54. Three Tn10LUK insertion mutations in the SEP1 gene were characterized. sep1 mutants grew more slowly than wild-type cells, showed a two- to fivefold decrease in the rate of spontaneous mitotic recombination between his4 heteroalleles, and were delayed in their ability to return to growth after UV or gamma irradiation. Sporulation of sep1/sep1 diploids was defective, as indicated by both a 10- to 40-fold reduction in spore formation and reduced spore viability of approximately 50%. The majority of sep1/sep1 diploid cells arrested in meiosis after commitment to recombination but prior to the meiosis I cell division. Return-to-growth experiments showed that sep1/sep1 his4X/his4B diploids exhibited a five- to sixfold greater meiotic induction of His+ recombinants than did isogenic SEP1/SEP1 strains. sep1/sep1 mutants also showed an increased frequency of exchange between HIS4, LEU2, and MAT and a lack of positive interference between these markers compared with wild-type controls. The interaction between sep1, rad50, and spo13 mutations suggested that SEP1 acts in meiosis in a pathway that is

  5. Identification and Partial Sequence of a PLD -like Gene Encoding for Phospholipase D in Peanut

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Preharvest aflatoxin contamination has been identified by thepeanut industry as the most serious challenge facing the industry worldwide. Drought stress is the most important environmental factor exacerbat ing Aspergillus inection and aflatoxin contamination in peanut. Development of resistant peanut cultivars would represent a major advance for the U.S. Peanut industry. In this study, we identify a novel PLD - like gene, encoding a putative phospholipase D, a main enzyme responsible for the drought - induced degradation of membrane phospholipids in plants. This cloned PLDI fragment has 1069 bp nucleic acids and the deduced amino acid sequence shows high identity with known PLD genes, having similar conserved features, such as two HXKXXXXD motifs. Further study is needed to genetically and physiologically characterize the PLD in peanut and to gain a better understanding of its function and relationship with drought - tolerance.%花生工业界认为收获前花生黄曲霉毒素的污染是全世界花生工业界面临的最严峻的挑战.干旱胁迫是加重花生黄曲霉真菌侵染和毒素污染最重要的环境因素.选育花生抗性品种将使美国花生工业处于优势地位.在这一研究报告中,我们鉴定出了一个新的类PLD基因,它编码磷脂酶D.在植物体中,这个酶是负责干旱诱导降解细胞膜磷脂的主要酶.克隆的PLDI片段有1069个核甘酸对长.推导的氨基酸序列与已知的PLD基因有很高的同一性,包括相似的保守序列特征,比如两个HXKXXXXD基元.对花生PLD基因特性需要从遗传和生理上作进一步研究,以便更好地理解这个基因的功能及其与花生耐干旱性的关系.

  6. Structural, functional and mutational analysis of the pfr gene encoding a ferritin from Helicobacter pylori.

    Science.gov (United States)

    Bereswill, S; Waidner, U; Odenbreit, S; Lichte, F; Fassbinder, F; Bode, G; Kist, M

    1998-09-01

    The function of the pfr gene encoding the ferritin from Helicobacter pylori was investigated using the Fur titration assay (FURTA) in Escherichia coli, and by characterization of a pfr-deficient mutant strain of H. pylori. Nucleotide sequence analysis revealed that the pfr region is conserved among strains (> 95% nucleotide identity). Two transcriptional start sites, at least one of them preceded by a sigma 70-dependent promoter, were identified. Provision of the H. pylori pfr gene on a multicopy plasmid resulted in reversal of the Fur-mediated repression of the fhuF gene in E. coli, thus enabling the use of the FURTA for cloning of the ferritin gene. Inactivation of the pfr gene, either by insertion of a resistance cassette or by deletion of the up- and downstream segments, abolished this function. Immunoblot analysis with a Pfr-specific antiserum detected the Pfr protein in H. pylori and in E. coli carrying the pfr gene on a plasmid. Pfr-deficient mutants of H. pylori were generated by marker-exchange mutagenesis. These were more susceptible than the parental strain to killing by various metal ions including irons, copper and manganese, whereas conditions of oxidative stress or iron deprivation were not discriminative. Analysis by element-specific electron microscopy revealed that growth of H. pylori in the presence of iron induces the formation of two kinds of cytoplasmic aggregates: large vacuole-like bodies and smaller granules containing iron in association with oxygen or phosphorus. Neither of these structures was detected in the pfr-deficient mutant strain. Furthermore, the ferritin accumulated under iron overload and the pfr-deficient mutant strains lacked expression of a 12 kDa protein which was negatively regulated by iron in the parental strain. The results indicate that the nonhaem-iron ferritin is involved in the formation of iron-containing subcellular structures and contributes to metal resistance of H. pylori. Further evidence for an interaction of

  7. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  8. Nuclear factor-κB regulates the expression of multiple genes encoding liver transport proteins.

    Science.gov (United States)

    Balasubramaniyan, Natarajan; Ananthanarayanan, Meenakshisundaram; Suchy, Frederick J

    2016-04-15

    In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTβ, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostβ promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in

  9. Identification and characterization of the genes encoding a unique surface (S-) layer of Tannerella forsythia.

    Science.gov (United States)

    Lee, Seok-Woo; Sabet, Mojgan; Um, Heung-Sik; Yang, Jun; Kim, Hyeong C; Zhu, Weidong

    2006-04-12

    A newly emerged periodontopathic pathogen Tannerella forsythia (formerly Bacteroides forsythus), a Gram-negative, filament-shaped, strict anaerobic, non-pigmented oral bacterium, possesses a surface (S-) layer. In our previous studies, the S-layer has been isolated, and shown to mediate hemagglutination, adhesion/invasion of epithelial cell, and murine subcutaneous abscess formation. In the present study, biochemical and molecular genetic characterization of the S-layer are reported. Amino acid sequencing and mass spectrometry indicated that the S-layer is composed of two different proteins, termed 200 and 210 kDa proteins. It was also shown that these proteins are glycosylated. The genes encoding the core proteins of these glycoproteins, designated as tfsA and tfsB, have been identified in silico, cloned, and their sequences have been determined. The tfsA (3.5 kb) and tfsB (4.1 kb) genes are located in tandem, and encode for 135 and 152 kDa proteins, respectively. An apparent discrepancy in molecular weights, 135 vs. 200 kDa and 152 vs. 210 kDa, is accounted for carbohydrate residues attached to the core proteins. Amino acid sequence comparison exhibited a 24% similarity between the 200 and 210 kDa proteins. Further sequence analyses showed that TfsA and TfsB possess putative signal peptide sequences with cleavage sites at alanine residues, and transmembrane domains on the C-terminal region. Northern blot and RT-PCR analyses confirmed an operon structure of tfsAB, suggesting co-regulation of these genes in producing the S-layer. Putative promoter sequences and transcription termination sequences for this operon have also been identified. Comparison with database indicates that the S-layer of T. forsythia has a unique structure exhibiting no homology to other known S-layers of prokaryotic organisms. The present study shows that the T. forsythia S-layer is very unique, since it appears to be composed of two large glycoproteins, and it does not reveal any homology to

  10. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis

    Directory of Open Access Journals (Sweden)

    González Mauricio

    2009-09-01

    recovered a substantial number of unknown genes encoding putative secreted and transmembrane proteins, suggesting new components of signaling pathways that might be incorporated within the existing regulatory networks controlling D. melanogaster embryogenesis. These genes are also good candidates for additional targeted functional analyses similar to those we conducted for CG6234. See related minireview by Vichas and Zallen: http://www.jbiol.com/content/8/8/76

  11. Mitochondrial diseases: advances and issues

    Science.gov (United States)

    Scarpelli, Mauro; Todeschini, Alice; Volonghi, Irene; Padovani, Alessandro; Filosto, Massimiliano

    2017-01-01

    Mitochondrial diseases (MDs) are a clinically heterogeneous group of disorders caused by a dysfunction of the mitochondrial respiratory chain. They can be related to mutation of genes encoded using either nuclear DNA or mitochondrial DNA. The advent of next generation sequencing and whole exome sequencing in studying the molecular bases of MDs will bring about a revolution in the field of mitochondrial medicine, also opening the possibility of better defining pathogenic mechanisms and developing novel therapeutic approaches for these devastating disorders. The canonical rules of mitochondrial medicine remain milestones, but novel issues have been raised following the use of advanced diagnostic technologies. Rigorous validation of the novel mutations detected using deep sequencing in patients with suspected MD, and a clear definition of the natural history, outcome measures, and biomarkers that could be usefully adopted in clinical trials, are mandatory goals for the scientific community. Today, therapy is often inadequate and mostly palliative. However, important advances have been made in treating some clinical entities, eg, mitochondrial neuro-gastrointestinal encephalomyopathy, for which approaches using allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy have recently been developed. Promising new treatment methods are being identified so that researchers, clinicians, and patients can join forces to change the history of these untreatable disorders. PMID:28243136

  12. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  13. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant № 14-04-00173.

  14. The mitochondrial 13513G > A mutation is most frequent in Leigh syndrome combined with reduced complex I activity, optic atrophy and/or Wolff-Parkinson-White.

    NARCIS (Netherlands)

    Ruiter, E.M.; Siers, M.H.; Elzen, C. van der; Engelen, B.G.M. van; Smeitink, J.A.M.; Rodenburg, R.J.T.; Hol, F.A.

    2007-01-01

    The m.13513G > A transition in the mitochondrial gene encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and has been reported to be a frequent cause of Leigh syndrome (LS). We determined the fre

  15. The mitochondrial 13513G > A mutation is most frequent in Leigh syndrome combined with reduced complex I activity, optic atrophy and/or Wolff-Parkinson-White.

    NARCIS (Netherlands)

    Ruiter, E.M.; Siers, M.H.; Elzen, C. van der; Engelen, B.G.M. van; Smeitink, J.A.M.; Rodenburg, R.J.T.; Hol, F.A.

    2007-01-01

    The m.13513G > A transition in the mitochondrial gene encoding the ND5 subunit of respiratory chain complex I, can cause mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) and has been reported to be a frequent cause of Leigh syndrome (LS). We determined the fre

  16. Structure and heterologous expression of the gene encoding the cell surface glycoprotein from Haloarcula japonica strain TR-1.

    Science.gov (United States)

    Wakai, H; Takada, K; Nakamura, S; Horikoshi, K

    1995-01-01

    The gene encoding the cell surface glycoprotein (CSG) of Haloarcula japonica strain TR-1 was cloned and sequenced. The structural gene consisted from an open reading frame of 2,586 bp. A potential promoter sequence was found about 150 bp upstream of the ATG initiation codon. N-terminal amino acid sequence of the Ha. japonica CSG revealed that the mature CSG consisted of 828 amino acids. Five potential N-glycosylation sites were found in the mature sequence. The cloned CSG gene of Ha. japonica was expressed in closely-related halophilic archaea.

  17. AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis.

    Directory of Open Access Journals (Sweden)

    John Paul SanGiovanni

    Full Text Available PURPOSE: To determine whether common DNA sequence variants within groups of genes encoding elements of stress-activated mitogen-activated protein kinase (MAPK signaling pathways are, in aggregate, associated with advanced AMD (AAMD. METHODS: We used meta-regression and exact testing methods to identify AAMD-associated SNPs in 1177 people with AAMD and 1024 AMD-free elderly peers from 3 large-scale genotyping projects on the molecular genetics of AMD. SNPs spanning independent AAMD-associated genomic intervals were examined with a multi-locus-testing method (INRICH for enrichment within five sets of genes encoding constituents of stress-activated MAPK signaling cascades. RESULTS: Four-of-five pathway gene sets showed enrichment with AAMD-associated SNPs; findings persisted after adjustment for multiple testing in two. Strongest enrichment signals (P = 0.006 existed in a c-Jun N-terminal kinase (JNK/MAPK cascade (Science Signaling, STKE CMP_10827. In this pathway, seven independent AAMD-associated regions were resident in 6 of 25 genes examined. These included sequence variants in: 1 three MAP kinase kinase kinases (MAP3K4, MAP3K5, MAP3K9 that phosphorylate and activate the MAP kinase kinases MAP2K4 and MAP2K7 (molecules that phosphorylate threonine and tyrosine residues within the activation loop of JNK; 2 a target of MAP2K7 (JNK3A1 that activates complexes involved in transcriptional regulation of stress related genes influencing cell proliferation, apoptosis, motility, metabolism and DNA repair; and 3 NR2C2, a transcription factor activated by JNK1A1 (a drugable molecule influencing retinal cell viability in model systems. We also observed AAMD-related sequence variants resident in genes encoding PPP3CA (a drugable molecule that inactivates MAP3K5, and two genes (TGFB2, TGFBR2 encoding factors involved in MAPK sensing of growth factors/cytokines. CONCLUSIONS: Linkage disequilibrium (LD-independent genomic enrichment analysis yielded

  18. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase.

    OpenAIRE

    Sung, Y C; Anderson, P. M.; Fuchs, J A

    1987-01-01

    Restriction fragments containing the gene encoding cyanase, cynS, without its transcriptional regulatory sequences were placed downstream of lac and tac promoters in various pUC derivatives to maximize production of cyanase. Plasmid pSJ105, which contains the cynS gene and an upstream open reading frame, gave the highest expression of cyanase. Approximately 50% of the total soluble protein in stationary-phase cultures of a lac-deleted strain containing plasmid pSJ105 was cyanase. The inserted...

  19. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Lange, Mette; Pilgaard, Bo

    2014-01-01

    . In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important...... feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases...

  20. A Hereditary Enteropathy Caused by Mutations in the SLCO2A1 Gene, Encoding a Prostaglandin Transporter.

    Directory of Open Access Journals (Sweden)

    Junji Umeno

    2015-11-01

    Full Text Available Previously, we proposed a rare autosomal recessive inherited enteropathy characterized by persistent blood and protein loss from the small intestine as chronic nonspecific multiple ulcers of the small intestine (CNSU. By whole-exome sequencing in five Japanese patients with CNSU and one unaffected individual, we found four candidate mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. The pathogenicity of the mutations was supported by segregation analysis and genotyping data in controls. By Sanger sequencing of the coding regions, 11 of 12 other CNSU patients and 2 of 603 patients with a diagnosis of Crohn's disease were found to have homozygous or compound heterozygous SLCO2A1 mutations. In total, we identified recessive SLCO2A1 mutations located at seven sites. Using RT-PCR, we demonstrated that the identified splice-site mutations altered the RNA splicing, and introduced a premature stop codon. Tracer prostaglandin E2 uptake analysis showed that the mutant SLCO2A1 protein for each mutation exhibited impaired prostaglandin transport. Immunohistochemistry and immunofluorescence analyses revealed that SLCO2A1 protein was expressed on the cellular membrane of vascular endothelial cells in the small intestinal mucosa in control subjects, but was not detected in affected individuals. These findings indicate that loss-of-function mutations in the SLCO2A1 gene encoding a prostaglandin transporter cause the hereditary enteropathy CNSU. We suggest a more appropriate nomenclature of "chronic enteropathy associated with SLCO2A1 gene" (CEAS.

  1. Rational design of glycerol dehydratase: Swapping the genes encoding the subunits of glycerol dehydratase to improve enzymatic properties

    Institute of Scientific and Technical Information of China (English)

    QI Xianghui; SUN Liang; LUO Zhaofei; WU Jiequn; MENG Xiaolei; TANG Yue; WEI Yutuo; HUANG Ribo

    2006-01-01

    1,3-propanediol (1,3-PD) is an important material for chemical industry, and there has been always much interest in the production of 1,3-PD using all possible routes. The genes encoding glycerol dehydratase (GDHt) from Citrobacter freundii,Klebsiella pneumoniae and metagenome were cloned and expressed in E. coli. All glycerol dehydratases but the one from metagenome could be detected to show enzyme activities. In order to improve the enzymatic properties of GDHts, the genes encoding α and β-γ subunits were cloned, and the enzyme characteristics were evolved by rational design based on their 3D structures which were constructed by homology modeling. Six heteroenzymes were obtained by swapping the α subunit genes of these three different-source-derived GDHts. The pH,thermal stability and Vmax of some heteroenzymes were dramatically improved by 2-5 times compared with the wild one (GDHtKP). The GDHt cloned from metagenome, originally proved to be with no enzyme activity, was converted into active enzyme by swapping its subunits with other different GDHts. In addition, the effect of subtle 3D structural changes on the properties of the enzyme was also observed.

  2. Crosstalk between ABO and Forssman (FORS) blood group systems: FORS1 antigen synthesis by ABO gene-encoded glycosyltransferases

    Science.gov (United States)

    Yamamoto, Miyako; Cid, Emili; Yamamoto, Fumiichiro

    2017-01-01

    A and B alleles at the ABO genetic locus specify A and B glycosyltransferases that catalyze the biosynthesis of A and B oligosaccharide antigens, respectively, of blood group ABO system which is important in transfusion and transplantation medicine. GBGT1 gene encodes Forssman glycolipid synthase (FS), another glycosyltransferase that produces Forssman antigen (FORS1). Humans are considered to be Forssman antigen-negative species without functional FS. However, rare individuals exhibiting Apae phenotype carry a dominant active GBGT1 gene and express Forssman antigen on RBCs. Accordingly, FORS system was recognized as the 31st blood group system. Mouse ABO gene encodes a cis-AB transferase capable of producing both A and B antigens. This murine enzyme contains the same GlyGlyAla tripeptide sequence as FSs at the position important for the determination of sugar specificity. We, therefore, transfected the expression construct into appropriate recipient cells and examined whether mouse cis-AB transferase may also exhibit FS activity. The result was positive, confirming the crosstalk between the ABO and FORS systems. Further experiments have revealed that the introduction of this tripeptide sequence to human A transferase conferred some, although weak, FS activity, suggesting that it is also involved in the recognition/binding of acceptor substrates, in addition to donor nucleotide-sugars. PMID:28134301

  3. Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    Directory of Open Access Journals (Sweden)

    Cai Hong

    2010-06-01

    Full Text Available Abstract Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes and 5,584 unique proteins (encoded once on only one of the eleven genomes. Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments.

  4. Expression of the Genes Encoding the Trk and Kdp Potassium Transport Systems of Mycobacterium tuberculosis during Growth In Vitro

    Directory of Open Access Journals (Sweden)

    Moloko C. Cholo

    2015-01-01

    Full Text Available Two potassium (K+-uptake systems, Trk and Kdp, are operative in Mycobacterium tuberculosis (Mtb, but the environmental factors triggering their expression have not been determined. The current study has evaluated the expression of these genes in the Mtb wild-type and a trk-gene knockout strain at various stages of logarithmic growth in relation to extracellular K+ concentrations and pH. In both strains, mRNA levels of the K+-uptake encoding genes were relatively low compared to those of the housekeeping gene, sigA, at the early- and mid-log phases, increasing during late-log. Increased gene expression coincided with decreased K+ uptake in the context of a drop in extracellular pH and sustained high extracellular K+ concentrations. In an additional series of experiments, the pH of the growth medium was manipulated by the addition of 1N HCl/NaOH. Decreasing the pH resulted in reductions in both membrane potential and K+ uptake in the setting of significant induction of genes encoding both K+ transporters. These observations are consistent with induction of the genes encoding the active K+ transporters of Mtb as a strategy to compensate for loss of membrane potential-driven uptake of K+ at low extracellular pH. Induction of these genes may promote survival in the acidic environments of the intracellular vacuole and granuloma.

  5. The carB Gene Encoding the Large Subunit of Carbamoylphosphate Synthetase from Lactococcus lactis Is Transcribed Monocistronically

    Science.gov (United States)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalyzed by the heterodimeric enzyme carbamoylphosphate synthetase. The genes encoding the two subunits of this enzyme in procaryotes are normally transcribed as an operon, but the gene encoding the large subunit (carB) in Lactococcus lactis is shown to be transcribed as an isolated unit. Carbamoylphosphate is a precursor in the biosynthesis of both pyrimidine nucleotides and arginine. By mutant analysis, L. lactis is shown to possess only one carB gene; the same gene product is thus required for both biosynthetic pathways. Furthermore, arginine may satisfy the requirement for carbamoylphosphate in pyrimidine biosynthesis through degradation by means of the arginine deiminase pathway. The expression of the carB gene is subject to regulation at the level of transcription by pyrimidines, most probably by an attenuator mechanism. Upstream of the carB gene, an open reading frame showing a high degree of similarity to those of glutathione peroxidases from other organisms was identified. PMID:9721272

  6. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance

    NARCIS (Netherlands)

    Heeman, B.; Haute, C. Van den; Aelvoet, S.A.; Valsecchi, F.; Rodenburg, R.J.T.; Reumers, V.; Debyser, Z.; Callewaert, G.; Koopman, W.J.H.; Willems, P.H.G.M.; Baekelandt, V.

    2011-01-01

    Loss-of-function mutations in the gene encoding the mitochondrial PTEN-induced putative kinase 1 (PINK1) are a major cause of early-onset familial Parkinson's disease (PD). Recent studies have highlighted an important function for PINK1 in clearing depolarized mitochondria by mitophagy. However, the

  7. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  8. The CKH1/EER4 gene encoding a TAF12-like protein negatively regulates cytokinin sensitivity in Arabidopsis thaliana.

    Science.gov (United States)

    Kubo, Minoru; Furuta, Kaori; Demura, Taku; Fukuda, Hiroo; Liu, Yao-Guang; Shibata, Daisuke; Kakimoto, Tatsuo

    2011-04-01

    The recessive ckh1 (cytokinin hypersensitive 1) mutant of Arabidopsis thaliana shows hypersensitivity to cytokinins, which promote proliferation and greening of calli. The CKH1 gene encodes a protein resembling TAF12 (TATA BOX BINDING PROTEIN ASSOCIATED FACTOR 12), which is a component of transcription factor IID (TFIID)- and histone acetyltransferase-containing complexes in yeast and animals. Microarray analyses revealed that a substantially greater number of genes responded to a low level of cytokinins in the ckh1 mutant than in the wild type. However, expression of cytokinin primary response genes was not significantly affected by the ckh1 mutation. These results suggest that the CKH1 protein regulates a set of genes involved in late signaling processes governing a range of cytokinin responses, including cell proliferation and differentiation.

  9. Transcriptional regulation of the genes encoding chitin and β-1,3-glucan synthases from Ustilago maydis.

    Science.gov (United States)

    Robledo-Briones, Mariana; Ruiz-Herrera, José

    2012-07-01

    Transcriptional regulation of genes encoding chitin synthases (CHS) and β-1,3-glucan synthase (GLS) from Ustilago maydis was studied. Transcript levels were measured during the growth curve of yeast and mycelial forms, in response to ionic and osmotic stress, and during infection of maize plants. Expression of the single GLS gene was constitutive. In contrast, CHS genes expression showed differences depending on environmental conditions. Transcript levels were slightly higher in the mycelial forms, the highest levels occurring at the log phase. Ionic and osmotic stress induced alterations in the expression of CHS genes, but not following a defined pattern, some genes were induced and others repressed by the tested compounds. Changes in transcripts were more apparent during the pathogenic process. At early infection stages, only CHS6 gene showed significant transcript levels, whereas at the period of tumor formation CHS7 and CHS8 genes were also were induced.

  10. Isolation of the GFA1 gene encoding glucosamine-6-phosphate synthase of Sporothrix schenckii and its expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Sánchez-López, Juan Francisco; González-Ibarra, Joaquín; Álvarez-Vargas, Aurelio; Milewski, Slawomir; Villagómez-Castro, Julio César; Cano-Canchola, Carmen; López-Romero, Everardo

    2015-06-01

    Glucosamine-6-phosphate synthase (GlcN-6-P synthase) is an essential enzyme involved in cell wall biogenesis that has been proposed as a strategic target for antifungal chemotherapy. Here we describe the cloning and functional characterization of Sporothrix schenckii GFA1 gene which was isolated from a genomic library of the fungus. The gene encodes a predicted protein of 708 amino acids that is homologous to GlcN-6-P synthases from other sources. The recombinant enzyme restored glucosamine prototrophy of the Saccharomyces cerevisiae gfa1 null mutant. Purification and biochemical analysis of the recombinant enzyme revealed some differences from the wild type enzyme, such as improved stability and less sensitivity to UDP-GlcNAc. The sensitivity of the recombinant enzyme to the selective inhibitor FMDP [N(3)-(4-methoxyfumaroyl)-l-2,3-diaminopropanoic acid] and other properties were similar to those previously reported for the wild type enzyme.

  11. Genes encoding homologous antigens in taeniid cestode parasites: Implications for development of recombinant vaccines produced in Escherichia coli.

    Science.gov (United States)

    Gauci, Charles; Lightowlers, Marshall W

    2013-01-01

    Recombinant vaccine antigens are being evaluated for their ability to protect livestock animals against cysticercosis and related parasitic infections. Practical use of some of these vaccines is expected to reduce parasite transmission, leading to a reduction in the incidence of neurocysticercosis and hydatid disease in humans. We recently showed that an antigen (TSOL16), expressed in Escherichia coli, confers high levels of protection against Taenia solium cysticercosis in pigs, which provides a strategy for control of T. solium parasite transmission. Here, we discuss the characteristics of this antigen that may affect the utility of TSOL16 and related antigens for development as recombinant vaccines. We also report that genes encoding antigens closely related to TSOL16 from T. solium also occur in other related species of parasites. These highly homologous antigens have the potential to be used as vaccines and may provide protection against related species of Taenia that cause infection in other hosts.

  12. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  13. Determination of ploidy level and isolation of genes encoding acetyl-CoA carboxylase in Japanese Foxtail (Alopecurus japonicus.

    Directory of Open Access Journals (Sweden)

    Hongle Xu

    Full Text Available Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance. However, most studies on this weed have ignored the fact that there are multiple copies of target genes. This may complicate the study of resistance mechanisms. Japanese foxtail was found to be a tetraploid by flow cytometer and chromosome counting, two commonly used methods in the determination of ploidy levels. We found that there are two copies of the gene encoding plastidic acetyl-CoA carboxylase (ACCase in Japanese foxtail and all the homologous genes are expressed. Additionally, no difference in ploidy levels or ACCase gene copy numbers was observed between an ACCase-inhibiting herbicide-resistant and a herbicide-sensitive population in this study.

  14. Magnaporthe oryzae MTP1 gene encodes a type Ⅲ transmembrane protein involved in conidiation and conidial germination

    Institute of Scientific and Technical Information of China (English)

    Qin LU; Jian-ping LU; Xiao-dong LI; Xiao-hong LIU; Hang MIN; Fu-cheng LIN

    2008-01-01

    In this study the MTP1 gene, encoding a type Ⅲ integral transmembrane protein, was isolated fi'om the rice blast fungus Magnaporthe oryzae. The Mtpl protein is 520 amino acids long and is comparable to the Ytpl protein of Saccharomyces cerevisiae with 46% sequence similarity. Prediction programs and MTP1-GFP (green fluorescent protein) fusion expression results indicate that Mtpl is a protein located at several membranes in the cytoplasm. The functions of the MTP1 gene in the growth and development of the fungus were studied using an MTP1 gene knockout mutant. The MTP1 gene was primarily ex-pressed at the hyphal and conidial stages and is necessary for conidiation and conidial germination, but is not required for patho-genicity. The △mtpl mutant grew more efficiently than the wild type strain on non-fermentable carbon sources, implying that the MTP1 gene has a unique role in respiratory growth and carbon source use.

  15. The yeast Dekkera bruxellensis genome contains two orthologs of the ARO10 gene encoding for phenylpyruvate decarboxylase.

    Science.gov (United States)

    de Souza Liberal, Anna Theresa; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante; Simões, Diogo Ardaillon; de Morais, Marcos Antonio

    2012-07-01

    The yeast Dekkera bruxellensis possesses important physiological traits that enable it to grow in industrial environments as either spoiling yeast of wine production or a fermenting strain used for lambic beer, or fermenting yeast in the bioethanol production process. In this work, in silico analysis of the Dekkera genome database allowed the identification of two paralogous genes encoding for phenylpyruvate decarboxylase (DbARO10) that represents a unique trait among the hemiascomycetes. The molecular analysis of the theoretical protein confirmed its protein identity. Upon cultivation of the cell in medium containing phenylpyruvate, both increases in gene expression and in phenylpyruvate decarboxylase activity were observed. Both genes were differentially expressed depending on the culture condition and the type of metabolism, which indicated the difference in the biological function of their corresponding proteins. The importance of the duplicated DbARO10 genes in the D. bruxellensis genome was discussed and represents the first effort to understand the production of flavor by this yeast.

  16. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yingang; Guo Xiong; Liu Zheng; Wang Shijie

    2007-01-01

    Objective To develop retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells. Methods Mesenchymal stem cells from New Zealand white rabbits were transduced with retroviral pLEGFP-BMP2 vector by the optimized retroviral transduction protocol. Fluorescent microscopy's examination was to evaluate the results of the transduction, flow cytometer's analysis was to evaluate the transduction efficiency and the Fluorescence-activated cell sorting method was to sort the transduced cells. Bioactivity test from C2C12K4 cells was to show the expression and bio-activity of the fusion gene. Results Fluorescent microscopy showed the success of the transduction. By flow cytometer's analysis, the mean efficiency of the transduction with EGFP was (42.8±6.1)% SD. Transduced cells were sorted efficiently by the fluorescence-activated cell sorting method and after sorting, almost of those showed the expression of BMP2. Fluorescently and strongly bioactivity test for C2C12K4 cells demonstrated that fluorescent materials were located the surface of cells and the activity of luciferase increased compared with the control. Analysis of long-term expression showed there was no difference between 2 week-time point and 3 month-time point of culture post-sorting. Conclusion Mesenchymal stem cells can be transduced efficiently by retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2, the highly pure transduced cells are obtained by the fluorescence-activated cell sorting technique, the expressed chimeric protein embraced the double bioactivity of EGFP and BMP2, and moreover, the expression had not attenuated over time.

  17. The Cryptic dsdA Gene Encodes a Functional D-Serine Dehydratase in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Li, Guoqing; Lu, Chung-Dar

    2016-06-01

    D-Serine, an important neurotransmitter, also contributes to bacterial adaptation and virulence in humans. It was reported that Pseudomonas aeruginosa PAO1 can grow on D-serine as the sole nitrogen source, and growth was severely reduced in the dadA mutant devoid of the D-alanine dehydrogenase with broad substrate specificity. In this study, the dsdA gene (PA3357) encoding a putative D-serine dehydratase was subjected to further characterization. Growth on D-serine as the sole source of nitrogen was retained in the ∆dsdA mutant and was abolished completely in the ∆dadA and ∆dadA-∆dsdA mutants. However, when complemented by dsdA on a plasmid, the double mutant was able to grow on D-serine as the sole source of carbon and nitrogen, supporting the proposed biochemical function of DsdA in the conversion of D-serine into pyruvate and ammonia. Among D- and L-amino acids tested, only D-serine and D-threonine could serve as the substrates of DsdA, and the Km of DsdA with D-serine was calculated to be 330 μM. Comparative genomics revealed that this cryptic dsdA gene was highly conserved in strains of P. aeruginosa, and that most strains of Pseudomonas putida possess putative dsdCAX genes encoding a transcriptional regulator DsdC and a D-serine transporter DsdX as in enteric bacteria. In conclusion, this study supports the presence of a cryptic dsdA gene encoding a functional D-serine dehydratase in P. aeruginosa, and the absence of dsdA expression in response to exogenous D-serine might be due to the loss of regulatory elements for gene activation during evolution.

  18. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    Directory of Open Access Journals (Sweden)

    Wei eLiting

    2015-06-01

    Full Text Available Glutathione (GSH and ascorbate (ASA are associated with the abscisic acid (ABA-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L. suffering from 5 days of 15% polyethylene glycol (PEG-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased contents of hydrogen peroxide (H2O2 and malondialdehyde (MDA. Under drought stress conditions, ABA markedly increased contents of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR. The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the contents of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants

  19. Comparative evolutionary genomics of the HADH2 gene encoding Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10

    Directory of Open Access Journals (Sweden)

    Fernandes Pedro A

    2006-08-01

    Full Text Available Abstract Background The Aβ-binding alcohol dehydrogenase/17β-hydroxysteroid dehydrogenase type 10 (ABAD/HSD10 is an enzyme involved in pivotal metabolic processes and in the mitochondrial dysfunction seen in the Alzheimer's disease. Here we use comparative genomic analyses to study the evolution of the HADH2 gene encoding ABAD/HSD10 across several eukaryotic species. Results Both vertebrate and nematode HADH2 genes showed a six-exon/five-intron organization while those of the insects had a reduced and varied number of exons (two to three. Eutherian mammal HADH2 genes revealed some highly conserved noncoding regions, which may indicate the presence of functional elements, namely in the upstream region about 1 kb of the transcription start site and in the first part of intron 1. These regions were also conserved between Tetraodon and Fugu fishes. We identified a conserved alternative splicing event between human and dog, which have a nine amino acid deletion, causing the removal of the strand βF. This strand is one of the seven strands that compose the core β-sheet of the Rossman fold dinucleotide-binding motif characteristic of the short chain dehydrogenase/reductase (SDR family members. However, the fact that the substrate binding cleft residues are retained and the existence of a shared variant between human and dog suggest that it might be functional. Molecular adaptation analyses across eutherian mammal orthologues revealed the existence of sites under positive selection, some of which being localized in the substrate-binding cleft and in the insertion 1 region on loop D (an important region for the Aβ-binding to the enzyme. Interestingly, a higher than expected number of nonsynonymous substitutions were observed between human/chimpanzee and orangutan, with six out of the seven amino acid replacements being under molecular adaptation (including three in loop D and one in the substrate binding loop. Conclusion Our study revealed that HADH

  20. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics

    OpenAIRE

    Levente Szalárdy; Dénes Zádori; Péter Klivényi; József Toldi; László Vécsei

    2015-01-01

    Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these di...

  1. Occurrence of blaNDM-1 & absence of blaKPC genes encoding carbapenem resistance in uropathogens from a tertiary care centre from north India

    Directory of Open Access Journals (Sweden)

    Balvinder Mohan

    2015-01-01

    Interpretation & conclusions: The bla NDM-1 gene was absent in our isolates obtained during 2008 but was present amongst Enterobacteriaceae isolated in 2012. The bla KPC gene was also not found. Nine isolates obtained during the two years had multiple genes encoding carbapenemases confirming the previous reports of emergence of GNB containing genes encoding multiple carbapenemases. Typing using BOX-PCR indicated that this emergence was not because of clonal expansion of a single strain, and multiple strains were circulating at a single point of time.

  2. Geographical variation in the presence of genes encoding superantigenic exotoxins and beta-hemolysin among Staphylococcus aureus isolated from bovine mastitis in Europe and USA

    DEFF Research Database (Denmark)

    Larsen, H. D.; Aarestrup, Frank Møller; Jensen, N. E.

    2002-01-01

    for the presence of genes encoding staphylococcal enterotoxins A-E, and H, toxic shock toxin-1 (TSST-1), and beta-hemolysin, and 128 of these were examined for exfoliative toxins A and B. The detection was done by PCR. Phenotypic methods were used to confirm the PCR-results. None of the 128 isolates carried...... for the individual exotoxins. The genes encoding enterotoxin C, TSST-1, and enterotoxin D were the most common superantigens. The present and earlier studies demonstrate that the superantigenic exotoxins that were investigated in this study, do not play a role in the pathogenesis of bovine S. aureus mastitis...

  3. Mitochondrial diseases: advances and issues

    Directory of Open Access Journals (Sweden)

    Scarpelli M

    2017-02-01

    Full Text Available Mauro Scarpelli,1 Alice Todeschini,2 Irene Volonghi,2 Alessandro Padovani,2 Massimiliano Filosto2 1Department of Neuroscience, Unit of Neurology, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy; 2Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST “Spedali Civili”, University of Brescia, Brescia, Italy Abstract: Mitochondrial diseases (MDs are a clinically heterogeneous group of disorders caused by a dysfunction of the mitochondrial respiratory chain. They can be related to mutation of genes encoded using either nuclear DNA or mitochondrial DNA. The advent of next generation sequencing and whole exome sequencing in studying the molecular bases of MDs will bring about a revolution in the field of mitochondrial medicine, also opening the possibility of better defining pathogenic mechanisms and developing novel therapeutic approaches for these devastating disorders. The canonical rules of mitochondrial medicine remain milestones, but novel issues have been raised following the use of advanced diagnostic technologies. Rigorous validation of the novel mutations detected using deep sequencing in patients with suspected MD, and a clear definition of the natural history, outcome measures, and biomarkers that could be usefully adopted in clinical trials, are mandatory goals for the scientific community. Today, therapy is often inadequate and mostly palliative. However, important advances have been made in treating some clinical entities, eg, mitochondrial neuro-gastrointestinal encephalomyopathy, for which approaches using allogeneic hematopoietic stem cell transplantation, orthotopic liver transplantation, and carrier erythrocyte entrapped thymidine phosphorylase enzyme therapy have recently been developed. Promising new treatment methods are being identified so that researchers, clinicians, and patients can join forces to change the history of these untreatable disorders. Keywords: mitochondrial diseases

  4. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma.

    Science.gov (United States)

    de Araujo, Luiza F; Fonseca, Aline S; Muys, Bruna R; Plaça, Jessica R; Bueno, Rafaela B L; Lorenzi, Julio C C; Santos, Anemari R D; Molfetta, Greice A; Zanette, Dalila L; Souza, Jorge E S; Valente, Valeria; Silva, Wilson A

    2015-11-01

    Mitochondrial dysfunction is regarded as a hallmark of cancer progression. In the current study, we evaluated mitochondrial genome instability and copy number in colorectal cancer using Next Generation Sequencing approach and qPCR, respectively. The results revealed higher levels of heteroplasmy and depletion of the relative mtDNA copy number in colorectal adenocarcinoma. Adenocarcinoma samples also presented an increased number of mutations in nuclear genes encoding proteins which functions are related with mitochondria fusion, fission and localization. Moreover, we found a set of mitochondrial and nuclear genes, which cooperate in the same mitochondrial function simultaneously mutated in adenocarcinoma. In summary, these results support an important role for mitochondrial function and genomic instability in colorectal tumorigenesis.

  5. A novel missense mutation in SUCLG1 associated with mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria

    DEFF Research Database (Denmark)

    Østergaard, Elsebet; Schwartz, Marianne; Batbayli, Mustafa;

    2010-01-01

    Mitochondrial DNA depletion, encephalomyopathic form, with methylmalonic aciduria is associated with mutations in SUCLA2, the gene encoding a beta subunit of succinate-CoA ligase, where 17 patients have been reported. Mutations in SUCLG1, encoding the alpha subunit of the enzyme, have been reported...

  6. Evolutionary implications of mitochondrial genetic variation: mitochondrial genetic effects on OXPHOS respiration and mitochondrial quantity change with age and sex in fruit flies.

    Science.gov (United States)

    Wolff, J N; Pichaud, N; Camus, M F; Côté, G; Blier, P U; Dowling, D K

    2016-04-01

    The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution.

  7. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders.

    Science.gov (United States)

    Ramli, Nur Siti Fatimah; Mat Junit, Sarni; Leong, Ng Khoon; Razali, Nurhanani; Jayapalan, Jaime Jacqueline; Abdul Aziz, Azlina

    2017-01-01

    Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC) of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes. Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG) (n = 18), follicular thyroid adenoma (FTA) (n = 7), papillary thyroid cancer (PTC) (n = 10), and follicular thyroid cancer (FTC) (n = 6). Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR-DNA sequencing. Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD) and catalase (CAT) activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx) activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA) were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS) levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in identification of 49 single

  8. Identification and regulation of expression of a gene encoding a filamentous hemagglutinin-related protein in Bordetella holmesii

    Directory of Open Access Journals (Sweden)

    Gross Roy

    2007-11-01

    Full Text Available Abstract Background Bordetella holmesii is a human pathogen closely related to B. pertussis, the etiological agent of whooping cough. It is able to cause disease in immunocompromised patients, but also whooping cough-like symptoms in otherwise healthy individuals. However, virtually nothing was known so far about the underlying virulence mechanisms and previous attempts to identify virulence factors related to those of B. pertussis were not successful. Results By use of a PCR approach we were able to identify a B. holmesii gene encoding a protein with significant sequence similarities to the filamentous hemagglutinin (FHA of B. avium and to a lesser extent to the FHA proteins of B. pertussis, B. parapertussis, and B. bronchiseptica. For these human and animal pathogens FHA is a crucial virulence factor required for successful colonization of the host. Interestingly, the B. holmesii protein shows a relatively high overall sequence similarity with the B. avium protein, while sequence conservation with the FHA proteins of the human and mammalian pathogens is quite limited and is most prominent in signal sequences required for their export to the cell surface. In the other Bordetellae expression of the fhaB gene encoding FHA was shown to be regulated by the master regulator of virulence, the BvgAS two-component system. Recently, we identified orthologs of BvgAS in B. holmesii, and here we show that this system also contributes to regulation of fhaB expression in B. holmesii. Accordingly, the purified BvgA response regulator of B. holmesii was shown to bind specifically in the upstream region of the fhaB promoter in vitro in a manner similar to that previously described for the BvgA protein of B. pertussis. Moreover, by deletion analysis of the fhaB promoter region we show that the BvgA binding sites are relevant for in vivo transcription from this promoter in B. holmesii. Conclusion The data reported here show that B. holmesii is endowed with a

  9. The cymA Gene, Encoding a Tetraheme c-Type Cytochrome, Is Required for Arsenate Respiration in Shewanella Species▿

    Science.gov (United States)

    Murphy, Julie N.; Saltikov, Chad W.

    2007-01-01

    In Shewanella sp. strain ANA-3, utilization of arsenate as a terminal electron acceptor is conferred by a two-gene operon, arrAB, which lacks a gene encoding a membrane-anchoring subunit for the soluble ArrAB protein complex. Analysis of the genome sequence of Shewanella putrefaciens strain CN-32 showed that it also contained the same arrAB operon with 100% nucleotide identity. Here, we report that CN-32 respires arsenate and that this metabolism is dependent on arrA and an additional gene encoding a membrane-associated tetraheme c-type cytochrome, cymA. Deletion of cymA in ANA-3 also eliminated growth on and reduction of arsenate. The ΔcymA strains of CN-32 and ANA-3 negatively affected the reduction of Fe(III) and Mn(IV) but not growth on nitrate. Unlike the CN-32 ΔcymA strain, growth on fumarate was absent in the ΔcymA strain of ANA-3. Both homologous and heterologous complementation of cymA in trans restored growth on arsenate in ΔcymA strains of both CN-32 and ANA-3. Transcription patterns of cymA showed that it was induced under anaerobic conditions in the presence of fumarate and arsenate. Nitrate-grown cells exhibited the greatest level of cymA expression in both wild-type strains. Lastly, site-directed mutagenesis of the first Cys to Ser in each of the four CXXCH c-heme binding motifs of the CN-32 CymA nearly eliminated growth on and reduction of arsenate. Together, these results indicate that the biochemical mechanism of arsenate respiration and reduction requires the interactions of ArrAB with a membrane-associated tetraheme cytochrome, which in the non-arsenate-respiring Shewanella species Shewanella oneidensis strain MR-1, has pleiotropic effects on Fe(III), Mn(IV), dimethyl sulfoxide, nitrate, nitrite, and fumarate respiration. PMID:17209025

  10. Analyses of antioxidant status and nucleotide alterations in genes encoding antioxidant enzymes in patients with benign and malignant thyroid disorders

    Directory of Open Access Journals (Sweden)

    Nur Siti Fatimah Ramli

    2017-06-01

    Full Text Available Background Synthesis of thyroid hormones and regulation of their metabolism involve free radicals that may affect redox balance in the body. Thyroid disorders causing variations in the levels of thyroid hormones may alter cellular oxidative stress. The aim of this study was to measure the antioxidant activities and biomarkers of oxidative stress in serum and red blood cells (RBC of patients with benign and malignant thyroid disorders and to investigate if changes in the antioxidant activities in these patients were linked to alterations in genes encoding the antioxidant enzymes. Methods Forty-one patients with thyroid disorders from University of Malaya Medical Centre were recruited. They were categorised into four groups: multinodular goitre (MNG (n = 18, follicular thyroid adenoma (FTA (n = 7, papillary thyroid cancer (PTC (n = 10, and follicular thyroid cancer (FTC (n = 6. Serum and RBC of patients were analysed for antioxidant activities, antioxidant enzymes, and biomarkers of oxidative stress. Alterations in genes encoding the antioxidant enzymes were analysed using whole exome sequencing and PCR–DNA sequencing. Results Patients with thyroid disorders had significantly higher serum superoxide dismutase (SOD and catalase (CAT activities compared to control, but had lower activities in RBC. There were no significant changes in serum glutathione peroxidase (GPx activity. Meanwhile, GPx activity in RBC was reduced in PTC and FTC, compared to control and the respective benign groups. Antioxidant activities in serum were decreased in the thyroid disorder groups when compared to the control group. The levels of malondialdehyde (MDA were elevated in the serum of FTA group when compared to controls, while in the RBC, only the MNG and PTC groups showed higher MDA equivalents than control. Serum reactive oxygen species (ROS levels in PTC group of both serum and RBC were significantly higher than control group. Whole exome sequencing has resulted in

  11. Development of a Multiplex PCR Method for Detection of the Genes Encoding 16S rRNA, Coagulase, Methicillin Resistance and Enterotoxins in Staphylococcus aureus

    Science.gov (United States)

    A multiplex PCR method was developed for simultaneous detection of the genes encoding methicillin resistance (mecA), staphylococcal enterotoxins A, B and C (sea, seb and sec), coagulase (coa) and 16S rRNA. The primers for amplification of the 16S rRNA gene were specific for Staphylococcus spp., and ...

  12. Meta-analysis: a functional polymorphism in the gene encoding for activity of the serotonin transporter protein is not associated with the irritable bowel syndrome.

    NARCIS (Netherlands)

    Kerkhoven, L.A.S. van; Laheij, R.J.F.; Jansen, J.B.M.J.

    2007-01-01

    BACKGROUND: Serotonin is associated with symptoms of the irritable bowel syndrome, its action is terminated by the serotonin transporter protein. AIM: To assess the association between a functional polymorphism in the gene encoding for activity of the serotonin transporter protein and the irritable

  13. Pseudomonas aeruginosa LysR PA4203 regulator NmoR acts as a repressor of the PA4202 nmoA> gene, encoding a nitronate monooxygenase

    DEFF Research Database (Denmark)

    Vercammen, Ken; Wei, Qing; Charlier, Daniel;

    2015-01-01

    The PA4203 gene encodes a LysR regulator and lies between the ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, and, in the opposite orientation, the PA4202 (nmoA) gene, coding for a nitronate monooxygenase, and ddlA (PA4201), encoding a d-alanine alanine ligase. The intergenic re...

  14. CLONING, SEQUENCING AND EXPRESSION STUDIES OF THE GENES ENCODING AMICYANIN AND THE BETA-SUBUNIT OF METHYLAMINE DEHYDROGENASE FROM THIOBACILLUS-VERSUTUS

    NARCIS (Netherlands)

    UBBINK, M; VANKLEEF, MAG; KLEINJAN, DJ; HOITINK, CWG; HUITEMA, F; BEINTEMA, JJ; DUINE, JA; CANTERS, GW

    1991-01-01

    The genes encoding amicyanin and the beta-subunit of methylamine dehydrogenase (MADH) from Thiobacillus versutus have been cloned and sequenced. The organization of these genes makes it likely that they are coordinately expressed and it supports earlier findings that the blue copper protein amicyani

  15. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  16. Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean

    Science.gov (United States)

    This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...

  17. Cloning, structural characterization, and chromosomal localization of the gene encoding the human prostaglandin E(2) receptor EP2 subtype.

    Science.gov (United States)

    Smock, S L; Pan, L C; Castleberry, T A; Lu, B; Mather, R J; Owen, T A

    1999-09-17

    Northern blot analysis of human placental RNA using a probe to the 5' end of the human prostaglandin E(2) (PGE(2)) EP2 receptor subtype coding region revealed the existence of a high abundance, low molecular weight transcript. To investigate the origin of this transcript, and its possible relationship to the human EP2 mRNA, we have cloned and characterized the gene encoding the human PGE(2) EP2 receptor subtype, identified transcriptional initiation and termination sites in two tissues (spleen and thymus), and determined its chromosomal localization. The human EP2 gene consists of two exons separated by a large intron, utilizes a common initiation site in both spleen and thymus at 1113 bp upstream of the translation initiation site, and has 3' transcript termini at 1140 bp and 1149 bp downstream of the translation stop site in spleen and thymus respectively. Southern and fluorescence in situ hybridization analysis demonstrated the human EP2 gene to be a single copy gene located in band 22 of the long arm of chromosome 14 (14q22). Though our initial interest in this gene was to investigate potential differential splicing of the human EP2 gene in placenta, this work demonstrates that the atypical transcript observed in placenta probably arises from a distinct, yet related, gene. Knowledge of the sequence, structure, and transcription events associated with the human EP2 gene will enable a broader understanding of its regulation and potential role in normal physiology and disease.

  18. Cloning and characterization of the gene encoding β-amyrin synthase in the glycyrrhizic acid biosynthetic pathway in Glycyrrhiza uralensis

    Directory of Open Access Journals (Sweden)

    Honghao Chen

    2013-12-01

    Full Text Available Glycyrrhiza uralensis is considered to be one of the most important herbs in traditional Chinese medicine due to its numerous pharmacological effects particularly its ability to relieve cough and act as a mucolytic. Based on previous research, these effects are mediated by a number of active ingredients, especially glycyrrhizic acid (GA. In the present study, a gene encoding β-amyrin synthase (β-AS involved in GA biosynthesis in G. uralensis has been cloned and expressed in Saccharomyces cerevisiae. The cloned enzyme showed similar activity to native enzymes isolated from other Glycyrrhiza species to catalyze the conversion of 2,3-oxidosqualene into β-amyrin. In fact the β-AS gene is particularly important in the GA biosynthetic pathway in G. uralensis. The complete sequence of the enzyme was determined and a phylogenetic tree based on the β-AS gene of G. uralensis and 20 other species was created. This showed that Glycyrrhiza glabra had the closest kinship with G. uralensis. The results of this work will be useful in determining how to improve the efficacy of G. uralensis by improving its GA content and in exploring the biosynthesis of GA in vitro.

  19. The rice HGW gene encodes a ubiquitin-associated (UBA domain protein that regulates heading date and grain weight.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw, which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control.

  20. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  1. Structural organization, sequence, and expression of the mouse HEXA gene encoding the alpha subunit of hexosaminidase A.

    Science.gov (United States)

    Wakamatsu, N; Benoit, G; Lamhonwah, A M; Zhang, Z X; Trasler, J M; Triggs-Raine, B L; Gravel, R A

    1994-11-01

    Genomic clones of the mouse HEXA gene encoding the alpha subunit of lysosomal beta-hexosaminidase A have been isolated, analyzed, and sequenced. The HEXA gene spans approximately 26 kb and consists of 14 exons and 13 introns. The 5' flanking region of the gene has three candidate GC boxes and a number of potential promoter and regulatory elements. Promoter analysis using deletion constructs of 5' flanking sequence fused to the bacterial chloramphenicol acetyltransferase (CAT) gene showed that 150 bp of 5' sequence was sufficient for expression in transfected monkey kidney COS cells. Determination of the sequence of the 5' end of the Hex alpha mRNA by an "anchor-ligation PCR" procedure showed that transcription is initiated from a cluster of sites centered -42, -32, and -21 bp from the first in-frame ATG. Northern blot analysis from 11 different tissues showed over five times the steady-state level of Hex alpha mRNA in testis as compared to that found in three different brain regions; the lowest level (about 1/3 of brain) was found in liver. Comparison of the 5' flanking sequence with that of the human HEXA gene revealed 78% identity within the first 100 bp. These data suggest that the mouse HEXA gene is controlled mainly by sequences located within 150 bp of the 5' flanking region, and we speculate that it may have a role, not only in brain and other tissues, but also in reproductive function in the adult male mouse.

  2. Identification of antithrombin-modulating genes. Role of LARGE, a gene encoding a bifunctional glycosyltransferase, in the secretion of proteins?

    Directory of Open Access Journals (Sweden)

    María Eugenia de la Morena-Barrio

    Full Text Available The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families. Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02. Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins.

  3. Deletion of the aceE gene (encoding a component of pyruvate dehydrogenase) attenuates Salmonella enterica serovar Enteritidis.

    Science.gov (United States)

    Pang, Ervinna; Tien-Lin, Chang; Selvaraj, Madhan; Chang, Jason; Kwang, Jimmy

    2011-10-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major food-borne pathogen. From a transposon insertion mutant library created previously using S. Enteritidis 10/02, one of the mutants was identified to have a 50% lethal dose (LD(50) ) at least 100 times that of the parental strain in young chicks, with an attenuation in a poorly studied gene encoding a component of pyruvate dehydrogenase, namely the aceE gene. Evaluation of the in vitro virulence characteristics of the ΔaceE∷kan mutant revealed that it was less able to invade epithelial cells, less resistant to reactive oxygen intermediate, less able to survive within a chicken macrophage cell line and had a retarded growth rate compared with the parental strain. Young chicks vaccinated with 2 × 10(9) CFU of the ΔaceE∷kan mutant were protected from the subsequent challenge of the parental strain, with the mutant colonized in the liver and spleen in a shorter time than the group infected with the parental strain. In addition, compared with the parental strain, the ΔaceE∷kan mutant did not cause persistent eggshell contamination of vaccinated hens.

  4. ISOLATION AND CLONING OF cDNA OF GENE ENCODING FOR METALLOTHIONEIN TYPE 2 FROM MELASTOMA AFFINE

    Directory of Open Access Journals (Sweden)

    UTUT WIDYASTUT

    2009-01-01

    Full Text Available Metallothionein is an important protein for detoxifying heavy metal ions. h is research was conducted to isolate and clone cDNA of gene encoding for metallothionein type 2 from Melastoma affi ne . Total RNA was isolated from young leaves. Total cDNA was synthesized from the total RNA by reverse transcription. h e MaMt2 cDNA was successfully isolated by PCR technique. h e MaMt2 cDNA was inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into Escherichia coli DH5 α . DNA sequencing analysis showed that this cDNA is full length consisting of 246 pb encoding 81 amino acid residues. h is cDNA is identical to mRNA of AtMt2 from Arabidopsis thaliana. It does not contain any restriction sites found in the cloning sites of pGEM-T Easy. h e deduced protein of MaMT2 contains 14 cysteine residues distributed in the Cys-Cys, Cys-X-Cys, and Cys-X-X-Cys motifs

  5. Prolactin in the Afrotheria: characterization of genes encoding prolactin in elephant (Loxodonta africana), hyrax (Procavia capensis) and tenrec (Echinops telfairi).

    Science.gov (United States)

    Wallis, Michael

    2009-02-01

    Pituitary prolactin shows an episodic pattern of molecular evolution, with occasional short bursts of rapid change imposed on a generally rather slow evolutionary rate. In mammals, episodes of rapid change occurred in the evolution of primates, cetartiodactyls, rodents and the elephant. The bursts of rapid evolution in cetartiodactyls and rodents were followed by duplications of the prolactin gene that gave rise to large families of prolactin-related proteins including placental lactogens, while in primates the burst was followed by corresponding duplications of the related GH gene. The position in elephant is less clear. Extensive data relating to the genomic sequences of elephant and two additional members of the group Afrotheria are now available, and have been used here to characterize the prolactin genes in these species and explore whether additional prolactin-related genes are present. The results confirm the rapid evolution of elephant (Loxodonta africana) prolactin - the sequence of elephant prolactin is substantially different from that predicted for the ancestral placental mammal. Hyrax (Procavia capensis) prolactin is even more divergent but tenrec (Echinops telfairi) prolactin is strongly conserved. No evidence was obtained from searches of public databases for additional genes encoding prolactin-like proteins in any of these species. Detailed analysis of evolutionary rates, and other factors, indicates that the episode of rapid change in hyrax, and probably elephant, was adaptive, though the nature of the associated biological change(s) is not clear.

  6. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, E.; Clerc, R.G.

    1988-06-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, which have been characterized. Here the authors report that MRP8 and MRP14 mRNAs are specially expressed in human cells of myeloid origin and that their expression is regulated during monocycle-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, the authors cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100..cap alpha.., S100BETA, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting element responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.

  7. Clinical and Microbiological Aspects of Linezolid Resistance Mediated by the cfr Gene Encoding a 23S rRNA Methyltransferase▿

    Science.gov (United States)

    Arias, Cesar A.; Vallejo, Martha; Reyes, Jinnethe; Panesso, Diana; Moreno, Jaime; Castañeda, Elizabeth; Villegas, Maria V.; Murray, Barbara E.; Quinn, John P.

    2008-01-01

    The cfr (chloramphenicol-florfenicol resistance) gene encodes a 23S rRNA methyltransferase that confers resistance to linezolid. Detection of linezolid resistance was evaluated in the first cfr-carrying human hospital isolate of linezolid and methicillin-resistant Staphylococcus aureus (designated MRSA CM-05) by dilution and diffusion methods (including Etest). The presence of cfr was investigated in isolates of staphylococci colonizing the patient's household contacts and clinical isolates recovered from patients in the same unit where MRSA CM-05 was isolated. Additionally, 68 chloramphenicol-resistant Colombian MRSA isolates recovered from hospitals between 2001 and 2004 were screened for the presence of the cfr gene. In addition to erm(B), the erm(A) gene was also detected in CM-05. The isolate belonged to sequence type 5 and carried staphylococcal chromosomal cassette mec type I. We were unable to detect the cfr gene in any of the human staphylococci screened (either clinical or colonizing isolates). Agar and broth dilution methods detected linezolid resistance in CM-05. However, the Etest and disk diffusion methods failed to detect resistance after 24 h of incubation. Oxazolidinone resistance mediated by the cfr gene is rare, and acquisition by a human isolate appears to be a recent event in Colombia. The detection of cfr-mediated linezolid resistance might be compromised by the use of the disk diffusion or Etest method. PMID:18174304

  8. Cloning, expression and evolution of the gene encoding the elongation factor 1alpha from a low thermophilic Sulfolobus solfataricus strain.

    Science.gov (United States)

    Masullo, Mariorosario; Cantiello, Piergiuseppe; Lamberti, Annalisa; Longo, Olimpia; Fiengo, Antonio; Arcari, Paolo

    2003-01-28

    The gene encoding the elongation factor 1alpha (EF-1alpha) from the archaeon Sulfolobus solfataricus strain MT3 (optimum growth temperature 75 degrees C) was cloned, sequenced and expressed in Escherichia coli. The structural and biochemical properties of the purified enzyme were compared to those of EF-1alpha isolated from S. solfataricus strain MT4 (optimum growth temperature 87 degrees C). Only one amino acid change (Val15-->Ile) was found. Interestingly, the difference was in the first guanine nucleotide binding consensus sequence G(13)HIDHGK and was responsible for a reduced efficiency in protein synthesis, which was accompanied by an increased affinity for both guanosine diphosphate (GDP) and guanosine triphosphate (GTP), and an increased efficiency in the intrinsic GTPase activity. Despite the different thermophilicities of the two microorganisms, only very marginal effects on the thermal properties of the enzyme were observed. Molecular evolution among EF-1alpha genes from Sulfolobus species showed that the average rate of nucleotide substitution per site per year (0.0312x10(-9)) is lower than that reported for other functional genes.

  9. Unfolded Protein Response (UPR Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Martin Hampel

    Full Text Available The unfolded protein response (UPR, a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER, coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  10. The UmGcn5 gene encoding histone acetyltransferase from Ustilago maydis is involved in dimorphism and virulence.

    Science.gov (United States)

    González-Prieto, Juan Manuel; Rosas-Quijano, Raymundo; Domínguez, Angel; Ruiz-Herrera, José

    2014-10-01

    We isolated a gene encoding a histone acetyltransferase from Ustilago maydis (DC.) Cda., which is orthologous to the Saccharomyces cerevisiae GCN5 gene. The gene was isolated from genomic clones identified by their specific hybridization to a gene fragment obtained by the polymerase chain reaction (PCR). This gene (Umgcn5; um05168) contains an open reading frame (ORF) of 1421bp that encodes a putative protein of 473 amino acids with a Mr. of 52.6kDa. The protein exhibits a high degree of homology with histone acetyltransferases from different organisms. Null a2b2 ΔUmgcn5 mutants were constructed by substitution of the region encoding the catalytic site with a hygromycin B resistance cassette. Null a1b1 ΔUmgcn5 mutants were isolated from genetic crosses of a2b2 ΔUmgcn5 and a1b1 wild-type strains in maize. Mutants displayed a slight reduction in growth rate under different conditions, and were more sensitive than the wild type to stress conditions, but more important, they grew as long mycelial cells, and formed fuzz-like colonies under all conditions where wild-type strains grew in the yeast-like morphology and formed smooth colonies. This phenotype was not reverted by cAMP addition. Mutants were not virulent to maize plants, and were unable to form teliospores. These phenotypic alterations of the mutants were reverted by their transformation with the wild-type gene.

  11. Unfolded Protein Response (UPR) Regulator Cib1 Controls Expression of Genes Encoding Secreted Virulence Factors in Ustilago maydis.

    Science.gov (United States)

    Hampel, Martin; Jakobi, Mareike; Schmitz, Lara; Meyer, Ute; Finkernagel, Florian; Doehlemann, Gunther; Heimel, Kai

    2016-01-01

    The unfolded protein response (UPR), a conserved eukaryotic signaling pathway to ensure protein homeostasis in the endoplasmic reticulum (ER), coordinates biotrophic development in the corn smut fungus Ustilago maydis. Exact timing of UPR activation is required for virulence and presumably connected to the elevated expression of secreted effector proteins during infection of the host plant Zea mays. In the baker's yeast Saccharomyces cerevisiae, expression of UPR target genes is induced upon binding of the central regulator Hac1 to unfolded protein response elements (UPREs) in their promoters. While a role of the UPR in effector secretion has been described previously, we investigated a potential UPR-dependent regulation of genes encoding secreted effector proteins. In silico prediction of UPREs in promoter regions identified the previously characterized effector genes pit2 and tin1-1, as bona fide UPR target genes. Furthermore, direct binding of the Hac1-homolog Cib1 to the UPRE containing promoter fragments of both genes was confirmed by quantitative chromatin immunoprecipitation (qChIP) analysis. Targeted deletion of the UPRE abolished Cib1-dependent expression of pit2 and significantly affected virulence. Furthermore, ER stress strongly increased Pit2 expression and secretion. This study expands the role of the UPR as a signal hub in fungal virulence and illustrates, how biotrophic fungi can coordinate cellular physiology, development and regulation of secreted virulence factors.

  12. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    Science.gov (United States)

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  13. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  14. Identification of Antithrombin-Modulating Genes. Role of LARGE, a Gene Encoding a Bifunctional Glycosyltransferase, in the Secretion of Proteins?

    Science.gov (United States)

    de la Morena-Barrio, María Eugenia; Buil, Alfonso; Antón, Ana Isabel; Martínez-Martínez, Irene; Miñano, Antonia; Gutiérrez-Gallego, Ricardo; Navarro-Fernández, José; Aguila, Sonia; Souto, Juan Carlos; Vicente, Vicente; Soria, José Manuel; Corral, Javier

    2013-01-01

    The haemostatic relevance of antithrombin together with the low genetic variability of SERPINC1, and the high heritability of plasma levels encourage the search for modulating genes. We used a hypothesis-free approach to identify these genes, evaluating associations between plasma antithrombin and 307,984 polymorphisms in the GAIT study (352 individuals from 21 Spanish families). Despite no SNP reaching the genome wide significance threshold, we verified milder positive associations in 307 blood donors from a different cohort. This validation study suggested LARGE, a gene encoding a protein with xylosyltransferase and glucuronyltransferase activities that forms heparin-like linear polysaccharides, as a potential modulator of antithrombin based on the significant association of one SNPs, rs762057, with anti-FXa activity, particularly after adjustment for age, sex and SERPINC1 rs2227589 genotype, all factors influencing antithrombin levels (p = 0.02). Additional results sustained this association. LARGE silencing inHepG2 and HEK-EBNA cells did not affect SERPINC1 mRNA levels but significantly reduced the secretion of antithrombin with moderate intracellular retention. Milder effects were observed on α1-antitrypsin, prothrombin and transferrin. Our study suggests LARGE as the first known modifier of plasma antithrombin, and proposes a new role for LARGE in modulating extracellular secretion of certain glycoproteins. PMID:23705025

  15. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum.

    Science.gov (United States)

    Jousson, Olivier; Léchenne, Barbara; Bontems, Olympia; Capoccia, Sabrina; Mignon, Bernard; Barblan, Jachen; Quadroni, Manfredo; Monod, Michel

    2004-02-01

    Dermatophytes are human and animal pathogenic fungi which cause cutaneous infections and grow exclusively in the stratum corneum, nails and hair. In a culture medium containing soy proteins as sole nitrogen source a substantial proteolytic activity was secreted by Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. This proteolytic activity was 55-75 % inhibited by o-phenanthroline, attesting that metalloproteases were secreted by all three species. Using a consensus probe constructed on previously characterized genes encoding metalloproteases (MEP) of the M36 fungalysin family in Aspergillus fumigatus, Aspergillus oryzae and M. canis, a five-member MEP family was isolated from genomic libraries of T. rubrum, T. mentagrophytes and M. canis. A phylogenetic analysis of genomic and protein sequences revealed a robust tree consisting of five main clades, each of them including a MEP sequence type from each dermatophyte species. Each MEP type was remarkably conserved across species (72-97 % amino acid sequence identity). The tree topology clearly indicated that the multiplication of MEP genes in dermatophytes occurred prior to species divergence. In culture medium containing soy proteins as a sole nitrogen source secreted Meps accounted for 19-36 % of total secreted protein extracts; characterization of protein bands by proteolysis and mass spectrometry revealed that the three dermatophyte species secreted two Meps (Mep3 and Mep4) encoded by orthologous genes.

  16. The choC gene encoding a putative phospholipid methyltransferase is essential for growth and development in Aspergillus nidulans.

    Science.gov (United States)

    Tao, Li; Gao, Na; Chen, Sanfeng; Yu, Jae-Hyuk

    2010-06-01

    Phosphatidylcholines (PCs) are a class of major cell membrane phospholipids that participate in many physiological processes. Three genes, choA, choB and choC, have been proposed to function in the endogenous biosynthesis of PC in Aspergillus nidulans. In this study, we characterize the choC gene encoding a putative highly conserved phospholipid methyltransferase. The previously reported choC3 mutant allele results from a mutation leading to the E177K amino acid substitution. The transcript of choC accumulates at high levels during vegetative growth and early asexual developmental phases. The deletion of choC causes severe impairment of vegetative growth, swelling of hyphal tips and the lack of both asexual and sexual development, suggesting the requirement of ChoC and PC in growth and development. Noticeably, supplementation of the mutant with the penultimate precursor of PC N, N-dimethylaminoethanol leads to full recovery of vegetative growth, but incomplete progression of asexual and sexual development, implying differential roles of PC and its intermediates in fungal growth and development. Importantly, while the choC deletion mutant shows reduced vegetative growth and precocious cell death until day 4, it regains hyphal proliferation and cell viability from day 5, indicating the presence of an alternative route for cellular membrane function in A. nidulans.

  17. Genetic variation in genes encoding airway epithelial potassium channels is associated with chronic rhinosinusitis in a pediatric population.

    Directory of Open Access Journals (Sweden)

    Michael T Purkey

    Full Text Available BACKGROUND: Apical potassium channels regulate ion transport in airway epithelial cells and influence air surface liquid (ASL hydration and mucociliary clearance (MCC. We sought to identify whether genetic variation within genes encoding airway potassium channels is associated with chronic rhinosinusitis (CRS. METHODS: Single nucleotide polymorphism (SNP genotypes for selected potassium channels were derived from data generated on the Illumnia HumanHap550 BeadChip or Illumina Human610-Quad BeadChip for 828 unrelated individuals diagnosed with CRS and 5,083 unrelated healthy controls from the Children's Hospital of Philadelphia (CHOP. Statistical analysis was performed with set-based tests using PLINK, and corrected for multiple testing. RESULTS: Set-based case control analysis revealed the gene KCNMA1 was associated with CRS in our Caucasian subset of the cohort (598 CRS cases and 3,489 controls; p = 0.022, based on 10,000 permutations. In addition there was borderline evidence that the gene KCNQ5 (p = 0.0704 was associated with the trait in our African American subset of the cohort (230 CRS cases and 1,594 controls. In addition to the top significant SNPs rs2917454 and rs6907229, imputation analysis uncovered additional genetic variants in KCNMA1 and in KCNQ5 that were associated with CRS. CONCLUSIONS: We have implicated two airway epithelial potassium channels as novel susceptibility loci in contributing to the pathogenesis of CRS.

  18. Cloning and characterization of a gene encoding phage-related tail protein (PrTP) of endosymbiont Wolbachia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wolbachia is an obligatory, maternally inherited intracellular bacterium, known to infect a wide range of arthropods. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, the feminization of genetic males and male-killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these reproductive abnormalities have not yet been determined. In this study, we report on the cloning and characterization of the gene encoding phage-related tail protein (PrTP) from Wolbachia in Drosophila melanogaster CantonS (wMelCS) and from Wolbachia in Drosophila melanogaster yw67c23 (wMel) by representational difference analysis (RDA) and ligation-mediated PCR (LM-PCR). The functionality of a bipartite nuclear localization signal sequence (NLS) of the gene was also successfully tested in Drosophila S2 cells. PrTP expression in various strains of Wolbachia was investigated. Our results suggest that PrTP may not induce CI directly. However, the existence of prtp provided direct evidence of phage-mediated horizontal gene transfer (HGT) that might play an important role in a variety of reproductive abnormalities of Wolbachia.

  19. Cloning and characterization of SmZF1, a gene encoding a Schistosoma mansoni zinc finger protein

    Directory of Open Access Journals (Sweden)

    Souza Paulo R Eleutério de

    2001-01-01

    Full Text Available The zinc finger motifs (Cys2His2 are found in several proteins playing a role in the regulation of transcripton. SmZF1, a Schistosoma mansoni gene encoding a zinc finger protein was initially isolated from an adult worm cDNA library, as a partial cDNA. The full sequence of the gene was obtained by subcloning and sequencing cDNA and genomic fragments. The collated gene sequence is 2181 nt and the complete cDNA sequence is 705 bp containing the full open reading frame of the gene. Analysis of the genome sequence revealed the presence of three introns interrupting the coding region. The open reading frame theoretically encodes a protein of 164 amino acids, with a calculated molecular mass of 18,667Da. The predicted protein contains three zinc finger motifs, usually present in transcription regulatory proteins. PCR amplification with specific primers for the gene allowed for the detection of the target in egg, cercariae, schistosomulum and adult worm cDNA libraries indicating the expression of the mRNA in these life cycle stages of S. mansoni. This pattern of expression suggests the gene plays a role in vital functions of different life cycle stages of the parasite. Future research will be directed to elucidate the functional role of SmZF1.

  20. Identification of genes encoding photoconvertible (Class I) water-soluble chlorophyll-binding proteins from Chenopodium ficifolium.

    Science.gov (United States)

    Takahashi, Shigekazu; Abe, Eriko; Nakayama, Katsumi; Satoh, Hiroyuki

    2015-01-01

    Photoconvertible water-soluble chlorophyll-binding proteins, called Class I WSCPs, have been detected in Chenopodiaceae, Amaranthaceae and Polygonaceae plant species. To date, Chenopodium album WSCP (CaWSCP) is the only cloned gene encoding a Class I WSCP. In this study, we identified two cDNAs encoding Chenopodium ficifolium Class I WSCPs, CfWSCP1, and CfWSCP2. Sequence analyses revealed that the open reading frames of CfWSCP1 and CfWSCP2 were 585 and 588 bp, respectively. Furthermore, both CfWSCPs contain cystein2 and cystein30, which are essential for the chlorophyll-binding ability of CaWSCP. Recombinant CfWSCP1 and CfWSCP2, expressed in Escherichia coli as hexa-histidine fusion proteins (CfWSCP1-His and CfWSCP2-His), formed inclusion bodies; however, we were able to solubilize these using a buffer containing 8 M urea and then refold them by dialysis. The refolded CfWSCP1-His and CfWSCP2-His could bind chlorophylls and exhibited photoconvertibility, confirming that the cloned CfWSCPs are further examples of Class I WSCPs.

  1. Characteristics and phylogeny of light-harvesting complex gene encoded proteins from marine red alga Griffithsia japonica

    Institute of Scientific and Technical Information of China (English)

    LIU Chenlin; HUANG Xiaohang; LEE Yookyung; LEE Hongkum; LI Guangyou

    2005-01-01

    Six genes encoding light-harvesting complex (LHC) protein have been characterized in the multicellular red alga Griffithsia japonica EST analysis. Three of them were full sequences while others were partial sequences with 3'-UTRs. The cleavage sites between signal peptide and mature LHC protein were analyzed on these three full sequences. The sequence characteristics, calculated molecular weights and isoelectric point (pI) values and hydrophobieity of the mature proteins were deduced and analyzed. Comparing the LHC sequences of G. japonica with higher plant, Chlorophyta, chromophytes and other red algae, the high conservation of the chlorophyll (Chl) binding site among chromophytes and red algae were revealed. Phylogenetic analysis on LHC proteins from higher plant, green algae, euglena, brown algae, diatom, cryptomonad, Raphidophyte and red algae reveals that (1) there are two distinct groups of Chl a/b and Chl a/c -binding LHC; (2) Chl a binding proteins of red algae share greater similarities with the Chl a/c-binding proteins of the chromophytes and dinoflagellate than with the Chl a/b - binding proteins of the green algae and higher plants; (3) chromophyte' s LHC is supposed to be evolved from red algae LHC.

  2. Design and Expression of a Synthetic phyC Gene Encoding the Neutral Phytase in Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Li-Kou ZOU; Hong-Ning WANG; Xin PAN; Tao XIE; Qi WU; Zi-Wen XIE; Wan-Rong ZHOU

    2006-01-01

    The 1074-bp phyCs gene (optimized phyC gene) encoding neutral phytase was designed and synthesized according to the methylotrophic yeast Pichia pastoris codon usage bias without altering the protein sequence. The expression vector, pP9K-phyCs, was linearized and transformed in P. pastoris. The yield of total extracellular phytase activity was 17.6 U/ml induced in Buffered Methanol-complex Medium (BMMY) and 18.5 U/ml in Wheat Bran Extract Induction (WBEI) medium at the flask scale, respectively,improving over 90 folds compared with the wild-type isolate. Purified enzyme showed temperature optimum of 70℃ and pH optimum of 7.5. The enzyme activity retained 97% of the relative activity after incubation at 80℃ for 5 min. Because of the heavy glycosylation the expressed phytase had a molecular size of approximately 51 kDa. After deglycosylation by endoglycosylase H (EndoHf), the enzyme had an apparent molecular size of 42 kDa. Its property and thermostability was affected by the glycosylation.

  3. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway.

    Science.gov (United States)

    Cagliari, Alexandro; Margis-Pinheiro, Márcia; Loss, Guilherme; Mastroberti, Alexandra Antunes; de Araujo Mariath, Jorge Ernesto; Margis, Rogério

    2010-11-01

    Castor bean (Ricinus communis) oil contains ricinoleic acid-rich triacylglycerols (TAGs). As a result of its physical and chemical properties, castor oil and its derivatives are used for numerous bio-based products. In this study, we survey the Castor Bean Genome Database to report the identification of TAG biosynthesis genes. A set of 26 genes encoding six distinct classes of enzymes involved in TAGs biosynthesis were identified. In silico characterization and sequence analysis allowed the identification of plastidic isoforms of glycerol-3-phosphate acyltransferase and lysophosphatidate acyltransferase enzyme families, involved in the prokaryotic lipid biosynthesis pathway, that form a cluster apart from the cytoplasmic isoforms, involved in the eukaryotic pathway. In addition, two distinct membrane bound diacylglycerol acyltransferase enzymes were identified. Quantitative expression pattern analyses demonstrated variations in gene expressions during castor seed development. A tendency of maximum expression level at the middle of seed development was observed. Our results represent snapshots of global transcriptional activities of genes encompassing six enzyme families involved in castor bean TAG biosynthesis that are present during seed development. These genes represent potential targets for biotechnological approaches to produce nutritionally and industrially desirable oils.

  4. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    Directory of Open Access Journals (Sweden)

    Hui eZhou

    2015-10-01

    Full Text Available Proanthocyanidins (PAs are a group of natural phenolic compounds that have a great effect on both flavour and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5 via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants.

  5. PABPN1 overexpression leads to upregulation of genes encoding nuclear proteins that are sequestered in oculopharyngeal muscular dystrophy nuclear inclusions.

    Science.gov (United States)

    Corbeil-Girard, Louis-Philippe; Klein, Arnaud F; Sasseville, A Marie-Josée; Lavoie, Hugo; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Duranceau, André; Codère, François; Bouchard, Jean-Pierre; Karpati, George; Rouleau, Guy A; Massie, Bernard; Langelier, Yves; Brais, Bernard

    2005-04-01

    Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease caused by expanded (GCN)12-17 stretches encoding the N-terminal polyalanine domain of the poly(A) binding protein nuclear 1 (PABPN1). OPMD is characterized by intranuclear inclusions (INIs) in skeletal muscle fibers, which contain PABPN1, molecular chaperones, ubiquitin, proteasome subunits, and poly(A)-mRNA. We describe an adenoviral model of PABPN1 expression that produces INIs in most cells. Microarray analysis revealed that PABPN1 overexpression reproducibly changed the expression of 202 genes. Sixty percent of upregulated genes encode nuclear proteins, including many RNA and DNA binding proteins. Immunofluorescence microscopy revealed that all tested nuclear proteins encoded by eight upregulated genes colocalize with PABPN1 within the INIs: CUGBP1, SFRS3, FKBP1A, HMG2, HNRPA1, PRC1, S100P, and HSP70. In addition, CUGBP1, SFRS3, and FKBP1A were also found in OPMD muscle INIs. This study demonstrates that a large number of nuclear proteins are sequestered in OPMD INIs, which may compromise cellular function.

  6. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  7. The down-regulation of the genes encoding Isoamylase 1 alters the starch composition of the durum wheat grain.

    Science.gov (United States)

    Sestili, Francesco; Sparla, Francesca; Botticella, Ermelinda; Janni, Michela; D'Ovidio, Renato; Falini, Giuseppe; Marri, Lucia; Cuesta-Seijo, Jose A; Moscatello, Stefano; Battistelli, Alberto; Trost, Paolo; Lafiandra, Domenico

    2016-11-01

    In rice, maize and barley, the lack of Isoamylase 1 activity materially affects the composition of endosperm starch. Here, the effect of this deficiency in durum wheat has been characterized, using transgenic lines in which Isa1 was knocked down via RNAi. Transcriptional profiling confirmed the partial down-regulation of Isa1 and revealed a pleiotropic effect on the level of transcription of genes encoding other isoamylases, pullulanase and sucrose synthase. The polysaccharide content of the transgenic endosperms was different from that of the wild type in a number of ways, including a reduction in the content of starch and a moderate enhancement of both phytoglycogen and β-glucan. Some alterations were also induced in the distribution of amylopectin chain length and amylopectin fine structure. The amylopectin present in the transgenic endosperms was more readily hydrolyzable after a treatment with hydrochloric acid, which disrupted its semi-crystalline structure. The conclusion was that in durum wheat, Isoamylase 1 is important for both the synthesis of amylopectin and for determining its internal structure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Cloning and Characterisation of the Gene Encoding 3-Hydroxy-3-Methylglutaryl-CoA Synthase in Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Yu-Jia Liu

    2014-11-01

    Full Text Available Tripterygium wilfordii is a traditional Chinese medical plant used to treat rheumatoid arthritis and cancer. The main bioactive compounds of the plant are diterpenoids and triterpenoids. 3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS catalyses the reaction of acetoacetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA, which is the first committed enzyme in the mevalonate (MVA pathway. The sequence information of HMGS in Tripterygium wilfordii is a basic resource necessary for studying the terpenoids in the plant. In this paper, full-length cDNA encoding HMGS was isolated from Tripterygium wilfordii (abbreviated TwHMGS, GenBank accession number: KM978213. The full length of TwHMGS is 1814 bp, and the gene encodes a protein with 465 amino acids. Sequence comparison revealed that TwHMGS exhibits high similarity to HMGSs of other plants. The tissue expression patterns revealed that the expression level of TwHMGS is highest in the stems and lowest in the roots. Induced expression of TwHMGS can be induced by MeJA, and the expression level is highest 4 h after induction. The functional complement assays in the YML126C knockout yeast demonstrated that TwHMGS participates in yeast terpenoid biosynthesis.

  9. The basis for rootstock resilient to Capnodis species: screening for genes encoding δ-endotoxins from Bacillus thuringiensis.

    Science.gov (United States)

    Gindin, Galina; Mendel, Zvi; Levitin, Bella; Kumar, Pradeep; Levi, Tal; Shahi, Preeti; Khasdan, Vadim; Weinthal, Dan; Kuznetsova, Tatiana; Einav, Monica; Kushmaro, Ariel; Protasov, Alex; Zaritsky, Arieh; Ben-Dov, Eitan

    2014-08-01

    Conventional methods often fail to control the flatheaded borers Capnodis spp., major pests of stone fruit trees; the larvae are protected from insecticides and predation because they feed deep in the roots. A potential solution is transgenic trees producing in their roots toxic compounds such as Cry proteins of Bacillus thuringiensis (Bt). Toxicities against Capnodis larvae were demonstrated by exploiting a recently designed artificial larval diet and an available collection of field isolated Bt. An isolate of Bt tenebrionis (Btt) from commercial bioinsecticide (Novodor) displayed LC50 and LC95 values of 3.2 and 164 mg g(-1) , respectively, against neonates of Capnodis tenebrionis, whereas values of the most toxic field isolate K-7 were 1.9 and 25.6 mg g(-1) respectively. Weights of surviving larvae after 1 month on diets containing low concentrations of K-7 (0.1-1.0 mg g(-1) ) were lower than on Btt or untreated larvae. K-7 was also toxic against larvae of C. cariosa and C. miliaris and found to harbour genes encoding Cry9Ea-like and Cry23Aa/Cry37Aa binary toxins. Larvae of Capnodis spp. are susceptible to Bt Cry toxins. Expressing cry genes active against these pests thus seems a feasible solution towards production of transgenic rootstock trees resilient to the pest. © 2013 Society of Chemical Industry.

  10. Mitochondrial Dynamics in Mitochondrial Diseases

    Directory of Open Access Journals (Sweden)

    Juan M. Suárez-Rivero

    2016-12-01

    Full Text Available Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases.

  11. Inherited Mendelian defects of nuclear-mitochondrial communication affecting the stability of mitochondrial DNA.

    Science.gov (United States)

    Limongelli, Anna; Tiranti, Valeria

    2002-11-01

    The presence of mtDNA abnormalities inherited as Mendelian traits indicates the existence of mutations in nuclear genes affecting the integrity of the mitochondrial genome. Two groups of nucleus-driven abnormalities have been described: qualitative alterations of mtDNA, i.e. multiple large-scale deletions of mtDNA, and quantitative decrease of the mtDNA copy number, i.e. tissue-specific depletion of mtDNA. Autosomal dominant or recessive (adPEO), progressive ophthalmoplegia and autosomal-recessive mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), are three neurodegenerative disorders associated with the coexistence of wild-type mtDNA with several deletion-containing mtDNA species. Heterozygous mutations of the genes encoding the muscle-heart isoform of the adenosine diphosphate/adenosine triphosphate mitochondrial translocator (ANT1), the main subunit of polymerase gamma (POLG1), and of the putative mtDNA helicase (Twinkle) have been found in adPEO families linked to three different loci, on chromosomes 4q34-35, 10q24, and 15q25, respectively. Mutations in the gene encoding thymidine phosphorylase have been identified in several MNGIE patients. Severe, tissue-specific depletion of mtDNA is the molecular hallmark of rapidly progressive hepatopathies or myopathies of infancy and childhood. Two genes, deoxyguanosine kinase and thymidine kinase type 2, both involved in the mitochondrion-specific salvage pathways of deoxynucleotide pools, have been associated with depletion syndromes in selected families.

  12. Cloning and sequence analysis of the gene encoding 19-kD subunit of Complex I from Dunaliella salina.

    Science.gov (United States)

    Liu, Yi; Qiao, Dai Rong; Zheng, Hong Bo; Dai, Xu Lan; Bai, Lin Han; Zeng, Jing; Cao, Yi

    2008-09-01

    NADH:ubiquinone oxidoreductase (complex I ) of the mitochondrial respiratory chain catalyzes the transfer of electrons from NADH to ubiquinone coupled to proton translocation across the membrane. The cDNA sequence of Dunaliella salina mitochondrial NADH: ubiquinone oxidoreductase 19-kD subunit contains a 682-bp ORF encoding a protein with an apparent molecular mass of 19 kD. The sequence has been submitted to the GenBank database under Accession No. EF566890 (cDNA sequences) and EF566891 (genomic sequence). The deduced amino-acid sequence is 74% identical to Chlamydomonas reinhardtii mitochondrial NADH:ubiquinone oxidoreductase 18-kD subunit. The 19-kD subunit mRNA expression was observed in oxygen deficiency, salt treatment, and rotenone treatment with lower levels. It demonstrate that the 19-kD subunit of Complex I from Dunaliella salina is regulated by these stresses.

  13. The mitochondrial genome of the venomous cone snail Conus consors.

    Directory of Open Access Journals (Sweden)

    Age Brauer

    Full Text Available Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR which seems to be absent in the mitochondrial DNA (mtDNA of other cone snail species. This possible CR spans about 700 base pairs (bp and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF and cytochrome c oxidase subunit III (cox3. The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription.

  14. Single nucleotide polymorphism in gene encoding transcription factor Prep1 is associated with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD. While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5. Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders.

  15. aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species

    Directory of Open Access Journals (Sweden)

    Tuffery Pierre

    2009-12-01

    Full Text Available Abstract Background Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene. Results We identified the gene encoding esterase B as the acetyl-esterase gene (aes using gene disruption. The analysis of aes nucleotide sequences in a panel of 78 reference strains, including the E. coli reference (ECOR strains, demonstrated that the gene is under purifying selection. The phylogenetic tree reconstructed from aes sequences showed a strong correlation with the species phylogenetic history, based on multi-locus sequence typing using six housekeeping genes. The unambiguous distinction between variants B1 and B2 by electrophoresis was consistent with Aes amino-acid sequence analysis and protein modelling, which showed that substituted amino acids in the two esterase B variants occurred mostly at different sites on the protein surface. Studies in an experimental mouse model of septicaemia using mutant strains did not reveal a direct link between aes and extraintestinal virulence. Moreover, we did not find any genes in the chromosomal region of aes to be associated with virulence. Conclusion Our findings suggest that aes does not play a direct role in the virulence of E. coli extraintestinal infection. However, this gene acts as a powerful marker of phylogeny, illustrating the extensive divergence of B2 phylogenetic group strains from the rest of the species.

  16. Rare Variants in Genes Encoding MuRF1 and MuRF2 Are Modifiers of Hypertrophic Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ming Su

    2014-05-01

    Full Text Available Modifier genes contribute to the diverse clinical manifestations of hypertrophic cardiomyopathy (HCM, but are still largely unknown. Muscle ring finger (MuRF proteins are a class of muscle-specific ubiquitin E3-ligases that appear to modulate cardiac mass and function by regulating the ubiquitin-proteasome system. In this study we screened all the three members of the MuRF family, MuRF1, MuRF2 and MuRF3, in 594 unrelated HCM patients and 307 healthy controls by targeted resequencing. Identified rare variants were confirmed by capillary Sanger sequencing. The prevalence of rare variants in both MuRF1 and MuRF2 in HCM patients was higher than that in control subjects (MuRF1 13/594 (2.2% vs. 1/307 (0.3%, p = 0.04; MuRF2 22/594 (3.7% vs. 2/307 (0.7%; p = 0.007. Patients with rare variants in MuRF1 or MuRF2 were younger (p = 0.04 and had greater maximum left ventricular wall thickness (p = 0.006 than those without such variants. Mutations in genes encoding sarcomere proteins were present in 19 (55.9% of the 34 HCM patients with rare variants in MuRF1 and MuRF2. These data strongly supported that rare variants in MuRF1 and MuRF2 are associated with higher penetrance and more severe clinical manifestations of HCM. The findings suggest that dysregulation of the ubiquitin-proteasome system contributes to the pathogenesis of HCM.

  17. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  18. Ocular toxoplasmosis: susceptibility in respect to the genes encoding the KIR receptors and their HLA class I ligands.

    Science.gov (United States)

    Ayo, Christiane Maria; Frederico, Fábio Batista; Siqueira, Rubens Camargo; Brandão de Mattos, Cinara de Cássia; Previato, Mariana; Barbosa, Amanda Pires; Murata, Fernando Henrique Antunes; Silveira-Carvalho, Aparecida Perpétuo; de Mattos, Luiz Carlos

    2016-11-09

    The objective of this study was to investigate the influence of the genes encoding the KIR receptors and their HLA ligands in the susceptibility of ocular toxoplasmosis. A total of 297 patients serologically-diagnosed with toxoplasmosis were selected and stratified according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping was performed by PCR-SSOP. Statistical analyses were conducted using the Chi-square test, and odds ratio with a 95% confidence interval was also calculated to evaluate the risk association. The activating KIR3DS1 gene was associated with increased susceptibility for ocular toxoplasmosis. The activating KIR together with their HLA ligands (KIR3DS1-Bw4-80Ile and KIR2DS1(+)/C2(++) KIR3DS1(+)/Bw4-80Ile(+)) were associated with increased susceptibility for ocular toxoplasmosis and its clinical manifestations. KIR-HLA inhibitory pairs -KIR2DL3/2DL3-C1/C1 and KIR2DL3/2DL3-C1- were associated with decreased susceptibility for ocular toxoplasmosis and its clinical forms, while the KIR3DS1(-)/KIR3DL1(+)/Bw4-80Ile(+) combination was associated as a protective factor against the development of ocular toxoplasmosis and, in particular, against recurrent manifestations. Our data demonstrate that activating and inhibitory KIR genes may influence the development of ocular toxoplasmosis.

  19. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase.

    Science.gov (United States)

    Sung, Y C; Anderson, P M; Fuchs, J A

    1987-11-01

    Restriction fragments containing the gene encoding cyanase, cynS, without its transcriptional regulatory sequences were placed downstream of lac and tac promoters in various pUC derivatives to maximize production of cyanase. Plasmid pSJ105, which contains the cynS gene and an upstream open reading frame, gave the highest expression of cyanase. Approximately 50% of the total soluble protein in stationary-phase cultures of a lac-deleted strain containing plasmid pSJ105 was cyanase. The inserted DNA fragment of pSJ105 was transferred into pUC18 derivatives that contain a hybrid tac promoter, instead of the lac promoter, and a strong terminator to generate pSJ124. Stationary-phase cultures of JM101 containing plasmid pSJ124 overexpressed a similar level of cyanase. In JM101(pSJ124), maximum production of cyanase could be obtained either by induction with isopropyl-beta-D-thiogalactopyranoside (IPTG) for 3 h or by growth without IPTG into late stationary phase. The latter conditions resulted in a 10- to 20-fold increase in plasmid content and presumably titration of the lac repressor. The nucleotide sequence of the cloned cynS gene from Escherichia coli K-12 was determined. The predicted amino acid sequence differed from the known amino acid sequence of cyanase isolated from a B strain by four residues. However, overexpressed cyanase was purified to homogeneity, and a comparison of the enzymes from the two sources indicated that they did not differ with respect to physical and kinetic properties. The cynS gene was located next to the lac operon, and the direction of cynS transcription was opposite that of lac.

  20. Ocular toxoplasmosis: susceptibility in respect to the genes encoding the KIR receptors and their HLA class I ligands

    Science.gov (United States)

    Ayo, Christiane Maria; Frederico, Fábio Batista; Siqueira, Rubens Camargo; Brandão de Mattos, Cinara de Cássia; Previato, Mariana; Barbosa, Amanda Pires; Murata, Fernando Henrique Antunes; Silveira-Carvalho, Aparecida Perpétuo; de Mattos, Luiz Carlos

    2016-01-01

    The objective of this study was to investigate the influence of the genes encoding the KIR receptors and their HLA ligands in the susceptibility of ocular toxoplasmosis. A total of 297 patients serologically-diagnosed with toxoplasmosis were selected and stratified according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping was performed by PCR-SSOP. Statistical analyses were conducted using the Chi-square test, and odds ratio with a 95% confidence interval was also calculated to evaluate the risk association. The activating KIR3DS1 gene was associated with increased susceptibility for ocular toxoplasmosis. The activating KIR together with their HLA ligands (KIR3DS1-Bw4-80Ile and KIR2DS1+/C2++ KIR3DS1+/Bw4-80Ile+) were associated with increased susceptibility for ocular toxoplasmosis and its clinical manifestations. KIR-HLA inhibitory pairs -KIR2DL3/2DL3-C1/C1 and KIR2DL3/2DL3-C1- were associated with decreased susceptibility for ocular toxoplasmosis and its clinical forms, while the KIR3DS1−/KIR3DL1+/Bw4-80Ile+ combination was associated as a protective factor against the development of ocular toxoplasmosis and, in particular, against recurrent manifestations. Our data demonstrate that activating and inhibitory KIR genes may influence the development of ocular toxoplasmosis. PMID:27827450

  1. An antisense RNA in a lytic cyanophage links psbA to a gene encoding a homing endonuclease.

    Science.gov (United States)

    Millard, Andrew D; Gierga, Gregor; Clokie, Martha R J; Evans, David J; Hess, Wolfgang R; Scanlan, David J

    2010-09-01

    Cyanophage genomes frequently possess the psbA gene, encoding the D1 polypeptide of photosystem II. This protein is believed to maintain host photosynthetic capacity during infection and enhance phage fitness under high-light conditions. Although the first documented cyanophage-encoded psbA gene contained a group I intron, this feature has not been widely reported since, despite a plethora of new sequences becoming available. In this study, we show that in cyanophage S-PM2, this intron is spliced during the entire infection cycle. Furthermore, we report the widespread occurrence of psbA introns in marine metagenomic libraries, and with psbA often adjacent to a homing endonuclease (HE). Bioinformatic analysis of the intergenic region between psbA and the adjacent HE gene F-CphI in S-PM2 showed the presence of an antisense RNA (asRNA) connecting these two separate genetic elements. The asRNA is co-regulated with psbA and F-CphI, suggesting its involvement with their expression. Analysis of scaffolds from global ocean survey datasets shows this asRNA to be commonly associated with the 3' end of cyanophage psbA genes, implying that this potential mechanism of regulating marine 'viral' photosynthesis is evolutionarily conserved. Although antisense transcription is commonly found in eukaryotic and increasingly also in prokaryotic organisms, there has been no indication for asRNAs in lytic phages so far. We propose that this asRNA also provides a means of preventing the formation of mobile group I introns within cyanophage psbA genes.

  2. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    Science.gov (United States)

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  3. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  4. Cloning and Expressing of a Gene Encoding Cytosolic Copper/Zinc Superoxide Dismutase in the Upland Cotton

    Institute of Scientific and Technical Information of China (English)

    HU Gen-hai; YU Shu-xun; FAN Shu-li; SONG Mei-zhen

    2007-01-01

    In this study, a gene encoding a superoxide dismutase (SOD) was cloned from senescent leaves of cotton (Gossypium hirsutum), and its expressing profile was analyzed. The gene was cloned by rapid amplification of cDNA ends (RACE)method. Northern blotting was used to show the profile of the gene expression, and the enzyme activity was mensurated by NBT deoxidization method in different growth periods. The full length of a gene of cytosolic copper/zinc superoxide dismutase (Cu/Zn-SOD) was isolated from cotton (GenBank Accession Number: DQ445093). The sequence of cDNA contained 682 bp, the opening reading frame 456 bp, and encoded polypeptide 152 amino acids with the predicted molecular mass of 15.03 kD and theoretical pI of 6.09. The amino acid sequence was similar with the other plants from 82 to 87%. Southern blotting showed that the gene had different number of copies in different cotton species. Northern blotting suggested that the gene had different expression in different tissues and development stages. The enzyme activity was the highest in peak flowering stage. The cotton cytosolic (Cu/Zn-SOD) had lower copies in the upland cotton. The copper/zinc superoxide dismutase mRNA expressing level showed regular changing in the whole development stages; it was lower in the former stages, higher in latter stages and the highest at the peak flowering stage. The curve of the copper/zinc superoxide dismutase mRNA expressing level was consistent with that of the Cu/Zn-SOD enzyme activity.The copper/zinc superoxide dismutase mRNA expressing levels of different organs showed that the gene was higher in the root, leaf, and lower in the flower.

  5. Inactivation of genes encoding plastoglobuli-like proteins in Synechocystis sp. PCC 6803 leads to a light-sensitive phenotype.

    Science.gov (United States)

    Cunningham, Francis X; Tice, Ashley B; Pham, Christina; Gantt, Elisabeth

    2010-03-01

    Plastoglobulins (PGL) are the predominant proteins of lipid globules in the plastids of flowering plants. Genes encoding proteins similar to plant PGL are also present in algae and cyanobacteria but in no other organisms, suggesting an important role for these proteins in oxygenic photosynthesis. To gain an understanding of the core and fundamental function of PGL, the two genes that encode PGL-like polypeptides in the cyanobacterium Synechocystis sp. PCC 6803 (pgl1 and pgl2) were inactivated individually and in combination. The resulting mutants were able to grow under photoautotrophic conditions, dividing at rates that were comparable to that of the wild-type (WT) under low-light (LL) conditions (10 microeinsteins x m(-2) x s(-1)) but lower than that of the WT under moderately high-irradiance (HL) conditions (150 microeinsteins x m(-2) x s(-1)). Under HL, each Deltapgl mutant had less chlorophyll, a lower photosystem I (PSI)/PSII ratio, more carotenoid per unit of chlorophyll, and very much more myxoxanthophyll (a carotenoid symptomatic of high light stress) per unit of chlorophyll than the WT. Large, heterogeneous inclusion bodies were observed in cells of mutants inactivated in pgl2 or both pgl2 and pgl1 under both LL and HL conditions. The mutant inactivated in both pgl genes was especially sensitive to the light environment, with alterations in pigmentation, heterogeneous inclusion bodies, and a lower PSI/PSII ratio than the WT even for cultures grown under LL conditions. The WT cultures grown under HL contained 2- to 3-fold more PGL1 and PGL2 per cell than cultures grown under LL conditions. These and other observations led us to conclude that the PGL-like polypeptides of Synechocystis play similar but not identical roles in some process relevant to the repair of photooxidative damage.

  6. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  7. O-demethylase from Acetobacterium dehalogenans--cloning, sequencing, and active expression of the gene encoding the corrinoid protein.

    Science.gov (United States)

    Kaufmann, F; Wohlfarth, G; Diekert, G

    1998-10-15

    The ether-cleaving O-demethylase from the strictly anaerobic homoacetogen Acetobacterium dehalogenans catalyses the methyltransfer from 4-hydroxy-3-methoxy-benzoate (vanillate) to tetrahydrofolate. In the first step a vanillate :corrinoid protein methyltransferase (methyltransferase I) mediates the methylation of a 25-kDa corrinoid protein with the cofactor reduced to cob(I)alamin. The methyl group is then transferred to tetrahydrofolate by the action of a methylcorrinoid protein:tetrahydrofolate methyltransferase (methyltransferase II). Using primers derived from the amino-terminal sequences of the corrinoid protein and the vanillate:corrinoid protein methyltransferase (methyltransferase I), a 723-bp fragment was amplified by PCR, which contained the gene odmA encoding the corrinoid protein of O-demethylase. Downstream of odmA, part of the odmB gene encoding methyltransferase I was identified. The amino acid sequence deduced from odmA showed about 60% similarity to the cobalamin-binding domain of methionine synthase from Escherichia coli (MetH) and to corrinoid proteins of methyltransferase systems involved in methanogenesis from methanol and methylamines. The sequence contained the DXHXXG consensus sequence typical for displacement of the dimethylbenzimidazole base of the corrinoid cofactor by a histidine from the protein. Heterologous expression of odmA in E. coli yielded a colourless, oxygen-insensitive apoprotein, which was able to bind one mol cobalamin or methylcobalamin/mol protein. Both of these reconstituted forms of the protein were active in the overall O-demethylation reaction. OdmA reconstituted with hydroxocobalamin and reduced by titanium(III) citrate to the cob(I)alamin form was methylated with vanillate by methyltransferase I in an irreversible reaction. Methylcobalamin carrying OdmA served as methyl group donor for the methylation of tetrahydrofolate by methyltransferase II. This reaction was found to be reversible, since methyltranSferase II

  8. Immunotherapeutic effects on murine pancreatic carcinoma by β-elemene combined with dendritic cells modified with genes encoding interleukin-23

    Institute of Scientific and Technical Information of China (English)

    TAN Guang; WANG Zhongyu; CHE Luanqing; YIN Shuo

    2007-01-01

    The dendritic cell vaccine is a treatment vaccine with potent clinical applications.Functional cytokines can enhance dendritic cell anti-tumor immune responses.This experiment was conducted to study the effects of bone marrow-derived dendritic cells (BM-DCs) modified with genes encoding murine interleukin-23 (IL-23) on murine pancreatic carcinoma,and effects of the treatment of pancreatic carcinoma with β-elemene combined with IL-23-modified den dritic cell vaccine.The mttrine IL-23 cDNA was sub-cloned into a dual-expression vector.DCs were pulsed with tumor cell lysate after being modified wth IL-23.Mice were divided into groups which were injected with IL-23-transduced DC vaccine,non-transduced DC vaccine and sodium respectively.The preventive immune and immunotherapeutic effects of DC vaccines on mice and cytokine release in vivo were then assessed.Results showed inhibitory effects on tumor cells and increased survival time in the experimental group treated with the vaccine combined with β-elemene.The IL-23 protein apparently increases the antigen presenting ability of DCs.After injection with DC vaccines,IFN-γ production in the treatment group was significantly increased as compared with that in the control group (P < 0.01),and IL-4 production was decreased as compared with that in the control group (P<0.05).Tumor size was obviously reduced,and survival time clearly prolonged in the group with β-elemene combined with DC vaccine,in comparison to the other treatment groups and the control (P<0.01).IL-23-modified dendritic cell vaccines enhance specific Th1-type and cytotoxic T lymphocyte (CTL) responses against pancreatic carcinoma cells,and induce not only auto-immune ability but also preventive immunity against pancreatic carcinoma implanted in mice.β-elemene has great anti-tumor collaborative functions.

  9. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    XU Xiaojing; CAO Zhixiang; LIU Guoqin; Madan K. Bhattacharrya; REN Dongtao

    2004-01-01

    A full-length eDNA clone corresponding to a putative phosphatidylinositol-specific phospholipase C (PIPLC) was isolated from Arabidopsis thaliana by screening a cDNA library and using RT-PCR strategy. The cDNA, designated AtPLC6, encodes a putative polypeptide of 578 amino acid residues with a calculated molecular mass of 66251.84 D and a pI of 7.24. The sequence analysis indicates that the polypeptide contains X, Y, EF-hand and C2 domains. The overall structure of putative AtPLC6 protein, like other plant PI-PLCs, is most similar to that of mammalian PLC& The recombinant AtPLC6 protein expressed in E. coli was able to hydrolyze phosphatidylinositol 4,5-biophosphate (PIP2) to generate inositol 1,4,5-trisphate (IP3) and 1,2-diacylglycerol (DAG). The protein hydrolyzes PIP2 in a Ca2+-dependent manner and the optimum concentration of Ca2+ is 10 μmol/L.These results suggested that AtPLC6 gene encodes a genuine PI-PLC. Northern blot analysis showed that the AtPLC6 gene is expressed at low level in all examined tissues, such as roots,stems, leaves, flowers, siliques and seedlings under normal growth conditions. The gene is strongly induced under low temperature and weakly induced under various stresses,such as ABA, high-salt stress and heat. These results suggested that AtPLC6 might be involved in the signal-transduction pathways of cold responses of the plants.

  10. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.

    Science.gov (United States)

    Meyers, B C; Dickerman, A W; Michelmore, R W; Sivaramakrishnan, S; Sobral, B W; Young, N D

    1999-11-01

    The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.

  11. Identification and functional analysis of the erh1(+ gene encoding enhancer of rudimentary homolog from the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Marek K Krzyzanowski

    Full Text Available The ERH gene encodes a highly conserved small nuclear protein with a unique amino acid sequence and three-dimensional structure but unknown function. The gene is present in animals, plants, and protists but to date has only been found in few fungi. Here we report that ERH homologs are also present in all four species from the genus Schizosaccharomyces, S. pombe, S. octosporus, S. cryophilus, and S. japonicus, which, however, are an exception in this respect among Ascomycota and Basidiomycota. The ERH protein sequence is moderately conserved within the genus (58% identity between S. pombe and S.japonicus, but the intron-rich genes have almost identical intron-exon organizations in all four species. In S. pombe, erh1(+ is expressed at a roughly constant level during vegetative growth and adaptation to unfavorable conditions such as nutrient limitation and hyperosmotic stress caused by sorbitol. Erh1p localizes preferentially to the nucleus with the exception of the nucleolus, but is also present in the cytoplasm. Cells lacking erh1(+ have an aberrant cell morphology and a comma-like shape when cultured to the stationary phase, and exhibit a delayed recovery from this phase followed by slower growth. Loss of erh1(+ in an auxotrophic background results in enhanced arrest in the G1 phase following nutritional stress, and also leads to hypersensitivity to agents inducing hyperosmotic stress (sorbitol, inhibiting DNA replication (hydroxyurea, and destabilizing the plasma membrane (SDS; this hypersensitivity can be abolished by expression of S. pombe erh1(+ and, to a lesser extent, S. japonicus erh1(+ or human ERH. Erh1p fails to interact with the human Ciz1 and PDIP46/SKAR proteins, known molecular partners of human ERH. Our data suggest that in Schizosaccharomyces sp. erh1(+ is non-essential for normal growth and Erh1p could play a role in response to adverse environmental conditions and in cell cycle regulation.

  12. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    NARCIS (Netherlands)

    Bross, Peter; Li, Zhijie; Hansen, Jakob; Hansen, Jens Jacob; Nielsen, Marit Nyholm; Corydon, Thomas Juhl; Georgopoulos, Costa; Ang, Debbie; Lundemose, Jytte Banner; Niezen-Koning, Klary; Eiberg, Hans; Yang, Huanming; Kolvraa, Steen; Bolund, Lars; Gregersen, Niels

    2007-01-01

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for v

  13. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    NARCIS (Netherlands)

    Bross, Peter; Li, Zhijie; Hansen, Jakob; Hansen, Jens Jacob; Nielsen, Marit Nyholm; Corydon, Thomas Juhl; Georgopoulos, Costa; Ang, Debbie; Lundemose, Jytte Banner; Niezen-Koning, Klary; Eiberg, Hans; Yang, Huanming; Kolvraa, Steen; Bolund, Lars; Gregersen, Niels

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups for

  14. Effects of a Mutation in the HSPE1 Gene Encoding the Mitochondrial Co-chaperonin HSP10 and Its Potential Association with a Neurological and Developmental Disorder

    DEFF Research Database (Denmark)

    Bie, Anne S; Fernandez-Guerra, Paula; Birkler, Rune I D;

    2016-01-01

    or the literature. To evaluate whether the mutation may be disease-associated we investigated its effects by in vitro and ex vivo studies. Our in vitro studies indicated that the purified mutant protein was functional, yet its thermal stability, spontaneous refolding propensity, and resistance to proteolytic...

  15. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    DEFF Research Database (Denmark)

    Bross, Peter; Li, Zhijie; Hansen, Jakob;

    2007-01-01

    Molecular chaperones assist protein folding, and variations in their encoding genes may be disease-causing in themselves or influence the phenotypic expression of disease-associated or susceptibility-conferring variations in many different genes. We have screened three candidate patient groups fo...

  16. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco.

    Science.gov (United States)

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-09-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    Science.gov (United States)

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring.

  18. Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance

    Directory of Open Access Journals (Sweden)

    Kristen K. Merritt

    2014-10-01

    Full Text Available Background: Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide “letters”, the presence of strong (G:C and weak (A:T nucleobase pairs, the non-canonical folded structures that compete with Watson–Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so.Results: We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA. This strategy uses an artificially expanded genetic information system (AEGIS that adds nucleotides to the four (G, A, C, and T found in standard DNA by shuffling hydrogen-bonding units on the nucleobases, all while retaining the overall Watson–Crick base-pairing geometry. The added information density allows larger numbers of synthetic fragments to self-assemble without off-target hybridization, hairpin formation, and non-canonical folding interactions. The AEGIS pairs are then converted into standard pairs to produce a fully natural L-DNA product. Here, we report the autonomous assembly of a gene encoding kanamycin resistance using this strategy. Synthetic fragments were built from a six-letter alphabet having two AEGIS components, 5-methyl-2’-deoxyisocytidine and 2’-deoxyisoguanosine (respectively S and B, at their overlapping ends. Gaps in the overlapped assembly were then filled in using DNA polymerases, and the nicks were sealed by ligase. The S:B pairs in the ligated construct were then converted to T:A pairs during PCR amplification. When cloned into a plasmid, the product was shown to make Escherichia coli resistant to kanamycin. A parallel study that attempted to assemble similarly sized genes

  19. Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple (Ananas comosus L. flowering

    Directory of Open Access Journals (Sweden)

    Yunhe eLi

    2016-05-01

    Full Text Available Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a and AcETR2b. The 5′ flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2 were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1. The relative expression of AcERS1b, AcETR2a and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET, whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP and flower primordia (FP appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.

  20. Construction of plant expression vectors carrying glnA gene encoding glutamine synthetase and regeneration of transgenic rice plants

    Institute of Scientific and Technical Information of China (English)

    苏金; 张雪琴; 颜秋生; 陈章良; 尤崇杓

    1995-01-01

    The glnA gene encoding glutamine synthetase (GS) was amplified from Azospirillum brasilenseSp7 with PCR technique.The amplified 1.4-kb DNA fragment flanked with a BamH Ⅰ site at each end wascloned into EcoR V site of Bluescript-SK vector.A recombinant plasmid pGSJ1 containing this 1.4-kb DNA frag-ment was selected by restriction digestion analysis.The sequencing data also confirmed that the amplified 1.4-kbDNA fragment was undoubtedly the glnA gene of A.brasilense Sp7.Then the 1.4-kb BamH Ⅰ fragment was ex-cised from pGSJ1.A glnA plant expression vector pAGNB92 with rice actin 1 (Act1) promoter was constructedby using colony in situ hybridization to screen positive clones,and 3 rounds of ligation and transformation wereperformed.Protoplasts isolated from rice (Oryza sativa,L.Japonica) cell suspension line (cv.T986) weretransformed with the glnA plant expression vector pAGNB92 carrying neomycin phosphotransferase Ⅱ (NPT Ⅱ)gene by PEG fusion or electroporation.G418~ calli were used to detect NPT Ⅱ enzyme activity.The resultsshow that G418~ calli possess high positive hybridization signal with the frequency of 37%.The regeneratedG418~NPTII~+ rice plants were used for PCR amplification of glnA gene,and a 1.4-kb DNA fragment was ampli-fied from glnA-transgenic rice plants (R0 generation).The results of Southern blot hybridization prove that the1.4-kb DNA fragment amplified from the total DNA of glnA transgenic rice plants is indeed the glnA gene of A.brasilense Sp7.Northern blot hybridization was carried out using the same glnA gene as probe.The glnAgene was expressed in the transgenic rice plants.Bioassays also confirmed that the glnA transgenic rice plantsgrew much better than that of the control plants under a condition with nitrogen poor source (0.75 mmol/L).

  1. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering.

    Science.gov (United States)

    Li, Yun-He; Wu, Qing-Song; Huang, Xia; Liu, Sheng-Hui; Zhang, Hong-Na; Zhang, Zhi; Sun, Guang-Ming

    2016-01-01

    Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.

  2. The divergently transcribed genes encoding yeast ribosomal proteins L46 and S24 are activated by shared RPG-boxes.

    Science.gov (United States)

    Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J

    1989-12-11

    Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of

  3. Mitochondrial Myopathies

    Science.gov (United States)

    ... which stimulates normal beating of the heart. Cardiac muscle damage also may occur. People with mitochondrial disorders may need to have regular examina- tions by a cardiologist. Other potential health issues Some people with mitochondrial disease experience ...

  4. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  5. Mitochondrial genetics

    OpenAIRE

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was con...

  6. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA.

    Science.gov (United States)

    Burger, G; Zhu, Y; Littlejohn, T G; Greenwood, S J; Schnare, M N; Lang, B F; Gray, M W

    2000-03-24

    We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events

  7. Mutations of mitochondrial DNA polymerase gammaA are a frequent cause of autosomal dominant or recessive progressive external ophthalmoplegia.

    Science.gov (United States)

    Lamantea, Eleonora; Tiranti, Valeria; Bordoni, Andreina; Toscano, Antonio; Bono, Francesco; Servidei, Serena; Papadimitriou, Alex; Spelbrink, Hans; Silvestri, Laura; Casari, Giorgio; Comi, Giacomo P; Zeviani, Massimo

    2002-08-01

    One form of familial progressive external ophthalmoplegia with multiple mitochondrial DNA deletions recently has been associated with mutations in POLG1, the gene encoding pol gammaA, the catalytic subunit of mitochondrial DNA polymerase. We screened the POLG1 gene in several PEO families and identified five different heterozygous missense mutations of POLG1 in 10 autosomal dominant families. Recessive mutations were found in three families. Our data show that mutations of POLG1 are the most frequent cause of familial progressive external ophthalmoplegia associated with accumulation of multiple mitochondrial DNA deletions, accounting for approximately 45% of our family cohort.

  8. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    Energy Technology Data Exchange (ETDEWEB)

    Albertella, M.R.; Jones, H.; Thomson, W. [Oxford Univ. (United Kingdom)] [and others

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  9. No association between rs6897932 in the gene encoding interleukin-7 receptor α and low-grade inflammation or self-reported health

    DEFF Research Database (Denmark)

    Hartling, Hans J; Sørensen, Cecilie J; Rigas, Andreas S;

    2015-01-01

    and LGI, self-reported IM or HRQL were found in men or women. This suggests that rs6897932 is not associated with general inflammation, and the reported associations between the T-allele in rs6897932 with several autoimmune diseases may be mediated through effects on a restricted part of the immune system.......The T-allele in the single nucleotide polymorphism rs6897932 in the gene encoding the IL-7 receptor α (IL7RA) is associated with reduced risk of autoimmune diseases including multiple sclerosis and also affects the course of HIV infection. Low-grade inflammation (LGI) and self-reported, health...

  10. Identification of TENP as the Gene Encoding Chicken Egg White Ovoglobulin G2 and Demonstration of Its High Genetic Variability in Chickens.

    Science.gov (United States)

    Kinoshita, Keiji; Shimogiri, Takeshi; Ibrahim, Hisham R; Tsudzuki, Masaoki; Maeda, Yoshizane; Matsuda, Yoichi

    2016-01-01

    Ovoglobulin G2 (G2) has long been known as a major protein constituent of chicken egg white. However, little is known about the biochemical properties and biological functions of G2 because the gene encoding G2 has not been identified. Therefore, the identification of the gene encoding G2 and an analysis of its genetic variability is an important step toward the goal of understanding the biological functions of the G2 protein and its utility in poultry production. To identify and characterize the gene encoding G2, we separated G2 from egg white using electrophoresis on a non-denaturing polyacrylamide gel. Two polymorphic forms of G2 protein (G2A and G2B), with different mobilities (fast and slow respectively), were detected by staining. The protein band corresponding to G2B was electro-eluted from the native gel, re-electrophoresed under denaturing conditions and its N-terminal sequence was determined by Edman degradation following transfer onto a membrane. Sequencing of the 47 kDa G2B band revealed it to be identical to TENP (transiently expressed in neural precursors), also known as BPI fold-containing family B, member 2 (BPIFB2), a protein with strong homology to a bacterial permeability-increasing protein family (BPI) in mammals. Full-length chicken TENP cDNA sequences were determined for 78 individuals across 29 chicken breeds, lines, and populations, and consequently eleven non-synonymous substitutions were detected in the coding region. Of the eleven non-synonymous substitutions, A329G leading to Arg110Gln was completely associated with the noted differential electrophoretic mobility of G2. Specifically G2B, with a slower mobility is encoded by A329 (Arg110), whereas G2A, with a faster mobility, is encoded by G329 (Gln110). The sequence data, derived from the coding region, also revealed that the gene encoding G2 demonstrates significant genetic variability across different chicken breeds/lines/populations. These variants, and how they correlate with egg

  11. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  12. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M;

    2006-01-01

    of the SCHAD enzyme in glucose-stimulated insulin secretion led us to the hypothesis that common variants in HADHSC on chromosome 4q22-26 might be associated with development of type 2 diabetes. In this study, we have performed a large-scale association study in four different cohorts from the Netherlands...... measure (all P > 0.1). The present study provides no evidence that the specific HADHSC variants or haplotypes examined do influence susceptibility to develop type 2 diabetes. We conclude that it is unlikely that variation in HADHSC plays a major role in the pathogenesis of type 2 diabetes in the examined......The short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) protein is involved in the penultimate step of mitochondrial fatty acid oxidation. Previously, it has been shown that mutations in the corresponding gene (HADHSC) are associated with hyperinsulinism in infancy. The presumed function...

  13. Mitochondrial vasculopathy

    Institute of Scientific and Technical Information of China (English)

    Josef Finsterer; Sinda Zarrouk-Mahjoub

    2016-01-01

    Mitochondrial disorders(MIDs)are usually multisystem disorders(mitochondrial multiorgan disorder syndrome)either on from onset or starting at a point during the disease course.Most frequently affected tissues are those with a high oxygen demand such as the central nervous system,the muscle,endocrine glands,or the myocardium.Recently,it has been shown that rarely alsothe arteries may be affected(mitochondrial arteriopathy).This review focuses on the type,diagnosis,and treat-ment of mitochondrial vasculopathy in MID patients.A literature search using appropriate search terms was carried out.Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy.Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy,migraine-like headache,stroke-like episodes,or peripheral retinopathy.Mitochondrial macroangiopathy manifests as atherosclerosis,ectasia of arteries,aneurysm formation,dissection,or spontan-eous rupture of arteries.The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes.Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes.Mitochondrial vasculopathy exists and manifests as micro-or macroangiopathy.Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications.

  14. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro

    Science.gov (United States)

    Ding, Lianggong; Han, Yanping; Li, Yuhong; Ji, Xunming; Liu, Lei

    2016-01-01

    As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro’s effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson’s disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional. PMID:27716788

  15. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro.

    Directory of Open Access Journals (Sweden)

    Lianggong Ding

    2016-10-01

    Full Text Available As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF. However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro's effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson's disease (PD, caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional.

  16. Primary fibroblasts of NDUFS4(-/-) mice display increased ROS levels and aberrant mitochondrial morphology.

    Science.gov (United States)

    Valsecchi, Federica; Grefte, Sander; Roestenberg, Peggy; Joosten-Wagenaars, Jori; Smeitink, Jan A M; Willems, Peter H G M; Koopman, Werner J H

    2013-09-01

    The human NDUFS4 gene encodes an accessory subunit of the first mitochondrial oxidative phosphorylation complex (CI) and, when mutated, is associated with progressive neurological disorders. Here we analyzed primary muscle and skin fibroblasts from NDUFS4(-/-) mice with respect to reactive oxygen species (ROS) levels and mitochondrial morphology. NDUFS4(-/-) fibroblasts displayed an inactive CI subcomplex on native gels but proliferated normally and showed no obvious signs of apoptosis. Oxidation of the ROS sensor hydroethidium was increased and mitochondria were less branched and/or shorter in NDUFS4(-/-) fibroblasts. We discuss the relevance of these findings with respect to previous results and therapy development.

  17. Biallelic mutations in the gene encoding eEF1A2 cause seizures and sudden death in F0 mice

    Science.gov (United States)

    Davies, Faith C. J.; Hope, Jilly E.; McLachlan, Fiona; Nunez, Francis; Doig, Jennifer; Bengani, Hemant; Smith, Colin; Abbott, Catherine M.

    2017-01-01

    De novo heterozygous missense mutations in the gene encoding translation elongation factor eEF1A2 have recently been found to give rise to neurodevelopmental disorders. Children with mutations in this gene have developmental delay, epilepsy, intellectual disability and often autism; the most frequently occurring mutation is G70S. It has been known for many years that complete loss of eEF1A2 in mice causes motor neuron degeneration and early death; on the other hand heterozygous null mice are apparently normal. We have used CRISPR/Cas9 gene editing in the mouse to mutate the gene encoding eEF1A2, obtaining a high frequency of biallelic mutations. Whilst many of the resulting founder (F0) mice developed motor neuron degeneration, others displayed phenotypes consistent with a severe neurodevelopmental disorder, including sudden unexplained deaths and audiogenic seizures. The presence of G70S protein was not sufficient to protect mice from neurodegeneration in G70S/− mice, showing that the mutant protein is essentially non-functional. PMID:28378778

  18. Detection of the gene encoding the small subunit of the CO dehydrogenase enzyme in the H{sub 2}-evolving bacterium Rubrivivax gelatinosus CBS

    Energy Technology Data Exchange (ETDEWEB)

    Kish, A.; Levin, D. [Victoria Univ., BC (Canada)]|[Victoria Univ., BC (Canada)

    2001-06-01

    A purple non-sulfur bacterium, Rubrivivax gelatinosus CBS presents great opportunities, on a commercial scale, for the biological hydrogen production. A water-gas shift reaction is catalyzed when the bacterium is cultured in the presence of carbon oxide in the dark. The result is carbon monoxide (and water) being shifted into hydrogen (H{sub 2}) and carbon dioxide in near stoichiometric quantities. The production of hydrogen as a clean alternative fuel could be accomplished by using carbon monoxide generated from gasified waste biomass, using the bacterial water-gas shift reaction for that purpose. The characterization of three key enzymes and the genes encoding them was performed in a closely related purple non-sulfur bacterium called Rhodospirillum rubrum. They were: (1) a carbon monoxide dehydrogenase (CODH), (2) the ferredoxin-like electron-carrier small subunit of the CODH enzyme, and (3) an hydrogen-evolving hydrogenase. A transcriptional unit separate from the genes encoding the CODH and its ferredoxin-like small subunit encode the genes for the hydrogenase. A fragment of the Rhodospirillum rubrum ferredoxin-like subunit gene was amplified through the use of a polymerase chain reaction. Southern blots of restriction endonuclease digested genomic deoxyribonucleic acid (DNA) extracted from Rubrivivax gelatinosus CBS was probed with the fragment of the Rhodospirillum rubrum previously amplified using the polymerase chain reaction. Confirmation of the identification is being confirmed, while the gene is sequenced. 25 refs., 2 figs.

  19. Molecular Characterization and Sequencing of a Gene Encoding Mannose Binding Protein in an Iranian Isolate of Acanthamoeba castellanii as a Major Agent of Acanthamoeba Keratitis

    Directory of Open Access Journals (Sweden)

    SH Farnia

    2008-07-01

    Full Text Available Background: Acanthamoeba castellanii is the important cause of amoebic keratitis in Iran. The key molecule in pathogenesis of Acanthamoeba keratitis is Mannose Binding Protein (MBP led to adhesion of amoeba to corneal epithelium. Subsequent to adhesion other cytopathic effects occur. The goal of this study was to identify the molecular characterization of a gene encoding MBP in an Iranian isolate of A.castellanii in order to pave the way for further investigations such as new therapeutic advances or immunization. Methods: A.castellanii was cultured on non nutrient agar. Extraction of DNA was performed by phenol-chloroform method. After designing a pair of primer for the gene encoding MBP, PCR analysis was performed. Finally, the PCR product has been sequenced and the result submitted to the gene data banks. Results: An MBP gene of 1081 nucleotides was sequenced. This fragment contained three introns and encodes a protein with 194 amino acids. Homology search by Blast program showed a significant homology with the MBP gene in gene data banks (96%. Besides, the identity of amino acids with the other MBPs in gene data banks was about 86%. Conclusion: We isolated and sequenced a gene fragment encoding MBP in an Iranian isolate of A.castellanii. Molecular characterization of this important gene is the first step in pursuing researches such as developing better therapeutic agents, immunization of population at risk or even developing a diagnostic tool by PCR techniques.

  20. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Directory of Open Access Journals (Sweden)

    Hui-Yeng Y Yap

    Full Text Available Lignosus rhinocerotis (Cooke Ryvarden (tiger milk mushroom has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  1. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Science.gov (United States)

    Yap, Hui-Yeng Y; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  2. Isolation and identification of a marine killer yeast strain YF07b and cloning of the gene encoding killer toxin from the yeast

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It was found that the marine yeast strain YF07b could secrete a large amount of killer toxin against a pathogenic yeast strain WCY which could cause milky disease in Portunus trituberculatus. The marine yeast strain YF07b was identified to be Pichia anomala according to the results of routine yeast identification and 18S rDNA and ITS sequences. The gene encoding killer toxin in the marine yeast strain YF07b was amplified by PCR technology. After sequencing, the results show that an open reading frame, consisting of 1 281 bp, encoded a presumed protein of 427 amino acids. The sequence of the cloned gene was found to have 99% match with that of the gene encoding killer toxin in Pichia anomalas strain K. A signal peptide including 17 amino acids appeared in the N-terminal domain of the killer toxin. Therefore, the mature protein consisted of 410 amino acids, its molecular mass was estimated to be 47.4 ku and its isoelctronic point was 4.5.

  3. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    Science.gov (United States)

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis.

  4. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue.

    Science.gov (United States)

    Huber, L; de Lange, C F M; Ernst, C W; Krogh, U; Trottier, N L

    2016-11-01

    Lactating multiparous Yorkshire sows ( = 64) were used in 2 experiments to test the hypothesis that reducing dietary CP intake and improving AA balance through crystalline AA (CAA) supplementation improves apparent dietary AA utilization efficiency for milk production and increases transcript abundance of genes encoding Lys transporter proteins in mammary tissue. In Exp. 1, 40 sows were assigned to 1 of 4 diets: 1) high CP (HCP; 16.0% CP, as-fed basis; analyzed concentration), 2) medium-high CP (MHCP; 15.7% CP), 3) medium-low CP (MLCP; 14.3% CP), and 4) low CP (LCP; 13.2% CP). The HCP diet was formulated using soybean meal and corn as the only Lys sources. The reduced-CP diets contained CAA to meet estimated requirements for essential AA that became progressively limiting with reduction in CP concentration, that is, Lys, Ile, Met + Cys, Thr, Trp, and Val. Dietary standardized ileal digestible (SID) Lys concentration was 80% of the estimated requirement. In Exp. 2, 24 sows were assigned to the HCP or LCP diets. In Exp. 1, blood samples were postprandially collected 15 h on d 3, 7, 14, and 18 of lactation and utilization efficiency of dietary AA for milk production was calculated during early (d 3 to 7) and peak (d 14 to 18) lactation. Efficiency values were estimated from daily SID AA intakes and milk AA yield, with corrections for maternal AA requirement for maintenance and AA contribution from body protein losses. In Exp. 2, mammary tissue was biopsied on d 4 and 14 of lactation to determine the mRNA abundance of genes encoding Lys transporter proteins. In peak lactation, Lys, Thr, Trp, and Val utilization efficiency increased with decreasing dietary CP (linear for Trp and Val, sows fed the MHCP diet vs. sows fed the HCP diet for Lys and Thr, sows fed the LCP and HCP diets. Feeding lactating sows low-CP diets supplemented with CAA increases the efficiency of utilizing dietary Lys, Thr, Trp, and Val for milk protein production but is unrelated to abundance in m

  5. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (pppGpp synthase

    Directory of Open Access Journals (Sweden)

    Kalinowski Jörn

    2006-09-01

    Full Text Available Background The stringent response is the initial reaction of microorganisms to nutritional stress. During stringent response the small nucleotides (pppGpp act as global regulators and reprogram bacterial transcription. In this work, the genetic network controlled by the stringent response was characterized in the amino acid-producing Corynebacterium glutamicum. Results The transcriptome of a C. glutamicum rel gene deletion mutant, unable to synthesize (pppGpp and to induce the stringent response, was compared with that of its rel-proficient parent strain by microarray analysis. A total of 357 genes were found to be transcribed differentially in the rel-deficient mutant strain. In a second experiment, the stringent response was induced by addition of DL-serine hydroxamate (SHX in early exponential growth phase. The time point of the maximal effect on transcription was determined by real-time RT-PCR using the histidine and serine biosynthetic genes. Transcription of all of these genes reached a maximum at 10 minutes after SHX addition. Microarray experiments were performed comparing the transcriptomes of SHX-induced cultures of the rel-proficient strain and the rel mutant. The differentially expressed genes were grouped into three classes. Class A comprises genes which are differentially regulated only in the presence of an intact rel gene. This class includes the non-essential sigma factor gene sigB which was upregulated and a large number of genes involved in nitrogen metabolism which were downregulated. Class B comprises genes which were differentially regulated in response to SHX in both strains, independent of the rel gene. A large number of genes encoding ribosomal proteins fall into this class, all being downregulated. Class C comprises genes which were differentially regulated in response to SHX only in the rel mutant. This class includes genes encoding putative stress proteins and global transcriptional regulators that might be

  6. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  7. Mitochondrial disorders.

    Science.gov (United States)

    Zeviani, M; Tiranti, V; Piantadosi, C

    1998-01-01

    Mitochondrial respiration, the most efficient metabolic pathway devoted to energy production, is at the crosspoint of 2 quite different genetic systems, the nuclear genome and the mitochondrial genome (mitochondrial DNA, mtDNA). The latter encodes a few essential components of the mitochondrial respiratory chain and has unique molecular and genetic properties that account for some of the peculiar features of mitochondrial disorders. However, the perpetuation, propagation, and expression of mtDNA, the majority of the subunits of the respiratory complexes, as well as a number of genes involved in their assembly and turnover, are contained in the nuclear genome. Although mitochondrial disorders have been known for more than 30 years, a major breakthrough in their understanding has come much later, with the discovery of an impressive, ever-increasing number of mutations of mitochondrial DNA. Partial deletions or duplications of mtDNA, or maternally inherited point mutations, have been associated with well-defined clinical syndromes. However, phenotypes transmitted as mendelian traits have also been identified. These include clinical entities defined on the basis of specific biochemical defects, and also a few autosomal dominant or recessive syndromes associated with multiple deletions or tissue-specific depletion of mtDNA. Given the complexity of mitochondrial genetics and biochemistry, the clinical manifestations of mitochondrial disorders are extremely heterogenous. They range from lesions of single tissues or structures, such as the optic nerve in Leber hereditary optic neuropathy or the cochlea in maternally inherited nonsyndromic deafness, to more widespread lesions including myopathies, encephalomyopathies, cardiopathies, or complex multisystem syndromes. The recent advances in genetic studies provide both diagnostic tools and new pathogenetic insights in this rapidly expanding area of human pathology.

  8. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    Science.gov (United States)

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The DNA sequence of the equine herpesvirus 4 gene encoding glycoprotein gp17/18, the homologue of herpes simplex virus glycoprotein gD.

    Science.gov (United States)

    Cullinane, A A; Neilan, J; Wilson, L; Davison, A J; Allen, G

    1993-09-01

    The nucleotide sequence of the gene to the left of the gI gene of equine herpesvirus 4 (EHV-4) was determined. The gene encodes a peptide of 402 amino acids with an unprocessed M(r) of 45,323. The predicted polypeptide has several features of a glycoprotein including a hydrophobic signal sequence, a membrane spanning domain and four potential N-linked glycosylation sites within the proposed external domain. The predicted amino acid sequence of EHV-4 gD shows 83% identity with that of equine herpesvirus 1 gD. Conservation of the tertiary structure is suggested by the alignment of six cysteine residues with those of the gD of six other alphaherpesviruses. Screening a lambda gt11/EHV-4 expression library with monoclonal antibodies against several of the most abundant EHV-4 glycoproteins unequivocally identified the protein encoded by the EHV-4 gD gene as gp17/18.

  10. The gene encoding the melanin-concentrating hormone receptor 1 is associated with schizophrenia in a Danish case-control sample

    DEFF Research Database (Denmark)

    Demontis, Ditte; Nyegaard, Mette; Christensen, Jane H;

    2012-01-01

    OBJECTIVE: The MCHR1 gene encoding the melanin-concentrating hormone receptor 1 is located on chromosome 22q13.2 and has previously been associated with schizophrenia in a study of cases and controls from the Faroe Islands and Scotland. Herein we report an association between variations in the MCHR......1 gene and schizophrenia, based on analyses of a larger sample and an increased number of single nucleotide polymorphisms (SNPs) than used in the previous study. METHODS: Eighteen SNPs in the MCHR1 gene region were genotyped in a Caucasian case-control sample from Denmark consisting of 390......, predominantly seen in men where one SNP (rs133073) remained significant (P=0.003) after correction for multiple testing. When combining the P values in the proximal region of MCHR1, the region-wise P value was low (P=0.009) supporting that variations in this part of the gene is associated with schizophrenia...

  11. Shortening and intracellular Ca2+ in ventricular myocytes and expression of genes encoding cardiac muscle proteins in early onset type 2 diabetic Goto-Kakizaki rats.

    Science.gov (United States)

    Salem, K A; Adrian, T E; Qureshi, M A; Parekh, K; Oz, M; Howarth, F C

    2012-12-01

    There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus. Cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. Contractile dysfunction, associated with disturbances in excitation-contraction coupling, has been widely demonstrated in the diabetic heart. The aim of this study was to investigate the pattern of cardiac muscle genes that are involved in the process of excitation-contraction coupling in the hearts of early onset (8-10 weeks of age) type 2 diabetic Goto-Kakizaki (GK) rats. Gene expression was assessed in ventricular muscle with real-time RT-PCR; shortening and intracellular Ca(2+) were measured in ventricular myocytes with video edge detection and fluorescence photometry, respectively. The general characteristics of the GK rats included elevated fasting and non-fasting blood glucose and blood glucose at 120 min following a glucose challenge. Expression of genes encoding cardiac muscle proteins (Myh6/7, Mybpc3, Myl1/3, Actc1, Tnni3, Tnn2, Tpm1/2/4 and Dbi) and intercellular proteins (Gja1/4/5/7, Dsp and Cav1/3) were unaltered in GK ventricle compared with control ventricle. The expression of genes encoding some membrane pumps and exchange proteins was unaltered (Atp1a1/2, Atp1b1 and Slc8a1), whilst others were either upregulated (Atp1a3, relative expression 2.61 ± 0.69 versus 0.84 ± 0.23) or downregulated (Slc9a1, 0.62 ± 0.07 versus 1.08 ± 0.08) in GK ventricle compared with control ventricle. The expression of genes encoding some calcium (Cacna1c/1g, Cacna2d1/2d2 and Cacnb1/b2), sodium (Scn5a) and potassium channels (Kcna3/5, Kcnj3/5/8/11/12, Kchip2, Kcnab1, Kcnb1, Kcnd1/2/3, Kcne1/4, Kcnq1, Kcng2, Kcnh2, Kcnk3 and Kcnn2) were unaltered, whilst others were either upregulated (Cacna1h, 0.95 ± 0.16 versus 0.47 ± 0.09; Scn1b, 1.84 ± 0.16 versus 1.11 ± 0.11; and Hcn2, 1.55 ± 0.15 versus 1.03 ± 0.08) or downregulated (Hcn4, 0.16 ± 0.03 versus 0.37 ± 0.08; Kcna2, 0.35 ± 0

  12. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  13. The oxpA5 mutation of Aspergillus nidulans is an allele of adB, the gene encoding adenylosuccinate synthetase.

    Science.gov (United States)

    Ribard, C; Scazzocchio, C; Oestreicher, N

    2001-12-01

    The oxpA5 mutation in Aspergillus nidulans results in a pleiotropic phenotype, including resistance to oxypurinol and partial constitutivity of the enzymes of purine catabolism. Here we show that the oxpA5 mutation is an allele of adB, the gene encoding adenylosuccinate synthetase (ASS). Cloning, sequencing and characterisation of the adB gene are reported in this paper. In vivo complementation tests indicate that the oxpA5 mutation is a partial loss-of-function mutation, and altered kinetic parameters of the ASS could account for the pleiotropic phenotype of the oxpA5 mutant. The transcriptional regulation of adB presents some interesting features, including increased gene expression in the presence of ammonium and of AMP, the final product of purine biosynthesis. The adB gene is located adjacent to helA, a newly identified gene coding for a putative RNA helicase.

  14. The gene (NFE2L1) for human NRF-1 and activator involved in nuclear mitochondrial interactions maps to 7q32

    Energy Technology Data Exchange (ETDEWEB)

    Tiranti, V.; DiDonato, S.; Zeviani, M. [National Nuerological Institute, Milan (Italy)] [and others

    1995-06-10

    Nuclear respiratory factors 1 and 2 (NRF-1 and NRF-2) were first recognized as transcriptional activators of several genes involved in oxidative phosphorylation (OYPHOS). Cis-acting functional NRF-1 and NRF-2 sites are present in the gene encoding cytochrome c and in nuclear genes encoding different subunits of respiratory complexes III, IV, and V. NRF-1 and NRF-2 binding sites have also been found in genes encoding the RNA subunit of MRP endonuclease and the gene for mitochondrial transcription factor A (TCF6). MRP endonuclease is a ribonucleoprotein enzyme possibly involved in cleavage of the light-strand transcripts serving as primers for heavy-strand replication; the product of TCF6 stimulates transcription initiation, and, by controlling light-strand transcription, it is thought to modulate mtDNA replication as well. Furthermore, NRF-1 is required for expression of the gene encoding 5-aminolevulinate synthase, the rate-limiting enzyme in the biosynthesis of heme for respiratory cytochromes. Therefore, NRF-1 plays a major integrative role in controlling numerous nuclear-mitochondrial interactions in higher organisms. 12 refs., 1 fig.

  15. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    Directory of Open Access Journals (Sweden)

    Ting Xu

    2015-03-01

    Full Text Available The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs.

  16. aguA, the gene encoding an extracellular alpha-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid.

    Science.gov (United States)

    de Vries, R P; Poulsen, C H; Madrid, S; Visser, J

    1998-01-01

    An extracellular alpha-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70 degrees C. The alpha-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and beta-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this alpha-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and alpha-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose.

  17. Genes encoding 4-Cys antimicrobial peptides in wheat Triticum kiharae Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence.

    Science.gov (United States)

    Utkina, Lyubov L; Andreev, Yaroslav A; Rogozhin, Eugene A; Korostyleva, Tatyana V; Slavokhotova, Anna A; Oparin, Peter B; Vassilevski, Alexander A; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I

    2013-08-01

    A novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif. The peptides inhibit the spore germination of several fungal pathogens in vitro. cDNA and gene cloning disclosed unique structure of genes encoding Tk-AMP-X peptides. They code for precursor proteins of unusual multimodular structure, consisting of a signal peptide, several α-hairpinin (4-Cys) peptide domains with a characteristic cysteine pattern separated by linkers and a C-terminal prodomain. Three types of precursor proteins, with five, six or seven 4-Cys peptide modules, were found in wheat. Among the predicted family members, several peptides previously isolated from T. kiharae seeds were identified. Genes encoding Tk-AMP-X precursors have no introns in the protein-coding regions and are upregulated by fungal pathogens and abiotic stress, providing conclusive evidence for their role in stress response. A combined PCR-based and bioinformatics approach was used to search for related genes in the plant kingdom. Homologous genes differing in the number of peptide modules were discovered in phylogenetically-related Triticum and Aegilops species, including polyploid wheat genome donors. Association of the Tk-AMP-X genes with A, B/G or D genomes of hexaploid wheat was demonstrated. Furthermore, Tk-AMP-X-related sequences were shown to be widespread in the Poaceae family among economically important crops, such as barley, rice and maize. © 2013 FEBS.

  18. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages.

    Science.gov (United States)

    Hensel, M; Shea, J E; Waterman, S R; Mundy, R; Nikolaus, T; Banks, G; Vazquez-Torres, A; Gleeson, C; Fang, F C; Holden, D W

    1998-10-01

    The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for systemic infection of this pathogen in mice. Cloning and sequencing of a central region of SPI-2 revealed the presence of genes encoding putative chaperones and effector proteins of the secretion system. The predicted products of the sseB, sseC and sseD genes display weak but significant similarity to amino acid sequences of EspA, EspD and EspB, which are secreted by the type III secretion system encoded by the locus of enterocyte effacement of enteropathogenic Escherichia coli. The transcriptional activity of an sseA::luc fusion gene was shown to be dependent on ssrA, which is required for the expression of genes encoding components of the secretion system apparatus. Strains carrying nonpolar mutations in sseA, sseB or sseC were severely attenuated in virulence, strains carrying mutations in sseF or sseG were weakly attenuated, and a strain with a mutation in sseE had no detectable virulence defect. These phenotypes were reflected in the ability of mutant strains to grow within a variety of macrophage cell types: strains carrying mutations in sseA, sseB or sseC failed to accumulate, whereas the growth rates of strains carrying mutations in sseE, sseF or sseG were only modestly reduced. These data suggest that, in vivo, one of the functions of the SPI-2 secretion system is to enable intracellular bacterial proliferation.

  19. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein.

    Science.gov (United States)

    Gencic, S; Abuelo, D; Ambler, M; Hudson, L D

    1989-01-01

    The nosology of the inborn errors of myelin metabolism has been stymied by the lack of molecular genetic analysis. Historically, Pelizaeus-Merzbacher disease has encompassed a host of neurologic disorders that present with a deficit of myelin, the membrane elaborated by glial cells that encircles and successively enwraps axons. We describe here a Pelizaeus-Merzbacher pedigree of the classical type, with X-linked inheritance, a typical clinical progression, and a pathologic loss of myelinating cells and myelin in the central nervous system. To discriminate variants of Pelizaeus-Merzbacher disease, a set of oligonucleotide primers was constructed to polymerase-chain-reaction (PCR) amplify and sequence the gene encoding proteolipid protein (PLP), a structural protein that comprises half of the protein of the myelin sheath. The PLP gene in one of two affected males and the carrier mother of this family exhibited a single base difference in the more than 2 kb of the PLP gene sequenced, a C----T transition that would create a serine substitution for proline at the carboxy end of the protein. Our results delineate the clinical features of Pelizaeus-Merzbacher disease, define the possible molecular pathology of this dysmyelinating disorder, and address the molecular classification of inborn errors of myelin metabolism. Patients with the classical form (type I) and the more severely affected, connatal variant of Pelizaeus-Merzbacher disease (type II) would be predicted to display mutation at the PLP locus. The other variants (types III-VI), which have sometimes been categorized as Pelizaeus-Merzbacher disease, may represent mutations in genes encoding other structural myelin proteins or proteins critical to myelination. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:2773936

  20. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant.

    Science.gov (United States)

    Kim, Beg Hab; Kim, Sun Young; Nam, Kyoung Hee

    2012-12-01

    We previously reported that one of the brassinosteroidinsensitive mutants, bri1-9, showed increased cold tolerance compared with both wild type and BRI1-overexpressing transgenic plants, despite its severe growth retardation. This increased tolerance in bri1-9 resulted from the constitutively high expression of stress-inducible genes under normal conditions. In this report, we focused on the genes encoding class III plant peroxidases (AtPrxs) because we found that, compared with wild type, bri1-9 plants contain higher levels of reactive oxygen species (ROS) that are not involved with the activation of NADPH oxidase and show an increased level of expression of a subset of genes encoding class III plant peroxidases. Treatment with a peroxidase inhibitor, salicylhydroxamic acid (SHAM), led to the reduction of cold resistance in bri1-9. Among 73 genes that encode AtPrxs in Arabidopsis, we selected four (AtPrx1, AtPrx22, AtPrx39, and AtPrx69) for further functional analyses in response to cold temperatures. T-DNA insertional knockout mutants showed increased sensitivity to cold stress as measured by leaf damage and ion leakage. In contrast, the overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the BRI1-GFP plants. Taken together, these results indicate that the appropriate expression of a particular subset of AtPrx genes and the resulting higher levels of ROS production are required for the cold tolerance.

  1. aguA, the Gene Encoding an Extracellular α-Glucuronidase from Aspergillus tubingensis, Is Specifically Induced on Xylose and Not on Glucuronic Acid

    Science.gov (United States)

    de Vries, Ronald P.; Poulsen, Charlotte H.; Madrid, Susan; Visser, Jaap

    1998-01-01

    An extracellular α-glucuronidase was purified and characterized from a commercial Aspergillus preparation and from culture filtrate of Aspergillus tubingensis. The enzyme has a molecular mass of 107 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 112 kDa as determined by mass spectrometry, has a determined pI just below 5.2, and is stable at pH 6.0 for prolonged times. The pH optimum for the enzyme is between 4.5 and 6.0, and the temperature optimum is 70°C. The α-glucuronidase is active mainly on small substituted xylo-oligomers but is also able to release a small amount of 4-O-methylglucuronic acid from birchwood xylan. The enzyme acts synergistically with endoxylanases and β-xylosidase in the hydrolysis of xylan. The enzyme is N glycosylated and contains 14 putative N-glycosylation sites. The gene encoding this α-glucuronidase (aguA) was cloned from A. tubingensis. It consists of an open reading frame of 2,523 bp and contains no introns. The gene codes for a protein of 841 amino acids, containing a eukaryotic signal sequence of 20 amino acids. The mature protein has a predicted molecular mass of 91,790 Da and a calculated pI of 5.13. Multiple copies of the gene were introduced in A. tubingensis, and expression was studied in a highly overproducing transformant. The aguA gene was expressed on xylose, xylobiose, and xylan, similarly to genes encoding endoxylanases, suggesting a coordinate regulation of expression of xylanases and α-glucuronidase. Glucuronic acid did not induce the expression of aguA and also did not modulate the expression on xylose. Addition of glucose prevented expression of aguA on xylan but only reduced the expression on xylose. PMID:9440512

  2. Isolation and analysis of a gene encoding alpha-glucuronidase, an enzyme with a novel primary structure involved in the breakdown of xylan.

    Science.gov (United States)

    Ruile, P; Winterhalter, C; Liebl, W

    1997-01-01

    This is the first report describing the analysis of a gene encoding an alpha-glucuronidase, an enzyme essential for the complete breakdown of substituted xylans. A DNA fragment that carries the gene for alpha-glucuronidase was isolated from chromosomal DNA of the hyperthermophilic bacterium Thermotoga maritima MSB8. The alpha-glucuronidase gene (aguA) was identified and characterized with the aid of nucleotide sequence analysis, deletion experiments and expression studies in Escherichia coli, and the start of the coding region was defined by amino-terminal sequencing of the purified recombinant enzyme. The aguA gene encodes a 674-amino-acid, largely hydrophilic polypeptide with a calculated molecular mass of 78593 Da. The alpha-glucuronidase of T. maritima has a novel primary structure with no significant similarity to any other known amino acid sequence. The recombinant enzyme was purified to homogeneity as judged by SDS-PAGE. Gel filtration analysis at low salt concentrations revealed a high apparent molecular mass (> 630 kDa) for the recombinant enzyme, but the oligomeric structure changed upon variation of the ionic strength or the pH, yielding hexameric and/or dimeric forms which were also enzymatically active. The enzyme hydrolysed 2-O-(4-O-methyl-alpha-D-glucopyranosyluronic acid)-D-xylobiose (MeGlcAX2) to xylobiose and 4-O-methylglucuronic acid. The K(m) for MeGlcAX2 was 0.95 mM. The pH optimum was 6.3. Maximum activity was measured at 85 degrees C, about 25 degrees C or more above the values reported for all other alpha-glucuronidases known to date. When incubated at 55-75 degrees C, the enzyme suffered partial inactivation, but thereafter the residual activity remained nearly constant for several days.

  3. Mitochondrial medicine

    National Research Council Canada - National Science Library

    Bandyopadhyay, S K; Dutt, Anita

    2010-01-01

    .... With the coming of age for mitochondrial medicine, it is now appropriate that physicians keep themselves well-acquainted with the recent developments in this expanding field of biomedical research.

  4. Structural organization of the genes encoding the small nuclear RNAs U1 to U6 of Tetrahymena thermophila is very similar to that of plant small nuclear RNA genes

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1992-01-01

    We report the sequences of the genes encoding the small nuclear RNAs (snRNAs) U1 to U6 of the ciliate Tetrahymena thermophila. The genes of the individual snRNAs exist in two to six slightly different copies per haploid genome. Sequence analyses of the gene-flanking regions indicate that there ar......We report the sequences of the genes encoding the small nuclear RNAs (snRNAs) U1 to U6 of the ciliate Tetrahymena thermophila. The genes of the individual snRNAs exist in two to six slightly different copies per haploid genome. Sequence analyses of the gene-flanking regions indicate...

  5. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells*

    OpenAIRE

    Ryan, Zachary C.; Craig, Theodore A.; Folmes, Clifford D.; Wang, Xuewei; Ian R. Lanza; Schaible, Niccole S.; Salisbury, Jeffrey L.; Nair, K. Sreekumaran; Terzic, Andre; Sieck, Gary C.; Kumar, Rajiv

    2015-01-01

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mit...

  6. Subcomplex Ilambda specifically controls integrated mitochondrial functions in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Marni J Falk

    Full Text Available Complex I dysfunction is a common, heterogeneous cause of human mitochondrial disease having poorly understood pathogenesis. The extensive conservation of complex I composition between humans and Caenorhabditis elegans permits analysis of individual subunit contribution to mitochondrial functions at both the whole animal and mitochondrial levels. We provide the first experimentally-verified compilation of complex I composition in C. elegans, demonstrating 84% conservation with human complex I. Individual subunit contribution to mitochondrial respiratory capacity, holocomplex I assembly, and animal anesthetic behavior was studied in C. elegans by RNA interference-generated knockdown of nuclear genes encoding 28 complex I structural subunits and 2 assembly factors. Not all complex I subunits directly impact respiratory capacity. Subcomplex Ilambda subunits along the electron transfer pathway specifically control whole animal anesthetic sensitivity and complex II upregulation, proportionate to their relative impairment of complex I-dependent oxidative capacity. Translational analysis of complex I dysfunction facilitates mechanistic understanding of individual gene contribution to mitochondrial disease. We demonstrate that functional consequences of complex I deficiency vary with the particular subunit that is defective.

  7. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier.

    Science.gov (United States)

    Park, Seong-Hee; Kim, Sujin; Hahn, Ji-Sook

    2016-09-01

    Subcellular compartmentalization of the biosynthetic enzymes is one of the limiting factors for isobutanol production in Saccharomyces cerevisiae. Previously, it has been shown that mitochondrial compartmentalization of the biosynthetic pathway through re-locating cytosolic Ehrlich pathway enzymes into the mitochondria can increase isobutanol production. In this study, we improved mitochondrial isobutanol production by increasing mitochondrial pool of pyruvate, a key substrate for isobutanol production. Mitochondrial isobutanol biosynthetic pathway was introduced into bat1Δald6Δlpd1Δ strain, where genes involved in competing pathways were deleted, and MPC1, MPC2, and MPC3 genes encoding the subunits of mitochondrial pyruvate carrier (MPC) hetero-oligomeric complex were overexpressed with different combinations. Overexpression of Mpc1 and Mpc3 forming high-affinity MPCOX was more effective in improving isobutanol production than overexpression of Mpc1 and Mpc2 forming low-affinity MPCFERM. The final engineered strain overexpressing MPCOX produced 330.9 mg/L isobutanol from 20 g/L glucose, exhibiting about 22-fold increase in production compared to wild type.

  8. Mitochondrial respiratory chain disorders in the Old Order Amish population.

    Science.gov (United States)

    Ghaloul-Gonzalez, Lina; Goldstein, Amy; Walsh Vockley, Catherine; Dobrowolski, Steven F; Biery, Amy; Irani, Afifa; Ibarra, Jordan; Morton, D Holmes; Mohsen, Al-Walid; Vockley, Jerry

    2016-08-01

    The Old Order Amish populations in the US are one of the Plain People groups and are descendants of the Swiss Anabaptist immigrants who came to North America in the early eighteenth century. They live in numerous small endogamous demes that have resulted in reduced genetic diversity along with a high prevalence of specific genetic disorders, many of them autosomal recessive. Mitochondrial respiratory chain deficiencies arising from mitochondrial or nuclear DNA mutations have not previously been reported in the Plain populations. Here we present four different Amish families with mitochondrial respiratory chain disorders. Mutations in two mitochondrial encoded genes leading to mitochondrial respiratory chain disorder were identified in two patients. In the first case, MELAS syndrome caused by a mitochondrial DNA (mtDNA) mutation (m.3243A>G) was identified in an extended Amish pedigree following a presentation of metabolic strokes in the proband. Characterization of the extended family of the proband by a high resolution melting assay identified the same mutation in many previously undiagnosed family members with a wide range of clinical symptoms. A MELAS/Leigh syndrome phenotype caused by a mtDNA mutation [m.13513G>A; p.Asp393Asn] in the ND5 gene encoding the ND5 subunit of respiratory chain complex I was identified in a patient in a second family. Mutations in two nuclear encoded genes leading to mitochondrial respiratory chain disorder were also identified in two patients. One patient presented with Leigh syndrome and had a homozygous deletion in the NDUFAF2 gene, while the second patient had a homozygous mutation in the POLG gene, [c.1399G>A; p.Ala467Thr]. Our findings identify mitochondrial respiratory chain deficiency as a cause of disease in the Old Order Amish that must be considered in the context of otherwise unexplained systemic disease, especially if neuromuscular symptoms are present. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Vacuolar ATPase from Entamoeba histolytica: Molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein

    Directory of Open Access Journals (Sweden)

    Luna-Arias Juan

    2008-12-01

    Full Text Available Abstract Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits

  10. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  11. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica.

    Science.gov (United States)

    Blackman, Leila M; Cullerne, Darren P; Torreña, Pernelyn; Taylor, Jen; Hardham, Adrienne R

    2015-01-01

    RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1

  12. Sequence analysis of a Molluscum contagiosum virus DNA region which includes the gene encoding protein kinase 2 and other genes with unique organization.

    Science.gov (United States)

    Martin-Gallardo, A; Moratilla, M; Funes, J M; Agromayor, M; Nuñez, A; Varas, A J; Collado, M; Valencia, A; Lopez-Estebaranz, J L; Esteban, M

    1996-01-01

    The nucleotide sequence of a near left-terminal region from the genome of Molluscum contagiosum virus subtype I (MCVI) was determined. This region was contained within three adjacent BamHI fragments, designated L (2.4 kilobases (kb)), M (1.8 kb), and N (1.6 kb). BamHI cleavage of MCVI DNA produced another 1.6-kb fragment (N'), which had been mapped 30-50 kb from the L,M region. The MCVI restriction fragments were cloned and end-sequenced. The N fragment that maps at the L,M region was identified by the polymerase chain reaction, using primers devised from the sequence of each fragment. The results from this analysis led to establish the relative position of these fragments within the MCVI genome. The analysis of 3.6 kb of DNA sequence revealed the presence of ten open reading frames (ORFs). Comparison of the amino acid sequence of these ORFs to the amino acid sequence of vaccinia virus (VAC) proteins revealed that two complete MCVI ORFs, termed N1L and L1L, showed high degree of homology with VAC F9 and F10 genes, respectively. The F10 gene encodes a 52-kDa serine/threonine protein kinase (protein kinase 2), an essential protein involved in virus morphogenesis. The MCVI homologue (L1L) encoded a putative polypeptide of 443 aa, with a calculated molecular mass of 53 kDa, and 60.5/30.2% sequence identity/similarity to VAC F10. The MCV N1L (213 aa, 24 kDa) showed 42.6/40.6% amino acid sequence identity/similarity to VAC F9, a gene of unknown function encoding a 24-kDa protein with a hydrophobic C-terminal domain, which was conserved in MCVI. The genomic arrangement of MCVI N1L and L1L was equivalent to that of the vaccinia and variola virus homologues. However, the ORFs contained within MCVI fragment M (leftward) showed no homology, neither similarity in genetic organization, to the genes encoded by the corresponding regions of vaccinia and variola viruses.

  13. Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age.

    Science.gov (United States)

    Eschbach, Judith; Sinniger, Jérôme; Bouitbir, Jamal; Fergani, Anissa; Schlagowski, Anna-Isabel; Zoll, Joffrey; Geny, Bernard; René, Frédérique; Larmet, Yves; Marion, Vincent; Baloh, Robert H; Harms, Matthew B; Shy, Michael E; Messadeq, Nadia; Weydt, Patrick; Loeffler, Jean-Philippe; Ludolph, Albert C; Dupuis, Luc

    2013-10-01

    Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.

  14. Effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Qian Cai; Hong Zhou; Guang-Xia Xiao

    2002-01-01

    AIM: To study the effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells in in vitro model of hydrogen peroxide-stimulated SW-480 cells.METHODS: RNA of hydrogen peroxide-induced SW-480 cells was isolated, and reverse-transcriptional polymerase chain reaction was performed to study gene expression of ATPase subunit 6, ATPase subunit 8, cytochrome c oxidase subunit Ⅰ (COⅠ), cytochrome coxidase subuit Ⅱ (COⅡ) and cytochrome c oxidase subunit Ⅲ (COⅢ). Mitochondria were isolated and activities of mitochondrial cytochrome c oxidase and ATPase were also measured simultaneously.RESULTS: Hydrogen peroxide led to differential expression of mitochondrial genes with some genes up-regulated or down-regulated in a dose dependent manner. Differences were very obvious in expressions of mitochondrial genes of cells treated with hydrogen peroxide in a concentration of 400 μmol/L or 4 mmol/L. In general, differential expression of mitochondrial genes was characterized by up-regulation of mitochondrial genes in the concentration of 400 μmol/L and down-regulation in the concentration of 4 mmol/L. In consistence with changes in mitochondrial gene expressions, hydrogen peroxide resulted in decreased activities of cytochrome c oxidase and ATPase.CONCLUSIONS: The differential expression of mitochondrial genes encoding cytochrome c oxidase and ATPase is involved in apoptosis of intestinal epithelial cells by affecting activities of cytochorme c oxidase and ATPase.

  15. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo.

    Science.gov (United States)

    Bogacka, Iwona; Xie, Hui; Bray, George A; Smith, Steven R

    2005-05-01

    Thiazolidenediones such as pioglitazone improve insulin sensitivity in diabetic patients by several mechanisms, including increased uptake and metabolism of free fatty acids in adipose tissue. The purpose of the present study was to determine the effect of pioglitazone on mitochondrial biogenesis and expression of genes involved in fatty acid oxidation in subcutaneous fat. Patients with type 2 diabetes were randomly divided into two groups and treated with placebo or pioglitazone (45 mg/day) for 12 weeks. Mitochondrial DNA copy number and expression of genes involved in mitochondrial biogenesis were quantified by real-time PCR. Pioglitazone treatment significantly increased mitochondrial copy number and expression of factors involved in mitochondrial biogenesis, including peroxisome proliferator-activated receptor (PPAR)-gamma coactivator-1alpha and mitochondrial transcription factor A. Treatment with pioglitazone stimulated the expression of genes in the fatty acid oxidation pathway, including carnitine palmitoyltransferase-1, malonyl-CoA decarboxylase, and medium-chain acyl-CoA dehydrogenase. The expression of PPAR-alpha, a transcriptional regulator of genes encoding mitochondrial enzymes involved in fatty acid oxidation, was higher after pioglitazone treatment. Finally, the increased mitochondrial copy number and the higher expression of genes involved in fatty acid oxidation in human adipocytes may contribute to the hypolipidemic effects of pioglitazone.

  16. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  17. In Silico Analysis of the Genes Encoding Proteins that Are Involved in the Biosynthesis of the RMS/MAX/D Pathway Revealed New Roles of Strigolactones in Plants

    Directory of Open Access Journals (Sweden)

    Marek Marzec

    2015-03-01

    Full Text Available Strigolactones were described as a new group of phytohormones in 2008 and since then notable large number of their functions has been uncovered, including the regulation of plant growth and development, interactions with other organisms and a plant’s response to different abiotic stresses. In the last year, investigations of the strigolactone biosynthesis pathway in two model species, Arabidopsis thaliana and Oryza sativa, resulted in great progress in understanding the functions of four enzymes that are involved in this process. We performed in silico analyses, including the identification of the cis-regulatory elements in the promoters of genes encoding proteins of the strigolactone biosynthesis pathway and the identification of the miRNAs that are able to regulate their posttranscriptional level. We also searched the databases that contain the microarray data for the genes that were analyzed from both species in order to check their expression level under different growth conditions. The results that were obtained indicate that there are universal regulations of expression of all of the genes that are involved in the strigolactone biosynthesis in Arabidopsis and rice, but on the other hand each stage of strigolactone production may be additionally regulated independently. This work indicates the presence of crosstalk between strigolactones and almost all of the other phytohormones and suggests the role of strigolactones in the response to abiotic stresses, such as wounding, cold or flooding, as well as in the response to biotic stresses.

  18. Defects in the HSD11 gene encoding 11[beta]-hydroxysteriod dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxoreductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nikkila, H.; White, P.C. (Cornell Univ. Medical College, New York, NY (United States)); Tannin, G.M. (Rainbow Babies and Children' s Hospital, Cleveland, OH (United States)); New, M.I.; Taylor, N.F. (King' s College School of Medicine and Dentistry, London (United Kingdom)); Kalaitzoglou, G.; Monder, C. (Population Council, New York, NY (United States))

    1993-09-01

    The syndrome of apparent mineralocorticoid excess (AME) is a form of low renin hypertension that is thought to be caused by congenital deficiency of 11[beta]-hydroxysteroid dehydrogenase (11HSD) activity. This enzyme converts cortisol to cortisone and apparently prevents cortisol from acting as a ligand for the mineralocorticoid (type I) receptor. It also catalyzes the reverse oxoreductase (cortisone to cortisol) reaction. Four patients with AME and the parents of the first patient described (now deceased) were analyzed for mutations in the cloned HSD11 gene encoding an 11HSD enzyme. A patient with suspected cortisone reductase deficiency was also studied. No gross deletions or rearrangements in the HSD11 gene were apparent on hybridizations of blot of genomic DNA. Direct sequencing of polymerase chain reaction-amplified fragments corresponding to the coding sequences, intronexon junctions, and proximal untranslated regions of this gene revealed no mutations. AME may involve mutations in a gene for another enzyme with 11HSD activity or perhaps another cortisol metabolizing enzyme. 48 refs., 2 figs., 2 tabs.

  19. Screening of candidate genes encoding proteins expressed in pectoral fins of fugu Takifugu rubripes, in relation to habitat site of parasitic copepod Caligus fugu, using suppression subtractive hybridization.

    Science.gov (United States)

    Tasumi, Satoshi; Norshida, Ismail; Boxshall, Geoffrey A; Kikuchi, Kiyoshi; Suzuki, Yuzuru; Ohtsuka, Susumu

    2015-05-01

    Caligus fugu is a parasitic copepod specific to the tetraodontid genus Takifugu including the commercially important Takifugu rubripes. Despite the rapid accumulation of knowledge on other aspects of its biology, the host and settlement-site recognition mechanisms of this parasite are not yet well understood. Since the infective copepodid stage shows preferential site selection in attaching to the fins, we considered it likely that the copepodid recognizes chemical cues released or leaking from the fins, and/or transmembrane protein present on the fins. To isolate molecules potentially related to attachment site specificity, we applied suppression subtractive hybridization (SSH) PCR by identifying genes expressed more highly in pectoral fins of T. rubripes than in the body surface skin. We sequenced plasmid DNA from 392 clones in a SSH library. The number of non-redundant sequences was 276, which included 135 sequences located on 117 annotated genes and 141 located in positions where no genes had been annotated. We characterized those annotated genes on the basis of gene ontology terms, and found that 46 of the identified genes encode secreted proteins, enzymes or membrane proteins. Among them nine showed higher expression in the pectoral fins than in the skin. These could be candidate genes for involvement in behavioral mechanisms related to the site specificity shown by the infective copepodids of C. fugu.

  20. Regulation of ascorbate biosynthesis in green algae has evolved to enable rapid stress-induced response via the VTC2 gene encoding GDP-l-galactose phosphorylase.

    Science.gov (United States)

    Vidal-Meireles, André; Neupert, Juliane; Zsigmond, Laura; Rosado-Souza, Laise; Kovács, László; Nagy, Valéria; Galambos, Anikó; Fernie, Alisdair R; Bock, Ralph; Tóth, Szilvia Z

    2017-04-01

    Ascorbate (vitamin C) plays essential roles in stress resistance, development, signaling, hormone biosynthesis and regulation of gene expression; however, little is known about its biosynthesis in algae. In order to provide experimental proof for the operation of the Smirnoff-Wheeler pathway described for higher plants and to gain more information on the regulation of ascorbate biosynthesis in Chlamydomonas reinhardtii, we targeted the VTC2 gene encoding GDP-l-galactose phosphorylase using artificial microRNAs. Ascorbate concentrations in VTC2 amiRNA lines were reduced to 10% showing that GDP-l-galactose phosphorylase plays a pivotal role in ascorbate biosynthesis. The VTC2 amiRNA lines also grow more slowly, have lower chlorophyll content, and are more susceptible to stress than the control strains. We also demonstrate that: expression of the VTC2 gene is rapidly induced by H2 O2 and (1) O2 resulting in a manifold increase in ascorbate content; in contrast to plants, there is no circadian regulation of ascorbate biosynthesis; photosynthesis is not required per se for ascorbate biosynthesis; and Chlamydomonas VTC2 lacks negative feedback regulation by ascorbate in the physiological concentration range. Our work demonstrates that ascorbate biosynthesis is also highly regulated in Chlamydomonas albeit via mechanisms distinct from those previously described in land plants.

  1. Replication of Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene encoded in the pigmentation locus.

    Science.gov (United States)

    Pujol, Céline; Grabenstein, Jens P; Perry, Robert D; Bliska, James B

    2005-09-06

    Yersinia pestis is a facultative intracellular bacterial pathogen that can replicate in macrophages. Little is known about the mechanism by which Y. pestis replicates in macrophages, and macrophage defense mechanisms important for limiting intracellular survival of Y. pestis have not been characterized. In this work, we investigated the ability of Y. pestis to replicate in primary murine macrophages that were activated with IFN-gamma. Y. pestis was able to replicate in macrophages that were activated with IFN-gamma after infection (postactivated). A region of chromosomal DNA known as the pigmentation (pgm) locus was required for replication in postactivated macrophages, and this replication was associated with reduced nitric oxide (NO) levels but not with reduced inducible NO synthase (iNOS) expression. Y. pestis delta pgm replicated in iNOS-/- macrophages that were postactivated with IFN-gamma, suggesting that killing of delta pgm Y. pestis is NO-dependent. A specific genetic locus within pgm, which shares similarity to a pathogenicity island in Salmonella, was shown to be required for replication of Y. pestis and restriction of NO levels in postactivated macrophages. These data demonstrate that intracellular Y. pestis can evade killing by macrophages that are exposed to IFN-gamma and identify a potential virulence gene encoded in the pgm locus that is required for this activity.

  2. Expression and Comparative Analysis of Genes Encoding Outer Membrane Proteins LipL21, LipL32 and OmpL1 in Epidemic Leptospires

    Institute of Scientific and Technical Information of China (English)

    Xiang-Yan ZHANG; Xiao-Kui GUO; Yang YU; Ping HE; Yi-Xuan ZHANG; Bao-Yu HU; Yang YANG; Yi-Xin NIE; Xiu-Gao JIANG; Guo-Ping ZHAO

    2005-01-01

    Leptospiral outer membrane proteins (OMPs) are highly conserved in different species, and play an essential role in the development of new immunoprotection and serodiagnosis strategies. The genes encoding LipL21, LipL32 and OmpL1 were cloned from the complete genome sequence of Leptospira interrogans serovar lai strain Lai and expressed in vitro. Sequence comparison analysis revealed that the three genes were highly conserved among distinct epidemic leptospires, including three major epidemic species Leptospira interrogans, Leptospira borgpetersenii and Leptospira weilii, in China. Immunoblot analysis was further performed to scrutinize 15 epidemic Leptospira reference strains using the antisera of the recombinant OMPs. Both immunoblot assay and reverse transcription-polymerase chain reaction demonstrated that these three OMPs were conservatively expressed in pathogenic L. interrogans strains and other pathogenic leptospires.Additionally, the use of these recombinant OMPs as antigens in enzyme-linked immunosorbent assay (ELISA)for serodiagnosis of leptospirosis was evaluated. The recombinant LipL32 and OmpL1 proteins showed a high degree of ELISA reactivity with sera from patients infected with L. interrogans strain Lai and other pathogenic leptospires. These results may contribute to the identification of candidates for broad-range vaccines and immunodiagnostic antigens in further research.

  3. Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus.

    Science.gov (United States)

    Guthrie, Alan J; Quan, Melvyn; Lourens, Carina W; Audonnet, Jean-Christophe; Minke, Jules M; Yao, Jiansheng; He, Ling; Nordgren, Robert; Gardner, Ian A; Maclachlan, N James

    2009-07-16

    We describe the development and preliminary characterization of a recombinant canarypox virus vectored (ALVAC) vaccine for protective immunization of equids against African horse sickness virus (AHSV) infection. Horses (n=8) immunized with either of two concentrations of recombinant canarypox virus vector (ALVAC-AHSV) co-expressing synthetic genes encoding the outer capsid proteins (VP2 and VP5) of AHSV serotype 4 (AHSV-4) developed variable titres (horse immunized with a commercial recombinant canarypox virus vectored vaccine expressing the haemagglutinin genes of two equine influenza H3N8 viruses was seronegative to AHSV and following infection with virulent AHSV-4 developed pyrexia, thrombocytopenia and marked oedema of the supraorbital fossae typical of the "dikkop" or cardiac form of African horse sickness. AHSV was detected by virus isolation and quantitative reverse transcriptase polymerase chain reaction in the blood of the control horse from 8 days onwards after challenge infection whereas AHSV was not detected at any time in the blood of the ALVAC-AHSV vaccinated horses. The control horse seroconverted to AHSV by 2 weeks after challenge infection as determined by both virus neutralization and ELISA assays, whereas six of eight of the ALVAC-AHSV vaccinated horses did not seroconvert by either assay following challenge infection with virulent AHSV-4. These data confirm that the ALVAC-AHSV vaccine will be useful for the protective immunization of equids against African horse sickness, and avoids many of the problems inherent to live-attenuated AHSV vaccines.

  4. Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation.

    Science.gov (United States)

    Perlova, Olena; Ureta, Alejandro; Nordlund, Stefan; Meletzus, Dietmar

    2003-10-01

    In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.

  5. Mapping of two genes encoding isoforms of the actin binding protein ABP-280, a dystrophin like protein, to Xq28 and to chromosome 7.

    Science.gov (United States)

    Maestrini, E; Patrosso, C; Mancini, M; Rivella, S; Rocchi, M; Repetto, M; Villa, A; Frattini, A; Zoppè, M; Vezzoni, P

    1993-06-01

    ABP-280 is a ubiquitous actin binding protein present in the cytoskeleton of many different cell types. ABP-280 was mapped to distal Xq28, 50-60 kb downstream of the Green Colour Pigment (GCP) genes. To establish if ABP-280 may be a candidate for one of the muscle disease localized by linkage analysis to distal Xq28 we looked for alternative forms of ABP-280 mRNA. Several different ABP-280 mRNAs were indeed identified: two are X-linked and are produced by alternative splicing of a small exon of 24 nucleotides. At least one additional gene encoding a RNA more than 70% identical to ABP-280 in the 1700 bp sequenced has also been found. It was mapped to chromosome 7. While both forms of the X-linked ABP-280 are ubiquitous, the gene on chromosome 7 is highly expressed only in skeletal muscle and heart. The two genes were therefore excellent candidates for the X-linked and for the autosomal dominant form of the Emery-Dreifuss Muscular Dystrophy (EDMD) both of which have been described. So far, however we were unable to demonstrate mutations in the coding region or affecting the alternative splicing of the X-linked form of ABP-280, in several patients studied, and we think that it is quite unlikely that this is the gene responsible for EDMD.

  6. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  7. The SOD2 gene, encoding a manganese-type superoxide dismutase, is up-regulated during conidiogenesis in the plant-pathogenic fungus Colletotrichum graminicola.

    Science.gov (United States)

    Fang, G-C; Hanau, R M; Vaillancourt, L J

    2002-07-01

    The SOD2 gene, encoding a manganese-type superoxide dismutase (MnSOD), was identified from Colletotrichum graminicola among a collection of cDNAs representing genes that are up-regulated during conidiogenesis. The SOD2 gene consists of a 797-bp open reading frame that is interrupted by three introns and is predicted to encode a polypeptide of 208 amino acids. All conserved residues of the MnSOD protein family, including four consensus metal binding domains, are present in the predicted SOD2 protein. However, the predicted protein does not appear to contain a signal peptide that would target it to the mitochondria. Northern hybridizations revealed that expression of the approximately 900-bp SOD2 transcript is closely associated with differentiation of both oval and falcate conidia. Southern analysis indicated that there is only a single copy of the gene. SOD2 disruption strains were morphologically and pathogenically indistinguishable from wild-type strains. The dispensability of the MnSOD enzyme may be due to the activities of two other SOD enzymes, a highly expressed iron-type superoxide dismutase and a much less abundant copper/zinc type, that were also detected in C. graminicola.

  8. cDNA cloning, tissue distribution, and chromosomal localization of Ocp2, a gene encoding a putative transcription-associated factor predominantly expressed in the auditory organs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Thalmann, I.; Thalmann, R. [Washington Univ., St. Louis, MO (United States)] [and others

    1995-06-10

    We report the cloning of the Ocp2 gene encoding OCP-II from a guinea pig organ-of-Corti cDNA library. The predicted open reading frame encodes a protein of 163 amino acids with an estimated molecular mass of 18.6 kDa. A homology search revealed that Ocp2 shares significant sequence similarity with p15, a sub-unit of transcription factor SIII that regulates the activity of the RNA polymerase II elongation complex. The Ocp2 messenger RNA is expressed abundantly in the cochlea while not significantly in any other tissues examined, including brain, eye, heart, intestine, kidney, liver, lung, thigh muscle, and testis, demonstrating that the expression of this gene may be restricted to auditory organs. A polyclonal antiserum was raised against the N-terminal region of OCP-II. Immunohistochemical staining of paraffin-embedded sections of the cochlea showed that OCP-II is localized abundantly in nonsensory cells in the organ of Corti; in addition, it was also detected, at a lower concentration, in vestibular sensory organs, as well as auditory and vestibular brain stem nuclei. The Ocp2 gene was mapped to mouse chromosome 4 as well as 11. Our results suggest that OCP-II may be involved in transcription regulation for the development or maintenance of specialized functions of the inner ear. 40 refs., 5 figs.

  9. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent.

    Science.gov (United States)

    Asselman, Jana; Shaw, Joseph R; Glaholt, Stephen P; Colbourne, John K; De Schamphelaere, Karel A C

    2013-10-15

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1-mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.

    Science.gov (United States)

    Yovkova, Venelina; Otto, Christina; Aurich, Andreas; Mauersberger, Stephan; Barth, Gerold

    2014-03-01

    To establish and develop a biotechnological process of α-ketoglutaric acid (KGA) production by Yarrowia lipolytica, it is necessary to increase the KGA productivity and to reduce the amounts of by-products, e.g. pyruvic acid (PA) as major by-product and fumarate, malate and succinate as minor by-products. The aim of this study was the improvement of KGA overproduction with Y. lipolytica by a gene dose-dependent overexpression of genes encoding NADP(+)-dependent isocitrate dehydrogenase (IDP1) and pyruvate carboxylase (PYC1) under KGA production conditions from the renewable carbon source raw glycerol. Recombinant Y. lipolytica strains were constructed, which harbour multiple copies of the respective IDP1, PYC1 or IDP1 and PYC1 genes together. We demonstrated that a selective increase in IDP activity in IDP1 multicopy transformants changes the produced amount of KGA. Overexpression of the gene IDP1 in combination with PYC1 had the strongest effect on increasing the amount of secreted KGA. About 19% more KGA compared to strain H355 was produced in bioreactor experiments with raw glycerol as carbon source. The applied cultivation conditions with this strain significantly reduced the main by-product PA and increased the KGA selectivity to more than 95% producing up to 186 g l(-1) KGA. This proved the high potential of this multicopy transformant for developing a biotechnological KGA production process.

  11. Sequence-Based Appraisal of the Genes Encoding Neck and Carbohydrate Recognition Domain of Conglutinin in Blackbuck (Antilope cervicapra and Goat (Capra hircus

    Directory of Open Access Journals (Sweden)

    Sasmita Barik

    2014-01-01

    Full Text Available Conglutinin, a collagenous C-type lectin, acts as soluble pattern recognition receptor (PRR in recognition of pathogens. In the present study, genes encoding neck and carbohydrate recognition domain (NCRD of conglutinin in goat and blackbuck were amplified, cloned, and sequenced. The obtained 488 bp ORFs encoding NCRD were submitted to NCBI with accession numbers KC505182 and KC505183. Both nucleotide and predicted amino acid sequences were analysed with sequences of other ruminants retrieved from NCBI GenBank using DNAstar and Megalign5.2 software. Sequence analysis revealed maximum similarity of blackbuck sequence with wild ruminants like nilgai and buffalo, whereas goat sequence displayed maximum similarity with sheep sequence at both nucleotide and amino acid level. Phylogenetic analysis further indicated clear divergence of wild ruminants from the domestic ruminants in separate clusters. The predicted secondary structures of NCRD protein in goat and blackbuck using SWISSMODEL ProtParam online software were found to possess 6 beta-sheets and 3 alpha-helices which are identical to the result obtained in case of sheep, cattle, buffalo, and nilgai. However, quaternary structure in goat, sheep, and cattle was found to differ from that of buffalo, nilgai, and blackbuck, suggesting a probable variation in the efficiency of antimicrobial activity among wild and domestic ruminants.

  12. Association of single nucleotide polymorphisms in the gene encoding GLUT1 and diabetic nephropathy in Brazilian patients with type 1 diabetes mellitus.

    Science.gov (United States)

    Marques, T; Patente, T A; Monteiro, M B; Cavaleiro, A M; Queiroz, M S; Nery, M; de Azevedo, M J; Canani, L H; Parisi, M C; Moura-Neto, A; Passarelli, M; Giannella-Neto, D; Machado, U F; Corrêa-Giannella, M L

    2015-04-15

    Mesangial cells subject to high extracellular glucose concentrations, as occur in hyperglycaemic states, are unable to down regulate glucose influx, resulting in intracellular activation of deleterious biochemical pathways. A high expression of GLUT1 participates in the development of diabetic glomerulopathy. Variants in the gene encoding GLUT1 (SLC2A1) have been associated to this diabetic complication. The aim of this study was to test whether polymorphisms in SLC2A1 confer susceptibility to diabetic nephropathy (DN) in Brazilian type 1 diabetes patients. Four polymorphisms (rs3820589, rs1385129, rs841847 and rs841848) were genotyped in a Brazilian cohort comprised of 452 patients. A prospective analysis was performed in 155 patients. Mean duration of follow-up was 5.6 ± 2.4 years and the incidence of renal events was 18.0%. The rs3820589 presented an inverse association with the prevalence of incipient DN (OR: 0.36, 95% CI: 0.16 - 0.80, p=0.01) and with progression to renal events (HR: 0.20; 95% CI: 0.03 - 0.70; p=0.009). AGGT and AGAC haplotypes were associated with the prevalence of incipient DN and the AGAC haplotype was also associated with the prevalence of established/advanced DN. In conclusion, rs3820589 in the SLC2A1 gene modulates the risk to DN in Brazilian patients with inadequate type 1 diabetes control.

  13. Expansion of genes encoding piRNA-associated argonaute proteins in the pea aphid: diversification of expression profiles in different plastic morphs.

    Directory of Open Access Journals (Sweden)

    Hsiao-Ling Lu

    Full Text Available Piwi-interacting RNAs (piRNAs are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are "specialised" in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction.

  14. Cloning and Characterization of Genes Encoded in 187 dTDP-D-mycaminose Biosynthetic Pathway from a Midecamycin-producing Strain,Streptomyces mycarofaciens

    Institute of Scientific and Technical Information of China (English)

    Lina CONG; Wolfgang PIEPERSBERG

    2007-01-01

    Two subclusters from Streptomyces mycarofaciens,a midecamycin producer,were cloned and partially sequenced.One region was located at the 5'end of the mid polyketide synthase (PKS) genes and contained the genes midA,midB and midC.The other region was at the 3'end of the PKS genes and contained midK,midI and midH.Analysis of the nucleotide sequence revealed that these genes encode dTDP-glucose synthase (midA),dTDP-glucose dehydratase(midB),aminotransferase (midC),methyltransferase (midK),glycosyltransferase(midI)and an assistant gene(midH).All of these genes are involved in the biosynthesis of dTDP-D-mycaminose,the first deoxysugar of midecamycin,and in transferring the mycaminose to the midecamycin aglycone in S.mycarofaciens.Similar to gene pairs des VIII/des VII in S.venezuelae and tylMIII/tylMII in S.fradiae,the product of midH probably functions as an auxiliary protein required by the MidI protein for efficient glycosyltransfer in midecamycin biosynthesis.

  15. Mutations in the Gene Encoding the Calcium-Permeable Ion Channel TRPV4 Produce Spondylometaphyseal Dysplasia, Kozlowski Type and Metatropic Dysplasia

    Science.gov (United States)

    Krakow, Deborah; Vriens, Joris; Camacho, Natalia; Luong, Phi; Deixler, Hannah; Funari, Tara L.; Bacino, Carlos A.; Irons, Mira B.; Holm, Ingrid A.; Sadler, Laurie; Okenfuss, Ericka B.; Janssens, Annelies; Voets, Thomas; Rimoin, David L.; Lachman, Ralph S.; Nilius, Bernd; Cohn, Daniel H.

    2009-01-01

    The spondylometaphyseal dysplasias (SMDs) are a group of short-stature disorders distinguished by abnormalities in the vertebrae and the metaphyses of the tubular bones. SMD Kozlowski type (SMDK) is a well-defined autosomal-dominant SMD characterized by significant scoliosis and mild metaphyseal abnormalities in the pelvis. The vertebrae exhibit platyspondyly and overfaced pedicles similar to autosomal-dominant brachyolmia, which can result from heterozygosity for activating mutations in the gene encoding TRPV4, a calcium-permeable ion channel. Mutation analysis in six out of six patients with SMDK demonstrated heterozygosity for missense mutations in TRPV4, and one mutation, predicting a R594H substitution, was recurrent in four patients. Similar to autosomal-dominant brachyolmia, the mutations altered basal calcium channel activity in vitro. Metatropic dysplasia is another SMD that has been proposed to have both clinical and genetic heterogeneity. Patients with the nonlethal form of metatropic dysplasia present with a progressive scoliosis, widespread metaphyseal involvement of the appendicular skeleton, and carpal ossification delay. Because of some similar radiographic features between SMDK and metatropic dysplasia, TRPV4 was tested as a disease gene for nonlethal metatropic dysplasia. In two sporadic cases, heterozygosity for de novo missense mutations in TRPV4 was found. The findings demonstrate that mutations in TRPV4 produce a phenotypic spectrum of skeletal dysplasias from the mild autosomal-dominant brachyolmia to SMDK to autosomal-dominant metatropic dysplasia, suggesting that these disorders should be grouped into a new bone dysplasia family. PMID:19232556

  16. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum.

    Science.gov (United States)

    Parisot, D; Dufresne, M; Veneault, C; Laugé, R; Langin, T

    2002-10-01

    A screen for insertional mutants of Colletrichum lindemuthianum, the causative agent of common bean anthracnose, led to the identification of a non-pathogenic, lightly colored transformant. This mutant is unable to induce disease symptoms on intact or wounded primary leaves of seedlings and plantlets of Phaseolus vulgaris. In vitro, it exhibits normal vegetative growth, sporulation and conidial germination, but the cultures remain beige instead of becoming black. Microscopic examination revealed that this mutant forms fewer appressoria than the wild-type strain, and these are misshapen and poorly melanized. Molecular analyses indicated that the mutagenic plasmid had targeted clap1, a gene encoding a putative copper-transporting ATPase sharing 35% identity with the human Menkes and Wilson proteins and the product of the CCC2 gene of Saccharomyces cerevisiae. Complementation of the non-pathogenic beige mutant with a wild-type allele of clap1 restored both pathogenicity and pigmentation. Conversely, replacement of the wild-type allele with a disrupted clap1 gene gave rise to non-pathogenic beige transformants. Compared with the wild-type strain, extracts from clap1 mutants were found to have very low levels of phenol oxidase activity. These observations suggest that the clap1 gene product may be involved in the pathogenicity of C. lindemuthianum strains because of its role in delivering copper to secreted cuproenzymes, such as the phenol oxidases that mediate the polymerization of 1,8-dihydroxynaphthalene to melanin.

  17. Impact of Oxidative Stress on Ascorbate Biosynthesis in Chlamydomonas via Regulation of the VTC2 Gene Encoding a GDP-l-galactose Phosphorylase*

    Science.gov (United States)

    Urzica, Eugen I.; Adler, Lital N.; Page, M. Dudley; Linster, Carole L.; Arbing, Mark A.; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Clarke, Steven G.

    2012-01-01

    The l-galactose (Smirnoff-Wheeler) pathway represents the major route to l-ascorbic acid (vitamin C) biosynthesis in higher plants. Arabidopsis thaliana VTC2 and its paralogue VTC5 function as GDP-l-galactose phosphorylases converting GDP-l-galactose to l-galactose-1-P, thus catalyzing the first committed step in the biosynthesis of l-ascorbate. Here we report that the l-galactose pathway of ascorbate biosynthesis described in higher plants is conserved in green algae. The Chlamydomonas reinhardtii genome encodes all the enzymes required for vitamin C biosynthesis via the l-galactose pathway. We have characterized recombinant C. reinhardtii VTC2 as an active GDP-l-galactose phosphorylase. C. reinhardtii cells exposed to oxidative stress show increased VTC2 mRNA and l-ascorbate levels. Genes encoding enzymatic components of the ascorbate-glutathione system (e.g. ascorbate peroxidase, manganese superoxide dismutase, and dehydroascorbate reductase) are also up-regulated in response to increased oxidative stress. These results indicate that C. reinhardtii VTC2, like its plant homologs, is a highly regulated enzyme in ascorbate biosynthesis in green algae and that, together with the ascorbate recycling system, the l-galactose pathway represents the major route for providing protective levels of ascorbate in oxidatively stressed algal cells. PMID:22393048

  18. Genes encoding Pir51,Beclin 1,RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Hai Song; Shuang-Luo Xia; Cheng Liao; Yi-Liang Li; Yi-Fei Wang; Tsai-Ping Li; Mu-Jun Zhao

    2004-01-01

    AIM: To reveal new tumor markers and target genes from differentially expressed genes of primary tumor samples using cDNA microarray.METHODS: The 33p labeled cDNAs were synthesized by reverse transcription of message RNA from the liver cancerous tissue and adjacent non-cancerous liver tissue from the same patient and used to hybridize to LifeGrid 1.0cDNA microarray blot containing 8400 known and unique human cDNA gene targets, and an expression profile of genes was produced in one paired human liver tumor tissue.After a global analysis of gene expression of 8400 genes,we selected some genes to confirm the differential expression using Northern blot and RT-PCR.RESULTS: Parallel analysis of the hybridized signals enabled us to get an expression profile of genes in which about 500genes were differentially expressed in the paired liver tumor tissues. We identified 4 genes, the expression of three(Beclin 1, RbAp48 and Pir51) were increased and one (aldolase b)was decreased in liver tumor tissues. In addition, the expression of these genes in 6 hepatoma cell lines was also showed by RT-PCR analysis.CONCLUSION: cDNA microarray permits a high throughput identification of changes in gene expression. The genes encoding Beclin 1, RbAp48, Pir51 and aldolase b are first reported that may be related with hepatocarcinoma.

  19. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage.

    Science.gov (United States)

    Sivapragasam, Smitha; Grove, Anne

    2016-05-01

    The gene encoding Streptomyces coelicolor xanthine dehydrogenase regulator (XdhR) is divergently oriented from xdhABC, which encodes xanthine dehydrogenase (Xdh). Xdh is required for purine salvage pathways. XdhR was previously shown to repress xdhABC expression. We show that XdhR binds the xdhABC-xdhR intergenic region with high affinity (Kd ∼ 0.5 nM). DNaseI footprinting reveals that this complex formation corresponds to XdhR binding the xdhR gene promoter at two adjacent sites; at higher protein concentrations, protection expands to a region that overlaps the transcriptional and translational start sites of xdhABC. While substrates for Xdh have little effect on DNA binding, GTP and ppGpp dissociate the DNA-XdhR complex. Progression of cells to stationary phase, a condition associated with increased (p)ppGpp production, leads to elevated xdhB expression; in contrast, inhibition of Xdh by allopurinol results in xdhB repression. We propose that XdhR is a direct target of (p)ppGpp, and that expression of xdhABC is upregulated during the stringent response to promote purine salvage pathways, maintain GTP homeostasis and ensure continued (p)ppGpp synthesis. During exponential phase growth, basal levels of xdhABC expression may be achieved by GTP serving as a lower-affinity XdhR ligand.

  20. Mitochondrial Myopathy

    Science.gov (United States)

    ... diseases are caused by CoQ10 deficiency, and CoQ10 supplementation is clearly beneficial in these cases. It might provide some relief from other mitochondrial diseases. Creatine, L-carnitine, and CoQ10 supplements often are combined into a “ ...

  1. Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin.

    Science.gov (United States)

    Chang, Chia-Pei; Tseng, Yi-Kuan; Ko, Chou-Yuan; Wang, Chien-Chia

    2012-01-01

    In eukaryotes, the cytoplasmic and mitochondrial forms of a given aminoacyl-tRNA synthetase (aaRS) are typically encoded by two orthologous nuclear genes, one of eukaryotic origin and the other of mitochondrial origin. We herein report a novel scenario of aaRS evolution in yeast. While all other yeast species studied possess a single nuclear gene encoding both forms of alanyl-tRNA synthetase (AlaRS), Vanderwaltozyma polyspora, a yeast species descended from the same whole-genome duplication event as Saccharomyces cerevisiae, contains two distinct nuclear AlaRS genes, one specifying the cytoplasmic form and the other its mitochondrial counterpart. The protein sequences of these two isoforms are very similar to each other. The isoforms are actively expressed in vivo and are exclusively localized in their respective cellular compartments. Despite the presence of a promising AUG initiator candidate, the gene encoding the mitochondrial form is actually initiated from upstream non-AUG codons. A phylogenetic analysis further revealed that all yeast AlaRS genes, including those in V. polyspora, are of mitochondrial origin. These findings underscore the possibility that contemporary AlaRS genes in V. polyspora arose relatively recently from duplication of a dual-functional predecessor of mitochondrial origin.

  2. Complete mitochondrial genome of the medicinal mushroom Ganoderma lucidum.

    Directory of Open Access Journals (Sweden)

    Jianqin Li

    Full Text Available Ganoderma lucidum is one of the well-known medicinal basidiomycetes worldwide. The mitochondrion, referred to as the second genome, is an organelle found in most eukaryotic cells and participates in critical cellular functions. Elucidating the structure and function of this genome is important to understand completely the genetic contents of G. lucidum. In this study, we assembled the mitochondrial genome of G. lucidum and analyzed the differential expressions of its encoded genes across three developmental stages. The mitochondrial genome is a typical circular DNA molecule of 60,630 bp with a GC content of 26.67%. Genome annotation identified genes that encode 15 conserved proteins, 27 tRNAs, small and large rRNAs, four homing endonucleases, and two hypothetical proteins. Except for genes encoding trnW and two hypothetical proteins, all genes were located on the positive strand. For the repeat structure analysis, eight forward, two inverted, and three tandem repeats were detected. A pair of fragments with a total length around 5.5 kb was found in both the nuclear and mitochondrial genomes, which suggests the possible transfer of DNA sequences between two genomes. RNA-Seq data for samples derived from three stages, namely, mycelia, primordia, and fruiting bodies, were mapped to the mitochondrial genome and qualified. The protein-coding genes were expressed higher in mycelia or primordial stages compared with those in the fruiting bodies. The rRNA abundances were significantly higher in all three stages. Two regions were transcribed but did not contain any identified protein or tRNA genes. Furthermore, three RNA-editing sites were detected. Genome synteny analysis showed that significant genome rearrangements occurred in the mitochondrial genomes. This study provides valuable information on the gene contents of the mitochondrial genome and their differential expressions at various developmental stages of G. lucidum. The results contribute to the

  3. Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy.

    Science.gov (United States)

    Tiranti, Valeria; Viscomi, Carlo; Hildebrandt, Tatjana; Di Meo, Ivano; Mineri, Rossana; Tiveron, Cecilia; Levitt, Michael D; Prelle, Alessandro; Fagiolari, Gigliola; Rimoldi, Marco; Zeviani, Massimo

    2009-02-01

    Ethylmalonic encephalopathy is an autosomal recessive, invariably fatal disorder characterized by early-onset encephalopathy, microangiopathy, chronic diarrhea, defective cytochrome c oxidase (COX) in muscle and brain, high concentrations of C4 and C5 acylcarnitines in blood and high excretion of ethylmalonic acid in urine. ETHE1, a gene encoding a beta-lactamase-like, iron-coordinating metalloprotein, is mutated in ethylmalonic encephalopathy. In bacteria, ETHE1-like sequences are in the same operon of, or fused with, orthologs of TST, the gene encoding rhodanese, a sulfurtransferase. In eukaryotes, both ETHE1 and rhodanese are located within the mitochondrial matrix. We created a Ethe1(-/-) mouse that showed the cardinal features of ethylmalonic encephalopathy. We found that thiosulfate was excreted in massive amounts in urine of both Ethe1(-/-) mice and humans with ethylmalonic encephalopathy. High thiosulfate and sulfide concentrations were present in Ethe1(-/-) mouse tissues. Sulfide is a powerful inhibitor of COX and short-chain fatty acid oxidation, with vasoactive and vasotoxic effects that explain the microangiopathy in ethylmalonic encephalopathy patients. Sulfide is detoxified by a mitochondrial pathway that includes a sulfur dioxygenase. Sulfur dioxygenase activity was absent in Ethe1(-/-) mice, whereas it was markedly increased by ETHE1 overexpression in HeLa cells and Escherichia coli. Therefore, ETHE1 is a mitochondrial sulfur dioxygenase involved in catabolism of sulfide that accumulates to toxic levels in ethylmalonic encephalopathy.

  4. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution.

    Science.gov (United States)

    Havird, Justin C; Whitehill, Nicholas S; Snow, Christopher D; Sloan, Daniel B

    2015-12-01

    Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  5. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS in Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Hartmann Michelle

    2007-11-01

    Full Text Available Abstract Background The major uptake system responsible for the transport of fructose, glucose, and sucrose in Corynebacterium glutamicum ATCC 13032 is the phosphoenolpyruvate:sugar phosphotransferase system (PTS. The genes encoding PTS components, namely ptsI, ptsH, and ptsF belong to the fructose-PTS gene cluster, whereas ptsG and ptsS are located in two separate regions of the C. glutamicum genome. Due to the localization within and adjacent to the fructose-PTS gene cluster, two genes coding for DeoR-type transcriptional regulators, cg2118 and sugR, are putative candidates involved in the transcriptional regulation of the fructose-PTS cluster genes. Results Four transcripts of the extended fructose-PTS gene cluster that comprise the genes sugR-cg2116, ptsI, cg2118-fruK-ptsF, and ptsH, respectively, were characterized. In addition, it was shown that transcription of the fructose-PTS gene cluster is enhanced during growth on glucose or fructose when compared to acetate. Subsequently, the two genes sugR and cg2118 encoding for DeoR-type regulators were mutated and PTS gene transcription was found to be strongly enhanced in the presence of acetate only in the sugR deletion mutant. The SugR regulon was further characterized by microarray hybridizations using the sugR mutant and its parental strain, revealing that also the PTS genes ptsG and ptsS belong to this regulon. Binding of purified SugR repressor protein to a 21 bp sequence identified the SugR binding site as an AC-rich motif. The two experimentally identified SugR binding sites in the fructose-PTS gene cluster are located within or downstream of the mapped promoters, typical for transcriptional repressors. Effector studies using electrophoretic mobility shift assays (EMSA revealed the fructose PTS-specific metabolite fructose-1-phosphate (F-1-P as a highly efficient, negative effector of the SugR repressor, acting in the micromolar range. Beside F-1-P, other sugar-phosphates like fructose

  6. ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize.

    Science.gov (United States)

    Cordts, S; Bantin, J; Wittich, P E; Kranz, E; Lörz, H; Dresselhaus, T

    2001-01-01

    All four members of a gene family, which are highly expressed in the cells of the female gametophyte (ZmES1--4: Zea mays embryo sac), were isolated from a cDNA library of maize egg cells. High expression of ZmES genes in the synergids around the micropylar region was detected in thin sections of maize ovaries. Single-cell RT--PCR analyses with the various cells of the female gametophyte confirmed the expression in synergids and also showed expression in the egg cell and central cell, and low expression in the antipodals. The expression of the whole gene family is suppressed after fertilization of the embryo sac, and expression in two-cell or later embryo stages or other tissues of maize could not be detected. In order to investigate ZmES mRNA gradients in the highly polarized and vacuolized cells of the maize embryo sac, a whole-mount in situ protocol with isolated single cells was developed: as for total RNA, ZmES transcripts are uniformly distributed in the cytoplasm of egg cell, synergids and central cell. ZmES genes encode small, cysteine-rich proteins with an N-terminal signal peptide, probably for translocation into the embryo sac cell wall. The four ZmES proteins display high sequence identity with each other, and the proposed tertiary structure of the mature peptides is similar to that of plant and animal defensins. The function of ZmES1-4 during the fertilization process is discussed.

  7. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD).

    Science.gov (United States)

    Motin, Vladimir L; Georgescu, Anca M; Elliott, Jeffrey M; Hu, Ping; Worsham, Patricia L; Ott, Linda L; Slezak, Tomas R; Sokhansanj, Bahrad A; Regala, Warren M; Brubaker, Robert R; Garcia, Emilio

    2002-02-01

    A PCR-based genotyping system that detects divergence of IS100 locations within the Yersinia pestis genome was used to characterize a large collection of isolates of different biovars and geographical origins. Using sequences derived from the glycerol-negative biovar orientalis strain CO92, a set of 27 locus-specific primers was designed to amplify fragments between the end of IS100 and its neighboring gene. Geographically diverse members of the orientalis biovar formed a homogeneous group with identical genotype with the exception of strains isolated in Indochina. In contrast, strains belonging to the glycerol-positive biovar antiqua showed a variety of fingerprinting profiles. Moreover, strains of the biovar medievalis (also glycerol positive) clustered together with the antiqua isolates originated from Southeast Asia, suggesting their close phylogenetic relationships. Interestingly, a Manchurian biovar antiqua strain Nicholisk 51 displayed a genotyping pattern typical of biovar orientalis isolates. Analysis of the glycerol pathway in Y. pestis suggested that a 93-bp deletion within the glpD gene encoding aerobic glycerol-3-phosphate dehydrogenase might account for the glycerol-negative phenotype of the orientalis biovar. The glpD gene of strain Nicholisk 51 did not possess this deletion, although it contained two nucleotide substitutions characteristic of the glpD version found exclusively in biovar orientalis strains. To account for this close relationship between biovar orientalis strains and the antiqua Nicholisk 51 isolate, we postulate that the latter represents a variant of this biovar with restored ability to ferment glycerol. The fact that such a genetic lesion might be repaired as part of the natural evolutionary process suggests the existence of genetic exchange between different Yersinia strains in nature. The relevance of this observation on the emergence of epidemic Y. pestis strains is discussed.

  8. The physiological effects of deleting the mouse SLC30A8 gene encoding zinc transporter-8 are influenced by gender and genetic background.

    Directory of Open Access Journals (Sweden)

    Lynley D Pound

    Full Text Available The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J genetic background of the mice studied. We therefore sought to remove the conflicting effect of 129SvEv-specific modifier genes.The impact of Slc30a8 deletion was examined in the context of the pure C57BL/6J genetic background.Male C57BL/6J Slc30a8 knockout (KO mice had normal fasting insulin levels and no change in glucose-stimulated insulin secretion (GSIS from isolated islets in marked contrast to the ∼50% and ∼35% decrease, respectively, in both parameters observed in male mixed genetic background Slc30a8 KO mice. This observation suggests that 129SvEv-specific modifier genes modulate the impact of Slc30a8 deletion. In contrast, female C57BL/6J Slc30a8 KO mice had reduced (∼20% fasting insulin levels, though this was not associated with a change in fasting blood glucose (FBG, or GSIS from isolated islets. This observation indicates that gender also modulates the impact of Slc30a8 deletion, though the physiological explanation as to why impaired insulin secretion is not accompanied by elevated FBG is unclear. Neither male nor female C57BL/6J Slc30a8 KO mice showed impaired glucose tolerance.Our data suggest that, despite a marked reduction in islet zinc content, the absence of ZnT-8 does not have a substantial impact on mouse physiology.

  9. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana.

    Science.gov (United States)

    Carretero-Paulet, Lorenzo; Cairó, Albert; Talavera, David; Saura, Andreu; Imperial, Santiago; Rodríguez-Concepción, Manuel; Campos, Narciso; Boronat, Albert

    2013-07-15

    The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.

  10. Protein levels of genes encoded on chromosome 21 in fetal Down Syndrome brain (Part V): overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5).

    Science.gov (United States)

    Ferrando-Miguel, R; Cheon, M S; Lubec, G

    2004-06-01

    Down Syndrome (DS, trisomy 21) is the most common genetic cause of mental retardation. The completed sequencing of genes encoded on chromosome 21 provides excellent basic information, however the molecular mechanisms leading to the phenotype of DS remain to be elucidated. Although overexpression of chromosome 21 encoded genes has been documented information at the protein expression level is mandatory as it is the proteins that carry out function. We therefore decided to evaluated expression level of seven proteins whose genes are encoded on chromosome 21: DSCR4, DSCR5, DSCR6; KIR4.2, GIRK2, KCNE1 and KCNE2 in fetal cortex brain of DS and controls at the early second trimester of pregnancy by Western blotting. beta-actin and neuron specific enolase (NSE) were used to normalise cell loss and neuronal loss. DSCR5 (PIG-P), a component of glycosylphosphatidylinositol- N-acetylglucosaminyltransferase (GPI-GnT), was overexpressed about twofold, even when levels were normalised with NSE. DSCR6 was overexpressed in addition but when normalised versus NSE, levels were comparable to controls. DSCR4 was not detectable in fetal brain. Potassium channels KIR4.2 and GIRK2 were comparable between DS and controls, whereas KCNE1 and KCNE2 were not detectable. Quantification of these proteins encoded on chromosome 21 revealed that not all gene products of the DS critical region are overexpressed in DS brain early in life, indicating that the DS phenotype cannot be simply explained by the gene dosage effect hypothesis. Overexpression of PIG-P (DSCR5) may lead to or represent impaired glycosylphosphatidylinositol- N-acetylglucosaminyltransferase mediated posttranslational modifications and subsequent anchoring of proteins to the plasma membrane.

  11. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.

    Directory of Open Access Journals (Sweden)

    Jun Cheng

    Full Text Available Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS, which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots.

  12. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins.

    Science.gov (United States)

    Vincent-Sealy, L V; Thomas, J D; Commander, P; Salmond, G P

    1999-08-01

    The dsbA genes, which encode major periplasmic disulfide-bond-forming proteins, were isolated from Erwinia carotovora subsp. carotovora (Ecc) and Erwinia carotovora subsp. atroseptica (Eca), and the dsbC gene, encoding another periplasmic disulfide oxidoreductase was isolated from Ecc. All three genes were sequenced and mutants deficient in these genes were created by marker exchange mutagenesis. The Ecc mutants were severely affected in activity and secretion of pectate lyase, probably due to the absence of functional PelC, which is predicted to require disulfide bond formation to achieve its correct conformation prior to secretion across the outer membrane. Similarly, endopolygalacturonase, also predicted to possess disulfide bonds, displayed reduced activity. The major Ecc cellulase (CelV) does not contain cysteine residues and was still secreted in dsbA-deficient strains. This observation demonstrated unequivocally that the localization and activity of the individual components of the Out apparatus are independent of disulfide bond formation. Surprisingly, cellulase activity was shown to be increased approximately two- to threefold in the DsbA mutant. This phenomenon resulted from transcriptional up-regulation of celV gene expression. In contrast, transcription of both pelC and peh were down-regulated in dsbA-deficient strains when compared to the wild-type. Protease (Prt) activity and secretion were unaffected in the Ecc dsbA mutant. Prt activity was considerably reduced in the double dsbA dsbC mutant. However Prt was secreted normally in this strain. The Eca dsbA mutant was found to be non-motile, suggesting that disulfide bond formation is essential for motility in this strain. All of the dsb mutants showed reduced tissue maceration in planta. These results suggest that a feedback regulation system operates in Ecc. In this system, defects in periplasmic disulfide bond formation act as a signal which is relayed to the transcription machinery regulating gene

  13. Differential Influence of Inositol Hexaphosphate on the Expression of Genes Encoding TGF-β Isoforms and Their Receptors in Intestinal Epithelial Cells Stimulated with Proinflammatory Agents

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Węglarz, Ludmiła

    2013-01-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine recognized as an important regulator of inflammatory responses. The effect of inositol hexaphosphate (IP6), a naturally occurring phytochemical, on the mRNA expression of TGF-β1, TGF-β2, TGF-β3 and TβRI, TβRII, and TβRIII receptors stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium) and IL-1β in intestinal cells Caco-2 for 3 and 12 h was investigated. Real-time qRT-PCR was used to validate mRNAs level of examined genes. Bacterial endotoxin promoted differential expression of TGF-βs and their receptors in a time-dependent manner. IL-1β upregulated mRNA levels of all TGF-βs and receptors at both 3 h and 12 h. IP6 elicited the opposed to LPS effect by increasing downregulated transcription of the examined genes and suppressing the expression of TGF-β1 at 12 h. IP6 counteracted the stimulatory effect of IL-1β on TGF-β1 and receptors expression by decreasing their mRNA levels. IP6 enhanced LPS- and IL-1β-stimulated mRNA expression of TGF-β2 and -β3. Based on these studies it may be concluded that IP6 present in the intestinal milieu may exert immunoregulatory effects and chemopreventive activity on colonic epithelium under inflammatory conditions or during microbe-induced infection/inflammation by modulating the expression of genes encoding TGF-βs and their receptors at transcriptional level. PMID:24459329

  14. H2O2-Activated Up-Regulation of Glutathione in Arabidopsis Involves Induction of Genes Encoding Enzymes Involved in Cysteine Synthesis in the Chloroplast

    Institute of Scientific and Technical Information of China (English)

    Guillaume Queval; Dorothée Thominet; Hélène Vanacker; Myroslawa Miginiac-Maslow; Bertrand Gakière; Graham Noctor

    2009-01-01

    Glutathione is a key player in cellular redox homeostasis and, therefore, in the response to H2O2, but the factors regulating oxidation-activated glutathione synthesis are still unclear. We investigated H2O2-induced glutathione synthesis in a conditional Arabidopsis catalase-deficient mutant (cat2). Plants were grown from seed at elevated CO2 for 5 weeks, then transferred to air in either short-day or long-day conditions. Compared to cat2 at elevated CO2 or wild-type plants in any condition, transfer of cat2 to air in both photoperiods caused measurable oxidation of the leaf glutathione pool within hours. Oxidation continued on subsequent days and was accompanied by accumulation of glutathione. This effect was stronger in cat2 transferred to air in short days, and was not linked to appreciable increases in the extractable activities of or transcripts encoding enzymes involved in the committed pathway of glutathione synthesis. In contrast, it was accompanied by increases in serine, O-acetylserine, and cysteine. These changes in metabolites were accompanied by induction of genes encoding adenosine phosphosulfate reductase (APR), particularly APR3, as well as a specific serine acetyltransferase gene (SAT2.1) encoding a chloroplastic SAT. Marked induction of these genes was only observed in cat2 transferred to air in short-day conditions, where cysteine and glutathione accumulation was most dramatic. Unlike other SAT genes, which showed negligible induction in cat2, the relative abundance of APR and SAT2.1 transcripts was closely correlated with marker transcripts for H2O2 signaling. Together, the data underline the importance of cysteine synthesis in oxidant-induced up-regulation of glutathione synthesis and suggest that the chloroplast makes an important contribution to cysteine production under these circumstances.

  15. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xinguo Wang

    2016-06-01

    Full Text Available The purpose of this study was to characterize Ta14S homoeologs and assess their functions in wheat seed development. The genomic and cDNA sequences of three Ta14S homoeologous genes encoding 14-3-3 proteins were isolated. Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure, whereas the cDNA sequences were variable in the 5′ and 3′-UTR. The three genes, designated as Ta14S-2A, Ta14S-2B and Ta14S-2D, were located in homoeologous group 2 chromosomes. The polypeptide chains of the three Ta14S genes were highly similar. These genes were most homologous to Hv14A from barley. Real-time quantitative PCR indicated that the three Ta14S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues. Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated. The transcription of Ta14S-2B was clearly higher during seed germination, whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition (0–12 h, but declined thereafter. The results suggested that the three Ta14S homoeologous genes have regulatory roles in seed development and germination.

  16. Characterization and evolution of a gene encoding a Trimeresurus flavoviridis serum protein that inhibits basic phospholipase A2 isozymes in the snake's venom.

    Science.gov (United States)

    Nobuhisa, I; Inamasu, S; Nakai, M; Tatsui, A; Mimori, T; Ogawa, T; Shimohigashi, Y; Fukumaki, Y; Hattori, S; Kihara, H; Ohno, M

    1997-11-01

    The proteins that bind phospholipase A2 (PLA2) isozymes of Trimeresurus flavoviridis (habu snake, crotalinae) venom were fractionated from sera on four columns, each conjugated with one of four PLA2 isozymes. Five proteins, termed PLA2 inhibitors (PLI) I-V, were obtained as the binding components. The combinations of the binding components differed depending on the PLA2 isozymes. PLI-IV and PLI-V correspond to PLI-A and PLI-B, respectively, which were known to bind to a major [Asp49]PLA2, PLA2, and contained a segment similar to the carbohydrate-recognition domain of C-type lectins. PLI-I, which is a major component of inhibitory proteins against three basic PLA2 isozymes, PLA-B (a basic [Asp49]PLA2) and basic proteins I and II (both [Lys49]PLA2s), has been isolated, and its partial amino acid sequence has been determined. A cDNA encoding PLI-I was isolated from a T. flavoviridis liver cDNA library and sequenced. PLI-I cDNA encoded 200 amino acid residues, including a signal peptide of 19 amino acid residues. One sugar chain was predicted to occur at position 157. A gene coding for PLI-I was isolated. It is 9.6-kb long and consists of five exons and four introns. Comparison of the exon-intron structure of the PLI-I gene with those of genes encoding urokinase-type-plasminogen-activator receptor (uPAR), Ly-6, CD59 and neurotoxins showed that they have characteristic unit encoding approximately 90 amino acid residues, which is divided over two exons. This strongly suggests that the PLI-I gene belongs to the uPAR, Ly-6, CD59 and neurotoxin gene family. There are two types of structurally different inhibitors against PLA2 isozymes in T. flavoviridis serum with different evolutionary origins.

  17. Mutations in the Gene Encoding the Ancillary Pilin Subunit of the Streptococcus suis srtF Cluster Result in Pili Formed by the Major Subunit Only

    Science.gov (United States)

    Fittipaldi, Nahuel; Takamatsu, Daisuke; la Cruz Domínguez-Punaro, María de; Lecours, Marie-Pier; Montpetit, Diane; Osaki, Makoto; Sekizaki, Tsutomu; Gottschalk, Marcelo

    2010-01-01

    Pili have been shown to contribute to the virulence of different Gram-positive pathogenic species. Among other critical steps of bacterial pathogenesis, these structures participate in adherence to host cells, colonization and systemic virulence. Recently, the presence of at least four discrete gene clusters encoding putative pili has been revealed in the major swine pathogen and emerging zoonotic agent Streptococcus suis. However, pili production by this species has not yet been demonstrated. In this study, we investigated the functionality of one of these pili clusters, known as the srtF pilus cluster, by the construction of mutant strains for each of the four genes of the cluster as well as by the generation of antibodies against the putative pilin subunits. Results revealed that the S. suis serotype 2 strain P1/7, as well as several other highly virulent invasive S. suis serotype 2 isolates express pili from this cluster. However, in most cases tested, and as a result of nonsense mutations at the 5′ end of the gene encoding the minor pilin subunit (a putative adhesin), pili were formed by the major pilin subunit only. We then evaluated the role these pili play in S. suis virulence. Abolishment of the expression of srtF cluster-encoded pili did not result in impaired interactions of S. suis with porcine brain microvascular endothelial cells. Furthermore, non-piliated mutants were as virulent as the wild type strain when evaluated in a murine model of S. suis sepsis. Our results show that srtF cluster-encoded, S. suis pili are atypical compared to other Gram-positive pili. In addition, since the highly virulent strains under investigation are unlikely to produce other pili, our results suggest that pili might be dispensable for critical steps of the S. suis pathogenesis of infection. PMID:20052283

  18. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent

    Energy Technology Data Exchange (ETDEWEB)

    Asselman, Jana, E-mail: jana.asselman@ugent.be [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium); Shaw, Joseph R.; Glaholt, Stephen P. [The School of Public and Environmental Affairs, Indiana University, Bloomington, IN (United States); Colbourne, John K. [School of Biosciences, The University of Birmingham, Birmingham (United Kingdom); De Schamphelaere, Karel A.C. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, Ghent (Belgium)

    2013-10-15

    Highlights: •Transcription patterns of 4 metallothionein isoforms in Daphnia pulex. •Under cadmium and copper stress these patterns are time-dependent. •Under cadmium and copper stress these patterns are homolog-dependent. •The results stress the complex regulation of metallothioneins. -- Abstract: Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species.

  19. Association of genetic variations of genes encoding thrombospondin, type 1, domain-containing 4 and 7A with low bone mineral density in Japanese women with osteoporosis.

    Science.gov (United States)

    Mori, Seijiro; Kou, Ikuyo; Sato, Hidenori; Emi, Mitsuru; Ito, Hideki; Hosoi, Takayuki; Ikegawa, Shiro

    2008-01-01

    Twins and family studies have shown that genetic factors are important determinants of bone mass. Important aspects of bone mineral density (BMD) regulation are endocrine systems, notably hormonal regulation of adrenal corticoids, as indicated by clinical knowledge of glucocorticoid-induced osteoporosis. Glucocorticoid is known to negatively regulate bone mass in vivo, and glucocorticoid increases thrombospondin messenger ribonucleic acid (mRNA) levels. We studied single nucleotide polymorphisms (SNPs) in genes encoding thrombospondin, type 1, domain-containing 4 and 7A (THSD4 and THSD7A) for possible association with lumbar and femoral BMD among 337 Japanese women with osteoporosis who participated in the BioBank Japan project. Genetic variations of THSD4 and THSD7A loci displayed significant association with lumbar and femoral BMD. Most significant correlation was observed for THSD7A SNP rs12673692 with lumbar BMD (P = 0.00017). Homozygous carriers of the major (G) allele had the highest BMD [0.886 +/- 0.011 g/cm2, mean +/- standard deviation (SD)], whereas heterozygous carriers were intermediate (0.872 +/- 0.013 g/cm2) and homozygous A-allele carriers had the lowest (0.753 +/- 0.023 g/cm2). THSD4 SNP rs10851839 also displayed strong association with lumbar BMD (P = 0.0092). In addition, both THSD7A and THSD4 displayed significant association with femoral BMD in a recessive model (P = 0.036 and P = 0.0046, respectively). Results suggest that variations of THSD7A and THSD4 loci may be important determinants of osteoporosis in Japanese women.

  20. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat(Triticum aestivum L.)

    Institute of Scientific and Technical Information of China (English)

    Xinguo Wang; Yanli Wang; Ruixia Xiao; Xin Chen; Jiangping Ren

    2016-01-01

    The purpose of this study was to characterize Ta14 S homoeologs and assess their functions in wheat seed development.The genomic and c DNA sequences of three Ta14 S homoeologous genes encoding 14-3-3 proteins were isolated.Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure,whereas the c DNA sequences were variable in the 5′ and 3′-UTR.The three genes,designated as Ta14S-2A,Ta14S-2B and Ta14S-2D,were located in homoeologous group 2 chromosomes.The polypeptide chains of the three Ta14 S genes were highly similar.These genes were most homologous to Hv14 A from barley.Real-time quantitative PCR indicated that the three Ta14 S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues.Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated.The transcription of Ta14S-2B was clearly higher during seed germination,whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition(0–12 h),but declined thereafter.The results suggested that the three Ta14 S homoeologous genes have regulatory roles in seed development and germination.

  1. Biochemical and functional studies on the Burkholderia cepacia complex bceN gene, encoding a GDP-D-mannose 4,6-dehydratase.

    Directory of Open Access Journals (Sweden)

    Sílvia A Sousa

    Full Text Available This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47. Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min(-1.mg(-1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis.

  2. Four genes encode acetylcholinesterases in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA sequences, genomic structures, mutations and in vivo expression.

    Science.gov (United States)

    Combes, D; Fedon, Y; Grauso, M; Toutant, J P; Arpagaus, M

    2000-07-21

    We report the full coding sequences and the genomic organization of the four genes encoding acetylcholinesterase (AChE) in Caenorhabditis elegans and Caenorhabditis briggsae, in relation to the properties of the encoded enzymes. ace-1 and ace-2, located on chromosome X and I, respectively, encode two AChEs (ACE-1 and ACE-2) that present 35% identity. The C-terminal end of ACE-1 is homologous to the C terminus of T subunits of vertebrate AChEs. ACE-1 oligomerizes into amphiphilic tetramers. ACE-2 has a hydrophobic C terminus of H type. It associates into glycolipid-anchored dimers. In C. elegans and C. briggsae, ace-3 and ace-4 are organized in tandem on chromosome II, with only 356 nt and 369 nt, respectively, between the stop codon of ace-4 (upstream gene) and the ATG of ace-3. ace-3 produces only 5 % of the total AChE activity. It encodes an H subunit that associates into dimers of glycolipid-anchored catalytic subunits, which are highly resistant to the usual AChE inhibitors, and which hydrolyze butyrylthiocholine faster than acetylthiocholine. ACE-4 is closer to ACE-3 (54 % identity) than to ACE-1 or ACE-2. The usual sequence FGESAG surrounding the active serine residue in cholinesterases is changed to FGQSAG in ace-4. ACE-4 was not detected by our current biochemical methods, although the gene is transcribed in vivo. However the level of ace-4 mRNAs is far lower than those of ace-1, ace-2 and ace-3. The ace-2, ace-3 and ace-4 transcripts were found to be trans-spliced by both SL1 and SL2, although these genes are not included in typical operons. The molecular bases of null mutations g72 (ace-2), p1304 and dc2 (ace-3) have been identified. Copyright 2000 Academic Press.

  3. Structure and promoter activity of the 5' flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans.

    Science.gov (United States)

    Culetto, E; Combes, D; Fedon, Y; Roig, A; Toutant, J P; Arpagaus, M

    1999-07-30

    We report the structure and the functional activity of the promoter region of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. We found that ace-1 was trans -spliced to the SL1 spliced leader and that transcription was initiated at a cluster of multiple starts. There was neither a TATA nor a CAAT box at consensus distances from these starts. Interspecies sequence comparison of the 5' regions of ace-1 in C. elegans and in the related nematode Caenorhabditis briggsae identified four blocks of conserved sequences located within a sequence of 2.4 kilobases upstream from the initiator ATG. In vitro expression of CAT reporter genes in mammalian cells allowed the determination of a minimal promoter in the first 288 nucleotides. In phenotype rescue experiments in vivo, the ace-1 gene containing 2.4 kilobases of 5' flanking region of either C. elegans or C. briggsae was found to restore a coordinated mobility to the uncoordinated double mutants ace-1(-);ace-2(-)of C. elegans. This showed that the ace-1 promoter was contained in 2.4 kilobases of the 5' region, and indicated that cis -regulatory elements as well as coding sequences of ace-1 were functionally conserved between the two nematode species. The pattern of ace-1 expression was established through microinjection of Green Fluorescent Protein reporter gene constructs and showed a major mesodermal expression. Deletion analysis showed that two of the four blocks of conserved sequences act as tissue-specific activators. The distal block is a mesodermal enhancer responsible for the expression in body wall muscle cells, anal sphincter and vulval muscle cells. Another block of conserved sequence directs expression in pharyngeal muscle cells pm5 and three pairs of cephalic sensory neurons. Copyright 1999 Academic Press.

  4. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors.

    Science.gov (United States)

    LeVier, K; Guerinot, M L

    1996-12-01

    Iron is important in the symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, yet little is known about rhizobial iron acquisition strategies. Analysis of outer membrane proteins (OMPs) from B. japonicum 61A152 identified three iron-regulated OMPs in the size range of several known receptors for Fe(III)-scavenging siderophores. One of the iron-regulated proteins, FegA, was purified and microsequenced, and a reverse genetics approach was used to clone a fegA-containing DNA fragment. Sequencing of this fragment revealed a single open reading frame of 750 amino acids. A putative N-terminal signal sequence of 14 amino acids which would result in a mature protein of 736 amino acids with a molecular mass of 80,851 Da was predicted. FegA shares significant amino acid similarity with several Fe(III)-siderophore receptors from gram-negative bacteria and has greater than 50% amino acid similarity and 33% amino acid identity with two [corrected] bacterial receptors for hydroxamate-type Fe(III)-siderophores. A dendrogram describing total inferred sequence similarity among 36 TonB-dependent OMPs was constructed; FegA grouped with Fe(III)-hydroxamate receptors. The transcriptional start site of fegA was mapped by primer extension analysis, and a putative Fur-binding site was found in the promoter. Primer extension and RNA slot blot analysis demonstrated that fegA was expressed only in cells grown under iron-limiting conditions. This is the first report of the cloning of a gene encoding a putative Fe(III)-siderophore receptor from nitrogen-fixing rhizobia.

  5. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.

    Science.gov (United States)

    Ballester, Ana-Rosa; Molthoff, Jos; de Vos, Ric; Hekkert, Bas te Lintel; Orzaez, Diego; Fernández-Moreno, Josefina-Patricia; Tripodi, Pasquale; Grandillo, Silvana; Martin, Cathie; Heldens, Jos; Ykema, Marieke; Granell, Antonio; Bovy, Arnaud

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit

  6. Expression profiling of two stress-inducible genes encoding for miraculin-like proteins in citrus plants under insect infestation or salinity stress.

    Science.gov (United States)

    Podda, A; Simili, M; Del Carratore, R; Mouhaya, W; Morillon, R; Maserti, B E

    2014-01-01

    The expression of two genes, namely Mir1 and Mir3 and the abundance of their encoded proteins, the putative miraculin-like proteins, MLP1 and MLP3, showing similarity to the Kunitz family of protease inhibitors, were monitored in the leaves of the citrus variety, 'Clementine' after Tetranychus urticae infestation and elicitor treatments, or in the leaves of three other diploid citrus: 'Willow leaf', 'Cleopatra' mandarins and 'Trifoliate' orange, as well as their respective doubled diploids and the allotetraploid somatic hybrid 'FLHORAG1' under salt stress. RT-PCR and 2-DE indicated that Mir1 and Mir3 and their products were present at low-basal expression in all citrus genotypes. Both genes and products were induced in the 'Clementine' leaves infested by T. urticae, but a contrasting profile was observed under elicitor treatments. Under salt stress, the two genes showed an expression pattern contrasting each other and depending on the genotypes. 'Cleopatra' mandarin, 'Trifoliate' orange and 'FLHORAG1' presented overexpression of Mir3 and MLP3 and decreased levels of Mir1 and MPL1. The opposite behaviour was found in 'Willow leaf' mandarin. The positive correlation of the expression profile of the two genes with that of a gene encoding a putative apoplastic cysteine protease (CysP) might suggest a possible interaction of the respective encoded proteins during the response to biotic stress. Under salt stress, CysP and Mir 1 showed a similar expression pattern but only at transcript level. The possible occurrence of post-translational CysP regulation is discussed.

  7. Biochemical and Functional Studies on the Burkholderia cepacia Complex bceN Gene, Encoding a GDP-D-Mannose 4,6-Dehydratase

    Science.gov (United States)

    Pinheiro, Pedro F.; Leitão, Jorge H.

    2013-01-01

    This work reports the biochemical and functional analysis of the Burkholderia cenocepacia J2315 bceN gene, encoding a protein with GDP-D-mannose 4,6-dehydratase enzyme activity (E.C.4.2.1.47). Data presented indicate that the protein is active when in the tetrameric form, catalyzing the conversion of GDP-D-mannose into GDP-4-keto-6-deoxy-D-mannose. This sugar nucleotide is the intermediary necessary for the biosynthesis of GDP-D-rhamnose, one of the sugar residues of cepacian, the major exopolysaccharide produced by environmental and human, animal and plant pathogenic isolates of the Burkholderia cepacia complex species. Vmax and Km values of 1.5±0.2 µmol.min−1.mg−1 and 1024±123 µM, respectively, were obtained from the kinetic characterization of the B. cenocepacia J2315 BceN protein by NMR spectroscopy, at 25°C and in the presence of 1 mol MgCl2 per mol of protein. The enzyme activity was strongly inhibited by the substrate, with an estimated Ki of 2913±350 µM. The lack of a functional bceN gene in a mutant derived from B. cepacia IST408 slightly reduced cepacian production. However, in the B. multivorans ATCC17616 with bceN as the single gene in its genome with predicted GMD activity, a bceN mutant did not produce cepacian, indicating that this gene product is required for cepacian biosynthesis. PMID:23460819

  8. Mapping to mouse chromosome 3 of the gene encoding latexin (Lxn) expressed in neocortical neurons in a region-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Ming-hao; Uratani, Yoshihiko; Arimatsu, Yasuyoshi [Mitsubishi Kasei Institute of Life Sciences, Tokyo (Japan)

    1997-02-01

    Latexin was first found as a 29-kDa antigen expressed in a subset of neurons in infragranular layers of lateral, but not dorsal, neocortical areas in the rat using a monoclonal antibody PC3.1. It was found that the vast majority of latexin-expressing neurons in both layers V and VI within the lateral neocortex were generated concurrently at Embryonic Day 15, demonstrating a strict correlation between the molecular identity of neurons and the time of their generation. Since neurons expressing latexin are located in the restricted part of the neocortex, latexin has been used as a useful molecular marker to elucidate the mechanism underlying cortical regional specification. The latexin cDNA isolated from a cDNA library of the rat cerebral cortex encodes a protein composed of 223-amino-acid residues containing two potential Ca{sup 2+}/calmodulin-dependent protein kinase sites and one cGMP-dependent protein kinase phosphorylation site. The absence of any signal peptide or potential transmembrane domain is consistent with the apparent cytosolic localization of latexin in the rat brain. The transcripts of latexin were expressed in not only neutral but also nonneural tissues (e.g., lung, spleen, kidney, heart, and digestive tracts). Recently, it has been demonstrated that latexin purified from the rat brain has inhibitory activity against carboxypeptidase A1, carboxypeptidase A2, and mast cell carboxypeptidase A, with less carboxypeptidase B-inhibiting activity. The amino acid sequence deduced from the rat latexin cDNA has no strict homology to any sequences so far known. Genomic Southern blot analysis using a cDNA probe of rat latexin suggested that the gene encoding latexin in the rat has homologues in other mammalian species and in the chicken, but not in the nematode, fly, or frog. 9 refs., 1 fig.

  9. Aggregatibacter actinomycetemcomitans QseBC is activated by catecholamines and iron and regulates genes encoding proteins associated with anaerobic respiration and metabolism

    Science.gov (United States)

    Weigel, WA; Demuth, DR; Torres-Escobar, A; Juárez-Rodríguez, MD

    2015-01-01

    Aggregatibacter actinomycetemcomitans QseBC regulates its own expression and is essential for biofilm growth and virulence. However, the signal that activates the QseC sensor has not been identified and the qseBC regulon has not been defined. In this study, we show that QseC is activated by catecholamine hormones and iron but not by either component alone. Activation of QseC requires an EYRDD motif in the periplasmic domain of the sensor and site-specific mutations in EYRDD or the deletion of the periplasmic domain inhibits catecholamine/iron-dependent induction of the ygiW-qseBC operon. Catecholamine/iron-dependent induction of transcription also requires interaction of the QseB response regulator with its binding site in the ygiW-qseBC promoter. Whole genome microarrays were used to compare gene expression profiles of A. actinomycetemcomitans grown in a chemically defined medium with and without catecholamine and iron supplementation. Approximately 11.5% of the A. actinomycetemcomitans genome was differentially expressed by at least two-fold upon exposure to catecholamines and iron. The expression of ferritin was strongly induced, suggesting that intracellular iron storage capacity is increased upon QseBC activation. Consistent with this, genes encoding iron binding and transport proteins were down-regulated by QseBC. Strikingly, 57% of the QseBC up-regulated genes (56/99) encode proteins associated with anaerobic metabolism and respiration. Most of these up-regulated genes were recently reported to be induced during in vivo growth of A. actinomycetemcomitans. These results suggest that detection of catecholamines and iron by QseBC may alter the cellular metabolism of A. actinomycetemcomitans for increased fitness and growth in an anaerobic host environment. PMID:25923132

  10. Differential Influence of Inositol Hexaphosphate on the Expression of Genes Encoding TGF-β Isoforms and Their Receptors in Intestinal Epithelial Cells Stimulated with Proinflammatory Agents

    Directory of Open Access Journals (Sweden)

    Małgorzata Kapral

    2013-01-01

    Full Text Available Transforming growth factor β (TGF-β is a multifunctional cytokine recognized as an important regulator of inflammatory responses. The effect of inositol hexaphosphate (IP6, a naturally occurring phytochemical, on the mRNA expression of TGF-β1, TGF-β2, TGF-β3 and TβRI, TβRII, and TβRIII receptors stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium and IL-1β in intestinal cells Caco-2 for 3 and 12 h was investigated. Real-time qRT-PCR was used to validate mRNAs level of examined genes. Bacterial endotoxin promoted differential expression of TGF-βs and their receptors in a time-dependent manner. IL-1β upregulated mRNA levels of all TGF-βs and receptors at both 3 h and 12 h. IP6 elicited the opposed to LPS effect by increasing downregulated transcription of the examined genes and suppressing the expression of TGF-β1 at 12 h. IP6 counteracted the stimulatory effect of IL-1β on TGF-β1 and receptors expression by decreasing their mRNA levels. IP6 enhanced LPS- and IL-1β-stimulated mRNA expression of TGF-β2 and -β3. Based on these studies it may be concluded that IP6 present in the intestinal milieu may exert immunoregulatory effects and chemopreventive activity on colonic epithelium under inflammatory conditions or during microbe-induced infection/inflammation by modulating the expression of genes encoding TGF-βs and their receptors at transcriptional level.

  11. Differential influence of inositol hexaphosphate on the expression of genes encoding TGF-β isoforms and their receptors in intestinal epithelial cells stimulated with proinflammatory agents.

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Sośnicki, Stanisław; Węglarz, Ludmiła

    2013-01-01

    Transforming growth factor β (TGF-β) is a multifunctional cytokine recognized as an important regulator of inflammatory responses. The effect of inositol hexaphosphate (IP6), a naturally occurring phytochemical, on the mRNA expression of TGF- β1, TGF-β2, TGF-β3 and TβRI, TβRII, and TβRIII receptors stimulated with bacterial lipopolysaccharides (Escherichia coli and Salmonella typhimurium) and IL-1β in intestinal cells Caco-2 for 3 and 12 h was investigated. Real-time qRT-PCR was used to validate mRNAs level of examined genes. Bacterial endotoxin promoted differential expression of TGF-βs and their receptors in a time-dependent manner. IL-1β upregulated mRNA levels of all TGF-βs and receptors at both 3 h and 12 h. IP6 elicited the opposed to LPS effect by increasing downregulated transcription of the examined genes and suppressing the expression of TGF- β1 at 12 h. IP6 counteracted the stimulatory effect of IL-1β on TGF-β1 and receptors expression by decreasing their mRNA levels. IP6 enhanced LPS- and IL-1β-stimulated mRNA expression of TGF-β2 and -β3. Based on these studies it may be concluded that IP6 present in the intestinal milieu may exert immunoregulatory effects and chemopreventive activity on colonic epithelium under inflammatory conditions or during microbe-induced infection/inflammation by modulating the expression of genes encoding TGF-βs and their receptors at transcriptional level.

  12. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    Science.gov (United States)

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe).

  13. A mitochondrial tRNA(Met) mutation causing developmental delay, exercise intolerance and limb girdle phenotype with onset in early childhood

    DEFF Research Database (Denmark)

    Born, Alfred Peter; Duno, Morten; Rafiq, Jabin;

    2015-01-01

    , but 90% COX negative fibres and ragged blue fibres. Respiratory chain enzyme analysis in muscle showed a combined deficiency and mitochondrial DNA sequencing revealed the presence of an m.4450G>A mutation in the MT-TM gene encoding the tRNA for methionine. The mutation was only detected in mt......DNA extracted from muscle and skin fibroblast, and could not be found in other tissues or in the mother. This is the second patient reported in the literature with a mitochondrial myopathy due to a mt-tRNA(Met) mutation. The first patient, a 30-year-old woman, presented with exercise intolerance, limb girdle...

  14. Mitochondrial complex I-linked disease.

    Science.gov (United States)

    Rodenburg, Richard J

    2016-07-01

    Complex I deficiency is the most frequently encountered single mitochondrial single enzyme deficiency in patients with a mitochondrial disorder. Although specific genotype-phenotype correlations are very difficult to identify, the majority of patients present with symptoms caused by leukodystrophy. The poor genotype-phenotype correlations can make establishing a diagnosis a challenge. The classical way to establish a complex I deficiency in patients is by performing spectrophotometric measurements of the enzyme in a muscle biopsy or other patient-derived material (liver or heart biopsy, cultured skin fibroblasts). Complex I is encoded by both the mtDNA and nuclear DNA and pathogenic mutations have been identified in the majority of the 44 genes encoding the structural subunits of complex I. In recent years, the increasing possibilities for diagnostic molecular genetic tests of large gene panels, exomes, and even entire genomes has led to the identification of many novel genetic defects causing complex I deficiency. Complex I mutations not only result in a reduced enzyme activity but also induce secondary effects at the cellular level, such as elevated reactive oxygen species production, altered membrane potential and mitochondrial morphology. At this moment there is no cure for complex I deficiency and the treatment options for complex I patients are restricted to symptomatic treatment. Recent developments, amongst others based on the treatment of the secondary effects of complex I deficiency, have shown to be promising as new therapeutic strategies in vitro and have entered clinical trials. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  15. Drosophila clueless is highly expressed in larval neuroblasts, affects mitochondrial localization and suppresses mitochondrial oxidative damage.

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    Full Text Available Mitochondria are critical for neuronal function due to the high demand of ATP in these cell types. During Drosophila development, neuroblasts in the larval brain divide asymmetrically to populate the adult central nervous system. While many of the proteins responsible for maintaining neuroblast cell fate and asymmetric cell divisions are known, little is know about the role of metabolism and mitochondria in neuroblast division and maintenance. The gene clueless (clu has been previously shown to be important for mitochondrial function. clu mutant adults have severely shortened lifespans and are highly uncoordinated. Part of their lack of coordination is due to defects in muscle, however, in this study we have identified high levels of Clu expression in larval neuroblasts and other regions of the dividing larval brain. We show while mitochondria in clu mutant neuroblasts are mislocalized during the cell cycle, surprisingly, overall brain morphology appears to be normal. This is explained by our observation that clu mutant larvae have normal levels of ATP and do not suffer oxidative damage, in sharp contrast to clu mutant adults. Mutations in two other genes encoding mitochondrial proteins, technical knockout and stress sensitive B, do not cause neuroblast mitochondrial mislocalization, even though technical knockout mutant larvae suffer oxidative damage. These results suggest Clu functions upstream of electron transport and oxidative phosphorylation, has a role in suppressing oxidative damage in the cell, and that lack of Clu's specific function causes mitochondria to mislocalize. These results also support the previous observation that larval development relies on aerobic glycolysis, rather than oxidative phosphorylation. Thus Clu's role in mitochondrial function is not critical during larval development, but is important for pupae and adults.

  16. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  17. The Bartonella vinsonii subsp. arupensis Immunodominant Surface Antigen BrpA Gene, Encoding a 382-Kilodalton Protein Composed of Repetitive Sequences, Is a Member of a Multigene Family Conserved among Bartonella Species

    OpenAIRE

    Gilmore, Robert D.; Bellville, Travis M.; Sviat, Steven L.; Frace, Michael

    2005-01-01

    Bartonella proteins that elicit an antibody response during an infection are poorly defined; therefore, to characterize antigens recognized by the host, a Bartonella genomic expression library was screened with serum from an infected mouse. This process led to the discovery of a Bartonella vinsonii subsp. arupensis gene encoding a 382-kDa protein, part of a gene family encoding large proteins, each containing multiple regions of repetitive segments. The genes were termed brpA to -C (bartonell...

  18. The nucleotide sequence of a CpG island demonstrates the presence of the first exon of the gene encoding the human lysosomal membrane protein lamp2 and assigns the gene to Xq24.

    Science.gov (United States)

    Manoni, M; Tribioli, C; Lazzari, B; DeBellis, G; Patrosso, C; Pergolizzi, R; Pellegrini, M; Maestrini, E; Rivella, S; Vezzoni, P

    1991-03-01

    An EagI-EcoRI clone of human genomic DNA, p2-7, mapped to Xq24 has been sequenced. This analysis has confirmed the presence of a CpG island and has identified the first exon of the human LAMP2 gene, encoding a glycoprotein of the lysosomal membrane. Since the p2-7 clone corresponds to single-copy DNA, we can assign the human LAMP2 gene to Xq24.

  19. The complete mitochondrial genome of the yellow-browed bunting, Emberiza chrysophrys (Passeriformes: Emberizidae), and phylogenetic relationships within the genus Emberiza

    Indian Academy of Sciences (India)

    Qiongqiong Ren; Jian Yuan; Liqian Ren; Liqin Zhang; Lei Zhang; Lan Jiang; Dongsheng Chen; Xianzhao Kan; Baowei Zhang

    2014-12-01

    Mitochondrial genomes have proved to be powerful tools in resolving phylogenetic relationships. Emberiza chrysophrys (least concern species: IUCN 2013) is a passerine bird in the bunting family, Emberizidae. The complete mitochondrial genome of E. chrysophrys was sequenced. This circular mitochondrial genome was 16,803 bp in length, with an A+T content of 52.26%, containing 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a putative control region (CR). The CR of E. chrysophrys was divided into three conserved domains. Six conserved sequence boxes in the central conserved domain II were identified as F, E, D, C, b and B. An obvious positive AT-skew and negative GC-skew bias were found for all 28 genes encoded by the H strand, whereas it was the reverse in the remaining nine genes encoded by the L strand. Remarkable rate heterogeneity was present in the mitochondrial genome of E. chrysophrys. Notably, unusual slow rate of evolution in the mitochondrial CR of E. chrysophrys was detected, which is rarely seen in other birds. Phylogenetic analyses were carried out based on 13 PCGs that showed E. pusilla was the sister group of E. rustica, and the monophyly of Emberiza was established.

  20. A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina.

    Science.gov (United States)

    Sellem, Carole H; Marsy, Sophie; Boivin, Antoine; Lemaire, Claire; Sainsard-Chanet, Annie

    2007-07-01

    We present here the properties of a complex III loss-of-function mutant of the filamentous fungus Podospora anserina. The mutation corresponds to a single substitution in the second intron of the gene cyc1 encoding cytochrome c(1), leading to a splicing defect. The cyc1-1 mutant is long-lived, exhibits a defect in ascospore pigmentation, has a reduced growth rate and a reduced ROS production associated with a stabilisation of its mitochondrial DNA. We also show that increased longevity is linked with morphologically modified mitochondria and an increased number of mitochondrial genomes. Overexpression of the alternative oxidase rescues all these phenotypes and restores aging. Interestingly, the absence of complex III in this mutant is not paralleled with a deficiency in complex I activity as reported in mammals although the respiratory chain of P. anserina has recently been demonstrated to be organized according to the "respirasome" model.

  1. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C.

    Science.gov (United States)

    Allen, G P; Coogle, L D

    1988-08-01

    The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary

  2. Relationship between polymorphisms of genes encoding microsomal epoxide hydrolase and glutathione S-transferase P1 and chronic obstructive ulmonary disease

    Institute of Scientific and Technical Information of China (English)

    XIAO Dan 肖丹; David C.Christiani; WANG Chen 王辰; DU Min-jie 杜敏捷; PANG Bao-sen 庞宝森; ZHANG Hong-yu 张洪玉; XIAO Bai 肖白; LIU Jing-zhong 刘敬忠; WENG Xin-zhi 翁心植; SU Li 苏丽

    2004-01-01

    Background Cigarette smoking is the major risk factor for chronic obstructive pulmonary disease (COPD). However, only 10%-20% of chronic heavy cigarette smokers develop symptomatic disease. COPD is most likely the result of complex interactions between environmental and genetic factors. Genetic susceptibility to COPD might depend on the variations in enzyme activities that detoxify cigarette smoke products, such as microsomal epoxide hydrolase (mEH) and glutathione S-transferase (GST). In this study, we investigated the relationship between polymorphisms in the genes encoding mEH and glutathione S-transferase P1 (GSTP1) and COPD in a Chinese population.Methods Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to find mEH polymorphism in exon 3 (Tyr113→His), exon 4 (His139→Arg) and GSTP1 polymorphism in exon 5 (Ile105→Val) in 100 COPD patients and 100 age- and sex-matched healthy controls. Results The proportion of mEH exon 3 heterozygotes was significantly higher in patients with COPD than that in the control subjects (42% vs 32%). The odds ratio (OR) adjusted by age, sex, body mass index (BMI) and cigarette years was 2.96 (95%CI 1.24-7.09). There was no marked difference in very slow activity genotype versus other genotypes between COPD patients and the controls. When COPD patients were non-smokers, the OR of very slow activity genotype versus other genotypes was more than 1.00; and when COPD patients were smokers (current smokers and ex-smokers), the OR was less than 1.00. There was no significant difference in GSTP1 polymorphism adjusted by age, sex, BMI and smoking between COPD patients and the controls. Conclusions mEH exon 3 heterozygotes might be associated with susceptibility to COPD in China. The interaction might exist between mEH genotype and smoke. The gene polymorphism for GSTP1 might not be associated with susceptibility to COPD in the Chinese population.

  3. Hypoxic regulation of the expression of genes encoded estrogen related proteins in U87 glioma cells: eff ect of IRE1 inhibition.

    Science.gov (United States)

    Do, Minchenko; Oo, Riabovol; Oo, Ratushna; Oh, Minchenko

    2017-01-01

    The aim of the present study was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoded estrogen related proteins (NRIP1/RIP140, TRIM16/EBBP, ESRRA/NR3B1, FAM162A/E2IG5, PGRMC2/PMBP, and SLC39A6/LIV-1) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of glioma cells proliferation. The expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by a quantitative polymerase chain reaction. Inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 signaling enzyme function up-regulates the expression of EBBP, E2IG5, PGRMC2, and SLC39A6 genes is in U87 glioma cells in comparison with the control glioma cells, with more significant changes for E2IG5 and PGRMC2 genes. At the same time, the expression of NRIP1 and ESRRA genes is strongly down-regulated in glioma cells upon inhibition of IRE1. We also showed that hypoxia increases the expression of E2IG5, PGRMC2, and EBBP genes and decreases NRIP1 and ESRRA genes expression in control glioma cells. Furthermore, the inhibition of IRE1 in U87 glioma cells decreases the eff ect of hypoxia on the expression of E2IG5 and PGRMC2 genes, eliminates hypoxic regulation of NRIP1 gene, and enhances the sensitivity of ESRRA gene to hypoxic condition. Furthermore, the expression of SLC39A6 gene is resistant to hypoxia in both the glioma cells with and without IRE1 signaling enzyme function. Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NRIP1, EBBP, ESRRA, E2IG5, PGRMC2, and SLC39A6 genes in U87 glioma cells in gene specific manner and these changes

  4. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri

    Directory of Open Access Journals (Sweden)

    Li Jinyun

    2012-03-01

    Full Text Available Abstract Background The Gram-negative bacterium Xanthomonas citri subsp. citri (Xac causes citrus canker, one of the most destructive diseases of citrus worldwide. In our previous work, a transposon mutant of Xac strain 306 with an insertion in the XAC3110 locus was isolated in a screening that aimed at identifying genes related to biofilm formation. The XAC3110 locus was named as bdp24 for biofilm-defective phenotype and the mutant was observed to be affected in extracellular polysaccharide (EPS and lipopolysaccharide (LPS biosynthesis and cell motility. In this study, we further characterized the bdp24 (XAC3110 gene (designated as gpsX using genetic complementation assays and expanded the knowledge about the function of the gpsX gene in Xac pathogenesis by investigating the roles of gpsX in EPS and LPS production, cell motility, biofilm formation on host leaves, stress tolerance, growth in planta, and host virulence of the citrus canker bacterium. Results The gpsX gene encodes a putative glycosyltransferase, which is highly conserved in the sequenced strains of Xanthomonas. Mutation of gpsX resulted in a significant reduction of the amount of EPS and loss of two LPS bands visualized on sodium dodecylsulphate- polyacrylamide gels. Biofilm assays revealed that the gpsX mutation affected biofilm formation by Xac on abiotic and biotic surfaces. The gpsX mutant showed delayed bacterial growth and caused reduced development of disease symptoms in susceptible citrus leaves. The gpsX mutant was more sensitive than the wild-type strain to various stresses, including the H2O2 oxidative stress. The mutant also showed attenuated ability in cell motility but not in flagellar formation. Quantitative reverse transcription-PCR assays indicated that mutation of gpsX did not affect the expression of virulence genes such as pthA in Xac strain 306. The affected phenotypes of the gpsX mutant could be complemented to wild-type levels by the intact gpsX gene

  5. Evolutionary genomics of plant genes encoding N-terminal-TM-C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2007-07-01

    Full Text Available Abstract Background Synaptotagmin genes are found in animal genomes and are known to function in the nervous system. Genes with a similar domain architecture as well as sequence similarity to synaptotagmin C2 domains have also been found in plant genomes. The plant genes share an additional region of sequence similarity with a group of animal genes named FAM62. FAM62 genes also have a similar domain architecture. Little is known about the functions of the plant genes and animal FAM62 genes. Indeed, many members of the large and diverse Syt gene family await functional characterization. Understanding the evolutionary relationships among these genes will help to realize the full implications of functional studies and lead to improved genome annotation. Results I collected and compared plant Syt-like sequences from the primary nucleotide sequence databases at NCBI. The collection comprises six groups of plant genes conserved in embryophytes: NTMC2Type1 to NTMC2Type6. I collected and compared metazoan FAM62 sequences and identified some similar sequences from other eukaryotic lineages. I found evidence of RNA editing and alternative splicing. I compared the intron patterns of Syt genes. I also compared Rabphilin and Doc2 genes. Conclusion Genes encoding proteins with N-terminal-transmembrane-C2 domain architectures resembling synaptotagmins, are widespread in eukaryotes. A collection of these genes is presented here. The collection provides a resource for studies of intron evolution. I have classified the collection into homologous gene families according to distinctive patterns of sequence conservation and intron position. The evolutionary histories of these gene families are traceable through the appearance of family members in different eukaryotic lineages. Assuming an intron-rich eukaryotic ancestor, the conserved intron patterns distinctive of individual gene families, indicate independent origins of Syt, FAM62 and NTMC2 genes. Resemblances

  6. Prognostic Significance of B-cell Differentiation Genes Encoding Proteins in Diffuse Large B-cell Lymphoma and Follicular Lymphoma Grade 3

    Science.gov (United States)

    Borovečki, Ana; Korać, Petra; Nola, Marin; Ivanković, Davor; Jakšić, Branimir; Dominis, Mara

    2008-01-01

    Aim To define prognostic significance of B-cell differentiation genes encoding proteins and BCL2 and BCL6 gene abnormalities in diffuse large B-cell lymphoma and follicular lymphoma grade 3 with >75% follicular growth pattern. Methods In 53 patients with diffuse large B-cell lymphoma and 20 patients with follicular lymphoma grade 3 with >75% follicular growth pattern the following was performed: 1) determination of protein expression of BCL6, CD10, MUM1/IRF4, CD138, and BCL2 by immunohistochemistry; 2) subclassification into germinal center B-cell-like (GCB) and activated B-cell-like (ABC) groups according to the results of protein expression; 3) detection of t(14;18)(q32;q21)/IgH-BCL2 and BCL6 abnormalities by fluorescent in situ hybridization in diffuse large B-cell lymphoma and follicular lymphoma grade 3 with >75% follicular growth pattern as well as in GCB and ABC groups; and 4) assessment of the influence of the analyzed characteristics and clinical prognostic factors on overall survival. Results Isolated BCL6 expression was more frequently found in follicular lymphoma grade 3 with >75% follicular growth pattern than in diffuse large B-cell lymphoma (P = 0.030). There were no differences in BCL2 and BCL6 gene abnormalities between diffuse large B-cell lymphoma and follicular lymphoma grade 3 with >75% follicular growth pattern. Diffuse large B-cell lymphoma and follicular lymphoma grade 3 with >75% follicular growth pattern patients were equally distributed in GCB and ABC groups. t(14;18)(q32;q21) was more frequently recorded in GCB group, and t(14;18)(q32;q21) with BCL2 additional signals or only BCL2 and IgH additional signals in ABC group (P = 0.004). The GCB and ABC groups showed no difference in BCL6 gene abnormalities. There was no overall survival difference between the patients with diffuse large B-cell lymphoma or follicular lymphoma grade 3 with >75% follicular growth pattern, however, GCB group had longer overall survival than ABC group (P

  7. Induction of the expression of genes encoding TGF-beta isoforms and their receptors by inositol hexaphosphate in human colon cancer cells.

    Science.gov (United States)

    Kapral, Małgorzata; Wawszczyk, Joanna; Hollek, Andrzej; Weglarz, Ludmiła

    2013-01-01

    Transforming growth factors-beta (TGF-beta) are multifunctional cytokines involved in the regulation of cell development, differentiation, survival and apoptosis. They are also potent anticancer agents that inhibit uncontrolled proliferation of cells. Incorrect TGF-beta regulation has been implicated in the pathogenesis of many diseases including inflammation and cancer. In humans, the TGF-beta family consists of three members (TGF-beta1, 2, 3) that show high similarity and homology. TGF-betas exert biological activities on various cell types including neoplastic cells via their specific receptors. Inositol hexaphosphate (phytic acid, IP6), a phytochemical has been reported to possess various health benefits. The aim of this study was to examine the effect of IP6 on the expression of genes encoding TGF-beta1, TGF-beta2, TGF-beta3 isoforms and their receptors TbetaRI, TbetaRII, TbetaRIII in human colorectal cancer cell line Caco-2. The cells were treated with 0.5, 1 and 2.5 mM IP6 for 3, 6 and 12 h. The untreated Caco-2 cells were used as the control. Quantification of genes expression was performed by real time QRT-PCR technique with a SYBR Green I chemistry. The experimental data revealed that the TGF-beta1 mRNA was the predominant isoform in Caco-2 cells and that IP6 enhanced transcriptional activity of genes of all three TGF-beta isoforms and their receptors TbetaRI, TbetaRII TbetaRIII in these cells. At concentrations up to 1 mM, IP6 over-expressed the genes in 6 h lasting cultures, and its higher dose (2.5 mM) caused successively increasing transcript level of TGF-beta isoforms and receptors with the duration of experiment up to 12 h. The findings of this study indicate that one of anti-cancer abilities of IP6 can be realized by enhancing the gene expression of TGF-beta isoforms and their receptors at the transcriptional level.

  8. Mitochondrial biosensors.

    Science.gov (United States)

    De Michele, Roberto; Carimi, Francesco; Frommer, Wolf B

    2014-03-01

    Biosensors offer an innovative tool for measuring the dynamics of a wide range of metabolites in living organisms. Biosensors are genetically encoded, and thus can be specifically targeted to specific compartments of organelles by fusion to proteins or targeting sequences. Mitochondria are central to eukaryotic cell metabolism and present a complex structure with multiple compartments. Over the past decade, genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of mitochondrial physiology. To date, sensors for ATP, NADH, pH, hydrogen peroxide, superoxide anion, redox state, cAMP, calcium and zinc have been used in the matrix, intermembrane space and in the outer membrane region of mitochondria of animal and plant cells. This review summarizes the different types of sensors employed in mitochondria and their main limits and advantages, and it provides an outlook for the future application of biosensor technology in studying mitochondrial biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Mitochondrial fusion, fission, and mitochondrial toxicity.

    Science.gov (United States)

    Meyer, Joel N; Leuthner, Tess C; Luz, Anthony L

    2017-08-05

    Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    Science.gov (United States)

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  11. Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

    Directory of Open Access Journals (Sweden)

    Harmen M. van Rossum

    2016-05-01

    Full Text Available In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo. This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1, nuclear-mitochondrial communication (RTG2, and encoding a carnitine acetyltransferase (YAT2. Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle.

  12. Detection of Deafness-Causing Mutations in the Greek Mitochondrial Genome

    Directory of Open Access Journals (Sweden)

    Haris Kokotas

    2011-01-01

    Full Text Available Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser(UCN, and the MTTL1 gene, encoding the tRNA for Leu(UUR. We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population.

  13. Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis.

    Science.gov (United States)

    Dobáková, Eva; Flegontov, Pavel; Skalický, Tomáš; Lukeš, Julius

    2015-11-20

    In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.

  14. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  15. Mitochondrial DNA Alterations and Reduced Mitochondrial Function in Aging

    OpenAIRE

    Hebert, Sadie L.; Lanza, Ian R.; Nair, K. Sreekumaran

    2010-01-01

    Oxidative damage to mitochondrial DNA increases with aging. This damage has the potential to affect mitochondrial DNA replication and transcription which could alter the abundance or functionality of mitochondrial proteins. This review describes mitochondrial DNA alterations and changes in mitochondrial function that occur with aging. Age-related alterations in mitochondrial DNA as a possible contributor to the reduction in mitochondrial function are discussed.

  16. Defects in mitochondrial and peroxisomal β-oxidation influence virulence in the maize pathogen Ustilago maydis.

    Science.gov (United States)

    Kretschmer, Matthias; Klose, Jana; Kronstad, James W

    2012-08-01

    An understanding of metabolic adaptation during the colonization of plants by phytopathogenic fungi is critical for developing strategies to protect crops. Lipids are abundant in plant tissues, and fungal phytopathogens in the phylum basidiomycota possess both peroxisomal and mitochondrial β-oxidation pathways to utilize this potential carbon source. Previously, we demonstrated a role for the peroxisomal β-oxidation enzyme Mfe2 in the filamentous growth, virulence, and sporulation of the maize pathogen Ustilago maydis. However, mfe2 mutants still caused disease symptoms, thus prompting a more detailed investigation of β-oxidation. We now demonstrate that a defect in the had1 gene encoding hydroxyacyl coenzyme A dehydrogenase for mitochondrial β-oxidation also influences virulence, although its paralog, had2, makes only a minor contribution. Additionally, we identified a gene encoding a polypeptide with similarity to the C terminus of Mfe2 and designated it Mfe2b; this gene makes a contribution to virulence only in the background of an mfe2Δ mutant. We also show that short-chain fatty acids induce cell death in U. maydis and that a block in β-oxidation leads to toxicity, likely because of the accumulation of toxic intermediates. Overall, this study reveals that β-oxidation has a complex influence on the formation of disease symptoms by U. maydis that includes potential metabolic contributions to proliferation in planta and an effect on virulence-related morphogenesis.

  17. Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA.

    Science.gov (United States)

    Dunn, Cory D; Jensen, Robert E

    2003-01-01

    The TIM22 complex, required for the insertion of imported polytopic proteins into the mitochondrial inner membrane, contains the nonessential Tim18p subunit. To learn more about the function of Tim18p, we screened for high-copy suppressors of the inability of tim18Delta mutants to live without mitochondrial DNA (mtDNA). We identified several genes encoding cytosolic proteins, including CCT6, SSB1, ICY1, TIP41, and PBP1, which, when overproduced, rescue the mtDNA dependence of tim18Delta cells. Furthermore, these same plasmids rescue the petite-negative phenotype of cells lacking other components of the mitochondrial protein import machinery. Strikingly, disruption of the genes identified by the different suppressors produces cells that are unable to grow without mtDNA. We speculate that loss of mtDNA leads to a lowered inner membrane potential, and subtle changes in import efficiency can no longer be tolerated. Our results suggest that increased amounts of Cct6p, Ssb1p, Icy1p, Tip41p, and Pbp1p help overcome the problems resulting from a defect in protein import. PMID:14504216

  18. Phylogeny and evolution of the auks (subfamily Alcinae) based on mitochondrial DNA sequences

    Science.gov (United States)

    Moum, Truls; Johansen, Steinar; Erikstad, Kjell Einar; Piatt, John F.

    1994-01-01

    The genetic divergence and phylogeny of the auks was assessed by mitochondrial DNA sequence comparisons in a study using 19 of the 22 auk species and two outgroup representatives. We compared more than 500 nucleotides from each of two mitochondrial genes encoding 12S rRNA and the NADH dehydrogenase subunit 6. Divergence times were estimated from transversional substitutions. The dovekie (Alle alle) is related to the razorbill (Alca torda) and the murres (Uria spp). Furthermore, the Xantus's murrelet (Synthliboramphus hypoleucus) and the ancient (Synthliboramphus antiquus) and Japanese murrelets (Synthliboramphus wumizusume) are genetically distinct members of the same main lineage, whereas brachyramphine and synthliboramphine murrelets are not closely related. An early adaptive radiation of six main species groups of auks seems to trace back to Middle Miocene. Later speciation probably involved ecological differentiations and geographical isolations.

  19. CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women.

    Science.gov (United States)

    Azrak, Sami; Ayyasamy, Vanniarajan; Zirpoli, Gary; Ambrosone, Christine; Bandera, Elisa V; Bovbjerg, Dana H; Jandorf, Lina; Ciupak, Gregory; Davis, Warren; Pawlish, Karen S; Liang, Ping; Singh, Keshav

    2012-01-01

    The DNA polymerase-gamma (POLG) gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA) women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls) who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49-6.21). Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies.

  20. CAG repeat variants in the POLG1 gene encoding mtDNA polymerase-gamma and risk of breast cancer in African-American women.

    Directory of Open Access Journals (Sweden)

    Sami Azrak

    Full Text Available The DNA polymerase-gamma (POLG gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49-6.21. Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies.

  1. Co segregation of the m.1555A>G mutation in the MT-RNR1 gene and mutations in MT-ATP6 gene in a family with dilated mitochondrial cardiomyopathy and hearing loss: A whole mitochondrial genome screening.

    Science.gov (United States)

    Alila-Fersi, Olfa; Chamkha, Imen; Majdoub, Imen; Gargouri, Lamia; Mkaouar-Rebai, Emna; Tabebi, Mouna; Tlili, Abdelaziz; Keskes, Leila; Mahfoudh, Abdelmajid; Fakhfakh, Faiza

    2017-02-26

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to dysfunction of the mitochondrial respiratory chain, which is responsible for the generation of most cellular energy. Because cardiac muscles are one of the high energy demanding tissues, mitochondrial cardiomyopathies is one of the most frequent mitochondria disorders. Mitochondrial cardiomyopathy has been associated with several point mutations of mtDNA in both genes encoded mitochondrial proteins and mitochondrial tRNA and rRNA. We reported here the first description of mutations in MT-ATP6 gene in two patients with clinical features of dilated mitochondrial cardiomyopathy. The mutational analysis of the whole mitochondrial DNA revealed the presence of m.1555A>G mutation in MT-RNR1 gene associated to the m.8527A>G (p.M>V) and the m.8392C>T (p.136P>S) variations in the mitochondrial MT-ATP6 gene in patient1 and his family members with variable phenotype including hearing impairment. The second patient with isolated mitochondrial cardiomyopathy presented the m.8605C>T (p.27P>S) mutation in the MT-ATP6 gene. The three mutations p.M1V, p.P27S and p.P136S detected in MT-ATP6 affected well conserved residues of the mitochondrial protein ATPase 6. In addition, the substitution of proline residue at position 27 and 136 effect hydrophobicity and structure flexibility conformation of the protein.

  2. Characteristics of mitochondrial calpains.

    Science.gov (United States)

    Ozaki, Taku; Tomita, Hiroshi; Tamai, Makoto; Ishiguro, Sei-Ichi

    2007-09-01

    Calpains are considered to be cytoplasmic enzymes, although several studies have shown that calpain-like protease activities also exist in mitochondria. We partially purified mitochondrial calpain from swine liver mitochondria and characterized. Only one type of mitochondrial calpain was detected by the column chromatographies. The mitochondrial calpain was stained with anti-mu-calpain and calpain small subunit antibodies. The susceptibility of mitochondrial calpain to calpain inhibitors and the optimum pH differ from those of cytosolic mu- and m-calpains. The Ca(2+)-dependency of mitochondrial calpain was similar to that of cytosolic mu-calpain. Therefore, we named the protease mitochondrial mu-like calpain. In zymogram analysis, two types of caseinolytic enzymes existed in mitochondria and showed different mobilities from cytosolic mu- and m-calpains. The upper major band was stained with anti-mu-calpain and calpain small subunit antibodies (mitochondrial calpain I, mitochondrial mu-like calpain). The lower band was stained only with anti-calpain small subunit antibody (mitochondrial calpain II, unknown mitochondrial calpain). Calpastatin was not detected in mitochondrial compartments. The mitochondrial calpain processed apoptosis-inducing factor (AIF) to truncated AIF (tAIF), releasing tAIF into the intermembrane space. These results indicate that mitochondrial calpain, which differs from mu- and m-calpains, seems to be a ubiquitous calpain and may play a role in mitochondrial apoptotic signalling.

  3. Mutational analysis of the coding regions of the genes encoding protein kinase B-alpha and -beta, phosphoinositide-dependent protein kinase-1, phosphatase targeting to glycogen, protein phosphatase inhibitor-1, and glycogenin

    DEFF Research Database (Denmark)

    Hansen, L; Fjordvang, H; Rasmussen, S K

    1999-01-01

    be caused by genetic variability in the genes encoding proteins shown by biochemical evidence to be involved in insulin-stimulated glycogen synthesis in skeletal muscle. In 70 insulin-resistant Danish NIDDM patients, mutational analysis by reverse transcription-polymerase chain reaction-single strand...... conformation polymorphism-heteroduplex analysis was performed on genomic DNA or skeletal muscle-derived cDNAs encoding glycogenin, protein phosphatase inhibitor-1, phophatase targeting to glycogen, protein kinase B-alpha and -beta, and the phosphoinositide-dependent protein kinase-1. Although a number...

  4. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  5. Mitochondrial biogenesis and turnover.

    Science.gov (United States)

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  6. Mitochondrial function in Antarctic nototheniids with ND6 translocation.

    Directory of Open Access Journals (Sweden)

    Felix C Mark

    Full Text Available Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6, an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH and complex II (Succinate DH to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C, capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.

  7. Mitochondrial function in Antarctic nototheniids with ND6 translocation.

    Science.gov (United States)

    Mark, Felix C; Lucassen, Magnus; Strobel, Anneli; Barrera-Oro, Esteban; Koschnick, Nils; Zane, Lorenzo; Patarnello, Tomaso; Pörtner, Hans O; Papetti, Chiara

    2012-01-01

    Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.

  8. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  9. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  10. Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize.

    Science.gov (United States)

    Small, I D; Isaac, P G; Leaver, C J

    1987-04-01

    Four genomic arrangements of the maize mitochondrial atpA gene (encoding the alpha subunit of the F(1) ATPase), have been characterized. Most N (fertile) and S (male-sterile) cytoplasms contain two atpA arrangements of equal abundance. Prolonged exposure of blots of maize mitochondrial DNA probed with atpA-specific sequences show that cytoplasms previously reported to lack one of the atpA arrangements do contain the second arrangement but at low levels. Similarly, restriction fragments containing the atpA gene previously thought unique to male-sterile S and T cytoplasms are present in low abundance in fertile cytoplasms. These observations suggest that fertile and male-sterile cytoplasms of maize may be more closely related than previously thought, and suggest possible mechanisms to explain the observed mitochondrial genome diversity.

  11. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... chromatography linked on-line with tandem mass spectrometry, have identified >400 mitochondrial proteins, including subunits of mitochondrial respiratory complexes, supercomplexes, phosphorylated proteins and oxidized proteins. The results also highlight a range of new mitochondrial proteins, new mitochondrial...... functions and possible new mechanisms for regulating mitochondrial metabolism. More than 70 identified proteins in Arabidopsis mitochondrial samples lack similarity to any protein of known function. In some cases, unknown proteins were found to form part of protein complexes, which allows a functional...

  12. A Single-Nucleotide Polymorphism in Serine-Threonine Kinase 11, the Gene Encoding Liver Kinase B1, Is a Risk Factor for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne I. Boullerne

    2015-02-01

    Full Text Available We identified a family in which five siblings were diagnosed with multiple sclerosis (MS or clinically isolated syndrome. Several women in the maternal lineage have comorbidities typically associated with Peutz Jeghers Syndrome, a rare autosomal-dominant disease caused by mutations in the serine-threonine-kinase 11 (STK11 gene, which encodes liver kinase B1. Sequence analysis of DNA from one sibling identified a single-nucleotide polymorphism (SNP within STK11 intron 5. This SNP (dbSNP ID: rs9282860 was identified by TaqMan polymerase chain reaction (PCR assays in DNA samples available from two other siblings. Further screening was carried out in samples from 654 relapsing-remitting MS patients, 100 primary progressive MS patients, and 661 controls. The STK11-SNP has increased frequency in all female patients versus controls (odds ratio = 1.66, 95% CI = 1.05, 2.64, p = .032. The STK11-SNP was not associated with disease duration or onset; however, it was significantly associated with reduced severity (assessed by MS severity scores, with the lowest scores in patients who also harbored the HLA-DRB1*1501 allele. In vitro studies showed that peripheral blood mononuclear cells from members of the family were more sensitive to the mitochondrial inhibitor metformin than cells from MS patients with the major STK11 allele. The increased association of SNP rs9282860 in women with MS defines this variant as a genetic risk factor. The lower disease severity observed in the context of HLA-DRB1*1501 combined with limited in vitro studies raises the provocative possibility that cells harboring the STK11-SNP could be targeted by drugs which increase metabolic stress.

  13. Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice.

    Science.gov (United States)

    Palma, Elena; Tiepolo, Tania; Angelin, Alessia; Sabatelli, Patrizia; Maraldi, Nadir M; Basso, Emy; Forte, Michael A; Bernardi, Paolo; Bonaldo, Paolo

    2009-06-01

    Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy are inherited muscle disorders caused by mutations of genes encoding the extracellular matrix protein collagen VI (ColVI). Mice lacking ColVI (Col6a1(-/-)) display a myopathic phenotype associated with ultrastructural alterations of mitochondria and sarcoplasmic reticulum, mitochondrial dysfunction with abnormal opening of the permeability transition pore (PTP) and increased apoptosis of muscle fibers. Treatment with cyclosporin (Cs) A, a drug that desensitizes the PTP by binding to cyclophilin (Cyp)-D, was shown to rescue myofiber alterations in Col6a1(-/-) mice and in UCMD patients, suggesting a correlation between PTP opening and pathogenesis of ColVI muscular dystrophies. Here, we show that inactivation of the gene encoding for Cyp-D rescues the disease phenotype of ColVI deficiency. In the absence of Cyp-D, Col6a1(-/-) mice show negligible myofiber degeneration, rescue from mitochondrial dysfunction and ultrastructural defects, and normalized incidence of apoptosis. These findings (i) demonstrate that lack of Cyp-D is equivalent to its inhibition with CsA at curing the mouse dystrophic phenotype; (ii) establish a cause-effect relationship between Cyp-D-dependent PTP regulation and pathogenesis of the ColVI muscular dystrophy and (iii) validate Cyp-D and the PTP as pharmacological targets for the therapy of human ColVI myopathies.

  14. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  15. Assessing the Association of Mitochondrial Genetic Variation With Primary Open-Angle Glaucoma Using Gene-Set Analyses.

    Science.gov (United States)

    Khawaja, Anthony P; Cooke Bailey, Jessica N; Kang, Jae Hee; Allingham, R Rand; Hauser, Michael A; Brilliant, Murray; Budenz, Donald L; Christen, William G; Fingert, John; Gaasterland, Douglas; Gaasterland, Terry; Kraft, Peter; Lee, Richard K; Lichter, Paul R; Liu, Yutao; Medeiros, Felipe; Moroi, Syoko E; Richards, Julia E; Realini, Tony; Ritch, Robert; Schuman, Joel S; Scott, William K; Singh, Kuldev; Sit, Arthur J; Vollrath, Douglas; Wollstein, Gadi; Zack, Donald J; Zhang, Kang; Pericak-Vance, Margaret; Weinreb, Robert N; Haines, Jonathan L; Pasquale, Louis R; Wiggs, Janey L

    2016-09-01

    Recent studies indicate that mitochondrial proteins may contribute to the pathogenesis of primary open-angle glaucoma (POAG). In this study, we examined the association between POAG and common variations in gene-encoding mitochondrial proteins. We examined genetic data from 3430 POAG cases and 3108 controls derived from the combination of the GLAUGEN and NEIGHBOR studies. We constructed biological-system coherent mitochondrial nuclear-encoded protein gene-sets by intersecting the MitoCarta database with the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We examined the mitochondrial gene-sets for association with POAG and with normal-tension glaucoma (NTG) and high-tension glaucoma (HTG) subsets using Pathway Analysis by Randomization Incorporating Structure. We identified 22 KEGG pathways with significant mitochondrial protein-encoding gene enrichment, belonging to six general biological classes. Among the pathway classes, mitochondrial lipid metabolism was associated with POAG overall (P = 0.013) and with NTG (P = 0.0006), and mitochondrial carbohydrate metabolism was associated with NTG (P = 0.030). Examining the individual KEGG pathway mitochondrial gene-sets, fatty acid elongation and synthesis and degradation of ketone bodies, both lipid metabolism pathways, were significantly associated with POAG (P = 0.005 and P = 0.002, respectively) and NTG (P = 0.0004 and P < 0.0001, respectively). Butanoate metabolism, a carbohydrate metabolism pathway, was significantly associated with POAG (P = 0.004), NTG (P = 0.001), and HTG (P = 0.010). We present an effective approach for assessing the contributions of mitochondrial genetic variation to open-angle glaucoma. Our findings support a role for mitochondria in POAG pathogenesis and specifically point to lipid and carbohydrate metabolism pathways as being important.

  16. Mitochondrial phospholipids: role in mitochondrial function.

    Science.gov (United States)

    Mejia, Edgard M; Hatch, Grant M

    2016-04-01

    Mitochondria are essential components of eukaryotic cells and are involved in a diverse set of cellular processes that include ATP production, cellular signalling, apoptosis and cell growth. These organelles are thought to have originated from a symbiotic relationship between prokaryotic cells in an effort to provide a bioenergetic jump and thus, the greater complexity observed in eukaryotes (Lane and Martin 2010). Mitochondrial processes are required not only for the maintenance of cellular homeostasis, but also allow cell to cell and tissue to tissue communication (Nunnari and Suomalainen 2012). Mitochondrial phospholipids are important components of this system. Phospholipids make up the characteristic outer and inner membranes that give mitochondria their shape. In addition, these membranes house sterols, sphingolipids and a wide variety of proteins. It is the phospholipids that also give rise to other characteristic mitochondrial structures such as cristae (formed from the invaginations of the inner mitochondrial membrane), the matrix (area within cristae) and the intermembrane space (IMS) which separates the outer mitochondrial membrane (OMM) and inner mitochondrial membrane (IMM). Phospholipids are the building blocks that make up these structures. However, the phospholipid composition of the OMM and IMM is unique in each membrane. Mitochondria are able to synthesize some of the phospholipids it requires, but the majority of cellular lipid biosynthesis takes place in the endoplasmic reticulum (ER) in conjunction with the Golgi apparatus (Fagone and Jackowski 2009). In this review, we will focus on the role that mitochondrial phospholipids play in specific cellular functions and discuss their biosynthesis, metabolism and transport as well as the differences between the OMM and IMM phospholipid composition. Finally, we will focus on the human diseases that result from disturbances to mitochondrial phospholipids and the current research being performed to help

  17. Mitochondrial helicases and mitochondrial genome maintenance

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; de Souza-Pinto, Nadja C; Kulikowicz, Tomasz

    2010-01-01

    Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases...... have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus....

  18. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi’s Concept (Szeged till Novel Approaches to Boost Mitochondrial Bioenergetics

    Directory of Open Access Journals (Sweden)

    Levente Szalárdy

    2015-01-01

    Full Text Available Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson’s and Huntington’s diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson’s and Huntington’s disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α, a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.

  19. Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics.

    Science.gov (United States)

    Szalárdy, Levente; Zádori, Dénes; Klivényi, Péter; Toldi, József; Vécsei, László

    2015-01-01

    Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.

  20. Isolation of the patC gene encoding the cystathionine beta-lyase of Lactobacillus delbrueckii subsp. bulgaricus and molecular analysis of inter-strain variability in enzyme biosynthesis.

    Science.gov (United States)

    Aubel, Dominique; Germond, Jacques Edouard; Gilbert, Christophe; Atlan, Danièle

    2002-07-01

    The patC gene encoding the cystathionine beta-lyase (CBL) of Lactobacillus delbrueckii subsp. bulgaricus NCDO 1489 was cloned and expressed in Escherichia coli. Overexpression of CBL complemented the methionine auxotrophy of an E. coli metC mutant, demonstrating in vivo that this enzyme functions as a CBL. However, PatC is distinguishable from the MetC CBLs by a low identity in amino acid sequence, a sensitivity to iodoacetic acid, greater thermostability and a lower substrate affinity. Homologues of patC were detected in the 13 Lb. delbrueckii strains studied, but only seven of them showed CBL activity. In constrast to CBL(+) strains, all CBL-deficient strains analysed were auxotrophic for methionine. This supports the hypothesis that CBLs from lactobacilli are probably involved in methionine biosynthesis. Moreover, the results of this study suggest that post-transcriptional mechanisms account for the differences in CBL activities observed between strains of Lb. delbrueckii.

  1. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11)

    Science.gov (United States)

    Herbert, Jenny A.; Mitchell, Timothy J.; Dix-Peek, Thérèse; Dickens, Caroline; Anderson, Ronald; Feldman, Charles

    2014-01-01

    Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160 μg/mL) for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P < 0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen. PMID:25013815

  2. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11

    Directory of Open Access Journals (Sweden)

    Riana Cockeran

    2014-01-01

    Full Text Available Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F to cigarette smoke condensate (160 μg/mL for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P<0.014–0.0006 upregulation of the genes encoding the two-component regulatory system 11 (TCS11, consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen.

  3. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    It has been suggested that human mitochondrial variants influence maximal oxygen uptake (VO2max). Whether mitochondrial respiratory capacity per mitochondrion (intrinsic activity) in human skeletal muscle is affected by differences in mitochondrial variants is not known. We recruited 54 males...... and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  4. Mitochondrial Biogenesis and Turnover

    OpenAIRE

    Diaz, Francisca; Moraes, Carlos T.

    2008-01-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last twenty years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium dependent protein kinases that in turn a...

  5. Progress in mitochondrial epigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  6. [Mitochondrial and oocyte development].

    Science.gov (United States)

    Deng, Wei-Ping; Ren, Zhao-Rui

    2007-12-01

    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  7. The mitochondrial import gene tomm22 is specifically required for hepatocyte survival and provides a liver regeneration model

    Science.gov (United States)

    Curado, Silvia; Ober, Elke A.; Walsh, Susan; Cortes-Hernandez, Paulina; Verkade, Heather; Koehler, Carla M.; Stainier, Didier Y. R.

    2010-01-01

    SUMMARY Understanding liver development should lead to greater insights into liver diseases and improve therapeutic strategies. In a forward genetic screen for genes regulating liver development in zebrafish, we identified a mutant – oliver – that exhibits liver-specific defects. In oliver mutants, the liver is specified, bile ducts form and hepatocytes differentiate. However, the hepatocytes die shortly after their differentiation, and thus the resulting mutant liver consists mainly of biliary tissue. We identified a mutation in the gene encoding translocase of the outer mitochondrial membrane 22 (Tomm22) as responsible for this phenotype. Mutations in tomm genes have been associated with mitochondrial dysfunction, but most studies on the effect of defective mitochondrial protein translocation have been carried out in cultured cells or unicellular organisms. Therefore, the tomm22 mutant represents an important vertebrate genetic model to study mitochondrial biology and hepatic mitochondrial diseases. We further found that the temporary knockdown of Tomm22 levels by morpholino antisense oligonucleotides causes a specific hepatocyte degeneration phenotype that is reversible: new hepatocytes repopulate the liver as Tomm22 recovers to wild-type levels. The specificity and reversibility of hepatocyte ablation after temporary knockdown of Tomm22 provides an additional model to study liver regeneration, under conditions where most hepatocytes have died. We used this regeneration model to analyze the signaling commonalities between hepatocyte development and regeneration. PMID:20483998

  8. In vitro import and assembly of the nucleus-encoded mitochondrial subunit III of cytochrome c oxidase (Cox3).

    Science.gov (United States)

    Vázquez-Acevedo, Miriam; Rubalcava-Gracia, Diana; González-Halphen, Diego

    2014-11-01

    The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.

  9. Inhibition of mitochondrial gene transcription suppresses neurotensin secretion in the human carcinoid cell line BON.

    Science.gov (United States)

    Li, Nan; Wang, Qingding; Li, Jing; Wang, Xiaofu; Hellmich, Mark R; Rajaraman, Srinivasan; Greeley, George H; Townsend, Courtney M; Evers, B Mark

    2005-02-01

    Mitochondria, organelles essential for ATP production, play a central role in a number of cellular functions, including the regulation of insulin secretion. Neurotensin (NT), an important regulatory intestinal hormone, has been implicated in fatty acid translocation, gut motility and secretion, and intestinal cell growth; however, mechanisms regulating NT secretion have not been entirely defined. The purpose of this study was to determine the effect of inhibition of mitochondrial gene transcription on NT secretion. BON cells, a novel human carcinoid cell line that produces and secretes NT peptide and expresses the gene encoding NT (designated NT/N), were treated with ethidium bromide (EB; 0.05, 0.1, and 0.4 microg/ml), an inhibitor of DNA and RNA synthesis, or vehicle over a time course (1-4 days). Cells were then stimulated with either ACh (100 microM) or phorbol 12 myristate,13-acetate (PMA, 10 nM) for 30 min. Media and cells were extracted, and NT peptide measured by RIA. Treatment with EB had no effect on BON cell viability or cell cycle distribution over the 4-day course. In contrast, EB treatment produced a dose-dependent reduction of mitochondrial gene expression; however, NT/N gene expression was not altered. Mitochondrial inhibition by EB treatment suppressed NT secretion induced by ACh and PMA, both in a dose-dependent manner. EB-mediated inhibition of NT secretion and mitochondrial gene expression was reversed with removal of EB. Our results demonstrate that inhibition of mitochondrial gene transcription suppresses both ACh- and PMA-stimulated NT release. These findings are the first to demonstrate that mitochondrial function is important for agonist-mediated NT secretion.

  10. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, D. (Royal Children' s Hospital, Melbourne (Australia)); Howell, N. (Univ. of Texas, Galveston (United States))

    1992-12-01

    The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the opthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences. 29 refs., 3 figs., 3 tabs.

  11. Mitochondrial hepato-encephalopathy due to deficiency of QIL1/MIC13 (C19orf70), a MICOS complex subunit.

    Science.gov (United States)

    Zeharia, Avraham; Friedman, Jonathan R; Tobar, Ana; Saada, Ann; Konen, Osnat; Fellig, Yacov; Shaag, Avraham; Nunnari, Jodi; Elpeleg, Orly

    2016-12-01

    The mitochondrial inner membrane possesses distinct subdomains including cristae, which are lamellar structures invaginated into the mitochondrial matrix and contain the respiratory complexes. Generation of inner membrane domains requires the complex interplay between the respiratory complexes, mitochondrial lipids and the recently identified mitochondrial contact site and cristae organizing system (MICOS) complex. Proper organization of the mitochondrial inner membrane has recently been shown to be important for respiratory function in yeast. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with a neurodegenerative disorder accompanied by hyperlactatemia, 3-methylglutaconic aciduria, disturbed hepatocellular function with abnormal cristae morphology in liver and cerebellar and vermis atrophy, which suggest mitochondrial dysfunction. Using homozygosity mapping and exome sequencing the patients were found to be homozygous for the p.(Gly15Glufs*75) variant in the QIL1/MIC13 (C19orf70) gene. QIL1/MIC13 is a constituent of MICOS, a six subunit complex that helps to form and/or stabilize cristae junctions and determine the placement, distribution and number of cristae within mitochondria. In patient fibroblasts both MICOS subunits QIL1/MIC13 and MIC10 were absent whereas MIC60 was present in a comparable abundance to that of the control. We conclude that QIL1/MIC13 deficiency in human, is associated with disassembly of the MICOS complex, with the associated aberration of cristae morphology and mitochondrial respiratory dysfunction. 3-Methylglutaconic aciduria is associated with variants in genes encoding mitochondrial inner membrane organizing determinants, including TAZ, DNAJC19, SERAC1 and QIL1/MIC13.

  12. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  13. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia.

    Science.gov (United States)

    Menezes, Minal J; Guo, Yiran; Zhang, Jianguo; Riley, Lisa G; Cooper, Sandra T; Thorburn, David R; Li, Jiankang; Dong, Daoyuan; Li, Zhijun; Glessner, Joseph; Davis, Ryan L; Sue, Carolyn M; Alexander, Stephen I; Arbuckle, Susan; Kirwan, Paul; Keating, Brendan J; Xu, Xun; Hakonarson, Hakon; Christodoulou, John

    2015-04-15

    Functional defects of the mitochondrial translation machinery, as a result of mutations in nuclear-encoded genes, have been associated with combined oxidative phosphorylation (OXPHOS) deficiencies. We report siblings with congenital sensorineural deafness and lactic acidemia in association with combined respiratory chain (RC) deficiencies of complexes I, III and IV observed in fibroblasts and liver. One of the siblings had a more severe phenotype showing progressive hepatic and renal failure. Whole-exome sequencing revealed a homozygous mutation in the gene encoding mitochondrial ribosomal protein S7 (MRPS7), a c.550A>G transition that encodes a substitution of valine for a highly conserved methionine (p.Met184Val) in both affected siblings. MRPS7 is a 12S ribosomal RNA-binding subunit of the small mitochondrial ribosomal subunit, and is required for the assembly of the small ribosomal subunit. Pulse labeling of mitochondrial protein synthesis products revealed impaired mitochondrial protein synthesis in patient fibroblasts. Exogenous expression of wild-type MRPS7 in patient fibroblasts rescued complexes I and IV activities, demonstrating the deleterious effect of the mutation on RC function. Moreover, reduced 12S rRNA transcript levels observed in the patient's fibroblasts were also restored to normal levels by exogenous expression of wild-type MRPS7. Our data demonstrate the pathogenicity of the identified MRPS7 mutation as a novel cause of mitochondrial RC dysfunction, congenital sensorineural deafness and progressive hepatic and renal failure.

  14. ADP-ribosylhydrolase 3 (ARH3), Not Poly(ADP-ribose) Glycohydrolase (PARG) Isoforms, Is Responsible for Degradation of Mitochondrial Matrix-associated Poly(ADP-ribose)*

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-01-01

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3−/− mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism. PMID:22433848

  15. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).

    Science.gov (United States)

    Niere, Marc; Mashimo, Masato; Agledal, Line; Dölle, Christian; Kasamatsu, Atsushi; Kato, Jiro; Moss, Joel; Ziegler, Mathias

    2012-05-11

    Important cellular processes are regulated by poly(ADP-ribosyl)ation. This protein modification is catalyzed mainly by nuclear poly(ADP-ribose) polymerase (PARP) 1 in response to DNA damage. Cytosolic PARP isoforms have been described, whereas the presence of poly(ADP-ribose) (PAR) metabolism in mitochondria is controversial. PAR is degraded by poly(ADP-ribose) glycohydrolase (PARG). Recently, ADP-ribosylhydrolase 3 (ARH3) was also shown to catalyze PAR-degradation in vitro. PARG is encoded by a single, essential gene. One nuclear and three cytosolic isoforms result from alternative splicing. The presence and origin of a mitochondrial PARG is still unresolved. We establish here the genetic background of a human mitochondrial PARG isoform and investigate the molecular basis for mitochondrial poly(ADP-ribose) degradation. In common with a cytosolic 60-kDa human PARG isoform, the mitochondrial protein did not catalyze PAR degradation because of the absence of exon 5-encoded residues. In mice, we identified a transcript encoding an inactive cytosolic 52-kDa PARG lacking the mitochondrial targeting sequence and a substantial portion of exon 5. Thus, mammalian PARG genes encode isoforms that do not catalyze PAR degradation. On the other hand, embryonic fibroblasts from ARH3(-/-) mice lack most of the mitochondrial PAR degrading activity detected in wild-type cells, demonstrating a potential involvement of ARH3 in PAR metabolism.

  16. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.

    Science.gov (United States)

    Li, Yun-He; Zou, Ming-Hong; Feng, Bi-Hong; Huang, Xia; Zhang, Zhi; Sun, Guang-Ming

    2012-06-01

    Polar auxin transport (PAT) plays an important role in the adventitious root formation of mango cotyledon segments, but the molecular mechanism remains unclear. In this study, we cloned a gene encoding an auxin efflux carrier (designated as MiPIN1), and we cloned four genes encoding auxin influx carriers (designated as MiAUX1, MiAUX2, MiAUX3 and MiAUX4). The results of a phylogenetic tree analysis indicated that MiPIN1 and the MiAUXs belong to plant PIN and AUXs/LAXs groups. Quantitative real-time PCR indicated that the expression of MiPIN1 and the MiAUXs was lowest at 0 days but sharply increased on and after day 4. During the root formation in the mango cotyledon segments, the MiPIN1 expression in the distal cut surface (DCS) was always higher than the expression in the proximal cut surface (PCS) whereas the expression of the MiAUXs in the PCS was usually higher than in the DCS. This expression pattern might be result in the PAT from the DCS to the PCS, which is essential for the adventitious root formation in the PCS. Our previous study indicated that a pre-treatment of embryos with indole-3-butyric acid (IBA) significantly promoted adventitious rooting in PCS whereas a pre-treatment with 2,3,5-triiodobenzoic acid (TIBA) completely inhibited this rooting. In this study, however, IBA and TIBA pre-treatments slightly changed the expression of MiPIN1. In contrast, while the MiAUX3 and MiAUX4 expression levels were significantly up-regulated by the IBA pre-treatment, the expression levels were down-regulated by the TIBA pre-treatment. These findings imply that MiAUX3 and MiAUX4 are more sensitive to the IBA and TIBA treatments and that they might play important roles during adventitious root formation in mango cotyledon segments. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  17. Identification of the gene encoding BmpB, a 30 kDa outer envelope lipoprotein of Brachyspira (Serpulina) hyodysenteriae, and immunogenicity of recombinant BmpB in mice and pigs.

    Science.gov (United States)

    Lee, B J; La, T; Mikosza, A S; Hampson, D J

    2000-10-01

    A gene encoding a 30kDa outer envelope protein of the intestinal spirochaete Brachyspira (Serpulina) hyodysenteriae, was cloned and expressed in Escherichia coli strain XLOLR. Five phagemids containing DNA inserts encoding the protein were established and one clone (pSHA) was sequenced. An 816bp hypothetical open reading frame (ORF) was identified, with a potential ribosome binding site (AGGAG), and putative -10 (TATAAT) and -35 (TTGAAA) promoter regions upstream from the ATG start of the ORF. A 12bp inverted repeat sequence, possibly serving as a transcription terminator, was identified downstream from the TAA stop codon. Analysis of the amino acid sequence identified a 19 residue hydrophobic signal peptide, incorporating a potential signal peptidase cleavage site and membrane lipoprotein lipid attachment site. Further analysis of the amino acid usage of this lipoprotein, designated BmpB, showed its possible outer membrane localisation. Comparison of the gene encoding the lipoprotein, bmpB, with GenBank nucleotide sequences showed that it has homology with the gene (plp3) encoding Plp3, an outer membrane lipoprotein of Pasteurella haemolytica (54% identity in 735bp). Comparison of the deduced amino acid sequence with the SWISS-PROT amino acid database revealed greatest homology with the outer membrane lipoproteins (Plp1, 2, 3) of P. haemolytica (34% identity in 242 aa, 37% identity in 250 aa, and 39% identity in 272 aa, respectively), and lipoproteins (rcsF and lipoprotein-28) of E. coli (40% identity in 267 aa and 36% identity in 263 aa, respectively). Three of the recombinant E. coli clones (pSHA, pSHD, and pSHE) were formalinised and used to immunise mice. A bacterin preparation of one recombinant E. coli clone (pSHA) was used to immunise pigs. Sera from these mice and pigs recognised the 30kDa lipoprotein in outer membrane preparations of B. hyodysenteriae, indicating the immunogenicity of recombinant BmpB. Sera from pigs naturally infected with B

  18. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    Directory of Open Access Journals (Sweden)

    Shuaiyu Wang

    2016-12-01

    Full Text Available The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  19. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies.

    Science.gov (United States)

    Merlini, Luciano; Angelin, Alessia; Tiepolo, Tania; Braghetta, Paola; Sabatelli, Patrizia; Zamparelli, Alessandra; Ferlini, Alessandra; Maraldi, Nadir M; Bonaldo, Paolo; Bernardi, Paolo

    2008-04-01

    Ullrich congenital muscular dystrophy and Bethlem myopathy are skeletal muscle diseases that are due to mutations in the genes encoding collagen VI, an extracellular matrix protein forming a microfibrillar network that is particularly prominent in the endomysium of skeletal muscle. Myoblasts from patients affected by Ullrich congenital muscular dystrophy display functional and ultrastructural mitochondrial alterations and increased apoptosis due to inappropriate opening of the permeability transition pore, a mitochondrial inner membrane channel. These alterations could be normalized by treatment with cyclosporin A, a widely used immunosuppressant that desensitizes the permeability transition pore independently of calcineurin inhibition. Here, we report the results of an open pilot trial with cyclosporin A in five patients with collagen VI myopathies. Before treatment, all patients displayed mitochondrial dysfunction and increased frequency of apoptosis, as determined in muscle biopsies. Both of these pathologic signs were largely normalized after 1 month of oral cyclosporin A administration, which also increased muscle regeneration. These findings demonstrate that collagen VI myopathies can be effectively treated with drugs acting on the pathogenic mechanism downstream of the genetic lesion, and they represent an important proof of principle for the potential therapy of genetic diseases.

  20. NUCLEAR GENE MUTATIONS AS THE CAUSE OF MITOCHONDRIAL COMPLEX III DEFICIENCY

    Directory of Open Access Journals (Sweden)

    Erika eFernandez-Vizarra

    2015-04-01

    Full Text Available Complex III (CIII deficiency is one of the least common oxidative phosphorylation defects associated to mitochondrial disease. CIII constitutes the center of the mitochondrial respiratory chain, as well as a crossroad for several other metabolic pathways. For more than ten years, of all the potential candidate genes encoding structural subunits and assembly factors, only three were known to be associated to CIII defects in human pathology. Thus, leaving many of these cases unresolved. These first identified genes were MT-CYB, the only CIII subunit encoded in the mitochondrial DNA; BCS1L, encoding an assembly factor, and UQCRB, a nuclear-encoded structural subunit. Nowadays, thanks to the fast progress that has taken place in the last three-four years, pathological changes in seven more genes are known to be associated to these conditions. This review will focus on the strategies that have permitted the latest discovery of mutations in factors that are necessary for a correct CIII assembly and activity, in relation with their function. In addition, new data further establishing the molecular role of LYRM7/MZM1L as a chaperone involved in CIII biogenesis are provided.

  1. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Directory of Open Access Journals (Sweden)

    Jessica Schmiesing

    Full Text Available Glutaric aciduria type 1 (GA1 is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH, which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.

  2. Pro-oxidant effect of ALA is implicated in mitochondrial dysfunction of HepG2 cells.

    Science.gov (United States)

    Laafi, Jihane; Homedan, Chadi; Jacques, Caroline; Gueguen, Naig; Schmitt, Caroline; Puy, Hervé; Reynier, Pascal; Carmen Martinez, Maria; Malthièry, Yves

    2014-11-01

    Heme biosynthesis begins in the mitochondrion with the formation of delta-aminolevulinic acid (ALA). In acute intermittent porphyria, hereditary tyrosinemia type I and lead poisoning patients, ALA is accumulated in plasma and in organs, especially the liver. These diseases are also associated with neuromuscular dysfunction and increased incidence of hepatocellular carcinoma. Many studies suggest that this damage may originate from ALA-induced oxidative stress following its accumulation. Using the MnSOD as an oxidative stress marker, we showed here that ALA treatment of cultured cells induced ROS production, increasing with ALA concentration. The mitochondrial energetic function of ALA-treated HepG2 cells was further explored. Mitochondrial respiration and ATP content were reduced compared to control cells. For the 300 μM treatment, ALA induced a mitochondrial mass decrease and a mitochondrial network imbalance although neither necrosis nor apoptosis were observed. The up regulation of PGC-1, Tfam and ND5 genes was also found; these genes encode mitochondrial proteins involved in mitochondrial biogenesis activation and OXPHOS function. We propose that ALA may constitute an internal bioenergetic signal, which initiates a coordinated upregulation of respiratory genes, which ultimately drives mitochondrial metabolic adaptation within cells. The addition of an antioxidant, Manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP), resulted in improvement of maximal respiratory chain capacity with 300 μM ALA. Our results suggest that mitochondria, an ALA-production site, are more sensitive to pro-oxidant effect of ALA, and may be directly involved in pathophysiology of patients with inherited or acquired porphyria. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  3. Pathogenic variants in HTRA2 cause an early-onset mitochondrial syndrome associated with 3-methylglutaconic aciduria.

    Science.gov (United States)

    Oláhová, Monika; Thompson, Kyle; Hardy, Steven A; Barbosa, Inês A; Besse, Arnaud; Anagnostou, Maria-Eleni; White, Kathryn; Davey, Tracey; Simpson, Michael A; Champion, Michael; Enns, Greg; Schelley, Susan; Lightowlers, Robert N; Chrzanowska-Lightowlers, Zofia M A; McFarland, Robert; Deshpande, Charu; Bonnen, Penelope E; Taylor, Robert W

    2017-01-01

    Mitochondrial diseases collectively represent one of the most heterogeneous group of metabolic disorders. Symptoms can manifest at any age, presenting with isolated or multiple-organ involvement. Advances in next-generation sequencing strategies have greatly enhanced the diagnosis of patients with mitochondrial disease, particularly where a mitochondrial aetiology is strongly suspected yet OXPHOS activities in biopsied tissue samples appear normal. We used whole exome sequencing (WES) to identify the molecular basis of an early-onset mitochondrial syndrome-pathogenic biallelic variants in the HTRA2 gene, encoding a mitochondria-localised serine protease-in five subjects from two unrelated families characterised by seizures, neutropenia, hypotonia and cardio-respiratory problems. A unifying feature in all affected children was 3-methylglutaconic aciduria (3-MGA-uria), a common biochemical marker observed in some patients with mitochondrial dysfunction. Although functional studies of HTRA2 subjects' fibroblasts and skeletal muscle homogenates showed severely decreased levels of mutant HTRA2 protein, the structural subunits and complexes of the mitochondrial respiratory chain appeared normal. We did detect a profound defect in OPA1 processing in HTRA2-deficient fibroblasts, suggesting a role for HTRA2 in the regulation of mitochondrial dynamics and OPA1 proteolysis. In addition, investigated subject fibroblasts were more susceptible to apoptotic insults. Our data support recent studies that described important functions for HTRA2 in programmed cell death and confirm that patients with genetically-unresolved 3-MGA-uria should be screened by WES with pathogenic variants in the HTRA2 gene prioritised for further analysis.

  4. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  5. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  6. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    Science.gov (United States)

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  7. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis.

    Science.gov (United States)

    Zenno, S; Saigo, K

    1994-06-01

    Genes encoding NAD(P)H-flavin oxidoreductases (flavin reductases) similar in both size and sequence to Fre, the most abundant flavin reductase in Escherichia coli, were identified in four species of luminous bacteria, Photorhabdus luminescens (ATCC 29999), Vibrio fischeri (ATCC 7744), Vibrio harveyi (ATCC 33843), and Vibrio orientalis (ATCC 33934). Nucleotide sequence analysis showed Fre-like flavin reductases in P. luminescens and V. fischeri to consist of 233 and 236 amino acids, respectively. As in E. coli Fre, Fre-like enzymes in luminous bacteria preferably used riboflavin as an electron acceptor when NADPH was used as an electron donor. These enzymes also were good suppliers of reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. In V. fischeri, the Fre-like enzyme is a minor flavin reductase representing Fre-like enzyme has no appreciable homology in amino acid sequence to the major flavin reductase in V. fischeri, FRase I, indicates that at least two different types of flavin reductases supply FMNH2 to the luminescence system in V. fischeri. Although Fre-like flavin reductases are highly similar in sequence to luxG gene products (LuxGs), Fre-like flavin reductases and LuxGs appear to constitute two separate groups of flavin-associated proteins.

  8. Identification of two Arabidopsis genes encoding a peroxisomal oxidoreductase-like protein and an acyl-CoA synthetase-like protein that are required for responses to pro-auxins.

    Science.gov (United States)

    Wiszniewski, Andrew A G; Zhou, Wenxu; Smith, Steven M; Bussell, John D

    2009-03-01

    Indole-3-butyric acid (IBA) and 2,4-dichlorophenoxybutyric acid (2,4-DB) are metabolised by peroxisomal beta-oxidation to active auxins that inhibit root growth. We screened Arabidopsis mutants for resistance to IBA and 2,4-DB and identified two new 2,4-DB resistant mutants. The mutant genes encode a putative oxidoreductase (SDRa) and a putative acyl-activating enzyme (AAE18). Both proteins are localised to peroxisomes. SDRa is coexpressed with core beta-oxidation genes, but germination, seedling growth and the fatty acid profile of sdra seedlings are indistinguishable from wild type. The sdra mutant is also resistant to IBA, but aae18 is not. AAE18 is the first example of a gene required for response to 2,4-DB but not IBA. The closest relative of AAE18 is AAE17. AAE17 is predicted to be peroxisomal, but an aae17 aae18 double mutant responded similarly to aae18 for all assays. We propose that AAE18 is capable of activating 2,4-DB but IBA activating enzymes remain to be discovered. We present an updated model for peroxisomal pro-auxin metabolism in Arabidopsis that includes SDRa and AAE18.

  9. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies.

    Science.gov (United States)

    Legati, Andrea; Reyes, Aurelio; Nasca, Alessia; Invernizzi, Federica; Lamantea, Eleonora; Tiranti, Valeria; Garavaglia, Barbara; Lamperti, Costanza; Ardissone, Anna; Moroni, Isabella; Robinson, Alan; Ghezzi, Daniele; Zeviani, Massimo

    2016-08-01

    Next Generation Sequencing (NGS) technologies are revolutionizing the diagnostic screening for rare disease entities, including primary mitochondrial disorders, particularly those caused by nuclear gene defects. NGS approaches are able to identify the causative gene defects in small families and even single individuals, unsuitable for investigation by traditional linkage analysis. These technologies are contributing to fill the gap between mitochondrial disease cases defined on the basis of clinical, neuroimaging and biochemical readouts, which still outnumber by approximately 50% the cases for which a molecular-genetic diagnosis is attained. We have been using a combined, two-step strategy, based on targeted genes panel as a first NGS screening, followed by whole exome sequencing (WES) in still unsolved cases, to analyze a large cohort of subjects, that failed to show mutations in mtDNA and in ad hoc sets of specific nuclear genes, sequenced by the Sanger's method. Not only this approach has allowed us to reach molecular diagnosis in a significant fraction (20%) of these difficult cases, but it has also revealed unexpected and conceptually new findings. These include the possibility of marked variable penetrance of recessive mutations, the identification of large-scale DNA rearrangements, which explain spuriously heterozygous cases, and the association of mutations in known genes with unusual, previously unreported clinical phenotypes. Importantly, WES on selected cases has unraveled the presence of pathogenic mutations in genes encoding non-mitochondrial proteins (e.g. the transcription factor E4F1), an observation that further expands the intricate genetics of mitochondrial disease and suggests a new area of investigation in mitochondrial medicine. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  10. Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa.

    Science.gov (United States)

    Bullerwell, Charles E; Burger, Gertraud; Gott, Jonatha M; Kourennaia, Olga; Schnare, Murray N; Gray, Michael W

    2010-05-01

    5S rRNAs are ubiquitous components of prokaryotic, chloroplast, and eukaryotic cytosolic ribosomes but are apparently absent from mitochondrial ribosomes (mitoribosomes) of many eukaryotic groups including animals and fungi. Nevertheless, a clearly identifiable, mitochondrion-encoded 5S rRNA is present in Acanthamoeba castellanii, a member of Amoebozoa. During a search for additional mitochondrial 5S rRNAs, we detected small abundant RNAs in other members of Amoebozoa, namely, in the lobose amoeba Hartmannella vermiformis and in the myxomycete slime mold Physarum polycephalum. These RNAs are encoded by mitochondrial DNA (mtDNA), cosediment with mitoribosomes in glycerol gradients, and can be folded into a secondary structure similar to that of bona fide 5S rRNAs. Further, in the mtDNA of another slime mold, Didymium nigripes, we identified a region that in sequence, potential secondary structure, and genomic location is similar to the corresponding region encoding the Physarum small RNA. A mtDNA-encoded small RNA previously identified in Dictyostelium discoideum is here shown to share several characteristics with known 5S rRNAs. Again, we detected genes encoding potential homologs of this RNA in the mtDNA of three other species of the genus Dictyostelium as well as in a related genus, Polysphondylium. Taken together, our results indicate a widespread occurrence of small, abundant, mtDNA-encoded RNAs with 5S rRNA-like structures that are associated with the mitoribosome in various amoebozoan taxa. Our working hypothesis is that these novel small abundant RNAs represent radically divergent mitochondrial 5S rRNA homologs. We posit that currently unrecognized 5S-like RNAs may exist in other mitochondrial systems in which a conventional 5S rRNA cannot be identified.

  11. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.

    Science.gov (United States)

    Hall, Duane D; Wu, Yuejin; Domann, Frederick E; Spitz, Douglas R; Anderson, Mark E

    2014-01-01

    Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and

  12. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.

    Directory of Open Access Journals (Sweden)

    Duane D Hall

    Full Text Available Calcium uptake through the mitochondrial Ca2+ uniporter (MCU is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and

  13. Mitochondrial regulation of cell cycle progression through SLC25A43

    Energy Technology Data Exchange (ETDEWEB)

    Gabrielson, Marike; Reizer, Edwin [School of Health and Medical Sciences, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro (Sweden); Stål, Olle [Department of Clinical and Experimental Medicine, Linköping University, SE 58185 Linköping (Sweden); Department of Oncology, Linköping University, SE 58185 Linköping (Sweden); Tina, Elisabet, E-mail: elisabet.tina@regionorebrolan.se [Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE 70182 Örebro (Sweden)

    2016-01-22

    An increasing body of evidence is pointing towards mitochondrial regulation of the cell cycle. In a previous study of HER2-positive tumours we could demonstrate a common loss in the gene encoding for the mitochondrial transporter SLC25A43 and also a significant relation between SLC25A43 protein expression and S-phase fraction. Here, we investigated the consequence of suppressed SLC25A43 expression on cell cycle progression and proliferation in breast epithelial cells. In the present study, we suppressed SLC25A43 using siRNA in immortalised non-cancerous breast epithelial MCF10A cells and HER2-positive breast cancer cells BT-474. Viability, apoptosis, cell proliferation rate, cell cycle phase distribution, and nuclear Ki-67 and p21, were assessed by flow cytometry. Cell cycle related gene expressions were analysed using real-time PCR. We found that SLC25A43 knockdown in MCF10A cells significantly inhibited cell cycle progression during G{sub 1}-to-S transition, thus significantly reducing the proliferation rate and fraction of Ki-67 positive MCF10A cells. In contrast, suppressed SLC25A43 expression in BT-474 cells resulted in a significantly increased proliferation rate together with an enhanced G{sub 1}-to-S transition. This was reflected by an increased fraction of Ki-67 positive cells and reduced level of nuclear p21. In line with our previous results, we show a role for SLC25A43 as a regulator of cell cycle progression and proliferation through a putative mitochondrial checkpoint. These novel data further strengthen the connection between mitochondrial function and the cell cycle, both in non-malignant and in cancer cells. - Highlights: • Proposed cell cycle regulation through the mitochondrial transporter SLC25A43. • SLC25A43 alters cell proliferation rate and cell cycle progression. • Suppressed SLC25A43 influences transcription of cell cycle regulatory genes.

  14. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson’s Disease Pathobiology?

    Science.gov (United States)

    Truban, Dominika; Hou, Xu; Caulfield, Thomas R.; Fiesel, Fabienne C.; Springer, Wolfdieter

    2016-01-01

    The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway. PMID:27911343

  15. Phylogenetic analysis of the complete mitochondrial genome of Madurella mycetomatis confirms its taxonomic position within the order Sordariales.

    Directory of Open Access Journals (Sweden)

    Wendy W J van de Sande

    Full Text Available BACKGROUND: Madurella mycetomatis is the most common cause of human eumycetoma. The genus Madurella has been characterized by overall sterility on mycological media. Due to this sterility and the absence of other reliable morphological and ultrastructural characters, the taxonomic classification of Madurella has long been a challenge. Mitochondria are of monophyletic origin and mitochondrial genomes have been proven to be useful in phylogenetic analyses. RESULTS: The first complete mitochondrial DNA genome of a mycetoma-causative agent was sequenced using 454 sequencing. The mitochondrial genome of M. mycetomatis is a circular DNA molecule with a size of 45,590 bp, encoding for the small and the large subunit rRNAs, 27 tRNAs, 11 genes encoding subunits of respiratory chain complexes, 2 ATP synthase subunits, 5 hypothetical proteins, 6 intronic proteins including the ribosomal protein rps3. In phylogenetic analyses using amino acid sequences of the proteins involved in respiratory chain complexes and the 2 ATP synthases it appeared that M. mycetomatis clustered together with members of the order Sordariales and that it was most closely related to Chaetomium thermophilum. Analyses of the gene order showed that within the order Sordariales a similar gene order is found. Furthermore also the tRNA order seemed mostly conserved. CONCLUSION: Phylogenetic analyses of fungal mitochondrial genomes confirmed that M. mycetomatis belongs to the order of Sordariales and that it was most closely related to Chaetomium thermophilum, with which it also shared a comparable gene and tRNA order.

  16. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  17. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Directory of Open Access Journals (Sweden)

    John W Yarham

    2014-06-01

    Full Text Available Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  18. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.

    Science.gov (United States)

    Yarham, John W; Lamichhane, Tek N; Pyle, Angela; Mattijssen, Sandy; Baruffini, Enrico; Bruni, Francesco; Donnini, Claudia; Vassilev, Alex; He, Langping; Blakely, Emma L; Griffin, Helen; Santibanez-Koref, Mauro; Bindoff, Laurence A; Ferrero, Ileana; Chinnery, Patrick F; McFarland, Robert; Maraia, Richard J; Taylor, Robert W

    2014-06-01

    Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs.

  19. [Mitochondrial diseases and stroke].

    Science.gov (United States)

    Irimia, P; Oliveros-Cid, A; Martínez-Vila, E

    1998-04-01

    We review the mitochondrial diseases in which cerebrovascular changes are seen, such as the MERRF syndrome (myoclonic epilepsy and ragged red fibers) or the Kearns-Sayre syndrome (progressive external ophthalmoplegia, retinitis pigmentaria, cerebellar disorders and disorders of cardiac conduction), focusing on the syndrome involving mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). We consider the different clinical aspects, diagnostic methods, pathophysiological mechanisms of the cerebrovascular involvement as well as therapeutic approaches.

  20. Mitochondrial protection by resveratrol.

    Science.gov (United States)

    Ungvari, Zoltan; Sonntag, William E; de Cabo, Rafael; Baur, Joseph A; Csiszar, Anna

    2011-07-01

    Mitochondrial dysfunction and oxidative stress are thought to play important roles in mammalian aging. Resveratrol is a plant-derived polyphenol that exerts diverse antiaging activities, mimicking some of the molecular and functional effects of dietary restriction. This review focuses on the molecular mechanisms underlying the mitochondrial protective effects of resveratrol, which could be exploited for the prevention or amelioration of age-related diseases in the elderly.

  1. Identification of genes encoding microbial glucuronoyl esterases

    NARCIS (Netherlands)

    Li, Xin-Liang; Spániková, Silvia; de Vries, Ronald P; Biely, Peter

    2007-01-01

    One type of covalent linkages connecting lignin and hemicellulose in plant cell walls is the ester linkage between 4-O-methyl-D-glucuronic acid of glucuronoxylan and lignin alcohols. An enzyme that could hydrolyze such linkages, named glucuronoyl esterase, occurs in the cellulolytic system of the wo

  2. Deletion of the gene encoding G

    NARCIS (Netherlands)

    El-Assaad, Wissal; El-Kouhen, Karim; Mohammad, A.H.; Kersten, Sander

    2014-01-01

    Conclusions/interpretation: Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.

    Results: We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo.

  3. Deletion of the gene encoding G

    NARCIS (Netherlands)

    El-Assaad, Wissal; El-Kouhen, Karim; Mohammad, A.H.; Kersten, Sander

    2015-01-01

    Conclusions/interpretation: Our data show that G0s2 is a physiological regulator of adiposity and energy metabolism and is a potential target in the treatment of obesity and insulin resistance.

    Results: We report that G0s2 inhibits ATGL and regulates lipolysis and energy metabolism in vivo.

  4. Peripheral neuropathy in mitochondrial disorders.

    Science.gov (United States)

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  5. Ocular manifestations of mitochondrial disease

    Directory of Open Access Journals (Sweden)

    S. D. Mathebula

    2012-12-01

    Full Text Available Mitochondrial disease caused by mutations in mitochondrial DNA is recognized as one of the most common causes of inherited neurological disease. Neuro-ophthalmic manifestations are a common feature of mitochondrial disease.  Optic atrophy causing central visual loss is the dominant feature of mitochondrial DNA diseases. Nystagmus is also encountered in mitochondrial disease.Although optometrists are not involved with the management of mitochondrial disease, they are likely to see more patients with this disease. Oph-thalmic examination forms part of the clinical assessment of mitochondrial disease. Mitochondrial disease should be suspected in any patient with unexplained optic neuropathy, ophthalmoplegia, pigmentary retinopathy or retrochiasmal visual loss. Despite considerable advances in the under-standing of mitochondrial genetics and the patho-genesis of mtDNA diseases, no effective treatment options are currently available for patients withmitochondrial dysfunction. (S Afr Optom 201271(1 46-50

  6. Mitochondrial diseases: therapeutic approaches.

    Science.gov (United States)

    DiMauro, Salvatore; Mancuso, Michelangelo

    2007-06-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is

  7. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia

    Directory of Open Access Journals (Sweden)

    Sloan Daniel B

    2010-09-01

    Full Text Available Abstract Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered

  8. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Aijaz A Wani

    Full Text Available BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA or nuclear genes encoding oxidative phosphorylation (OXPHOS. We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T. CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role

  9. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    Science.gov (United States)

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  10. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    Science.gov (United States)

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1, a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins

    Directory of Open Access Journals (Sweden)

    Christophe Daniel

    2001-07-01

    Full Text Available Abstract Background A partial cDNA clone from dog thyroid presenting a very significant similarity with an uncharacterized mouse EST sequence was isolated fortuitously. We report here the identification of the complete mRNA and of the gene, the product of which was termed "brain cell membrane protein 1" (BCMP1. Results The 4 kb-long mRNA sequence exhibited an open-reading frame of only 543 b followed by a 3.2 kb-long 3' untranslated region containing several AUUUA instability motifs. Analysis of the encoded protein sequence identified the presence of four putative transmembrane domains. Similarity searches in protein domain databases identified partial sequence conservations with peripheral myelin protein 22 (PMP22/ epithelial membrane proteins (EMPs and Claudins, defining the encoded protein as representative of the existence of a novel subclass in this protein family. Northern-blot analysis of the expression of the corresponding mRNA in adult dog tissues revealed the presence of a huge amount of the 4 kb transcript in the brain. An EGFP-BCMP1 fusion protein expressed in transfected COS-7 cells exhibited a membranous localization as expected. The sequences encoding BCMP1 were assigned to chromosome X in dog, man and rat using radiation hybrid panels and were partly localized in the currently available human genome sequence. Conclusions We have identified the existence in several mammalian species of a gene encoding a putative four-transmembrane protein, BCMP1, wich defines a novel subclass in this family of proteins. In dog at least, the corresponding mRNA is highly present in brain cells. The chromosomal localization of the gene in man makes of it a likely candidate gene for X-linked mental retardation.

  12. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters.

    Science.gov (United States)

    Monteiro, M Cândida; De Lucas, J Ramón

    2010-01-01

    The identification of essential genes represents a critical step in the discovery of novel therapeutic targets in Aspergillus fumigatus. Structural analyses of the Saccharomyces cerevisiae RNA triphosphatase pointed out this enzyme as an attractive therapeutic target for fungal infections. In addition, demonstration of the essentiality of the S. cerevisiae RNA triphosphatase encoding gene enhanced the value of this potential therapeutic target. Nevertheless, consideration of a fungal RNA triphosphatase as an ideal therapeutic target needs confirmation of the essentiality of the respective gene in a fungal pathogen. In this work, we analyzed the essentiality of the A. fumigatus triA gene, encoding RNA triphosphatase, by conditional gene expression and heterokaryon deletion. Using the conditional gene expression driven by the alcA promoter (alcA(P)), we found that TriA depletion causes morphological abnormalities that result in a very strong growth inhibition. Nevertheless, since a strict terminal phenotype was not observed, the essentiality of the triA gene could not be ensured. Accordingly, the essentiality of this gene was analyzed by the heterokaryon rescue technique. Results obtained unequivocally demonstrated the essentiality of the A. fumigatus triA gene, indicating the suitability of the RNA triphosphatase as an ideal therapeutic target to treat A. fumigatus infections. Besides, a second conditional gene expression system, based on the niiA promoter (niiA(P)), was utilized in this work. Although the niiA(P)-mediated repression of triA was less severe than that driven by the alcA(P), a strong growth inhibition was also found in niiA(P)-triA strains. Finally, E-tests performed to determine whether triA down-regulated cells became more sensitive to antifungals suggest a synergic effect between amphotericin B and another antifungal inhibiting the A. fumigatus RNA triphosphatase activity.

  13. Gene conversion in the CYP11B2 gene encoding P450c11AS is associated with, but does not cause, the syndrome of corticosterone methyloxidase II deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Fardella, C.E.; Hum, D.W.; Rodriguez, H. [Univ. of California, San Francisco, CA (United States)]|[Univ. of Colorado, Denver, CO (United States)] [and others

    1996-01-01

    Cytochrome P450c11AS (aldosterone synthase) has 11{beta}hydroxylase, 18-hydroxylase, and 18-oxidase activities and is expressed solely in the adrenal zona glomerulosa. Corticosterone methyloxidase II (CMOII) deficiency denotes a rare disorder of adrenal steroidogenesis in which only the 18-oxidase activity of P450c11AS is disrupted, while the 11{beta}-hydroxylase and 18-hydroxylase activities persist. Such patients have elevated serum concentrations of corticosterone and 18-hydroxycorticosterone and very low or unmeasurable concentrations of aldosterone, often resulting in a clinical salt-losing crisis in infancy. We have sought mutations causing CMOII deficiency in outbred populations. In three of four unrelated P450c11AS alleles from two unrelated patients with CMOII deficiency, we found a gene conversion event in which exons 3 and 4 of the CYP11B2 gene encoding P450c11AS were changed to the sequence of the nearby CYP11B1 gene, which encodes the related enzyme P450c11{beta}. This conversion resulted in a mutant P450c11AS protein carrying three changes. We built seven vectors expressing P450c11AS carrying each mutation singly, each of the three possible pairs of mutations, and the triple mutation as found in the proband. The activities in steroidogenic MA-10 and JEG-3 cells were 10- to 20-fold higher. In these systems all of the mutants retained normal 18-oxidase activity, indicating that the detected gene conversion event is associated with but does not cause CMOII deficiency. None of the four CPY11B2 alleles in these two patients bore other identifiable mutations. These patients might have mutations in the promoters or other noncoding regions, or mutations in genes other than CYP11B2 may cause the syndrome of CMOII deficiency. 37 refs., 2 figs., 2 tabs.

  14. Induction of T helper 1 response by immunization of BALB/c mice with the gene encoding the second subunit of Echinococcus granulosus antigen B (EgAgB8/2

    Directory of Open Access Journals (Sweden)

    Boutennoune H.

    2012-05-01

    Full Text Available A pre-designed plasmid containing the gene encoding the second subunit of Echinococcus granulosus AgB8 (EgAgB8/2 was used to study the effect of the immunization route on the immune response in BALB/c mice. Mice were immunized with pDRIVEEgAgB8/ 2 or pDRIVE empty cassette using the intramuscular (i.m., intranasal (i.n. or the epidermal gene gun (g.g. routes. Analysis of the antibody response and cytokine data revealed that gene immunization by the i.m. route induced a marked bias towards a T helper type 1 (Th1 immune response as characterized by high IFN-γ gene expression and a low IgG1/IgG2a reactivity index (R.I. ratio of 0.04. The i.n. route showed a moderate IFN-γ expression but a higher IgG1/IgG2a R.I. ratio of 0.25 indicating a moderate Th1 response. In contrast, epidermal g.g. immunization induced a Th2 response characterized by high IL-4 expression and the highest IgG1/IgG2a R.I. ratio of 0.58. In conclusion, this study showed the advantage of genetic immunization using the i.m. route and i.n. over the epidermal g.g. routes in the induction of Th1 immunity in response to E. granulosus AgB gene immunization.

  15. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  16. SOD2 deficient erythroid cells up-regulate transferrin receptor and down-regulate mitochondrial biogenesis and metabolism.

    Directory of Open Access Journals (Sweden)

    Florent M Martin

    Full Text Available BACKGROUND: Mice irradiated and reconstituted with hematopoietic cells lacking manganese superoxide dismutase (SOD2 show a persistent hemolytic anemia similar to human sideroblastic anemia (SA, including characteristic intra-mitochondrial iron deposition. SA is primarily an acquired, clonal marrow disorder occurring in individuals over 60 years of age with uncertain etiology. METHODOLOGY/PRINCIPAL FINDINGS: To define early events in the pathogenesis of this murine model of SA, we compared erythroid differentiation of Sod2⁻/⁻ and normal bone marrow cells using flow cytometry and gene expression profiling of erythroblasts. The predominant transcriptional differences observed include widespread down-regulation of mitochondrial metabolic pathways and mitochondrial biogenesis. Multiple nuclear encoded subunits of complexes I-IV of the electron transport chain, ATP synthase (complex V, TCA cycle and mitochondrial ribosomal proteins were coordinately down-regulated in Sod2⁻/⁻ erythroblasts. Despite iron accumulation within mitochondria, we found increased expression of transferrin receptor, Tfrc, at both the transcript and protein level in SOD2 deficient cells, suggesting deregulation of iron delivery. Interestingly, there was decreased expression of ABCb7, the gene responsible for X-linked hereditary SA with ataxia, a component required for iron-sulfur cluster biogenesis. CONCLUSIONS/SIGNIFICANCE: These results indicate that in erythroblasts, mitochondrial oxidative stress reduces expression of multiple nuclear genes encoding components of the respiratory chain, TCA cycle and mitochondrial protein synthesis. An additional target of particular relevance for SA is iron:sulfur cluster biosynthesis. By decreasing transcription of components of cluster synthesis machinery, both iron utilization and regulation of iron uptake are impacted, contributing to the sideroblastic phenotype.

  17. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  18. Mitochondrial Myopathy with DNA Deletions

    OpenAIRE

    J Gordon Millichap

    1992-01-01

    Deletions of mitochondrial DNA (mtDNA) are reported in 19 of 56 patients with mitochondrial myopathy examined in the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.

  19. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  20. Inherited mitochondrial optic neuropathies

    Science.gov (United States)

    Yu-Wai-Man, P; Griffiths, P G; Hudson, G; Chinnery, P F

    2009-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (DOA) are the two most common inherited optic neuropathies and they result in significant visual morbidity among young adults. Both disorders are the result of mitochondrial dysfunction: LHON from primary mitochondrial DNA (mtDNA) mutations affecting the respiratory chain complexes; and the majority of DOA families have mutations in the OPA1 gene, which codes for an inner mitochondrial membrane protein critical for mtDNA maintenance and oxidative phosphorylation. Additional genetic and environmental factors modulate the penetrance of LHON, and the same is likely to be the case for DOA which has a markedly variable clinical phenotype. The selective vulnerability of retinal ganglion cells (RGCs) is a key pathological feature and understanding the fundamental mechanisms that underlie RGC loss in these disorders is a prerequisite for the development of effective therapeutic strategies which are currently limited. PMID:19001017

  1. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  2. 黄河裸裂尻鱼细胞色素C氧化酶Ⅰ、Ⅱ和Ⅲ亚基基因的克隆及序列特征分析%Cloning and Sequence Analysis of Genes Encoding mtDNA Cytochrome C Oxidase Subunits I, I and Ⅲ in Schizopygopsis pylzovi

    Institute of Scientific and Technical Information of China (English)

    晁燕; 祁得林; 申志新; 王国杰; 杨成

    2011-01-01

    The complete sequences of genes encoding cytochrome C oxidase subunits I, li and ill were cloned in Schizopygopsis pylzovi by RT-PCR method. The sequence analysis showed that the complete sequence of CO I was 1 551 bp, which consisted of the open reading frame (ORF) encoding 516 amino acid residues; the CO Ⅱ gene was 691 bp and contained a 690-nucleotide ORF encoding 230 amino acid residues; and the CO Ⅲ gene was 786 bp, which was composed of the ORF encoding 261 amino acid residues. The homologous analysis of sequences showed high similarity both in DNA and corresponding amino acid sequences of CO I, CO Ⅱ and CO Ⅲ between S. pylzovi and other 9 species from family Cyprinidae. Although there were sequence differences in subunit genes among different species, the corresponding amino acids tended to be consistent, suggesting functional stability of cytochrome C oxidase in electron transfer of mitochondrial respiration chain. S. pylzovi and Sinocyclocheilus grahami clustered together in the phylogenetic trees based on gene and amino acid sequences of CO I , and gene sequences of CO Ⅱ and CO Ⅲ, coupled with the same types, positions and numbers of functional sites in CO I and CO Ⅱ , suggesting that there is a relatively close relationship between them, which is consistent with the conclusion that the subfamily Schizothoracinae is originated from one of the primitive Barbinae fishes widely distributed in warm drainages in Qinghai-Tibetan Plateau during the Tertiary Period.%采用RT-PCR技术克隆获得了黄河裸裂尻鱼(Schizopygopsis pylzovi)CO Ⅰ、Ⅱ、Ⅲ基因的编码序列,并对此进行了初步分析.结果表明,黄河裸裂尻鱼CO I基因全长为1 551 bp,开放阅读框(ORF)由基因全长组成,编码516个氨基酸;COⅡ基因全长为691 bp,开放阅读框为690 bp,编码230个氨基酸;COⅢ基因全长为786 bp,其开放阅读框也是由基因全长组成,编码261个氨基酸.序列同源性分析显示

  3. Life without complex I: proteome analyses of an Arabidopsis mutant lacking the mitochondrial NADH dehydrogenase complex.

    Science.gov (United States)

    Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter

    2016-05-01

    The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific 'carbonic anhydrase domain' of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe 'life without complex I'.

  4. Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod.

    Science.gov (United States)

    Willett, Christopher S; Burton, Ronald S

    2004-03-01

    The extensive interaction between mitochondrial-encoded and nuclear-encoded subunits of electron transport system (ETS) enzymes in mitochondria is expected to lead to intergenomic coadaptation. Whether this coadaptation results from adaptation to the environment or from fixation of deleterious mtDNA mutations followed by compensatory nuclear gene evolution is unknown. The intertidal copepod Tigriopus californicus shows extreme divergence in mtDNA sequence and provides an excellent model system for study of intergenomic coadaptation. Here, we examine genes encoding subunits of complex III of the ETS, including the mtDNA-encoded cytochrome b (CYTB), the nuclear-encoded rieske iron-sulfur protein (RISP), and cytochrome c(1) (CYC1). We compare levels of polymorphism within populations and divergence between populations in these genes to begin to untangle the selective forces that have shaped evolution in these genes. CYTB displays dramatic divergence between populations, but sequence analysis shows no evidence for positive selection driving this divergence. CYC1 and RISP have lower levels of sequence divergence between populations than CYTB, but, again, sequence analysis gives no evidence for positive selection acting on them. However, an examination of variation at cytochrome c (CYC), a nuclear-encoded protein that transfers electrons between complex III and complex IV provides evidence for selective divergence. Hence, it appears that rapid evolution in mitochondrial-encoded subunits is not always associated with rapid divergence in interacting subunits (CYC1 and RISP), but can be in some cases (CYC). Finally, a comparison of nuclear-encoded and mitochondrial-encoded genes from T. californicus suggests that substitution rates in the mitochondrial-encoded genes are dramatically increased relative to nuclear genes.

  5. Pharmacologic Effects on Mitochondrial Function

    Science.gov (United States)

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  6. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  7. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    Directory of Open Access Journals (Sweden)

    Jonathan C. Eya

    2015-04-01

    Full Text Available A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10, 20% (40/20 and 30% (40/30 dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass or high-feed efficient (F136; 205.47 ± 1.27 g full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1, cytb (Cytochrome b, cox1 (Cytochrome c oxidase subunits 1, cox2 (Cytochrome c oxidase subunits 2 and atp6 (ATP synthase subunit 6 and nuclear genes ucp2α (uncoupling proteins 2 alpha, ucp2β (uncoupling proteins 2 beta, pparα (peroxisome proliferator-activated receptor alpha, pparβ (peroxisome proliferatoractivated receptor beta and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish.

  8. Control of mitochondrial volume by mitochondrial metabolic water.

    Science.gov (United States)

    Casteilla, Louis; Devin, Anne; Carriere, Audrey; Salin, Bénédicte; Schaeffer, Jacques; Rigoulet, Michel

    2011-11-01

    It is well-known that mitochondrial volume largely controls mitochondrial functioning. We investigate whether metabolic water produced by oxidative phosphorylation could be involved in mitochondrial volume regulation. We modulated the generation of this water in liver mitochondria and assess their volume by two independent techniques. In liver mitochondria, the mitochondrial volume was specifically decreased when no water was produced independently of energetic parameters and uncoupling activity. In all other conditions associated with water generation, there was no significant change in mitochondrial metabolic volume. Altogether these data demonstrate that mitochondrial volume is regulated, independently of energetic status, by the mitochondrial metabolic water that acts as a signal. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  9. Preventing Mitochondrial Fission Impairs Mitochondrial Function and Leads to Loss of Mitochondrial DNA

    OpenAIRE

    Parone, Philippe A.; Sandrine Da Cruz; Daniel Tondera; Yves Mattenberger; James, Do