WorldWideScience

Sample records for gene-directed enzyme-prodrug therapy

  1. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  2. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  3. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy.

  4. Gene Directed Enzyme Prodrug Therapy Using Rabbit Cytochrome P450 4B1 in Murine Colon Adenocarcinoma

    International Nuclear Information System (INIS)

    Kim, Sung Joo; Kang, Joo Hyun; Lee, Tae Sup; Kim, Kyeong Min; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2007-01-01

    The conventional cancer therapy is chemotherapy, surgical resection and/or radiotherapy. Chemotherapy using cytotoxic drug has some problems with lack of tumor selectivity resulting in toxicity to normal tissues. To enhance the tumor selectivity of cytotoxic drug, the application of suicidal gene therapy technology was designed. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a non-toxic prodrug into a cytotoxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1- tk) and cytosine deaminase (cd). Recently, a new prodrug-converting enzyme based on rabbit cytochrome P450 4B1 gene (cyp4B1) has been reported for therapy of experimental brain tumor. This enzyme activates the prodrugs such as 4-ipomeanol (4-IM) and 2- aminoanthracene (2-AA) to highly reactive furane epoxide and unsaturated dialdehyde intermediate, respectively. DNA alkylation seems to be the main mechanism of cytotoxicity of these activated drugs. In this study, we isolated cyp4B1 cDNA from rabbit lung, transduced cyp4B1 expression vector into murine colon cancer cell, and then analyzed the cytotoxic properties of cyp4b1-activated 2-AA in cyp4B1 transduced cells to verify the cyp4B1 enzyme system for gene directed enzyme prodrug therapy

  5. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Green, Laura K.; Storey, Mathew A. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Williams, Elsie M. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Patterson, Adam V.; Smaill, Jeff B. [Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand); Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1142 (New Zealand); Copp, Janine N.; Ackerley, David F., E-mail: david.ackerley@vuw.ac.nz [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand)

    2013-08-08

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.

  6. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    International Nuclear Information System (INIS)

    Green, Laura K.; Storey, Mathew A.; Williams, Elsie M.; Patterson, Adam V.; Smaill, Jeff B.; Copp, Janine N.; Ackerley, David F.

    2013-01-01

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT

  7. Substrate mediated enzyme prodrug therapy

    DEFF Research Database (Denmark)

    Fejerskov, Betina; Jarlstad Olesen, Morten T; Zelikin, Alexander N

    2017-01-01

    Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug administra......Substrate mediated enzyme prodrug therapy (SMEPT) is a biomedical platform developed to perform a localized synthesis of drugs mediated by implantable biomaterials. This approach combines the benefits and at the same time offers to overcome the drawbacks for traditional pill-based drug...

  8. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  9. Virus-directed enzyme prodrug therapy and the assessment of the cytotoxic impact of some benzimidazole derivatives.

    Science.gov (United States)

    Szewczuk, Michał; Boguszewska, Karolina; Żebrowska, Marta; Balcerczak, Ewa; Stasiak, Marta; Świątkowska, Maria; Błaszczak-Świątkiewicz, Katarzyna

    2017-07-01

    Virus-directed enzyme prodrug therapy is one of the major strategy of increasing cytotoxicity of bioreductive agents. This research intended to examine new selected benzimidazole derivatives as a substrate for nitroreductase, the enzyme involved in nitroreduction which is responsible to the production of cytotoxic metabolites. In this way, the selectivity and strength of cytotoxicity can be raised. The effect of benzimidazoles on virus transfected cells and non-virus transfected cells A549 cell line was established by Annexin V + propidium iodide test, western blot, and polymerase chain reaction analysis of specific pro- and anti-apoptotic proteins in the corresponding gene expression and additionally nitroreductase gene expression. Our results proved the pro-apoptotic properties of all tested compounds in normoxia and hypoxia, especially according to virused A549 cells where the time of exposition was reduced from 48 to 4 h. In this shorten period of time, the strongest activity was shown by N-oxide compounds with nitro-groups. The apoptosis was confirmed by generation of BAX gene and protein and reduction of BCL2 gene and protein.

  10. Mouse Mammary Tumor Virus Promoter-Containing Retroviral Promoter Conversion Vectors for Gene-Directed Enzyme Prodrug Therapy are Functional in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Reinhard Klein

    2008-01-01

    Full Text Available Gene directed-enzyme prodrug therapy (GDEPT is an approach for sensitization of tumor cells to an enzymatically activated, otherwise nontoxic, prodrug. Cytochrome P450 2B1 (CYP2B1 metabolizes the prodrugs cyclophosphamide (CPA and ifosfamide (IFA to produce the cytotoxic substances phosphoramide mustard and isophosphoramide mustard as well as the byproduct acrolein. We have constructed a retroviral promoter conversion (ProCon vector for breast cancer GDEPT. The vector allows expression of CYP2B1 from the mouse mammary tumor virus (MMTV promoter known to be active in the mammary glands of transgenic animals. It is anticipated to be used for the generation of encapsulated viral vector producing cells which, when placed inside or close to a tumor, will act as suppliers of the therapeutic CYP2B1 protein as well as of the therapeutic vector itself. The generated vector was effectively packaged by virus producing cells and allowed the production of high levels of enzymatically active CYP2B1 in infected cells which sensitized them to killing upon treatment with both IFA and CPA. Determination of the respective IC50 values demonstrated that the effective IFA dose was reduced by sixteen folds. Infection efficiencies in vivo were determined using a reporter gene-bearing vector in a mammary cancer cell-derived xenograft tumor mouse model.

  11. Theranostic Imaging of Cancer Gene Therapy.

    Science.gov (United States)

    Sekar, Thillai V; Paulmurugan, Ramasamy

    2016-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.

  12. Hypoxia-Inducible Regulation of a Prodrug-Activating Enzyme for Tumor-Specific Gene Therapy

    Directory of Open Access Journals (Sweden)

    Toru Shibata

    2002-01-01

    Full Text Available Previous studies have suggested that tumor hypoxia could be exploited for cancer gene therapy. Using hypoxia-responsive elements derived from the human vascular endothelial growth factor gene, we have generated vectors expressing a bacterial nitroreductase. (20NTR gene that can activate the anticancer prodrug CB1954. Stable transfectants of human HT1080 tumor cells with hypoxia-inducible vectors were established with G418 selection. Hypoxic induction of NTR protein correlated with increased sensitivity to in vitro exposure of HT 1080 cells to the prodrug. Growth delay assays were performed with established tumor xenografts derived from the same cells to detect the in vivo efficacy of CB1954 conversion to its cytotoxic form. Significant antitumor effects were achieved with intraperitoneal injections of CB1954 both in tumors that express NTR constitutively or with a hypoxia-inducible promoter. In addition, respiration of 10% O2 increased tumor hypoxia in vivo and enhanced the antitumor effects. Taken together, these results demonstrate that hypoxia-inducible vectors may be useful for tumor-selective gene therapy, although the problem of delivery of the vector to the tumors, particularly to the hypoxic cells in the tumors, is not addressed by these studies.

  13. Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+

    International Nuclear Information System (INIS)

    Doloff, Joshua C; Su, Ting; Waxman, David J

    2010-01-01

    Cytochrome P450-based suicide gene therapy for cancer using prodrugs such as cyclophosphamide (CPA) increases anti-tumor activity, both directly and via a bystander killing mechanism. Bystander cell killing is essential for the clinical success of this treatment strategy, given the difficulty of achieving 100% efficient gene delivery in vivo using current technologies. Previous studies have shown that the pan-caspase inhibitor p35 significantly increases CPA-induced bystander killing by tumor cells that stably express P450 enzyme CYP2B6 (Schwartz et al, (2002) Cancer Res. 62: 6928-37). To further develop this approach, we constructed and characterized a replication-defective adenovirus, Adeno-2B6/p35, which expresses p35 in combination with CYP2B6 and its electron transfer partner, P450 reductase. The expression of p35 in Adeno-2B6/p35-infected tumor cells inhibited caspase activation, delaying the death of the CYP2B6 'factory' cells that produce active CPA metabolites, and increased bystander tumor cell killing compared to that achieved in the absence of p35. Tumor cells infected with Adeno-2B6/p35 were readily killed by cisplatin and doxorubicin, indicating that p35 expression is not associated with acquisition of general drug resistance. Finally, p35 did not inhibit viral release when the replication-competent adenovirus ONYX-017 was used as a helper virus to facilitate co-replication and spread of Adeno-2B6/p35 and further increase CPA-induced bystander cell killing. The introduction of p35 into gene therapeutic regimens constitutes an effective approach to increase bystander killing by cytochrome P450 gene therapy. This strategy may also be used to enhance other bystander cytotoxic therapies, including those involving the production of tumor cell toxic protein products

  14. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    Science.gov (United States)

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  15. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives.

    Science.gov (United States)

    Scomparin, Anna; Florindo, Helena F; Tiram, Galia; Ferguson, Elaine L; Satchi-Fainaro, Ronit

    2017-09-01

    Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The bystander effect of cancer gene therapy

    International Nuclear Information System (INIS)

    Lumniczky, K.; Safrany, G.

    2008-01-01

    Cancer gene therapy is a new, promising therapeutic agent. In the clinic, it should be used in combination with existing modalities, such as tumour irradiation. First, we summarise the most important fields of cancer gene therapy: gene directed enzyme pro-drug therapy; the activation of an anti-tumour immune attack; restoration of the wild type p53 status; the application of new, replication competent and oncolytic viral vectors; tumour specific, as well as radiation- and hypoxia-induced gene expression. Special emphasizes are put on the combined effect of these modalities with local tumour irradiation. Using the available vector systems, only a small portion of the cancer cells will contain the therapeutic genes under therapeutic situations. Bystander cell killing might contribute to the success of various gene therapy protocols. We summarise the evidences that lethal bystander effects may occur during cancer gene therapy. Bystander effects are especially important in the gene directed enzyme pro-drug therapy. There, bystander cell killing might have different routes: cell communication through gap junction intercellular contacts; release of toxic metabolites into the neighbourhood or to larger distances; phagocytosis of apoptotic bodies; and the activation of the immune system. Bystander cell killing can be enhanced by the introduction of gap junction proteins into the cells, by further activating the immune system with immune-stimulatory molecules, or by introducing genes into the cells that help the transfer of cytotoxic genes and / or metabolites into the bystander cells. In conclusion, there should be additional improvements in cancer gene therapy for the more efficient clinical application. (orig.)

  17. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  18. Substrate-Competitive Activity-Based Profiling of Ester Prodrug Activating Enzymes.

    Science.gov (United States)

    Xu, Hao; Majmudar, Jaimeen D; Davda, Dahvid; Ghanakota, Phani; Kim, Ki H; Carlson, Heather A; Showalter, Hollis D; Martin, Brent R; Amidon, Gordon L

    2015-09-08

    Understanding the mechanistic basis of prodrug delivery and activation is critical for establishing species-specific prodrug sensitivities necessary for evaluating preclinical animal models and potential drug-drug interactions. Despite significant adoption of prodrug methodologies for enhanced pharmacokinetics, functional annotation of prodrug activating enzymes is laborious and often unaddressed. Activity-based protein profiling (ABPP) describes an emerging chemoproteomic approach to assay active site occupancy within a mechanistically similar enzyme class in native proteomes. The serine hydrolase enzyme family is broadly reactive with reporter-linked fluorophosphonates, which have shown to provide a mechanism-based covalent labeling strategy to assay the activation state and active site occupancy of cellular serine amidases, esterases, and thioesterases. Here we describe a modified ABPP approach using direct substrate competition to identify activating enzymes for an ethyl ester prodrug, the influenza neuraminidase inhibitor oseltamivir. Substrate-competitive ABPP analysis identified carboxylesterase 1 (CES1) as an oseltamivir-activating enzyme in intestinal cell homogenates. Saturating concentrations of oseltamivir lead to a four-fold reduction in the observed rate constant for CES1 inactivation by fluorophosphonates. WWL50, a reported carbamate inhibitor of mouse CES1, blocked oseltamivir hydrolysis activity in human cell homogenates, confirming CES1 is the primary prodrug activating enzyme for oseltamivir in human liver and intestinal cell lines. The related carbamate inhibitor WWL79 inhibited mouse but not human CES1, providing a series of probes for analyzing prodrug activation mechanisms in different preclinical models. Overall, we present a substrate-competitive activity-based profiling approach for broadly surveying candidate prodrug hydrolyzing enzymes and outline the kinetic parameters for activating enzyme discovery, ester prodrug design, and

  19. Identification of novel nitroreductases from Bacillus cereus and their interaction with the CB1954 prodrug.

    Science.gov (United States)

    Gwenin, Vanessa V; Poornima, Paramasivan; Halliwell, Jennifer; Ball, Patrick; Robinson, George; Gwenin, Chris D

    2015-12-01

    Directed enzyme prodrug therapy is a form of cancer chemotherapy in which bacterial prodrug-activating enzymes, or their encoding genes, are directed to the tumour before administration of a prodrug. The prodrug can then be activated into a toxic drug at the tumour site, reducing off-target effects. The bacterial nitroreductases are a class of enzymes used in this therapeutic approach and although very promising, the low turnover rate of prodrug by the most studied nitroreductase enzyme, NfnB from Escherichia coli (NfnB_Ec), is a major limit to this technology. There is a continual search for enzymes with greater efficiency, and as part of the search for more efficient bacterial nitroreductase enzymes, two novel enzymes from Bacillus cereus (strain ATCC 14579) have been identified and shown to reduce the CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) prodrug to its respective 2'-and 4'-hydroxylamine products. Both enzymes shared features characteristic of the nitro-FMN-reductase superfamily including non-covalently associated FMN, requirement for the NAD(P)H cofactor, homodimeric, could be inhibited by Dicoumarol (3,3'-methylenebis(4-hydroxy-2H-chromen-2-one)), and displayed ping pong bi bi kinetics. Based on the biochemical characteristics and nucleotide alignment with other nitroreductase enzymes, one enzyme was named YdgI_Bc and the other YfkO_Bc. Both B. cereus enzymes had greater turnover for the CB1954 prodrug compared with NfnB_Ec, and in the presence of added NADPH cofactor, YfkO_Bc had superior cell killing ability, and produced mainly the 4'-hydroxylamine product at low prodrug concentration. The YfkO_Bc was identified as a promising candidate for future enzyme prodrug therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Development of chimeric gene promoters responsive to hypoxia and ionizing radiation

    International Nuclear Information System (INIS)

    Zheng Aiqing; Yu Jinming

    2004-01-01

    The authors describe two systems that make use of gene-directed enzyme prodrug therapy, regulated by radiation or hypoxic-responsive promoters. The use of treatment-, condition- or tumor-specific promoters to control gene-directed enzyme prodrug therapy is one such method for targeting gene expression to the tumor. The development of such strategies that achieve tumor targeted expression of genes via selective promoters will enable improved specificity and targeting thereby addressing one of the major limitations of cancer gene therapy

  1. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    Science.gov (United States)

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.

  2. Imaging reporter gene for monitoring gene therapy

    International Nuclear Information System (INIS)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L.; Tamgac, G.

    2002-01-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  3. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    International Nuclear Information System (INIS)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2010-01-01

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  4. Suicidal gene therapy with rabbit cytochrome P450 4B1/4-ipomeanol, 2-aminoanthracene system in glioma cell

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Kim, Kwang Il; Lee, Tae Sup; Lee, Yong Jin; Woo, Kwang Sun; Chung, Wee Sup; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2010-10-15

    Suicidal gene therapy is based on the transduction of tumor cells with 'suicide' genes encoding for prodrugactivating enzymes that render target cells susceptible to prodrug treatment. Suicidal gene therapy results in the death of tumor with the expression of gene encoding enzyme that converts non-toxic prodrug into cytotoxic product. Cytochrome P450 4B1 (CYP4B1) activates 4- ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) to cytotoxic furane epoxide and unsaturated dialdehyde intermediate. In this study, therapeutic effects of suicidal gene therapy with rabbit CYP4B1/4-ipo or CYP4B1/2-AA system

  5. Tumor targeted gene therapy

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2006-01-01

    Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment had led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest in suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner

  6. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT).

    Science.gov (United States)

    Francis, R J; Mather, S J; Chester, K; Sharma, S K; Bhatia, J; Pedley, R B; Waibel, R; Green, A J; Begent, R H J

    2004-08-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99mTc-carbonyl [99mTc(H2O)3(CO)3]+ (abbreviated to TcCO) mediated labelling of 99mTc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins.

  7. Radiolabelling of glycosylated MFE-23::CPG2 fusion protein (MFECP1) with 99mTc for quantitation of tumour antibody-enzyme localisation in antibody-directed enzyme pro-drug therapy (ADEPT)

    International Nuclear Information System (INIS)

    Francis, R.J.; Chester, K.; Sharma, S.K.; Bhatia, J.; Pedley, R.B.; Green, A.J.; Begent, R.H.J.; Mather, S.J.; Waibel, R.

    2004-01-01

    MFECP1 is a glycosylated recombinant fusion protein composed of MFE-23, a high-affinity anti-carcinoembryonic antigen (CEA) single chain Fv (scFv), fused to the enzyme carboxypeptidase G2 (CPG2), and has been constructed for use in antibody-directed enzyme pro-drug therapy (ADEPT). Radiolabelling of glycosylated MFECP1 with technetium-99m was developed for the purpose of determining tumour localisation of MFECP1 in a phase I ADEPT clinical study. The method used was 99m Tc-carbonyl [ 99m Tc(H 2 O) 3 (CO) 3 ] + (abbreviated to TcCO) mediated labelling of 99m Tc to the hexahistidine (His) tag of MFECP1. MFECP1 fusion protein was labelled with TcCO under a variety of conditions, and this was shown to be a relatively simple and robust method. Tissue biodistribution was assessed in a CEA-expressing LS174T (human colon carcinoma) nude mouse xenograft model. Tissues were taken at 1, 4 and 6 h for assessment of distribution of radioactivity and for measurement of CPG2 enzyme levels. The amount of radioactivity retained by the tumour proved to be an accurate estimation of actual measured enzyme activity, indicating that this radiolabelling method does not appear to damage the antibody-antigen binding or the enzyme activity of MFECP1. However, correlation between CPG2 enzyme activity and measured radioactivity in liver, spleen and kidney was poor, indicating retention of radioactivity in non-tumour sites but loss of enzyme activity. The high retention of technetium radioisotope in normal tissues may limit the clinical applicability of this radiolabelling method for MFECP1; however, these results suggest that this technique does have applicability for measuring the biodistribution of His-tagged recombinant proteins. (orig.)

  8. The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-03-26

    The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5'-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0-105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5'-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5'-O-L-phenylalanyl-L-tyrosylfloxuridine and 5'-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enzymes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5'-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  9. Prodrug-activating Gene Therapy with Rabbit Cytochrome P450 4B1/4-Ipomeanol or 2-Aminoanthracene System in Glioma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Tae Sup; Kim, Sung Joo; Kim, Kwang Il; Lee, Yong Jin; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)

    2010-09-15

    We determined the cytotoxic properties of cytochrome P450 4B1 (CYP4B1) activated 4-ipomeanol (4-ipo) and 2-aminoanthracene (2-AA) in rat glioma to verify the CYP4B1/4-ipo or 2-AA system for prodrug-activating gene therapy. The cyp4B1 cDNA was cloned into pcDNA3.1/ Hygro from rabbit lung total RNA (pcDAN-cyp4B1). Lentiviral vector encoding firefly luciferase (fLuc) was infected into C6 (rat glioma), and the fLuc-expressing cell was selected (C6-L). After transfection with pcDNA-cyp4B1 vector into C6-L, the single clone expressing cyp4B1 gene was selected (C6-CL). Prodrug for various concentrations of 4-ipo or 2-AA was treated for 72 h and 96 h. The cell survival rate of C6-CL was determined using MTT assay and trypan-blue dye exclusion methods. By RT-PCR analysis, fLuc and CYP4B1 expression was detected in C6-CL, but not in C6. MTT assay and trypan-blue dye exclusion showed that IC'5'0 of C6-CL was 0.3 mM and <0.01 mM after 4-ipo or 2-AA treatment at 96 h or 72 h exposure, respectively. Cell survivals of C6-CL were more rapidly reduced after treatment with 4-ipo or 2-AA than those of C6-L cells. The cell survival rate with MTT and trypan-blue dye exclusion assay was well correlated with fLuc activity in C6-CL cells. Conclusions CYP4B1-based prodrug-activating gene therapy may have the potential to treat glioma and the cytotoxic effects of CYP4B1 enzyme activated 4-ipo or 2-AA in C6, and could be clearly determined by bioluminescent activity in C6-CL.

  10. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  11. The Feasibility of Enzyme Targeted Activation for Amino Acid/Dipeptide Monoester Prodrugs of Floxuridine; Cathepsin D as a Potential Targeted Enzyme

    Directory of Open Access Journals (Sweden)

    Gordon L. Amidon

    2012-03-01

    Full Text Available The improvement of therapeutic efficacy for cancer agents has been a big challenge which includes the increase of tumor selectivity and the reduction of adverse effects at non-tumor sites. In order to achieve those goals, prodrug approaches have been extensively investigated. In this report, the potential activation enzymes for 5¢-amino acid/dipeptide monoester floxuridine prodrugs in pancreatic cancer cells were selected and the feasibility of enzyme specific activation of prodrugs was evaluated. All prodrugs exhibited the range of 3.0–105.7 min of half life in Capan-2 cell homogenate with the presence and the absence of selective enzyme inhibitors. 5¢-O-L-Phenylalanyl-L-tyrosyl-floxuridine exhibited longer half life only with the presence of pepstatin A. Human cathepsin B and D selectively hydrolized 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine and 5¢-O-L-phenylalanyl-L-glycylfloxuridine compared to the other tested prodrugs. The wide range of growth inhibitory effect by floxuridine prodrugs in Capan-2 cells was observed due to the different affinities of prodrug promoieties to enyzmes. In conclusion, it is feasible to design prodrugs which are activated by specific enzymes. Cathepsin D might be a good candidate as a target enzyme for prodrug activation and 5¢-O-L-phenylalanyl-L-tyrosylfloxuridine may be the best candidate among the tested floxuridine prodrugs.

  12. Cationic polymeric gene delivery of beta-glucuronidase for doxorubicin prodrug therapy

    NARCIS (Netherlands)

    Fonseca, MJ; Storm, G; Hennink, WE; Gerritsen, WR; Haisma, HJ

    1999-01-01

    Background An approach to improve current chemotherapy is the selective transduction of tumor cells with suicide genes to sensitize these cells to prodrugs of cytostatic agents; Methods In this study, gene transfer was accomplished with the cationic polymer poly(2-(dimethylamino)ethyl methacrylate)

  13. pH-sensitive pHluorins as a molecular sensor for in situ monitoring of enzyme-catalyzed prodrug activation.

    Science.gov (United States)

    Liu, Hui; Cao, Xiaodan; Wang, Ping; Ma, Xingyuan

    2017-07-01

    This work examines the feasibility of using a pH-sensitive fluorescent protein as a molecular reporter for enzyme-catalyzed prodrug activation reaction. Specifically, a ratiometric pHluorins was examined for detection of the activity of horseradish peroxidase (HRP) for the activation of indole-3-acetic acid. The pHluorins and HRP were conjugated chemically, forming a biocatalyst with a self-reporting function. Results showed that the characteristic fluorescence intensity ratio of the conjugate shifted from 1.47 to 1.40 corresponding to the progress of the prodrug activation reaction. The effectiveness of applying the conjugate for inhibition of the growth of Bcap-37 cells was also demonstrated simultaneously with reaction monitoring. The results reveal a very promising approach to realizing in situ monitoring of enzyme activities based on pH shifting for enzyme-based prodrug therapy applications. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  14. Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy

    International Nuclear Information System (INIS)

    Tirkey, Bulbul; Bhushan, Bharat; Uday Kumar, S.; Gopinath, P.

    2017-01-01

    Conventional anticancer agents are associated with limited therapeutic efficacy and substantial nonspecific cytotoxicity. Thus, there is an imminent need for an alternative approach that can specifically annihilate the cancer cells with minimal side effects. Among such alternative approaches, CD::UPRT (cytosine deaminase uracil phosphoribosyl transferase) suicide gene therapy has tremendous potential due to its high efficacy. Prodrug 5-Fluorocytosine (5-FC) used in combination with CD::UPRT suicide gene suffers from limited solubility which subsequently leads to decline in therapeutic efficacy. In order to overcome this, 5-FC encapsulated bovine serum albumin nanoparticles (BSA-5-FC NPs) were prepared in this work by desolvation method. Physico-chemical characterizations studies revealed amorphous nature of BSA-5-FC NPs with uniform spherical morphology. Apart from increase in solubility, encapsulated 5-FC followed slow and sustained release profile. Suicide gene expressing stable clone of L-132 cells were adapted for investigating therapeutic potential of BSA-5-FC NPs. These nanoparticles were readily taken up by the cells in a concentration dependent manner and subsequently manifested apoptosis, which was further confirmed by morphological examination and gene expression analysis. These findings clearly illustrate that CD::UPRT suicide gene therapy can be efficiently utilized in combination with this nanosystem for improved suicide gene therapy and tumor eradication. - Highlights: • In this work, BSA-5-FC NPs has been prepared to achieve its sustained release and also facilitate its uptake by cells. • A protein based system has been realized for the first time to deliver prodrug for cancer therapy. • Physico-chemical characterizations further validate the formation of spherical, monodispersed and stable nanoparticles. • The therapeutic efficacy of BSA-5-FC NPs has been validated against CD::UPRT expressing stable cells.

  15. Prodrug encapsulated albumin nanoparticles as an alternative approach to manifest anti-proliferative effects of suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Tirkey, Bulbul [Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Bhushan, Bharat; Uday Kumar, S. [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Gopinath, P., E-mail: pgopifnt@iitr.ernet.in [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India)

    2017-04-01

    Conventional anticancer agents are associated with limited therapeutic efficacy and substantial nonspecific cytotoxicity. Thus, there is an imminent need for an alternative approach that can specifically annihilate the cancer cells with minimal side effects. Among such alternative approaches, CD::UPRT (cytosine deaminase uracil phosphoribosyl transferase) suicide gene therapy has tremendous potential due to its high efficacy. Prodrug 5-Fluorocytosine (5-FC) used in combination with CD::UPRT suicide gene suffers from limited solubility which subsequently leads to decline in therapeutic efficacy. In order to overcome this, 5-FC encapsulated bovine serum albumin nanoparticles (BSA-5-FC NPs) were prepared in this work by desolvation method. Physico-chemical characterizations studies revealed amorphous nature of BSA-5-FC NPs with uniform spherical morphology. Apart from increase in solubility, encapsulated 5-FC followed slow and sustained release profile. Suicide gene expressing stable clone of L-132 cells were adapted for investigating therapeutic potential of BSA-5-FC NPs. These nanoparticles were readily taken up by the cells in a concentration dependent manner and subsequently manifested apoptosis, which was further confirmed by morphological examination and gene expression analysis. These findings clearly illustrate that CD::UPRT suicide gene therapy can be efficiently utilized in combination with this nanosystem for improved suicide gene therapy and tumor eradication. - Highlights: • In this work, BSA-5-FC NPs has been prepared to achieve its sustained release and also facilitate its uptake by cells. • A protein based system has been realized for the first time to deliver prodrug for cancer therapy. • Physico-chemical characterizations further validate the formation of spherical, monodispersed and stable nanoparticles. • The therapeutic efficacy of BSA-5-FC NPs has been validated against CD::UPRT expressing stable cells.

  16. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  17. Lipid conjugated prodrugs for enzyme-triggered liposomal drug delivery to tumors

    DEFF Research Database (Denmark)

    Clausen, Mads Hartvig

    2011-01-01

    For some time we have been developing novel enzyme-triggered prodrugs for drug delivery targeting cancer. The liposomal prodrugs take advantage of the EPR effect to localize to tumors and of the local over-expression of secretory phospholipase A2 in tumors. Compared to conventional liposomal drug...... delivery systems, our prodrug-lipid conjugates have two main advantages: 1) the drugs are covalently linked to the lipids and thus leakage is circumvented and 2) the lipophilic bilayer of the formulated liposomes effectively shields the drugs from the aqueous environment in vivo. Consequently, the strategy...... targeting nuclear receptors and structural proteins. The presentation will highlight various strategies and recent progress towards improved systems, including chemical synthesis, enzyme activity and cytotoxicity....

  18. Puromycin-sensitive aminopeptidase: an antiviral prodrug activating enzyme.

    Science.gov (United States)

    Tehler, Ulrika; Nelson, Cara H; Peterson, Larryn W; Provoda, Chester J; Hilfinger, John M; Lee, Kyung-Dall; McKenna, Charles E; Amidon, Gordon L

    2010-03-01

    Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.

  19. Drug Delivery by an Enzyme-Mediated Cyclization of a Lipid Prodrug with Unique Bilayer-Formation Properties

    DEFF Research Database (Denmark)

    Linderoth, Lars; Peters, Günther H.j.; Madsen, Robert

    2009-01-01

    Special delivery: Liposomal drug-delivery systems in which prodrugs are activated specifically by disease-associated enzymes have great potential for the treatment of severe diseases, such as cancer. A new type of phospholipid-based prodrug has the ability to form stable small unilamellar vesicle...... (see picture). Activation of the prodrug vesicles by the enzyme sPLA2 initiates a cyclization reaction, which leads to the release of the drug....

  20. Specificity of a prodrug-activating enzyme hVACVase: the leaving group effect.

    Science.gov (United States)

    Sun, Jing; Dahan, Arik; Walls, Zachary F; Lai, Longsheng; Lee, Kyung-Dall; Amidon, Gordon L

    2010-12-06

    Human valacyclovirase (hVACVase) is a prodrug-activating enzyme for amino acid prodrugs including the antiviral drugs valacyclovir and valganciclovir. In hVACVase-catalyzed reactions, the leaving group of the substrate corresponds to the drug moiety of the prodrug, making the leaving group effect essential for the rational design of new prodrugs targeting hVACVase activation. In this study, a series of valine esters, phenylalanine esters, and a valine amide were characterized for the effect of the leaving group on the efficiency of hVACVase-mediated prodrug activation. Except for phenylalanine methyl and ethyl esters, all of the ester substrates exhibited a relatively high specificity constant (k(cat)/K(m)), ranging from 850 to 9490 mM(-1)·s(-1). The valine amide Val-3-APG exhibited significantly higher K(m) and lower k(cat) values compared to the corresponding ester Val-3-HPG, indicating poor specificity for hVACVase. In conclusion, the substrate leaving group has been shown to affect both binding and specific activity of hVACVase-catalyzed activation. It is proposed that hVACVase is an ideal target for α-amino acid ester prodrugs with relatively labile leaving groups while it is relatively inactivate toward amide prodrugs.

  1. Novel β-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy

    Science.gov (United States)

    Shukla, Girja S.; Krag, David N.

    2010-01-01

    Novel phage-displayed random linear dodecapeptide (X12) and cysteine-constrained decapeptide (CX10C) libraries constructed in fusion to the amino-terminus of P99 β-lactamase molecules were used for identifying β-lactamase-linked cancer cell-specific ligands. The size and quality of both libraries were comparable to the standards of other reported phage display systems. Using the single-round panning method based on phage DNA recovery, we identified severalβ-lactamase fusion peptides that specifically bind to live human breast cancer MDA-MB-361 cells. The β-lactamase fusion to the peptides helped in conducting the enzyme activity-based clone normalization and cell-binding screening in a very time- and cost-efficient manner. The methods were suitable for 96-well readout as well as microscopic imaging. The success of the biopanning was indicated by the presence of ~40% cancer cell-specific clones among recovered phages. One of the binding clones appeared multiple times. The cancer cell-binding fusion peptides also shared several significant motifs. This opens a new way of preparing and selecting phage display libraries. The cancer cell-specific β-lactamase-linked affinity reagents selected from these libraries can be used for any application that requires a reporter for tracking the ligand molecules. Furthermore, these affinity reagents have also a potential for their direct use in the targeted enzyme prodrug therapy of cancer. PMID:19751096

  2. Clinical Advances of Hypoxia-Activated Prodrugs in Combination With Radiation Therapy.

    Science.gov (United States)

    Mistry, Ishna N; Thomas, Matthew; Calder, Ewen D D; Conway, Stuart J; Hammond, Ester M

    2017-08-01

    With the increasing incidence of cancer worldwide, the need for specific, effective therapies is ever more urgent. One example of targeted cancer therapeutics is hypoxia-activated prodrugs (HAPs), also known as bioreductive prodrugs. These prodrugs are inactive in cells with normal oxygen levels but in hypoxic cells (with low oxygen levels) undergo chemical reduction to the active compound. Hypoxia is a common feature of solid tumors and is associated with a more aggressive phenotype and resistance to all modes of therapy. Therefore, the combination of radiation therapy and bioreductive drugs presents an attractive opportunity for synergistic effects, because the HAP targets the radiation-resistant hypoxic cells. Hypoxia-activated prodrugs have typically been precursors of DNA-damaging agents, but a new generation of molecularly targeted HAPs is emerging. By targeting proteins associated with tumorigenesis and survival, these compounds may result in greater selectivity over healthy tissue. We review the clinical progress of HAPs as adjuncts to radiation therapy and conclude that the use of HAPs alongside radiation is vastly underexplored at the clinical level. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Prodrugs in Cardiovascular Therapy

    Directory of Open Access Journals (Sweden)

    Maryam Tabrizian

    2008-05-01

    Full Text Available Prodrugs are biologically inactive derivatives of an active drug intended to solve certain problems of the parent drug such as toxicity, instability, minimal solubility and non-targeting capabilities. The majority of drugs for cardiovascular diseases undergo firstpass metabolism, resulting in drug inactivation and generation of toxic metabolites, which makes them appealing targets for prodrug design. Since prodrugs undergo a chemical reaction to form the parent drug once inside the body, this makes them very effective in controlling the release of a variety of compounds to the targeted site. This review will provide the reader with an insight on the latest developments of prodrugs that are available for treating a variety of cardiovascular diseases. In addition, we will focus on several drug delivery methodologies that have merged with the prodrug approach to provide enhanced target specificity and controlled drug release with minimal side effects.

  4. Toxicology and Biodistribution Studies for MGH2.1, an Oncolytic Virus that Expresses Two Prodrug-activating Genes, in Combination with Prodrugs

    Directory of Open Access Journals (Sweden)

    Kazue Kasai

    2013-01-01

    Full Text Available MGH2.1 is a herpes simplex virus type 1 (HSV1 oncolytic virus that expresses two prodrug-activating transgenes: the cyclophosphamide (CPA-activating cytochrome P4502B1 (CYP2B1 and the CPT11-activating secreted human intestinal carboxylesterase (shiCE. Toxicology and biodistribution of MGH2.1 in the presence/absence of prodrugs was evaluated in mice. MGH2.1 ± prodrugs was cytotoxic to human glioma cells, but not to normal cells. Pharmacokinetically, intracranial MGH2.1 did not significantly alter the metabolism of intraperitoneally (i.p. administered prodrugs in mouse plasma, brain, or liver. MGH2.1 did not induce an acute inflammatory reaction. MGH2.1 DNA was detected in brains of mice inoculated with 108 pfus for up to 60 days. However, only one animal showed evidence of viral gene expression at this time. Expression of virally encoded genes was restricted to brain. Intracranial inoculation of MGH2.1 did not induce lethality at 108 pfus in the absence of prodrugs and at 106 pfus in the presence of prodrugs. This study provides safety and toxicology data justifying a possible clinical trial of intratumoral injection of MGH2.1 with peripheral administration of CPA and/or CPT11 prodrugs in humans with malignant gliomas.

  5. Dual delivery systems based on polyamine analog BENSpm as prodrug and gene delivery vectors

    Science.gov (United States)

    Zhu, Yu

    Combination drug and gene therapy shows promise in cancer treatment. However, the success of such strategy requires careful selection of the therapeutic agents, as well as development of efficient delivery vectors. BENSpm (N 1, N11-bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine pathway, draws our special attention because of the following reasons: (1) polyamine pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to interfere with the polyamine pathway, such as to up-regulate polyamine metabolism enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a wide range of cancers; (3) preclinical studies proved that BENSpm can act synergistically with various chemotherapy agents, making it a promising candidate in combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable building block for cationic polymers, which can be further applied to gene delivery. In this dissertation, our goal was to design dual-function delivery vector based on BENSpm that can function as a gene delivery vector and, after intracellular degradation, as an active anticancer agent targeting dysregulated polyamine metabolism. We first demonstrated strong synergism between BENSpm and a potential therapeutic gene product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment verified our rationale of designing BENSpm-based delivery platform. This was expected to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting the therapeutic effect of therapeutic genes. We first designed a lipid-based BENSpm dual vector (Lipo

  6. Smart activatable and traceable dual-prodrug for image-guided combination photodynamic and chemo-therapy.

    Science.gov (United States)

    Hu, Fang; Yuan, Youyong; Mao, Duo; Wu, Wenbo; Liu, Bin

    2017-11-01

    Activatable photosensitizers (PSs) and chemo-prodrugs are highly desirable for anti-cancer therapy to reduce systemic toxicity. However, it is difficult to integrate both together into a molecular probe for combination therapy due to the complexity of introducing PS, singlet oxygen quencher, chemo-drug, chemo-drug inhibitor and active linker at the same time. To realize activatable PS and chemo-prodrug combination therapy, we develop a smart therapeutic platform in which the chemo-prodrug serves as the singlet oxygen quencher for the PS. Specifically, the photosensitizing activity and fluorescence of the PS (TPEPY-SH) are blocked by the chemo-prodrug (Mitomycin C, MMC) in the probe. Meanwhile, the cytotoxicity of MMC is also inhibited by the electron-withdrawing acyl at the nitrogen position next to the linker. Upon glutathione activation, TPEPY-S-MMC can simultaneously release active PS and MMC for combination therapy. The restored fluorescence of TPEPY-SH is also used to report the activation for both PS and MMC as well as to guide the photodynamic therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Three-dimensional tumor spheroids for in vitro analysis of bacteria as gene delivery vectors in tumor therapy.

    Science.gov (United States)

    Osswald, Annika; Sun, Zhongke; Grimm, Verena; Ampem, Grace; Riegel, Karin; Westendorf, Astrid M; Sommergruber, Wolfgang; Otte, Kerstin; Dürre, Peter; Riedel, Christian U

    2015-12-12

    Several studies in animal models demonstrated that obligate and facultative anaerobic bacteria of the genera Bifidobacterium, Salmonella, or Clostridium specifically colonize solid tumors. Consequently, these and other bacteria are discussed as live vectors to deliver therapeutic genes to inhibit tumor growth. Therapeutic approaches for cancer treatment using anaerobic bacteria have been investigated in different mouse models. In the present study, solid three-dimensional (3D) multicellular tumor spheroids (MCTS) of the colorectal adenocarcinoma cell line HT-29 were generated and tested for their potential to study prodrug-converting enzyme therapies using bacterial vectors in vitro. HT-29 MCTS resembled solid tumors displaying all relevant features with an outer zone of proliferating cells and hypoxic and apoptotic regions in the core. Upon incubation with HT-29 MCTS, Bifidobacterium bifidum S17 and Salmonella typhimurium YB1 selectively localized, survived and replicated in hypoxic areas inside MCTS. Furthermore, spores of the obligate anaerobe Clostridium sporogenes germinated in these hypoxic areas. To further evaluate the potential of MCTS to investigate therapeutic approaches using bacteria as gene delivery vectors, recombinant bifidobacteria expressing prodrug-converting enzymes were used. Expression of a secreted cytosine deaminase in combination with 5-fluorocytosine had no effect on growth of MCTS due to an intrinsic resistance of HT-29 cells to 5-fluorouracil, i.e. the converted drug. However, a combination of the prodrug CB1954 and a strain expressing a secreted chromate reductase effectively inhibited MCTS growth. Collectively, the presented results indicate that MCTS are a suitable and reliable model to investigate live bacteria as gene delivery vectors for cancer therapy in vitro.

  8. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  9. Monitoring HSVtk suicide gene therapy : the role of [F-18]FHPG membrane transport

    NARCIS (Netherlands)

    Buursma, AR; van Dillen, IJ; van Waarde, A; Vaalburg, W; Hospers, GAP; Mulder, NH; de Vries, EFJ

    2004-01-01

    Favourable pharmacokinetics of the prodrug are essential for successful HSVtk/ganciclovir (GCV) suicide gene therapy. [F-18] FHPG PET might be a suitable technique to assess the pharmacokinetics of the prodrug GCV noninvasively, provided that [F-18] FHPG mimics the behaviour of GCV. Since membrane

  10. HDAC inhibition amplifies gap junction communication in neural progenitors: Potential for cell-mediated enzyme prodrug therapy

    International Nuclear Information System (INIS)

    Khan, Zahidul; Akhtar, Monira; Asklund, Thomas; Juliusson, Bengt; Almqvist, Per M.; Ekstroem, Tomas J.

    2007-01-01

    Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (C x 43) was analyzed by western blot and immunocytochemistry. While C x 43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased C x 43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of C x 43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer

  11. Potential Development of Tumor-Targeted Oral Anti-Cancer Prodrugs: Amino Acid and Dipeptide Monoester Prodrugs of Gemcitabine.

    Science.gov (United States)

    Tsume, Yasuhiro; Drelich, Adam J; Smith, David E; Amidon, Gordon L

    2017-08-10

    One of the main obstacles for cancer therapies is to deliver medicines effectively to target sites. Since stroma cells are developed around tumors, chemotherapeutic agents have to go through stroma cells in order to reach tumors. As a method to improve drug delivery to the tumor site, a prodrug approach for gemcitabine was adopted. Amino acid and dipeptide monoester prodrugs of gemcitabine were synthesized and their chemical stability in buffers, resistance to thymidine phosphorylase and cytidine deaminase, antiproliferative activity, and uptake/permeability in HFF cells as a surrogate to stroma cells were determined and compared to their parent drug, gemcitabine. The activation of all gemcitabine prodrugs was faster in pancreatic cell homogenates than their hydrolysis in buffer, suggesting enzymatic action. All prodrugs exhibited great stability in HFF cell homogenate, enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase, and deamination by cytidine deaminase compared to their parent drug. All gemcitabine prodrugs exhibited higher uptake in HFF cells and better permeability across HFF monolayers than gemcitabine, suggesting a better delivery to tumor sites. Cell antiproliferative assays in Panc-1 and Capan-2 pancreatic ductal cell lines indicated that the gemcitabine prodrugs were more potent than their parent drug gemcitabine. The transport and enzymatic profiles of gemcitabine prodrugs suggest their potential for delayed enzymatic bioconversion and enhanced resistance to metabolic enzymes, as well as for enhanced drug delivery to tumor sites, and cytotoxic activity in cancer cells. These attributes would facilitate the prolonged systemic circulation and improved therapeutic efficacy of gemcitabine prodrugs.

  12. Manipulation of P450 gene expression in tumours; a novel approach for targeted activation of bioreductive prodrugs

    International Nuclear Information System (INIS)

    Robson, T.; Yakkundi, A.; McCarthy, H.; McErlane, V.; Hughes, C.M.; Hirst, D.G.; McKeown, S.R.; Patterson, L.H.

    2003-01-01

    We are developing a gene-directed enzyme prodrug therapy (GDEPT) strategy to enhance the metabolism of a novel bioreductive drug, AQ4N. Bioreductive drugs are metabolically activated in the hypoxic cell environment allowing effective targeting of hypoxic radioresistant tumour regions. We aim to achieve additional layers of selectivity by using an X-ray inducible promoter linked to our therapeutic gene (cytochrome P450s). This strategy would enhance metabolism of the drug only within the radiation field. Furthermore, normal tissue would be unaffected as the bioreductive drug is only activated in hypoxic conditions. We have identified several human cytochrome P450s which are important for AQ4N prodrug activation, these include CYP3A4, 1A1 and 2B6. RIF1 murine tumour cells transfected with cDNA from any one of these CYPs displayed increased DNA damage and clonogenic cell kill following treatment with AQ4N under hypoxia compared to controls. We are presently testing the ability of these transfectants to enhance anti-tumour effectiveness of AQ4N in combination with radiation in vivo. We have shown that a single CYP3A4 injection using a simple non-optimized approach can increase metabolism of AQ4N and when used in combination with radiation 3 out of 4 tumours are locally controlled for > 60 days (McCarthy et al., 2002). This result is remarkable considering the large enhancement of the radiation effect achieved by adding AQ4N alone. This implies that the bioreduction of AQ4N by CYPs in this tumour system is sub-optimal and this strategy could therefore be very promising for clinical use where CYP levels are known to be variable. We are now exploring the CYP/AQ4N GDEPT strategy in combination with cyclophosphamide, which is also metabolised by CYPs and aim to link these CYPs to the radiation and hypoxia inducible WAF1 promoter for selective activation in vivo

  13. Effect of alginate microencapsulation on the catalytic efficiency and in vitro enzyme-prodrug therapeutic efficacy of cytosine deaminase and of recombinant E. coli expressing cytosine deaminase.

    Science.gov (United States)

    Funaro, Michael G; Nemani, Krishnamurthy V; Chen, Zhihang; Bhujwalla, Zaver M; Griswold, Karl E; Gimi, Barjor

    2016-02-01

    Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.

  14. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    International Nuclear Information System (INIS)

    Holzer, Georg W.; Mayrhofer, Josef; Gritschenberger, Werner; Falkner, Falko G.

    2005-01-01

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes

  15. Platinum(iv) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy

    Science.gov (United States)

    Shi, Saige; Chen, Xiaolan; Wei, Jingping; Huang, Yizhuan; Weng, Jian; Zheng, Nanfeng

    2016-03-01

    Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The prepared Pd@Au-PEG-Pt nanocomposite showed excellent stability in physiological solutions and efficient Pt(iv) prodrug loading. Once injected into biological tissue, the Pt(iv) prodrug was easily reduced by physiological reductants (e.g. ascorbic acid or glutathione) into its cytotoxic and hydrophilic Pt(ii) form and released from the original nanocomposite, and the NIR laser irradiation could accelerate the release of Pt(ii) species. More importantly, Pd@Au-PEG-Pt has high tumor accumulation (29%ID per g), which makes excellent therapeutic efficiency at relatively low power density possible. The in vivo results suggested that, compared with single therapy the combined thermo-chemotherapy treatment with Pd@Au-PEG-Pt resulted in complete destruction of the tumor tissue without recurrence, while chemotherapy using Pd@Au-PEG-Pt without irradiation or photothermal treatment using Pd@Au-PEG alone did not. Our work highlights the prospects of a feasible drug delivery strategy of the Pt prodrug by using 2D Pd@Au nanoplates as drug delivery carriers for multimode cancer treatment.Owing to the excellent near infrared (NIR) light absorption and efficient passive targeting toward tumor tissue, two-dimensional (2D) core-shell PEGylated Pd@Au nanoplates have great potential in both photothermal therapy and drug delivery systems. In this work, we successfully conjugate Pd@Au nanoplates with a platinum(iv) prodrug c,c,t-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to obtain a nanocomposite (Pd@Au-PEG-Pt) for combined photothermal-chemotherapy. The

  16. Hepatic Intra-arterial Delivery of a "Trojan-horses" Gene Therapy: A Pilot Study on Rabbit VX2 Hepatic Tumor Model.

    Science.gov (United States)

    Pellerin, Olivier; Amara, Ikram; Sapoval, Marc; Méachi, Tchao; Déan, Carole; Beaune, Philippe; de Waziers, Isabelle

    2018-01-01

    Gene-directed enzyme prodrug therapy (GDEPT) is a "Trojan-horses" suicide gene therapy that consists of tumor-targeted gene delivery (vectorized by mesenchymal stem cells MSCs) encoding an enzyme that converts a harmless prodrug into cytotoxic metabolites in situ. Then, cytotoxic metabolites passively diffuse in the neighboring tumor cells and kill them (bystander effect). The goal of our study was to assess the feasibility and efficacy of intra-arterial administration of MSCs transduced with an optimized gene (MSC-CYP2B6TM-RED) followed by intravenous administration of cyclophosphamide (CPA) into the VX2 rabbit liver tumor. Nine rabbits with a VX2 liver tumor were randomly assigned into three groups: Control group A (one rabbit) free of any treatment; Control group B (two rabbits) receiving intravenous injection of cyclophosphamide at day 3 and CPA at day 14; and Group C (six rabbits) receiving the GDEPT treatment, consisting of successive intra-arterial injection of transduced-MSCs at days 0 (n = 6) and 11 (n = 3), followed by injection of CPA at days 3 (n = 6) and 14 (n = 3). The tumor response was assessed by ultrasound scan every 7 days and histopathological analysis at sacrifice (D25). There was a significant difference in the tumor volume between control groups (A + B) and group C at D7: 38/19 cm 3 (p = 0.024); D11: 51/20 cm 3 (p = 0.024), and D25: 121/37 cm 3 (p = 0.048). Tumor necrosis was significantly greater and metastatic spread was lower for rabbits who received GDEPT (78% of total tumor surface) than for control animals (A + B) (22% of total tumor surface (p = 0.006). Intra-arterial delivery of transduced-MSCs is feasible and, after CPA injection, resulted in 78% tumor necrosis (p = 0.006) and less metastasis in a VX2 liver tumor model.

  17. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....

  18. Colon-specific prodrugs of 5-radioiodo-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Baranowska-Kortylewicz, J.; Kortylewicz, Z.P.; Hoffman, D.; Winoto, A.; Lai, J.; Dalrymple, G.V.

    1996-01-01

    Two glycoside-based prodrugs, 125 IUdR-5'-β-D-glucopyranoside and 125 IUdR-5'-β-D-galactopyranoside, were synthesized. This selection was dictated by the abundance of appropriate enzymes in the GI tract of mice and similar levels of β-D-glycosidases in human and rodent large intestine. Studies to establish the ability of colonic microflora to release 125 IUdR were conducted in vitro and in Swiss Webster mice. Both prodrugs released 125 IUdR in the presence of the corresponding enzymes or the GI content homogenates in vitro, and in vivo. Luminal enzymes in the proximal and distal small intestine in mice degraded less than 10% of each prodrug whereas enzymes from the colonic/caecal lumen of mice released nearly 100% of 125 IUdR. 125 IUdR freed by bacterial glycosidases was stable in the GI content. No significant amounts of other metabolites or deiodination products were observed. Total radioactivity recovered as by-products was less than 10%. The efflux of prodrugs from the GI tract after oral administration in mice was slow and limited. Unlike 125 IUdR, prodrugs were not dehalogenated in vivo as indicated by biodistribution and imaging studies. (orig.)

  19. Modern Prodrug Design for Targeted Oral Drug Delivery

    Directory of Open Access Journals (Sweden)

    Arik Dahan

    2014-10-01

    Full Text Available The molecular information that became available over the past two decades significantly influenced the field of drug design and delivery at large, and the prodrug approach in particular. While the traditional prodrug approach was aimed at altering various physiochemical parameters, e.g., lipophilicity and charge state, the modern approach to prodrug design considers molecular/cellular factors, e.g., membrane influx/efflux transporters and cellular protein expression and distribution. This novel targeted-prodrug approach is aimed to exploit carrier-mediated transport for enhanced intestinal permeability, as well as specific enzymes to promote activation of the prodrug and liberation of the free parent drug. The purpose of this article is to provide a concise overview of this modern prodrug approach, with useful successful examples for its utilization. In the past the prodrug approach used to be viewed as a last option strategy, after all other possible solutions were exhausted; nowadays this is no longer the case, and in fact, the prodrug approach should be considered already in the very earliest development stages. Indeed, the prodrug approach becomes more and more popular and successful. A mechanistic prodrug design that aims to allow intestinal permeability by specific transporters, as well as activation by specific enzymes, may greatly improve the prodrug efficiency, and allow for novel oral treatment options.

  20. Biological Education of IVFRU and FIAU for HSV1-TK Reporter Gene Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Hee; Kim, Eun Jung; Lee, Eun Ah; Lee, Jong Chan; Choi, Tae Hyun; Lee, Kyo Chul; An, Gwang Il; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2006-07-01

    The Herpes Simplex Virus Type1-thymidine kinase (HSV1-TK) system is a useful gene therapy monitoring method. HSV1-TK is one of the most widely used effector gene systems used for imaging gene expression, in association with its use as a reporter gene. It has resulted the development of a number of radiolabeled HSV1-TK substrates for the non-invasive detection of HSV1-TK expression. In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have been developed as prodrugs for tumor proliferation imaging or as anti-viral drugs. Prodrug activation or sucide gene therapy has been shown to be successful in potentiating the therapeutic index by sensitizing genetically modified tumor cells to various prodrugs or enhancing the action of commonly used chemotherapeutic agents. The most studied prodrug activation approaches involve transfection of tumors with HSV1-TK gene. (Z)-5-(2-iodovinyl)-2'-fluoro- 2'-deoxyuridine (IVFRU) possesses a 2'-fluoro substituent in the ribose configuration, is considered to protect IVFRU from enzyme mediated degradation in vivo. It is obviously potential substrates for HSV1-TK imaging. 2'-Fiuoro-2'-deoxy-1-{beta}-D-arabinofuranosyl- 5-iodo-uridine (FIAU), an anticancer drug widely used in clinical practice, is an analogue of thymidine. In a series of studies using adenovirus vector for gene transfer described the appropriate combination of exogenously introduced HSV1-TK as a 'marker/reporter gene' and radiolabelled FIAU as a 'marker substrate/reporter probe' for monitoring gene therapy and gene expression.

  1. Biological Education of IVFRU and FIAU for HSV1-TK Reporter Gene Monitoring

    International Nuclear Information System (INIS)

    Hong, Su Hee; Kim, Eun Jung; Lee, Eun Ah; Lee, Jong Chan; Choi, Tae Hyun; Lee, Kyo Chul; An, Gwang Il; Cheon, Gi Jeong

    2006-01-01

    The Herpes Simplex Virus Type1-thymidine kinase (HSV1-TK) system is a useful gene therapy monitoring method. HSV1-TK is one of the most widely used effector gene systems used for imaging gene expression, in association with its use as a reporter gene. It has resulted the development of a number of radiolabeled HSV1-TK substrates for the non-invasive detection of HSV1-TK expression. In non-invasive imaging of the HSV1-TK system, many nucleoside derivatives have been developed as prodrugs for tumor proliferation imaging or as anti-viral drugs. Prodrug activation or sucide gene therapy has been shown to be successful in potentiating the therapeutic index by sensitizing genetically modified tumor cells to various prodrugs or enhancing the action of commonly used chemotherapeutic agents. The most studied prodrug activation approaches involve transfection of tumors with HSV1-TK gene. (Z)-5-(2-iodovinyl)-2'-fluoro- 2'-deoxyuridine (IVFRU) possesses a 2'-fluoro substituent in the ribose configuration, is considered to protect IVFRU from enzyme mediated degradation in vivo. It is obviously potential substrates for HSV1-TK imaging. 2'-Fiuoro-2'-deoxy-1-β-D-arabinofuranosyl- 5-iodo-uridine (FIAU), an anticancer drug widely used in clinical practice, is an analogue of thymidine. In a series of studies using adenovirus vector for gene transfer described the appropriate combination of exogenously introduced HSV1-TK as a 'marker/reporter gene' and radiolabelled FIAU as a 'marker substrate/reporter probe' for monitoring gene therapy and gene expression

  2. Prodrug Strategy in Drug Development

    Directory of Open Access Journals (Sweden)

    Hajnal Kelemen

    2016-09-01

    Full Text Available Prodrugs are chemically modified derivatives introduced in therapy due to their advantageous physico-chemical properties (greater stability, improved solubility, increased permeability, used in inactive form. Biological effect is exerted by the active derivatives formed in organism through chemical transformation (biotransformation. Currently, 10% of pharmaceutical products are used as prodrugs, nearly half of them being converted to active form by hydrolysis, mainly by ester hydrolysis. The use of prodrugs aims to improve the bioavailability of compounds in order to resolve some unfavorable characteristics and to reduce first-pass metabolism. Other objectives are to increase drug absorption, to extend duration of action or to achieve a better tissue/organ selective transport in case of non-oral drug delivery forms. Prodrugs can be characterized by chemical structure, activation mechanism or through the presence of certain functional groups suitable for their preparation. Currently we distinguish in therapy traditional prodrugs prepared by chemical derivatisation, bioprecursors and targeted delivery systems. The present article is a review regarding the introduction and applications of prodrug design in various areas of drug development.

  3. Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug

    International Nuclear Information System (INIS)

    Wang, Jing-Hung; Endsley, Aaron N.; Green, Carol E.; Matin, A. C.

    2016-01-01

    Success of cancer prodrugs relying on a foreign gene requires specific delivery of the gene to the cancer, and improvements such as higher level gene transfer and expression. Attaining these objectives will be facilitated in preclinical studies using our newly discovered CNOB-GDEPT, consisting of the produrg: 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-phenoxazine (CNOB) and its activating enzyme ChrR6, which generates the cytotoxic product 9-amino-6-chloro-5H-benzo[a]phenoxazine-5-one (MCHB). MCHB is fluorescent and can be noninvasively imaged in mice, and here we investigated whether MCHB fluorescence quantitatively reflects its concentration, as this would enhance its reporter value in further development of the CNOB-GDEPT therapeutic regimen. PK parameters were estimated and used to predict more effective CNOB administration schedules. CNOB (3.3 mg/kg) was injected iv in mice implanted with humanized ChrR6 (HChrR6)-expressing 4T1 tumors. Fluorescence was imaged in live mice using IVIS Spectrum, and quantified by Living Image 3.2 software. MCHB and CNOB were quantified also by LC/MS/MS analysis. We used non-compartmental model to estimate PK parameters. Phoenix WinNonlin software was used for simulations to predict a more effective CNOB dosage regimen. CNOB administration significantly prolonged mice survival. MCHB fluorescence quantitatively reflected its exposure levels to the tumor and the plasma, as verified by LC/MS/MS analysis at various time points, including at a low concentration of 2 ng/g tumor. The LC/MS/MS data were used to estimate peak plasma concentrations, exposure (AUC 0-24 ), volume of distribution, clearance and half-life in plasma and the tumor. Simulations suggested that the CNOB-GDEPT can be a successful therapy without large increases in the prodrug dosage. MCHB fluorescence quantifies this drug, and CNOB can be effective at relatively low doses. MCHB fluorescence characteristics will expedite further development of CNOB-GDEPT by, for example

  4. Ketobemidone prodrugs for buccal delivery

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    1992-01-01

    As part of studies aiming at developing a ketobemidone prodrug suitable for buccal or sublingual administration, the potential impact of saliva enzyme-catalyzed hydrolysis of various ester prodrugs was assessed. The hydrolysis of three ketobemidone esters in human whole saliva, obtained under con...... in the mouth and their rate of disintegration were shown to have some influence on the rate of saliva secretion and hence on saliva esterase activity but not to an extent compromising the efficient buccal or sublingual delivery of the ketobemidone prodrugs....

  5. Effects of vehicles and prodrug properties and their interactions on the delivery of 6-mercaptopurine through skin: bisacyloxymethyl-6-mercaptopurine prodrugs.

    Science.gov (United States)

    Waranis, R P; Sloan, K B

    1987-08-01

    A series of S6,9-bisacyloxymethyl-6-mercaptopurine (6,9-bis-6-MP) prodrug derivatives was synthesized and characterized. The solubilities of the derivatives in solvents (vehicles), which exhibited a wide range of polarities from water to oleic acid, were measured. The abilities of the prodrugs to deliver 6-mercaptopurine (6-MP) from the vehicles have also been determined, and experimental fluxes and permeability coefficients (Kp) have been calculated for a large number of prodrug: vehicle combinations. Generally the best prodrugs of the series in terms of delivering 6-MP, regardless of the vehicle, were the first two members--the bisacetyl- and the bispropionyloxymethyl-6-mercaptopurine prodrugs. This result has been attributed mainly to the increased water solubility of these two prodrugs compared with that of 6-MP and the other prodrugs, since all of the prodrugs are much more lipid soluble than 6-MP. For three vehicles--isopropyl myristate, propylene glycol, and water--there was a good correlation between log experimental Kp for the delivery of 6-MP by the prodrugs from those vehicles and the theoretical solubility parameters of the prodrugs. The stabilities of the bisacetyl-(2), bisproprionyl-(3), and bisbutyryloxymethyl-6-mercaptopurine (4) derivatives were determined in buffer and in buffer containing enzymes leached from the dermis. Prodrug 2 was more stable than 3 or 4 in the buffer containing the enzymes, while 4 was more stable than 2 or 3 in the plain buffer.

  6. Breast Cancer Gene Therapy: Development of Novel Non-Invasive Magnetic Resonance Assay to Optimize Efficacy

    National Research Council Canada - National Science Library

    Mason, Ralph P

    2007-01-01

    Gene therapy holds great promise for treatment of breast cancer. In particular clinical trials are underway to apply therapeutic genes related to pro-drug activation or to modulate the activity of oncogenes by blocking promoter sites...

  7. Prognostic impact of carboxylesterase 1 gene variants in patients with congestive heart failure treated with angiotensin-converting enzyme inhibitors

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl E.; Madsen, Majbritt B.; Torp-Pedersen, Christian

    2016-01-01

    OBJECTIVE: Most angiotensin-converting enzyme inhibitors (ACEIs) are prodrugs activated by carboxylesterase 1 (CES1). We investigated the prognostic importance of CES1 gene (CES1) copy number variation and the rs3815583 single-nucleotide polymorphism in CES1 among ACEI-treated patients with conge...

  8. Effective gene silencing activity of prodrug-type 2'-O-methyldithiomethyl siRNA compared with non-prodrug-type 2'-O-methyl siRNA.

    Science.gov (United States)

    Hayashi, Junsuke; Nishigaki, Misa; Ochi, Yosuke; Wada, Shun-Ichi; Wada, Fumito; Nakagawa, Osamu; Obika, Satoshi; Harada-Shiba, Mariko; Urata, Hidehito

    2018-07-01

    Small interfering RNAs (siRNAs) are an active agent to induce gene silencing and they have been studied for becoming a biological and therapeutic tool. Various 2'-O-modified RNAs have been extensively studied to improve the nuclease resistance. However, the 2'-O-modified siRNA activities were often decreased by modification, since the bulky 2'-O-modifications inhibit to form a RNA-induced silencing complex (RISC). We developed novel prodrug-type 2'-O-methyldithiomethyl (MDTM) siRNA, which is converted into natural siRNA in an intracellular reducing environment. Prodrug-type 2'-O-MDTM siRNAs modified at the 5'-end side including 5'-end nucleotide and the seed region of the antisense strand exhibited much stronger gene silencing effect than non-prodrug-type 2'-O-methyl (2'-O-Me) siRNAs. Furthermore, the resistances for nuclease digestion of siRNAs were actually enhanced by 2'-O-MDTM modifications. Our results indicate that 2'-O-MDTM modifications improve the stability of siRNA in serum and they are able to be introduced at any positions of siRNA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  10. Dinitrobenzamide mustard prodrugs - hypoxic cytotoxins and dual substrates for E.coli nitroreductase

    International Nuclear Information System (INIS)

    Patterson, A.V.; Hogg, A.; Pullen, S.; Degenkolbe, A.; Li, D.; Chappell, A.; Ying, S.; Atwell, G.J.; Denny, W.A.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    Conditional replicating adenoviral vectors (CRAds) have received considerable attention as therapeutic tools in combination with radiotherapy. Viral distribution and micro-regional geometry are likely to be important issues in the treatment of human solid tumours with gene therapy, particularly following intravenous virus administration. The use of CRAds that are 'armed' with enzyme/prodrug systems may overcome some of the perceived limitations; CRAds can redistribute and self-amplify in a cytolytic fashion whilst prodrug metabolites may elicit a local bystander effect. Either or both of these cytotoxic properties could have favourable interactions with radiotherapy (IR). Nevertheless, they may be insufficient to avoid pockets of vector-naive tumour cells beyond the diffusion limits of cytotoxic prodrug metabolites, such as when perivascular seeding occurs. Under such circumstances hypoxic tumour cells may represent the least accessible compartment for vector transfection; the same tumour subpopulation that is likely to be radioresistant. E.coli nitroreductase (NTR) can bioactivate dinitrobenzamide mustards (DNBMs) and is a promising enzyme/prodrug system for 'arming' CRAds. Notably DNMBs can also be activated by endogenous human reductases under low oxygen conditions providing an opportunity to identify dual hypoxic cytotoxins/NTR substrates that may circumvent some of the geometry issues and provide complementarity with IR. To identify a prodrug for NTR that is also active as a hypoxic cytotoxin in vivo. From a set of 164 DNB prodrugs, 19 with favourable activity in vitro against a panel of four NTR-expressing cancer cells were selected and screened for activity as hypoxic cytotoxins in vitro. Measured E17 values ranged from -444 to -366 mV. Seven DNBMs possessed acceptable hypoxic selectivity against the human NSCLC cell line A549WT or clones engineered to overexpress either a human single-electron reductase, cytochrome P450 reductase (A549P450R), or oxic

  11. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach.

    Science.gov (United States)

    Gupta, Sheeba Varghese; Gupta, Deepak; Sun, Jing; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2011-12-05

    The purpose of this study was to improve the membrane permeability and oral absorption of the poorly permeable anti-influenza agent, zanamivir. The poor oral bioavailability is attributed to the high polarity (cLogP ∼ -5) resulting from the polar and zwitterionic nature of zanamivir. In order to improve the permeability of zanamivir, prodrugs with amino acids were developed to target the intestinal membrane transporter, hPepT1. Several acyloxy ester prodrugs of zanamivir conjugated with amino acids were synthesized and characterized. The prodrugs were evaluated for their chemical stability in buffers at various pHs and for their transport and tissue activation by enzymes. The acyloxy ester prodrugs of zanamivir were shown to competitively inhibit [(3)H]Gly-Sar uptake in Caco-2 cells (IC(50): 1.19 ± 0.33 mM for L-valyl prodrug of zanamivir). The L-valyl prodrug of zanamivir exhibited ∼3-fold higher uptake in transfected HeLa/hPepT1 cells compared to wild type HeLa cells, suggesting, at least in part, carrier mediated transport by the hPepT1 transporter. Further, enhanced transcellular permeability of prodrugs across Caco-2 monolayer compared to the parent drug (P(app) = 2.24 × 10(-6) ± 1.33 × 10(-7) cm/s for L-valyl prodrug of zanamivir), with only parent zanamivir appearing in the receiver compartment, indicates that the prodrugs exhibited both enhanced transport and activation in intestinal mucosal cells. Most significantly, several of these prodrugs exhibited high intestinal jejunal membrane permeability, similar to metoprolol, in the in situ rat intestinal perfusion system, a system highly correlated with human jejunal permeability. In summary, this mechanistic targeted prodrug strategy, to enhance oral absorption via intestinal membrane carriers such as hPepT1, followed by activation to parent drug (active pharmaceutical ingredient or API) in the mucosal cell, significantly improves the intestinal epithelial cell permeability of zanamivir and has the

  12. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Stimuli-responsive PEGylated prodrugs for targeted doxorubicin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minghui; Qian, Junmin, E-mail: jmqian@mail.xjtu.edu.cn; Liu, Xuefeng; Liu, Ting; Wang, Hongjie

    2015-05-01

    In recent years, stimuli-sensitive prodrugs have been extensively studied for the rapid “burst” release of antitumor drugs to enhance chemotherapeutic efficiency. In this study, a novel stimuli-sensitive prodrug containing galactosamine as a targeting moiety, poly(ethylene glycol)–doxorubicin (PEG–DOX) conjugate, was developed for targeting HepG2 human liver cancer cells. To obtain the PEG–DOX conjugate, both galactosamine-decorated poly(ethylene glycol) aldehyde (Gal-PEG-CHO) and methoxy poly(ethylene glycol) aldehyde (mPEG-CHO) were firstly synthesized and functionalized with dithiodipropionate dihydrazide (TPH) through direct reductive amination via Schiff's base formation, and then DOX molecules were chemically conjugated to the hydrazide end groups of TPH-functionalized Gal-/m-PEG chains via pH-sensitive hydrazone linkages. The chemical structures of TPH-functionalized PEG and PEG–DOX prodrug were confirmed by {sup 1}H NMR analysis. The PEG–DOX conjugate could self-assemble into spherical nanomicelles with a mean diameter of 140 nm, as indicated by transmission electron microscopy and dynamic light scattering. The drug loading content and loading efficiency in the prodrug nanomicelles were as high as 20 wt.% and 75 wt.%, respectively. In vitro drug release studies showed that DOX was released rapidly from the prodrug nanomicelles at the intracellular levels of pH and reducing agent. Cellular uptake and MTT experiments demonstrated that the galactosamine-decorated prodrug nanomicelles were more efficiently internalized into HepG2 cells via a receptor-mediated endocytosis process and exhibited a higher toxicity, compared with pristine prodrug nanomicelles. These results suggest that the novel Gal-PEG–DOX prodrug nanomicelles have tremendous potential for targeted liver cancer therapy. - Highlights: • A novel stimuli-responsive PEGylated prodrugs is synthesized. • PEGylated prodrugs can self-assemble into spherical nanoparticles (140 nm

  14. Paclitaxel prodrugs, method for preparation as well as their use in selective chemotherapy

    NARCIS (Netherlands)

    de Bont, Hendricus BA; Leenders, Ruben GG; Scheeren, Johan W; Haisma, Hidde J; de Vos, Dick

    1998-01-01

    A paclitaxel prodrug has a paclitaxel portion coupled to a cleavable N-(aliphatic or aromatic)-O-glycosyl carbamate spacer group, and can be administered orally, topically or by injection to provide an anti-tumor effect, the prodrug being activated by a hydrolizing enzyme, an endogeneous enzyme or

  15. Hypoxia-targeting antitumor prodrugs and photosensitizers

    International Nuclear Information System (INIS)

    Zhang Zhouen; Nishimoto, S.I.

    2006-01-01

    Tumor hypoxia has been identified as a key subject for tumor therapy, since hypoxic tumor cells show resistance to treatment of tumor tissues by radiotherapy, chemotherapy and phototherapy. For improvement of tumor radiotherapy, we have proposed a series of radiation-activated prodrugs that could selectively release antitumor agent 5-fluorouracil or 5-fluorodeoxyuridine under hypoxic conditions. Recently, we attempted to develop two families of novel hypoxia-targeting antitumor agents, considering that tumor-hypoxic environment is favorable to biological and photochemical reductions. The first family of prodrugs was derived from camptothecin as a potent topoisomerase I inhibitor and several bioreductive motifs. These prodrugs could be activated by NADPH-cytochrome P450 reductase or DT-diaphorase to release free camptothecin, and thereby showed hypoxia-selective cytotoxictiy towards tumor cells. These prodrugs were also applicable to the real-time monitoring of activation and antitumor effect by fluorometry. Furthermore, the camptothecin-bioreductive motif conjugates was confirmed to show an oxygen-independent DAN photocleaving activity, which could overcome a drawback of back electron transfer occurring in the photosensitized one-electron oxidation of DNA. Thus, these camptothecin derivatives could be useful to both chemotherapy and phototherapy for hypoxic tumor cells. The second family of prodrugs harnessed UV light for cancer therapy, incorporating the antitumor agent 5-fluorourcil and the photolabile 2-nitrobenzyl chromophores. The attachment of a tumor-homing cyclic peptide CNGRC was also employed to construct the prototype of tumor-targeting photoactiaved antitumor prodrug. These novel prodrugs released high yield of 5-fluorourcil upon UV irradiation at λ ex =365 nm, while being quite stable in the dark. The photoactivation mechanism was also clarified by means of nanosecond laser flash photolysis. (authors)

  16. Gene expression profiling for nitric oxide prodrug JS-K to kill HL-60 myeloid leukemia cells.

    Science.gov (United States)

    Liu, Jie; Malavya, Swati; Wang, Xueqian; Saavedra, Joseph E; Keefer, Larry K; Tokar, Erik; Qu, Wei; Waalkes, Michael P; Shami, Paul J

    2009-07-01

    The nitric oxide (NO) prodrug JS-K is shown to have anticancer activity. To profile the molecular events associated with the anticancer effects of JS-K, HL-60 leukemia cells were treated with JS-K and subjected to microarray and real-time RT-PCR analysis. JS-K induced concentration- and time-dependent gene expression changes in HL-60 cells corresponding to the cytolethality effects. The apoptotic genes (caspases, Bax, and TNF-alpha) were induced, and differentiation-related genes (CD14, ITGAM, and VIM) were increased. For acute phase protein genes, some were increased (TP53, JUN) while others were suppressed (c-myc, cyclin E). The expression of anti-angiogenesis genes THBS1 and CD36 and genes involved in tumor cell migration such as tissue inhibitors of metalloproteinases, were also increased by JS-K. Confocal analysis confirmed key gene changes at the protein levels. Thus, multiple molecular events are associated with JS-K effects in killing HL-60, which could be molecular targets for this novel anticancer NO prodrug.

  17. Activation of multiple chemotherapeutic prodrugs by the natural enzymolome of tumour-localised probiotic bacteria.

    Science.gov (United States)

    Lehouritis, Panos; Stanton, Michael; McCarthy, Florence O; Jeavons, Matthieu; Tangney, Mark

    2016-01-28

    Some chemotherapeutic drugs (prodrugs) require activation by an enzyme for efficacy. We and others have demonstrated the ability of probiotic bacteria to grow specifically within solid tumours following systemic administration, and we hypothesised that the natural enzymatic activity of these tumour-localised bacteria may be suitable for activation of certain such chemotherapeutic drugs. Several wild-type probiotic bacteria; Escherichia coli Nissle, Bifidobacterium breve, Lactococcus lactis and Lactobacillus species, were screened against a panel of popular prodrugs. All strains were capable of activating at least one prodrug. E. coli Nissle 1917 was selected for further studies because of its ability to activate numerous prodrugs and its resistance to prodrug toxicity. HPLC data confirmed biochemical transformation of prodrugs to their toxic counterparts. Further analysis demonstrated that different enzymes can complement prodrug activation, while simultaneous activation of multiple prodrugs (CB1954, 5-FC, AQ4N and Fludarabine phosphate) by E. coli was confirmed, resulting in significant efficacy improvement. Experiments in mice harbouring murine tumours validated in vitro findings, with significant reduction in tumour growth and increase in survival of mice treated with probiotic bacteria and a combination of prodrugs. These findings demonstrate the ability of probiotic bacteria, without the requirement for genetic modification, to enable high-level activation of multiple prodrugs specifically at the site of action. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter.

    Science.gov (United States)

    Ahn, M; Lee, S-J; Li, X; Jiménez, J A; Zhang, Y-P; Bae, K-H; Mohammadi, Y; Kao, C; Gardner, T A

    2009-01-01

    Enzyme pro-drug suicide gene therapy has been hindered by inefficient viral delivery and gene transduction. To further explore the potential of this approach, we have developed AdIU1, a prostate-restricted replicative adenovirus (PRRA) armed with the herpes simplex virus thymidine kinase (HSV-TK). In our previous Ad-OC-TK/ACV phase I clinical trial, we demonstrated safety and proof of principle with a tissue-specific promoter-based TK/pro-drug therapy using a replication-defective adenovirus for the treatment of prostate cancer metastases. In this study, we aimed to inhibit the growth of androgen-independent (AI), PSA/PSMA-positive prostate cancer cells by AdIU1. In vitro the viability of an AI- PSA/PSMA-expressing prostate cancer cell line, CWR22rv, was significantly inhibited by treatment with AdIU1 plus GCV (10 microg ml(-1)), compared with AdIU1 treatment alone and also cytotoxicity was observed following treatment with AdIU1 plus GCV only in PSA/PSMA-positive CWR22rv and C4-2 cells, but not in the PSA/PSMA-negative cell line, DU-145. In vivo assessment of AdIU1 plus GCV treatment revealed a stronger therapeutic effect against CWR22rv tumors in nude mice than treatment with AdIU1 alone, AdE4PSESE1a alone or in combination with GCV. Our results demonstrate the therapeutic potential of specific-oncolysis and suicide gene therapy for AI-PSA/PSMA-positive prostate cancer gene therapy.

  19. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    Science.gov (United States)

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  20. Targeted cytosine deaminase-uracil phosphoribosyl transferase suicide gene therapy induces small cell lung cancer-specific cytotoxicity and tumor growth delay

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Gjetting, Torben; Poulsen, Thomas Tuxen

    2010-01-01

    Small cell lung cancer (SCLC) is a highly malignant cancer for which there is no curable treatment. Novel therapies are therefore in great demand. In the present study we investigated the therapeutic effect of transcriptionally targeted suicide gene therapy for SCLC based on the yeast cytosine...... deaminase (YCD) gene alone or fused with the yeast uracil phosphoribosyl transferase (YUPRT) gene followed by administration of 5-fluorocytosine (5-FC) prodrug. Experimental design: The YCD gene or the YCD-YUPRT gene was placed under regulation of the SCLC-specific promoter insulinoma-associated 1 (INSM1...

  1. Amphipathic dextran-doxorubicin prodrug micelles for solid tumor therapy.

    Science.gov (United States)

    Jin, Rong; Guo, Xuelian; Dong, Lingli; Xie, Enyuan; Cao, Aoneng

    2017-10-01

    A group of micelles self-assembled from deoxycholic acid-doxorubicin-conjugated dextran (denoted as Dex-DCA-DOX) prodrugs were designed and prepared for pH-triggered drug release and cancer chemotherapy. These prodrugs could be successfully produced by chemically coupling hydrophobic deoxycholic acid (DCA) to dextran hydrazine (denoted as Dex-NHNH 2 ) and hydrazone linker formation between doxorubicin (DOX) and Dex-NHNH 2 . These Dex-DCA-DOX prodrugs self-assembled to form micelles under physiological conditions with varied particle sizes depending on molecular weight of dextran, degree of substitution (DS) of DCA and DOX. After optimization, Dex10k-DCA9-DOX5.5 conjugate comprising dextran of 10kDa, DCA of DS 9 and DOX loading content of 5.5wt%, formed the micelles with the smallest size (110nm). These prodrug micelles could slowly liberate DOX under physiological conditions but efficiently released the drug at an acidified endosomal pH by the hydrolysis of acid-labile hydrazone linker. In vitro cytotoxicity experiment indicated that Dex10k-DCA9-DOX5.5 micelles exerted marked antitumor activity against MCF-7 and SKOV-3 cancer cells. Besides, intravenous administration of the micelles afforded growth inhibition of SKOV-3 tumor bearing in nude mice at a dosage of 2.5mg per kg with anti-cancer efficacy comparable to free DOX-chemotherapy but low systemic toxicity. This study highlights the feasibility of bio-safe and efficient dextran-based prodrug micelles designed for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. CNS-directed gene therapy for lysosomal storage diseases

    OpenAIRE

    Sands, Mark S; Haskins, Mark E

    2008-01-01

    Lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders usually caused by deficient activity of a single lysosomal enzyme. As most lysosomal enzymes are ubiquitously expressed, a deficiency in a single enzyme can affect multiple organ systems, including the central nervous system (CNS). At least 75% of all LSDs have a significant CNS component. Approaches such as bone marrow transplantation (BMT) or enzyme replacement therapy (ERT) can effectively treat the systemic dis...

  3. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  4. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction

    Science.gov (United States)

    Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L.; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R.; Kohn, Donald B.

    2012-01-01

    Gene therapy (GT) for adenosine deaminase–deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada−/−). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist. PMID:22833548

  5. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    Silica-IMERs 14 implicated in neurological disorders such as Schizophrenia and Parkinson’s disease.[86] Drug discovery for targets that can alter the...primarily the activation of prodrugs and proantibiotics for cancer treatments or antibiotic therapy , respectively.[87] Nitrobenzene nitroreductase was...BuChE) Monolith disks* Packed Silica Biosilica Epoxide- Silica Silica-gel Enzyme Human AChE Human AChE Human AChE Equine BuChE Human

  6. Pharmacological evaluation and preliminary pharmacokinetics studies of a new diclofenac prodrug without gastric ulceration effect.

    Science.gov (United States)

    Santos, Jean Leandro Dos; Moreira, Vanessa; Campos, Michel Leandro; Chelucci, Rafael Consolin; Barbieri, Karina Pereira; de Castro Souto, Pollyana Cristina Maggio; Matsubara, Márcio Hideki; Teixeira, Catarina; Bosquesi, Priscila Longhin; Peccinini, Rosângela Gonçalves; Chin, Chung Man

    2012-11-19

    Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE(2) levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy.

  7. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  8. Influence of Immune Responses in Gene/Stem Cell Therapies for Muscular Dystrophies

    Directory of Open Access Journals (Sweden)

    Andrea Farini

    2014-01-01

    Full Text Available Muscular dystrophies (MDs are a heterogeneous group of diseases, caused by mutations in different components of sarcolemma, extracellular matrix, or enzymes. Inflammation and innate or adaptive immune response activation are prominent features of MDs. Various therapies under development are directed toward rescuing the dystrophic muscle damage using gene transfer or cell therapy. Here we discussed current knowledge about involvement of immune system responses to experimental therapies in MDs.

  9. Efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in combination with radiation therapy in an orthotopic mouse prostate cancer model

    International Nuclear Information System (INIS)

    Freytag, Svend O.; Paielli, Dell; Wing, Mark; Rogulski, Ken; Brown, Steve; Kolozsvary, Andy; Seely, John; Barton, Ken; Dragovic, Alek; Kim, Jae Ho

    2002-01-01

    Purpose: The purpose of this study was to evaluate the efficacy and toxicity of replication-competent adenovirus-mediated double suicide gene therapy in an adjuvant setting with external beam radiation therapy (EBRT) in an experimental prostate cancer model in preparation for a Phase I clinical study in humans. Methods: For efficacy studies, i.m. DU145 and intraprostatic LNCaP C4-2 tumors were established in immune-deficient mice. Tumors were injected with the lytic, replication-competent Ad5-CD/TKrep adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene. Two days later, mice were administered 1 week of 5-fluorocytosine + ganciclovir (GCV) prodrug therapy and fractionated doses of EBRT (trimodal therapy). Tumor control rate of trimodal therapy was compared to that of EBRT alone. For toxicology studies, immune-competent male mice received a single intraprostatic injection (10 10 vp) of the replication-competent Ad5-CD/TKrep adenovirus. Two days later, mice were administered 4 weeks of 5-fluorocytosine + GCV prodrug therapy and 56 Gy EBRT to the pelvic region. The toxicity of trimodal therapy was assessed by histopathologic analysis of major organs and clinical chemistries. Results: In both the i.m. DU145 and intraprostatic LNCaP C4-2 tumor models, trimodal therapy significantly improved primary tumor control beyond that of EBRT alone. In the DU145 model, trimodal therapy resulted in a tumor growth delay (70 days) that was more than twice that (32 days) of EBRT alone. Whereas EBRT failed to eradicate DU145 tumors, trimodal therapy resulted in 25% tumor cure. In the LNCaP C4-2 tumor model, EBRT slowed the growth of intraprostatic tumors, but resulted in no tumor cures, and 57% of the mice developed retroperitoneal lymph node metastases at 3 months. By contrast, trimodal therapy resulted in 44% tumor cure and reduced significantly the percentage (13%) of lymph node metastases relative to EBRT alone. Overall

  10. Pharmacological Evaluation and Preliminary Pharmacokinetics Studies of a New Diclofenac Prodrug without Gastric Ulceration Effect

    Directory of Open Access Journals (Sweden)

    Chung Man Chin

    2012-11-01

    Full Text Available Long-term nonsteroidal anti-inflammatory drugs (NSAIDs therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenylindolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE2 levels, COX-2 expression and cellular influx into peritoneal cavity induced by carrageenan treatment. Preliminary pharmacokinetic studies have shown in vivo bioconversion of prodrug to diclofenac. This prodrug is a new nonulcerogenic NSAID useful to treat inflammatory events by long-term therapy.

  11. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.

    Science.gov (United States)

    Massaro, M; Amorati, R; Cavallaro, G; Guernelli, S; Lazzara, G; Milioto, S; Noto, R; Poma, P; Riela, S

    2016-04-01

    Covalently functionalized halloysite nanotubes (HNTs) were successfully employed as dual-responsive nanocarriers for curcumin (Cur). Particularly, we synthesized HNT-Cur prodrug with a controlled curcumin release on dependence of both intracellular glutathione (GSH) and pH conditions. In order to obtain HNT-Cur produgs, halloysite was firstly functionalized with cysteamine through disulphide linkage. Afterwards, curcumin molecules were chemically conjugated to the amino end groups of halloysite via Schiff's base formation. The successful functionalization of halloysite was proved by thermogravimetric analysis, FT-IR spectroscopy, dynamic light scattering and scanning electron microscopy. Experimental data confirmed the presence of curcumin on HNT external surface. Moreover, we investigated the kinetics of curcumin release by UV-vis spectroscopy, which highlighted that HNT-Cur prodrug possesses dual stimuli-responsive ability upon exposure to GSH-rich or acidic environment. In vitro antiproliferative and antioxidant properties of HNT-Cur prodrug were studied with the aim to explore their potential applications in pharmaceutics. This work puts forward an efficient strategy to prepare halloysite based nanocarriers with controlled drug delivery capacity through direct chemical grafting with stimuli-responsive linkage. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy

    Directory of Open Access Journals (Sweden)

    Qu CY

    2015-06-01

    Full Text Available Chun-Ying Qu,1,* Min Zhou,1,* Ying-wei Chen,2 Mei-mei Chen,3 Feng Shen,1 Lei-Ming Xu11Digestive Endoscopic Diagnosis and Treatment Center, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, People’s Republic of China; 3Digestive Department, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People’s Republic of China*These authors contributed equally to this workPurpose: The first-line chemotherapy treatment protocol for gastric cancer is combination chemotherapy of 5-fluorouracil (5-FU and cisplatin (CDDP. The aim of this study was to engineer prodrug-based nanostructured lipid carriers (NLC platform for codelivery of 5-FU and CDDP to enhance therapy and decrease toxicity.Methods: First, 5-FU-stearic acid lipid conjugate was synthesized by two steps. Second, 5-FU-stearic acid prodrug and CDDP were loaded in NLC. Finally, hyaluronic acid (HA was coated onto NLC surface. Average size, zeta potential, and drug loading capacity of NLC were evaluated. Human gastric cancer cell line BGC823 (BGC823 cells was used for the testing of in vitro cytotoxicity assays. In vivo antitumor activity of NLC was evaluated in mice bearing BGC823 cells model.Results: HA-coated 5-FU-stearic acid prodrug and CDDP-loaded NLC (HA-FU/C-NLC showed a synergistic effect in combination therapy and displayed the greatest antitumor activity than all of the free drugs or uncoated NLC in vitro and in vivo.Conclusion: This work reveals that HA-coated NLC could be used as a novel carrier to codeliver 5-FU and CDDP for gastric cancer therapy. HA-FU/C-NLC could be a promising targeted and combinational therapy in nanomedicine.Keywords: gastric cancer, nanostructured lipid carriers, hyaluronic acid, combination chemotherapy, lipid prodrug

  13. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Science.gov (United States)

    Lytle, Allison M; Brown, Harrison C; Paik, Na Yoon; Knight, Kristopher A; Wright, J Fraser; Spencer, H Trent; Doering, Christopher B

    2016-01-01

    Immune responses to coagulation factors VIII (FVIII) and IX (FIX) represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC) retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV)-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV) vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV. PMID:26909355

  14. Effects of FVIII immunity on hepatocyte and hematopoietic stem cell–directed gene therapy of murine hemophilia A

    Directory of Open Access Journals (Sweden)

    Allison M Lytle

    2016-01-01

    Full Text Available Immune responses to coagulation factors VIII (FVIII and IX (FIX represent primary obstacles to hemophilia treatment. Previously, we showed that hematopoietic stem cell (HSC retroviral gene therapy induces immune nonresponsiveness to FVIII in both naive and preimmunized murine hemophilia A settings. Liver-directed adeno-associated viral (AAV-FIX vector gene transfer achieved similar results in preclinical hemophilia B models. However, as clinical immune responses to FVIII and FIX differ, we investigated the ability of liver-directed AAV-FVIII gene therapy to affect FVIII immunity in hemophilia A mice. Both FVIII naive and preimmunized mice were administered recombinant AAV8 encoding a liver-directed bioengineered FVIII expression cassette. Naive animals receiving high or mid-doses subsequently achieved near normal FVIII activity levels. However, challenge with adjuvant-free recombinant FVIII induced loss of FVIII activity and anti-FVIII antibodies in mid-dose, but not high-dose AAV or HSC lentiviral (LV vector gene therapy cohorts. Furthermore, unlike what was shown previously for FIX gene transfer, AAV-FVIII administration to hemophilia A inhibitor mice conferred no effect on anti-FVIII antibody or inhibitory titers. These data suggest that functional differences exist in the immune modulation achieved to FVIII or FIX in hemophilia mice by gene therapy approaches incorporating liver-directed AAV vectors or HSC-directed LV.

  15. Synthesis and biological evaluation of S-acyl-3-thiopropyl prodrugs of N-phosphonoacetyl-L-aspartate (PALA).

    Science.gov (United States)

    Gagnard, Valérie; Leydet, Alain; Le Mellay, Véronique; Aubenque, Marielle; Morère, Alain; Montero, Jean-Louis

    2003-10-01

    The synthesis of new prodrugs of PALA characterised by the presence of S-acyl-3-thiopropyl, as enzyme-labile groups on the phosphonate moiety of PALA, is reported. The cytotoxic activities of PALA prodrugs were determined against human cell line (SW1573 lung carcinoma cells). A number of prodrugs bearing S-pivaloyl as acyl groups displayed cytotoxic activity in the same order of magnitude of PALA.

  16. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  17. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Gene & Cell Therapy Defined Gene therapy and cell therapy are overlapping fields of biomedical research that aim to repair the direct cause of genetic diseases. Read More Gene & Cell Therapy FAQ's Read the most common questions raised by ...

  18. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir

    Directory of Open Access Journals (Sweden)

    Mitesh Patel

    2014-04-01

    Full Text Available Poor systemic concentrations of lopinavir (LPV following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp and multidrug resistance-associated proteins (MRPs and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1 and MRP2 (MDCK-MRP2 transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.

  19. The gene suicide system NTR/CB1954 causes ablation of differentiated 3T3L1 adipocytes by apoptosis

    Directory of Open Access Journals (Sweden)

    RICARDO N FELMER

    2004-01-01

    Full Text Available The feasibility of ablating differentiated adipocytes and the mechanism of cell ablation with a suitable prodrug activating system is described. The system is based on the use of E. coli nitroreductase (NTR enzyme that activates certain nitro compounds, such as the antitumor drug CB1954, into cytotoxic DNA interstrand cross-linking agents. Differentiated preadipocyte cells (3T3L1 transfected with an aP2 driven nitroreductase construct were efficiently killed after incubation with medium containing the prodrug CB1954, while untransfected cells were not affected. It was demonstrated that the mechanism of cell ablation is apoptosis and that the system has a bystander effect mediated by a toxic metabolite of the prodrug. The described system should provide a good alternative approach for gene therapy studies and a new inducible approach to manipulating the number of cells in tissues of transgenic animals and the ability to study the recovery of the tissue from cell damage or loss

  20. ¹¹¹In-DOTA-Annexin V for imaging of apoptosis during HSV1-tk/GCV prodrug activation gene therapy in mice with NG4TL4 sarcoma.

    Science.gov (United States)

    Lin, Ming-Hsien; Wu, Shih-Yen; Wang, Hsin-Ell; Liu, Ren-Shyan; Chen, Jyh-Cheng

    2016-02-01

    Apoptosis has been suggested as a cytocidal mechanism of the HSV1-tk-expressing cells when exposed to ganciclovir (GCV). This study evaluated the efficacy of (111)In-labeled Annexin V for monitoring tumor responses during prodrug activation gene therapy with HSV1-tk and GCV. Annexin V was conjugated to DOTA using N-hydroxysulfosuccinimide (sulfo-NHS) and 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC), labeled with (111)In-InCl3 and purified using size exclusion chromatography to give (111)In-DOTA-Annexin V conjugate. The radiochemical yield and the radiochemical purity of (111)In-DOTA-Annexin V were 74±12% and 98±3%, respectively (n=10). (111)In-DOTA-BSA was prepared similarly. An in vitro study to demonstrate the apoptosis of NG4TL4-STK cells after GCV treatment has been performed. Mice bearing NG4TL4-STK and NG4TL4-WT tumors were treated with GCV (10 mg/kg daily) by i.p. injection for 7 consecutive days. Before and during the GCV treatment, biodistribution studies and scintigraphic imaging were performed at 2h post injection of the radiotracers. The uptake of (111)In-DOTA-Annexin V in treated cells (13.41±1.30%) was 4.1 times higher than that in untreated cells (3.21±0.37%). The GCV-induced cell apoptosis in NG4TL4-STK tumor resulted in a significantly increasing accumulation of (111)In-DOTA-Annexin V (1.92±0.32%ID/g at day 0, 4.79±0.86%ID/g at day 2, 4.56±0.58%ID/g at day 4) was observed, but not for that of (111)In-DOTA-BSA. During consecutive GCV treatment, scintigraphic imaging with (111)In-DOTA-Annexin V revealed high uptake in NG4TL4-STK tumor compared with that in NG4TL4-WT tumor. However, no specific (111)In-DOTA-BSA accumulation in NG4TL4-STK and NG4TL4-WT tumors was observed throughout the course of GCV treatment. This study demonstrated that (111)In-DOTA-Annexin V can be used for monitoring tumor cell apoptosis during prodrug activation gene therapy with HSV1-tk and GCV for cancer treatment. Copyright © 2015 Elsevier Ltd. All rights

  1. Antiparkinson Prodrugs

    Directory of Open Access Journals (Sweden)

    Laura Serafina Cerasa

    2008-01-01

    Full Text Available Parkinson`s disease (PD is a progressive, neurodegenerative disorder whichinvolves the loss of dopaminergic neurons of the substantia nigra pars compacta. Currenttherapy is essentially symptomatic, and L-Dopa (LD, the direct precursor of dopamine(DA, is the treatment of choice in more advanced stages of the disease. Substitutiontherapy with LD is, however, associated with a number of acute problems. The peripheralconversion of LD by amino acid decarboxylase (AADC to DA is responsible for thetypical gastrointestinal (nausea, emesis and cardiovascular (arrhythmia, hypotension sideeffects. To minimize the conversion to DA outside the central nervous system (CNS LD isusually given in combination with peripheral inhibitors of AADC (carbidopa andbenserazide. In spite of that, other central nervous side effects such as dyskinesia, on-offphenomenon and end-of-dose deterioration still remain. The main factors responsible forthe poor bioavailability and the wide range of inter- and intra-patient variations of plasmalevels are the drug’s physical-chemical properties: low water and lipid solubility, resultingin unfavourable partition, and the high susceptibility to chemical and enzymaticdegradation. In order to improve the bioavailability, the prodrug approach appeared to bethe most promising and some LD prodrugs have been prepared in an effort to solve theseproblems. We report here a review of progress in antiparkinson prodrugs, focusing onchemical structures mainly related to LD, DA and dopaminergic agonists.

  2. Synthesis of substrates for gene therapy monitoring of HSV1-TK system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Tae Hyun; Ahn, Soon Hyuk; Choi, Chang Woon; Lim, Sang Moo; Awh, Ok Doo [College of Medicine, Yonsei Univ., Wonju (Korea, Republic of)

    2002-04-01

    In gene therapy, tumor cells expressing the herpes simplex virus thymidine kinase are sensitive to prodrugs. Potential prodrugs IVDU and IVFRU were synthesized and radiolabeled with radioiodine for noninvasive imaging of herpes simplex virus type 1 gene expression. 5-(2-trimethysilyl) vinyl-2'-deoxyuridine and 5-t(2-trimethylsilyl)vinyl-2'-fluoro-2'-deoxyuridine, precursors of 5-(2-iodo)viny 1-2'-deoxy uridine(IVDU) and 5-(2-iodo)-2'-vinyl-2'-deoxy-2'-fluorotibofuranosyl uracil(IVFRU), were synthesized from reaction of trans-1-trimethylsillyl-2-tri-n-butylstannylethylene with 5-iodo-2'-deoxyuridine and 5-iodo-2'-fluoro-2'-deoxyuridine, respectively, on the condition of Pd catalyst. These precursors were separated from reaction mixture by silica gel column chromatography method. Each precursor was radioiodinated with radioiodine by mixing with ICI oxidizing agent. These radioiodinated compounds were purified with HPLC. Radiohalogen exchange has been shown to be effective for the synthesis of products with lower specific activity. Similarly, carrier-added and high specific activity products have been isolated in respectable radiochemical yields using ICI method. Synthetic yield of precursors, IVDU and IVFRU were 43% and 18%, respectively. Radiochemical purity of both compunds was over 98%. We synthesized precursors of IVDU and IVFRU for monitoring of HSV1-tk gene expression. Radiotracers were radioiodinated with high radiolabeling yield by ICI method.

  3. The Effect of 5-Aminolevulinic Acid on Cytochrome P450-Mediated Prodrug Activation.

    Directory of Open Access Journals (Sweden)

    Mai Miura

    Full Text Available Of late, numerous prodrugs are widely used for therapy. The hemeprotein cytochrome P450 (CYP catalyzes the activation of prodrugs to form active metabolites. Therefore, the activation of CYP function might allow the use of lower doses of prodrugs and decrease toxicity. We hypothesized that the addition of 5-aminolevulinic acid (ALA, a precursor in the porphyrin biosynthetic pathway, enhances the synthesis of heme, leading to the up-regulation of CYP activity. To test this hypothesis, we treated a human gastric cancer cell line with ALA and determined the effect on CYP-dependent prodrug activation. For this purpose, we focused on the anticancer prodrug tegafur, which is converted to its active metabolite 5-fluorouracil (5-FU mainly by CYP2A6. We show here that ALA increased CYP2A6-dependent tegafur activation, suggesting that ALA elevated CYP activity and potentiated the activation of the prodrug.

  4. Chlorzoxazone esters of some non-steroidal anti-inflammatory (NSAI) carboxylic acids as mutual prodrugs: design, synthesis, pharmacological investigations and docking studies.

    Science.gov (United States)

    Abdel-Azeem, Ahmed Z; Abdel-Hafez, Atef A; El-Karamany, Gamal S; Farag, Hassan H

    2009-05-15

    The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (6-8) of some acidic NSAIDs (1-3) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (6-8) were confirmed by IR, (1)H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (6-8) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t(1/2) approximately 37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (6-8) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4days. In addition, docking of the mutual ester prodrugs (6-8) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.

  5. [Gene therapy and cell transplantation for Parkinson's disease].

    Science.gov (United States)

    Muramatsu, Shin-ichi

    2005-11-01

    Increasing enthusiasm in the field of stem cell research is raising the hope of novel cell replacement therapies for Parkinson's disease (PD), but it also raises both scientific and ethical concerns. In most cases, dopaminergic cells are transplanted ectopically into the striatum instead of the substantia nigra. If the main mechanism underlying any observed functional recovery with these cell replacement therapies is restoration of dopaminergic neurotransmission, then viral vector-mediated gene delivery of dopamine-synthesizing enzymes is a more straight forward approach. The development of a recombinant adeno-associated viral (AAV) vector is making gene therapy for PD a feasible therapeutic option in the clinical arena. Efficient and long-term expression of genes for dopamine-synthesizing enzymes in the striatum restored local dopamine production and allowed behavioral recovery in animal models of PD. A clinical trial to evaluate the safety and efficacy of AAV vector-mediated gene transfer of aromatic L-amino acid decarboxylase, an enzyme that converts L-dopa to dopamine, is underway. With this strategy patients would still need to take L-dopa to control their PD symptoms, however, dopamine production could be regulated by altering the dose of L-dopa. Another AAV vector-based clinical trial is also ongoing in which the subthalamic nucleus is transduced to produce inhibitory transmitters.

  6. A dual function fusion protein of Herpes simplex virus type 1 thymidine kinase and firefly luciferase for noninvasive in vivo imaging of gene therapy in malignant glioma.

    Science.gov (United States)

    Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G

    2004-08-04

    BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.

  7. Dendrimer Prodrugs

    Directory of Open Access Journals (Sweden)

    Soraya da Silva Santos

    2016-05-01

    Full Text Available The main objective of this review is to describe the importance of dendrimer prodrugs in the design of new drugs, presenting numerous applications of these nanocomposites in the pharmaceutical field. Therefore, the use of dendrimer prodrugs as carrier for drug delivery, to improve pharmacokinetic properties of prototype, to promote drug sustained-release, to increase selectivity and, consequently, to decrease toxicity, are just some examples of topics that have been extensively reported in the literature, especially in the last decade. The examples discussed here give a panel of the growing interest dendrimer prodrugs have been evoking in the scientific community.

  8. Pharmacological Evaluation and Preliminary Pharmacokinetics Studies of a New Diclofenac Prodrug without Gastric Ulceration Effect

    OpenAIRE

    dos Santos, Jean Leandro [UNESP; Moreira, Vanessa; Campos, Michel Leandro [UNESP; Chelucci, Rafael Consolin [UNESP; Barbieri, Karina Pereira [UNESP; Maggio de Castro Souto, Pollyana Cristina; Matsubara, Marcio Hideki; Teixeira, Catarina; Bosquesi, Priscila Longhin [UNESP; Peccinini, Rosangela Goncalves [UNESP; Chin, Chung Man [UNESP

    2012-01-01

    Long-term nonsteroidal anti-inflammatory drugs (NSAIDs) therapy has been associated with several adverse effects such as gastric ulceration and cardiovascular events. Among the molecular modifications strategies, the prodrug approach is a useful tool to discover new safe NSAIDs. The 1-(2,6-dichlorophenyl)indolin-2-one is a diclofenac prodrug which demonstrated relevant anti-inflammatory properties without gastro ulceration effect. In addition, the prodrug decreases PGE(2) levels, COX-2 expres...

  9. A unique highly hydrophobic anticancer prodrug self-assembled nanomedicine for cancer therapy.

    Science.gov (United States)

    Ren, Guolian; Jiang, Mengjuan; Xue, Peng; Wang, Jing; Wang, Yongjun; Chen, Bo; He, Zhonggui

    2016-11-01

    In contrast with common thought, we generated highly hydrophobic anticancer prodrug self-assembled nanoparticles without the aid of surface active substances, based on the conjugation of docetaxel to d-α-tocopherol succinate. The reduction-sensitive prodrug was synthesized with a disulfide bond inserted into the linker and was compared with a control reduction-insensitive prodrug. The morphology and stability of self-assembled nanoparticles were investigated. Cytotoxicity and apoptosis assays showed that the reduction-sensitive nanoparticles had higher anticancer activity than the reduction-insensitive nanoparticles. The reduction-sensitive nanoparticles exhibited favorable in vivo antitumor activity and tolerance compared with docetaxel Tween80-containing formulation and the reduction-insensitive nanoparticles. Taken together, the unique nanomedicine demonstrated a number of advantages: (i) ease and reproducibility of preparation, (ii) high drug payload, (iii) superior stability, (iv) prolonged circulation, and (v) improved therapeutic effect. This highly reproducible molecular assembly strategy should motivate the development of new nanomedicines. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The development of herpes simplex virus thymidine kinase suicide gene imaging

    International Nuclear Information System (INIS)

    Xing Yan; Zhao Jinhua

    2006-01-01

    Suicide gene treatment of tumor catches more and more attention in recent years. Cells transferred with suicide gene from virus or bacteria will express specific enzymes and transform innocuous prodrugs into highly toxic chemotherapeutic drugs. As a result, the cells will be killed. Radionuclide labeled probe can display the biologic characteristics of suicide gene in vivo. This article reviews the development of HSV-tk gene imaging. (authors)

  11. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.

    Science.gov (United States)

    Moriya, Yuki; Yamada, Takuji; Okuda, Shujiro; Nakagawa, Zenichi; Kotera, Masaaki; Tokimatsu, Toshiaki; Kanehisa, Minoru; Goto, Susumu

    2016-03-28

    Although there are several databases that contain data on many metabolites and reactions in biochemical pathways, there is still a big gap in the numbers between experimentally identified enzymes and metabolites. It is supposed that many catalytic enzyme genes are still unknown. Although there are previous studies that estimate the number of candidate enzyme genes, these studies required some additional information aside from the structures of metabolites such as gene expression and order in the genome. In this study, we developed a novel method to identify a candidate enzyme gene of a reaction using the chemical structures of the substrate-product pair (reactant pair). The proposed method is based on a search for similar reactant pairs in a reference database and offers ortholog groups that possibly mediate the given reaction. We applied the proposed method to two experimentally validated reactions. As a result, we confirmed that the histidine transaminase was correctly identified. Although our method could not directly identify the asparagine oxo-acid transaminase, we successfully found the paralog gene most similar to the correct enzyme gene. We also applied our method to infer candidate enzyme genes in the mesaconate pathway. The advantage of our method lies in the prediction of possible genes for orphan enzyme reactions where any associated gene sequences are not determined yet. We believe that this approach will facilitate experimental identification of genes for orphan enzymes.

  12. Cytomegalovirus protease targeted prodrug development.

    Science.gov (United States)

    Sabit, Hairat; Dahan, Arik; Sun, Jing; Provoda, Chester J; Lee, Kyung-Dall; Hilfinger, John H; Amidon, Gordon L

    2013-04-01

    Human cytomegalovirus (HCMV) is a prevalent virus that infects up to 90% of the population. The goal of this research is to determine if small molecular prodrug substrates can be developed for a specific HCMV encoded protease and thus achieve site-specific activation. HCMV encodes a 256 amino acid serine protease that is responsible for capsid assembly, an essential process for herpes virus production. The esterase activity of the more stable HCMV A143T/A144T protease mutant was evaluated with model p-nitrophenol (ONp) esters, Boc-Xaa-ONp (Ala, Leu, Ile, Val, Gln, Phe at the Xaa position). We demonstrate that the A143T/A144T mutant has esterase activity toward specific small ester compounds, e.g., Boc-L-Ala-ONp. Mono amino acid and dipeptide prodrugs of ganciclovir (GCV) were also synthesized and evaluated for hydrolysis by the A143T/A144T protease mutant in solution. Hydrolysis of these prodrugs was also evaluated in Caco-2 cell homogenates, human liver microsomes (HLMs), and rat and human plasma. For the selectivity potential of the prodrugs, the hydrolysis ratio was evaluated as a percentage of prodrug hydrolyzed by the HCMV protease over the percentages of prodrug hydrolyses by Caco-2 cell homogenates, HLMs, and human/rat plasma. A dipeptide prodrug of ganciclovir, Ac-l-Gln-l-Ala-GCV, emerged as a potential selective prodrug candidate. The results of this research demonstrate that targeting prodrugs for activation by a specific protease encoded by the infectious HCMV pathogen may be achievable.

  13. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    Science.gov (United States)

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  14. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    Science.gov (United States)

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  15. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  16. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    Science.gov (United States)

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  17. Enhanced efficacy of radiation-induced gene therapy in mice bearing lung adenocarcinoma xenografts using hypoxia responsive elements

    International Nuclear Information System (INIS)

    Wang Wei-dong; Chen Zheng-tang; Li De-zhi; Duan Yu-zhong; Cao Zheng-huai; Li Rong

    2005-01-01

    The aim of the present study was to investigate whether the hypoxia responsive element (HRE) could be used to enhance suicide gene (HSV-tk) expression and tumoricidal activity in radiation-controlled gene therapy of human lung adenocarcinoma xenografts. A chimeric promoter, HRE-Egr, was generated by directly linking a 0.3-kb fragment of HRE to a 0.6-kb human Egr-1 promoter. Retroviral vectors containing luciferase or the HSV-tk gene driven by Egr-1 or HRE-Egr were constructed. A human adenocarcinoma cell line (A549) was stably transfected with the above vectors using the lipofectamine method. The sensitivity of transfected cells to prodrug ganciclovir (GCV) and cell survival rates were analyzed after exposure to a dose of 2 Gy radiation and hypoxia (1%). In vivo, tumor xenografts in BALB/c mice were transfected with the constructed retroviruses and irradiated to a total dose of 6 Gy, followed by GCV treatment (20 mg/kg for 14 days). When the HSV-tk gene controlled by the HRE-Egr promoter was introduced into A549 cells by a retroviral vector, the exposure to 1% O 2 and 2 Gy radiation induced significant enhancement of GCV cytotoxicity to the cells. Moreover, in nude mice bearing solid tumor xenografts, only the tumors infected with the hybrid promoter-containing virus gradually disappeared after GCV administration and radiation. These results indicate that HRE can enhance transgene expression and tumoricidal activity in HSV-tk gene therapy controlled by ionizing radiation in hypoxic human lung adenocarcinoma. (author)

  18. Prodrugs available on the Brazilian pharmaceutical market and their corresponding bioactivation pathways

    Directory of Open Access Journals (Sweden)

    Roberto Parise Filho

    2010-09-01

    Full Text Available The aim of this paper was to emphasize the importance of prodrug design to therapy, by examining examples available on the Brazilian pharmaceutical market. The principles of prodrug design are briefly discussed herein. Examples of prodrugs from many important therapeutic classes are shown and their advantages relative to the drugs they are derived from are also discussed. Considering the importance of these therapeutic classes, from both therapy and economic standpoints, prodrug design is a very valuable aspect in the research of new drugs and for the pharmaceutical industry as a whole.O objetivo do trabalho foi ressaltar a importância do planejamento de pró-fármacos para a terapia, por meio de exemplos disponíveis no mercado farmacêutico brasileiro. Os princípios da latenciação são sucintamente discutidos. Apresentam-se exemplos de pró-fármacos de muitas classes terapêuticas importantes e as vantagens relativas aos fármacos dos quais derivam são, também, discutidas. Considerando-se a importância dessas classes terapêuticas, tanto do aspecto terapêutico quanto do econômico, o planejamento de pró-fármacos representa aspecto de grande valor na busca de novos fármacos e na indústria farmacêutica como um todo.

  19. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  20. Saliva-catalyzed hydrolysis of a ketobemidone ester prodrug

    DEFF Research Database (Denmark)

    Hansen, L.B.; Christrup, Lona Louring; Bundgaard, H.

    1992-01-01

    Saliva enzyme-catalysed hydrolysis of ester prodrugs or drugs containing sensitive ester groups may be a limiting factor for the buccal absorption of such compounds. Using the isopropyl carbonate ester of ketobemidone as a model substance of a hydrolysis-sensitive prodrug the esterase activity...... of human saliva has been characterized as a function of various factors. The esterase activity was found to decrease rapidly upon storage of the saliva at 37°C. The activity increased with increasing pH in the range 4.5-7.4 and with increasing salivation flow rate up to a rate of 0.9 ml min. Under resting...... conditions, the flow rate was about 0.2 ml min which implied a greatly decreased esterase activity. The activity was highest after fasting and decreased after intake of a meal. The intraindividual variation in the saliva esterase activity was small whereas a larger interindividual variation was found....

  1. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  2. Chemical and enzymatic stability of amino acid prodrugs containing methoxy, ethoxy and propylene glycol linkers.

    Science.gov (United States)

    Gupta, Deepak; Gupta, Sheeba Varghese; Lee, Kyung-Dall; Amidon, Gordon L

    2009-01-01

    We evaluated the chemical and enzymatic stabilities of prodrugs containing methoxy, ethoxy and propylene glycol linkers in order to find a suitable linker for prodrugs of carboxylic acids with amino acids. l-Valine and l-phenylalanine prodrugs of model compounds (benzoic acid and phenyl acetic acid) containing methoxy, ethoxy and propylene glycol linkers were synthesized. The hydrolysis rate profile of each compound was studied at physiologically relevant pHs (1.2, 4, 6 and 7.4). Enzymatic hydrolysis of propylene glycol containing compounds was studied using Caco-2 homogenate as well as purified enzyme valacyclovirase. It was observed that the stability of the prodrugs increases with the linker length (propyl > ethyl > methyl). The model prodrugs were stable at acidic pH as compared to basic pH. It was observed that the prodrug with the aliphatic amino acid promoiety was more stable compared to its aromatic counterpart. The comparison between benzyl and the phenyl model compounds revealed that the amino acid side chain is significant in determining the stability of the prodrug whereas the benzyl or phenyl carboxylic acid had little or no effect on the stability. The enzymatic activation studies of propylene glycol linker prodrug in the presence of valacyclovirase and cell homogenate showed faster generation of the parent drug at pH 7.4. The half-life of prodrugs at pH 7.4 was more than 12 h, whereas in the presence of cell homogenate the half-lives were less than 1 h. Hydrolysis by Caco-2 homogenate generated the parent compound in two steps, where the prodrug was first converted to the intermediate, propylene glycol benzoate, which was then converted to the parent compound (benzoic acid). Enzymatic hydrolysis of propylene glycol containing prodrugs by valacyclovirase showed hydrolysis of the amino acid ester part to generate the propylene glycol ester of model compound (propylene glycol benzoate) as the major product. The amino acid prodrugs containing methoxy

  3. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects.

    Science.gov (United States)

    Nagatsu, Toshiharu; Nagatsu, Ikuko

    2016-11-01

    Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.

  4. Role of PET in gene therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2002-01-01

    In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for reasearch purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize gene encoding enzymes that accumulate postion labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occuring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology

  5. Role of PET in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Han [School of Medicine, Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2002-02-01

    In addition to the well-established use of positron emission tomography (PET) in clinical oncology, novel roles for PET are rapidly emerging in the field of gene therapy. Methods for controlled gene delivery to living bodies, made available through advances in molecular biology, are currently being employed in animals for reasearch purposes and in humans to treat diseases such as cancer. Although gene therapy is still in its early developmental stage, it is perceived that many serious illnesses could be treated successfully by the use of therapeutic gene delivery. A major challenge for the widespread use of human gene therapy is to achieve a controlled and effective delivery of foreign genes to target cells and subsequently, adequate levels of expression. As such, the availability of noninvasive imaging methods to accurately assess the location, duration, and level of transgene expression is critical for optimizing gene therapy strategies. Current endeavors to achieve this goal include methods that utilize magnetic resonance imaging, optical imaging, and nuclear imaging techniques. As for PET, reporter systems that utilize gene encoding enzymes that accumulate postion labeled substrates and those transcribing surface receptors that bind specific positron labeled ligands have been successfully developed. More recent advances in this area include improved reporter gene constructs and radiotracers, introduction of potential strategies to monitor endogenous gene expression, and human pilot studies evaluating the distribution and safety of reporter PET tracers. The remarkably rapid progress occuring in gene imaging technology indicates its importance and wide range of application. As such, gene imaging is likely to become a major and exciting new area for future application of PET technology.

  6. Enzyme Replacement Therapy for Fabry Disease

    Directory of Open Access Journals (Sweden)

    Maria Dolores Sanchez-Niño PhD

    2016-11-01

    Full Text Available Fabry disease is a rare X-linked disease caused by the deficiency of α-galactosidase that leads to the accumulation of abnormal glycolipid. Untreated patients develop potentially lethal complications by age 30 to 50 years. Enzyme replacement therapy is the current standard of therapy for Fabry disease. Two formulations of recombinant human α-galactosidase A (agalsidase are available in most markets: agalsidase-α and agalsidase-β, allowing a choice of therapy. However, the US Food and Drug Administration rejected the application for commercialization of agalsidase-α. The main difference between the 2 enzymes is the dose. The label dose for agalsidase-α is 0.2 mg/kg/2 weeks, while the dose for agalsidase-β is 1.0 mg/kg/2 weeks. Recent evidence suggests a dose-dependent effect of enzyme replacement therapy and agalsidase-β is 1.0 mg/kg/2 weeks, which has been shown to reduce the occurrence of hard end points (severe renal and cardiac events, stroke, and death. In addition, patients with Fabry disease who have developed tissue injury should receive coadjuvant tissue protective therapy, together with enzyme replacement therapy, to limit nonspecific progression of the tissue injury. It is likely that in the near future, additional oral drugs become available to treat Fabry disease, such as chaperones or substrate reduction therapy.

  7. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    International Nuclear Information System (INIS)

    Wiebe, L. I.

    1997-01-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of 'biologicals', in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  8. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L I [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  9. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives.

    Science.gov (United States)

    Singh, Rajesh K; Kumar, Sahil; Prasad, D N; Bhardwaj, T R

    2018-05-10

    Cancer is considered as one of the most serious health problems today. The discovery of nitrogen mustard as an alkylating agent in 1942, opened a new era in the cancer chemotherapy. This valuable class of alkylating agent exerts its biological activity by binding to DNA, cross linking two strands, preventing DNA replication and ultimate cell death. At the molecular level, nitrogen lone pairs of nitrogen mustard generate a strained intermediate "aziridinium ion" which is very reactive towards DNA of tumor cell as well as normal cell resulting in various adverse side effects alogwith therapeutic implications. Over the last 75 years, due to its high reactivity and peripheral cytotoxicity, numerous modifications have been made in the area of nitrogen mustard to improve its efficacy as well as enhancing drug delivery specifically to tumor cells. This review mainly discusses the medicinal chemistry aspects in the development of various classes of nitrogen mustards (mechlorethamine, chlorambucil, melphalan, cyclophosphamide and steroidal based nitrogen mustards). The literature collection includes the historical and the latest developments in these areas. This comprehensive review also attempted to showcase the recent progress in the targeted delivery of nitrogen mustards that includes DNA directed nitrogen mustards, antibody directed enzyme prodrug therapy (ADEPT), gene directed enzyme prodrug therapy (GDEPT), nitrogen mustard activated by glutathione transferase, peptide based nitrogen mustards and CNS targeted nitrogen mustards. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. N,N'-dihydroxyamidines: a new prodrug principle to improve the oral bioavailability of amidines.

    Science.gov (United States)

    Reeh, Christiane; Wundt, Judith; Clement, Bernd

    2007-12-27

    N, N'-dihydroxybenzamdine represents a model compound for a new prodrug principle to improve the oral bioavailability of drugs containing amidine functions. The activation of the prodrug could be demonstrated in vitro by porcine and human subcellular enzyme fractions, the mitochondrial benzamidoxime reducing system, and porcine hepatocytes. In vivo, the bioavailability of benzamidine after oral application of N, N'-dihydroxybenzamidine was about 91% and exceeded that of benzamidine after oral application of benzamidoxime, being about 74% (Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs, J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. Species comparison of in vitro and in vivo conversion of five N-hydroxyamidine prodrugs of fVIIA inhibitors to their corresponding active amidines. Presented at the 13th North America ISSX Meeting, Maui, HI, 2005).

  11. Imaging Expression of Cytosine Deaminase-Herpes Virus Thymidine Kinase Fusion Gene (CD/TK Expression with [124I]FIAU and PET

    Directory of Open Access Journals (Sweden)

    Trevor Hackman

    2002-01-01

    Full Text Available Double prodrug activation gene therapy using the Escherichia coli cytosine deaminase (CDherpes simplex virus type 1 thymidine kinase (HSV1-tk fusion gene (CD/TK with 5-fluorocytosine (5FC, ganciclovir (GCV, and radiotherapy is currently under evaluation for treatment of different tumors. We assessed the efficacy of noninvasive imaging with [124I]FIAU (2′-fluoro-2′-deoxy-1-β-d-arabinofuranosyl-5-iodo-uracil and positron emission tomography (PET for monitoring expression of the CD/TK fusion gene. Walker-256 tumor cells were transduced with a retroviral vector bearing the CD/TK gene (W256CD/TK cells. The activity of HSV1-TK and CD subunits of the CD/TK gene product was assessed in different single cell-derived clones of W256CD/TK cells using the FIAU radiotracer accumulation assay in cells and a CD enzyme assay in cell homogenates, respectively. A linear relationship was observed between the levels of CD and HSV1-tk subunit expression in corresponding clones in vitro over a wide range of CD/TK expression levels. Several clones of W256CD/TK cells with significantly different levels of CD/TK expression were selected and used to produce multiple subcutaneous tumors in rats. PET imaging of HSV1-TK subunit activity with [124I]FIAU was performed on these animals and demonstrated that different levels of CD/TK expression in subcutaneous W256CD/TK tumors can be imaged quantitatively. CD expression in subcutaneous tumor sample homogenates was measured using a CD enzyme assay. A comparison of CD and HSV1-TK subunit enzymatic activity of the CD/TK fusion protein in vivo showed a significant correlation. Knowing this relationship, the parametric images of CD subunit activity were generated. Imaging with [124I]FIAU and PET could provide pre- and posttreatment assessments of CD/TK-based double prodrug activation in clinical gene therapy trials.

  12. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy.

    Directory of Open Access Journals (Sweden)

    Linde A Miles

    Full Text Available The oncolytic picornavirus Seneca Valley Virus (SVV-001 demonstrates anti-tumor activity in models of small cell lung cancer (SCLC, but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M(-1s(-1, was further optimized by a P2' N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M(-1s(-1. We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.

  13. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  14. Radiogenetic therapy: strategies to overcome tumor resistance.

    Science.gov (United States)

    Marples, B; Greco, O; Joiner, M C; Scott, S D

    2003-01-01

    The aim of cancer gene therapy is to selectively kill malignant cells at the tumor site, by exploiting traits specific to cancer cells and/or solid tumors. Strategies that take advantage of biological features common to different tumor types are particularly promising, since they have wide clinical applicability. Much attention has focused on genetic methods that complement radiotherapy, the principal treatment modality, or that exploit hypoxia, the most ubiquitous characteristic of most solid cancers. The goal of this review is to highlight two promising gene therapy methods developed specifically to target the tumor volume that can be readily used in combination with radiotherapy. The first approach uses radiation-responsive gene promoters to control the selective expression of a suicide gene (e.g., herpes simplex virus thymidine kinase) to irradiated tissue only, leading to targeted cell killing in the presence of a prodrug (e.g., ganciclovir). The second method utilizes oxygen-dependent promoters to produce selective therapeutic gene expression and prodrug activation in hypoxic cells, which are refractive to conventional radiotherapy. Further refining of tumor targeting can be achieved by combining radiation and hypoxia responsive elements in chimeric promoters activated by either and dual stimuli. The in vitro and in vivo studies described in this review suggest that the combination of gene therapy and radiotherapy protocols has potential for use in cancer care, particularly in cases currently refractory to treatment as a result of inherent or hypoxia-mediated radioresistance.

  15. Non-viral gene therapy for bone tissue engineering.

    Science.gov (United States)

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  16. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  17. Advanced Prodrug Strategies in Nucleoside and Non-Nucleoside Antiviral Agents: A Review of the Recent Five Years

    Directory of Open Access Journals (Sweden)

    Hanadi Sinokrot

    2017-10-01

    Full Text Available Background: Poor pharmacokinetic profiles and resistance are the main two drawbacks from which currently used antiviral agents suffer, thus make them excellent targets for research, especially in the presence of viral pandemics such as HIV and hepatitis C. Methods: The strategies employed in the studies covered in this review were sorted by the type of drug synthesized into ester prodrugs, targeted delivery prodrugs, macromolecular prodrugs, other nucleoside conjugates, and non-nucleoside drugs. Results: Utilizing the ester prodrug approach a novel isopropyl ester prodrug was found to be potent HIV integrase inhibitor. Further, employing the targeted delivery prodrug zanamivir and valine ester prodrug was made and shown a sole delivery of zanamivir. Additionally, VivaGel, a dendrimer macromolecular prodrug, was found to be very efficient and is now undergoing clinical trials. Conclusions: Of all the strategies employed (ester, targeted delivery, macromolecular, protides and nucleoside analogues, and non-nucleoside analogues prodrugs, the most promising are nucleoside analogues and macromolecular prodrugs. The macromolecular prodrug VivaGel works by two mechanisms: envelope mediated and receptor mediated disruption. Nucleotide analogues have witnessed productive era in the recent past few years. The era of non-interferon based treatment of hepatitis (through direct inhibitors of NS5A has dawned.

  18. Tumor-directed gene therapy in mice using a composite nonviral gene delivery system consisting of the piggyBac transposon and polyethylenimine

    International Nuclear Information System (INIS)

    Kang, Yu; Zhang, Xiaoyan; Jiang, Wei; Wu, Chaoqun; Chen, Chunmei; Zheng, Yufang; Gu, Jianren; Xu, Congjian

    2009-01-01

    Compared with viral vectors, nonviral vectors are less immunogenic, more stable, safer and easier to replication for application in cancer gene therapy. However, nonviral gene delivery system has not been extensively used because of the low transfection efficiency and the short transgene expression, especially in vivo. It is desirable to develop a nonviral gene delivery system that can support stable genomic integration and persistent gene expression in vivo. Here, we used a composite nonviral gene delivery system consisting of the piggyBac (PB) transposon and polyethylenimine (PEI) for long-term transgene expression in mouse ovarian tumors. A recombinant plasmid PB [Act-RFP, HSV-tk] encoding both the herpes simplex thymidine kinase (HSV-tk) and the monomeric red fluorescent protein (mRFP1) under PB transposon elements was constructed. This plasmid and the PBase plasmid were injected into ovarian cancer tumor xenografts in mice by in vivo PEI system. The antitumor effects of HSV-tk/ganciclovir (GCV) system were observed after intraperitoneal injection of GCV. Histological analysis and TUNEL assay were performed on the cryostat sections of the tumor tissue. Plasmid construction was confirmed by PCR analysis combined with restrictive enzyme digestion. mRFP1 expression could be visualized three weeks after the last transfection of pPB/TK under fluorescence microscopy. After GCV admission, the tumor volume of PB/TK group was significantly reduced and the tumor inhibitory rate was 81.96% contrasted against the 43.07% in the TK group. Histological analysis showed that there were extensive necrosis and lymphocytes infiltration in the tumor tissue of the PB/TK group but limited in the tissue of control group. TUNEL assays suggested that the transfected cells were undergoing apoptosis after GCV admission in vivo. Our results show that the nonviral gene delivery system coupling PB transposon with PEI can be used as an efficient tool for gene therapy in ovarian cancer

  19. Long-Acting Diclofenac Ester Prodrugs for Joint Injection: Kinetics, Mechanism of Degradation, and In Vitro Release From Prodrug Suspension.

    Science.gov (United States)

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper; Østergaard, Jesper; Larsen, Claus

    2016-10-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol/vol) human synovial fluid with 2-(1-methyl-1H-imidazol-2-yl)ethyl 2-(2-(2,6 dichlorophenyl)amino)phenylacetate being the poorest substrate toward enzymatic cleavage. The conversion and release of parent diclofenac from prodrug suspensions in vitro were studied using the rotating dialysis model. The results suggest that it is possible to alter and control dissolution and reconversion behavior of the diclofenac prodrugs, thus making the prodrug approach feasible for local and sustained diclofenac action after joint injection. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  1. Preclinical studies of dendrimer prodrugs.

    Science.gov (United States)

    Kojima, Chie

    2015-01-01

    Dendrimers are synthetic macromolecules with well-defined structures bearing a wide variety of functional groups on their periphery. These groups can be used to conjugate bioactive molecules such as drugs, ligands and imaging agents. Dendrimer prodrugs can be used to improve the water solubility and pharmacokinetic properties of the corresponding free drugs. This article summarizes preclinical studies pertaining to the use of drug-dendrimer conjugates as dendrimer prodrugs for the treatments of various diseases, including cancer and inflammatory diseases. A wide range of anticancer drugs have been conjugated to dendrimers via biodegradable linkers. The side effects of the parent drugs can be markedly reduced using dendrimer prodrugs, with some drugs showing improved efficacy. Anti-inflammatory agents have also been conjugated to dendrimers and used to treat a number of inflammatory diseases. Drug-dendrimer conjugates are preferable to drug-dendrimer complexes, where the use of degradable linkers is critical to the release of the drug. Polyethylene glycol and/or ligands can be added to a dendrimer prodrug, which is useful for the targeting of affected tissues. Imaging probes can also be incorporated into dendrimer prodrugs for the simultaneous delivery of therapeutic and diagnostic agents as 'theranostics.'

  2. Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2,3-Dihydroxypropyl)adenine

    Czech Academy of Sciences Publication Activity Database

    Brabcová, Jana; Blažek, Jiří; Janská, Lucie; Krečmerová, Marcela; Zarevúcka, Marie

    2012-01-01

    Roč. 17, č. 12 (2012), s. 13813-13824 ISSN 1420-3049 Grant - others:AV ČR(CZ) M200551203 Institutional support: RVO:61388963 Keywords : lipase * transesterification * prodrug * immobilization of enzymes Subject RIV: CC - Organic Chemistry Impact factor: 2.428, year: 2012

  3. Drug-gene interaction between the insertion/deletion polymorphism of the angiotensin-converting enzyme gene and antihypertensive therapy

    NARCIS (Netherlands)

    Schelleman, Hedi; Klungel, Olaf H; van Duijn, Cornelia M; Witteman, Jacqueline C M; Hofman, Albert; de Boer, Anthonius; Stricker, Bruno H Ch

    BACKGROUND: Despite the availability of a variety of effective drugs, inadequate control of blood pressure is common. There are some indications that the angiotensin-converting enzyme (ACE) gene modifies the response to antihypertensive drugs, but the results have been inconclusive. OBJECTIVE: To

  4. Magnetic tumor targeting of β-glucosidase immobilized iron oxide nanoparticles

    Science.gov (United States)

    Zhou, Jie; Zhang, Jian; David, Allan E.; Yang, Victor C.

    2013-09-01

    Directed enzyme/prodrug therapy (DEPT) has promising application for cancer therapy. However, most current DEPT strategies face shortcomings such as the loss of enzyme activity during preparation, low delivery and transduction efficiency in vivo and difficultly of monitoring. In this study, a novel magnetic directed enzyme/prodrug therapy (MDEPT) was set up by conjugating β-glucosidase (β-Glu) to aminated, starch-coated, iron oxide magnetic iron oxide nanoparticles (MNPs), abbreviated as β-Glu-MNP, using glutaraldehyde as the crosslinker. This β-Glu-MNP was then characterized in detail by size distribution, zeta potential, FTIR spectra, TEM, SQUID and magnetophoretic mobility analysis. Compared to free enzyme, the conjugated β-Glu on MNPs retained 85.54% ± 6.9% relative activity and showed much better temperature stability. The animal study results showed that β-Glu-MNP displays preferable pharmacokinetics characteristics in relation to MNPs. With an adscititious magnetic field on the surface of a tumor, a significant quantity of β-Glu-MNP was selectively delivered into a subcutaneous tumor of a glioma-bearing mouse. Remarkably, the enzyme activity of the delivered β-Glu in tumor lesions showed as high as 20.123±5.022 mU g-1 tissue with 2.14 of tumor/non-tumor β-Glu activity.

  5. Long-Acting Diclofenac Ester Prodrugs for Joint Injection

    DEFF Research Database (Denmark)

    Mertz, Nina; Larsen, Susan Weng; Kristensen, Jesper

    2016-01-01

    A prodrug approach for local and sustained diclofenac action after injection into joints based on ester prodrugs having a pH-dependent solubility is presented. Inherent ester prodrug properties influencing the duration of action include their pH-dependent solubility and charge state, as well...... as susceptibility to undergo esterase facilitated hydrolysis. In this study, physicochemical properties and pH rate profiles of 3 diclofenac ester prodrugs differing with respect to the spacer carbon chain length between the drug and the imidazole-based promoiety were determined and a rate equation for prodrug...... degradation in aqueous solution in the pH range 1-10 was derived. In the pH range 6-10, the prodrugs were subject to parallel degradation to yield diclofenac and an indolinone derivative. The prodrug degradation was found to be about 6-fold faster in 80% (vol/vol) human plasma as compared to 80% (vol...

  6. Terapia gênica Gene therapy

    Directory of Open Access Journals (Sweden)

    Nance Beyer Nardi

    2002-01-01

    Full Text Available Terapia gênica é um procedimento médico que envolve a modificação genética de células como forma de tratar doenças. Os genes influenciam praticamente todas as doenças humanas, seja pela codificação de proteínas anormais diretamente responsáveis pela doença, seja por determinar suscetibilidade a agentes ambientais que a induzem. A terapia gênica é ainda experimental, e está sendo estudada em protocolos clínicos para diferentes tipos de doenças. O desenvolvimento de métodos seguros e eficientes de transferência gênica para células humanas é um dos pontos mais importantes na terapia gênica. Apesar do grande esforço dirigido na última década para o aperfeiçoamento dos protocolos de terapia gênica humana, e dos avanços importantes na pesquisa básica, as aplicações terapêuticas da tecnologia de transferência gênica continuam ainda em grande parte teóricas. O potencial da terapia gênica é muito grande, devendo ainda causar grande impacto em todos os aspectos da medicina.Gene therapy is a medical intervention that involves modifying the genetic material of living cells to fight disease. Genes influence virtually every human disease, either by encoding for abnormal proteins, which are directly responsible for the disease, or by causing a susceptibility to environmental agents which induce it. Gene therapy is still experimental, and is being studied in clinical trials for many different types of diseases. The development of safe and effective methods of implanting normal genes into the human cell is one of the most important technical issues in gene therapy. Although much effort has been directed in the last decade toward improvement of protocols in human gene therapy, and in spite of many considerable achievements in basic research, the therapeutic applications of gene transfer technology still remain mostly theoretical. The potential for gene therapy is huge and likely to impact on all aspects of medicine.

  7. Dual monitoring using 124I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    International Nuclear Information System (INIS)

    Lee, T. S.; Kim, J. H.; Kwon, H. C.

    2007-01-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[ 124 I] iodouracil ( 124 I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ( 124 I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, 124 I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, 124 I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by 124 I-FIAU PET imaging. 124 I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. 124 I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials

  8. Progresses towards safe and efficient gene therapy vectors.

    Science.gov (United States)

    Chira, Sergiu; Jackson, Carlo S; Oprea, Iulian; Ozturk, Ferhat; Pepper, Michael S; Diaconu, Iulia; Braicu, Cornelia; Raduly, Lajos-Zsolt; Calin, George A; Berindan-Neagoe, Ioana

    2015-10-13

    The emergence of genetic engineering at the beginning of the 1970's opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.

  9. Chinese Medicine Amygdalin and β-Glucosidase Combined with Antibody Enzymatic Prodrug System As A Feasible Antitumor Therapy.

    Science.gov (United States)

    Li, Yun-Long; Li, Qiao-Xing; Liu, Rui-Jiang; Shen, Xiang-Qian

    2018-03-01

    Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.

  10. Polymeric Nanoparticles for Nonviral Gene Therapy Extend Brain Tumor Survival in Vivo

    OpenAIRE

    Mangraviti, Antonella; Tzeng, Stephany Yi; Kozielski, Kristen Lynn; Wang, Yuan; Jin, Yike; Gullotti, David; Pedone, Mariangela; Buaron, Nitsa; Liu, Ann; Wilson, David R.; Hansen, Sarah K.; Rodriguez, Fausto J.; Gao, Guo-Dong; DiMeco, Francesco; Brem, Henry

    2015-01-01

    Biodegradable polymeric nanoparticles have the potential to be safer alternatives to viruses for gene delivery; however, their use has been limited by poor efficacy in vivo. In this work, we synthesize and characterize polymeric gene delivery nanoparticles and evaluate their efficacy for DNA delivery of herpes simplex virus type I thymidine kinase (HSVtk) combined with the prodrug ganciclovir (GCV) in a malignant glioma model. We investigated polymer structure for gene delivery in two rat gli...

  11. Gemcitabine-Based Chemogene Therapy for Pancreatic Cancer Using Ad-dCK::UMK GDEPT and TS/RR siRNA Strategies

    Directory of Open Access Journals (Sweden)

    Soukaina Réjiba

    2009-07-01

    Full Text Available Gemcitabine is a first-line agent for advanced pancreatic cancer therapy. However, its efficacy is often limited by its poor intracellular metabolism and chemoresistance. To exert its antitumor activity, gemcitabine requires to be converted to its active triphosphate form. Thus, our aim was to improve gemcitabine activation using gene-directed enzyme prodrug therapy based on gemcitabine association with the deoxycytidine kinase::uridine monophosphate kinase fusion gene (dCK::UMK and small interference RNA directed against ribonucleotide reductase (RRM2 and thymidylate synthase (TS. In vitro, cytotoxicity was assessed by 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenyl tetrazolium bromide and [3H]thymidine assays. Apoptosis-related gene expression and activity were analyzed by reverse transcription-polymerase chain reaction, Western blot, and ELISA. For in vivo studies, the treatment efficacy was evaluated on subcutaneous and orthotopic pancreatic tumor models. Our data indicated that cell exposure to gemcitabine induced a down-regulation of dCK expression and up-regulation of TS and RR expression in Panc1-resistant cells when compared with BxPc3- and HA-hpc2-sensitive cells. The combination of TS/RRM2 small interference RNA with Ad-dCK::UMK induced a 40-fold decrease of gemcitabine IC50 in Panc1 cells. This strong sensitization was associated to apoptosis induction with a remarkable increase in TRAIL expression and a diminution of gemcitabine-induced nuclear factor-κB activity. In vivo, the gemcitabine-based tritherapy strongly reduced tumor volumes and significantly prolonged mice survival. Moreover, we observed an obvious increase of apoptosis and decrease of cell proliferation in tumors receiving the tritherapy regimens. Together, these findings suggest that simultaneous TS/RRM2-gene silencing and dCK::UMK gene overexpression markedly improved gemcitabine's therapeutic activity. Clearly, this combined strategy warrants further investigation.

  12. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    OpenAIRE

    Boris Pinchuk; Rebecca Horbert; Alexander Döbber; Lydia Kuhl; Christian Peifer

    2016-01-01

    In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG) to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV) irradiation of the prodrug...

  13. Dual monitoring using {sup 124}I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Kim, J. H.; Kwon, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[{sup 124}I] iodouracil ({sup 124}I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ({sup 124}I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, {sup 124}I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, {sup 124}I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by {sup 124}I-FIAU PET imaging. {sup 124}I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. {sup 124}I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials.

  14. Photoactivatable Caged Prodrugs of VEGFR-2 Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Boris Pinchuk

    2016-04-01

    Full Text Available In this study, we report on the design, synthesis, photokinetic properties and in vitro evaluation of photoactivatable caged prodrugs for the receptor tyrosine kinase VEGFR-2. Highly potent VEGFR-2 inhibitors 1 and 3 were caged by introduction of a photoremovable protecting group (PPG to yield the caged prodrugs 4 and 5. As expected, enzymatic and cellular proliferation assays showed dramatically diminished efficacy of caged prodrugs in vitro. Upon ultraviolet (UV irradiation of the prodrugs original inhibitory activity was completely restored and even distinctly reinforced, as was the case for the prodrug 4. The presented results are a further evidence for caging technique being an interesting approach in the protein kinase field. It could enable spatial and temporal control for the inhibition of VEGFR-2. The described photoactivatable prodrugs might be highly useful as biological probes for studying the VEGFR-2 signal transduction.

  15. Preparation, characterization and in vitro evaluation of a new nucleotide analogue prodrug cyclodextrin inclusion complexes.

    Science.gov (United States)

    Diab, Roudayna; Jordheim, Lars P; Degobert, Ghania; Peyrottes, Suzanne; Périgaud, Christian; Dumontet, Charles; Fessi, Hatem

    2009-01-01

    Bis(tbutyl-S-acyl-2-thioethyl)-cytidine monophosophate is a new cytotoxic mononucleotide prodrug which have been developed to reverse the cellular resistance to nucleoside analogues. Unfortunately, its in vivo utilisation was hampered by its poor water solubility, raising the need of a molecular vector capable to mask its physicochemical characteristics although without affecting its cytotoxic activity. Hydroxypropyl-beta-cyclodextrin was used to prepare the prodrug inclusion complexes, allowing it to be solubilized in water and hence to be used for in vitro and in vivo experiments. A molar ratio of the cyclodextrin: prodrug of 3 was sufficient to obtain complete solubilization of the prodrug. The inclusion complex was characterized by differential scanning calorimetry, which revealed the disappearance of the melting peak of the prodrug suggesting the formation of inclusion complex. Proton Nuclear Magnetic Resonance spectroscopy provided a definitive proof of the inclusion complex formation, which was evidenced by the large chemical shift displacements observed for protons located in the interior of the hydrophobic cyclodextrin cavity. The complex retained its cytotoxic activity as shown by in vitro cell survival assays on murine leukemia cells. These results provided a basis for potential therapeutic applications of co-formulation of this new nucleotide analogue with hydroxypropyl-beta-CD in cancer therapy.

  16. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38.

    Science.gov (United States)

    Bala, Vaskor; Rao, Shasha; Boyd, Ben J; Prestidge, Clive A

    2013-11-28

    SN38 (7-ethyl-10-hydroxy camptothecin) is a prominent and efficacious anticancer agent. It is poorly soluble in both water and pharmaceutically approved solvents; therefore, the direct formulation of SN38 in solution form is limited. Currently, the water soluble prodrug of SN38, irinotecan (CPT-11), is formulated as a low pH solution and is approved for chemotherapy. However, CPT-11, along with most other water-soluble prodrugs shows unpredictable inter-patient conversion to SN38 in vivo, instability in the physiological environment and variable dose-related toxicities. More recently, macromolecular prodrugs (i.e. EZN-2208, IMMU-130) and nanomedicine formulations (i.e. nanoemulsions, polymeric micelles, lipid nanocapsule/nanoparticle, and liposomes) of SN38 have been investigated for improved delivery to cancer cells and tissues. Specifically, these carriers can take advantage of the EPR effect to direct drug preferentially to tumour tissues, thereby substantially improving efficacy and minimising side effects. Furthermore, oral delivery has been shown to be possible in preclinical results using nanomedicine formulations (i.e. dendrimers, lipid nanocapsules, polymeric micelles). This review summarizes the recent advances for the delivery of SN38 with a focus on macromolecular prodrugs and nanomedicines. © 2013 Elsevier B.V. All rights reserved.

  17. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  18. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  19. AAV Gene Therapy for Alcoholism: Inhibition of Mitochondrial Aldehyde Dehydrogenase Enzyme Expression in Hepatoma Cells.

    Science.gov (United States)

    Sanchez, Anamaria C; Li, Chengwen; Andrews, Barbara; Asenjo, Juan A; Samulski, R Jude

    2017-09-01

    Most ethanol is broken down in the liver in two steps by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2) enzymes, which metabolize down ethanol into acetaldehyde and then acetate. Some individuals from the Asian population who carry a mutation in the aldehyde dehydrogenase gene (ALDH2*2) cannot metabolize acetaldehyde as efficiently, producing strong effects, including facial flushing, dizziness, hypotension, and palpitations. This results in an aversion to alcohol intake and protection against alcoholism. The large prevalence of this mutation in the human population strongly suggests that modulation of ALDH2 expression by genetic technologies could result in a similar phenotype. scAAV2 vectors encoding ALDH2 small hairpin RNA (shRNA) were utilized to validate this hypothesis by silencing ALDH2 gene expression in human cell lines. Human cell lines HEK-293 and HepG2 were transduced with scAAV2/shRNA, showing a reduction in ALDH2 RNA and protein expression with the two viral concentration assayed (1 × 10 4 and 1 × 10 5 vg/cell) at two different time points. In both cell lines, ALDH2 RNA levels were reduced by 90% and protein expression was inhibited by 90% and 52%, respectively, 5 days post infection. Transduced HepG2 VL17A cells (ADH+) exposed to ethanol resulted in a 50% increase in acetaldehyde levels. These results suggest that gene therapy could be a useful tool for the treatment of alcoholism by knocking down ALDH2 expression using shRNA technology delivered by AAV vectors.

  20. Percutaneous bone cement refixation of aseptically loose hip prostheses: the effect of interface tissue removal on injected cement volumes

    Energy Technology Data Exchange (ETDEWEB)

    Malan, Daniel F. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Intelligent Systems, Delft (Netherlands); Valstar, Edward R. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Biomechanical Engineering, Delft (Netherlands); Nelissen, Rob G.H.H. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands)

    2014-11-15

    To quantify whether injected cement volumes differed between two groups of patients who underwent experimental minimally invasive percutaneous cement injection procedures to stabilize aseptically loose hip prostheses. One patient group was preoperatively treated using gene-directed enzyme prodrug therapy to remove fibrous interface tissue, while the other group received no preoperative treatment. It was hypothesized that cement penetration may have been inhibited by the presence of fibrous interface tissue in periprosthetic lesions. We analyzed 17 patients (14 female, 3 male, ages 72-91, ASA categories 2-4) who were treated at our institution. Osteolytic lesions and injected cement were manually delineated using 3D CT image segmentation, and the deposition of injected cement was quantified. Patients who underwent preoperative gene-directed enzyme therapy to remove fibrous tissue exhibited larger injected cement volumes than those who did not. The observed median increase in injected cement volume was 6.8 ml. Higher cement leakage volumes were also observed for this group. We conclude that prior removal of periprosthetic fibrous interface tissue may enable better cement flow and penetration. This might lead to better refixation of aseptically loosened prostheses. (orig.)

  1. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy.

    Science.gov (United States)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc; Brennen, W Nathaniel; Dalrymple, Susan; Dach, Ingrid; Olesen, Claus; Gurel, Bora; Demarzo, Angelo M; Wilding, George; Carducci, Michael A; Dionne, Craig A; Møller, Jesper V; Nissen, Poul; Christensen, S Brøgger; Isaacs, John T

    2012-06-27

    Heterogeneous expression of drug target proteins within tumor sites is a major mechanism of resistance to anticancer therapies. We describe a strategy to selectively inhibit, within tumor sites, the function of a critical intracellular protein, the sarcoplasmic/endoplasmic reticulum calcium adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host. On the basis of these data, a phase 1 dose-escalation clinical trial has been initiated with G202 in patients with advanced cancer.

  2. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  3. Direct comparison of enzyme histochemical and immunohistochemical methods to localize an enzyme

    NARCIS (Netherlands)

    van Noorden, Cornelis J. F.

    2002-01-01

    Immunohistochemical localization of enzymes is compared directly with localization of enzyme activity with (catalytic) enzyme histochemical methods. The two approaches demonstrate principally different aspects of an enzyme. The immunohistochemical method localizes the enzyme protein whether it is

  4. The Effect of Neonatal Gene Therapy on Skeletal Manifestations in Mucopolysaccharidosis VII Dogs after a Decade

    Science.gov (United States)

    Xing, Elizabeth M.; Knox, Van W.; O'Donnell, Patricia A.; Sikura, Tracey; Liu, Yuli; Wu, Susan; Casal, Margret L.; Haskins, Mark E.; Ponder, Katherine P.

    2013-01-01

    Mucopolysaccharidosis (MPS) VII is a lysosomal storage disease due to deficient activity of β-glucuronidase (GUSB), and results in glycosaminoglycan accumulation. Skeletal manifestations include bone dysplasia, degenerative joint disease, and growth retardation. One gene therapy approach for MPS VII involves neonatal intravenous injection of a gamma retroviral vector expressing GUSB, which results in stable expression in liver and secretion of enzyme into blood at levels predicted to be similar or higher to enzyme replacement therapy. The goal of this study was to evaluate the long-term effect of neonatal gene therapy on skeletal manifestations in MPS VII dogs. Treated MPS VII dogs could walk throughout their lives, while untreated MPS VII dogs could not stand beyond 6 months and were dead by 2 years. Luxation of the coxofemoral joint and the patella, dysplasia of the acetabulum and supracondylar ridge, deep erosions of the distal femur, and synovial hyperplasia were reduced, and the quality of articular bone was improved in treated dogs at 6 to 11 years of age compared with untreated MPS VII dogs at 2 years or less. However, treated dogs continued to have osteophyte formation, cartilage abnormalities, and an abnormal gait. Enzyme activity was found near synovial blood vessels, and there was 2% as much GUSB activity in synovial fluid as in serum. We conclude that neonatal gene therapy reduces skeletal abnormalities in MPS VII dogs, but clinically-relevant abnormalities remain. Enzyme replacement therapy will probably have similar limitations long-term. PMID:23628461

  5. Gene therapy and radionuclides targeting therapy in mammary carcinoma

    International Nuclear Information System (INIS)

    Song Jinhua

    2003-01-01

    Breast carcinoma's gene therapy is a hotspot in study of the tumor's therapy in the recent years. Currently the major therapy methods that in the experimentative and primary clinical application phases include immunological gene therapy, multidrug resistance gene therapy, antisense oligonucleotide therapy and suicide gene therapy. The gene targeting brachytherapy, which is combined with gene therapy and radiotherapy has enhanced the killer effects of the suicide gene and nuclide in tumor cells. That has break a new path in tumor's gene therapy. The further study in this field will step up it's space to the clinical application

  6. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  7. Effects of JS-K, a novel anti-cancer nitric oxide prodrug, on gene expression in human hepatoma Hep3B cells.

    Science.gov (United States)

    Dong, Ray; Wang, Xueqian; Wang, Huan; Liu, Zhengyun; Liu, Jie; Saavedra, Joseph E

    2017-04-01

    JS-K is a novel anticancer nitric oxide (NO) prodrug effective against a variety of cancer cells, including the inhibition of AM-1 hepatoma cell growth in rats. To further evaluate anticancer effects of JS-K, human hepatoma Hep3B cells were treated with JS-K and the compound control JS-43-126 at various concentrations (0-100μM) for 24h, and cytotoxicity was determined by the MTS assay. The compound control JS-43-126 was not cytotoxic to Hep3B cells at concentrations up to 100μM, while the LC 50 for JS-K was about 10μM. To examine the molecular mechanisms of antitumor effects of JS-K, Hep3B cells were treated with 1-10μM of JS-K for 24h, and then subjected to gene expression analysis via real time RT-PCR and protein immunostain via confocal images. JS-K is a GST-α targeting NO prodrug, and decreased immunostaining for GST-α was associated with JS-K treatment. JS-K activated apoptosis pathways in Hep3B cells, including induction of caspase-3, caspase-9, Bax, TNF-α, and IL-1β, and immunostaining for caspase-3 was intensified. The expressions of thrombospondin-1 (TSP-1) and the tissue inhibitors of metalloproteinase-1 (TIMP-1) were increased by JS-K at both transcript and protein levels. JS-K treatment also increased the expression of differentiation-related genes CD14 and CD11b, and depressed the expression of c-myc in Hep3B cells. Thus, multiple molecular events appear to be associated with anticancer effects of JS-K in human hepatoma Hep3B cells, including activation of genes related to apoptosis and induction of genes involved in antiangiogenesis and tumor cell migration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Molecular Basis of Prodrug Activation by Human Valacyclovirase, an [alpha]-Amino Acid Ester Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Longsheng; Xu, Zhaohui; Zhou, Jiahai; Lee, Kyung-Dall; Amidon, Gordon L. (Michigan)

    2008-07-08

    Chemical modification to improve biopharmaceutical properties, especially oral absorption and bioavailability, is a common strategy employed by pharmaceutical chemists. The approach often employs a simple structural modification and utilizes ubiquitous endogenous esterases as activation enzymes, although such enzymes are often unidentified. This report describes the crystal structure and specificity of a novel activating enzyme for valacyclovir and valganciclovir. Our structural insights show that human valacyclovirase has a unique binding mode and specificity for amino acid esters. Biochemical data demonstrate that the enzyme hydrolyzes esters of {alpha}-amino acids exclusively and displays a broad specificity spectrum for the aminoacyl moiety similar to tricorn-interacting aminopeptidase F1. Crystal structures of the enzyme, two mechanistic mutants, and a complex with a product analogue, when combined with biochemical analysis, reveal the key determinants for substrate recognition; that is, a flexible and mostly hydrophobic acyl pocket, a localized negative electrostatic potential, a large open leaving group-accommodating groove, and a pivotal acidic residue, Asp-123, after the nucleophile Ser-122. This is the first time that a residue immediately after the nucleophile has been found to have its side chain directed into the substrate binding pocket and play an essential role in substrate discrimination in serine hydrolases. These results as well as a phylogenetic analysis establish that the enzyme functions as a specific {alpha}-amino acid ester hydrolase. Valacyclovirase is a valuable target for amino acid ester prodrug-based oral drug delivery enhancement strategies.

  9. Prospects for Gene Therapy in the Fragile X Syndrome

    Science.gov (United States)

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  10. Selective in vivo radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells transduced with the E. coli cytosine deaminase (CD) gene

    International Nuclear Information System (INIS)

    Gabel, M.; Kim, J.H.; Kolozsvary, A.; Khil, M.; Freytag, S.

    1998-01-01

    Purpose: The E. coli cytosine deaminase (CD) gene encodes an enzyme capable of converting the nontoxic prodrug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a known radiosensitizer. Having previously shown that combined CD suicide gene therapy and radiation (RT) results in pronounced radiosensitization in vitro, we progressed to in vivo studies of combined therapy. Methods and Materials: WiDr human colon cancer cells were transduced in vitro with the CD gene and cells expressing CD were selected for use as xenografts in a nude mouse model. After administration of 5-FC, tumors received 10-30 Gy local field radiation (RT) and tumor growth delay was compared to control animals receiving either 5-FU, 5-FC, or RT alone. Results: Maximal growth delay was seen in mice treated with 5-FC for 6 consecutive days prior to RT. Combined treatment with 15 Gy radiation resulted in a dose-modifying factor (DMF) of 1.50, and a greater DMF was observed with higher doses of radiation. There was no appreciable toxicity using this new approach. In contrast, a similar treatment of combined 5-FU and radiation resulted in considerable toxicity and no appreciable radiosensitization. Conclusion: The present results show that combined suicide gene therapy and RT results in pronounced antitumor effect without any notable toxicity. This indicates that the CD gene may be useful in the development of novel treatment strategies combining radiation and gene therapy in the treatment of locally advanced cancers

  11. Prodrugs for the Treatment of Neglected Diseases

    Directory of Open Access Journals (Sweden)

    Lorena Blau

    2007-03-01

    Full Text Available Recently, World Health Organization (WHO and Medicins San Frontieres (MSF proposed a classification of diseases as global, neglected and extremely neglected. Global diseases, such as cancer, cardiovascular and mental (CNS diseases represent the targets of the majority of the R&D efforts of pharmaceutical companies. Neglected diseases affect millions of people in the world yet existing drug therapy is limited and often inappropriate. Furthermore, extremely neglected diseases affect people living under miserable conditions who barely have access to the bare necessities for survival. Most of these diseases are excluded from the goals of the R&D programs in the pharmaceutical industry and therefore fall outside the pharmaceutical market. About 14 million people, mainly in developing countries, die each year from infectious diseases. From 1975 to 1999, 1393 new drugs were approved yet only 1% were for the treatment of neglected diseases [3]. These numbers have not changed until now, so in those countries there is an urgent need for the design and synthesis of new drugs and in this area the prodrug approach is a very interesting field. It provides, among other effects, activity improvements and toxicity decreases for current and new drugs, improving market availability. It is worth noting that it is essential in drug design to save time and money, and prodrug approaches can be considered of high interest in this respect. The present review covers 20 years of research on the design of prodrugs for the treatment of neglected and extremely neglected diseases such as Chagas’ disease (American trypanosomiasis, sleeping sickness (African trypanosomiasis, malaria, sickle cell disease, tuberculosis, leishmaniasis and schistosomiasis.

  12. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Radiotechnologies and gene therapy

    International Nuclear Information System (INIS)

    Xia Jinsong

    2001-01-01

    Gene therapy is an exciting frontier in medicine today. Radiologist will make an uniquely contribution to these exciting new technologies at every level by choosing sites for targeting therapy, perfecting and establishing routes of delivery, developing imaging strategies to monitor therapy and assess gene expression, developing radiotherapeutic used of gene therapy

  14. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs.

  15. Hypoxia targeting therapy with prodrug specifically stabilized and activated in hypoxic tumor cells

    International Nuclear Information System (INIS)

    Kondoh, S.K.; Ueda, T.; Harada, H.; Hiraoka, M.; Akagi, K.

    2003-01-01

    Hypoxia fraction in tumors is associated with increased metastasis and poor survival in patients suffering from malignant tumors such as the head and neck, cervical or breast cancers. Hypoxia can be a direct cause of therapeutic resistance because some drugs and radiation require oxygen to be maximally cytotoxic. Recently we have reported a novel hypoxia targeting prodrug, TOP3, which is a fusion protein, composed of HIV TAT protein transduction domain, a part of HIF1 α ODD domain, and Procaspase-3. TOP3 can be transferred into every cell both in vitro and in vivo but becomes stable only in hypoxic cells, in which TOP3 is activated and induces apoptosis. The application of this fusion protein to a tumor-bearing mouse resulted in significant suppression of the tumor growth and even in reduction of the tumor mass without any obvious side effects. The administrations of TOP3 in combination with a low dose of X-ray showed an additive antitumor effect on pancreatic tumor cells. Furthermore, we show that the rodent model of ascites generated by malignant cells provides an excellent platform of testing hypoxia targeting drugs, since it comprises homogeneous fluid with tumor cells surviving and proliferating under hypoxic condition. TOP3 induced apoptosis of AH130, rat ascites hepatoma cells, in vitro only under hypoxic but not normoxic condition. Intraperitoneal administration of TOP3 prolonged life span of the rats with AH130 derived malignant ascites. Sixty percent of the treated rats were cured of ascites without recurrence for more than six months, in contrast all untreated rats died within 20 days after tumor cell inoculation. These results strongly suggest that TOP3 would provide a new strategy for hypoxia targeting therapy and that the combination of TOP3 with radiotherapy or chemotherapy may provide a new strategy for annihilating malignant tumors

  16. Duchenne Muscular Dystrophy Gene Therapy in the Canine Model

    Science.gov (United States)

    2015-01-01

    Abstract Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disease caused by dystrophin deficiency. Gene therapy has significantly improved the outcome of dystrophin-deficient mice. Yet, clinical translation has not resulted in the expected benefits in human patients. This translational gap is largely because of the insufficient modeling of DMD in mice. Specifically, mice lacking dystrophin show minimum dystrophic symptoms, and they do not respond to the gene therapy vector in the same way as human patients do. Further, the size of a mouse is hundredfolds smaller than a boy, making it impossible to scale-up gene therapy in a mouse model. None of these limitations exist in the canine DMD (cDMD) model. For this reason, cDMD dogs have been considered a highly valuable platform to test experimental DMD gene therapy. Over the last three decades, a variety of gene therapy approaches have been evaluated in cDMD dogs using a number of nonviral and viral vectors. These studies have provided critical insight for the development of an effective gene therapy protocol in human patients. This review discusses the history, current status, and future directions of the DMD gene therapy in the canine model. PMID:25710459

  17. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  18. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  19. Liposomal Formulation of Retinoids Designed for Enzyme Triggered Release

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Adolph, Sidsel Kramshøj; Subramanian, Arun Kumar

    2010-01-01

    The design of retinoid phospholipid prodrugs is described based on molecular dynamics simulations and cytotoxicity studies of synthetic retinoid esters. The prodrugs are degradable by secretory phospholipase A(2) IIA and have potential in liposomal drug delivery targeting tumors. We have synthesi...... displayed IC50 values in the range of 3-19 mu M toward HT-29 and Colo205 colon cancer cells in the presence of phospholipase A(2), while no significant cell death was observed in the absence of the enzyme....

  20. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

    Directory of Open Access Journals (Sweden)

    E. R. Nemtsova

    2016-01-01

    Full Text Available This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin and oncolytic (tumor specific conditionally replicating viruses (Oncorine™, ONYX-015, Imlygic®.By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

  1. Prodrugs of herpes simplex thymidine kinase inhibitors.

    Science.gov (United States)

    Yanachkova, Milka; Xu, Wei-Chu; Dvoskin, Sofya; Dix, Edward J; Yanachkov, Ivan B; Focher, Federico; Savi, Lida; Sanchez, M Dulfary; Foster, Timothy P; Wright, George E

    2015-04-01

    Because guanine-based herpes simplex virus thymidine kinase inhibitors are not orally available, we synthesized various 6-deoxy prodrugs of these compounds and evaluated them with regard to solubility in water, oral bioavailability, and efficacy to prevent herpes simplex virus-1 reactivation from latency in a mouse model. Organic synthesis was used to prepare compounds, High Performance Liquid Chromatography (HPLC) to analyze hydrolytic conversion, Mass Spectrometry (MS) to measure oral bioavailability, and mouse latent infection and induced reactivation to evaluate the efficacy of a specific prodrug. Aqueous solubilities of prodrugs were improved, oxidation of prodrugs by animal cytosols occurred in vitro, and oral absorption of the optimal prodrug sacrovir™ (6-deoxy-mCF3PG) in the presence of the aqueous adjuvant Soluplus® and conversion to active compound N(2)-[3-(trifluoromethyl)pheny])guanine (mCF3PG) were accomplished in mice. Treatment of herpes simplex virus-1 latent mice with sacrovir™ in 1% Soluplus in drinking water significantly suppressed herpes simplex virus-1 reactivation and viral genomic replication. Ad libitum oral delivery of sacrovir™ was effective in suppressing herpes simplex virus-1 reactivation in ocularly infected latent mice as measured by the numbers of mice shedding infectious virus at the ocular surface, numbers of trigeminal ganglia positive for infectious virus, number of corneas that had detectable infectious virus, and herpes simplex virus-1 genome copy numbers in trigeminal ganglia following reactivation. These results demonstrate the statistically significant effect of the prodrug on suppressing herpes simplex virus-1 reactivation in vivo. © The Author(s) 2015.

  2. Epigenetic mismatches with mutated transcribing genes at leukemogenic S-phase binding/start sites--potential targets for therapy with enzyme inhibitors.

    Science.gov (United States)

    Prindull, Gregor

    2012-11-01

    This review focuses on gene transcription patterns of leukemogenic S-phases in mitotic cell cycles for identification of enzymatic reactions as potential targets for epigenetics-based drug therapy. Transcription of leukemic genes is triggered by reprogrammed transcription factors (TFs) mediated by chromatin histones. Reprogrammed TFs originate from transcriptional alterations of CpG methylation patterns of mutated epigenetic genes. They preserve memory information of earlier leukemogenic exposures, even transgenerationally via the zygote, through small (e.g. pi)RNA transmitted between cells by exosomes. Normally, reprogrammed TFs are enzymatically silenced and stored as markers in heterochromatic domains. Failure of intra S-phase surveillance (IS) permits the formation and continual operation of DNA replication forks in spite of persisting genotoxic stress. Silenced TFs are re-activated by euchromatin, most likely through leakages of insulator barriers of cis-regulating chromatin modulators (CRM) that normally separate hetero- from euchromatin domains. During transport by sliding nucleosomes, reprogrammed leukemogenic TFs are misplaced at transcription factor binding-/starting-sites (TFBS /TSS) allowing them to interact with and trigger replication of mutated leukemic genes. Interactions of enzymatically reprogrammed TFs, transcribed from mutated epigenetic genes, with replicating leukemic genes at TFBS/TSSs are key driving forces in leukemogenesis. Probably, epigenetic genes, although mutated, still retain their control of replication of leukemic genes. Epigenetics-based enzyme inhibitors must target reprogrammed TFs. Prudently, therapeutic corrections should be introduced within the frame of conventional, cytoreductive treatment protocols. Alternatively, reprogrammed TFs could be replaced by cell populations with regular TF production. Clinically, classification of leukemias should be based on their epigenetic presentation.

  3. Prodrugs designed to discriminate pathological (tumour) and physiological (normal tissue) hypoxia

    International Nuclear Information System (INIS)

    Wilson, W.R.; Patterson, A.V.

    2003-01-01

    There is now abundant evidence that hypoxic contributes to treatment failure in radiation therapy. As a target for therapeutic intervention, hypoxia is especially attractive because it is a common feature of most human tumours and therefore a potential 'pan target' across many tumour types. However, attempts to exploit hypoxia face the problem that oxygen concentrations in some normal tissues are also heterogeneous and that O 2 distributions in tumours and normal tissues overlap. Simply adjusting the K value (O 2 concentration for 50% inhibition of activation) does not provide a satisfactory solution. Bioreductive drugs like tirapazamine with high K values are activated significantly in several normal tissues, while nitro compounds and quinones with low K values spare the hypoxic tumour cells at 'intermediate' O 2 tensions (1-10 mM O 2 ) which are considered to be major contributors to tumour radioresistance. A potential strategy for overcoming this dilemma is to design prodrugs that are activated only at very low K values, but give relatively stable cytotoxic metabolites capable of diffusing to cells at higher O 2 concentrations. This approach redefines the therapeutic target as cells adjacent to zones of pathological hypoxia ( 2 ), providing discrimination from physiological hypoxia in normal tissues. Detecting bioreductive prodrugs capable of providing bystander killing of this kind is not straightforward. We have adapted a multicellular layer (MCL) co-culture model for quantifying bystander effects in GDEPT (Wilson et al., Cancer Res., 62: 1425-1432, 2002), and have used this to measure bystander effects of hypoxia-activated prodrugs. This model uses differences in metabolic activation of bioreductive drugs between A459 cell lines with low and high cytochrome P450 reductase activity, rather than O 2 gradients, to effect localised prodrug activation. It shows that TPZ and the nitroimidazole RSU-1069 have little or no bystander effect, but that dinitrobenzamide

  4. Enzyme replacement and substrate reduction therapy for Gaucher disease.

    Science.gov (United States)

    Shemesh, Elad; Deroma, Laura; Bembi, Bruno; Deegan, Patrick; Hollak, Carla; Weinreb, Neal J; Cox, Timothy M

    2015-03-27

    Gaucher disease, a rare disorder, is caused by inherited deficiency of the enzyme glucocerebrosidase. It is unique among the ultra-orphan disorders in that four treatments are currently approved by various regulatory authorities for use in routine clinical practice. Hitherto, because of the relatively few people affected worldwide, many of whom started therapy during a prolonged period when there were essentially no alternatives to imiglucerase, these treatments have not been systematically evaluated in studies such as randomized controlled trials now considered necessary to generate the highest level of clinical evidence. To summarize all available randomized controlled study data on the efficacy and safety of enzyme replacement therapies and substrate reduction therapy for treating Gaucher disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register. Additional searches were conducted on ClinicalTrials.gov for any ongoing studies with potential interim results, and through PubMed. We also searched the reference lists of relevant articles and reviews.Date of last search: 07 August 2014. All randomized and quasi-randomized controlled studies (including open-label studies and cross-over studies) assessing enzyme replacement therapy or substrate reduction therapy, or both, in all types of Gaucher disease were included. Two authors independently assessed the risk of bias in the included studies, and extracted relevant data. Of the 488 studies retrieved by the electronic searches, eight met the inclusion criteria and were analysed (300 participants). Response parameters were restricted to haemoglobin concentration, platelet count, spleen and liver volume and serum biomarkers (chitotriosidase and CCL18). Only one publication reported a 'low risk of bias' score in all parameters assessed, and all studies included were randomized.Four studies reported the responses to enzyme replacement therapy of previously

  5. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  6. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  7. Improvement of buccal delivery of morphine using the prodrug approach

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Jørgensen, A.; Christensen, C.B.

    1997-01-01

    relationship to the lipophilicity of the compounds. In the in vitro studies the optimal permeation was achieved for the prodrug morphine-3-propionate having a log P value of approximately 0.7. In contrast to that optimal in vivo absorption was obtained for the prodrug morphine-3-acetate having a log P value...... Improved by using ester prodrugs with higher lipophilicity than morphine itself. However, the enzymatic stability of the prodrugs in saliva also play an important role for the overall improvement in absorption properties....

  8. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.

    Directory of Open Access Journals (Sweden)

    Danika Lindsay

    2016-08-01

    Full Text Available Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the

  9. Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy

    Directory of Open Access Journals (Sweden)

    Ruiz de Garibay AP

    2012-10-01

    Full Text Available Aritz Pérez Ruiz de Garibay, Diego Delgado, Ana del Pozo-Rodríguez, María Ángeles Solinís, Alicia Rodríguez GascónPharmacokinetics, Nanotechnology and Gene Therapy Group, Pharmacy Faculty, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, SpainPurpose: Gene-mediated enzyme replacement is a reasonable and highly promising approach for the treatment of Fabry disease (FD. The objective of the present study was to demonstrate the potential applications of solid lipid nanoparticle (SLN-based nonviral vectors for the treatment of FD.Methods: SLNs containing the pR-M10-αGal A plasmid that encodes the α-Galactosidase A (α-Gal A enzyme were prepared and their in vitro transfection efficacy was studied in Hep G2 cells. We also studied the cellular uptake of the vectors and the intracellular disposition of the plasmid.Results: The enzymatic activity of the cells treated with the vectors increased significantly relative to the untreated cells, regardless of the formulation assayed. When the SLNs were prepared with protamine or dextran and protamine, the activity of the α-Gal A enzyme by the transfected Hep G2 cells increased up to 12-fold compared to that of untreated cells.Conclusion: With this work we have revealed in Hep G2 cells the ability of a multicomponent system based on SLNs to act as efficient nonviral vectors to potentially correct low α-Gal A activity levels in FD with gene therapy.Keywords: solid lipid nanoparticles, Fabry disease, nonviral vectors, gene therapy

  10. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  11. The ethics of gene therapy.

    Science.gov (United States)

    Chan, Sarah; Harris, John

    2006-10-01

    Recent developments have progressed in areas of science that pertain to gene therapy and its ethical implications. This review discusses the current state of therapeutic gene technologies, including stem cell therapies and genetic modification, and identifies ethical issues of concern in relation to the science of gene therapy and its application, including the ethics of embryonic stem cell research and therapeutic cloning, the risks associated with gene therapy, and the ethics of clinical research in developing new therapeutic technologies. Additionally, ethical issues relating to genetic modification itself are considered: the significance of the human genome, the distinction between therapy and enhancement, and concerns regarding gene therapy as a eugenic practice.

  12. Oral Tolerance: A New Tool for the Treatment of Gastrointestinal Inflammatory Disorders and Liver-Directed Gene Therapy

    Directory of Open Access Journals (Sweden)

    Yaron Ilan

    1999-01-01

    Full Text Available Oral tolerance is a method of downregulating an immune response by feeding antigens. The use of oral tolerance toward adenoviruses and colitis-extracted proteins for long term gene therapy and alleviation of experimental colitis, and the mechanisms of tolerance induction are presented. Adenoviruses are efficient vectors in liver-directed gene therapy; however, the antiviral immune response precludes the ability to achieve long term gene expression and prohibits the ability to reinject the recombinant virus. Oral tolerance induction via feeding of viral-extracted proteins prevented the antiadenoviral humoral and cellular immune responses, thus enabling long term gene therapy using these viruses. Moreover, pre-existing immune response to the virus was overcome by tolerance induction, enabling prolonged gene expression in a presensitized host. Inflammatory bowel diseases are immune-mediated disorders where an imbalance between proinflammatory (T helper cell type 1 and anti-inflammatory (T helper cell type 2 cytokines are thought to play a role in the pathogenesis. In the experimental colitis model, the feeding of colitis-extracted proteins downregulated the anticolon immune response. Tolerance induction toward colitis-extracted proteins ameliorated colonic inflammation as shown by decreased diarrhea and reduction of colonic ulcerations, intestinal and peritoneal adhesions, wall thickness and edema. Histological parameters for colitis were markedly improved in tolerized animals. In both models, tolerized animals developed an increase in transforming growth factor-beta, interleukin-4 and interleukin-10, and a decrease in the mRNA of interferon-gamma lymphocytes and serum levels. Adoptive transfer of tolerized lymphocytes enabled the transfer of tolerance toward adenoviruses and colon-extracted proteins. Thus, oral tolerance induces suppressor lymphocytes that mediate immune response downregulation by induction of a shift from a proinflammatory T

  13. Anti-HIV therapy with AZT prodrugs: AZT phosphonate derivatives, current state and prospects.

    Science.gov (United States)

    Khandazhinskaya, Anastasiya; Matyugina, Elena; Shirokova, Elena

    2010-06-01

    AIDS, a disease caused by human immunodeficiency virus, was called 'plague of the twentieth century'. 3'-Azido-3'-deoxythymidine (AZT), the first compound approved for the treatment of HIV, is still a mandatory component of treatment schemes. However, its toxicity stimulated a search for new agents. This review presents the history and current state of the design of AZT prodrugs based on its phosphonate derivatives. Although every effort was made to include as many AZT structures bearing phosphonate residues and demonstrate the variety they offer, we also concentrated on the studies performed in our laboratory. Special attention was also paid to AZT 5'-H-phosphonate (phosphazide, Nikavir) approved in the Russian Federation as a drug for the prevention and treatment of HIV infection. The prodrug strategy applied to AZT phosphonate derivatives enriched chemistry, biology and medicine not only with new knowledge, methods and structures, but also with a new anti-HIV drug Nikavir. Currently, study of another phosphonate, AZT 5'-aminocarbonylphosphonate, is underway. Slow release of AZT following oral administration and penetration into cells, decreased toxicity and the lack of cumulative properties make the compounds of this group promising as extended-release forms of AZT.

  14. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    Science.gov (United States)

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  15. Gene therapy and reproductive medicine.

    Science.gov (United States)

    Stribley, John M; Rehman, Khurram S; Niu, Hairong; Christman, Gregory M

    2002-04-01

    To review the literature on the principles of gene therapy and its potential application in reproductive medicine. Literature review. Gene therapy involves transfer of genetic material to target cells using a delivery system, or vector. Attention has primarily focused on viral vectors. Significant problems remain to be overcome including low efficacy of gene transfer, the transient expression of some vectors, safety issues with modified adenoviruses and retroviruses, and ethical concerns. If these issues can be resolved, gene therapy will be applicable to an increasing spectrum of single and multiple gene disorders, as the Human Genome Project data are analyzed, and the genetic component of human disease becomes better understood. Gynecologic gene therapy has advanced to human clinical trials for ovarian carcinoma, and shows potential for the treatment of uterine leiomyomata. Obstetric applications of gene therapy, including fetal gene therapy, remain more distant goals. Concerns about the safety of human gene therapy research are being actively addressed, and remarkable progress in improving DNA transfer has been made. The first treatment success for a genetic disease (severe combined immunodeficiency disease) has been achieved, and ongoing research efforts will eventually yield clinical applications in many spheres of reproductive medicine.

  16. Synthesis, characterization and pharmacological evaluation of amide prodrugs of Flurbiprofen

    International Nuclear Information System (INIS)

    Mishra, Ashutosh; Veerasamy, Ravichandran; Jain, Prateek Kumar; Dixit, Vinod Kumar; Agrawal, Ram Kishor

    2008-01-01

    Flurbiprofen (FB) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study was aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of FB were synthesized by amidation with ethyl esters of amino acids, namely, glycine, L-phenylalanine, L-tryptophan, L-valine, L-isoleucine, L-alanine, L-leucine, L-glutamic acid, L-aspartic acid and β alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for bioavailability studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, antiinflammatory activities were obtained in all cases as compared to FB. Among synthesized prodrugs AR-9, AR-10 and AR-2 showing excellent pharmacological response and encouraging hydrolysis rate both in (Simulated Intestinal Fluid) SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent resulted in enhanced partition coefficient but diminished dissolution and hydrolysis rate. Such prodrugs can be considered for sustained release purpose. (author)

  17. Synthesis, characterization and pharmacological evaluation of amide prodrugs of Flurbiprofen

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashutosh; Veerasamy, Ravichandran; Jain, Prateek Kumar; Dixit, Vinod Kumar; Agrawal, Ram Kishor [Dr. H. S. Gour Vishwavidyalaya, Sagar (India). Dept. of Pharmaceutical Sciences. Pharmaceutical Chemistry Research Lab.]. E-mail: dragrawal2001@yahoo.co.in

    2008-07-01

    Flurbiprofen (FB) suffers from the general side effects of NSAIDs, owing to presence of free carboxylic acid group. The study was aimed to retard the adverse effects of gastrointestinal origin. Ten prodrugs of FB were synthesized by amidation with ethyl esters of amino acids, namely, glycine, L-phenylalanine, L-tryptophan, L-valine, L-isoleucine, L-alanine, L-leucine, L-glutamic acid, L-aspartic acid and {beta} alanine. Purified synthesized prodrugs were characterized by m.p., TLC, solubility, partition coefficients, elemental analyses, UV, FTIR, NMR and MS. Synthesized prodrugs were subjected for bioavailability studies, analgesic, anti-inflammatory activities and ulcerogenic index. Marked reduction of ulcerogenic index and comparable analgesic, antiinflammatory activities were obtained in all cases as compared to FB. Among synthesized prodrugs AR-9, AR-10 and AR-2 showing excellent pharmacological response and encouraging hydrolysis rate both in (Simulated Intestinal Fluid) SIF and in 80% human plasma. Prodrugs with increased aliphatic side chain length or introduction of aromatic substituent resulted in enhanced partition coefficient but diminished dissolution and hydrolysis rate. Such prodrugs can be considered for sustained release purpose. (author)

  18. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    Science.gov (United States)

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.

  19. Gene therapy for ocular diseases.

    Science.gov (United States)

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-05-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  20. Pancreatic enzyme replacement therapy for pancreatic exocrine insufficiency in the 21(st) century.

    Science.gov (United States)

    Trang, Tony; Chan, Johanna; Graham, David Y

    2014-09-07

    Restitution of normal fat absorption in exocrine pancreatic insufficiency remains an elusive goal. Although many patients achieve satisfactory clinical results with enzyme therapy, few experience normalization of fat absorption, and many, if not most, will require individualized therapy. Increasing the quantity of lipase administered rarely eliminates steatorrhea but increases the cost of therapy. Enteric coated enzyme microbead formulations tend to separate from nutrients in the stomach precluding coordinated emptying of enzymes and nutrients. Unprotected enzymes mix well and empty with nutrients but are inactivated at pH 4 or below. We describe approaches for improving the results of enzyme therapy including changing to, or adding, a different product, adding non-enteric coated enzymes, (e.g., giving unprotected enzymes at the start of the meal and acid-protected formulations later), use of antisecretory drugs and/or antacids, and changing the timing of enzyme administration. Because considerable lipid is emptied in the first postprandial hour, it is prudent to start therapy with enteric coated microbead prior to the meal so that some enzymes are available during that first hour. Patients with hyperacidity may benefit from adjuvant antisecretory therapy to reduce the duodenal acid load and possibly also sodium bicarbonate to prevent duodenal acidity. Comparative studies of clinical effectiveness of different formulations as well as the characteristics of dispersion, emptying, and dissolution of enteric-coated microspheres of different diameter and density are needed; many such studies have been completed but not yet made public. We discuss the history of pancreatic enzyme therapy and describe current use of modern preparations, approaches to overcoming unsatisfactory clinical responses, as well as studies needed to be able to provide reliably effective therapy.

  1. Pancreatic enzyme replacement therapy for pancreatic exocrine insufficiency in the 21st century

    Science.gov (United States)

    Trang, Tony; Chan, Johanna; Graham, David Y

    2014-01-01

    Restitution of normal fat absorption in exocrine pancreatic insufficiency remains an elusive goal. Although many patients achieve satisfactory clinical results with enzyme therapy, few experience normalization of fat absorption, and many, if not most, will require individualized therapy. Increasing the quantity of lipase administered rarely eliminates steatorrhea but increases the cost of therapy. Enteric coated enzyme microbead formulations tend to separate from nutrients in the stomach precluding coordinated emptying of enzymes and nutrients. Unprotected enzymes mix well and empty with nutrients but are inactivated at pH 4 or below. We describe approaches for improving the results of enzyme therapy including changing to, or adding, a different product, adding non-enteric coated enzymes, (e.g., giving unprotected enzymes at the start of the meal and acid-protected formulations later), use of antisecretory drugs and/or antacids, and changing the timing of enzyme administration. Because considerable lipid is emptied in the first postprandial hour, it is prudent to start therapy with enteric coated microbead prior to the meal so that some enzymes are available during that first hour. Patients with hyperacidity may benefit from adjuvant antisecretory therapy to reduce the duodenal acid load and possibly also sodium bicarbonate to prevent duodenal acidity. Comparative studies of clinical effectiveness of different formulations as well as the characteristics of dispersion, emptying, and dissolution of enteric-coated microspheres of different diameter and density are needed; many such studies have been completed but not yet made public. We discuss the history of pancreatic enzyme therapy and describe current use of modern preparations, approaches to overcoming unsatisfactory clinical responses, as well as studies needed to be able to provide reliably effective therapy. PMID:25206255

  2. Progress toward cell-directed therapy for phenylketonuria

    Science.gov (United States)

    Harding, CO

    2009-01-01

    Phenylketonuria (PKU) is one of the most common inborn errors of metabolism with an annual incidence of approximately 1:16,000 live births in North America. Contemporary therapy relies upon lifelong dietary protein restriction and supplementation with phenylalanine-free medical foods. This therapy is expensive and unpalatable; dietary compliance is difficult to maintain throughout life. Non-adherence to the diet is associated with learning disabilities, adult-onset neurodegenerative disease, and maternal PKU syndrome. The fervent dream of many individuals with PKU is a more permanent cure for this disease. This paper will review ongoing efforts to develop viable cell-directed therapies, in particular cell transplantation and gene therapy, for the treatment of PKU. PMID:18498375

  3. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    Science.gov (United States)

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  4. Stem cell and gene therapies for diabetes mellitus.

    Science.gov (United States)

    Calne, Roy Y; Gan, Shu Uin; Lee, Kok Onn

    2010-03-01

    In this Perspectives article, we comment on the progress in experimental stem cell and gene therapies that might one day become a clinical reality for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Finally, gene therapy shows some promise for the generation of insulin-producing cells. Here, we discuss two of the most frequently used approaches: in vitro gene delivery into cells which are then transplanted into the recipient and direct delivery of genes in vivo.

  5. Fabrication of Reductive-Responsive Prodrug Nanoparticles with Superior Structural Stability by Polymerization-Induced Self-Assembly and Functional Nanoscopic Platform for Drug Delivery.

    Science.gov (United States)

    Zhang, Wen-Jian; Hong, Chun-Yan; Pan, Cai-Yuan

    2016-09-12

    A highly efficient strategy, polymerization-induced self-assembly (PISA) for fabrication of the polymeric drug delivery systems in cancer chemotherapy is reported. Diblock prodrug copolymer, PEG-b-P(MEO2MA-co-CPTM) was used as the macro-RAFT agent to fabricate prodrug nanoparticles through PISA. The advantages of fabricating intelligent drug delivery system via this approach are as following: (1) Simultaneous fulfillment of polymerization, self-assembly, and drug encapsulation in one-pot at relatively high concentration (100 mg/mL); (2) Almost complete monomer conversion allows direct application of the resultant prodrug nanoparticles without further purification; (3) Robust structures of the resultant prodrug nanoparticles, because the cross-linker was used as the comonomer, resulted in core-cross-linking simultaneously with the formation of the prodrug nanoparticles; (4) The drug content in the resultant prodrug nanoparticles can be accurately modulated just via adjusting the feed molar ratio of MEO2MA/CPTM in the synthesis of PEG-b-P(MEO2MA-co-CPTM). The prodrug nanoparticles with similar diameters but various drug contents were obtained using different prodrug macro-CTA. In consideration of the long-term biological toxicity, the prodrug nanoparticles with higher drug content exhibit more excellent anticancer efficiency due to that lower dosage of them are enough for effectively killing HeLa cells.

  6. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  7. Gene therapy of thyroid carcinoma

    International Nuclear Information System (INIS)

    Zheng Wei; Tan Jian

    2007-01-01

    Normally, differentiated thyroid carcinoma(DTC) is a disease of good prognosis, but about 30% of the tumors are dedifferentiate, which are inaccessible to standard therapeutic procedures such as 'operation, 131 I therapy and thyroid hormone'. Both internal and abroad experts are researching a new therapy of dedifferentiated thyroid carcinoma--gene therapy. Many of them utilize methods of it, but follow different strategies: (1) transduction of the thyroid sodium/iodide transporter gene to make tissues that do not accumulate iodide treatable by 131 I therapy; (2) strengthening of the anti-tumor immune response; (3) suicide gene therapy; (4) depression the generation of tumor cells; (5) gene therapy of anti- vascularization. (authors)

  8. Relationship between angiotensin-converting enzyme gene polymorphism and cardio-brain complications in patients with NIDDM (type 2 diabetes mellitus)

    International Nuclear Information System (INIS)

    Xu Qinfang; Zhu Yan; Ding Mingwei

    2002-01-01

    Objective: To investigate the relationship between angiotensin-converting enzyme gene polymorphism and cardio-brain complications in patients with NIDDM. Methods: The angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism in 174 patients with NIDDM and 62 controls were examined with PCR. Results: ACE gene I/D polymorphism was closely related to coronary heart disease (angina, cardiac infarction) and cerebral infarction in diabetic patients but not with hypertension. Plasma renin activity and plasma angiotensin II levels in complicated diabetic patients with ACE D/D gene were significantly higher than those in the controls (p < 0.01). Their aldosterone and endothelin contents were not significantly different. Conclusion: Examination of ACE gene I/D polymorphism was useful for the primary prevention of cardio-brain complications in diabetic patients and helpful in the early diagnosis and therapy of coronary heart disease and cerebral infarction

  9. Pancreatic enzyme replacement therapy for people with cystic fibrosis.

    Science.gov (United States)

    Somaraju, Usha Rani; Solis-Moya, Arturo

    2016-11-23

    Most people with cystic fibrosis (80% to 90%) need pancreatic enzyme replacement therapy to prevent malnutrition. Enzyme preparations need to be taken whenever food is taken, and the dose needs to be adjusted according to the food consumed. A systematic review on the efficacy and safety of pancreatic enzyme replacement therapy is needed to guide clinical practice, as there is variability between centres with respect to assessment of pancreatic function, time of commencing treatment, dose and choice of supplements. This is an updated version of a published review. To evaluate the efficacy and safety of pancreatic enzyme replacement therapy in children and adults with cystic fibrosis and to compare the efficacy and safety of different formulations of this therapy and their appropriateness in different age groups. Also, to compare the effects of pancreatic enzyme replacement therapy in cystic fibrosis according to different diagnostic subgroups (e.g. different ages at introduction of therapy and different categories of pancreatic function). We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. Most recent search: 15 July 2016.We also searched an ongoing trials website and the websites of the pharmaceutical companies who manufacture pancreatic enzyme replacements for any additional trials. Most recent search: 22 July 2016. Randomised and quasi-randomised controlled trials in people of any age, with cystic fibrosis and receiving pancreatic enzyme replacement therapy, at any dosage and in any formulation, for a period of not less than four weeks, compared to placebo or other pancreatic enzyme replacement therapy preparations. Two authors independently assessed trials and extracted outcome data. They also assessed the risk of bias of the trials included in the review. One

  10. Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis.

    Science.gov (United States)

    Agrawal, L; Louboutin, J-P; Reyes, B A S; Van Bockstaele, E J; Strayer, D S

    2006-12-01

    Human immunodeficiency virus-1 (HIV-1) infection in the central nervous system (CNS) may lead to neuronal loss and progressively deteriorating CNS function: HIV-1 gene products, especially gp120, induce free radical-mediated apoptosis. Reactive oxygen species (ROS), are among the potential mediators of these effects. Neurons readily form ROS after gp120 exposure, and so might be protected from ROS-mediated injury by antioxidant enzymes such as Cu/Zn-superoxide dismutase (SOD1) and/or glutathione peroxidase (GPx1). Both enzymes detoxify oxygen free radicals. As they are highly efficient gene delivery vehicles for neurons, recombinant SV40-derived vectors were used for these studies. Cultured mature neurons derived from NT2 cells and primary fetal neurons were transduced with rSV40 vectors carrying human SOD1 and/or GPx1 cDNAs, then exposed to gp120. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Transduction efficiency of both neuron populations was >95%, as assayed by immunostaining. Transgene expression was also ascertained by Western blotting and direct assays of enzyme activity. Gp120 induced apoptosis in a high percentage of unprotected NT2-N. Transduction with SV(SOD1) and SV(GPx1) before gp120 challenge reduced neuronal apoptosis by >90%. Even greater protection was seen in cells treated with both vectors in sequence. Given singly or in combination, they protect neuronal cells from HIV-1-gp120 induced apoptosis. We tested whether rSV40 s can deliver antioxidant enzymes to the CNS in vivo: intracerebral injection of SV(SOD1) or SV(GPx1) into the caudate putamen of rat brain yielded excellent transgene expression in neurons. In vivo transduction using SV(SOD1) also protected neurons from subsequent gp120-induced apoptosis after injection of both into the caudate putamen of rat brain. Thus, SOD1 and GPx1 can be delivered by SV40 vectors in vitro or in vivo. This approach may merit consideration for

  11. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  12. Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen–Antioxidant Mutual Prodrugs

    Directory of Open Access Journals (Sweden)

    Zaman Ashraf

    2016-12-01

    Full Text Available Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a–c were obtained by reacting its –COOH group with chloroacetyl derivatives 3a–c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a–c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001 is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06% of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001. The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a–c interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.

  13. Catalase-loaded cisplatin-prodrug-constructed liposomes to overcome tumor hypoxia for enhanced chemo-radiotherapy of cancer.

    Science.gov (United States)

    Zhang, Rui; Song, Xuejiao; Liang, Chao; Yi, Xuan; Song, Guosheng; Chao, Yu; Yang, Yu; Yang, Kai; Feng, Liangzhu; Liu, Zhuang

    2017-09-01

    Aiming at improved therapeutic efficacies, the combination of chemotherapy and radiotherapy (chemo-radiotherapy) has been widely studied and applied in clinic. However, the hostile characteristics of tumor microenvironment such as hypoxia often limit the efficacies in both types of cancer therapies. Herein, catalase (CAT), an antioxidant enzyme, is encapsulated inside liposomes constituted by cisplatin (IV)-prodrug-conjugated phospholipid, forming CAT@Pt (IV)-liposome for enhanced chemo-radiotherapy of cancer. After being loaded inside liposomes, CAT within CAT@Pt (IV)-liposome shows retained and well-protected enzyme activity, and is able to trigger decomposition of H 2 O 2 produced by tumor cells, so as to produce additional oxygen for hypoxia relief. As the result, treatment of CAT@Pt (IV)-liposome induces the highest level of DNA damage in cancer cells after X-ray radiation compared to the control groups. In vivo tumor treatment further demonstrates a remarkably improved therapeutic outcome in chemo-radiotherapy with such CAT@Pt (IV)-liposome nanoparticles. Hence, an exquisite type of liposome-based nanoparticles is developed in this work by integrating cisplatin-based chemotherapy and catalase-induced tumor hypoxia relief together for combined chemo-radiotherapy with great synergistic efficacy, promising for clinical translation in cancer treatment. Copyright © 2017. Published by Elsevier Ltd.

  14. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy.

    Science.gov (United States)

    Shan, Lingling; Zhuo, Xin; Zhang, Fuwu; Dai, Yunlu; Zhu, Guizhi; Yung, Bryant C; Fan, Wenpei; Zhai, Kefeng; Jacobson, Orit; Kiesewetter, Dale O; Ma, Ying; Gao, Guizhen; Chen, Xiaoyuan

    2018-01-01

    Folate receptor (FR) has proven to be a valuable target for chemotherapy using folic acid (FA) conjugates. However, FA-conjugated chemotherapeutics still have low therapeutic efficacy accompanied with side effects, resulting from complications such as short circulation half-life, limited tumor delivery, as well as high kidney accumulation. Herein, we present a novel FA-conjugated paclitaxel (PTX) prodrug which was additionally conjugated with an Evans blue (EB) derivative for albumin binding. The resulting bifunctional prodrug prolonged blood circulation, enhanced tumor accumulation, and consequently improved tumor therapeutic efficacy. Methods: Fmoc-Cys(Trt)-OH was coupled onto PTX at the 7'-OH position for further synthesis of ester prodrug FA-PTX-EB. The targeting ability was investigated using confocal microscopy and flow cytometry. The pharmacokinetics of this bifunctional compound was also studied. Meanwhile, cell viability was evaluated in normal cells and three cancer cell lines by MTT assay. In vivo therapeutic effect was tested on FR-α overexpressing MDA-MB-231 tumor model. Results: Compared with free PTX, the FA-PTX, PTX-EB and FA-PTX-EB prodrugs increased circulation half-life in mice from 2.19 to 3.82, 4.41, and 7.51 h, respectively. Pharmacokinetics studies showed that the FA-PTX-EB delivered more PTX to tumors than FA-PTX and free PTX. In vitro and in vivo studies demonstrated that FA-EB-conjugated PTX induced potent antitumor activity. Conclusion: FA-PTX-EB showed prolonged blood circulation, enhanced drug accumulation in tumors, higher therapeutic index, and lower side effects than either free PTX or monofunctional FA-PTX and EB-PTX. The results support the potential of using EB for the development of long-acting therapeutics.

  15. Gene therapy and radiotherapy in malignant tumor

    International Nuclear Information System (INIS)

    Zhang Yaowen; Cao Yongzhen; Li Jin; Wang Qin

    2008-01-01

    Tumor treatment is one of the most important fields in medical research. Nowadays, a novel method which is combined gene therapy with radiotherapy plays an important role in the field of cancer research, and mainly includes immune gene therapy combined with radiotherapy, suicide gene therapy or tumor suppressor gene therapy combined with radiotherapy, antiangiogenesis gene therapy combined with radiotherapy and protective gene therapy combined with radiotherapy based on the technical features. This review summarized the current status of combined therapies of gene therapy and radiotherapy and possible mechanism. (authors)

  16. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Human glutathione transferases catalyzing the bioactivation of anticancer thiopurine prodrugs.

    Science.gov (United States)

    Eklund, Birgitta I; Gunnarsdottir, Sjofn; Elfarra, Adnan A; Mannervik, Bengt

    2007-06-01

    cis-6-(2-Acetylvinylthio)purine (cAVTP) and trans-6-(2-acetylvinylthio)guanine (tAVTG) are thiopurine prodrugs provisionally inactivated by an alpha,beta-unsaturated substituent on the sulfur of the parental thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG). The active thiopurines are liberated intracellularly by glutathione (GSH) in reactions catalyzed by glutathione transferases (GSTs) (EC 2.5.1.18). Catalytic activities of 13 human GSTs representing seven distinct classes of soluble GSTs have been determined. The bioactivation of cAVTP and tAVTG occurs via a transient addition of GSH to the activated double bond of the S-substituent of the prodrug, followed by elimination of the thiopurine. The first of these consecutive reactions is rate-limiting for thiopurine release, but GST-activation of this first addition is shifting the rate limitation to the subsequent elimination. Highly active GSTs reveal the transient intermediate, which is detectable by UV spectroscopy and HPLC analysis. LC/MS analysis of the reaction products demonstrates that the primary GSH conjugate, 4-glutathionylbuten-2-one, can react with a second GSH molecule to form the 4-(bis-glutathionyl)butan-2-one. GST M1-1 and GST A4-4 were the most efficient enzymes with tAVTG, and GST M1-1 and GST M2-2 had highest activity with cAVTP. The highly efficient GST M1-1 is polymorphic and is absent in approximately half of the human population. GST P1-1, which is overexpressed in many cancer cells, had no detectable activity with cAVTP and only minor activity with tAVTG. Other GST-activated prodrugs have targeted GST P1-1-expressing cancer cells. Tumors expressing high levels of GST M1-1 or GST A4-4 can be predicted to be particularly vulnerable to chemotherapy with cAVTP or tAVTG.

  18. Improved Protease-Targeting and Biopharmaceutical Properties of Novel Prodrugs of Ganciclovir.

    Science.gov (United States)

    Sun, Kefeng; Xu, Hao; Hilfinger, John L; Lee, Kyung-Dall; Provoda, Chester J; Sabit, Hairat; Amidon, Gordon L

    2018-02-05

    The prodrug strategy has been frequently employed as a chemical approach for overcoming the disadvantages of existing parent drugs. In this report, we synthesized four monoester prodrugs of ganciclovir, an anticytomegalovirus drug, and demonstrated their potential advantages in protease-targeted activation and biopharmaceutical profiles over the parent compound. We demonstrated that these four prodrugs of ganciclovir, i.e., N-benzyloxycarbonyl-(L)-alanine-ganciclovir (CbzAlaGCV), N-benzyloxycarbonyl-(α,l)-aminobutyric acid-ganciclovir (CbzAbuGCV), N-acetyl-(l)-phenylalanine-(l)-alanine-ganciclovir (AcPheAlaGCV), and N-acetyl-(l)-phenylalanine-(α,l)-aminobutyric acid-ganciclovir (AcPheAbuGCV), are hydrolytically activated by the protease of human cytomegalovirus (hCMV), a serine protease that possesses intrinsic esterase activities. CbzAlaGCV and AcPheAlaGCV were found to be activated at a higher rate by the hCMV protease than CbzAbuGCV and AcPheAbuGCV. These ganciclovir prodrugs could potentially be targeted to selective activation by the hCMV protease which is only present at the viral infection sites, thereby achieving higher efficacy and lower systemic toxicity. The tissue stability, cellular uptake, and trans-epithelial transport of these ganciclovir prodrugs were also characterized. The N-acetylated dipeptide prodrugs of ganciclovir were found to be generally more stable than Cbz-amino acid prodrugs in various tissue matrices. Among the four prodrug candidates, AcPheAbuGCV was the most stable in human cell homogenates, plasma, and pooled liver microsomes. AcPheAbuGCV also possessed a superior cellular uptake profile and permeability across epithelial cell monolayers. Since the targeting and selective activation of a prodrug is determined by not only its rate of hydrolysis catalyzed by the hCMV protease target but also its biopharmaceutical properties, i.e., oral absorption and systemic availability, AcPheAbuGCV is considered the best overall candidate among

  19. Gene Therapy and Children (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Gene Therapy and Children KidsHealth / For Parents / Gene Therapy ... that don't respond to conventional therapies. About Genes Our genes help make us unique. Inherited from ...

  20. Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Belgin Alaşehirli

    2009-12-01

    Full Text Available OBJECTIVE: The beneficial effects of angiotensin converting enzyme inhibitor drugs on migraine attack frequency have been shown. We aimed to study the relationship between the angiotensin converting enzyme gene and migraine pathophysiology. METHODS: In the present study, to assess whether the angiotensin converting enzyme insertion/deletion (I/D gene polymorphisms have an effect on migraine attacks, we studied the angiotensin converting enzyme genotypes of 102 migraine patients (35 cases of migraine with aura and 67 of migraine without aura and 75 age-and sex-matched normal volunteers. Frequency and age of onset of migraine attacks were also assessed according to angiotensin converting enzyme genotypes. RESULTS: Patients with migraine with and without aura were comparable with each other and the control group with respect to angiotensin converting enzyme genotypes (respectively; p= 0.88 and p= 0.76, p= 0.624. We could not determine a relationship between angiotensin converting enzyme genotypes and attack frequency (p= 0.125, but cases with angiotensin converting enzyme-II genotype showed a significantly younger age for onset of migraine attacks in comparison with the I/D genotype patients (p= 0.021. CONCLUSION: We believe that further angiotensin converting enzyme gene studies are warranted in younger age groups of patients with migraine and also in different populations

  1. A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhou, Jiang-Ling; Han, Xue; Song, Fei; Wang, Xiu-Li; Wang, Yu-Zhong

    2014-01-01

    Doxorubicin (DOX), one of the most widely used anticancer drugs, is restricted in clinical application due to its severe side effects and inefficient cellular uptake. To overcome the drawbacks, herein, an endosomal pH-activated prodrug was designed and fabricated by conjugating DOX with chitosan via an acid-cleavable hydrazone bond. The resulting DOX conjugates can self-assemble into nano-sized particles, which were very stable and presented no burst release of DOX at a neutral pH condition. Notably, the nanoparticles exhibited excellent cell uptake properties and a remarkable drug accumulation in tumor cells. Once internalized into the cells, moreover, DOX can be fast released from the nanoparticles, and the release mechanism changed from the anomalous transport at pH 7.4 to the combination pattern of diffusion- and erosion-controlled release at pH 6.0 or 5.0. The prodrugs showed obvious cytotoxicity for HeLa cells with fairly low IC 50 values, offering a new platform for targeted cancer therapy. (papers)

  2. Directed evolution combined with synthetic biology strategies expedite semi-rational engineering of genes and genomes.

    Science.gov (United States)

    Kang, Zhen; Zhang, Junli; Jin, Peng; Yang, Sen

    2015-01-01

    Owing to our limited understanding of the relationship between sequence and function and the interaction between intracellular pathways and regulatory systems, the rational design of enzyme-coding genes and de novo assembly of a brand-new artificial genome for a desired functionality or phenotype are difficult to achieve. As an alternative approach, directed evolution has been widely used to engineer genomes and enzyme-coding genes. In particular, significant developments toward DNA synthesis, DNA assembly (in vitro or in vivo), recombination-mediated genetic engineering, and high-throughput screening techniques in the field of synthetic biology have been matured and widely adopted, enabling rapid semi-rational genome engineering to generate variants with desired properties. In this commentary, these novel tools and their corresponding applications in the directed evolution of genomes and enzymes are discussed. Moreover, the strategies for genome engineering and rapid in vitro enzyme evolution are also proposed.

  3. Combined miglustat and enzyme replacement therapy in two patients with type 1 Gaucher disease: two case reports.

    Science.gov (United States)

    Amato, Dominick; Patterson, Mary Anne

    2018-01-27

    Intravenous enzyme replacement therapy is a first-line therapy for Gaucher disease type 1, and substrate reduction therapy represents an oral treatment alternative. Both enzyme replacement therapy and substrate reduction therapy are generally used as monotherapies in Gaucher disease. However, one randomized study and several case reports have described combination therapy over short time periods. We report two female Gaucher disease type 1 patients of mainly Anglo-Saxon descent, where combined enzyme replacement therapy and miglustat substrate reduction therapy were administered to overcome refractory clinical symptoms. The first patient was diagnosed at age 17 and developed Gaucher disease-related bone manifestations that worsened despite starting imiglucerase enzyme replacement therapy. After switching to miglustat substrate reduction therapy, her bone symptoms improved, but she developed tremors and eventually switched back to enzyme replacement therapy. Miglustat was later recommenced in combination with ongoing enzyme replacement therapy due to continued bone pain, and her bone symptoms improved along with maintained visceral manifestations. Enzyme replacement therapy was subsequently tapered off and the patient has since been successfully maintained on miglustat. The second patient was diagnosed aged 3, and commenced imiglucerase enzyme replacement therapy aged 15. After 9 years on enzyme replacement therapy she switched to miglustat substrate reduction therapy and her core symptoms were maintained/stable for 3 years. Imiglucerase enzyme replacement therapy was later added as a boost to therapy and her symptoms were subsequently maintained over a 2.3-year period. However, miglustat was discontinued due to her relocation, necessitating an increase in enzyme replacement therapy dose. Overall, both patients benefited from combination therapy. While the majority of Gaucher disease type 1 patients will not need treatment with both substrate reduction therapy

  4. Enzyme replacement therapy for infantile-onset Pompe disease.

    Science.gov (United States)

    Chen, Min; Zhang, Lingli; Quan, Shuyan

    2017-11-20

    Infantile-onset Pompe disease is a rare and progressive autosomal-recessive disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). Current treatment involves enzyme replacement therapy (with recombinant human alglucosidase alfa) and symptomatic therapies (e.g. to control secretions). Children who are cross-reactive immunological material (CRIM)-negative require immunomodulation prior to commencing enzyme replacement therapy.Enzyme replacement therapy was developed as the most promising therapeutic approach for Pompe disease; however, the evidence is lacking, especially regarding the optimal dose and dose frequency. To assess the effectiveness, safety and appropriate dose regimen of enzyme replacement therapy for treating infantile-onset Pompe disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group's Inborn Errors of Metabolism Trials Register, which is compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the Cochrane Central Register of Controlled Trials (CENTRAL), Embase (Ovid), PubMed and LILACS, and CBM, CNKI, VIP, and WANFANG for literature published in Chinese. In addition, we searched three online registers: WHO International Clinical Trials Registry Platform ClinicalTrials.gov, and www.genzymeclinicalresearch.com. We also searched the reference lists of relevant articles and reviews.Date of last search of the Group's Inborn Errors of Metabolism Trials Register: 24 November 2016. Randomized and quasi-randomized controlled trials of enzyme replacement therapy in children with infantile-onset Pompe disease. Two authors independently selected relevant trials, assessed the risk of bias and extracted data. We contacted investigators to obtain important missing information. We found no trials comparing the effectiveness and safety of enzyme replacement therapy to another intervention, no intervention or placebo.We found one trial (18 participants

  5. Gene Therapy in Fanconi Anemia: A Matter of Time, Safety and Gene Transfer Tool Efficiency.

    Science.gov (United States)

    Verhoeyen, Els; Roman-Rodriguez, Francisco Jose; Cosset, Francois-Loic; Levy, Camille; Rio, Paula

    2017-01-01

    Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes [1]. However, the collection of hCD34+-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM) [2] or mobilized peripheral blood [3-5]. In addition, the FA genetic defect fragilizes the HSCs [6]. These particular features might explain why the first clinical trials using murine leukemia virus derived retroviral vectors conducted for FA failed to show engraftment of corrected cells. The gene therapy field is now moving towards the use of lentiviral vectors (LVs) evidenced by recent succesful clinical trials for the treatment of patients suffering from adrenoleukodystrophy (ALD) [7], β-thalassemia [8], metachromatic leukodystrophy [9] and Wiskott-Aldrich syndrome [10]. LV trials for X-linked severe combined immunodificiency and Fanconi anemia (FA) defects were recently initiated [11, 12]. Fifteen years of preclinical studies using different FA mouse models and in vitro research allowed us to find the weak points in the in vitro culture and transduction conditions, which most probably led to the initial failure of FA HSC gene therapy. In this review, we will focus on the different obstacles, unique to FA gene therapy, and how they have been overcome through the development of optimized protocols for FA HSC culture and transduction and the engineering of new gene transfer tools for FA HSCs. These combined advances in the field hopefully will allow the correction of the FA hematological defect in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  7. [In vitro metabolism of fenbendazole prodrug].

    Science.gov (United States)

    Wen, Ai-Dan; Duan, Li-Ping; Liu, Cong-Shan; Tao, Yi; Xue, Jian; Wu, Ning-Bo; Jiang, Bin; Zhang, Hao-Bing

    2013-02-01

    Synthesized fenbendazole prodrug N-methoxycarbonyl-N'-(2-nitro-4-phenylthiophenyl) thiourea (MPT) was analyzed in vitro in artificial gastric juice, intestinal juice and mouse liver homogenate model by using HPLC method, and metabolic curve was then generated. MPT was tested against Echinococcus granulosus protoscolices in vitro. The result showed that MPT could be metabolized in the three biological media, and to the active compound fenbendazole in liver homogenate, with a metabolic rate of 7.92%. Besides, the prodrug showed a weak activity against E. granulosus protoscolices with a mortality of 45.9%.

  8. Gene therapy: theoretical and bioethical concepts.

    Science.gov (United States)

    Smith, Kevin R

    2003-01-01

    Gene therapy holds great promise. Somatic gene therapy has the potential to treat a wide range of disorders, including inherited conditions, cancers, and infectious diseases. Early progress has already been made in the treatment of a range of disorders. Ethical issues surrounding somatic gene therapy are primarily those concerned with safety. Germline gene therapy is theoretically possible but raises serious ethical concerns concerning future generations.

  9. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  10. Computational modeling and in-vitro/in-silico correlation of phospholipid-based prodrugs for targeted drug delivery in inflammatory bowel disease

    Science.gov (United States)

    Dahan, Arik; Markovic, Milica; Keinan, Shahar; Kurnikov, Igor; Aponick, Aaron; Zimmermann, Ellen M.; Ben-Shabat, Shimon

    2017-11-01

    Targeting drugs to the inflamed intestinal tissue(s) represents a major advancement in the treatment of inflammatory bowel disease (IBD). In this work we present a powerful in-silico modeling approach to guide the molecular design of novel prodrugs targeting the enzyme PLA2, which is overexpressed in the inflamed tissues of IBD patients. The prodrug consists of the drug moiety bound to the sn-2 position of phospholipid (PL) through a carbonic linker, aiming to allow PLA2 to release the free drug. The linker length dictates the affinity of the PL-drug conjugate to PLA2, and the optimal linker will enable maximal PLA2-mediated activation. Thermodynamic integration and Weighted Histogram Analysis Method (WHAM)/Umbrella Sampling method were used to compute the changes in PLA2 transition state binding free energy of the prodrug molecule (ΔΔGtr) associated with decreasing/increasing linker length. The simulations revealed that 6-carbons linker is the optimal one, whereas shorter or longer linkers resulted in decreased PLA2-mediated activation. These in-silico results were shown to be in excellent correlation with experimental in-vitro data. Overall, this modern computational approach enables optimization of the molecular design of novel prodrugs, which may allow targeting the free drug specifically to the diseased intestinal tissue of IBD patients.

  11. Synthesis, characterization and in vitro release performance of the pegylated valnemulin prodrug

    Science.gov (United States)

    DONG, Xinrui; SHU, Xueye; WANG, Yingnan; NIU, Zhaohuan; XU, Shixia; ZHANG, Yue; ZHAO, Shuchun

    2017-01-01

    Valnemulin, successfully developed by Sandoz in 1984, is a new generation derivative of pleuromutilin related to tiamulin. Valnemulin has low water-solubility, a short half-life period, low bioavailability, and instability. The application of valnemulin was restricted. Therefore, finding a more moderate delivery system is necessary to improve the shortcomings of valnemulin. The purpose of the study was to improve the strong stability and the irritation caused by of valnemulin hydrochloride power through pegylated-valnemulin prodrug mode. The prepared pegylated-valnemulin prodrug was characterized and evaluated by in vitro release performance under buffer solutions with pH levels of 7.4 and 3.6. The loading rate of valnemulin in PEG-succinic-valnemulin prodrug was determined by ultraviolet spectrophotometer and high performance liquid chromatography (HPLC). HPLC with evaporative light scattering detector was applied to determine the amount of PEG-succinic acid. The loading rate of valnemulin in PEG-succinic-valnemulin prodrug was 6.46%. PEG-succinic-valnemulin prodrug demonstrated a satisfactory solubility of valnemulin with 523 mg·ml−1 and excellent stability verified by the stability experiment. The result of the in vitro release test showed that the prepared PEG-valnemulin prodrug has controlled release ability and the release rate of valnemulin from PEG-valnemulin prodrug with a pH of 7.4 was 64.98%, which was higher than that of pH3.6 with release rate of 31.90%. Therefore, the prepared PEG-succinic-valnemulin prodrug has great application potential. PMID:29187697

  12. Advancing Clostridia to Clinical Trial: Past Lessons and Recent Progress

    Directory of Open Access Journals (Sweden)

    Alexandra M. Mowday

    2016-06-01

    Full Text Available Most solid cancers contain regions of necrotic tissue. The extent of necrosis is associated with poor survival, most likely because it reflects aggressive tumour outgrowth and inflammation. Intravenously injected spores of anaerobic bacteria from the genus Clostridium infiltrate and selectively germinate in these necrotic regions, providing cancer-specific colonisation. The specificity of this system was first demonstrated over 60 years ago and evidence of colonisation has been confirmed in multiple tumour models. The use of “armed” clostridia, such as in Clostridium Directed Enzyme Prodrug Therapy (CDEPT, may help to overcome some of the described deficiencies of using wild-type clostridia for treatment of cancer, such as tumour regrowth from a well-vascularised outer rim of viable cells. Successful preclinical evaluation of a transferable gene that metabolises both clinical stage positron emission tomography (PET imaging agents (for whole body vector visualisation as well as chemotherapy prodrugs (for conditional enhancement of efficacy would be a valuable early step towards the prospect of “armed” clostridia entering clinical evaluation. The ability to target the immunosuppressive hypoxic tumour microenvironment using CDEPT may offer potential for synergy with recently developed immunotherapy strategies. Ultimately, clostridia may be most efficacious when combined with conventional therapies, such as radiotherapy, that sterilise viable aerobic tumour cells.

  13. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  14. Evaluation of diclofenac prodrugs for enhancing transdermal delivery.

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2014-03-01

    Abstract Objective: The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD) and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in the Franz diffusion cell were determined on DA-, MD-, ED-, GD- and PD-saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery.

  15. Evaluation of Diclofenac Prodrugs for Enhancing Transdermal Delivery

    Science.gov (United States)

    Lobo, Shabbir; Li, Henan; Farhan, Nashid; Yan, Guang

    2016-01-01

    The purpose of this study was to evaluate the approach of using diclofenac acid (DA) prodrugs for enhancing transdermal delivery. Methanol diclofenac ester (MD), ethylene glycol diclofenac ester (ED), glycerol diclofenac ester (GD), and 1,3-propylene glycol diclofenac ester (PD) were synthesized and evaluated for their physicochemical properties such as solubilities, octanol/water partition coefficients, stratum corneum/water partition coefficients, hydrolysis rates, and bioconversion rates. In vitro fluxes across human epidermal membrane (HEM) in Franz diffusion cell were determined on DA, MD, ED, GD, and PD saturated aqueous solutions. The formation of GD and ED led to the prodrugs with higher aqueous solubilities and lower partition coefficients than those of the parent drug. Prodrugs with improved aqueous solubility showed better fluxes across HEM in aqueous solution than that of the parent drug, with GD showing the highest aqueous solubility and also the highest flux. There is a linear relationship between the aqueous solubility and flux for DA, ED and PD, but GD and MD deviated from the linear line. Overall, diclofenac prodrugs with improved hydrophilicity than the parent drug could be utilized for enhancing transdermal diclofenac delivery. PMID:24517636

  16. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  17. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  18. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  19. Biosensor-controlled gene therapy/drug delivery with nanoparticles for nanomedicine

    Science.gov (United States)

    Prow, Tarl W.; Rose, William A.; Wang, Nan; Reece, Lisa M.; Lvov, Yuri; Leary, James F.

    2005-04-01

    Nanomedicine involves cell-by-cell regenerative medicine, either repairing cells one at a time or triggering apoptotic pathways in cells that are not repairable. Multilayered nanoparticle systems are being constructed for the targeted delivery of gene therapy to single cells. Cleavable shells containing targeting, biosensing, and gene therapeutic molecules are being constructed to direct nanoparticles to desired intracellular targets. Therapeutic gene sequences are controlled by biosensor-activated control switches to provide the proper amount of gene therapy on a single cell basis. The central idea is to set up gene therapy "nanofactories" inside single living cells. Molecular biosensors linked to these genes control their expression. Gene delivery is started in response to a biosensor detected problem; gene delivery is halted when the cell response indicates that more gene therapy is not needed. Cell targeting of nanoparticles, both nanocrystals and nanocapsules, has been tested by a combination of fluorescent tracking dyes, fluorescence microscopy and flow cytometry. Intracellular targeting has been tested by confocal microscopy. Successful gene delivery has been visualized by use of GFP reporter sequences. DNA tethering techniques were used to increase the level of expression of these genes. Integrated nanomedical systems are being designed, constructed, and tested in-vitro, ex-vivo, and in small animals. While still in its infancy, nanomedicine represents a paradigm shift in thinking-from destruction of injured cells by surgery, radiation, chemotherapy to cell-by-cell repair within an organ and destruction of non-repairable cells by natural apoptosis.

  20. Enhancement of Curcumin Bioavailability Via the Prodrug Approach: Challenges and Prospects.

    Science.gov (United States)

    Ratnatilaka Na Bhuket, Pahweenvaj; El-Magboub, Asma; Haworth, Ian S; Rojsitthisak, Pornchai

    2017-06-01

    Curcumin is a natural product with many interesting pharmacological properties. However, these are offset by the particularly poor biopharmaceutical properties. The oral bioavailability of curcumin in humans is very low, mainly due to low solubility, poor stability, and extensive metabolism. This has led to multiple approaches to improve bioavailability, including administration of curcumin with metabolism inhibitors, formulation into nanoparticles, modification of the curcumin structure, and development of curcumin prodrugs. In this paper, we focus on the pharmacokinetic outcomes of these approaches. Pharmacokinetic parameters of curcumin after release from prodrugs are dependent on the linker between curcumin and the promoiety, and the release itself may depend on the physiological and enzymatic environment at the site of cleavage. This is an area in which more data are required for rational design of improved linkers. Cytotoxicity of curcumin prodrugs seems to correlate well with cellular uptake in vitro, but the in vivo relevance is uncertain. We conclude that improved experimental and theoretical models of absorption of curcumin prodrugs, development of accurate analytical methods for simultaneous measurement of plasma levels of prodrug and released curcumin, and acquisition of more pharmacokinetic data in animal models for dose prediction in humans are required to facilitate movement of curcumin prodrugs into clinical trials.

  1. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy.

    Science.gov (United States)

    Joubert, Nicolas; Denevault-Sabourin, Caroline; Bryden, Francesca; Viaud-Massuard, Marie-Claude

    2017-12-15

    The design of innovative anticancer chemotherapies with superior antitumor efficacy and reduced toxicity continues to be a challenging endeavor. Recently, the success of Adcetris ® and Kadcyla ® made antibody-drug conjugates (ADCs) serious contenders to reach the envied status of Paul Ehrlich's "magic bullet". However, ADCs classically target overexpressed and internalizing antigens at the surface of cancer cells, and in solid tumors are associated with poor tumor penetration, insufficient targeting in heterogeneous tumors, and appearance of several resistance mechanisms. In this context, alternative non-internalizing ADCs and prodrugs have been developed to circumvent these limitations, in which the drug can be selectively released by an extracellular stimulus in the tumor microenvironment. Each strategy and method of activation will be discussed as potential alternatives to internalizing ADCs for cancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  3. Therapeutic Enzymes: Applications and Approaches to Pharmacological Improvement.

    Science.gov (United States)

    Yari, Maryam; Ghoshoon, Mohammad B; Vakili, Bahareh; Ghasemi, Younes

    2017-01-01

    Among therapeutic proteins, enzymes represent small and of course profitable market. They can be used to treat important, rare, and deadly diseases. Enzyme therapy is the only available treatment for certain disorders. Here, pharmaceutical enzymes are reviewed. They are categorized in four main groups, enzymes in replacement therapy, enzymes in cancer treatment, enzymes for fibrinolysis, and finally enzymes that are used topically for various treatments. Furthermore, enzyme gene therapy and future perspective of therapeutic enzymes are mentioned in brief. There are many important approved enzymes in pharmaceutical market. Several approaches such as point mutation, fusion protein designing, glycoengineering, and PEGylation were used to achieve improved enzymes. Although sometimes enzymes were engineered to facilitate production and purification process, appropriate delivery to target sites, extending half-life, and reducing immunogenicity are among the main goals of engineering approaches. Overall, enzymes play a critical role in treatment of common and rare diseases. Evaluation of new enzymes as well as improvement of approved enzymes are of the most important challenges in biotechnology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Acyclovir prodrug for the intestinal di/tri-peptide transporter PEPT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Christensen, Michael Søberg; Bagger, Morten Aavad

    2004-01-01

    It has previously been shown that the prodrug Glu(acyclovir)-Sar has a high affinity for PEPT1 in Caco-2 cells. However, affinity does not necessarily lead to translocation by the transporter which is necessary for achieving an increased oral bioavailability. Therefore i.v. and p.o. doses of Glu......(acyclovir)-Sar, acyclovir and valacyclovir were given to rats and the collected blood samples were analysed via LC-MS-MS. Furthermore, Caco-2 cell monolayers were exposed apically to Glu(acyclovir)-Sar, acyclovir, and valacyclovir and the concentration of drug and prodrugs in the cell extracts were determined and taken...... as a measure for intracellular accumulation. In addition, bi-directional transport studies of Glu(acyclovir)-Sar across Caco-2 cell monolayers and in vitro metabolism studies of Glu(acyclovir)-Sar in various media of rat origin were performed. For these purposes HPLC-UV analysis was applied. Oral...

  5. 1-Arylsulfonyl-2-(Pyridylmethylsulfinyl) Benzimidazoles as New Proton Pump Inhibitor Prodrugs

    Science.gov (United States)

    Shin, Jai Moo; Sachs, George; Cho, Young-moon; Garst, Michael

    2010-01-01

    New arylsulfonyl proton pump inhibitor (PPI) prodrug forms were synthesized. These prodrugs provided longer residence time of an effective PPI plasma concentration, resulting in better gastric acid inhibition. PMID:20032890

  6. Enzyme replacement therapy in Fabry disease, towards individualized treatment

    NARCIS (Netherlands)

    Arends, M.

    2017-01-01

    Fabry disease is a very heterogeneous disorder for which expensive enzyme replacement therapy is available since more than 15 years. Because of the variety of symptoms and disease course, individual choices need to be made to improve the appropriate use of therapy. Supported by ZONWM, we have been

  7. Neurotrophin gene therapy for sustained neural preservation after deafness.

    Science.gov (United States)

    Atkinson, Patrick J; Wise, Andrew K; Flynn, Brianna O; Nayagam, Bryony A; Hume, Clifford R; O'Leary, Stephen J; Shepherd, Robert K; Richardson, Rachael T

    2012-01-01

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.

  8. Combining Oncolytic Virotherapy with p53 Tumor Suppressor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Christian Bressy

    2017-06-01

    Full Text Available Oncolytic virus (OV therapy utilizes replication-competent viruses to kill cancer cells, leaving non-malignant cells unharmed. With the first U.S. Food and Drug Administration-approved OV, dozens of clinical trials ongoing, and an abundance of translational research in the field, OV therapy is poised to be one of the leading treatments for cancer. A number of recombinant OVs expressing a transgene for p53 (TP53 or another p53 family member (TP63 or TP73 were engineered with the goal of generating more potent OVs that function synergistically with host immunity and/or other therapies to reduce or eliminate tumor burden. Such transgenes have proven effective at improving OV therapies, and basic research has shown mechanisms of p53-mediated enhancement of OV therapy, provided optimized p53 transgenes, explored drug-OV combinational treatments, and challenged canonical roles for p53 in virus-host interactions and tumor suppression. This review summarizes studies combining p53 gene therapy with replication-competent OV therapy, reviews preclinical and clinical studies with replication-deficient gene therapy vectors expressing p53 transgene, examines how wild-type p53 and p53 modifications affect OV replication and anti-tumor effects of OV therapy, and explores future directions for rational design of OV therapy combined with p53 gene therapy.

  9. Strategies in Gene Therapy for Glioblastoma

    International Nuclear Information System (INIS)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy

  10. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  11. Formulation and evaluation of co-prodrug of flurbiprofen and methocarbamol

    Directory of Open Access Journals (Sweden)

    Neela Bhatia

    2016-06-01

    Full Text Available The current work envisages synthesis of an ester prodrug of flurbiprofen whereby its carboxylic group was condensed with a skeletal muscle relaxant methocarbamol, with the aim of synergistic activity of two drugs, avoid flurbiprofen mediated gastro-intestinal damage and minimize the ulceration tendency of flurbiprofen. The synthesized prodrug was characterized and confirmed by physicochemical and spectroscopic studies. Solubility and partition coefficient studies indicated an increased lipophilicity and thus better suitability for oral administration than the parent drugs and the protein binding studies revealed a low protein binding capacity of the mutual prodrug. Subsequently, in-vitro hydrolysis was studied in different pH, simulated gastric fluid, simulated intestinal fluid and plasma and quantitative evaluation was performed by high performance liquid chromatography. It was found that the prodrug remained unhydrolyzed in the stomach after absorption however, underwent rapid cleavage by the esterases in blood to give the parent drug. Furthermore, the mutual ester prodrug was evaluated for its anti-inflammatory, analgesic, skeletal muscle relaxation, ulcerogenic and total acid content activity and was found to possess comparable activity with that of the parent drugs. Microscopic structures of the stomach tissues revealed significant reduction in gastric ulcer formation of mice gastric mucosa as compared to parent carboxylic acid drug.

  12. Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained Diclofenac prodrug to treat actinic keratosis.

    Science.gov (United States)

    Piccirillo, Germano; Bochicchio, Brigida; Pepe, Antonietta; Schenke-Layland, Katja; Hinderer, Svenja

    2017-04-01

    Actinic Keratosis' (AKs) are small skin lesions that are related to a prolonged sun-damage, which can develop into invasive squamous cell carcinoma (SCC) when left untreated. Effective, specific and well tolerable therapies to cure AKs are still of great interest. Diclofenac (DCF) is the current gold standard for the local treatment of AKs in terms of costs, effectiveness, side effects and tolerability. In this work, an electrospun polylactic acid (PLA) scaffold loaded with a synthetic DCF prodrug was developed and characterized. Specifically, the prodrug was successfully synthetized by binding DCF to a glycine residue via solid phase peptide synthesis (SPPS) and then incorporated in an electrospun PLA scaffold. The drug encapsulation was verified using multiphoton microscopy (MPM) and its scaffold release was spectrophotometrically monitored and confirmed with MPM. The scaffold was further characterized with scanning electron microscopy (SEM), tensile testing and contact angle measurements. Its biocompatibility was verified by performing a cell proliferation assay and compared to PLA scaffolds containing the same amount of DCF sodium salt (DCFONa). Finally, the effect of the electrospun scaffolds on human dermal fibroblasts (HDFs) morphology and metabolism was investigated by combining MPM with fluorescence lifetime imaging microscopy (FLIM). The obtained results suggest that the obtained scaffold could be suitable for the controlled and targeted delivery of the synthesized prodrug for the treatment of AKs. Electrospun scaffolds are of growing interest as materials for a controlled drug delivery. In this work, an electrospun polylactic acid scaffold containing a synthetically obtained Diclofenac prodrug is proposed as a novel substrate for the topical treatment of actinic keratosis. A controlled drug delivery targeted to the area of interest could enhance the efficacy of the therapy and favor the healing process. The prodrug was synthesized via solid phase

  13. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  14. The synthesis of amphipathic prodrugs of 1,2-diol drugs with saccharide conjugates by high regioselective enzymatic protocol.

    Science.gov (United States)

    Quan, Jing; Chen, Zhichun; Han, Chengyou; Lin, Xianfu

    2007-02-15

    A facile, high regioselective enzymatic synthesis approach for the preparation of amphipathic prodrugs with saccharides of mephenesin and chlorphenesin was developed. Firstly, transesterification of two drugs with divinyl dicarboxylates with different carbon chain length was performed under the catalysis of Candida antarctica lipase acrylic resin and Lipozyme in anhydrous acetone at 50 degrees C, respectively. A series of lipophilic derivatives with vinyl groups of mephenesin and chlorphenesin were prepared. The influences of different organic solvents, enzyme sources, reaction time, and the acylation reagents on the synthesis of vinyl esters were investigated. And then, protease-catalyzed high regioselective acylation of D-glucose and D-mannose with vinyl esters of mephenesin and chlorphenesin gave drug-saccharide derivatives in good yields. The studies of lipophilicity and hydrolysis in vitro of prodrugs verified that drug-saccharide derivatives had amphipathic properties, and both lipophilic and amphipathic drug derivatives had obvious controlled release characteristics.

  15. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  16. A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer.

    Science.gov (United States)

    Levy, Oren; Brennen, W Nathaniel; Han, Edward; Rosen, David Marc; Musabeyezu, Juliet; Safaee, Helia; Ranganath, Sudhir; Ngai, Jessica; Heinelt, Martina; Milton, Yuka; Wang, Hao; Bhagchandani, Sachin H; Joshi, Nitin; Bhowmick, Neil; Denmeade, Samuel R; Isaacs, John T; Karp, Jeffrey M

    2016-06-01

    Despite considerable advances in prostate cancer research, there is a major need for a systemic delivery platform that efficiently targets anti-cancer drugs to sites of disseminated prostate cancer while minimizing host toxicity. In this proof-of-principle study, human mesenchymal stem cells (MSCs) were loaded with poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) that encapsulate the macromolecule G114, a thapsigargin-based prostate specific antigen (PSA)-activated prodrug. G114-particles (∼950 nm in size) were internalized by MSCs, followed by the release of G114 as an intact prodrug from loaded cells. Moreover, G114 released from G114 MP-loaded MSCs selectively induced death of the PSA-secreting PCa cell line, LNCaP. Finally, G114 MP-loaded MSCs inhibited tumor growth when used in proof-of-concept co-inoculation studies with CWR22 PCa xenografts, suggesting that cell-based delivery of G114 did not compromise the potency of this pro-drug in-vitro or in-vivo. This study demonstrates a potentially promising approach to assemble a cell-based drug delivery platform, which inhibits cancer growth in-vivo without the need of genetic engineering. We envision that upon achieving efficient homing of systemically infused MSCs to cancer sites, this MSC-based platform may be developed into an effective, systemic 'Trojan Horse' therapy for targeted delivery of therapeutic agents to sites of metastatic PCa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enzymic colorimetry-based DNA chip: a rapid and accurate assay for detecting mutations for clarithromycin resistance in the 23S rRNA gene of Helicobacter pylori.

    Science.gov (United States)

    Xuan, Shi-Hai; Zhou, Yu-Gui; Shao, Bo; Cui, Ya-Lin; Li, Jian; Yin, Hong-Bo; Song, Xiao-Ping; Cong, Hui; Jing, Feng-Xiang; Jin, Qing-Hui; Wang, Hui-Min; Zhou, Jie

    2009-11-01

    Macrolide drugs, such as clarithromycin (CAM), are a key component of many combination therapies used to eradicate Helicobacter pylori. However, resistance to CAM is increasing in H. pylori and is becoming a serious problem in H. pylori eradication therapy. CAM resistance in H. pylori is mostly due to point mutations (A2142G/C, A2143G) in the peptidyltransferase-encoding region of the 23S rRNA gene. In this study an enzymic colorimetry-based DNA chip was developed to analyse single-nucleotide polymorphisms of the 23S rRNA gene to determine the prevalence of mutations in CAM-related resistance in H. pylori-positive patients. The results of the colorimetric DNA chip were confirmed by direct DNA sequencing. In 63 samples, the incidence of the A2143G mutation was 17.46 % (11/63). The results of the colorimetric DNA chip were concordant with DNA sequencing in 96.83 % of results (61/63). The colorimetric DNA chip could detect wild-type and mutant signals at every site, even at a DNA concentration of 1.53 x 10(2) copies microl(-1). Thus, the colorimetric DNA chip is a reliable assay for rapid and accurate detection of mutations in the 23S rRNA gene of H. pylori that lead to CAM-related resistance, directly from gastric tissues.

  18. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer

  19. Republished review: Gene therapy for ocular diseases.

    Science.gov (United States)

    Liu, Melissa M; Tuo, Jingsheng; Chan, Chi-Chao

    2011-07-01

    The eye is an easily accessible, highly compartmentalised and immune-privileged organ that offers unique advantages as a gene therapy target. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been implicated as potentially efficacious therapies. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Proof-of-concept for vector-based gene therapies has also been established in several experimental models of human ocular diseases. After nearly two decades of ocular gene therapy research, preliminary successes are now being reported in phase 1 clinical trials for the treatment of Leber congenital amaurosis. This review describes current developments and future prospects for ocular gene therapy. Novel methods are being developed to enhance the performance and regulation of recombinant adeno-associated virus- and lentivirus-mediated ocular gene transfer. Gene therapy prospects have advanced for a variety of retinal disorders, including retinitis pigmentosa, retinoschisis, Stargardt disease and age-related macular degeneration. Advances have also been made using experimental models for non-retinal diseases, such as uveitis and glaucoma. These methodological advancements are critical for the implementation of additional gene-based therapies for human ocular diseases in the near future.

  20. Reconversion of bone marrow in Gaucher disease treated with enzyme therapy documented by MR

    International Nuclear Information System (INIS)

    Allison, J.W.; James, C.A.; Arnold, G.L.; Stine, K.C.; Becton, D.L.; Bell, J.M.

    1998-01-01

    Background. Skeletal complications are responsible for significant morbidity in Gaucher patients. Plain radiographs have been unreliable in assessing bone marrow infiltration and activity. A way to assess bone marrow improvement is needed during enzyme therapy. Objective. The purpose of this paper is to assess the usefulness of MR in following improvement of abnormal bone marrow in Gaucher patients on enzyme therapy. Materials and methods. Three patients aged 2, 7, and 24 years underwent serial MR scans of the lower extremities before and during treatment with Alglucerase (two patients) and Imiglucerase (one patient). T1-weighted, T2-weighted, STIR and FSE T2-weighted images were utilized. Two patients were imaged after 16 months of therapy, and one patient was imaged after 6 months of therapy. Results. All patients had improvement in marrow signal consistent with partial reconversion to fatty marrow during treatment. The findings were more marked after prolonged therapy. T1-weighted images demonstrated findings most clearly. Conclusion. MR consistently showed improvement in marrow signal in Gaucher patients on enzyme therapy. As smaller doses of enzyme therapy are the trend, MR can be utilized to determine if therapy is effecting a change in the bone marrow. (orig.)

  1. Angiotensin converting enzyme (ACE) gene expression in experimentally induced liver cirrhosis in rats.

    Science.gov (United States)

    Shahid, Syed Muhammad; Fatima, Syeda Nuzhat; Mahboob, Tabassum

    2013-09-01

    Angiotensin converting enzyme (ACE) is a key player of Renin Angiotensin System (RAS), involved in conversion of active product, angiotensin-II. Alterations in RAS have been implicated in the pathophysiology of various diseases involving heart, kidney, lung and liver. This study is designed to investigate the association of ACE gene expression in induction of liver cirrhosis in rats. Total 12 male albino Wistar rats were selected and divided in two groups. Control group received 0.9% NaCl, where as Test group received thioacidamide (TAA), dissolved in 0.9%NaCl, injected intraperitoneally at a dosage of 200mg/Kg of body weight, twice a week for 12 weeks. The rats were decapitated and blood sample was collected at the end of experimental period and used for liver functions, enzyme activity, antioxidant enzymes and lipid peroxidation estimations. Genomic DNA was isolated from excised tissue determine the ACE genotypes using specific primers. The ACE gene expression in liver tissue was assessed using the quantitative RT-PCR method. The activity of ALT, total and direct bilirubin, SOD and CAT levels were significantly high (pACE gene expression after 12 weeks TAA treatment in cirrhotic rats was significantly increased (pACE gene expression. The finding of major up-regulation of ACE in the experimental rat liver provides further insight into the complexities of the RAS and its regulation in liver injury. The development of specific modulators of ACE activity and function, in future, will help determine the role of ACE and its genetic variants in the pathophysiology of liver disease.

  2. Progress in Gene Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Ahmed, Kamran A.; Davis, Brian J.; Wilson, Torrence M.; Wiseman, Gregory A.; Federspiel, Mark J.; Morris, John C.

    2012-01-01

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  3. Progress in Gene Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Kamran A.; Davis, Brian J. [Department of Radiation Oncology, Mayo Clinic, Rochester, MN (United States); Wilson, Torrence M. [Department of Urology, Mayo Clinic, Rochester, MN (United States); Wiseman, Gregory A. [Division of Nuclear Medicine, Mayo Clinic, Rochester, MN (United States); Federspiel, Mark J. [Department of Molecular Medicine, Mayo Clinic, Rochester, MN (United States); Morris, John C., E-mail: davis.brian@mayo.edu [Division of Endocrinology, Mayo Clinic, Rochester, MN (United States)

    2012-11-19

    Gene therapy has held promise to correct various disease processes. Prostate cancer represents the second leading cause of cancer death in American men. A number of clinical trials involving gene therapy for the treatment of prostate cancer have been reported. The ability to efficiently transduce tumors with effective levels of therapeutic genes has been identified as a fundamental barrier to effective cancer gene therapy. The approach utilizing gene therapy in prostate cancer patients at our institution attempts to address this deficiency. The sodium-iodide symporter (NIS) is responsible for the ability of the thyroid gland to transport and concentrate iodide. The characteristics of the NIS gene suggest that it could represent an ideal therapeutic gene for cancer therapy. Published results from Mayo Clinic researchers have indicated several important successes with the use of the NIS gene and prostate gene therapy. Studies have demonstrated that transfer of the human NIS gene into prostate cancer using adenovirus vectors in vitro and in vivo results in efficient uptake of radioactive iodine and significant tumor growth delay with prolongation of survival. Preclinical successes have culminated in the opening of a phase I trial for patients with advanced prostate disease which is currently accruing patients. Further study will reveal the clinical promise of NIS gene therapy in the treatment of prostate as well as other malignancies.

  4. The Dipeptide Monoester Prodrugs of Floxuridine and Gemcitabine—Feasibility of Orally Administrable Nucleoside Analogs

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tsume

    2014-01-01

    Full Text Available Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5¢-L-phenylalanyl-l-tyrosyl-floxuridine and 5¢-L-phenylalanyl-L-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.

  5. The dipeptide monoester prodrugs of floxuridine and gemcitabine-feasibility of orally administrable nucleoside analogs.

    Science.gov (United States)

    Tsume, Yasuhiro; Borras Bermejo, Blanca; Amidon, Gordon L

    2014-01-27

    Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5¢-L-phenylalanyl-l-tyrosyl-floxuridine and 5¢-L-phenylalanyl-L-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents.

  6. The Dipeptide Monoester Prodrugs of Floxuridine and Gemcitabine—Feasibility of Orally Administrable Nucleoside Analogs

    Science.gov (United States)

    Tsume, Yasuhiro; Bermejo, Blanca Borras; Amidon, Gordon L.

    2014-01-01

    Dipeptide monoester prodrugs of floxuridine and gemcitabine were synthesized. Their chemical stability in buffers, enzymatic stability in cell homogenates, permeability in mouse intestinal membrane along with drug concentration in mouse plasma, and anti-proliferative activity in cancer cells were determined and compared to their parent drugs. Floxuridine prodrug was more enzymatically stable than floxuridine and the degradation from prodrug to parent drug works as the rate-limiting step. On the other hand, gemcitabine prodrug was less enzymatically stable than gemcitabine. Those dipeptide monoester prodrugs exhibited 2.4- to 48.7-fold higher uptake than their parent drugs in Caco-2, Panc-1, and AsPC-1 cells. Floxuridine and gemcitabine prodrugs showed superior permeability in mouse jejunum to their parent drugs and exhibited the higher drug concentration in plasma after in situ mouse perfusion. Cell proliferation assays in ductal pancreatic cancer cells, AsPC-1 and Panc-1, indicated that dipeptide prodrugs of floxuridine and gemcitabine were more potent than their parent drugs. The enhanced potency of nucleoside analogs was attributed to their improved membrane permeability. The prodrug forms of 5′-l-phenylalanyl-l-tyrosyl-floxuridine and 5′-l-phenylalanyl-l-tyrosyl-gemcitabine appeared in mouse plasma after the permeation of intestinal membrane and the first-pass effect, suggesting their potential for the development of oral dosage form for anti-cancer agents. PMID:24473270

  7. Long-Term Improvement of Neurological Signs and Metabolic Dysfunction in a Mouse Model of Krabbe's Disease after Global Gene Therapy.

    Science.gov (United States)

    Marshall, Michael S; Issa, Yazan; Jakubauskas, Benas; Stoskute, Monika; Elackattu, Vince; Marshall, Jeffrey N; Bogue, Wil; Nguyen, Duc; Hauck, Zane; Rue, Emily; Karumuthil-Melethil, Subha; Zaric, Violeta; Bosland, Maarten; van Breemen, Richard B; Givogri, Maria I; Gray, Steven J; Crocker, Stephen J; Bongarzone, Ernesto R

    2018-03-07

    We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  8. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  9. Gene therapy and its implications in Periodontics

    Science.gov (United States)

    Mahale, Swapna; Dani, Nitin; Ansari, Shumaila S.; Kale, Triveni

    2009-01-01

    Gene therapy is a field of Biomedicine. With the advent of gene therapy in dentistry, significant progress has been made in the control of periodontal diseases and reconstruction of dento-alveolar apparatus. Implementation in periodontics include: -As a mode of tissue engineering with three approaches: cell, protein-based and gene delivery approach. -Genetic approach to Biofilm Antibiotic Resistance. Future strategies of gene therapy in preventing periodontal diseases: -Enhances host defense mechanism against infection by transfecting host cells with an antimicrobial peptide protein-encoding gene. -Periodontal vaccination. Gene therapy is one of the recent entrants and its applications in the field of periodontics are reviewed in general here. PMID:20376232

  10. Comparative pharmacokinetics of two prodrugs of zidovudine in rabbits: enhanced levels of zidovudine in brain tissue.

    Science.gov (United States)

    Lupia, R H; Ferencz, N; Lertora, J J; Aggarwal, S K; George, W J; Agrawal, K C

    1993-04-01

    The pharmacokinetics of two prodrugs of zidovudine (AZT), 1,4-dihydro-1-methyl-3-[(pyridylcarbonyl)oxy] ester and isoleucinyl ester (DPAZT and IAZT, respectively), were investigated in a rabbit model to determine their potential utility as drugs against human immunodeficiency virus. Drugs were administered by intravenous infusion over 5 min at doses equal to 10 mg of AZT per kg of body weight. The levels of the prodrugs and of released AZT in plasma, cerebrospinal fluid (CSF), and brain were determined by high-performance liquid chromatography analysis. DPAZT disappeared rapidly from plasma, whereas IAZT maintained a sustained level in plasma for up to 4 h. The levels in plasma of AZT released from DPAZT were consistently lower than the levels of AZT released from IAZT or AZT itself. At 75 min after infusion of AZT, DPAZT, and IAZT, the CSF plasma AZT ratios were 0.23, 0.30, and 0.25, while the brain/CSF AZT ratios were 0.32, 0.63, and 0.64, respectively. These results indicate that the administration of each of the prodrugs produced a higher concentration of AZT in the brain than did the direct administration of AZT. Both prodrugs therefore may be superior to AZT itself with respect to achieving anti-human immunodeficiency virus concentrations within the central nervous system.

  11. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Science.gov (United States)

    Ryan, Veronica H; Primiani, Christopher T; Rao, Jagadeesh S; Ahn, Kwangmi; Rapoport, Stanley I; Blanchard, Helene

    2014-01-01

    The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA) participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades. AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging. The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism. Expression patterns were split into Development (0 to 20 years) and Aging (21 to 78 years) intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2), cyclooxygenases (COX)-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA) and PTGS2 (COX-2) genes at 1q25, highly inter-correlated genes were at distant chromosomal loci. Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  12. Coordination of gene expression of arachidonic and docosahexaenoic acid cascade enzymes during human brain development and aging.

    Directory of Open Access Journals (Sweden)

    Veronica H Ryan

    Full Text Available The polyunsaturated arachidonic and docosahexaenoic acids (AA and DHA participate in cell membrane synthesis during neurodevelopment, neuroplasticity, and neurotransmission throughout life. Each is metabolized via coupled enzymatic reactions within separate but interacting metabolic cascades.AA and DHA pathway genes are coordinately expressed and underlie cascade interactions during human brain development and aging.The BrainCloud database for human non-pathological prefrontal cortex gene expression was used to quantify postnatal age changes in mRNA expression of 34 genes involved in AA and DHA metabolism.Expression patterns were split into Development (0 to 20 years and Aging (21 to 78 years intervals. Expression of genes for cytosolic phospholipases A2 (cPLA2, cyclooxygenases (COX-1 and -2, and other AA cascade enzymes, correlated closely with age during Development, less so during Aging. Expression of DHA cascade enzymes was less inter-correlated in each period, but often changed in the opposite direction to expression of AA cascade genes. Except for the PLA2G4A (cPLA2 IVA and PTGS2 (COX-2 genes at 1q25, highly inter-correlated genes were at distant chromosomal loci.Coordinated age-related gene expression during the brain Development and Aging intervals likely underlies coupled changes in enzymes of the AA and DHA cascades and largely occur through distant transcriptional regulation. Healthy brain aging does not show upregulation of PLA2G4 or PTGS2 expression, which was found in Alzheimer's disease.

  13. Gene Therapy for Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Rachel Denyer

    2012-01-01

    Full Text Available Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field.

  14. JCL Roundtable: enzyme replacement therapy for lipid storage disorders.

    Science.gov (United States)

    Brown, W Virgil; Desnick, Robert J; Grabowski, Gregory A

    2014-01-01

    There are several inherited disorders that involve abnormal storage of lipids in tissues leading to severe compromise of organs. Sadly, these are often accompanied by lifelong morbidity and early mortality. Disorders such as Gaucher, Fabry, and lysosomal acid lipase deficiencies (Wolman and cholesteryl ester storage diseases) have been known for many years, and provide a difficult and frustrating set of problems for patients, their families, and their physicians. With recombinant methods of protein synthesis, it is now possible to literally replace the defective enzymes that underlie the basic pathophysiology of many such disorders. The delivery of these enzymes into the affected cells is possible because of their location in the lysosomes where the natural degradation of their lipid substrates occurs. I have asked 2 well-known investigators to join us for this Roundtable. These are professors who have been involved with the research that has made this type of therapy possible and who have participated in the clinical trials that demonstrated the value of enzyme replacement therapy. They are Dr. Robert Desnick, dean of Genetic and Genomic Medicine and professor and chairman emeritus of the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai in New York City, and Dr. Gregory Grabowski, professor of Microbiology, Biochemistry, and Pediatrics, at the University of Cincinnati College of Medicine. Dr. Grabowski recently retired from that school to become the chief science officer of Synageva, a company involved in producing enzymes for this type of therapy. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Synthesis and antimalarial evaluation of prodrugs of novel fosmidomycin analogues.

    Science.gov (United States)

    Faísca Phillips, Ana Maria; Nogueira, Fátima; Murtinheira, Fernanda; Barros, Maria Teresa

    2015-01-01

    The continuous development of drug resistance by Plasmodium falciparum, the agent responsible for the most severe forms of malaria, creates the need for the development of novel drugs to fight this disease. Fosmidomycin is an effective antimalarial and potent antibiotic, known to act by inhibiting the enzyme 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), essential for the synthesis of isoprenoids in eubacteria and plasmodia, but not in humans. In this study, novel constrained cyclic prodrug analogues of fosmidomycin were synthesized. One, in which the hydroxamate function is incorporated into a six-membered ring, was found have higher antimalarial activity than fosmidomycin against the chloroquine and mefloquine resistant P. falciparum Dd2 strain. In addition, it showed very low cytotoxicity against cultured human cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Gene therapy for lipid disorders

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2000-10-01

    Full Text Available Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.

  17. Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy

    DEFF Research Database (Denmark)

    Denmeade, Samuel R; Mhaka, Annastasiah M; Rosen, D Marc

    2012-01-01

    adenosine triphosphatase (SERCA) pump, whose proper function is required by all cell types for viability. To achieve targeted inhibition, we took advantage of the unique expression of the carboxypeptidase prostate-specific membrane antigen (PSMA) by tumor endothelial cells within the microenvironment...... of solid tumors. We generated a prodrug, G202, consisting of a PSMA-specific peptide coupled to an analog of the potent SERCA pump inhibitor thapsigargin. G202 produced substantial tumor regression against a panel of human cancer xenografts in vivo at doses that were minimally toxic to the host...

  18. Clickable prodrugs bearing potent and hydrolytically cleavable nicotinamide phosphoribosyltransferase inhibitors

    Directory of Open Access Journals (Sweden)

    Sadrerafi K

    2018-04-01

    Full Text Available Keivan Sadrerafi, Emilia O Mason, Mark W Lee Jr Department of Chemistry, University of Missouri, Columbia, MO, USA Purpose: Our previous study indicated that carborane containing small-molecule 1-(hydroxymethyl-7-(4′-(trans-3″-(3‴-pyridylacrylamidobutyl-1,7-dicarbadodecaborane (hm-MC4-PPEA, was a potent inhibitor of nicotinamide phosphoribosyltransferase (Nampt. Nampt has been shown to be upregulated in most cancers and is a promising target for the treatment of many different types of cancers, including breast cancers. Patients and methods: To increase the selectivity of hm-MC4-PPEA toward cancer cells, three prodrugs were synthesized with different hydrolyzable linkers: ester, carbonate, and carbamate. Using click chemistry a fluorophore was attached to these prodrugs to act as a model for our conjugation strategy and to serve as an aid for prodrug stability studies. The stabilities of these drug conjugates were tested in phosphate-buffered saline (PBS at normothermia (37°C using three different pH levels, 5.5, 7.5, and 9.5, as well as in horse serum at physiological pH. The stability of each was monitored using reversed-phase HPLC equipped with both diode array and fluorescence detection. The inhibitory activity of hm-MC4-PPEA was also measured using a commercially available colorimetric assay. The biological activities of the drug conjugates as well as those of the free drug (hm-MC4-PPEA, were evaluated using the MTT assay against the human breast cancer cell lines T47D and MCF7, as well as the noncancerous, transformed, Nampt-dependent human breast epithelium cell line 184A1.Results: hm-MC4-PPEA showed to be a potent inhibitor of recombinant Nampt activity, exhibiting an IC50 concentration of 6.8 nM. The prodrugs showed great stability towards hydrolytic degradation under neutral, mildly acidic and mildly basic conditions. The carbamate prodrug also showed to be stable in rat serum. However, the carbonate and the ester prodrug

  19. In Vivo Gene Therapy of Hemophilia B: Sustained Partial Correction in Factor IX-Deficient Dogs

    Science.gov (United States)

    Kay, Mark A.; Rothenberg, Steven; Landen, Charles N.; Bellinger, Dwight A.; Leland, Frances; Toman, Carol; Finegold, Milton; Thompson, Arthur R.; Read, M. S.; Brinkhous, Kenneth M.; Woo, Savio L. C.

    1993-10-01

    The liver represents a model organ for gene therapy. A method has been developed for hepatic gene transfer in vivo by the direct infusion of recombinant retroviral vectors into the portal vasculature, which results in the persistent expression of exogenous genes. To determine if these technologies are applicable for the treatment of hemophilia B patients, preclinical efficacy studies were done in a hemophilia B dog model. When the canine factor IX complementary DNA was transduced directly into the hepatocytes of affected dogs in vivo, the animals constitutively expressed low levels of canine factor IX for more than 5 months. Persistent expression of the clotting. factor resulted in reductions of whole blood clotting and partial thromboplastin times of the treated animals. Thus, long-term treatment of hemophilia B patients may be feasible by direct hepatic gene therapy in vivo.

  20. Can primary reducing radicals be recruited for prodrug activation in tissue?

    International Nuclear Information System (INIS)

    Kriste, A.G.; Ferry, D.M.; Anderson, R.F.; Wilson, W.R.

    2003-01-01

    We have previously demonstrated that the nitroarylmethyl quaternary ammonium (NMQ) prodrugs of mechlorethamine (HN2) can be activated under anoxia by ionizing radiation (Kriste et al. Radiation Research, 158, 753 - 762, 2002). The HN2 released by these model compounds, however, is insufficiently potent for the prodrugs to be therapeutically useful. To address this concern, NMQ trigger units (4-nitroimidazole, 2-nitropyrrole and 3-nitrothiophene; all demonstrate one-electron release of HN2) were tethered to the DNA intercalator, AMAC (IC 50 values of 1.3 to 66 nM against human and rodent tumour cells). We now report whether AMAC can be radiolytically released from NMQ-AMAC prodrugs in a hypoxic tissue-like environment. Initially radiolysis was investigated in anoxic 0.1 M Formate buffer. Here, the G value for AMAC release was 0.33 ± 0.02μmol/J. In anoxic human plasma, radiolytic release was half as efficient (G(AMAC)= 0.18 ± 0.03μmol/J). To investigate AMAC release in tissue, V79-171b rodent tumour cells were seeded onto Millicell-CM cell culture inserts and grown to 10 - 20 cell diameters. These multicellular layers (MCLs) were equilibrated with prodrug (1μM, 4 hours), and transferred to a gassing chamber (95% nitrogen or oxygen, 2 minutes). MCLs were irradiated (high dose linear accelerator, 0 - 800 Gy, 35 Gy/pulse) and lysed. HPLC analysis indicated that each prodrug was taken up intracellularly to ca. 50 μM. Furthermore, AMAC release was linear with radiation dose and was inhibited under oxia. In this tissue, G values spanned a range from 9.0 to 15 nmol/J. These low values, ca. 5 % of the plasma value, are interpreted as reflecting unfavourable prodrug localization into acidic intracellular endosomes, with no clear E(1) dependance. Whether radiolytic reduction occurs via e aq - or H . abstraction to generate carbon-centred radicals is unknown. MCL studies with NMQ prodrugs that release alternate amine containing cytotoxins are currently in progress

  1. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  2. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  3. The potential for tumor suppressor gene therapy in head and neck cancer.

    Science.gov (United States)

    Birkeland, Andrew C; Ludwig, Megan L; Spector, Matthew E; Brenner, J Chad

    2016-01-01

    Head and neck squamous cell carcinoma remains a highly morbid and fatal disease. Importantly, genomic sequencing of head and neck cancers has identified frequent mutations in tumor suppressor genes. While targeted therapeutics increasingly are being investigated in head and neck cancer, the majority of these agents are against overactive/overexpressed oncogenes. Therapy to restore lost tumor suppressor gene function remains a key and under-addressed niche in trials for head and neck cancer. Recent advances in gene editing have captured the interest of both the scientific community and the public. As our technology for gene editing and gene expression modulation improves, addressing lost tumor suppressor gene function in head and neck cancers is becoming a reality. This review will summarize new techniques, challenges to implementation, future directions, and ethical ramifications of gene therapy in head and neck cancer.

  4. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes.

    Directory of Open Access Journals (Sweden)

    Luka Ausec

    Full Text Available Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three-domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications.

  5. Cancer suicide gene therapy: a patent review.

    Science.gov (United States)

    Navarro, Saúl Abenhamar; Carrillo, Esmeralda; Griñán-Lisón, Carmen; Martín, Ana; Perán, Macarena; Marchal, Juan Antonio; Boulaiz, Houria

    2016-09-01

    Cancer is considered the second leading cause of death worldwide despite the progress made in early detection and advances in classical therapies. Advancing in the fight against cancer requires the development of novel strategies, and the suicide gene transfer to tumor cells is providing new possibilities for cancer therapy. In this manuscript, authors present an overview of suicide gene systems and the latest innovations done to enhance cancer suicide gene therapy strategies by i) improving vectors for targeted gene delivery using tissue specific promoter and receptors; ii) modification of the tropism; and iii) combining suicide genes and/or classical therapies for cancer. Finally, the authors highlight the main challenges to be addressed in the future. Even if many efforts are needed for suicide gene therapy to be a real alternative for cancer treatment, we believe that the significant progress made in the knowledge of cancer biology and characterization of cancer stem cells accompanied by the development of novel targeted vectors will enhance the effectiveness of this type of therapeutic strategy. Moreover, combined with current treatments, suicide gene therapy will improve the clinical outcome of patients with cancer in the future.

  6. Genetic modification of hematopoietic stem cells: recent advances in the gene therapy of inherited diseases.

    Science.gov (United States)

    Bueren, Juan A; Guenechea, Guillermo; Casado, José A; Lamana, María Luisa; Segovia, José C

    2003-01-01

    Hematopoietic stem cells constitute a rare population of precursor cells with remarkable properties for being used as targets in gene therapy protocols. The last years have been particularly productive both in the fields of gene therapy and stem cell biology. Results from ongoing clinical trials have shown the first unquestionable clinical benefits of immunodeficient patients transplanted with genetically modified autologous stem cells. On the other hand, severe side effects in a few patients treated with gene therapy have also been reported, indicating the usefulness of further improving the vectors currently used in gene therapy clinical trials. In the field of stem cell biology, evidence showing the plastic potential of adult hematopoietic stem cells and data indicating the multipotency of adult mesenchymal precursor cells have been presented. Also, the generation of embryonic stem cells by means of nuclear transfer techniques has appeared as a new methodology with direct implications in gene therapy.

  7. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  8. Gene Therapy for Color Blindness.

    Science.gov (United States)

    Hassall, Mark M; Barnard, Alun R; MacLaren, Robert E

    2017-12-01

    Achromatopsia is a rare congenital cause of vision loss due to isolated cone photoreceptor dysfunction. The most common underlying genetic mutations are autosomal recessive changes in CNGA3 , CNGB3 , GNAT2 , PDE6H , PDE6C , or ATF6 . Animal models of Cnga3 , Cngb3 , and Gnat2 have been rescued using AAV gene therapy; showing partial restoration of cone electrophysiology and integration of this new photopic vision in reflexive and behavioral visual tests. Three gene therapy phase I/II trials are currently being conducted in human patients in the USA, the UK, and Germany. This review details the AAV gene therapy treatments of achromatopsia to date. We also present novel data showing rescue of a Cnga3 -/- mouse model using an rAAV.CBA.CNGA3 vector. We conclude by synthesizing the implications of this animal work for ongoing human trials, particularly, the challenge of restoring integrated cone retinofugal pathways in an adult visual system. The evidence to date suggests that gene therapy for achromatopsia will need to be applied early in childhood to be effective.

  9. Selection of suitable prodrug candidates for in vivo studies via in vitro studies; the correlation of prodrug stability in between cell culture homogenates and human tissue homogenates.

    Science.gov (United States)

    Tsume, Yasuhiro; Amidon, Gordon L

    2012-01-01

    To determine the correlations/discrepancies of drug stabilities between in the homogenates of human culture cells and of human tissues. Amino acid/dipeptide monoester prodrugs of floxuridine were chosen as the model drugs. The stabilities (half-lives) of floxuridine prodrugs in human tissues (pancreas, liver, and small intestine) homogenates were obtained and compared with ones in cell culture homogenates (AcPC-1, Capan-2, and Caco-2 cells) as well as human liver microsomes. The correlations of prodrug stability in human small bowel tissue homogenate vs. Caco-2 cell homogenate, human liver tissue homogenate vs. human liver microsomes, and human pancreatic tissue homogenate vs. pancreatic cell, AsPC-1 and Capan-2, homogenates were examined. The stabilities of floxuridine prodrugs in human small bowel homogenate exhibited the great correlation to ones in Caco-2 cell homogenate (slope = 1.0-1.3, r2 = 0.79-0.98). The stability of those prodrugs in human pancreas tissue homogenate also exhibited the good correlations to ones in AsPC-1 and Capan-2 cells homogenates (slope = 0.5-0.8, r2 = 0.58-0.79). However, the correlations of prodrug stabilities between in human liver tissue homogenates and in human liver microsomes were weaker than others (slope = 1.3-1.9, r2 = 0.07-0.24). The correlations of drug stabilities in cultured cell homogenates and in human tissue homogenates were compared. Those results exhibited wide range of correlations between in cell homogenate and in human tissue homogenate (r2 = 0.07 - 0.98). Those in vitro studies in cell homogenates would be good tools to predict drug stabilities in vivo and to select drug candidates for further developments. In the series of experiments, 5'-O-D-valyl-floxuridine and 5'-O-L-phenylalanyl-L-tyrosyl-floxuridine would be selected as candidates of oral drug targeting delivery for cancer chemotherapy due to their relatively good stabilities compared to other tested prodrugs.

  10. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    Science.gov (United States)

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  11. A distinct urinary biomarker pattern characteristic of female Fabry patients that mirrors response to enzyme replacement therapy.

    Directory of Open Access Journals (Sweden)

    Andreas D Kistler

    Full Text Available Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naïve female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naïve Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.

  12. Recent advances in macromolecular prodrugs

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Zelikin, Alexander N.

    2017-01-01

    Macromolecular prodrugs (MP) are high molar mass conjugates, typically carrying several copies of a drug or a drug combination, designed to optimize delivery of the drug, that is — its pharmacokinetics. From its advent several decades ago, design of MP has undergone significant development and es...

  13. Engineering of GlcNAc-1-Phosphotransferase for Production of Highly Phosphorylated Lysosomal Enzymes for Enzyme Replacement Therapy.

    Science.gov (United States)

    Liu, Lin; Lee, Wang-Sik; Doray, Balraj; Kornfeld, Stuart

    2017-06-16

    Several lysosomal enzymes currently used for enzyme replacement therapy in patients with lysosomal storage diseases contain very low levels of mannose 6-phosphate, limiting their uptake via mannose 6-phosphate receptors on the surface of the deficient cells. These enzymes are produced at high levels by mammalian cells and depend on endogenous GlcNAc-1-phosphotransferase α/β precursor to phosphorylate the mannose residues on their glycan chains. We show that co-expression of an engineered truncated GlcNAc-1-phosphotransferase α/β precursor and the lysosomal enzyme of interest in the producing cells resulted in markedly increased phosphorylation and cellular uptake of the secreted lysosomal enzyme. This method also results in the production of highly phosphorylated acid β-glucocerebrosidase, a lysosomal enzyme that normally has just trace amounts of this modification.

  14. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  15. A roadmap to directed enzyme evolution and screening systems for biotechnological applications

    Directory of Open Access Journals (Sweden)

    Ronny Martínez

    2013-01-01

    Full Text Available Enzymes have been long used in man-made biochemical processes, from brewing and fermentation to current industrial production of fine chemicals. The ever-growing demand for enzymes in increasingly specific applications requires tailoring naturally occurring enzymes to the non-natural conditions found in industrial processes. Relationships between enzyme sequence, structure and activity are far from understood, thus hindering the capacity to design tailored biocatalysts. In the field of protein engineering, directed enzyme evolution is a powerful algorithm to generate and identify novel and improved enzymes through iterative rounds of mutagenesis and screening applying a specific evolutive pressure. In practice, critical checkpoints in directed evolution are: selection of the starting point, generation of the mutant library, development of the screening assay and analysis of the output of the screening campaign. Each step in directed evolution can be performed using conceptually and technically different approaches, all having inherent advantages and challenges. In this article, we present and discuss in a general overview, challenges of designing and performing a directed enzyme evolution campaign, current advances in methods, as well as highlighting some examples of its applications in industrially relevant enzymes.

  16. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer.

    Science.gov (United States)

    Basudhar, Debashree; Cheng, Robert C; Bharadwaj, Gaurav; Ridnour, Lisa A; Wink, David A; Miranda, Katrina M

    2015-06-01

    Diazeniumdiolate-based aspirin prodrugs have previously been shown to retain the anti-inflammatory properties of aspirin while protecting against the common side effect of stomach ulceration. Initial analysis of two new prodrugs of aspirin that also release either nitroxyl (HNO) or nitric oxide (NO) demonstrated increased cytotoxicity toward human lung carcinoma cells compared to either aspirin or the parent nitrogen oxide donor. In addition, cytotoxicity was significantly lower in endothelial cells, suggesting cancer-specific sensitivity. To assess the chemotherapeutic potential of these new prodrugs in treatment of breast cancer, we studied their effect both in cultured cells and in a nude mouse model. Both prodrugs reduced growth of breast adenocarcinoma cells more effectively than the parent compounds while not being appreciably cytotoxic in a related nontumorigenic cell line (MCF-10A). The HNO donor also was more cytotoxic than the related NO donor. The basis for the observed specificity was investigated in terms of impact on metabolism, DNA damage and repair, apoptosis, angiogenesis and metastasis. The results suggest a significant pharmacological potential for treatment of breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Poly(ethylene glycol-Prodrug Conjugates: Concept, Design, and Applications

    Directory of Open Access Journals (Sweden)

    Shashwat S. Banerjee

    2012-01-01

    Full Text Available Poly(ethylene glycol (PEG is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.

  18. Molecular targeting of gene therapy and radiotherapy

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Kufe, D.W.; Advani, S.J.; Roizman, B.

    2001-01-01

    The full promise of gene therapy has been limited by the lack of specificity of vectors for tumor tissue as well as the lack of antitumor efficacy of transgenes encoded by gene delivery systems. In this paper we review our studies investigating two modifications of gene therapy combined with radiotherapy. The first investigations described include studies of radiation inducible gene therapy. In this paradigm, radio-inducible DNA sequences from the CarG elements of the Egr-1 promoter are cloned upstream of a cDNA encoding TNFa. The therapeutic gene (TNFa) is induced by radiation within the tumor microenvironment. In the second paradigm, genetically engineered herpes simplex virus (HSV-1) is induced by ionizing radiation to proliferate within the tumor volume. These modifications of radiotherapy and gene therapy may enhance the efficacy of both treatments

  19. Imaging after vascular gene therapy

    International Nuclear Information System (INIS)

    Manninen, Hannu I.; Yang, Xiaoming

    2005-01-01

    Targets for cardiovascular gene therapy currently include limiting restenosis after balloon angioplasty and stent placement, inhibiting vein bypass graft intimal hyperplasia/stenosis, therapeutic angiogenesis for cardiac and lower-limb ischemia, and prevention of thrombus formation. While catheter angiography is still standard method to follow-up vascular gene transfer, other modern imaging techniques, especially intravascular ultrasound (IVUS), magnetic resonance (MR), and positron emission tomography (PET) imaging provide complementary information about the therapeutic effect of vascular gene transfer in humans. Although molecular imaging of therapeutic gene expression in the vasculatures is still in its technical development phase, it has already offered basic medical science an extremely useful in vivo evaluation tool for non- or minimally invasive imaging of vascular gene therapy

  20. Tumor-activated prodrug (TAP)-conjugated nanoparticles with cleavable domains for safe doxorubicin delivery.

    Science.gov (United States)

    Guarnieri, Daniela; Biondi, Marco; Yu, Hui; Belli, Valentina; Falanga, Andrea P; Cantisani, Marco; Galdiero, Stefania; Netti, Paolo A

    2015-03-01

    A major issue in chemotherapy is the lack of specificity of many antitumor drugs, which cause severe side effects and an impaired therapeutic response. Here we report on the design and characterization of model tumor activated prodrug-conjugated polystyrene (PS) nanoparticles (TAP-NPs) for the release of doxorubicin (Dox) triggered by matrix metalloprotease-2 (MMP2) enzyme, which is overexpressed in the extracellular matrix of tumors. In particular, TAP-NPs were produced by attaching Dox to poly(ethylene glycol) (PEG) through two MMP2-cleavable enzymes. The resulting adduct was then tethered to PS NPs. Results showed that Dox release was actually triggered by MMP2 cleavage and was dependent on enzyme concentration, with a plateau around 20 nM. Furthermore, significant cell cytotoxicity was observed towards three cell lines only in the presence of MMP2, but not in cells without enzyme pre-treatment, even after NP internalization by cells. These findings indicate the potential of TAP-NPs as suitable nanocarriers for an on demand, tumor--specific delivery of antitumor drugs after the response to an endogenous stimulus. Further advancements will focus on the translation of this production technology to biodegradable systems for the safe transport of cytotoxic drug to tumor tissues. © 2014 Wiley Periodicals, Inc.

  1. Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity

    Directory of Open Access Journals (Sweden)

    Magdalena Markowicz-Piasecka

    2017-01-01

    Full Text Available The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM may predispose to Alzheimer’s disease (AD. The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μmol/mL, mixed type of inhibition and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC50 = 890 nmol/mL, noncompetitive inhibition and BuChE (IC50 = 28 nmol/mL, mixed type inhibition, while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC50 = 184 nmol/mL. Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.

  2. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ.

    Science.gov (United States)

    Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin

    2014-02-12

    Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.

  3. Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model.

    Science.gov (United States)

    Hinderer, Christian; Bell, Peter; Louboutin, Jean-Pierre; Katz, Nathan; Zhu, Yanqing; Lin, Gloria; Choa, Ruth; Bagel, Jessica; O'Donnell, Patricia; Fitzgerald, Caitlin A; Langan, Therese; Wang, Ping; Casal, Margret L; Haskins, Mark E; Wilson, James M

    2016-09-01

    High fidelity animal models of human disease are essential for preclinical evaluation of novel gene and protein therapeutics. However, these studies can be complicated by exaggerated immune responses against the human transgene. Here we demonstrate that dogs with a genetic deficiency of the enzyme α-l-iduronidase (IDUA), a model of the lysosomal storage disease mucopolysaccharidosis type I (MPS I), can be rendered immunologically tolerant to human IDUA through neonatal exposure to the enzyme. Using MPS I dogs tolerized to human IDUA as neonates, we evaluated intrathecal delivery of an adeno-associated virus serotype 9 vector expressing human IDUA as a therapy for the central nervous system manifestations of MPS I. These studies established the efficacy of the human vector in the canine model, and allowed for estimation of the minimum effective dose, providing key information for the design of first-in-human trials. This approach can facilitate evaluation of human therapeutics in relevant animal models, and may also have clinical applications for the prevention of immune responses to gene and protein replacement therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of anti-proteinuric therapy with angiotensin-converting-enzyme inhibition on renal protein catabolism in the adriamycin-induced nephrotic rat

    NARCIS (Netherlands)

    Haas, M; de Jong, PE; Moolenaar, F; Meijer, DKF; de Zeeuw, D

    A direct consequence of glomerular protein leakage is an increased exposure of proximal tubular cells to proteins. The aim of the present study was to examine whether chronic proteinuria affects the tubular handling of proteins and whether anti-proteinuric therapy by angiotensin-converting-enzyme

  5. Butyrylcholinesterase gene mutations in patients with prolonged apnea after succinylcholine for electroconvulsive therapy

    DEFF Research Database (Denmark)

    Mollerup, Hannah Malthe; Gätke, M R

    2011-01-01

    patients undergoing electroconvulsive therapy (ECT) often receive succinylcholine as part of the anesthetic procedure. The duration of action may be prolonged in patients with genetic variants of the butyrylcholinesterase enzyme (BChE), the most common being the K- and the A-variants. The aim...... of the study was to assess the clinical significance of genetic variants in butyrylcholinesterase gene (BCHE) in patients with a suspected prolonged duration of action of succinylcholine after ECT....

  6. Genes encoding enzymes of the lignin biosynthesis pathway in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Ricardo Harakava

    2005-01-01

    Full Text Available Eucalyptus ESTs libraries were screened for genes involved in lignin biosynthesis. This search was performed under the perspective of recent revisions on the monolignols biosynthetic pathway. Eucalyptus orthologues of all genes of the phenylpropanoid pathway leading to lignin biosynthesis reported in other plant species were identified. A library made with mRNAs extracted from wood was enriched for genes involved in lignin biosynthesis and allowed to infer the isoforms of each gene family that play a major role in wood lignin formation. Analysis of the wood library suggests that, besides the enzymes of the phenylpropanoids pathway, chitinases, laccases, and dirigent proteins are also important for lignification. Colocalization of several enzymes on the endoplasmic reticulum membrane, as predicted by amino acid sequence analysis, supports the existence of metabolic channeling in the phenylpropanoid pathway. This study establishes a framework for future investigations on gene expression level, protein expression and enzymatic assays, sequence polymorphisms, and genetic engineering.

  7. Increasing oral absorption of polar neuraminidase inhibitors: a prodrug transporter approach applied to oseltamivir analogue.

    Science.gov (United States)

    Gupta, Deepak; Varghese Gupta, Sheeba; Dahan, Arik; Tsume, Yasuhiro; Hilfinger, John; Lee, Kyung-Dall; Amidon, Gordon L

    2013-02-04

    Poor oral absorption is one of the limiting factors in utilizing the full potential of polar antiviral agents. The neuraminidase target site requires a polar chemical structure for high affinity binding, thus limiting oral efficacy of many high affinity ligands. The aim of this study was to overcome this poor oral absorption barrier, utilizing prodrug to target the apical brush border peptide transporter 1 (PEPT1). Guanidine oseltamivir carboxylate (GOCarb) is a highly active polar antiviral agent with insufficient oral bioavailability (4%) to be an effective therapeutic agent. In this report we utilize a carrier-mediated targeted prodrug approach to improve the oral absorption of GOCarb. Acyloxy(alkyl) ester based amino acid linked prodrugs were synthesized and evaluated as potential substrates of mucosal transporters, e.g., PEPT1. Prodrugs were also evaluated for their chemical and enzymatic stability. PEPT1 transport studies included [(3)H]Gly-Sar uptake inhibition in Caco-2 cells and cellular uptake experiments using HeLa cells overexpressing PEPT1. The intestinal membrane permeabilities of the selected prodrugs and the parent drug were then evaluated for epithelial cell transport across Caco-2 monolayers, and in the in situ rat intestinal jejunal perfusion model. Prodrugs exhibited a pH dependent stability with higher stability at acidic pHs. Significant inhibition of uptake (IC(50) 30-fold increase in affinity compared to GOCarb. The l-valyl prodrug exhibited significant enhancement of uptake in PEPT1/HeLa cells and compared favorably with the well-absorbed valacyclovir. Transepithelial permeability across Caco-2 monolayers showed that these amino acid prodrugs have a 2-5-fold increase in permeability as compared to the parent drug and showed that the l-valyl prodrug (P(app) = 1.7 × 10(-6) cm/s) has the potential to be rapidly transported across the epithelial cell apical membrane. Significantly, only the parent drug (GOCarb) appeared in the basolateral

  8. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    Science.gov (United States)

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH) was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (Pflurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (Pflurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with reduced GI adverse effects than the parent drug. PMID:27555750

  9. Flurbiprofen-antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling.

    Science.gov (United States)

    Ashraf, Zaman; Alamgeer; Kanwal, Munazza; Hassan, Mubashir; Abdullah, Sahar; Waheed, Mamuna; Ahsan, Haseeb; Kim, Song Ja

    2016-01-01

    Flurbiprofen-antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI) effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (-COOH) was temporarily masked by esterification with phenolic -OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (Pflurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer's yeast-induced pyrexia model, and significant (Pflurbiprofen. Molecular docking and simulation studies were carried out with cyclooxygenase (COX-1 and COX-2) proteins, and it was observed that our prodrugs have more potential to selectively bind to COX-2 than to COX-1. It is concluded that the synthesized prodrugs have promising pharmacological activities with reduced GI adverse effects than the parent drug.

  10. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    Directory of Open Access Journals (Sweden)

    Jamal A. Jilani

    2014-04-01

    Full Text Available The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1. Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1. The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.

  11. Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Win-Ping; Lai, Wen-Fu [Graduate Institute of Biomedical Materials, Taipei Medical University, Taipei (Taiwan); Yang, Wen K.; Yang, Den-Mei [Institute of Biological Science, Academic Sinica, Taipei (Taiwan); Liu, Ren-Shyan [Department of Nuclear Medicine and National PET Cyclotron Center, Veterans General Hospital, Taipei (Taiwan); Hwang, Jeng-Jong; Wang, Hsin-Ell [Institute of Radiological Science, National Yang-Ming University, 155, Sec. 2, Lih-Nong Street, 112, Pei-tou, Taipei (Taiwan); Fu, Ying-Kai [Institute of Nuclear Energy, Atomic Energy Council, Taoyuan (Taiwan)

    2004-01-01

    An experimental cancer gene therapy model was employed to develop a non-invasive imaging procedure using radiolabelled 2'-fluoro-2'-deoxy-5-iodo-1-{beta}-d-arabinofuranosyluracil (FIAU) as an enzyme substrate for monitoring retroviral vector-mediated herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) transgene expression. Iodine-131 labelled FIAU was prepared by a no-carrier-added (n.c.a.) synthesis process and lyophilised to give ''hot kits''. The labelling yield was over 95%, with a radiochemical purity of more than 98%. The stability of [{sup 131}I]FIAU in the form of lyophilised powder (the hot kit) was much better than that in the normal saline solution. The shelf life of the final [{sup 131}I]FIAU hot kit product is as long as 4 weeks. Cellular uptake of [{sup 131}I]FIAU after different periods of storage was investigated in vitro with HSV1-tk-retroviral vector transduced NG4TL4-STK and parental non-transduced NG4TL4 murine sarcoma cell lines over an 8-h incubation period. The NG4TL4-STK cells accumulated more radioactivity than NG4TL4 cells in all conditions, and accumulation increased with time up to 8 h. The kinetic profile of the cellular uptake of n.c.a. [{sup 131}I]FIAU formulated from the lyophilised hot kit or from the stock solution was qualitatively similar. For animal model cancer gene therapy studies, FVB/N mice were inoculated subcutaneously with the HSV1-tk(+) and tk(-) sarcoma cells into the flank to produce tumours. Biodistribution studies showed that tumour/blood ratios were 2, 3.5, 8.2 and 386.8 at 1, 4, 8 and 24 h post injection, respectively, for the HSV1-tk(+) tumours, and 0.5, 0.5, 0.7 and 5.4, respectively, for the HSV1-tk(-) tumours. Radiotracer clearance from blood was completed in 24 h and was bi-exponential. A significant difference in radioactivity accumulation was revealed among the HSV1-tk(+) tumours, the tk(-) tumours and other tissues. At 24 h p.i., higher activity retention was observed

  12. Survey of Attitudes and Ethical Concerns Related to Gene Therapy Among Medical Students and Postgraduates in China.

    Science.gov (United States)

    Xiang, Liangcheng; Xiao, Lihong; Gou, Zhongping; Li, Mei; Zhang, Wei; Wang, Haiping; Feng, Ping

    2015-12-01

    Gene therapy is becoming an important treatment modality for gravely ill patients, and today's medical students and postgraduates are both potential consumers and future providers of gene therapy. Therefore, their attitudes and concerns about gene therapy may directly influence its long-term development and implementation in the clinic. We performed a cross-sectional survey of medical students and postgraduates at West China Medical School of Sichuan University. A custom-designed questionnaire was distributed to 600 students, and 579 were valid (96.98% response). Most respondents (84.46%) indicated little prior knowledge about gene therapy. The proportion of respondents considering gene therapy as acceptable ranged from 63.73% for serious illness to 17.72% for genetic enhancement. Adverse side effects were the most frequent concern among respondents when asked to imagine that they would receive gene therapy to treat a severe brain-related illness. These results suggest that medical students in China consider gene therapy's acceptability to be rather low, and are most concerned about its adverse side effects.

  13. Reporter gene imaging: potential impact on therapy

    International Nuclear Information System (INIS)

    Serganova, Inna; Blasberg, Ronald

    2005-01-01

    Positron emission tomography (PET)-based molecular-genetic imaging in living organisms has enjoyed exceptional growth over the past 5 years; this is particularly striking since it has been identified as a new discipline only within the past decade. Positron emission tomography is one of three imaging technologies (nuclear, magnetic resonance and optical) that has begun to incorporate methods that are established in molecular and cell biology research. The convergence of these disciplines and the wider application of multi-modality imaging are at the heart of this success story. Most current molecular-genetic imaging strategies are 'indirect,' coupling a 'reporter gene' with a complimentary 'reporter probe.' Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of trans gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as 'sensors' to regulate the magnitude of reporter gene expression and can be used to provide information about endogenous cell processes. Reporter systems can also be constructed to monitor mRNA stabilization and specific protein-protein interactions. Promoters can be cell specific and restrict transgene expression to certain tissue and organs. The translation of reporter gene imaging to specific clinical applications is discussed. Several examples that have potential for patient imaging studies in the near future include monitoring adenoviral-based gene therapy, oncolytic herpes virus therapy, adoptive cell-based therapies and Salmonella-based tumor-targeted cancer therapy and imaging. The primary translational applications of noninvasive in vivo reporter gene imaging are likely to be (a) quantitative monitoring of the gene therapy vector and the efficacy of transduction in clinical protocols, by imaging the location, extent and duration of transgene expression; (b) monitoring cell trafficking, targeting

  14. Gene Therapy With Regulatory T Cells: A Beneficial Alliance

    Directory of Open Access Journals (Sweden)

    Moanaro Biswas

    2018-03-01

    Full Text Available Gene therapy aims to replace a defective or a deficient protein at therapeutic or curative levels. Improved vector designs have enhanced safety, efficacy, and delivery, with potential for lasting treatment. However, innate and adaptive immune responses to the viral vector and transgene product remain obstacles to the establishment of therapeutic efficacy. It is widely accepted that endogenous regulatory T cells (Tregs are critical for tolerance induction to the transgene product and in some cases the viral vector. There are two basic strategies to harness the suppressive ability of Tregs: in vivo induction of adaptive Tregs specific to the introduced gene product and concurrent administration of autologous, ex vivo expanded Tregs. The latter may be polyclonal or engineered to direct specificity to the therapeutic antigen. Recent clinical trials have advanced adoptive immunotherapy with Tregs for the treatment of autoimmune disease and in patients receiving cell transplants. Here, we highlight the potential benefit of combining gene therapy with Treg adoptive transfer to achieve a sustained transgene expression. Furthermore, techniques to engineer antigen-specific Treg cell populations, either through reprogramming conventional CD4+ T cells or transferring T cell receptors with known specificity into polyclonal Tregs, are promising in preclinical studies. Thus, based upon these observations and the successful use of chimeric (IgG-based antigen receptors (CARs in antigen-specific effector T cells, different types of CAR-Tregs could be added to the repertoire of inhibitory modalities to suppress immune responses to therapeutic cargos of gene therapy vectors. The diverse approaches to harness the ability of Tregs to suppress unwanted immune responses to gene therapy and their perspectives are reviewed in this article.

  15. Where do the immunostimulatory effects of oral proteolytic enzymes ('systemic enzyme therapy') come from? Microbial proteolysis as a possible starting point.

    Science.gov (United States)

    Biziulevicius, Gediminas A

    2006-01-01

    Enteric-coated proteolytic enzyme preparations like Wobenzym and Phlogenzym are widely used for the so-called 'systemic enzyme therapy' both in humans and animals. Numerous publications reveal that oral proteolytic enzymes are able to stimulate directly the activity of immune competent cells as well as to increase efficiency of some of their products. But origins of the immunostimulatory effects of oral proteolytic enzymes are still unclear. The hypothesis described here suggests that it may be proteolysis of intestinal microorganisms that makes the immune competent cells to work in the immunostimulatory manner. The hypothesis was largely formed by several scientific observations: First, microbial lysis products (lipopolysaccharides, muropeptides and other peptidoglycan fragments, beta-glucans, etc.) are well known for their immunostimulatory action. Second, a normal human being hosts a mass of intestinal microorganisms equivalent to about 1 kg. The biomass (mainly due to naturally occurring autolysis) continuously supplies the host's organism with immunostimulatory microbial cell components. Third, the immunostimulatory effects resulting from the oral application of exogenously acting antimicrobial (lytic) enzyme preparations, such as lysozyme and lysosubtilin, are likely to be a result of the action of microbial lysis products. Fourth, cell walls of most microorganisms contain a considerable amount of proteins/peptides, a possible target for exogenous proteolytic enzymes. In fact, several authors have already shown that a number of proteases possess an ability to lyse the microbial cells in vitro. Fifth, the pretreatment of microbial cells (at least of some species) in vitro with proteolytic enzymes makes them more sensitive to the lytic action of lysozyme and, otherwise, pretreatment with lysozyme makes them more susceptible to proteolytic degradation. Sixth, exogenous proteases, when in the intestines, may participate in final steps of food-protein digestion

  16. Bone Marrow Gene Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Elena Herrera-Carrillo

    2015-07-01

    Full Text Available Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS caused by human immunodeficiency virus (HIV. This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  17. Suicide genes or p53 gene and p53 target genes as targets for cancer gene therapy by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Bing; Chinese Academy of Sciences, Beijing; Zhang Hong

    2005-01-01

    Radiotherapy has some disadvantages due to the severe side-effect on the normal tissues at a curative dose of ionizing radiation (IR). Similarly, as a new developing approach, gene therapy also has some disadvantages, such as lack of specificity for tumors, limited expression of therapeutic gene, potential biological risk. To certain extent, above problems would be solved by the suicide genes or p53 gene and its target genes therapies targeted by ionizing radiation. This strategy not only makes up the disadvantage from radiotherapy or gene therapy alone, but also promotes success rate on the base of lower dose. By present, there have been several vectors measuring up to be reaching clinical trials. This review focused on the development of the cancer gene therapy through suicide genes or p53 and its target genes mediated by IR. (authors)

  18. Advances in study of reporter gene imaging for monitoring gene therapy

    International Nuclear Information System (INIS)

    Mu Chuanjie; Zhou Jiwen

    2003-01-01

    To evaluate the efficiency of gene therapy, it is requisite to monitor localization and expression of the therapeutic gene in vivo. Monitoring expression of reporter gene using radionuclide reporter gene technique is the best method. Adenoviral vectors expressing reporter gene are constructed using gene fusion, bicistronic, double promoter or bidirectional transcriptional recombination techniques, and transferred into target cells and tissues, then injected radiolabeled reporter probes which couple to the reporter genes. The reporter genes can be imaged invasively, repeatedly, quantitatively with γ-camera, PET and SPECT. Recently, several reporter gene and reporter probe systems have been used in studies of gene therapy. The part of them has been used for clinic trials

  19. Click and Release: A Chemical Strategy toward Developing Gasotransmitter Prodrugs by Using an Intramolecular Diels-Alder Reaction.

    Science.gov (United States)

    Ji, Xingyue; Zhou, Cheng; Ji, Kaili; Aghoghovbia, Robert E; Pan, Zhixiang; Chittavong, Vayou; Ke, Bowen; Wang, Binghe

    2016-12-19

    Prodrug strategies have been proven to be a very effective way of addressing delivery problems. Much of the chemistry in prodrug development relies on the ability to mask an appropriate functional group, which can be removed under appropriate conditions. However, developing organic prodrugs of gasotransmitters represent unique challenges. This is especially true with carbon monoxide, which does not have an easy "handle" for bioreversible derivatization. By taking advantage of an intramolecular Diels-Alder reaction, we have developed a prodrug strategy for preparations of organic CO prodrugs that are stable during synthesis and storage, and yet readily release CO with tunable release rates under near physiological conditions. The effectiveness of the CO prodrug system in delivering a sufficient quantity of CO for possible therapeutic applications has been studied using a cell culture anti-inflammatory assay and a colitis animal model. These studies fully demonstrate the proof of concept, and lay a strong foundation for further medicinal chemistry work in developing organic CO prodrugs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. p53 as the focus of gene therapy: past, present and future.

    Science.gov (United States)

    Valente, Joana Fa; Queiroz, Joao A; Sousa, Fani

    2018-01-15

    Several gene deviations can be responsible for triggering oncogenic processes. However, mutations in tumour suppressor genes are usually more associated to malignant diseases, being p53 one of the most affected and studied element. p53 is implicated in a number of known cellular functions, including DNA damage repair, cell cycle arrest in G1/S and G2/M and apoptosis, being an interesting target for cancer treatment. Considering these facts, the development of gene therapy approaches focused on p53 expression and regulation seems to be a promising strategy for cancer therapy. Several studies have shown that transfection of cancer cells with wild-type p53 expressing plasmids could directly drive cells into apoptosis and/or growth arrest, suggesting that a gene therapy approach for cancer treatment can be based on the re-establishment of the normal p53 expression levels and function. Up until now, several clinical research studies using viral and non-viral vectors delivering p53 genes, isolated or combined with other therapeutic agents, have been accomplished and there are already in the market therapies based on the use of this gene. This review summarizes the different methods used to deliver and/or target the p53 as well as the main results of therapeutic effect obtained with the different strategies applied. Finally, the ongoing approaches are described, also focusing the combinatorial therapeutics to show the increased therapeutic potential of combining gene therapy vectors with chemo or radiotherapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Several genes encoding enzymes with the same activity are necessary for aerobic fungal degradation of cellulose in nature.

    Directory of Open Access Journals (Sweden)

    Peter K Busk

    Full Text Available The cellulose-degrading fungal enzymes are glycoside hydrolases of the GH families and lytic polysaccharide monooxygenases. The entanglement of glycoside hydrolase families and functions makes it difficult to predict the enzymatic activity of glycoside hydrolases based on their sequence. In the present study we further developed the method Peptide Pattern Recognition to an automatic approach not only to find all genes encoding glycoside hydrolases and lytic polysaccharide monooxygenases in fungal genomes but also to predict the function of the genes. The functional annotation is an important feature as it provides a direct route to predict function from primary sequence. Furthermore, we used Peptide Pattern Recognition to compare the cellulose-degrading enzyme activities encoded by 39 fungal genomes. The results indicated that cellobiohydrolases and AA9 lytic polysaccharide monooxygenases are hallmarks of cellulose-degrading fungi except brown rot fungi. Furthermore, a high number of AA9, endocellulase and β-glucosidase genes were identified, not in what are known to be the strongest, specialized lignocellulose degraders but in saprophytic fungi that can use a wide variety of substrates whereas only few of these genes were found in fungi that have a limited number of natural, lignocellulotic substrates. This correlation suggests that enzymes with different properties are necessary for degradation of cellulose in different complex substrates. Interestingly, clustering of the fungi based on their predicted enzymes indicated that Ascomycota and Basidiomycota use the same enzymatic activities to degrade plant cell walls.

  2. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    International Nuclear Information System (INIS)

    Lee, Jin Hwa; Park, Byeong Ho; Kim, Chan Sung

    2003-01-01

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x10 11 particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy

  3. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Hwa; Park, Byeong Ho; Kim, Chan Sung [Dong-A University College of Medicine, Pusan (Korea, Republic of)

    2003-02-01

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x10{sup 11} particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy.

  4. Gene doping detection: evaluation of approach for direct detection of gene transfer using erythropoietin as a model system.

    Science.gov (United States)

    Baoutina, A; Coldham, T; Bains, G S; Emslie, K R

    2010-08-01

    As clinical gene therapy has progressed toward realizing its potential, concern over misuse of the technology to enhance performance in athletes is growing. Although 'gene doping' is banned by the World Anti-Doping Agency, its detection remains a major challenge. In this study, we developed a methodology for direct detection of the transferred genetic material and evaluated its feasibility for gene doping detection in blood samples from athletes. Using erythropoietin (EPO) as a model gene and a simple in vitro system, we developed real-time PCR assays that target sequences within the transgene complementary DNA corresponding to exon/exon junctions. As these junctions are absent in the endogenous gene due to their interruption by introns, the approach allows detection of trace amounts of a transgene in a large background of the endogenous gene. Two developed assays and one commercial gene expression assay for EPO were validated. On the basis of ability of these assays to selectively amplify transgenic DNA and analysis of literature on testing of gene transfer in preclinical and clinical gene therapy, it is concluded that the developed approach would potentially be suitable to detect gene doping through gene transfer by analysis of small volumes of blood using regular out-of-competition testing.

  5. Gene therapy for lung cancer.

    Science.gov (United States)

    Toloza, Eric M; Morse, Michael A; Lyerly, H Kim

    2006-09-01

    Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer. (c) 2006 Wiley-Liss, Inc.

  6. Co-Targeting Prostate Cancer Epithelium and Bone Stroma by Human Osteonectin-Promoter-Mediated Suicide Gene Therapy Effectively Inhibits Androgen-Independent Prostate Cancer Growth.

    Directory of Open Access Journals (Sweden)

    Shian-Ying Sung

    Full Text Available Stromal-epithelial interaction has been shown to promote local tumor growth and distant metastasis. We sought to create a promising gene therapy approach that co-targets cancer and its supporting stromal cells for combating castration-resistant prostate tumors. Herein, we demonstrated that human osteonectin is overexpressed in the prostate cancer epithelium and tumor stroma in comparison with their normal counterpart. We designed a novel human osteonectin promoter (hON-522E containing positive transcriptional regulatory elements identified in both the promoter and exon 1 region of the human osteonectin gene. In vitro reporter assays revealed that the hON-522E promoter is highly active in androgen receptor negative and metastatic prostate cancer and bone stromal cells compared to androgen receptor-positive prostate cancer cells. Moreover, in vivo prostate-tumor-promoting activity of the hON-522E promoter was confirmed by intravenous administration of an adenoviral vector containing the hON-522E promoter-driven luciferase gene (Ad-522E-Luc into mice bearing orthotopic human prostate tumor xenografts. In addition, an adenoviral vector with the hON-522E-promoter-driven herpes simplex virus thymidine kinase gene (Ad-522E-TK was highly effective against the growth of androgen-independent human prostate cancer PC3M and bone stromal cell line in vitro and in pre-established PC3M tumors in vivo upon addition of the prodrug ganciclovir. Because of the heterogeneity of human prostate tumors, hON-522E promoter-mediated gene therapy has the potential for the treatment of hormone refractory and bone metastatic prostate cancers.

  7. Preclinical and clinical experience in vascular gene therapy: advantages over conservative/standard therapy.

    Science.gov (United States)

    Nikol, S; Huehns, T Y

    2001-04-01

    No systemic pharmacological treatment has been shown to convincingly reduce the incidence of restenosis after angioplasty or increase the formation of collaterals in ischemic tissue in patients. The lack of success of many pharmaceutical agents in reducing restenosis rates or in inducing angiogenesis post-angioplasty and following stent implantation has encouraged the development of new technological treatment approaches. Gene therapy is a novel strategy with the potential to prevent some of the sequelae after arterial injury, particularly cell proliferation, and to induce growth of new vessels or remodeling of pre-existing vessel branches, which may help patients with critical ischemia. Gene therapy strategies have the advantage of minimizing systemic side effects and may have a long-term effect as the encoded protein is released. Most clinical trials investigating gene therapy for vascular disease have been uncontrolled phase I and IIa trials. Gene therapy into vessels with the genes for growth factors has been demonstrated to be feasible and efficient. Local drug delivery devices have been used in combination with gene therapy in several trials to maximize safety and efficiency. Data from experimental animal work indicates that gene therapy may modify intimal hyperplasia after arterial injury, but there are few clinical trials on restenosis in patients. Preliminary clinical results show only limited success in altering restenosis rates. In vitro and experimental in vivo investigations into gene therapy for angiogenesis demonstrate increased formation of collaterals and functional improvement of limb ischemia. There is some evidence of increased collateral formation and clinical improvement in patients with critical limb ischemia. Results of placebo-controlled and double-blind trials of gene therapy for vascular disease are awaited.

  8. Gene replacement therapy for genetic hepatocellular jaundice.

    Science.gov (United States)

    van Dijk, Remco; Beuers, Ulrich; Bosma, Piter J

    2015-06-01

    Jaundice results from the systemic accumulation of bilirubin, the final product of the catabolism of haem. Inherited liver disorders of bilirubin metabolism and transport can result in reduced hepatic uptake, conjugation or biliary secretion of bilirubin. In patients with Rotor syndrome, bilirubin (re)uptake is impaired due to the deficiency of two basolateral/sinusoidal hepatocellular membrane proteins, organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3. Dubin-Johnson syndrome is caused by a defect in the ATP-dependent canalicular transporter, multidrug resistance-associated protein 2 (MRP2), which mediates the export of conjugated bilirubin into bile. Both disorders are benign and not progressive and are characterised by elevated serum levels of mainly conjugated bilirubin. Uridine diphospho-glucuronosyl transferase 1A1 (UGT1A1) is responsible for the glucuronidation of bilirubin; deficiency of this enzyme results in unconjugated hyperbilirubinaemia. Gilbert syndrome is the mild and benign form of inherited unconjugated hyperbilirubinaemia and is mostly caused by reduced promoter activity of the UGT1A1 gene. Crigler-Najjar syndrome is the severe inherited form of unconjugated hyperbilirubinaemia due to mutations in the UGT1A1 gene, which can cause kernicterus early in life and can be even lethal when left untreated. Due to major disadvantages of the current standard treatments for Crigler-Najjar syndrome, phototherapy and liver transplantation, new effective therapeutic strategies are under development. Here, we review the clinical features, pathophysiology and genetic background of these inherited disorders of bilirubin metabolism and transport. We also discuss the upcoming treatment option of viral gene therapy for genetic disorders such as Crigler-Najjar syndrome and the possible immunological consequences of this therapy.

  9. Ethical issues of perinatal human gene therapy.

    Science.gov (United States)

    Fletcher, J C; Richter, G

    1996-01-01

    This paper examines some key ethical issues raised by trials of human gene therapy in the perinatal period--i.e., in infants, young children, and the human fetus. It describes five resources in ethics for researchers' considerations prior to such trials: (1) the history of ethical debate about gene therapy, (2) a literature on the relevance of major ethical principles for clinical research, (3) a body of widely accepted norms and practices, (4) knowledge of paradigm cases, and (5) researchers' own professional integrity. The paper also examines ethical concerns that must be met prior to any trial: benefits to and safety of subjects, informed assent of children and informed parental permission, informed consent of pregnant women in fetal gene therapy, protection of privacy, and concerns about fairness in the selection of subjects. The paper criticizes the position that cases of fetal gene therapy should be restricted only to those where the pregnant woman has explicitly refused abortion. Additional topics include concerns about genetic enhancement and germ-line gene therapy.

  10. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma;Controle par IRM bas champ in vivo de l'efficacite d'une therapie genique par gene suicide dans un modele murin de glioblastome orthotopique

    Energy Technology Data Exchange (ETDEWEB)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph. [Service de biophysique et medecine nucleaire, hopital de Hautepierre, CHRU de Strasbourg, 67 - Strasbourg (France); Institut de mecanique des fluides et des solides, CNRS, universite de Strasbourg, 67 - Strasbourg (France); Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R. [Transgene SA, parc d' innovation, 67 - Illkirch Graffenstaden (France)

    2010-03-15

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  11. Stability and in vitro metabolism of dipeptide model prodrugs with affinity for the oligopeptide transporter

    DEFF Research Database (Denmark)

    Lepist, E I; Kusk, T; Larsen, D H

    2000-01-01

    into the blood circulation and/or by its site of action. In these kinds of prodrugs the ester linkage may be broken by pH dependent and/or enzyme catalyzed hydrolysis. The objective of the present study was to investigate the degradation mechanism and rate of the model compounds Glu(OBzl)-Sar, D...... on buffer concentration, temperature, pH, and ionic strength. In biological media such as 80% human plasma, human gastric juice and intestinal fluid, and 10% rat jejunal homogenate at 37 degrees C, the half-lives were greater than 1 h except for the hydrolysis of Glu(OBzl)-Sar in 10% rat jejunal homogenate...

  12. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling

    Directory of Open Access Journals (Sweden)

    Annika Bettina Foehrenbacher

    2013-12-01

    Full Text Available Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP. HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000, are activated under relatively mild hypoxia. In contrast, Class II HAP (such as the nitro compounds PR-104A or TH-302 are maximally activated only under extreme hypoxia, but their active metabolites (effectors diffuse to cells at intermediate O2 and thus also eliminate moderately hypoxic cells. Here, we use a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD model to compare these two strategies and to identify the features required in an optimal Class II HAP. The model uses a Green’s function approach to calculate spatial and longitudinal gradients of O2, prodrug and effector concentrations, and resulting killing in a digitized 3D tumor microregion to estimate activity as monotherapy and in combination with radiotherapy. An analogous model for a normal tissue with mild hypoxia and short intervesssel distances (based on a cremaster muscle microvessel network was used to estimate tumor selectivity of cell killing. This showed that Class II HAP offer advantages over Class I including higher tumor selectivity and greater freedom to vary prodrug diffusibility and rate of metabolic activation. The model suggests that the largest gains in class II HAP antitumor activity could be realized by optimizing effector stability and prodrug activation rates. We also use the model to show that diffusion of effector into blood vessels is unlikely to materially increase systemic exposure for realistic tumor burdens and effector clearances. However, we show that the tumor selectivity achievable by hypoxia-dependent prodrug activation alone is limited if dose-limiting normal tissues are even mildly hypoxic

  13. The development of orally administrable gemcitabine prodrugs with D-enantiomer amino acids: enhanced membrane permeability and enzymatic stability.

    Science.gov (United States)

    Tsume, Yasuhiro; Incecayir, Tuba; Song, Xueqin; Hilfinger, John M; Amidon, Gordon L

    2014-04-01

    Gemcitabine prodrugs with D- and L-configuration amino acids were synthesized and their chemical stability in buffers, resistance to glycosidic bond metabolism, enzymatic activation, permeability in Caco-2 cells and mouse intestinal membrane, anti-proliferation activity in cancer cell were determined and compared to that of parent drug, gemcitabine. Prodrugs containing D-configuration amino acids were enzymatically more stable than ones with L-configuration amino acids. The activation of all gemcitabine prodrugs was 1.3-17.6-fold faster in cancer cell homogenate than their hydrolysis in buffer, suggesting enzymatic action. The enzymatic activation of amino acid monoester prodrugs containing D-configuration amino acids in cell homogenates was 2.2-10.9-fold slower than one of amino acid monoester prodrugs with L-configuration amino acids. All prodrugs exhibited enhanced resistance to glycosidic bond metabolism by thymidine phosphorylase compared to parent gemcitabine. Gemcitabine prodrugs showed superior the effective permeability in mouse jejunum to gemcitabine. More importantly, the high plasma concentration of d-amino acid gemcitabine prodrugs was observed more than one of L-amino acid gemcitabine prodrugs. In general, the 5'-mono-amino acid monoester gemcitabine prodrugs exhibited higher permeability and uptake than their parent drug, gemcitabine. Cell proliferation assays in AsPC-1 pancreatic ductal cell line indicated that gemcitabine prodrugs were more potent than their parent drug, gemcitabine. The transport and enzymatic profiles of 5'-D-valyl-gemcitabine and 5'-D-phenylalanyl-gemcitabine suggest their potential for increased oral uptake and delayed enzymatic bioconversion as well as enhanced uptake and cytotoxic activity in cancer cells, would facilitate the development of oral dosage form for anti-cancer agents and, hence, improve the quality of life for the cancer patients. Copyright © 2014. Published by Elsevier B.V.

  14. Gene therapy, early promises, subsequent problems, and recent breakthroughs.

    Science.gov (United States)

    Razi Soofiyani, Saeideh; Baradaran, Behzad; Lotfipour, Farzaneh; Kazemi, Tohid; Mohammadnejad, Leila

    2013-01-01

    Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist's ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers) refractory to conventional treatment, to date gene therapy is considered for many non-life-threatening conditions including those adversely influence on a patient's quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  15. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    Science.gov (United States)

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  16. Prodrugs of purine and pyrimidine analogues for the intestinal di/tri-peptide transporter PepT1

    DEFF Research Database (Denmark)

    Thomsen, Anne Engelbrecht; Friedrichsen, Gerda Marie; Sørensen, Arne Hagsten

    2003-01-01

    , novel L-Glu-Sar and D-Glu-Ala ester prodrugs of acyclovir and 1-(2-hydroxyethyl)-linked thymine were synthesized and their affinities for hPepT1 in Caco-2 cells were determined. Furthermore, the degradation of the prodrugs was investigated in various aqueous and biological media and compared...... to the corresponding hydrolysis of the prodrug valaciclovir. Affinity studies showed that the L-Glu-Sar prodrugs had high affinity for hPepT1 (K(i) approximately 0.2-0.3 mM), whereas the D-Glu-Ala prodrugs had poor affinity (K(i) approximately 50 mM). The pH-rate profiles of the prodrugs D-Glu[1-(2-hydroxyethyl......)thymine]-Ala and L-Glu[acyclovir]-Sar showed specific base catalyzed degradation at pH above 4.5 and 5.5, respectively. This implicates that the degradation rates at pH approximately 7.4 (t(1/2) approximately 3.5 and 5.5 h) are approximately 25 times faster than at upper small intestinal pH approximately 6.0. In 10...

  17. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    Science.gov (United States)

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  18. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy

    NARCIS (Netherlands)

    Mahasreshti, PJ; Kataram, M; Wu, HJ; Yalavarthy, LP; Carey, D; Dent, P; Chada, S; Alvarez, RD; Haisma, HJ; Fisher, PB; Curiel, DT

    Objective. We have previously shown that adenoviral-mediated melanoma differentiation-associated gene-7 (Ad.mda-7) therapy induces apoptosis in ovarian cancer cells. However, the apoptosis induction was low and directly correlated with infectivity of Ad.mda-7. The objective of this study was to

  19. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    Science.gov (United States)

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  20. Response of women with Fabry disease to enzyme replacement therapy: comparison with men, using data from FOS--the Fabry Outcome Survey

    NARCIS (Netherlands)

    Hughes, Derralynn A.; Barba Romero, Miguel-Ángel; Hollak, Carla E. M.; Giugliani, Roberto; Deegan, Patrick B.

    2011-01-01

    Fabry disease (α-galactosidase A deficiency) is an X-linked disorder. Women who are heterozygous for disease-causing mutations often manifest signs and symptoms of Fabry disease, but most studies of the effects of enzyme replacement therapy (ERT) have included only men. To date, no direct comparison

  1. The pathogenomics of McArdle disease--genes, enzymes, models, and therapeutic implications.

    Science.gov (United States)

    Nogales-Gadea, Gisela; Santalla, Alfredo; Brull, Astrid; de Luna, Noemi; Lucia, Alejandro; Pinós, Tomàs

    2015-03-01

    Numerous biomedical advances have been made since Carl and Gerty Cori discovered the enzyme phosphorylase in the 1940s and the Scottish physician Brian McArdle reported in 1951 a previously 'undescribed disorder characterized by a gross failure of the breakdown in muscle of glycogen'. Today we know that this disorder, commonly known as 'McArdle disease', is caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (GP). Here we review the main aspects of the 'pathogenomics' of this disease including, among others: the spectrum of mutations in the gene (PYGM) encoding muscle GP; the interplay between the different tissue GP isoforms in cellular cultures and in patients; what can we learn from naturally occurring and recently laboratory-generated animal models of the disease; and potential therapies.

  2. Gene Therapy Approaches to Hemoglobinopathies.

    Science.gov (United States)

    Ferrari, Giuliana; Cavazzana, Marina; Mavilio, Fulvio

    2017-10-01

    Gene therapy for hemoglobinopathies is currently based on transplantation of autologous hematopoietic stem cells genetically modified with a lentiviral vector expressing a globin gene under the control of globin transcriptional regulatory elements. Preclinical and early clinical studies showed the safety and potential efficacy of this therapeutic approach as well as the hurdles still limiting its general application. In addition, for both beta-thalassemia and sickle cell disease, an altered bone marrow microenvironment reduces the efficiency of stem cell harvesting as well as engraftment. These hurdles need be addressed for gene therapy for hemoglobinopathies to become a clinical reality. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gene therapy: light is finally in the tunnel.

    Science.gov (United States)

    Cao, Huibi; Molday, Robert S; Hu, Jim

    2011-12-01

    After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.

  4. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  5. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  6. Chinese medicine protein and peptide in gene and cell therapy.

    Science.gov (United States)

    Feng, Yinglu; Yin, Zifei; Zhang, Daniel; Srivastava, Arun; Ling, Chen

    2018-06-11

    The success of gene and cell therapy in clinic during the past two decades as well as our expanding ability to manipulate these biomaterials are leading to new therapeutic options for a wide range of inherited and acquired diseases. Combining conventional therapies with this emerging field is a promising strategy to treat those previously-thought untreatable diseases. Traditional Chinese medicine (TCM) has evolved for thousands of years in China and still plays an important role in human health. As part of the active ingredients of TCM, proteins and peptides have attracted long-term enthusiasm of researchers. More recently, they have been utilized in gene and cell therapy, resulting in promising novel strategies to treat both cancer and non-cancer diseases. This manuscript presents a critical review on this field, accompanied with perspectives on the challenges and new directions for future research in this emerging frontier. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Pharmacokinetics of intravitreal 5-flurouracil prodrugs in silicone oil. Experimental studies in pigs

    DEFF Research Database (Denmark)

    Laugesen, Caroline S; Steffansen, Bente; Scherfig, Erik

    2005-01-01

    PURPOSE: To examine the in vivo pharmacokinetics of intravitreal 5-Fluorouracil (5-FU) following tamponade with 5-FU prodrug silicone oil formulations. METHOD: Two different alkoxycarbonyl 5-FU prodrugs denoted C12 and C18 were synthesized and formulated as silicone oil suspensions. A total of 26...

  8. Advanced strategies in liposomal cancer therapy

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Jensen, Simon Skøde; Jørgensen, Kent

    2005-01-01

    is therefore of great importance. In the first part of this review, we present current strategies in the drug delivery field, focusing on site-specific triggered drug release from liposomes in cancerous tissue. Currently marketed drug delivery systems lack the ability to actively release the carried drug......, none of them have yet led to marketed drugs and are still far from achieving this goal. The most advanced and prospective technologies are probably the prodrug strategies where nontoxic drugs are carried and activated specifically in the malignant tissue by overexpressed enzymes. In the second part......Tumor specific drug delivery has become increasingly interesting in cancer therapy, as the use of chemotherapeutics is often limited due to severe side effects. Conventional drug delivery systems have shown low efficiency and a continuous search for more advanced drug delivery principles...

  9. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs

    Directory of Open Access Journals (Sweden)

    Saeideh Razi Soofiyani

    2013-08-01

    Full Text Available Gene therapy is one of the most attractive fields in medicine. The concept of gene delivery to tissues for clinical applications has been discussed around half a century, but scientist’s ability to manipulate genetic material via recombinant DNA technology made this purpose to reality. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. While gene therapy initially conceived as a way to treat life-threatening disorders (inborn errors, cancers refractory to conventional treatment, to date gene therapy is considered for many non–life-threatening conditions including those adversely influence on a patient’s quality of life. Gene therapy has made significant progress, including tangible success, although much slower than was initially predicted. Although, gene therapies still at a fairly primitive stage, it is firmly science based. There is justifiable hope that with enhanced pathobiological understanding and biotechnological improvements, gene therapy will be a standard part of clinical practice within 20 years.

  10. Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT

    Directory of Open Access Journals (Sweden)

    Wu Anna M

    2009-12-01

    Full Text Available Abstract Background Antibody Directed Enzyme Prodrug Therapy (ADEPT can be used to generate cytotoxic agents at the tumor site. To date non-human enzymes have mainly been utilized in ADEPT. However, these non-human enzymes are immunogenic limiting the number of times that ADEPT can be administered. To overcome the problem of immunogenicity, a fully human enzyme, capable of converting a non-toxic prodrug to cytotoxic drug was developed and joined to a human tumor specific scFv yielding a fully human targeting agent. Methods A double mutant of human purine nucleoside phosphorylase (hDM was developed which unlike the human enzyme can cleave adenosine-based prodrugs. For tumor-specific targeting, hDM was fused to the human anti-HER2/neu single chain Fv (scFv, C6 MH3B1. Enzymatic activity of hDM with its natural substrates and prodrugs was determined using spectrophotomeric approaches. A cell proliferation assay was used to assess the cytotoxicity generated following conversion of prodrug to drug as a result of enzymatic activity of hDM. Affinity of the targeting scFv, C6 MH3B1 fused to hDM to Her2/neu was confirmed using affinity chromatography, surface plasmon resonance, and flow-cytometry. Results In vitro hDM-C6 MH3B1 binds specifically to HER2/neu expressing tumor cells and localizes hDM to tumor cells, where the enzymatic activity of hDM-C6 MH3B1, but not the wild type enzyme, results in phosphorolysis of the prodrug, 2-fluoro-2'-deoxyadenosine to the cytotoxic drug 2-fluoroadenine (F-Ade causing inhibition of tumor cell proliferation. Significantly, the toxic small drug diffuses through the cell membrane of HER2/neu expressing cells as well as cells that lack the expression of HER2/neu, causing a bystander effect. F-Ade is toxic to cells irrespective of their growth rate; therefore, both the slowly dividing tumor cells and the non-dividing neighboring stromal cells that support tumor growth should be killed. Analysis of potential novel MHCII

  11. Flurbiprofen–antioxidant mutual prodrugs as safer nonsteroidal anti-inflammatory drugs: synthesis, pharmacological investigation, and computational molecular modeling

    Directory of Open Access Journals (Sweden)

    Ashraf Z

    2016-07-01

    Full Text Available Zaman Ashraf,1,2 Alamgeer,3 Munazza Kanwal,1 Mubashir Hassan,2 Sahar Abdullah,3 Mamuna Waheed,3 Haseeb Ahsan,3 Song Ja Kim2 1Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan; 2Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea; 3Department of Pharmacology, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan Abstract: Flurbiprofen–antioxidant mutual prodrugs were synthesized to reduce the gastrointestinal (GI effects associated with flurbiprofen. For reducing the GI toxicity, the free carboxylic group (–COOH was temporarily masked by esterification with phenolic –OH of natural antioxidants vanillin, thymol, umbelliferone, and sesamol. The in vitro hydrolysis of synthesized prodrugs showed that they were stable in buffer solution at pH 1.2, indicating their stability in the stomach. The synthesized prodrugs undergo significant hydrolysis in 80% human plasma and thus release free flurbiprofen. The minimum reversion was observed at pH 1.2, ­suggesting that prodrugs are less irritating to the stomach than flurbiprofen. The anti-inflammatory, analgesic, antipyretic, and ulcerogenic activities of prodrugs were evaluated. All the synthesized prodrugs significantly (P<0.001 reduced the inflammation against carrageenan and egg albumin-induced paw edema at 4 hours of study. The reduction in the size of the inflamed paw showed that most of the compounds inhibited the later phase of inflammation. The prodrug 2-oxo-2H-chromen-7-yl-2-(2-fluorobiphenyl-4-ylpropanoate (4b showed significant reduction in paw licking with percentage inhibition of 58%. It also exhibited higher analgesic activity, reducing the number of writhes with a percentage of 75%, whereas flurbiprofen showed 69% inhibition. Antipyretic activity was investigated using brewer’s yeast-induced pyrexia model, and significant (P<0.001 reduction in rectal temperature was shown by all

  12. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  13. The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes.

    Science.gov (United States)

    Johänning, Janina; Kröner, Patrick; Thomas, Maria; Zanger, Ulrich M; Nörenberg, Astrid; Eichelbaum, Michel; Schwab, Matthias; Brauch, Hiltrud; Schroth, Werner; Mürdter, Thomas E

    2018-03-01

    Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression. The formation of tamoxifen bisphenol and metabolite E was studied in human liver microsomes and Supersomes™. Cellular metabolism and impact on CYP enzymes was analyzed in upcyte® hepatocytes. The influence of 5 µM of tamoxifen, anti-estrogenic and estrogen-like metabolites on CYP activity was measured by HPLC MS/MS and on ADME gene expression using RT-PCR analyses. Metabolite E was formed from tamoxifen by CYP2C19, 3A and 1A2 and from desmethyltamoxifen by CYP2D6, 1A2 and 3A. Tamoxifen bisphenol was mainly formed from (E)- and (Z)-metabolite E by CYP2B6 and CYP2C19, respectively. Regarding phase II metabolism, UGT2B7, 1A8 and 1A3 showed highest activity in glucuronidation of tamoxifen bisphenol and metabolite E. Anti-estrogenic metabolites (Z)-4-hydroxytamoxifen, (Z)-endoxifen and (Z)-norendoxifen inhibited the activity of CYP2C enzymes while tamoxifen bisphenol consistently induced CYPs similar to rifampicin and phenobarbital. On the transcript level, highest induction up to 5.6-fold was observed for CYP3A4 by tamoxifen, (Z)-4-hydroxytamoxifen, tamoxifen bisphenol and (E)-metabolite E. Estrogen-like tamoxifen metabolites are formed in CYP-dependent reactions and are further metabolized by glucuronidation. The induction of CYP activity by tamoxifen bisphenol and the inhibition of CYP2C enzymes by anti-estrogenic metabolites may lead to drug-drug-interactions.

  14. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  15. Twenty Years of European Union Support to Gene Therapy and Gene Transfer.

    Science.gov (United States)

    Gancberg, David

    2017-11-01

    For 20 years and throughout its research programmes, the European Union has supported the entire innovation chain for gene transfer and gene therapy. The fruits of this investment are ripening as gene therapy products are reaching the European market and as clinical trials are demonstrating the safety of this approach to treat previously untreatable diseases.

  16. Cognitive Development in Infantile-Onset Pompe Disease Under Very Early Enzyme Replacement Therapy.

    Science.gov (United States)

    Lai, Chih-Jou; Hsu, Ting-Rong; Yang, Chia-Feng; Chen, Shyi-Jou; Chuang, Ya-Chin; Niu, Dau-Ming

    2016-12-01

    Most patients with infantile-onset Pompe disease die in early infancy before beginning enzyme replacement therapy, which has made it difficult to evaluate the impact of Pompe disease on cognitive development. Patients with infantile-onset Pompe disease can survive with enzyme replacement therapy, and physicians can evaluate cognitive development in these patients. We established an effective newborn screening program with quick clinical diagnostic criteria. Cognitive and motor development were evaluated using the Bayley Scales of Infant and Toddler Development-Third Edition at 6, 12, and 24 months of age. The patients who were treated very early demonstrate normal cognitive development with no significant change in cognition during this period (P = .18 > .05). The cognitive development was positively correlated with motor development (r = 0.533, P = .011). The results indicated that very early enzyme replacement therapy could protect cognitive development in patients with infantile-onset Pompe disease up to 24 months of age. © The Author(s) 2016.

  17. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  18. Progress toward Gene Therapy for Duchenne Muscular Dystrophy.

    Science.gov (United States)

    Chamberlain, Joel R; Chamberlain, Jeffrey S

    2017-05-03

    Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  20. The Prodrug Approach: A Successful Tool for Improving Drug Solubility

    Directory of Open Access Journals (Sweden)

    Daniela Hartmann Jornada

    2015-12-01

    Full Text Available Prodrug design is a widely known molecular modification strategy that aims to optimize the physicochemical and pharmacological properties of drugs to improve their solubility and pharmacokinetic features and decrease their toxicity. A lack of solubility is one of the main obstacles to drug development. This review aims to describe recent advances in the improvement of solubility via the prodrug approach. The main chemical carriers and examples of successful strategies will be discussed, highlighting the advances of this field in the last ten years.

  1. Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering.

    Science.gov (United States)

    Ninh, Pham Huynh; Honda, Kohsuke; Sakai, Takaaki; Okano, Kenji; Ohtake, Hisao

    2015-01-01

    In vitro reconstitution of an artificial metabolic pathway is an emerging approach for the biocatalytic production of industrial chemicals. However, several enzymes have to be separately prepared (and purified) for the construction of an in vitro metabolic pathway, thereby limiting the practical applicability of this approach. In this study, genes encoding the nine thermophilic enzymes involved in a non-ATP-forming chimeric glycolytic pathway were assembled in an artificial operon and co-expressed in a single recombinant Escherichia coli strain. Gene expression levels of the thermophilic enzymes were controlled by their sequential order in the artificial operon. The specific activities of the recombinant enzymes in the cell-free extract of the multiple-gene-expression E. coli were 5.0-1,370 times higher than those in an enzyme cocktail prepared from a mixture of single-gene-expression strains, in each of which a single one of the nine thermophilic enzymes was overproduced. Heat treatment of a crude extract of the multiple-gene-expression cells led to the denaturation of indigenous proteins and one-step preparation of an in vitro synthetic pathway comprising only a limited number of thermotolerant enzymes. Coupling this in vitro pathway with other thermophilic enzymes including the H2 O-forming NADH oxidase or the malate/lactate dehydrogenase facilitated one-pot conversion of glucose to pyruvate or lactate, respectively. © 2014 Wiley Periodicals, Inc.

  2. Correction of acid beta-galactosidase deficiency in GM1 gangliosidosis human fibroblasts by retrovirus vector-mediated gene transfer: higher efficiency of release and cross-correction by the murine enzyme.

    Science.gov (United States)

    Sena-Esteves, M; Camp, S M; Alroy, J; Breakefield, X O; Kaye, E M

    2000-03-20

    Mutations in the lysosomal acid beta-galactosidase (EC 3.2.1.23) underlie two different disorders: GM1 gangliosidosis, which involves the nervous system and visceral organs to varying extents, and Morquio's syndrome type B (Morquio B disease), which is a skeletal-connective tissue disease without any CNS symptoms. This article shows that transduction of human GM1 gangliosidosis fibroblasts with retrovirus vectors encoding the human acid beta-galactosidase cDNA leads to complete correction of the enzymatic deficiency. The newly synthesized enzyme is correctly processed and targeted to the lysosomes in transduced cells. Cross-correction experiments using retrovirus-modified cells as enzyme donors showed, however, that the human enzyme is transferred at low efficiencies. Experiments using a different retrovirus vector carrying the human cDNA confirmed this observation. Transduction of human GM1 fibroblasts and mouse NIH 3T3 cells with a retrovirus vector encoding the mouse beta-galactosidase cDNA resulted in high levels of enzymatic activity. Furthermore, the mouse enzyme was found to be transferred to human cells at high efficiency. Enzyme activity measurements in medium conditioned by genetically modified cells suggest that the human beta-galactosidase enzyme is less efficiently released to the extracellular space than its mouse counterpart. This study suggests that lysosomal enzymes, contrary to the generalized perception in the field of gene therapy, may differ significantly in their properties and provides insights for design of future gene therapy interventions in acid beta-galactosidase deficiency.

  3. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma

    International Nuclear Information System (INIS)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph.; Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R.

    2010-01-01

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  4. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme

    DEFF Research Database (Denmark)

    Parving, H H; Jacobsen, P; Tarnow, L

    1996-01-01

    OBJECTIVE: To evaluate the concept that an insertion/deletion polymorphism of the angiotensin converting enzyme gene predicts the therapeutic efficacy of inhibition of angiotensin converting enzyme on progression of diabetic nephropathy. DESIGN: Observational follow up study of patients with insu...

  5. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  6. The In-Situ One-Step Synthesis of a PDC Macromolecular Pro-Drug and the Fabrication of a Novel Core-Shell Micell.

    Science.gov (United States)

    Yu, Cui-Yun; Yang, Sa; Li, Zhi-Ping; Huang, Can; Ning, Qian; Huang, Wen; Yang, Wen-Tong; He, Dongxiu; Sun, Lichun

    2016-01-01

    The development of slow release nano-sized carriers for efficient antineoplastic drug delivery with a biocompatible and biodegradable pectin-based macromolecular pro-drug for tumor therapy has been reported in this study. Pectin-doxorubicin conjugates (PDC), a macromolecular pro-drug, were prepared via an amide condensation reaction, and a novel amphiphilic core-shell micell based on a PDC macromolecular pro-drug (PDC-M) was self-assembled in situ, with pectin as the hydrophilic shell and doxorubicin (DOX) as the hydrophobic core. Then the chemical structure of the PDC macromolecular pro-drug was identified by both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ((1)H-NMR), and proved that doxorubicin combined well with the pectin and formed macromolecular pro-drug. The PDC-M were observed to have an unregularly spherical shape and were uniform in size by scanning electron microscopy (SEM). The average particle size of PDC-M, further measured by a Zetasizer nanoparticle analyzer (Nano ZS, Malvern Instruments), was about 140 nm. The encapsulation efficiency and drug loading were 57.82% ± 3.7% (n = 3) and 23.852% ±2.3% (n = 3), respectively. The in vitro drug release behaviors of the resulting PDC-M were studied in a simulated tumor environment (pH 5.0), blood (pH 7.4) and a lysosome media (pH 6.8), and showed a prolonged slow release profile. Assays for antiproliferative effects and flow cytometry of the resulting PDC-M in HepG2 cell lines demonstrated greater properties of delayed and slow release as compared to free DOX. A cell viability study against endothelial cells further revealed that the resulting PDC-M possesses excellent cell compatibilities and low cytotoxicities in comparison with that of the free DOX. Hemolysis activity was investigated in rabbits, and the results also demonstrated that the PDC-M has greater compatibility in comparison with free DOX. This shows that the resulting PDC-M can ameliorate the

  7. Positron Emission Tomography Imaging Demonstrates Correlation between Behavioral Recovery and Correction of Dopamine Neurotransmission after Gene Therapy

    International Nuclear Information System (INIS)

    Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Leriche, L.; Besret, L.; Gregoire, M.C.; Deglon, N.; Hantraye, Ph.; Bjorklund, T.; Breysse, N.; Carlsson, T.; Kirik, D.; Dolle, F.; Mandel, R.J.; Kirik, D.

    2009-01-01

    In vivo gene transfer using viral vectors is an emerging therapy for neuro-degenerative diseases with a clinical impact recently demonstrated in Parkinson's disease patients. Recombinant adeno-associated viral (rAAV) vectors, in particular, provide an excellent tool for long-term expression of therapeutic genes in the brain. Here we used the [ 11 C]raclopride [(S)-(-)-3, 5-dichloro-N-((1-ethyl-2-pyrrolidinyl)methyl)-2-hydroxy- 6-methoxybenzamide] micro-positron emission tomography (PET) technique to demonstrate that delivery of the tyrosine hydroxylase (TH) and GTP-cyclohydrolase 1 (GCH1) enzymes using an rAAV5 vector normalizes the increased [ 11 C]raclopride binding in hemi-parkinsonian rats. Importantly, we show in vivo by micro-PET imaging and postmortem by classical binding assays performed in the very same animals that the changes in [ 11 C]raclopride after viral vector-based enzyme replacement therapy is attributable to a decrease in the affinity of the tracer binding to the D2 receptors, providing evidence for reconstitution of a functional pool of endogenous dopamine in the striatum. Moreover, the extent of the normalization in this non-invasive imaging measure was highly correlated with the functional recovery in motor behavior. The PET imaging protocol used in this study is fully adaptable to humans and thus can serve as an in vivo imaging technique to follow TH+GCH1 gene therapy in PD patients and provide an additional objective measure to a potential clinical trial using rAAV vectors to deliver L-3, 4-dihydroxyphenylalanine in the brain. (authors)

  8. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  9. Insulin gene therapy for type 1 diabetes mellitus.

    Science.gov (United States)

    Handorf, Andrew M; Sollinger, Hans W; Alam, Tausif

    2015-04-01

    Type 1 diabetes mellitus is an autoimmune disease resulting from the destruction of pancreatic β cells. Current treatments for patients with type 1 diabetes mellitus include daily insulin injections or whole pancreas transplant, each of which are associated with profound drawbacks. Insulin gene therapy, which has shown great efficacy in correcting hyperglycemia in animal models, holds great promise as an alternative strategy to treat type 1 diabetes mellitus in humans. Insulin gene therapy refers to the targeted expression of insulin in non-β cells, with hepatocytes emerging as the primary therapeutic target. In this review, we present an overview of the current state of insulin gene therapy to treat type 1 diabetes mellitus, including the need for an alternative therapy, important features dictating the success of the therapy, and current obstacles preventing the translation of this treatment option to a clinical setting. In so doing, we hope to shed light on insulin gene therapy as a viable option to treat type 1 diabetes mellitus.

  10. Nerve Growth Factor Gene Therapy: Activation of Neuronal Responses in Alzheimer Disease.

    Science.gov (United States)

    Tuszynski, Mark H; Yang, Jennifer H; Barba, David; U, Hoi-Sang; Bakay, Roy A E; Pay, Mary M; Masliah, Eliezer; Conner, James M; Kobalka, Peter; Roy, Subhojit; Nagahara, Alan H

    2015-10-01

    Alzheimer disease (AD) is the most common neurodegenerative disorder and lacks effective disease-modifying therapies. In 2001, we initiated a clinical trial of nerve growth factor (NGF) gene therapy in AD, the first effort at gene delivery in an adult neurodegenerative disorder. This program aimed to determine whether a nervous system growth factor prevents or reduces cholinergic neuronal degeneration in patients with AD. We present postmortem findings in 10 patients with survival times ranging from 1 to 10 years after treatment. To determine whether degenerating neurons in AD retain an ability to respond to a nervous system growth factor delivered after disease onset. Patients in this anatomicopathological study were enrolled in clinical trials from March 2001 to October 2012 at the University of California, San Diego, Medical Center in La Jolla. Ten patients with early AD underwent NGF gene therapy using ex vivo or in vivo gene transfer. The brains of all 8 patients in the first phase 1 ex vivo trial and of 2 patients in a subsequent phase 1 in vivo trial were examined. Brains were immunolabeled to evaluate in vivo gene expression, cholinergic neuronal responses to NGF, and activation of NGF-related cell signaling. In 2 patients, NGF protein levels were measured by enzyme-linked immunosorbent assay. Among 10 patients, degenerating neurons in the AD brain responded to NGF. All patients exhibited a trophic response to NGF in the form of axonal sprouting toward the NGF source. Comparing treated and nontreated sides of the brain in 3 patients who underwent unilateral gene transfer, cholinergic neuronal hypertrophy occurred on the NGF-treated side (P < .05). Activation of cellular signaling and functional markers was present in 2 patients who underwent adeno-associated viral vectors (serotype 2)-mediated NGF gene transfer. Neurons exhibiting tau pathology and neurons free of tau expressed NGF, indicating that degenerating cells can be infected with therapeutic

  11. Acetal-Linked Paclitaxel Polymeric Prodrug Based on Functionalized mPEG-PCL Diblock Polymer for pH-Triggered Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yinglei Zhai

    2017-12-01

    Full Text Available The differences in micro-environment between cancer cells and the normal ones offer the possibility to develop stimuli-responsive drug-delivery systems for overcoming the drawbacks in the clinical use of anticancer drugs, such as paclitaxel, doxorubicin, and etc. Hence, we developed a novel endosomal pH-sensitive paclitaxel (PTX prodrug micelles based on functionalized poly(ethylene glycol-poly(ε-caprolactone (mPEG-PCL diblock polymer with an acid-cleavable acetal (Ace linkage (mPEG-PCL-Ace-PTX. The mPEG-PCL-Ace-PTX5 with a high drug content of 23.5 wt % was self-assembled in phosphate buffer (pH 7.4, 10 mM into nanosized micelles with an average diameter of 68.5 nm. The in vitro release studies demonstrated that mPEG-PCL-Ace-PTX5 micelles was highly pH-sensitive, in which 16.8%, 32.8%, and 48.2% of parent free PTX was released from mPEG-PCL-Ace-PTX5 micelles in 48 h at pH 7.4, 6.0, and 5.0, respectively. Thiazolyl Blue Tetrazolium Bromide (MTT assays suggested that the pH-sensitive PTX prodrug micelles displayed higher therapeutic efficacy against MCF-7 cells compared with free PTX. Therefore, the PTX prodrug micelles with acetal bond may offer a promising strategy for cancer therapy.

  12. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. Targeting of captopril to the kidney reduces renal angiotensin-converting enzyme activity without affecting systemic blood pressure

    NARCIS (Netherlands)

    Kok, RJ; Haverdings, Rene; Grijpstra, F; Koiter, J.; Moolenaar, F; De Zeeuw, D; Meijer, DKF

    We have synthesized a prodrug of the angiotensin-converting enzyme (ACE) inhibitor captopril by coupling this drug covalently to the low molecular weight protein (LMWP) lysozyme. Such drug-LMWP conjugates can be used for renal drug delivery, since LMWPs accumulate specifically in the proximal

  14. Sjogren Syndrome-Gene Therapy and its Prospective

    Directory of Open Access Journals (Sweden)

    R Rahpeyma

    2003-02-01

    Full Text Available Sjogren syndrome is one of the autoimmune diseases which is characterized by lymphocytic infiltration to exocrine glands and causes keratoconjunctivitis sicca and xerostomia. Today, a large population, with a majority of women over 40, suffer from this disease and have several complications regarding oral health and reduced life quality such as severe dental caries, painful eyes, olfactory and gustatory deficiency, speech, mastication and swallowing discomforts. Unfortunately, these patients do not respond to the conventional therapies. Nowadays in medical world, which its target is basic therapy and not symptomatic one, several gene therapy approaches, have gained importance in treatment of this apparently incurable diseases. Due to the facts that this disease is the second prevelant autoimmune disease, after rheumatoid arthritis, and the conventional therapies of the disease are all relative and symptomatic, researchers have insisted on the basic and causative therapy through gene transfer more than before. In the Present article, through reviewing 58 references containing recent scientific and investigatory findings it has been tried, to consider the pathogenesis and conventional therapies of this syndrome. Another purpose of this study was to investigate several and potentially very effective gene transfer systems and different theraputic genes (mainly membrane water channels, ione transporter molecules, transcription factors, antifungal proteins and free radical scavengers.

  15. Integrating Gene Correction in the Reprogramming and Transdifferentiation Processes: A One-Step Strategy to Overcome Stem Cell-Based Gene Therapy Limitations

    Directory of Open Access Journals (Sweden)

    Seo-Young Lee

    2016-01-01

    Full Text Available The recent advent of induced pluripotent stem cells (iPSCs and gene therapy tools has raised the possibility of autologous cell therapy for rare genetic diseases. However, cellular reprogramming is inefficient in certain diseases such as ataxia telangiectasia, Fanconi anemia, LIG4 syndrome, and fibrodysplasia ossificans progressiva syndrome, owing to interference of the disease-related genes. To overcome these therapeutic limitations, it is necessary to fundamentally correct the abnormal gene during or prior to the reprogramming process. In addition, as genetic etiology of Parkinson’s disease, it has been well known that induced neural stem cells (iNSCs were progressively depleted by LRRK2 gene mutation, LRRK2 (G2019S. Thus, to maintain the induced NSCs directly derived from PD patient cells harboring LRRK2 (G2019S, it would be ideal to simultaneously treat the LRRK2 (G2019S fibroblast during the process of TD. Therefore, simultaneous reprogramming (or TD and gene therapy would provide the solution for therapeutic limitation caused by vulnerability of reprogramming or TD, in addition to being suitable for general application to the generation of autologous cell-therapy products for patients with genetic defects, thereby obviating the need for the arduous processes currently required.

  16. A Comprehensive Review of Retinal Gene Therapy

    OpenAIRE

    Boye, Shannon E; Boye, Sanford L; Lewin, Alfred S; Hauswirth, William W

    2013-01-01

    Blindness, although not life threatening, is a debilitating disorder for which few, if any treatments exist. Ocular gene therapies have the potential to profoundly improve the quality of life in patients with inherited retinal disease. As such, tremendous focus has been given to develop such therapies. Several factors make the eye an ideal organ for gene-replacement therapy including its accessibility, immune privilege, small size, compartmentalization, and the existence of a contralateral co...

  17. Synthesis and evaluation of mutual azo prodrug of 5-aminosalicylic acid linked to 2-phenylbenzoxazole-2-yl-5-acetic acid in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Jilani JA

    2013-07-01

    Full Text Available Jamal A Jilani,1 Maha Shomaf,2 Karem H Alzoubi3 1Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan; 2Department of Pathology, Jordan University, Amman, Jordan; 3Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan Abstract: In this study, the syntheses of 4-aminophenylbenzoxazol-2-yl-5-acetic acid, (an analogue of a known nonsteroidal anti-inflammatory drug [NSAID] and 5-[4-(benzoxazol-2-yl-5-acetic acidphenylazo]-2-hydroxybenzoic acid (a novel mutual azo prodrug of 5-aminosalicylic acid [5-ASA] are reported. The structures of the synthesized compounds were confirmed using infrared (IR, hydrogen-1 nuclear magnetic resonance (1H NMR, and mass spectrometry (MS spectroscopy. Incubation of the azo compound with rat cecal contents demonstrated the susceptibility of the prepared azo prodrug to bacterial azoreductase enzyme. The azo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were evaluated for inflammatory bowel diseases, in trinitrobenzenesulfonic acid (TNB-induced colitis in rats. The synthesized diazo compound and the 4-aminophenylbenzoxazol-2-yl-5-acetic acid were found to be as effective as 5-aminosalicylic acid for ulcerative colitis. The results of this work suggest that the 4-aminophenylbenzoxazol-2-yl-5-acetic acid may represent a new lead for treatment of ulcerative colitis. Keywords: benzoxazole acetic acid, azo prodrug, colon drug delivery

  18. On the scientific and ethical issues of fetal somatic gene therapy.

    Science.gov (United States)

    Coutelle, C; Rodeck, C

    2002-06-01

    Fetal somatic gene therapy is often seen as an ethically particularly controversial field of gene therapy. This review outlines the hypothesis and scientific background of in utero gene therapy and addresses some of the frequently raised questions and concerns in relation to this still experimental, potentially preventive gene therapy approach. We discuss here the choice of vectors, of animal models and routes of administration to the fetus. We address the relation of fetal gene therapy to abortion, to post-implantation selection and postnatal gene therapy and the concerns of inadvertent germ-line modification. Our views on the specific risks of prenatal gene therapy and on the particular prerequisites that have to be met before human application can be considered are presented.

  19. Prodrug Strategies for Paclitaxel

    Directory of Open Access Journals (Sweden)

    Ziyuan Meng

    2016-05-01

    Full Text Available Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.

  20. Slow self-activation enhances the potency of viridin prodrugs.

    Science.gov (United States)

    Blois, Joseph; Yuan, Hushan; Smith, Adam; Pacold, Michael E; Weissleder, Ralph; Cantley, Lewis C; Josephson, Lee

    2008-08-14

    When the viridin wortmannin (Wm) is modified by reaction with certain nucleophiles at the C20 position, the compounds obtained exhibit an improved antiproliferative activity even though a covalent reaction between C20 and a lysine in the active site of PI3 kinase is essential to Wm's ability to inhibit this enzyme. Here we show that this improved potency results from an intramolecular attack by the C6 hydroxyl group that slowly converts these inactive prodrugs to the active species Wm over the 48 h duration of the antiproliferative assay. Our results provide a guide for selecting Wm-like compounds to maximize kinase inhibition with the variety of protocols used to assess the role of PI3 kinase in biological systems, or for achieving optimal therapeutic effects in vivo . In addition, the slow self-activation of WmC20 derivatives provides a mechanism that can be exploited to obtain kinase inhibitors endowed with physical and pharmacokinetic properties far different from man-made kinase inhibitors because they do not bind to kinase active sites.

  1. A prodrug approach involving in situ depot formation to achieve localized and sustained action of diclofenac after joint injection.

    Science.gov (United States)

    Thing, Mette; Ågårdh, Li; Larsen, Susan; Rasmussen, Rune; Pallesen, Jakob; Mertz, Nina; Kristensen, Jesper; Hansen, Martin; Østergaard, Jesper; Larsen, Claus Selch

    2014-12-01

    Long-acting nonsteroidal anti-inflammatory drug formulations for intra-articular injection might be effective in the management of joint pain and inflammation associated sports injuries and osteoarthritis. In this study, a prodrug-based delivery system was evaluated. The synthesized diclofenac ester prodrug, a weak base (pKa 7.52), has relatively high solubility at low pH (6.5 mg mL(-1) at pH 4) and much lower solubility at physiological pH (4.5 μg mL(-1) at pH 7.4) at 37°C. In biological media including 80% (v/v) human synovial fluid (SF), the prodrug was cleaved to diclofenac mediated by esterases. In situ precipitation of the prodrug was observed upon addition of a concentrated slightly acidic prodrug solution to phosphate buffer or SF at pH 7.4. The degree of supersaturation accompanying the precipitation process was more pronounced in SF than in phosphate buffer. In the rotating dialysis cell model, a slightly acidic prodrug solution was added to the donor cell containing 80% SF resulting in a continuous appearance of diclofenac in the acceptor phase for more than 43 h after an initial lag period of 8 h. Detectable amounts of prodrug were found in the rat joint up to 8 days after knee injection of the acidic prodrug solution. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts

    NARCIS (Netherlands)

    Houba, PHJ; Boven, E; Erkelens, CAM; Leenders, RGG; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1998-01-01

    The prodrug N-[4-(daunorubicin-N-carbonyl-oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) was synthesized for specific activation by human beta-glucuronidase, released in necrotic areas of tumour lesions. In vitro, DNR-GA3 was 18 times less toxic than daunorubicin (DNR) and the prodrug was

  3. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.

    Science.gov (United States)

    Benito, Juliana; Ramirez, Marc S; Millward, Niki Zacharias; Velez, Juliana; Harutyunyan, Karine G; Lu, Hongbo; Shi, Yue-Xi; Matre, Polina; Jacamo, Rodrigo; Ma, Helen; Konoplev, Sergej; McQueen, Teresa; Volgin, Andrei; Protopopova, Marina; Mu, Hong; Lee, Jaehyuk; Bhattacharya, Pratip K; Marszalek, Joseph R; Davis, R Eric; Bankson, James A; Cortes, Jorge E; Hart, Charles P; Andreeff, Michael; Konopleva, Marina

    2016-04-01

    To characterize the prevalence of hypoxia in the leukemic bone marrow, its association with metabolic and transcriptional changes in the leukemic blasts and the utility of hypoxia-activated prodrug TH-302 in leukemia models. Hyperpolarized magnetic resonance spectroscopy was utilized to interrogate the pyruvate metabolism of the bone marrow in the murine acute myeloid leukemia (AML) model. Nanostring technology was used to evaluate a gene set defining a hypoxia signature in leukemic blasts and normal donors. The efficacy of the hypoxia-activated prodrug TH-302 was examined in the in vitro and in vivo leukemia models. Metabolic imaging has demonstrated increased glycolysis in the femur of leukemic mice compared with healthy control mice, suggesting metabolic reprogramming of hypoxic bone marrow niches. Primary leukemic blasts in samples from AML patients overexpressed genes defining a "hypoxia index" compared with samples from normal donors. TH-302 depleted hypoxic cells, prolonged survival of xenograft leukemia models, and reduced the leukemia stem cell pool in vivo In the aggressive FLT3/ITD MOLM-13 model, combination of TH-302 with tyrosine kinase inhibitor sorafenib had greater antileukemia effects than either drug alone. Importantly, residual leukemic bone marrow cells in a syngeneic AML model remain hypoxic after chemotherapy. In turn, administration of TH-302 following chemotherapy treatment to mice with residual disease prolonged survival, suggesting that this approach may be suitable for eliminating chemotherapy-resistant leukemia cells. These findings implicate a pathogenic role of hypoxia in leukemia maintenance and chemoresistance and demonstrate the feasibility of targeting hypoxic cells by hypoxia cytotoxins. ©2015 American Association for Cancer Research.

  4. Angiotensin-I converting enzyme gene and I/D polymorphism ...

    Indian Academy of Sciences (India)

    Angiotensin-I converting enzyme gene and I/D polymorphism distribution in the Greek population and a comparison with other European populations. Sekerli Eleni Katsanidis Dimitrios Papadopoulou Vaya Makedou Areti Vavatsi Norma Gatzola Magdalini. Research Note Volume 87 Issue 1 April 2008 pp 91-93 ...

  5. Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    2007-05-01

    Full Text Available A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

  6. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo, E-mail: libochen888@hotmail.com [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Guo Guoying [Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Liu Tianjing; Guo Lihe [Division of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2011-07-15

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated {sup 125}I{sup -} up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T{sub 1/2eff} of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or {sup 131}I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%{+-}2.5%, 43.4%{+-}2.8% and 8.6%{+-}1.2% after exposure to {sup 131}I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  7. Radiochemotherapy of hepatocarcinoma via lentivirus-mediated transfer of human sodium iodide symporter gene and herpes simplex virus thymidine kinase gene

    International Nuclear Information System (INIS)

    Chen Libo; Guo Guoying; Liu Tianjing; Guo Lihe; Zhu Ruisen

    2011-01-01

    Herpes simplex virus thymidine kinase (HSV-TK) gene/ganciclovir (GCV) system has been widely used as a traditional gene therapy modality, and the sodium/iodide symporter gene (NIS) has been found to be a novel therapeutic gene. Since the therapeutic effects of radioiodine therapy or prodrug chemotherapy on cancers following NIS or HSV-TK gene transfer need to be enhanced, this study was designed to investigate the feasibility of radiochemotherapy for hepatocarcinoma via coexpression of NIS gene and HSV-TK gene. Methods: HepG2 cells were stably transfected with NIS, TK and GFP gene via recombinant lentiviral vector and named HepG2/NTG. Gene expression was examined by reverse transcriptase polymerase chain reaction, fluorescence imaging and iodide uptake. The therapeutic effects were assessed by MTT assay and clonogenic assay. Results: HepG2/NTG cells concentrated 125 I - up to 76-fold higher than the wild-type cells within 20 min, and the efflux happened with a T 1/2eff of less than 10 min. The iodide uptake in HepG2/NTG cells was specifically inhibited by sodium perchlorate. Dose-dependent toxicity to HepG2/NTG cells by either GCV or 131 I was revealed by clonogenic assay and MTT assay, respectively. The survival rate of HepG2/NTG cells decreased to 49.7%±2.5%, 43.4%±2.8% and 8.6%±1.2% after exposure to 131 I, GCV and combined therapy, respectively. Conclusion: We demonstrate that radiochemotherapy of hepatocarcinoma via lentiviral-mediated coexpression of NIS gene and HSV-TK gene leads to stronger killing effect than single treatment, and in vivo studies are needed to verify these findings.

  8. Modulation of porcine biotransformation enzymes by anthelmintic therapy with fenbendazole and flubendazole.

    Science.gov (United States)

    Savlík, M; Fimanová, K; Szotáková, B; Lamka, J; Skálová, L

    2006-06-01

    Fenbendazole (FEN) and flubendazole (FLU) are benzimidazole anthelmintics often used in pig management for the control of nematodoses. The in vivo study presented here was designed to test the influence of FLU and FEN on cytochrome P4501A and other cytochrome P450 (CYP) isoforms, UDP-glucuronosyl transferase and several carbonyl reducing enzymes. The results indicated that FEN (in a single therapeutic dose as well as in repeated therapeutic doses) caused significant induction of pig CYP1A, while FLU did not show an inductive effect towards this isoform. Some of the other hepatic and intestinal biotransformation enzymes that were assayed were moderately influenced by FEN or FLU. Strong CYP1A induction following FEN therapy in pigs may negatively affect the efficacy and pharmacokinetics of FEN itself or other simultaneously or consecutively administered drugs. From the perspective of biotransformation enzyme modulation, FLU would appear to be a more convenient anthelmintic therapy of pigs than FEN.

  9. Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.

    Science.gov (United States)

    Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit

    2016-12-01

    Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.

  10. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  11. Nano-sized calcium phosphate particles for periodontal gene therapy.

    Science.gov (United States)

    Elangovan, Satheesh; Jain, Shardool; Tsai, Pei-Chin; Margolis, Henry C; Amiji, Mansoor

    2013-01-01

    Growth factors such as platelet-derived growth factor (PDGF) have significantly enhanced periodontal therapy outcomes with a high degree of variability, mostly due to the lack of continual supply for a required period of time. One method to overcome this barrier is gene therapy. The aim of this in vitro study is to evaluate PDGF-B gene delivery in fibroblasts using nano-sized calcium phosphate particles (NCaPP) as vectors. NCaPP incorporating green fluorescent protein (NCaPP-GFP) and PDGF-B (NCaPP-PDGF-B) plasmids were synthesized using an established precipitation system and characterized using transmission electron microscopy and 1.2% agarose gel electrophoresis. Biocompatibility and transfection of the nanoplexes in fibroblasts were evaluated using cytotoxicity assay and florescence microscopy, respectively. Polymerase chain reaction and enzyme-linked immunosorbent assay were performed to evaluate PDGF-B transfection after different time points of treatments, and the functionality of PDGF-B transfection was evaluated using the cell proliferation assay. Synthesized NCaPP nanoplexes incorporating the genes of GFP and PDGF-B were spherical in shape and measured about 30 to 50 nm in diameter. Gel electrophoresis confirmed DNA incorporation and stability within the nanoplexes, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium reagent assay demonstrated their biocompatibility in fibroblasts. In vitro transfection studies revealed a higher and longer lasting transfection after NCaPP-PDGF-B treatment, which lasted up to 96 hours. Significantly enhanced fibroblast proliferation observed in NCaPP-PDGF-B-treated cells confirmed the functionality of these nanoplexes. NCaPP demonstrated higher levels of biocompatibility and efficiently transfected PDGF plasmids into fibroblasts under described in vitro conditions.

  12. hTERT promoter mediating gene therapy in laryngeal squamous carcinomas cells in vitro

    International Nuclear Information System (INIS)

    Liao Zhengkai; Zhou Yunfeng; Zhou Fuxiang; Luo Zhiguo; Xiong Jie; Bao Jie; Xie Conghua; Liu Shiquan

    2007-01-01

    Objective: To investigate the relationship among hTERT promoter activity, hTERT mRNA expression, and telomerase activity (TA) in laryngeal squamous carcinomas cell lines, and to evaluate the usefulness of hTERT promoter mediated gene therapy. Methods: After plasmids pGL3-hTERTp were transfected, hTEBT promoter activity, hTERT mRNA expression and TA were determined by luciferase assay, RT-PCR and TRAP-PCR-ELISA, respectively. Plasmid phTERTp-HRP was constructed and transfected, HRP expression was determined by RT-PCR and competent peroxidase activity was confirmed by enzyme activity assay. The cytotoxicity and radiosensitivity of phTERTp-HRP/IAA were determined by clonogenic assay. Results: The relative levels of hTERT promoter activity, hTERT mRNA expression and TA in Hep2R cells were 1.37-fold, 1.43-fold and 1.81-fold compared with Hep2R cells, hTERT promoter activity was closely associated with hTERT mRNA expression and TA levels (P SF 2 ) was 1.24 (Hep2R cells) and 1.20 (Hep 2cells), the parameter a of with or without IAA incubation were 0.090, 0.020 (Hep2R)and 0.099, 0.042 (Hep2). Conclusions: hTERT promoter is applicable in mediating gene therapy in different radiosensitive laryngeal squamous carcinomas cells. hTERTp-HRP/IAA gene therapy may be a promising supplementary method for radiotherapy of laryngeal squamous-cell carcinomas. (authors)

  13. Germ-line gene therapy and the medical imperative.

    Science.gov (United States)

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  14. Design of radiopharmaceuticals for monitoring gene transfer therapy

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Staehler, P.; Kley, J.; Spiegel, M.; Gross, C.; Graepler, F.T.C.; Gregor, M.; Lauer, U.; Oberdorfer, F.

    1998-01-01

    The development of radiopharmaceuticals for monitoring gene transfer therapy with emission tomography is expected to lead to improved management of cancer by the year 2010. There are now only a few examples and approaches to the design of radiopharmaceuticals for gene transfer therapy. This paper introduces a novel concept for the monitoring of gene therapy. We present the optimisation of the labelling of recombinant human β-NGF ligands for in vitro studies prior to using 123 I for SPET and 124 I for PET studies. (author)

  15. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes.

    Science.gov (United States)

    Rouanet, Marie; Lebrin, Marine; Gross, Fabian; Bournet, Barbara; Cordelier, Pierre; Buscail, Louis

    2017-06-08

    A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.

  16. Gene Therapy and its applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Sharma Lakhanpal Manisha

    2006-01-01

    Full Text Available This era of advanced technology is marked by progress in identifying and understanding the molecular and cellular cause of a disease. With the conventional methods of treatment failing to render satisfactory results, gene therapy is not only being used for the cure of inherited diseases but also the acquired ones. The broad spectrum of gene therapy includes its application in the treatment of oral cancer and precancerous conditions and lesions, treatment of salivary gland diseases, bone repair, autoimmune diseases, DNA vaccination, etc. The aim of this article is to throw light on the history, methodology, applications and future of gene therapy as it would change the nature and face of dentistry in the coming years.

  17. The gene therapy revolution in ophthalmology.

    Science.gov (United States)

    Al-Saikhan, Fahad I

    2013-04-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber's Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red-green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable.

  18. A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis.

    Science.gov (United States)

    Bi, Lianxiang; Wacker, Bradley K; Bueren, Emma; Ham, Ervin; Dronadula, Nagadhara; Dichek, David A

    2017-12-15

    Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate-yet significant-pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.

  19. CRISPR-Cas9 for in vivo Gene Therapy: Promise and Hurdles

    Directory of Open Access Journals (Sweden)

    Wei-Jing Dai

    2016-01-01

    Full Text Available Owing to its easy-to-use and multiplexing nature, the genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats (CRISPR associated nuclease 9 is revolutionizing many areas of medical research and one of the most amazing areas is its gene therapy potentials. Previous explorations into the therapeutic potentials of CRISPR-Cas9 were mainly conducted in vitro or in animal germlines, the translatability of which, however, is either limited (to tissues with adult stem cells amenable to culture and manipulation or currently impermissible (due to ethic concerns. Recently, important progresses have been made on this regard. Several studies have demonstrated the ability of CRISPR-Cas9 for in vivo gene therapy in adult rodent models of human genetic diseases delivered by methods that are potentially translatable to human use. Although these recent advances represent a significant step forward to the eventual application of CRISPR-Cas9 to the clinic, there are still many hurdles to overcome, such as the off-target effects of CRISPR-Cas9, efficacy of homology-directed repair, fitness of edited cells, immunogenicity of therapeutic CRISPR-Cas9 components, as well as efficiency, specificity, and translatability of in vivo delivery methods. In this article, we introduce the mechanisms and merits of CRISPR-Cas9 in genome editing, briefly retrospect the applications of CRISPR-Cas9 in gene therapy explorations and highlight recent advances, later we discuss in detail the challenges lying ahead in the way of its translatability, propose possible solutions, and future research directions.

  20. A Smart Europium-Ruthenium Complex as Anticancer Prodrug: Controllable Drug Release and Real-Time Monitoring under Different Light Excitations.

    Science.gov (United States)

    Li, Hongguang; Xie, Chen; Lan, Rongfeng; Zha, Shuai; Chan, Chi-Fai; Wong, Wing-Yan; Ho, Ka-Lok; Chan, Brandon Dow; Luo, Yuxia; Zhang, Jing-Xiang; Law, Ga-Lai; Tai, William C S; Bünzli, Jean-Claude G; Wong, Ka-Leung

    2017-11-09

    A unique, dual-function, photoactivatable anticancer prodrug, RuEuL, has been tailored that features a ruthenium(II) complex linked to a cyclen-europium chelate via a π-conjugated bridge. Under irradiation at 488 nm, the dark-inactive prodrug undergoes photodissociation, releasing the DNA-damaging ruthenium species. Under evaluation-window irradiation (λ irr = one-photon 350 nm or two-photon 700 nm), the drug delivery process can be quantitatively monitored in real-time because of the long-lived red europium emission. Linear relationships between released drug concentration and ESI-MS or luminescence responses are established. Finally, the efficiency of the new prodrug is demonstrated both in vitro RuEuL anticancer prodrug over some existing ones and open the way for decisive improvements in multipurpose prodrugs.

  1. Nanostructured nanoparticles of self-assembled lipid pro-drugs as a route to improved chemotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Gong, Xiaojuan; Moghaddam, Minoo J.; Conn, Charlotte E.; Kimpton, Kathleen; Waddington, Lynne J.; Krodkiewska, Irena; Drummond, Calum J. (CSIRO/MSE); (CSIRO/LW)

    2014-09-24

    We demonstrate that oral delivery of self-assembled nanostructured nanoparticles consisting of 5-fluorouracil (5-FU) lipid prodrugs results in a highly effective, target-activated, chemotherapeutic agent, and offers significantly enhanced efficacy over a commercially available alternative that does not self-assemble. The lipid prodrug nanoparticles have been found to significantly slow the growth of a highly aggressive mouse 4T1 breast tumour, and essentially halt the growth of a human MDA-MB-231 breast tumour in mouse xenografts. Systemic toxicity is avoided as prodrug activation requires a three-step, enzymatic conversion to 5-FU, with the third step occurring preferentially at the tumour site. Additionally, differences in the lipid prodrug chemical structure and internal nanostructure of the nanoparticle dictate the enzymatic conversion rate and can be used to control sustained release profiles. Thus, we have developed novel oral nanomedicines that combine sustained release properties with target-selective activation.

  2. Tailoring acyclovir prodrugs with enhanced antiviral activity: rational design, synthesis, human plasma stability and in vitro evaluation.

    Science.gov (United States)

    Chayrov, Radoslav L; Stylos, Evgenios K; Chatziathanasiadou, Maria V; Chuchkov, Kiril N; Tencheva, Aleksandra I; Kostagianni, Androniki D; Milkova, Tsenka S; Angelova, Assia L; Galabov, Angel S; Shishkov, Stoyan A; Todorov, Daniel G; Tzakos, Andreas G; Stankova, Ivanka G

    2018-05-19

    Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.

  3. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  4. Nonviral Delivery Systems For Cancer Gene Therapy: Strategies And Challenges.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Kwon, Taekhyun; Oh, Yu-Kyoung

    2018-01-19

    Gene therapy has been receiving widespread attention due to its unique advantage in regulating the expression of specific target genes. In the field of cancer gene therapy, modulation of gene expression has been shown to decrease oncogenic factors in cancer cells or increase immune responses against cancer. Due to the macromolecular size and highly negative physicochemical features of plasmid DNA, efficient delivery systems are an essential ingredient for successful gene therapy. To date, a variety of nanostructures and materials have been studied as nonviral gene delivery systems. In this review, we will cover nonviral delivery strategies for cancer gene therapy, with a focus on target cancer genes and delivery materials. Moreover, we will address current challenges and perspectives for nonviral delivery-based cancer gene therapeutics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease.

    Science.gov (United States)

    Martino, S; Marconi, P; Tancini, B; Dolcetta, D; De Angelis, M G Cusella; Montanucci, P; Bregola, G; Sandhoff, K; Bordignon, C; Emiliani, C; Manservigi, R; Orlacchio, A

    2005-08-01

    Therapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment. In our studies, no adverse effects were observed due to the viral vector, injection site or gene expression and on the basis of these results, we feel confident that the same approach could be applied to similar diseases involving an enzyme defect.

  6. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  7. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  8. Successful switch from enzyme replacement therapy to miglustat in an adult patient with type 1 Gaucher disease: a case report.

    Science.gov (United States)

    Giuffrida, Gaetano; Lombardo, Rita; Di Francesco, Ernesto; Parrinello, Laura; Di Raimondo, Francesco; Fiumara, Agata

    2016-11-08

    Gaucher disease is one of the most common lipid-storage disorders, affecting approximately 1 in 75,000 births. Enzyme replacement therapy with recombinant glucocerebrosidase is currently considered the first-line treatment choice for patients with symptomatic Gaucher disease type 1. Oral substrate reduction therapy is generally considered a second-line treatment option for adult patients with mild to moderate Gaucher disease type 1 who are unable or unwilling to receive lifelong intravenous enzyme infusions. The efficacy and safety of the oral substrate reduction therapy miglustat (Zavesca®) in patients with Gaucher disease type 1 have been established in both short-term clinical trials and long-term, open-label extension studies. Published data indicate that miglustat can be used as maintenance therapy in patients with stable Gaucher disease type 1 switched from previous enzyme replacement therapy. We report a case of a 44-year-old Caucasian man with Gaucher disease type 1 who was initially treated with enzyme replacement therapy but, owing to repeated cutaneous allergic reactions, had to be switched to miglustat after several attempts with enzyme replacement therapy. Despite many attempts, desensitization treatment did not result in improved toleration of imiglucerase infusions, and the patient became unwilling to continue with any intravenous enzyme replacement therapy. He subsequently agreed to switch to oral substrate reduction therapy with miglustat 100 mg twice daily titrated up to 100 mg three times daily over a short period. Long-term miglustat treatment maintained both hemoglobin and platelet levels within acceptable ranges over 8 years. The patient's spleen volume decreased, his plasma chitotriosidase levels stayed at reduced levels, and his bone mineral density findings have remained stable throughout follow-up. The patient's quality of life has remained satisfactory. Miglustat showed good gastrointestinal tolerability in this patient, and no

  9. Cystic Fibrosis Gene Therapy in the UK and Elsewhere

    Science.gov (United States)

    Pytel, Kamila M.; Alton, Eric W.F.W.

    2015-01-01

    Abstract The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here. PMID:25838137

  10. Prevailing public perceptions of the ethics of gene therapy.

    Science.gov (United States)

    Robillard, Julie M; Roskams-Edris, Dylan; Kuzeljevic, Boris; Illes, Judy

    2014-08-01

    Gene therapy research is advancing rapidly, and hopes of treating a large number of brain disorders exist alongside ethical concerns. Most surveys of public attitudes toward these ethical issues are already dated and the content of these surveys has been researcher-driven. To examine current public perceptions, we developed an online instrument that is responsive and relevant to the latest research about ethics, gene therapy, and the brain. The 16-question survey was launched with the platform Amazon Mechanical Turk and was made available to residents of Canada and the United States. The survey was divided into six themes: (1) demographic information, (2) general opinions about gene therapy, (3) medical applications of gene therapy, (4) identity and moral/belief systems, (5) enhancement, and (6) risks. We received and analyzed responses from a total of 467 participants. Our results show that a majority of respondents (>90%) accept gene therapy as a treatment for severe illnesses such as Alzheimer disease, but this receptivity decreases for conditions perceived as less severe such as attention deficit hyperactivity disorder (79%), and for nontherapeutic applications (47%). The greatest area of concern for the application of gene therapy to brain conditions is the fear of not receiving sufficient information before undergoing the treatment. The main ethical concerns with enhancement were the potential for disparities in resource allocation, access to the procedure, and discrimination. When comparing these data with those from the 1990s, our findings suggest that the acceptability of gene therapy is increasing and that this trend is occurring despite lingering concerns over ethical issues. Providing the public and patients with up-to-date information and opportunities to engage in the discourse about areas of research in gene therapy is a priority.

  11. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  12. An update on gene therapy for the treatment of lipoprotein lipase deficiency

    Directory of Open Access Journals (Sweden)

    Libby AE

    2014-05-01

    Full Text Available Andrew E Libby, Hong Wang Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado at Denver, Aurora, CO, USA Abstract: Lipoprotein lipase (LPL is responsible for clearance of triglyceride-rich lipoproteins from the blood. Deficiency or defects in this enzyme result in profound hypertriglyceridemia and susceptibility to chronic, life-threatening pancreatitis. Management of LPL deficiency has traditionally been restricted to palliative care and strategies to reduce the risk of pancreatitis, including severe dietary restrictions of fat. Recently, the European Commission approved the first gene therapy treatment in the West to treat this rare disease. Alipogene tiparvovec (Glybera® was granted marketing authorization in November 2012 to treat LPL deficiency in a subset of patients that are at increased risk for pancreatitis. Designed as a one-time treatment, the drug uses adeno-associated virus (AAV1 delivery of transgenic LPL to muscle in patients lacking functional enzyme. Although statistically significant reduction of serum triglycerides was initially observed in trial subjects, this effect was found to be transient, with triglyceride levels eventually rebounding to basal levels by 26 weeks in all participants. Nevertheless, despite the return of triglycerides to pretreatment levels, alipogene tiparvovec was found to have a long-term impact on postprandial chylomicron metabolism by lowering the fraction of triglyceride found in this subset of lipoproteins. Furthermore, the drug led to a clinically significant reduction in the incidence of pancreatitis in LPL-deficient patients. The regulatory approval of alipogene tiparvovec was a historic process and serves as an example of the challenges that future orphan drugs will face. Keywords: lipoprotein lipase deficiency, gene therapy, AAV, chylomicron, pancreatitis

  13. Gene therapy for CNS diseases – Krabbe disease

    Directory of Open Access Journals (Sweden)

    Mohammad A. Rafi

    2016-06-01

    Full Text Available This is a brief report of the 19th Annual Meeting of the American Society of Gene and Cell Therapy that took place from May 4th through May 7th, 2016 in Washington, DC, USA. While the meeting provided many symposiums, lectures, and scientific sessions this report mainly focuses on one of the sessions on the "Gene Therapy for central nervous system (CNS Diseases" and specifically on the "Gene Therapy for the globoid cell leukodystrophy or Krabbe disease. Two presentations focused on this subject utilizing two animal models of this disease: mice and dog models. Different serotypes of adeno-associate viral vectors (AAV alone or in combination with bone marrow transplantations were used in these research projects. The Meeting of the ASGCT reflected continuous growth in the fields of gene and cell therapy and brighter forecast for efficient treatment options for variety of human diseases.

  14. Copper-free click-chemistry platform to functionalize cisplatin prodrugs.

    Science.gov (United States)

    Pathak, Rakesh K; McNitt, Christopher D; Popik, Vladimir V; Dhar, Shanta

    2014-06-02

    The ability to rationally design and construct a platform technology to develop new platinum(IV) [Pt(IV)] prodrugs with functionalities for installation of targeting moieties, delivery systems, fluorescent reporters from a single precursor with the ability to release biologically active cisplatin by using well-defined chemistry is critical for discovering new platinum-based therapeutics. With limited numbers of possibilities considering the sensitivity of Pt(IV) centers, we used a strain-promoted azide-alkyne cycloaddition approach to provide a platform, in which new functionalities can easily be installed on cisplatin prodrugs from a single Pt(IV) precursor. The ability of this platform to be incorporated in nanodelivery vehicle and conjugation to fluorescent reporters were also investigated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Creation of a cardiotropic adeno-associated virus: the story of viral directed evolution

    Directory of Open Access Journals (Sweden)

    Yang Lin

    2013-02-01

    Full Text Available Abstract Adeno-associated virus (AAV is an important vector system for human gene therapy. Although use of AAV serotypes can result in efficient myocardial gene transfer, improvements in the transduction efficiency and specificity are still required. As a method for artificial modification and selection of gene function, directed evolution has been used for diverse applications in genetic engineering of enzymes and proteins. Since 2000, pioneering work has been performed on directed evolution of viral vectors. We further attempted to evolve the AAV using DNA shuffling and in vivo biopanning in a mouse model. An AAVM41 mutant was characterized, which was found to have improved transduction efficiency and specificity in myocardium, an attribute unknown for any natural AAV serotypes. This review focuses on the development of AAV vector for cardiac gene transfer, the history of directed evolution of viral vectors, and our creation of a cardiotropic AAV, which might have implications for the future design and application of viral vectors.

  16. Prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  17. Analysis of the clonal repertoire of gene-corrected cells in gene therapy.

    Science.gov (United States)

    Paruzynski, Anna; Glimm, Hanno; Schmidt, Manfred; Kalle, Christof von

    2012-01-01

    Gene therapy-based clinical phase I/II studies using integrating retroviral vectors could successfully treat different monogenetic inherited diseases. However, with increased efficiency of this therapy, severe side effects occurred in various gene therapy trials. In all cases, integration of the vector close to or within a proto-oncogene contributed substantially to the development of the malignancies. Thus, the in-depth analysis of integration site patterns is of high importance to uncover potential clonal outgrowth and to assess the safety of gene transfer vectors and gene therapy protocols. The standard and nonrestrictive linear amplification-mediated PCR (nrLAM-PCR) in combination with high-throughput sequencing exhibits technologies that allow to comprehensively analyze the clonal repertoire of gene-corrected cells and to assess the safety of the used vector system at an early stage on the molecular level. It enables clarifying the biological consequences of the vector system on the fate of the transduced cell. Furthermore, the downstream performance of real-time PCR allows a quantitative estimation of the clonality of individual cells and their clonal progeny. Here, we present a guideline that should allow researchers to perform comprehensive integration site analysis in preclinical and clinical studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  19. Gene therapy for the inner ear: challenges and promises.

    Science.gov (United States)

    Ryan, Allen F; Dazert, Stefan

    2009-01-01

    Since the recognition of genes as the discrete units of heritability, and of DNA as their molecular substrate, the utilization of genes for therapeutic purposes has been recognized as a potential means of correcting genetic disorders. The tools of molecular biology, which allow the manipulation of DNA sequence, provided the means to put this concept into practice. However, progress in the implementation of these ideas has been slow. Here we review the history of the idea of gene therapy and the complexity of genetic disorders. We also discuss the requirements for sequence-based therapy to be accomplished for different types of inherited diseases, as well as the methods available for gene manipulation. The challenges that have limited the applications of gene therapy are reviewed, as are ethical concerns. Finally, we discuss the promise of gene therapy to address inherited and acquired disorders of the inner ear. Copyright (c) 2009 S. Karger AG, Basel.

  20. Does early use of enzyme replacement therapy alter the natural history of mucopolysaccharidosis I? Experience in three siblings.

    Science.gov (United States)

    Laraway, Sarah; Breen, Catherine; Mercer, Jean; Jones, Simon; Wraith, James E

    2013-07-01

    Enzyme replacement therapy is widely used as treatment for mucopolysaccharidosis I (MPS I), and there is evidence that this produces improvement in certain clinical domains. There does appear to be variation in the response of clinical features to treatment once these are established. In a reported sibling pair, when enzyme replacement therapy was commenced pre-symptomatically in the younger child, the natural history of the condition appeared to be affected. We present data from three siblings treated with enzyme replacement therapy at different ages which supports this finding. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  2. Radiopharmaceuticals for diagnosis and therapy of cancer

    International Nuclear Information System (INIS)

    Wiebe, L.I.

    1998-01-01

    This paper addresses the utilization of three very distinct enzyme systems for imaging in oncology. The first of these is an enzyme encoded by a viral gene that is not present in non-infected mammalian cells. This enzyme is a nucleoside kinase that converts selected unnatural nucleosides to nucleotides in virus-infected or gene-transfected cells, but not in normal cells. The most commonly used viral kinase in gene therapy today is Herpes simplex virus type-1 thymidine kinase (HSV tk). The imaging applications of this gene therapy system are demonstrated using data from a murine tumour gene therapy model, with 123 IVFRU as the diagnostic radiopharmaceutical. The second enzyme system is endogenous to mammalian cells, but is found in highest concentrations in tissues of neutral crest derivation. The overall biochemical pathway of interest involves the conversion of tyrosine to either dopamine (neurotransmitter pathway), or to melanin (pigmentation pathway). In this system tyrosinase is the 'branching' enzyme, converting dopa to dopaquinone, thereby averting its conversion to dopamine. With selective agents, the tracer can be trapped in this 'melanin pathway', which is particularly active in melanomas. Data on the development of radioiodinated tyrosinase substrates, based on S-cysteaminyl phenol (SCAP), a highly specific tyrosinase substrate, are presented to illustrate this concept. The final example is that of endogenous enzymes that are virtually ubiquitous in biodistribution. One class of enzymes, the reductases, are particularly active in the liver and their activity is amplified in tissues that are hypoxic. They are important in radiotherapy, where they can be utilized to bioreductively activate compounds that can restore the radiosensitivity of hypoxic cells. The 2-nitroimidazoles are of special interest because they are easily reducible by a number of reductases, a process that is made selective by the reversibility of reduction in the presence of cellular

  3. Redox-responsive core cross-linked prodrug micelles prepared by click chemistry for pH-triggered doxorubicin delivery

    Directory of Open Access Journals (Sweden)

    X. T. Cao

    2017-10-01

    Full Text Available A pH-triggered drug delivery system of degradable core cross-linked (CCL prodrug micelles was prepared by click chemistry. Doxorubicin conjugated block copolymers of azido functional poly(ethylene oxide-b-poly(glycidyl methacrylate were synthesized by the combination of RAFT polymerization, epoxide ring-opening reaction, and acid-cleavable hydrazone linkages. The CCL prodrug micelles were produced by the reaction of dipropargyl 3,3′-dithiodipropionate and dipropargyl adipate cross-linking agents with the azido groups of the micellar core via alkyne-azide click reaction, which were denoted as CCL/SS and CCL/noSS, respectively. The TEM images of CCL/SS prodrug micelles showed a spherical shape with the average diameter of 61.0 nm from water, and the shape was maintained with an increased diameter upon dilution with 5-fold DMF. The high DOX conjugation efficiency was 88.4%. In contrast to a very slow DOX release from CCL/SS prodrug micelles under the physiological condition (pH 7.4, the drug release is much faster (90% at pH 5.0 and 10 mM of GSH after 96 h. The cytotoxicity test and confocal laser scanning microscopy analysis revealed that CCL/SS prodrug micelles had much enhanced intracellular drug release capability in HepG2 cells than CCL/noSS prodrug micelles.

  4. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  5. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  6. A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Lianxiang Bi

    2017-12-01

    Full Text Available Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate—yet significant—pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.

  7. Comparative plasma disposition kinetics of albendazole and its new benzimidazol prodrug in dog.

    Science.gov (United States)

    Khalil, Z; El Karbane, M; Faouzi, M E A; Ansar, M; Azougagh, M; El Harti, J; Taoufik, J

    2016-01-01

    The comparative pharmacokinetic behavior of albendazole (ABZ) and its new benzimidazol prodrug [1-tert-butyloxycarbonyl-5-propylthio-1-H-benzimidazol-2ylcarbamate of methyl] (ABZBoc), following their oral administration (10mg/kg) to healthy dogs was explored. Blood samples were obtained serially over a 24h period after treatment, then the plasma was analyzed by high-performance liquid chromatography (HPLC) to search the albendazole metabolites (ABZSO and ABZSO2). However, the albendazole parent drug was not detectable at any time after both treatments (ABZ and ABZBoc). By albendazole metabolites (ABZSO and ABZSO2) were the analytes recovered in the plasma after oral administration of ABZ and ABZBoc. Furthermore, some amounts of ABZBoc were also available in the plasma samples treated with this new produg. The plasma profile of each analyte followed a similar pattern after both treatments, the active metabolite (ABZSO) was the major analyte recovered in plasma (between 1 and 24h post-treatment). The pharmacokinetic parameters of both groups were calculated (Cmax, Tmax, t1/2, AUC0-›∞), and analyzed using the Student's t-test, Palbendazole metabolites (ABZSO, ABZSO2) between the group treated with albendazole (group A) and that treated with ABZBoc prodrug (group B). Hence, the levels of the various pharmacokinetics parameters were low in the group treated with prodrug, as well they did not reach equivalent concentrations to that of albendazole. These differences between albendazole and its new prodrug may be explained by the fact that ABZBoc prodrug was not effectively reduced in the intestine of dogs. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  8. Gene therapy imaging in patients for oncological applications

    International Nuclear Information System (INIS)

    Penuelas, Ivan; Haberkorn, Uwe; Yaghoubi, Shahriar; Gambhir, Sanjiv S.

    2005-01-01

    Thus far, traditional methods for evaluating gene transfer and expression have been shown to be of limited value in the clinical arena. Consequently there is a real need to develop new methods that could be repeatedly and safely performed in patients for such purposes. Molecular imaging techniques for gene expression monitoring have been developed and successfully used in animal models, but their sensitivity and reproducibility need to be tested and validated in human studies. In this review, we present the current status of gene therapy-based anticancer strategies and show how molecular imaging, and more specifically radionuclide-based approaches, can be used in gene therapy procedures for oncological applications in humans. The basis of gene expression imaging is described and specific uses of these non-invasive procedures for gene therapy monitoring illustrated. Molecular imaging of transgene expression in humans and evaluation of response to gene-based therapeutic procedures are considered. The advantages of molecular imaging for whole-body monitoring of transgene expression as a way to permit measurement of important parameters in both target and non-target organs are also analyzed. The relevance of this technology for evaluation of the necessary vector dose and how it can be used to improve vector design are also examined. Finally, the advantages of designing a gene therapy-based clinical trial with imaging fully integrated from the very beginning are discussed and future perspectives for the development of these applications outlined. (orig.)

  9. ANALYSIS OF ANGIOTENSIN CONVERTING ENZYME (ACE GENE INSERTION/DELETION(I/DPOLYMORPHISM IN MIGRAINE

    Directory of Open Access Journals (Sweden)

    Saime Sezer

    2013-03-01

    In patient groups DD genotype frequency was 35.0%, ID genotype frequency was 45.5% and II genotype frequency 19.5% (0.322. Allelic frequencies was detected 57.75% for D allele, 42.25% for I allele in patients. There were no significant differences in genotype/allele frequencies of angiotensin converting enzyme gene polymorphism between patients with migraine and controls (p=0.474. Our results show that I/D polymorphism of angiotensin converting enzyme gene is not a risk factor for migraine. [J Contemp Med 2013; 3(1.000: 7-11

  10. Extended interval between enzyme therapy infusions for adult patients with Gaucher′s disease type 1.

    Directory of Open Access Journals (Sweden)

    Pérez-Calvo J

    2003-01-01

    Full Text Available BACKGROUND: Enzyme replacement therapy (ERT for Gaucher′s disease with alglucerase or imiglucerase is efficacious, well-tolerated and safe. However, cost considerations, visits to medical facilities, potentially duration of theray for life, are issues of major concern to a proportion of treated patients and has, in some cases, led to the withdrawal of therapy. AIMS: To elucidate whether an extension of the interval between enzyme infusions to once every three weeks is as effective in maintaining the clinical responses achieved with the bi-monthly regimen. MATERIALS AND METHODS: Four patients with an optimal response to ERT (at 30 units/kg every two weeks for an average of 27 months, were subjected to enzyme dose/frequency changes that essentially constituted a reduction in cumulative dose over the treatment period. Patients were assessed every 6 months for alterations in haematological parameters, plasma chitotriosidase levels, liver and spleen size, and bone symptoms. RESULTS: All patients had to resume the previous infusion schedule of once every two weeks; one because of new bone marrow infiltrates, two because of visceral enlargement, and the fourth due to progressive anaemia. CONCLUSIONS: This limited experience suggests that a reduction in enzyme dose associated with an extended interval between infusions may lead to variable disease control, and underscores the need for individualization of enzyme therapy.

  11. Gene Therapy: Potential, Pros, Cons and Ethics

    OpenAIRE

    Ananth Nanjunda Rao

    2002-01-01

    Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  12. Efficient Fludarabine-Activating PNP From Archaea as a Guidance for Redesign the Active Site of E. Coli PNP.

    Science.gov (United States)

    Cacciapuoti, Giovanna; Bagarolo, Maria Libera; Martino, Elisa; Scafuri, Bernardina; Marabotti, Anna; Porcelli, Marina

    2016-05-01

    The combination of the gene of purine nucleoside phosphorylase (PNP) from Escherichia coli and fludarabine represents one of the most promising systems in the gene therapy of solid tumors. The use of fludarabine in gene therapy is limited by the lack of an enzyme that is able to efficiently activate this prodrug which, consequently, has to be administered in high doses that cause serious side effects. In an attempt to identify enzymes with a better catalytic efficiency than E. coli PNP towards fludarabine to be used as a guidance on how to improve the activity of the bacterial enzyme, we have selected 5'-deoxy-5'-methylthioadenosine phosphorylase (SsMTAP) and 5'-deoxy-5'-methylthioadenosine phosphorylase II (SsMTAPII), two PNPs isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. Substrate specificity and catalytic efficiency of SsMTAP and SsMTAPII for fludarabine were analyzed by kinetic studies and compared with E. coli PNP. SsMTAP and SsMTAPII share with E. coli PNP a comparable low affinity for the arabinonucleoside but are better catalysts of fludarabine cleavage with k(cat)/K(m) values that are 12.8-fold and 6-fold higher, respectively, than those reported for the bacterial enzyme. A computational analysis of the interactions of fludarabine in the active sites of E. coli PNP, SsMTAP, and SsMTAPII allowed to identify the crucial residues involved in the binding with this substrate, and provided structural information to improve the catalytic efficiency of E. coli PNP by enzyme redesign. © 2015 Wiley Periodicals, Inc.

  13. Overweight, insulin resistance and type II diabetes in type I Gaucher disease patients in relation to enzyme replacement therapy

    NARCIS (Netherlands)

    Langeveld, M.; de Fost, M.; Aerts, J. M. F. G.; Sauerwein, H. P.; Hollak, C. E. M.

    2008-01-01

    Type I Gaucher disease, a lysosomal storage disorder is associated with metabolic abnormalities such as high resting energy expenditure, low circulating adiponectin and peripheral insulin resistance. Treatment with enzyme replacement therapy (enzyme therapy) leads to a decrease in resting energy

  14. PRODRUGS OF NON- STEROID ANTI - INFLAMMATORY AGENTS (NSAIDS)

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to novel depot formulations (prodrugs) comprising an immobility promoting unit linked via an ester to an active pharmaceutical ingredient, i.a. common NSAIDs. The novel depot formulations are suitable for intra-articular injections and are soluble at slightly acidic p...

  15. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer--A preliminary report

    International Nuclear Information System (INIS)

    Teh, Bin S.; Aguilar-Cordova, Estuardo; Kernen, Kenneth; Chou, C.-C.; Shalev, Moshe; Vlachaki, Maria T.; Miles, Brian; Kadmon, Dov; Mai, W.-Y.; Caillouet, James; Davis, Maria; Ayala, Gustavo; Wheeler, Thomas; Brady, Jett; Carpenter, L. Steve; Lu, Hsin H.; Chiu, J. Kam; Woo, Shiao Y.; Thompson, Timothy; Butler, E. Brian

    2001-01-01

    Purpose: To report the preliminary results of a Phase I/II study combining radiotherapy and in situ gene therapy (adenovirus/herpes simplex virus thymidine kinase gene/valacyclovir) with or without hormonal therapy in the treatment of prostate cancer. Methods and Materials: Arm A: low-risk patients (T1-T2a, Gleason score <7, pretreatment PSA <10) were treated with combined radio-gene therapy. A mean dose of 76 Gy was delivered to the prostate with intensity-modulated radiotherapy. Arm B: high-risk patients (T2b-T3, Gleason score ≥7, pretreatment PSA ≥10) were treated with combined radio-gene therapy and hormonal therapy. Hormonal therapy was comprised of a 4-month leuprolide injection and 2-week use of flutamide. Arm C: Stage D1 (positive pelvic lymph node) patients received the same regimen as Arm B, with the additional 45 Gy to the pelvic lymphatics. Treatment-related toxicity was assessed using Cancer Therapy Evaluation Program common toxicity score and Radiation Therapy Oncology Group (RTOG) toxicity score. Results: Thirty patients (13 in Arm A, 14 in Arm B, and 3 in Arm C) completed the trial. Median follow-up was 5.5 months. Eleven patients (37%) developed flu-like symptoms (Cancer Therapy Evaluation Program Grade 1) of fatigue and chills/rigors after gene therapy injection but recovered within 24 h. Four patients (13%) and 2 patients (7%) developed Grade 1 and 2 fever, respectively. There was no patient with weight loss. One patient in Arm B developed Grade 3 elevation in liver enzyme, whereas 11 and 2 patients developed Grade 1 and 2 abnormal liver function tests. There was no Grade 2 or above hematologic toxicity. Three patients had transient rise in creatinine. There was no RTOG Grade 3 or above lower gastrointestinal toxicity. Toxicity levels were as follows: 4 patients (13%), Grade 2; 6 patients (20%), Grade 1; and 20 patients (67%), no toxicity. There was 1 patient with RTOG Grade 3 genitourinary toxicity, 12 patients (40%) with Grade 2, 8 patients

  16. Communicating the promise for ocular gene therapies: challenges and recommendations.

    Science.gov (United States)

    Benjaminy, Shelly; Kowal, Stephanie P; MacDonald, Ian M; Bubela, Tania

    2015-09-01

    To identify challenges and pose solutions for communications about ocular gene therapy between patients and clinicians as clinical research progresses. Literature review with recommendations. Literature review of science communication best practices to inform recommendations for patient-clinician discussions about ocular gene therapy. Clinicians need to employ communications about ocular gene therapy that are both attentive to patient priorities and concerns and responsive to other sources of information, including overly positive news media and the Internet. Coverage often conflates research with therapy-clinical trials are experimental and are not risk free. If proven safe and efficacious, gene therapy may present a treatment but not a cure for patients who have already experienced vision loss. Clinicians can assist patients by providing realistic estimates for lengthy clinical development timelines and positioning current research within models of clinical translation. This enables patients to weigh future therapeutic options when making current disease management decisions. Ocular gene therapy clinical trials are raising hopes for treating a myriad of hereditary retinopathies, but most such therapies are many years in the future. Clinicians should be prepared to counter overly positive messaging, found in news media and on the Internet, with optimism tempered by evidence to support the ethical translation of gene therapy and other novel biotherapeutics. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Gene therapy for the circumvention of inborn errors of metabolism (IEM) caused by single-nucleotide-polymorphisms (SNPs).

    Science.gov (United States)

    Wiseman, Alan

    2004-01-01

    Single nucleotide polymorphisms (SNPs) are the result of point mutations in nuclear (and mitochondrial) DNA. Such localised damage to DNA (and its replicative mechanisms) may not be excised fully by the DNA repair mechanism in the genome: and therefore can become inheritable; subsequently to manifest later as an inborn error of metabolism (IEM). Causes of mutagenic damage to the DNA can include background radiation (such as emitted by radon gas), and by reactive oxygen species (ROS): and also by mutagenic chemicals that occur naturally (inter alia in the diet). Other causes of DNA damage are variable environmental hazards such as solar-derived short wave ultraviolet light A. Gene therapy involves the placement of missing genes into particular tissues by the harnessing of suitable vectors (originally these were animal viruses such as SV40). For example, gene therapy in the rat for diabetes has succeeded by liver-production of insulin (using genes obtained from pancreatic Islets of Langerhans cells). Many inborn errors of metabolism could be treated in this way: examples may include 100 haemoglobinopathies (such as sickle cell anaemia), phenylketonuria; and other diseases caused by lack of tissue-production of a particular enzyme (in its catalytically-active conformation).

  18. Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug

    OpenAIRE

    Jilani, Jamal; Idkaidek, Nasir; Alzoubi, Karem

    2014-01-01

    The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1). Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac...

  19. Design, Synthesis and Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of Ampakine Compound LCX001

    Directory of Open Access Journals (Sweden)

    Dian Xiao

    2016-04-01

    Full Text Available Ampakine compounds have been shown to reverse opiate-induced respiratory depression by activation of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA glutamate receptors. However, their pharmacological exploitations are hindered by low blood-brain barrier (BBB permeability and limited brain distribution. Here, we explored whether thiamine disulfide prodrugs with the ability of “lock-in” can be used to solve these problems. A series of thiamine disulfide prodrugs 7a–7f of ampakine compound LCX001 was synthesized and evaluated. The trials in vitro showed that prodrugs 7e, 7d, 7f possessed a certain stability in plasma and quickly decomposed in brain homogenate by the disulfide reductase. In vivo, prodrug 7e decreased the peripheral distribution of LCX001 and significantly increased brain distribution of LCX001 after i.v. administration. This compound showed 2.23- and 3.29-fold greater increases in the AUC0-t and MRT0-t of LCX001 in brain, respectively, than did LCX001 itself. A preliminary pharmacodynamic study indicated that the required molar dose of prodrug 7e was only one eighth that of LCX001 required to achieve the same effect in mice. These findings provide an important reference to evaluate the clinical outlook of ampakine compounds.

  20. Comparative studies of vertebrate endothelin-converting enzyme-like 1 genes and proteins

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2013-01-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Endothelin-converting enzyme-like 1 (ECEL1 is a member of the M13 family of neutral endopeptidases which play an essential role in the neural regulation of vertebrate respiration. Genetic deficiency of this protein results in respiratory failure soon after birth. Comparative ECEL1 amino acid sequences and structures and ECEL1 gene locations were examined using data from several vertebrate genome projects. Vertebrate ECEL1 sequences shared 66%–99% identity as compared with 30%–63% sequence identities with other M13-like family members, ECE1, ECE2, and NEP (neprilysin or MME. Three N-glycosylation sites were conserved among most vertebrate ECEL1 proteins examined. Sequence alignments, conserved key amino acid residues, and predicted secondary and tertiary structures were also studied, including cytoplasmic, transmembrane, and luminal sequences and active site residues. Vertebrate ECEL1 genes usually contained 18 exons and 17 coding exons on the negative strand. Exons 1 and 2 of the human ECEL1 gene contained 5'-untranslated (5'-UTR regions, a large CpG island (CpG256, and several transcription factor binding sites which may contribute to the high levels of gene expression previously reported in neural tissues. Phylogenetic analyses examined the relationships and potential evolutionary origins of the vertebrate ECEL1 gene with six other vertebrate neutral endopeptidase M13 family genes. These suggested that ECEL1 originated in an ancestral vertebrate genome from a duplication event in an ancestral neutral endopeptidase M13-like gene.Keywords: vertebrates, amino acid sequence, ECEL1, ECE1, ECE2, KELL, NEP, NEPL1, PHEX

  1. The antiproliferative cytostatic effects of a self-activating viridin prodrug

    Science.gov (United States)

    Smith, Adam; Blois, Joseph; Yuan, Hushan; Aikawa, Elena; Ellson, Christian; Figueiredo, Jose-Luiz; Weissleder, Ralph; Kohler, Rainer; Yaffe, Michael B.; Cantley, Lewis C.; Josephson, Lee

    2009-01-01

    Although viridins like wortmannin (Wm) have long been examined as anticancer agents, their ability to self-activate has only recently been recognized. Here, we describe the cytostatic effects of a self-activating viridin (SAV), which is an inactive, polymeric prodrug. SAV self-activates to generate a bioactive, fluorescent viridin NBD-Wm with a half-time of 9.2 hours. With cultured A549 cells, 10 µmol/L SAV caused growth arrest without inducing apoptosis or cell death, a cytostatic action markedly different from other chemotherapeutic agents (vinblastine, camptothecin, and paclitaxel). In vivo, a SAV dosing of 1 mg/kg once in 48 hours (i.p.) resulted in growth arrest of an A549 tumor xenograft, with growth resuming when dosing ceased. With a peak serum concentration of SAV of 2.36 µmol/L (at 2 hours post i.p. injection), the concentration of bioactive NBD-Wm was 41 nmol/L based on the partial inhibition of neutrophil respiratory burst. Therefore, SAV was present as an inactive prodrug in serum (peak = 2.36 µmol/L), which generated low concentrations of active viridin (41 nmol/L). SAV is a prodrug, the slowrelease and cytostatic activities of which suggest that it might be useful as a component of metronomic-based chemotherapeutic strategies. PMID:19509266

  2. Towards Liver-Directed Gene Therapy for Crigler-Najjar Syndrome

    NARCIS (Netherlands)

    Miranda, Paula S. Montenegro; Bosma, Piter J.

    2009-01-01

    Crigler-Najjar (CN) syndrome is a recessive inherited disorder caused by deficiency of uridine diphosphoglucuronosyl transferase 1A1. This hepatic enzyme catalyzes the glucuronidation of bilirubin, an essential step in excretion into bile of this neurotoxic compound. As a result, CN patients suffer

  3. Antitubercular drugs for an old target: GSK693 as a promising InhA direct inhibitor

    Directory of Open Access Journals (Sweden)

    María Martínez-Hoyos

    2016-06-01

    Full Text Available Despite being one of the first antitubercular agents identified, isoniazid (INH is still the most prescribed drug for prophylaxis and tuberculosis (TB treatment and, together with rifampicin, the pillars of current chemotherapy. A high percentage of isoniazid resistance is linked to mutations in the pro-drug activating enzyme KatG, so the discovery of direct inhibitors (DI of the enoyl-ACP reductase (InhA has been pursued by many groups leading to the identification of different enzyme inhibitors, active against Mycobacterium tuberculosis (Mtb, but with poor physicochemical properties to be considered as preclinical candidates. Here, we present a series of InhA DI active against multidrug (MDR and extensively (XDR drug-resistant clinical isolates as well as in TB murine models when orally dosed that can be a promising foundation for a future treatment.

  4. Gene Therapy: Potential, Pros, Cons and Ethics

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-07-01

    Full Text Available Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  5. The Pathway From Genes to Gene Therapy in Glaucoma: A Review of Possibilities for Using Genes as Glaucoma Drugs.

    Science.gov (United States)

    Borrás, Teresa

    2017-01-01

    Treatment of diseases with gene therapy is advancing rapidly. The use of gene therapy has expanded from the original concept of re-placing the mutated gene causing the disease to the use of genes to con-trol nonphysiological levels of expression or to modify pathways known to affect the disease. Genes offer numerous advantages over conventional drugs. They have longer duration of action and are more specific. Genes can be delivered to the target site by naked DNA, cells, nonviral, and viral vectors. The enormous progress of the past decade in molecular bi-ology and delivery systems has provided ways for targeting genes to the intended cell/tissue and safe, long-term vectors. The eye is an ideal organ for gene therapy. It is easily accessible and it is an immune-privileged site. Currently, there are clinical trials for diseases affecting practically every tissue of the eye, including those to restore vision in patients with Leber congenital amaurosis. However, the number of eye trials compared with those for systemic diseases is quite low (1.8%). Nevertheless, judg-ing by the vast amount of ongoing preclinical studies, it is expected that such number will increase considerably in the near future. One area of great need for eye gene therapy is glaucoma, where a long-term gene drug would eliminate daily applications and compliance issues. Here, we review the current state of gene therapy for glaucoma and the possibilities for treating the trabecular meshwork to lower intraocular pressure and the retinal ganglion cells to protect them from neurodegeneration. Copyright© 2017 Asia-Pacific Academy of Ophthalmology.

  6. Circumvention of P-gp and MRP2 mediated efflux of lopinavir by a histidine based dipeptide prodrug.

    Science.gov (United States)

    Mandal, Abhirup; Pal, Dhananjay; Mitra, Ashim K

    2016-10-15

    This study was aimed to develop a novel Histidine-Leucine-Lopinavir (His-Leu-LPV) dipeptide prodrug and evaluate its potential for circumvention of P-gp and MRP2-mediated efflux of lopinavir (LPV) indicated for HIV-1 infection. His-Leu-LPV was synthesized following esterification of hydroxyl group of LPV and was identified by (1)H NMR and LCMS/MS techniques. Aqueous solubility, stability and cell cytotoxicity of prodrug was determined. Uptake and permeability studies were carried out using P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cell lines. To further delineate prodrug uptake, prodrug interaction with influx transporters (PepT1 and PHT1) was determined. Enzymatic hydrolysis and reconversion of His-Leu-LPV to LPV was examined using Caco-2 cell homogenates. Aqueous solubility generated by the prodrug was markedly higher relative to unmodified LPV. Importantly, His-Leu-LPV displayed significantly lower affinity towards P-gp and MRP2 as evident from higher uptake and transport rates. [3H]-GlySar and [3H]-l-His uptake receded to approximately 30% in the presence of His-Leu-LPV supporting the PepT1/PHT1 mediated uptake process. A steady regeneration of LPV and Leu-LPV in Caco-2 cell homogenates indicated His-Leu-LPV undergoes both esterase and peptidase-mediated hydrolysis. Histidine based dipeptide prodrug approach can be an alternative strategy to improve LPV absorption across poorly permeable intestinal barrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder

    Directory of Open Access Journals (Sweden)

    Huaiyu Hu

    2016-11-01

    Full Text Available Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.

  8. Thiazolidinone prodrugs activated by reactive oxygen species for use in the treatment of inflammatory diseases and cancer

    DEFF Research Database (Denmark)

    2018-01-01

    Prodrugs activated predominantly or exclusively in inflammatory tissue, more particularly prodrugs of methotrexate and derivatives thereof, which are selectively activated by Reactive Oxygen Species (ROS) in inflammatory tissues associated with cancer and inflammatory diseases, as well as method...

  9. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles.

    Science.gov (United States)

    Zhou, Hui-Fang; Yan, Huimin; Senpan, Angana; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Pham, Christine T N

    2012-11-01

    Nanoparticle-based therapeutics are emerging technologies that have the potential to greatly impact the treatment of many human diseases. However, drug instability and premature release from the nanoparticles during circulation currently preclude clinical translation. Herein, we use a lipase-labile (Sn 2) fumagillin prodrug platform coupled with a unique lipid surface-to-surface targeted delivery mechanism, termed contact-facilitated drug delivery, to counter the premature drug release and overcome the inherent photo-instability of fumagillin, an established anti-angiogenic agent. We show that α(v)β(3)-integrin targeted fumagillin prodrug nanoparticles, administered at 0.3 mg of fumagillin prodrug/kg of body weight suppress the clinical disease indices of KRN serum-mediated arthritis in a dose-dependent manner when compared to treatment with the control nanoparticles with no drug. This study demonstrates the effectiveness of this lipase-labile prodrug nanocarrier in a relevant preclinical model that approximates human rheumatoid arthritis. The lipase-labile prodrug paradigm offers a translatable approach that is broadly applicable to many targeted nanosystems and increases the translational potential of this platform for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. New tools in regenerative medicine: gene therapy.

    Science.gov (United States)

    Muñoz Ruiz, Miguel; Regueiro, José R

    2012-01-01

    Gene therapy aims to transfer genetic material into cells to provide them with new functions. A gene transfer agent has to be safe, capable of expressing the desired gene for a sustained period of time in a sufficiently large population of cells to produce a biological effect. Identifying a gene transfer tool that meets all of these criteria has proven to be a difficult objective. Viral and nonviral vectors, in vivo, ex vivo and in situ strategies co-exist at present, although ex vivo lenti-or retroviral vectors are presently the most popular.Natural stem cells (from embryonic, hematopoietic, mesenchymal, or adult tissues) or induced progenitor stem (iPS) cells can be modified by gene therapy for use in regenerative medicine. Among them, hematopoietic stem cells have shown clear clinical benefit, but iPS cells hold humongous potential with no ethical concerns.

  11. Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation.

    Science.gov (United States)

    Gaudana, Ripal; Parenky, Ashwin; Vaishya, Ravi; Samanta, Swapan K; Mitra, Ashim K

    2011-01-01

    The objective of this study was to develop and characterize a nanoparticulate-based sustained release formulation of a water soluble dipeptide prodrug of dexamethasone, valine-valine-dexamethasone (VVD). Being hydrophilic in nature, it readily leaches out in the external aqueous medium and hence partitions poorly into the polymeric matrix resulting in minimal entrapment in nanoparticles. Hence, hydrophobic ion pairing (HIP) complexation of the prodrug was employed with dextran sulphate as a complexing polymer. A novel, solid in oil in water emulsion method was employed to encapsulate the prodrug in HIP complex form in poly(lactic-co-glycolic acid) matrix. Nanoparticles were characterized with respect to size, zeta potential, crystallinity of entrapped drug and surface morphology. A significant enhancement in the entrapment of the prodrug in nanoparticles was achieved. Finally, a simple yet novel method was developed which can also be applicable to encapsulate other charged hydrophilic molecules, such as peptides and proteins.

  12. Nonviral Technologies for Gene Therapy in Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Cheng-Huang Su

    2008-06-01

    Full Text Available Gene therapy, which is still at an experimental stage, is a technique that attempts to correct or prevent a disease by delivering genes into an individual's cells and tissues. In gene delivery, a vector is a vehicle for transferring genetic material into cells and tissues. Synthetic vectors are considered to be prerequisites for gene delivery, because viral vectors have fundamental problems in relation to safety issues as well as large-scale production. Among the physical approaches, ultrasound with its associated bioeffects such as acoustic cavitation, especially inertial cavitation, can increase the permeability of cell membranes to macromolecules such as plasmid DNA. Microbubbles or ultrasound contrast agents lower the threshold for cavitation by ultrasound energy. Furthermore, ultrasound-enhanced gene delivery using polymers or other nonviral vectors may hold much promise for the future but is currently at the preclinical stage. We all know aging is cruel and inevitable. Currently, among the promising areas for gene therapy in acquired diseases, the incidences of cancer and ischemic cardiovascular diseases are strongly correlated with the aging process. As a result, gene therapy technology may play important roles in these diseases in the future. This brief review focuses on understanding the barriers to gene transfer as well as describing the useful nonviral vectors or tools that are applied to gene delivery and introducing feasible models in terms of ultrasound-based gene delivery.

  13. The use of molecular imaging of gene expression by radiotracers in gene therapy

    International Nuclear Information System (INIS)

    Richard-Fiardo, P.; Franken, P.R.; Harrington, K.J.; Vassaux, G.; Cambien, B.

    2011-01-01

    Introduction: Progress with gene-based therapies has been hampered by difficulties in monitoring the biodistribution and kinetics of vector-mediated gene expression. Recent developments in non-invasive imaging have allowed researchers and clinicians to assess the location, magnitude and persistence of gene expression in animals and humans. Such advances should eventually lead to improvement in the efficacy and safety of current clinical protocols for future treatments. Areas Covered: The molecular imaging techniques for monitoring gene therapy in the living subject, with a specific highlight on the key reporter gene approaches that have been developed and validated in preclinical models using the latest imaging modalities. The applications of molecular imaging to biotherapy, with a particular emphasis on monitoring of gene and vector biodistribution and on image-guided radiotherapy. Expert Opinion: Among the reporter gene/probe combinations that have been described so far, one stands out, in our view, as the most versatile and easy to implement: the Na/I symporter. This strategy, exploiting more than 50 years of experience in the treatment of differentiated thyroid carcinomas, has been validated in different types of experimental cancers and with different types of oncolytic viruses and is likely to become a key tool in the implementation of human gene therapy. (authors)

  14. Enhanced absorption and growth inhibition with amino acid monoester prodrugs of floxuridine by targeting hPEPT1 transporters.

    Science.gov (United States)

    Tsume, Yasuhiro; Vig, Balvinder S; Sun, Jing; Landowski, Christopher P; Hilfinger, John M; Ramachandran, Chandrasekharan; Amidon, Gordon L

    2008-06-28

    A series of amino acid monoester prodrugs of floxuridine was synthesized and evaluated for the improvement of oral bioavailability and the feasibility of target drug delivery via oligopeptide transporters. All floxuridine 5'-amino acid monoester prodrugs exhibited PEPT1 affinity, with inhibition coefficients of Gly-Sar uptake (IC50) ranging from 0.7 - 2.3 mM in Caco-2 and 2.0 - 4.8 mM in AsPC-1 cells, while that of floxuridine was 7.3 mM and 6.3 mM, respectively. Caco-2 membrane permeabilities of floxuridine prodrugs (1.01 - 5.31 x 10(-6 )cm/sec) and floxuridine (0.48 x 10(-6 )cm/sec) were much higher than that of 5-FU (0.038 x 10(-6) cm/sec). MDCK cells stably transfected with the human oligopeptide transporter PEPT1 (MDCK/hPEPT1) exhibited enhanced cell growth inhibition in the presence of the prodrugs. This prodrug strategy offers great potential, not only for increased drug absorption but also for improved tumor selectivity and drug efficacy.

  15. Generation of Directly Converted Human Osteoblasts That Are Free of Exogenous Gene and Xenogenic Protein.

    Science.gov (United States)

    Yamamoto, Kenta; Sato, Yoshiki; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Sowa, Yoshihiro; Yamamoto, Toshiro; Kanamura, Narisato; Kishida, Tsunao; Mazda, Osam

    2016-11-01

    Generation of osteoblasts from human somatic cells may be applicable in an effective transplantation therapy against bone diseases. Recently we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some transcription factor genes via retroviral vectors. However, retroviral vector-mediated transduction may potentially cause tumor formation from the infected cells, thus a non-viral gene transfection method may be more preferable for preparation of osteoblasts to be used for transplantation therapy. Here, we constructed a plasmid vector encoding Oct4, Osterix, and L-Myc that were an appropriate combination of transcription factors for this purpose. Osteoblast-like phenotypes including high alkaline phosphatase (ALP) activity, bone matrix production and osteoblast-specific gene expression were induced in normal human fibroblasts that were transfected with the plasmid followed by culturing in osteogenic medium. The plasmid-driven directly converted osteoblasts (p-dOBs) were obtained even in the absence of a xenogenic protein. The plasmid vector sequence had fallen out of the p-dOBs. The cells formed deposition of calcified bodies in situ after transplantation into mice. These results strongly suggest that p-dOBs can be put into practical use for a novel cell-based therapy against bone diseases. J. Cell. Biochem. 117: 2538-2545, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging.

    Science.gov (United States)

    Peñuelas, Iván; Boán, JoséF; Martí-Climent, Josep M; Sangro, Bruno; Mazzolini, Guillermo; Prieto, Jesús; Richter, José A

    2004-01-01

    More than two decades of intense research have allowed gene therapy to move from the laboratory to the clinical setting, where its use for the treatment of human pathologies has been considerably increased in the last years. However, many crucial questions remain to be solved in this challenging field. In vivo imaging with positron emission tomography (PET) by combination of the appropriate PET reporter gene and PET reporter probe could provide invaluable qualitative and quantitative information to answer multiple unsolved questions about gene therapy. PET imaging could be used to define parameters not available by other techniques that are of substantial interest not only for the proper understanding of the gene therapy process, but also for its future development and clinical application in humans. This review focuses on the molecular biology basis of gene therapy and molecular imaging, describing the fundamentals of in vivo gene expression imaging by PET, and the application of PET to gene therapy, as a technology that can be used in many different ways. It could be applied to avoid invasive procedures for gene therapy monitoring; accurately diagnose the pathology for better planning of the most adequate therapeutic approach; as treatment evaluation to image the functional effects of gene therapy at the biochemical level; as a quantitative noninvasive way to monitor the location, magnitude and persistence of gene expression over time; and would also help to a better understanding of vector biology and pharmacology devoted to the development of safer and more efficient vectors.

  17. Ocular Pharmacokinetics of Acyclovir Amino Acid Ester Prodrugs in the Anterior Chamber: Evaluation of Their Utility in Treating Ocular HSV Infections

    Science.gov (United States)

    Katragadda, Suresh; Gunda, Sriram; Hariharan, Sudharshan; Mitra, Ashim K.

    2008-01-01

    Purpose To evaluate in vivo corneal absorption of the amino acid prodrugs of acyclovir (ACV) using a topical well model and microdialysis in rabbits. Methods Stability of L-Alanine-ACV (AACV), L-Serine-ACV (SACV), L-Isoleucine-ACV (IACV), γ-Glutamate-ACV (EACV) and L-Valine-ACV (VACV) prodrugs was evaluated in various ocular tissues. Dose dependent toxicity of these prodrugs was also examined in rabbit primary corneal epithelial cell culture (rPCEC) using 96-well based cell proliferation assay. In vivo ocular bioavailability of these compounds was also evaluated with a combination of topical well infusion and aqueous humor microdialysis techniques. Results Among the amino acid ester prodrugs, SACV was most stable in aqueous humor. Enzymatic degradation of EACV was the least compared to all other prodrugs. Cellular toxicity of all the prodrugs was significantly less compared to trifluorothymidine (TFT) at 5mM. Absorption rate constants of all the compounds were found to be lower than the elimination rate constants. All the prodrugs showed similar terminal elimination rate constants (λz). SACV and VACV exhibited approximately two fold increase in area under the curve (AUC) relative to ACV (p cornea at varying rates (ka) thereby leading to varying extents (AUC). The amino acid ester prodrug, SACV owing to its enhanced stability, comparable AUC, and high concentration at last time point (Clast) seems to be a promising candidate for the treatment of ocular HSV infections. PMID:18472234

  18. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Intracerebroventricular gene therapy that delays neurological disease progression is associated with selective preservation of retinal ganglion cells in a canine model of CLN2 disease.

    Science.gov (United States)

    Whiting, Rebecca E H; Jensen, Cheryl A; Pearce, Jacqueline W; Gillespie, Lauren E; Bristow, Daniel E; Katz, Martin L

    2016-05-01

    CLN2 disease is one of a group of lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs). The disease results from mutations in the TPP1 gene that cause an insufficiency or complete lack of the soluble lysosomal enzyme tripeptidyl peptidase-1 (TPP1). TPP1 is involved in lysosomal protein degradation, and lack of this enzyme results in the accumulation of protein-rich autofluorescent lysosomal storage bodies in numerous cell types including neurons throughout the central nervous system and the retina. CLN2 disease is characterized primarily by progressive loss of neurological functions and vision as well as generalized neurodegeneration and retinal degeneration. In children the progressive loss of neurological functions typically results in death by the early teenage years. A Dachshund model of CLN2 disease with a null mutation in TPP1 closely recapitulates the human disorder with a progression from disease onset at approximately 4 months of age to end-stage at 10-11 months. Delivery of functional TPP1 to the cerebrospinal fluid (CSF), either by periodic infusion of the recombinant protein or by a single administration of a TPP1 gene therapy vector to the CSF, significantly delays the onset and progression of neurological signs and prolongs life span but does not prevent the loss of vision or modest retinal degeneration that occurs by 11 months of age. In this study we found that in dogs that received the CSF gene therapy treatment, the degeneration of the retina and loss of retinal function continued to progress during the prolonged life spans of the treated dogs. Eventually the normal cell layers of the retina almost completely disappeared. An exception was the ganglion cell layer. In affected dogs that received TPP1 gene therapy to the CSF and survived an average of 80 weeks, ganglion cell axons were present in numbers comparable to those of normal Dachshunds of similar age. The selective preservation of the retinal ganglion cells suggests

  20. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Rodrigo Silva Macedo

    2016-01-01

    Full Text Available Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days and treated or not with PBMT (1 and 5 h after each FA exposure. Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment.

  1. Current Experimental Studies of Gene Therapy in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Jing-ya Lin

    2017-05-01

    Full Text Available Parkinson's disease (PD was characterized by late-onset, progressive dopamine neuron loss and movement disorders. The progresses of PD affected the neural function and integrity. To date, most researches had largely addressed the dopamine replacement therapies, but the appearance of L-dopa-induced dyskinesia hampered the use of the drug. And the mechanism of PD is so complicated that it's hard to solve the problem by just add drugs. Researchers began to focus on the genetic underpinnings of Parkinson's disease, searching for new method that may affect the neurodegeneration processes in it. In this paper, we reviewed current delivery methods used in gene therapies for PD, we also summarized the primary target of the gene therapy in the treatment of PD, such like neurotrophic factor (for regeneration, the synthesis of neurotransmitter (for prolong the duration of L-dopa, and the potential proteins that might be a target to modulate via gene therapy. Finally, we discussed RNA interference therapies used in Parkinson's disease, it might act as a new class of drug. We mainly focus on the efficiency and tooling features of different gene therapies in the treatment of PD.

  2. MRI Reporter Genes for Noninvasive Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Caixia Yang

    2016-05-01

    Full Text Available Magnetic resonance imaging (MRI is one of the most important imaging technologies used in clinical diagnosis. Reporter genes for MRI can be applied to accurately track the delivery of cell in cell therapy, evaluate the therapy effect of gene delivery, and monitor tissue/cell-specific microenvironments. Commonly used reporter genes for MRI usually include genes encoding the enzyme (e.g., tyrosinase and β-galactosidase, the receptor on the cells (e.g., transferrin receptor, and endogenous reporter genes (e.g., ferritin reporter gene. However, low sensitivity limits the application of MRI and reporter gene-based multimodal imaging strategies are common including optical imaging and radionuclide imaging. These can significantly improve diagnostic efficiency and accelerate the development of new therapies.

  3. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives.

    Science.gov (United States)

    Akinboye, Emmanuel S; Rosen, Marc D; Bakare, Oladapo; Denmeade, Samuel R

    2017-12-15

    Emetine is a small molecule protein synthesis inhibitor that is toxic to all cell types and therefore suitable for complete killing of all types of heterogeneous cancer cells within a tumor. It becomes significantly inactive (non-toxic) when derivatized at its N-2' secondary amine. This provides a strategy for targeting emetine to cancerous tumor without killing normal cells. In this report, PSA activatable peptide prodrugs of emetine were synthesized. To overcome steric hindrances and enhance protease specific cleavage, a 2-stage prodrug activation process was needed to release emetine in cancer cells. In this 2-stage process, emetine prodrug intermediates are coupled to PSA peptide substrate (Ac-His-Ser-Ser-Lys-Leu-Gln) to obtain the full prodrug. Both prodrug intermediates 10 (Ala-Pro-PABC-Emetine) and 14 (Ser-Leu-PABC-Emetine) were evaluated for kinetics of hydrolysis to emetine and potency [Where PABC = p-aminobenzyloxycarbonyl]. While both intermediates quantitatively liberate emetine when incubated under appropriate conditions, upon coupling of PSA substrate to give the full prodrugs, only prodrug 16, the prodrug obtained from 14 was hydrolyzable by PSA. Cytotoxicity studies in PSA producing LNCaP and CWR22Rv1 confirm the activation of the prodrug by PSA with an IC 50 of 75 nM and 59 nM respectively. The cytotoxicity of 16 is significantly reduced in cell lines that do not produce PSA. Further, in vivo toxicity studies are done on these prodrugs and other derivatives of emetine. The results show the significance of conformational modulation in obtaining safe emetine prodrugs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preclinical safety, toxicology, and biodistribution study of adenoviral gene therapy with sVEGFR-2 and sVEGFR-3 combined with chemotherapy for ovarian cancer.

    Science.gov (United States)

    Tuppurainen, Laura; Sallinen, Hanna; Kokki, Emmi; Koponen, Jonna; Anttila, Maarit; Pulkkinen, Kati; Heikura, Tommi; Toivanen, Pyry; Hämäläinen, Kirsi; Kosma, Veli-Matti; Heinonen, Seppo; Alitalo, Kari; Ylä-Herttuala, Seppo

    2013-03-01

    Abstract Antiangiogenic and antilymphangiogenic gene therapy with soluble vascular endothelial growth factor receptor-2 (VEGFR-2) and soluble VEGFR-3 in combination with chemotherapy is a potential new treatment for ovarian carcinoma. We evaluated the safety, toxicology, and biodistribution of intravenous AdsVEGFR-2 and AdsVEGFR-3 combined with chemotherapy in healthy rats (n=90) before entering a clinical setting. The study groups were: AdLacZ and AdLacZ with chemotherapy as control groups, low dose AdsVEGFR-2 and AdsVEGFR-3, high dose AdsVEGFR-2 and AdsVEGFR-3, combination of low dose AdsVEGFR-2 and AdsVEGFR-3 with chemotherapy, combination of high dose AdsVEGFR-2 and AdVEGFR-3 with chemotherapy, and chemotherapy only. The follow-up time was 4 weeks. Safety and toxicology were assessed by monitoring the clinical status of the animals and by histological, hematological, and clinical chemistry parameters. For the biodistribution studies, quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used. Low dose (2×10(10) vp) AdsVEGFR-2 and AdsVEGFR-3 gene therapy was well tolerated, even when gene therapy was combined with chemotherapy. Notably, only transient elevation of liver enzymes and mild regenerative changes were seen in liver after the gene transfer in the groups that received high doses (2×10(11) vp) of AdsVEGFR-2 and AdsVEGFR-3 with or without chemotherapy. No life-threatening adverse effects were noticed in any of the treatment groups. The highest protein concentration of soluble VEGFR-2 (sVEGFR-2) in circulation was seen 1 week after the gene transfer. The combination of chemotherapy to gene therapy seemed to prolong the time of detectable transgene protein at least 1 week in the circulation. The expression of AdsVEGFR-2 and AdsVEGFR-3 transgenes was mainly seen in the liver and spleen as detected by qRT-PCR. According to these results, AdsVEGFR-2 and AdsVEGFR-3 gene therapy combined with

  5. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  6. Gene therapy of cancer and development of therapeutic target gene

    International Nuclear Information System (INIS)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene

  7. Gene expression profiles in cervical cancer with radiation therapy alone and chemo-radiation therapy

    International Nuclear Information System (INIS)

    Lee, Kyu Chan; Kim, Joo Young; Hwang, You Jin; Kim, Meyoung Kon; Choi, Myung Sun; Kim, Chul Young

    2003-01-01

    To analyze the gene expression profiles of uterine cervical cancer, and its variation after radiation therapy, with or without concurrent chemotherapy, using a cDNA microarray. Sixteen patients, 8 with squamous cell carcinomas of the uterine cervix, who were treated with radiation alone, and the other 8 treated with concurrent chemo-radiation, were included in the study. Before the starting of the treatment, tumor biopsies were carried out, and the second time biopsies were performed after a radiation dose of 16.2-27 Gy. Three normal cervix tissues were used as a control group. The microarray experiments were performed with 5 groups of the total RNAs extracted individually and then admixed as control, pre-radiation therapy alone, during-radiation therapy alone, pre-chemoradiation therapy, and during chemoradiation therapy. The 33P-labeled cDNAs were synthesized from the total RNAs of each group, by reverse transcription, and then they were hybridized to the cDNA microarray membrane. The gene expression of each microarrays was captured by the intensity of each spot produced by the radioactive isotopes. The pixels per spot were counted with an Arrayguage, and were exported to Microsoft Excel. The data were normalized by the Z transformation, and the comparisons were performed on the Z-ratio values calculated. The expressions of 15 genes, including integrin linked kinase (ILK), CDC28 protein kinase 2, Spry 2, and ERK 3, were increased with the Z-ratio values of over 2.0 for the cervix cancer tissues compared to those for the normal controls. Those genes were involved in cell growth and proliferation, cell cycle control, or signal transduction. The expressions of the other 6 genes, including G protein coupled receptor kinase 6, were decreased with the Z-ratio values of below -2.0. After the radiation therapy, most of the genes, with a previously increase expressions, represented the decreased expression profiles, and the genes, with the Z-ratio values of over 2.0, were

  8. Gene and cell therapy for children--new medicines, new challenges?

    Science.gov (United States)

    Buckland, Karen F; Bobby Gaspar, H

    2014-06-01

    The range of possible gene and cell therapy applications is expanding at an extremely rapid rate and advanced therapy medicinal products (ATMPs) are currently the hottest topic in novel medicines, particularly for inherited diseases. Paediatric patients stand to gain enormously from these novel therapies as it now seems plausible to develop a gene or cell therapy for a vast number of inherited diseases. There are a wide variety of potential gene and cell therapies in various stages of development. Patients who received first gene therapy treatments for primary immune deficiencies (PIDs) are reaching 10 and 15 years post-treatment, with robust and sustained immune recovery. Cell therapy clinical trials are underway for a variety of tissues including corneal, retinal and muscle repair and islet cell transplantation. Various cell therapy approaches are also being trialled to enhance the safety of bone marrow transplants, which should improve survival rates in childhood cancers and PIDs. Progress in genetic engineering of lymphocyte populations to target and kill cancerous cells is also described. If successful these ATMPs may enhance or replace the existing chemo-ablative therapy for several paediatric cancers. Emerging applications of gene therapy now include skin and neurological disorders such as epidermolysis bullosa, epilepsy and leukodystrophy. Gene therapy trials for haemophilia, muscular dystrophy and a range of metabolic disorders are underway. There is a vast array of potential advanced therapy medicinal products (ATMPs), and these are likely to be more cost effective than existing medicines. However, the first clinical trials have not been without setbacks and some of the key adverse events are discussed. Furthermore, the arrival of this novel class of therapies brings many new challenges for the healthcare industry. We present a summary of the key non-clinical factors required for successful delivery of these potential treatments. Technological advances

  9. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  10. Effect of Various Diets on the Expression of Phase-I Drug Metabolizing Enzymes in Livers of Mice

    Science.gov (United States)

    Guo, Ying; Cui, Julia Yue; Lu, Hong; Klaassen, Curtis D.

    2017-01-01

    Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I related genes play a major role in the biotransformation of pro-drugs and drugs.In the current study, effects of nine diets on the mRNA expression of phase-I drug-metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the most number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3), and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (From 1121 to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets.The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets. PMID:25733028

  11. Maternal uterine artery VEGF gene therapy for treatment of intrauterine growth restriction.

    Science.gov (United States)

    David, Anna L

    2017-11-01

    Intrauterine growth restriction (IUGR) is a serious pregnancy complication affecting approximately 8% of all pregnancies. The aetiology is believed to be insufficient maternal uteroplacental perfusion which prevents adequate nutrient and oxygen availability for the fetus. There is no treatment that can improve uteroplacental perfusion and thereby increase fetal growth in the uterus. Maternal uterine artery gene therapy presents a promising treatment strategy for IUGR, with the use of adenoviral vectors encoding for proteins such as Vascular Endothelial Growth Factor (VEGF) demonstrating improvements in fetal growth and neonatal outcome in preclinical studies. Mechanistically, maternal VEGF gene therapy delivered to the uterine arteries increases uterine blood flow and enhances vascular relaxation short term, while reducing vascular contractility long term. It also leads to vascular remodeling with increased endothelial cell proliferation in the perivascular adventitia of uterine arteries. Safety assessments suggest no vector spread to the fetus and no adverse risk to the mother or fetus; a clinical trial is in development. This article assesses research into VEGF maternal uterine artery directed gene therapy for IUGR, investigating the use of transgenes and vectors, their route of administration in obstetrics, and the steps that will be needed to take this treatment modality into the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  13. The Role of Gene Therapy in the Treatment of Retinal Diseases: A Review.

    Science.gov (United States)

    Campa, C; Gallenga, C E; Bolletta, E; Perri, P

    2017-01-01

    Gene therapy represents the therapeutic delivery of nucleic acid polymers into patient cells with the aim of treating an underlying disease. Over the past 2 decades this new therapy has made substantial progress owing to better understanding of the pathobiologic basis of various diseases coupled with growth of gene transfer biotechnologies. The eye, in particular, represents a suitable target for such therapy due to the immune privilege provided by the blood-ocular barrier, the ability to directly visualize, access and locally treat the cells and the minimal amount of vector needed given the size of this organ. It is not surprising therefore that several clinical trials are now ongoing in this field. The purpose of this review was to provide an update on gene therapy for retinal diseases, discussing differences in treatment strategies, vector designs and surgical techniques. Research was performed on PubMed, ClinicalTrials.gov, and Home Genetic Reference. We additionally utilized the internet database for genetics of retinal diseases, the portal for rare diseases and orphan drugs and the NCBI database Online Mendelian Inheritance in Man. No restriction was applied on the language of publications. We present the available results of current active clinical trials for inherited retinal disease such as Leber's congenital amaurosis type 2, choroideremia, Stargardt disease, achromatopsia and juvenile X-linked retinoschisis. We also illustrate a new approach of this therapy for the treatment of much more common ocular diseases such as age-related macular degeneration and diabetic retinopathy. Gene therapy represents an emerging and promising therapeutic approach for the treatment not only of rare inherited retinal diseases but also much more common retinal pathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Gene therapy of cancer by vaccines carrying inserted immunostimulatory genes

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2007-01-01

    Roč. 53, č. 3 (2007), s. 71-73 ISSN 0015-5500 Grant - others:EU-FP6 NoE Clinigene(XE) 018933; Liga proti rakovině, Praha(CZ) XX Institutional research plan: CEZ:AV0Z50520514 Keywords : gene therapy * immunostimulatory genes * vaccine Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.596, year: 2007

  15. Resolution of Hydronephrosis in a Patient With Mucopolysaccharidosis Type II With Enzyme Replacement Therapy.

    Science.gov (United States)

    Nishiyama, Kei; Imai, Takashi; Ohkubo, Kazuhiro; Sanefuji, Masafumi; Takada, Hidetoshi

    2017-03-01

    Mucopolysaccharidosis type II (MPS II) is caused by deficiency of lysosomal enzyme iduronate-2-sulfatase. Insufficient activity of the enzyme results in accumulation of glycosaminoglycans leading to progressive multisystem pathologies. MPS II is less likely to be complicated by kidney and urinary tract problems. We report a boy with MPS II, who developed left hydronephrosis. His hydronephrosis improved after starting enzyme replacement therapy. It was suggested that MPS II was closely associated with the pathogenesis of hydronephrosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Synthesis and Evaluation of Hydrogen Peroxide Sensitive Prodrugs of Methotrexate and Aminopterin for the Treatment of Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Peiró Cadahía, Jorge; Bondebjerg, Jon; Hansen, Christian A.

    2018-01-01

    A series of novel hydrogen peroxide sensitive prodrugs of methotrexate (MTX) and aminopterin (AMT) were synthesized and evaluated for therapeutic efficacy in mice with collagen induced arthritis (CIA) as a model of chronic rheumatoid arthritis (RA). The prodrug strategy selected is based on ROS...... assays. Selected candidates showed moderate to good solubility, high chemical and enzymatic stability, and therapeutic efficacy comparable to the parent drugs in the CIA model. Importantly, the prodrugs displayed the expected safer toxicity profile and increased therapeutic window compared to MTX and AMT...

  17. Cancer gene therapy targeting angiogenesis: An updated Review

    Science.gov (United States)

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy. PMID:17109514

  18. Novel Polymeric Prodrugs of Valproic Acid as Anti- Epilepsy Drugs ...

    African Journals Online (AJOL)

    Epilepsy Drugs: Synthesis, Characterization and In-vitro ... The release of VPA from polymeric prodrugs was studied using cellophane ... pharmacokinetics and accessibility in market [8]. ..... between the drug and polymer chain can affect.

  19. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  20. Investor Outlook: Gene Therapy Picking up Steam; At a Crossroads.

    Science.gov (United States)

    Schimmer, Joshua; Breazzano, Steven

    2016-09-01

    The gene therapy field continues to pick up steam with recent successes in a number of different therapeutic indications that highlight the potential for the platform. As the field continues to make progress, a growing data set of long-term safety and efficacy data will continue to define gene therapy's role, determining ultimately how widely it may be used beyond rare, serious diseases with high unmet needs. New technologies often take unanticipated twists and turns as patient exposure accumulates, and gene therapy may be no exception. That said, with many diseases that have no other treatment options beyond gene therapy and that present considerable morbidity and mortality, the field appears poised to withstand some minor and even major bumps in the road should they emerge.

  1. In vitro evaluation of dendrimer prodrugs for oral drug delivery.

    Science.gov (United States)

    Najlah, Mohammad; Freeman, Sally; Attwood, David; D'Emanuele, Antony

    2007-05-04

    Dendrimer-based prodrugs were used to enhance the transepithelial permeability of naproxen, a low solubility model drug. The stability of the dendrimer-naproxen link was assessed. Naproxen was conjugated to G0 polyamidoamine (PAMAM) dendrimers either by an amide bond or an ester bond. The stability of G0 prodrugs was evaluated in 80% human plasma and 50% rat liver homogenate. The cytotoxicity of conjugates towards Caco-2 cells was determined and the transport of the conjugates across Caco-2 monolayers (37 degrees C) was reported. In addition, one lauroyl chain (L) was attached to the surface group of G0 PAMAM dendrimer of the diethylene glycol ester conjugate (G0-deg-NAP) to enhance permeability. The lactic ester conjugate, G0-lact-NAP, hydrolyzed slowly in 80% human plasma and in 50% rat liver homogenate (t(1/2)=180 min). G0-deg-NAP was hydrolyzed more rapidly in 80% human plasma (t(1/2)=51 min) and was rapidly cleaved in 50% liver homogenate (t(1/2)=4.7 min). The conjugates were non-toxic when exposed to Caco-2 cells for 3h. Permeability studies showed a significant enhancement in the transport of naproxen when conjugated to dendrimers; L-G0-deg-NAP yielding the highest permeability. Dendrimer-based prodrugs with appropriate linkers have potential as carriers for the oral delivery of low solubility drugs such as naproxen.

  2. Gene Therapy in Cardiac Arrhythmias

    OpenAIRE

    Praveen, S.V; Francis, Johnson; Venugopal, K

    2006-01-01

    Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV...

  3. Comparison of the direct enzyme assay method with the membrane ...

    African Journals Online (AJOL)

    Comparison of the direct enzyme assay method with the membrane filtration technique in the quantification and monitoring of microbial indicator organisms – seasonal variations in the activities of coliforms and E. coli, temperature and pH.

  4. 'Molecular switch' vectors for hypoxia- and radiation-mediated gene therapy of cancer

    International Nuclear Information System (INIS)

    Greco, O.; Marples, B.; Joiner, M.C.; Scott, S.D.

    2003-01-01

    Intratumoral areas of low oxygen concentration are known to be refractive to radiotherapy treatment. However, this physiological condition can be exploited for selective cancer gene therapy. We have developed a series of synthetic promoters selectively responsive to both hypoxia and ionizing radiation (IR). These promoters contain hypoxia regulatory elements (HREs) from the erythropoietin (Epo), the phosphoglycerate kinase1(PGK1) and vascular endothelial growth factor (VEGF) genes, and/or IR-responsive CArG elements from the Early Growth Response 1 (Egr1) gene. The HRE and CArG promoters were able to regulate expression of reporter and suicide genes in human tumor cells, following corresponding stimulation with hypoxia (0.1% O2) or X-irradiation (5Gy) [Greco et al, 2002, Gene Therapy 9:1403]. Furthermore, the chimeric HRE + CArG promoters could be activated by these stimuli independently or even more significantly when given in combination, with the Epo HRE/CArG promoter proving to be the most responsive and robust. In order to amplify and maintain transgene expression even following withdrawal of the triggering stimuli, we have developed a 'molecular switch' system [Scott et al, 2000, Gene Therapy 7:1121]. This 'switch' system has now been engineered as a single vector molecule, containing HRE and CArG promoters. This new series of HRE/CArG switch vectors have been tested in a herpes simplex thymidine kinase (HSVtk)/ganciclovir (GCV) suicide gene assay. Results indicate that a) higher and more selective tumor cell kill is achieved with the switch when compared with the HRE and CArG promoters directly driving HSVtk expression and b) the Epo HRE/CArG switch vectors appear to function as efficiently as the strong constitutive cytomegalovirus (CMV) promoter construct

  5. The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104

    Science.gov (United States)

    Foehrenbacher, Annika; Patel, Kashyap; Abbattista, Maria R.; Guise, Chris P.; Secomb, Timothy W.; Wilson, William R.; Hicks, Kevin O.

    2013-01-01

    Activation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment. Such “bystander effects” may offset spatial heterogeneity in prodrug activation but the relative importance of this effect is not understood. Here, we quantify the contribution of bystander effects to antitumor activity for the first time, by developing a spatially resolved pharmacokinetic/pharmacodynamic (SR-PK/PD) model for PR-104, a phosphate ester pre-prodrug that is converted systemically to the hypoxia-activated prodrug PR-104A. Using Green’s function methods we calculated concentrations of oxygen, PR-104A and its active metabolites, and resultant cell killing, at each point of a mapped three-dimensional tumor microregion. Model parameters were determined in vitro, using single cell suspensions to determine relationships between PR-104A metabolism and clonogenic cell killing, and multicellular layer (MCL) cultures to measure tissue diffusion coefficients. LC-MS/MS detection of active metabolites in the extracellular medium following exposure of anoxic single cell suspensions and MCLs to PR-104A confirmed that metabolites can diffuse out of cells and through a tissue-like environment. The SR-PK/PD model estimated that bystander effects contribute 30 and 50% of PR-104 activity in SiHa and HCT116 tumors, respectively. Testing the model by modulating PR-104A-activating reductases and hypoxia in tumor xenografts showed overall clonogenic killing broadly consistent with model predictions. Overall, our data suggest that bystander effects are important in PR-104 antitumor activity, although their reach may be limited by macroregional heterogeneity in hypoxia and reductase expression in tumors. The reported computational and experimental techniques are broadly applicable to all targeted anticancer prodrugs and could be used to identify strategies for rational prodrug optimization. PMID

  6. Gene Therapy with the Sleeping Beauty Transposon System.

    Science.gov (United States)

    Kebriaei, Partow; Izsvák, Zsuzsanna; Narayanavari, Suneel A; Singh, Harjeet; Ivics, Zoltán

    2017-11-01

    The widespread clinical implementation of gene therapy requires the ability to stably integrate genetic information through gene transfer vectors in a safe, effective, and economical manner. The latest generation of Sleeping Beauty (SB) transposon vectors fulfills these requirements, and may overcome limitations associated with viral gene transfer vectors and transient nonviral gene delivery approaches that are prevalent in ongoing clinical trials. The SB system enables high-level stable gene transfer and sustained transgene expression in multiple primary human somatic cell types, thereby representing a highly attractive gene transfer strategy for clinical use. Here, we review the most important aspects of using SB for gene therapy, including vectorization as well as genomic integration features. We also illustrate the path to successful clinical implementation by highlighting the application of chimeric antigen receptor (CAR)-modified T cells in cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Distribution and pharmacokinetics of the prodrug daunorubicin-GA3 in nude mice bearing human ovarian cancer xenografts

    NARCIS (Netherlands)

    Houba, PHJ; Boven, E; van der Meulen-Muileman, IH; Leenders, RGG; Scheeren, JW; Pinedo, HM; Haisma, HJ

    1999-01-01

    N-[4-daunorubicin-N-carbonyl (oxymethyl)phenyl] O-beta-glucuronyl carbamate (DNR-GA3) is a glucuronide prodrug of daunorubicin (DNR) which induced a better tumor growth delay than DNR when studied at equitoxic doses in three human ovarian cancer xenografts. These results suggested that the prodrug

  8. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  9. [Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge].

    Science.gov (United States)

    Ďuďáková, Ľ; Kousal, B; Kolářová, H; Hlavatá, L; Lišková, P

    The aim of this review is to provide a comprehensive summary of current gene therapy clinical trials for monogenic and optic nerve disorders.The number of genes for which gene-based therapies are being developed is growing. At the time of writing this review gene-based clinical trials have been registered for Leber congenital amaurosis 2 (LCA2), retinitis pigmentosa 38, Usher syndrome 1B, Stargardt disease, choroideremia, achromatopsia, Leber hereditary optic neuropathy (LHON) and X-linked retinoschisis. Apart from RPE65 gene therapy for LCA2 and MT-ND4 for LHON which has reached phase III, all other trials are in investigation phase I and II, i.e. testing the efficacy and safety.Because of the relatively easy accessibility of the retina and its ease of visualization which allows monitoring of efficacy, gene-based therapies for inherited retinal disorders represent a very promising treatment option. With the development of novel therapeutic approaches, the importance of establishing not only clinical but also molecular genetic diagnosis is obvious.Key words: gene therapy, monogenic retinal diseases, optic nerve atrophy, mitochondrial disease.

  10. Antiviral acyclic nucleoside phosphonates: New structures and prodrugs

    Czech Academy of Sciences Publication Activity Database

    Krečmerová, Marcela; Tichý, Tomáš; Pomeisl, Karel; Andrei, G.; Balzarini, J.; Snoeck, R.

    2016-01-01

    Roč. 1, č. 2 (2016), s. 37 [PharmaMed-2016. International Conference on Medicinal and Pharmaceutical Chemistry . 05.12.2016-07.12.2016, Dubai] R&D Projects: GA ČR(CZ) GA14-00522S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * prodrugs * antivirals * 5-azacytosine Subject RIV: CC - Organic Chemistry

  11. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  12. Application of Prodrugs to Inflammatory Diseases of the Gut

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Ebersole

    2008-02-01

    Full Text Available Oral delivery is the most common and preferred route of drug administrationalthough the digestive tract exhibits several obstacles to drug delivery including motilityand intraluminal pH profiles. The gut milieu represents the largest mucosal surfaceexposed to microorganisms with 1010-12 colony forming bacteria/g of colonic content.Approximately, one third of fecal dry matter is made of bacteria/ bacterial components.Indeed, the normal gut microbiota is responsible for healthy digestion of dietary fibers(polysaccharides and fermentation of short chain fatty acids such as acetate and butyratethat provide carbon sources (fuel for these bacteria. Inflammatory bowel disease (IBDresults in breakage of the mucosal barrier, an altered microbiota and dysregulated gutimmunity. Prodrugs that are chemically constructed to target colonic release or aredegraded specifically by colonic bacteria, can be useful in the treatment of IBD. Thisreview describes the progress in digestive tract prodrug design and delivery in light of gutmetabolic activities.

  13. Recent trends in the gene therapy of β-thalassemia

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  14. Antioxidant enzymes as potential targets in cardioprotection and treatment of cardiovascular diseases. Enzyme antioxidants: the next stage of pharmacological counterwork to the oxidative stress

    Directory of Open Access Journals (Sweden)

    Alexander V. Vavaev

    2012-02-01

    Full Text Available The focus in antioxidant research is on enzyme derivative investigations. Extracellular superoxide dismutase (EC-SOD is of particular interest, as it demonstrates in vivo the protective action against development of atherosclerosis, hypertension, heart failure, diabetes mellitus. The reliable association of coronary artery disease with decreased level of heparin-released EC-SOD was established in clinical research. To create a base for and to develop antioxidant therapy, various SOD isozymes, catalase (CAT, methods of gene therapy, and combined applications of enzymes are used. Covalent bienzyme SOD-CHS-CAT conjugate (CHS, chondroitin sulphate showed high efficacy and safety as the drug candidate. There is an evident trend to use the components of glycocalyx and extracellular matrix for target delivery of medical substances. Development of new enzyme antioxidants for therapeutic application is closely connected with progress in medical biotechnology, pharmaceutical industry, and bioeconomy.

  15. Selection Finder (SelFi: A computational metabolic engineering tool to enable directed evolution of enzymes

    Directory of Open Access Journals (Sweden)

    Neda Hassanpour

    2017-06-01

    Full Text Available Directed evolution of enzymes consists of an iterative process of creating mutant libraries and choosing desired phenotypes through screening or selection until the enzymatic activity reaches a desired goal. The biggest challenge in directed enzyme evolution is identifying high-throughput screens or selections to isolate the variant(s with the desired property. We present in this paper a computational metabolic engineering framework, Selection Finder (SelFi, to construct a selection pathway from a desired enzymatic product to a cellular host and to couple the pathway with cell survival. We applied SelFi to construct selection pathways for four enzymes and their desired enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline. Two of the selection pathways identified by SelFi were previously experimentally validated for engineering Xylose Reductase and RuBisCO. Importantly, SelFi advances directed evolution of enzymes as there is currently no known generalized strategies or computational techniques for identifying high-throughput selections for engineering enzymes.

  16. Towards host-directed therapies for tuberculosis.

    Science.gov (United States)

    Zumla, Alimuddin; Maeurer, Markus; Chakaya, Jeremiah; Hoelscher, Michael; Ntoumi, Francine; Rustomjee, Roxana; Vilaplana, Cristina; Yeboah-Manu, Dorothy; Rasolof, Voahangy; Munderi, Paula; Singh, Nalini; Aklillu, Eleni; Padayatchi, Nesri; Macete, Eusebio; Kapata, Nathan; Mulenga, Modest; Kibiki, Gibson; Mfinanga, Sayoki; Nyirenda, Thomas; Maboko, Leonard; Garcia-Basteiro, Alberto; Rakotosamimanana, Niaina; Bates, Matthew; Mwaba, Peter; Reither, Klaus; Gagneux, Sebastien; Edwards, Sarah; Mfinanga, Elirehema; Abdulla, Salim; Cardona, Pere-Joan; Russell, James B W; Gant, Vanya; Noursadeghi, Mahdad; Elkington, Paul; Bonnet, Maryline; Menendez, Clara; Dieye, Tandakha N; Diarra, Bassirou; Maiga, Almoustapha; Aseffa, Abraham; Parida, Shreemanta; Wejse, Christian; Petersen, Eskild; Kaleebu, Pontiano; Oliver, Matt; Craig, Gill; Corrah, Tumena; Tientcheu, Leopold; Antonio, Martin; Rao, Martin; McHugh, Timothy D; Sheikh, Aziz; Ippolito, Giuseppe; Ramjee, Gita; Kaufmann, Stefan H E; Churchyard, Gavin; Steyn, Andrie; Grobusch, Martin; Sanne, Ian; Martinson, Neil; Madansein, Rajhmun; Wilkinson, Robert J; Mayosi, Bongani; Schito, Marco; Wallis, Robert S

    2015-08-01

    The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies.

  17. DNA methylation analysis of the angiotensin converting enzyme (ACE gene in major depression.

    Directory of Open Access Journals (Sweden)

    Peter Zill

    Full Text Available BACKGROUND: The angiotensin converting enzyme (ACE has been repeatedly discussed as susceptibility factor for major depression (MD and the bi-directional relation between MD and cardiovascular disorders (CVD. In this context, functional polymorphisms of the ACE gene have been linked to depression, to antidepressant treatment response, to ACE serum concentrations, as well as to hypertension, myocardial infarction and CVD risk markers. The mostly investigated ACE Ins/Del polymorphism accounts for ~40%-50% of the ACE serum concentration variance, the remaining half is probably determined by other genetic, environmental or epigenetic factors, but these are poorly understood. MATERIALS AND METHODS: The main aim of the present study was the analysis of the DNA methylation pattern in the regulatory region of the ACE gene in peripheral leukocytes of 81 MD patients and 81 healthy controls. RESULTS: We detected intensive DNA methylation within a recently described, functional important region of the ACE gene promoter including hypermethylation in depressed patients (p = 0.008 and a significant inverse correlation between the ACE serum concentration and ACE promoter methylation frequency in the total sample (p = 0.02. Furthermore, a significant inverse correlation between the concentrations of the inflammatory CVD risk markers ICAM-1, E-selectin and P-selectin and the degree of ACE promoter methylation in MD patients could be demonstrated (p = 0.01 - 0.04. CONCLUSION: The results of the present study suggest that aberrations in ACE promoter DNA methylation may be an underlying cause of MD and probably a common pathogenic factor for the bi-directional relationship between MD and cardiovascular disorders.

  18. Gene therapy clinical trials worldwide to 2017: An update.

    Science.gov (United States)

    Ginn, Samantha L; Amaya, Anais K; Alexander, Ian E; Edelstein, Michael; Abedi, Mohammad R

    2018-03-25

    To date, almost 2600 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical activity from trial databases, official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our November 2017 update, we have entries on 2597 trials undertaken in 38 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and the genes that have been transferred. Details of the analyses presented, and our searchable database are available via The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in gene therapy clinical trials around the world, and discuss key trends since the previous review, namely the use of chimeric antigen receptor T cells for the treatment of cancer and advancements in genome editing technologies, which have the potential to transform the field moving forward. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Bioethical conflicts of gene therapy: a brief critical review

    Directory of Open Access Journals (Sweden)

    José Ednésio da Cruz Freire

    2014-12-01

    Full Text Available Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication

  20. Host-directed therapy of tuberculosis: what is in it for microRNA?

    Science.gov (United States)

    Iannaccone, Marco; Dorhoi, Anca; Kaufmann, Stefan H E

    2014-05-01

    Tuberculosis (TB) is a major health threat and current intervention measures are far from satisfactory. MicroRNAs (miRs) have become major targets of investigations for different diseases due to their propensity to regulate gene expression in various biological processes. More recently, miRs have been found to play key roles in the control of infectious diseases. Consequently, the potential of miRs for diagnosis and therapy of TB is being considered. In this editorial, we discuss most recent lines of evidence for regulation of the immune response in TB by miRs that could form the basis for diagnosis and host-directed therapy in adjunct to canonical intervention measures in TB.