WorldWideScience

Sample records for gene variation influences

  1. Host genetic variation influences gene expression response to rhinovirus infection.

    Directory of Open Access Journals (Sweden)

    Minal Çalışkan

    2015-04-01

    Full Text Available Rhinovirus (RV is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs, namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5 and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3. The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  2. Host genetic variation influences gene expression response to rhinovirus infection.

    Science.gov (United States)

    Çalışkan, Minal; Baker, Samuel W; Gilad, Yoav; Ober, Carole

    2015-04-01

    Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.

  3. Lack of influence of GTP cyclohydrolase gene (GCH1 variations on pain sensitivity in humans

    Directory of Open Access Journals (Sweden)

    Dionne Raymond A

    2007-03-01

    Full Text Available Abstract Objectives To assess the effect of variations in GTP cyclohydrolase gene (GCH1 on pain sensitivity in humans. Methods Thermal and cold pain sensitivity were evaluated in a cohort of 735 healthy volunteers. Among this cohort, the clinical pain responses of 221 subjects after the surgical removal of impacted third molars were evaluated. Genotyping was done for 38 single nucleotide polymorphisms (SNPs whose heterozygosity > 0.2 in GCH1. Influence of the genetic variations including SNPs and haplotypes on pain sensitivity were analyzed. Results Minor allele frequencies and linkage disequilibrium show significant differences in European Americans, African Americans, Hispanic Americans and Asian Americans. Association analyses in European Americans do not replicate the previously reported important influence of GCH1 variations on pain sensitivity. Conclusion Considering population stratification, previously reported associations between GCH1 genetic variations and pain sensitivity appear weak or negligible in this well characterized model of pain.

  4. Influence of IL15 gene variations on the clinical features, treatment response and risk of developing childhood acute lymphoblastic leukemia in Latvian population.

    Science.gov (United States)

    Rots, Dmitrijs; Kreile, Madara; Nikulshin, Sergejs; Kovalova, Zhanna; Gailite, Linda

    2018-02-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Modern treatment protocols allow achievement of long-term event-free survival rates in up to 85% of cases, although the treatment response varies among different patient groups. It is hypothesized that treatment response is influenced by the IL15 gene variations, although research results are conflicting. To analyze IL15 gene variations influence treatment response, clinical course and the risk of developing ALL we performed a case-control and family-based study. The study included 81 patients with childhood ALL. DNA samples of both or one biological parent were available for 62 of ALL patients and 130 age and gender adjusted healthy samples were used as a control group. Analyzed IL15 gene variations: rs10519612, rs10519613 and rs17007695 were genotyped using PCR-RFLP assay. Our results shows that IL15 gene variations haplotypes are associated with the risk of developing childhood ALL (p variations separately. The variations rs10519612 and rs1059613 in a recessive pattern of inheritance were associated with hyperdiploidy (p = 0.048). Analyzed genetic variations had no impact on other clinical features and treatment response (assessed by the minimal residual disease) in our study.

  5. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety.

    Science.gov (United States)

    Notzon, S; Domschke, K; Holitschke, K; Ziegler, C; Arolt, V; Pauli, P; Reif, A; Deckert, J; Zwanzger, P

    2016-01-01

    Social anxiety has been suggested to be promoted by an insecure attachment style. Oxytocin is discussed as a mediator of trust and social bonding as well as a modulator of social anxiety. Applying a gene-environment (G × E) interaction approach, in the present pilot study the main and interactive effects of attachment styles and oxytocin receptor (OXTR) gene variation were probed in a combined risk factor model of social anxiety in healthy probands. Participants (N = 388; 219 females, 169 males; age 24.7 ± 4.7 years) were assessed for anxiety in social situations (Social Phobia and Anxiety Inventory) depending on attachment style (Adult Attachment Scale, AAS) and OXTR rs53576 A/G genotype. A less secure attachment style was significantly associated with higher social anxiety. This association was partly modulated by OXTR genotype, with a stronger negative influence of a less secure attachment style on social anxiety in A allele carriers as compared to GG homozygotes. The present pilot data point to a strong association of less secure attachment and social anxiety as well as to a gene-environment interaction effect of OXTR rs53576 genotype and attachment style on social anxiety possibly constituting a targetable combined risk marker of social anxiety disorder.

  6. Genetic variation in the serotonin transporter gene influences ERP old/new effects during recognition memory.

    Science.gov (United States)

    Ross, Robert S; Medrano, Paolo; Boyle, Kaitlin; Smolen, Andrew; Curran, Tim; Nyhus, Erika

    2015-11-01

    Recognition memory is defined as the ability to recognize a previously encountered stimulus and has been associated with spatially and temporally distinct event-related potentials (ERPs). Allelic variations of the serotonin transporter gene (SLC6A4) have recently been shown to impact memory performance. Common variants of the serotonin transporter-linked polymorphic region (5HTTLPR) of the SLC6A4 gene result in long (l) and short (s) allelic variants with carriers of the s allele having lowered transcriptional efficiency. Thus, the current study examines the effects polymorphisms of the SLC6A4 gene have on performance and ERP amplitudes commonly associated with recognition memory. Electroencephalogram (EEG), genetic, and behavioral data were collected from sixty participants as they performed an item and source memory recognition task. In both tasks, participants studied and encoded 200 words, which were then mixed with 200 new words during retrieval. Participants were monitored with EEG during the retrieval portion of each memory task. EEG electrodes were grouped into four ROIs, left anterior superior, right anterior superior, left posterior superior, and right posterior superior. ERP mean amplitudes during hits in the item and source memory task were compared to correctly recognizing new items (correct rejections). Results show that s-carriers have decreased mean hit amplitudes in both the right anterior superior ROI 1000-1500ms post stimulus during the source memory task and the left anterior superior ROI 300-500ms post stimulus during the item memory task. These results suggest that individual differences due to genetic variation of the serotonin transporter gene influences recognition memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological?

    Science.gov (United States)

    Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C

    2018-02-19

    The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.

  8. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    Science.gov (United States)

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Oxytocin receptor gene variation predicts subjective responses to MDMA.

    Science.gov (United States)

    Bershad, Anya K; Weafer, Jessica J; Kirkpatrick, Matthew G; Wardle, Margaret C; Miller, Melissa A; de Wit, Harriet

    2016-12-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") enhances desire to socialize and feelings of empathy, which are thought to be related to increased oxytocin levels. Thus, variation in the oxytocin receptor gene (OXTR) may influence responses to the drug. Here, we examined the influence of a single OXTR nucleotide polymorphism (SNP) on responses to MDMA in humans. Based on findings that carriers of the A allele at rs53576 exhibit reduced sensitivity to oxytocin-induced social behavior, we hypothesized that these individuals would show reduced subjective responses to MDMA, including sociability. In this three-session, double blind, within-subjects study, healthy volunteers with past MDMA experience (N = 68) received a MDMA (0, 0.75 mg/kg, and 1.5 mg/kg) and provided self-report ratings of sociability, anxiety, and drug effects. These responses were examined in relation to rs53576. MDMA (1.5 mg/kg) did not increase sociability in individuals with the A/A genotype as it did in G allele carriers. The genotypic groups did not differ in responses at the lower MDMA dose, or in cardiovascular or other subjective responses. These findings are consistent with the idea that MDMA-induced sociability is mediated by oxytocin, and that variation in the oxytocin receptor gene may influence responses to the drug.

  10. Parkinson's disease and mitochondrial gene variations

    DEFF Research Database (Denmark)

    Andalib, Sasan; Vafaee, Manouchehr Seyedi; Gjedde, Albert

    2014-01-01

    Parkinson's disease (PD) is a common disorder of the central nervous system in the elderly. The pathogenesis of PD is a complex process, with genetics as an important contributing factor. This factor may stem from mitochondrial gene variations and mutations as well as from nuclear gene variations...

  11. Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus

    Directory of Open Access Journals (Sweden)

    Victoria L. Pritchard

    2017-01-01

    Full Text Available Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus, an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats.

  12. Variation in the oxytocin receptor gene (OXTR) is associated with differences in moral judgment.

    Science.gov (United States)

    Bernhard, Regan M; Chaponis, Jonathan; Siburian, Richie; Gallagher, Patience; Ransohoff, Katherine; Wikler, Daniel; Perlis, Roy H; Greene, Joshua D

    2016-12-01

    Moral judgments are produced through the coordinated interaction of multiple neural systems, each of which relies on a characteristic set of neurotransmitters. Genes that produce or regulate these neurotransmitters may have distinctive influences on moral judgment. Two studies examined potential genetic influences on moral judgment using dilemmas that reliably elicit competing automatic and controlled responses, generated by dissociable neural systems. Study 1 (N = 228) examined 49 common variants (SNPs) within 10 candidate genes and identified a nominal association between a polymorphism (rs237889) of the oxytocin receptor gene (OXTR) and variation in deontological vs utilitarian moral judgment (that is, judgments favoring individual rights vs the greater good). An association was likewise observed for rs1042615 of the arginine vasopressin receptor gene (AVPR1A). Study 2 (N = 322) aimed to replicate these findings using the aforementioned dilemmas as well as a new set of structurally similar medical dilemmas. Study 2 failed to replicate the association with AVPR1A, but replicated the OXTR finding using both the original and new dilemmas. Together, these findings suggest that moral judgment is influenced by variation in the oxytocin receptor gene and, more generally, that single genetic polymorphisms can have a detectable effect on complex decision processes. © The Author (2016). Published by Oxford University Press.

  13. Regulatory Architecture of Gene Expression Variation in the Threespine Stickleback Gasterosteus aculeatus.

    Science.gov (United States)

    Pritchard, Victoria L; Viitaniemi, Heidi M; McCairns, R J Scott; Merilä, Juha; Nikinmaa, Mikko; Primmer, Craig R; Leder, Erica H

    2017-01-05

    Much adaptive evolutionary change is underlain by mutational variation in regions of the genome that regulate gene expression rather than in the coding regions of the genes themselves. An understanding of the role of gene expression variation in facilitating local adaptation will be aided by an understanding of underlying regulatory networks. Here, we characterize the genetic architecture of gene expression variation in the threespine stickleback (Gasterosteus aculeatus), an important model in the study of adaptive evolution. We collected transcriptomic and genomic data from 60 half-sib families using an expression microarray and genotyping-by-sequencing, and located expression quantitative trait loci (eQTL) underlying the variation in gene expression in liver tissue using an interval mapping approach. We identified eQTL for several thousand expression traits. Expression was influenced by polymorphism in both cis- and trans-regulatory regions. Trans-eQTL clustered into hotspots. We did not identify master transcriptional regulators in hotspot locations: rather, the presence of hotspots may be driven by complex interactions between multiple transcription factors. One observed hotspot colocated with a QTL recently found to underlie salinity tolerance in the threespine stickleback. However, most other observed hotspots did not colocate with regions of the genome known to be involved in adaptive divergence between marine and freshwater habitats. Copyright © 2017 Pritchard et al.

  14. Natural Variation in Synthesis and Catabolism Genes Influences Dhurrin Content in Sorghum

    Directory of Open Access Journals (Sweden)

    Chad M. Hayes

    2015-07-01

    Full Text Available Cyanogenic glucosides are natural compounds found in more than 1000 species of angiosperms that produce HCN and are deemed undesirable for agricultural use. However, these compounds are important components of the primary defensive mechanisms of many plant species. One of the best-studied cyanogenic glucosides is dhurrin [(--hydroxymandelonitrile-β--glucopyranoside], which is produced primarily in sorghum [ (L. Moench]. The biochemical basis for dhurrin metabolism is well established; however, little information is available on its genetic control. Here, we dissect the genetic control of leaf dhurrin content through a genome-wide association study (GWAS using a panel of 700 diverse converted sorghum lines (conversion panel previously subjected to pre-breeding and selected for short stature (∼1 m in height and photoperiod insensitivity. The conversion panel was grown for 2 yr in three environments. Wide variation for leaf dhurrin content was found in the sorghum conversion panel, with the Caudatum group exhibiting the highest dhurrin content and the Guinea group showing the lowest dhurrin content. A GWAS using a mixed linear model revealed significant associations (a false discovery rate [FDR] < 0.05 close to both UGT 185B1 in the canonical biosynthetic gene cluster on chromosome 1 and close to the catabolic dhurrinase loci on chromosome 8. Dhurrin content was associated consistently with biosynthetic genes in the two N-fertilized environments, while dhurrin content was associated with catabolic loci in the environment without supplemental N. These results suggest that genes for both biosynthesis and catabolism are important in determining natural variation for leaf dhurrin in sorghum in different environments.

  15. Major genes and QTL influencing wool production and quality: a review

    Directory of Open Access Journals (Sweden)

    Purvis Ian

    2005-12-01

    Full Text Available Abstract The opportunity exists to utilise our knowledge of major genes that influence the economically important traits in wool sheep. Genes with Mendelian inheritance have been identified for many important traits in wool sheep. Of particular importance are genes influencing pigmentation, wool quality and the keratin proteins, the latter of which are important for the morphology of the wool fibre. Gene mapping studies have identified some chromosomal regions associated with variation in wool quality and production traits. The challenge now is to build on this knowledge base in a cost-effective way to deliver molecular tools that facilitate enhanced genetic improvement programs for wool sheep.

  16. Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples.

    NARCIS (Netherlands)

    McKinney, C.; Fanciulli, M.; Merriman, M.E.; Phipps-Green, A.; Alizadeh, B.Z.; Koeleman, B.P.; Dalbeth, N.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Riel, P.L.C.M. van; Vyse, T.J.; Aitman, T.J.; Radstake, T.R.D.J.; Merriman, T.R.

    2010-01-01

    OBJECTIVE: There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fcgamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  17. Population genetic variation in gene expression is associated withphenotypic variation in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Fay, Justin C.; McCullough, Heather L.; Sniegowski, Paul D.; Eisen, Michael B.

    2004-02-25

    The relationship between genetic variation in gene expression and phenotypic variation observable in nature is not well understood. Identifying how many phenotypes are associated with differences in gene expression and how many gene-expression differences are associated with a phenotype is important to understanding the molecular basis and evolution of complex traits. Results: We compared levels of gene expression among nine natural isolates of Saccharomyces cerevisiae grown either in the presence or absence of copper sulfate. Of the nine strains, two show a reduced growth rate and two others are rust colored in the presence of copper sulfate. We identified 633 genes that show significant differences in expression among strains. Of these genes,20 were correlated with resistance to copper sulfate and 24 were correlated with rust coloration. The function of these genes in combination with their expression pattern suggests the presence of both correlative and causative expression differences. But the majority of differentially expressed genes were not correlated with either phenotype and showed the same expression pattern both in the presence and absence of copper sulfate. To determine whether these expression differences may contribute to phenotypic variation under other environmental conditions, we examined one phenotype, freeze tolerance, predicted by the differential expression of the aquaporin gene AQY2. We found freeze tolerance is associated with the expression of AQY2. Conclusions: Gene expression differences provide substantial insight into the molecular basis of naturally occurring traits and can be used to predict environment dependent phenotypic variation.

  18. A role for gene duplication and natural variation of gene expression in the evolution of metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel J Kliebenstein

    Full Text Available BACKGROUND: Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function. METHODOLOGY/PRINCIPAL FINDINGS: To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures. CONCLUSION: These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.

  19. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.

    2010-01-01

    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  20. Genetic variation in a member of the laminin gene family affects variation in body composition in Drosophila and humans

    Directory of Open Access Journals (Sweden)

    Hunter Gary R

    2008-08-01

    Full Text Available Abstract Background The objective of the present study was to map candidate loci influencing naturally occurring variation in triacylglycerol (TAG storage using quantitative complementation procedures in Drosophila melanogaster. Based on our results from Drosophila, we performed a human population-based association study to investigate the effect of natural variation in LAMA5 gene on body composition in humans. Results We identified four candidate genes that contributed to differences in TAG storage between two strains of D. melanogaster, including Laminin A (LanA, which is a member of the α subfamily of laminin chains. We confirmed the effects of this gene using a viable LanA mutant and showed that female flies homozygous for the mutation had significantly lower TAG storage, body weight, and total protein content than control flies. Drosophila LanA is closely related to human LAMA5 gene, which maps to the well-replicated obesity-linkage region on chromosome 20q13.2-q13.3. We tested for association between three common single nucleotide polymorphisms (SNPs in the human LAMA5 gene and variation in body composition and lipid profile traits in a cohort of unrelated women of European American (EA and African American (AA descent. In both ethnic groups, we found that SNP rs659822 was associated with weight (EA: P = 0.008; AA: P = 0.05 and lean mass (EA: P= 0.003; AA: P = 0.03. We also found this SNP to be associated with height (P = 0.01, total fat mass (P = 0.01, and HDL-cholesterol (P = 0.003 but only in EA women. Finally, significant associations of SNP rs944895 with serum TAG levels (P = 0.02 and HDL-cholesterol (P = 0.03 were observed in AA women. Conclusion Our results suggest an evolutionarily conserved role of a member of the laminin gene family in contributing to variation in weight and body composition.

  1. Topological variation in single-gene phylogenetic trees

    OpenAIRE

    Castresana, Jose

    2007-01-01

    A recent large-scale phylogenomic study has shown the great degree of topological variation that can be found among eukaryotic phylogenetic trees constructed from single genes, highlighting the problems that can be associated with gene sampling in phylogenetic studies.

  2. Genetic variations in key inflammatory cytokines exacerbates the risk of diabetic nephropathy by influencing the gene expression.

    Science.gov (United States)

    Hameed, Iqra; Masoodi, Shariq R; Malik, Perveez A; Mir, Shahnaz A; Ghazanfar, Khalid; Ganai, Bashir A

    2018-06-30

    Diabetic nephropathy is the single strongest predictor of mortality in patients with diabetes. The development of overt nephropathy involves important inter-individual variations, even after adjusting for potential confounding influences of modifiable and non-modifiable risk factors. Genome-wide transcriptome studies have reported the activation of inflammatory signaling pathways and there is mounting indication of the role of genetic factors. We screened nine genetic variations in three cytokine genes (TNF-α, IL-6 and IL-β) in 1326 unrelated subjects comprising of healthy controls (n = 464), type 2 diabetics with nephropathy (DN, n = 448) and type 2 diabetes without nephropathy (T2D, n = 414) by sequence-specific amplification. Functional implication of SNPs was elucidated by correlation studies and relative gene expression using Realtime-Quantitative PCR (RT-qPCR). Individual SNP analysis showed highest association of IL-1β rs16944-TT genotype (OR = 3.51, 95%CI = 2.36-5.21, P = 0.001) and TNF-α rs1800629-AA genotype (OR = 2.75, 95% CI = 1.64-4.59, P = 0.001) with T2D and DN respectively. The haplotype frequency showed significant risk of seven combinations among T2D and four combinations among DN subjects. The highest risk of T2D and DN was associated with GGTGAGTTT (OR = 4.25, 95%CI = 3.3-14.20, P = 0.0016) and GACGACCTT (OR = 21.3, 95%CI = 15.1-28.33, P = 0.026) haplotypes respectively. Relative expression by RT-qPCR showed increased cytokine expression in cases as compared to controls. TNF-α expression was increased by more than four-folds (n-fold = 4.43 ± 1.11) in DN. TNF-α, IL-6 and IL-1β transcript levels were significantly modulated by promoter region SNPs. The present study implicates a strong association between cytokine TNF-α, IL-6 and IL-1β gene promoter polymorphisms and modulation of transcript levels with susceptibility to nephropathy in diabetes subjects. Copyright

  3. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    Directory of Open Access Journals (Sweden)

    David A Garfield

    2013-10-01

    Full Text Available Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear, allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  4. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  5. Genomic variation in Salmonella enterica core genes for epidemiological typing

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Rundsten, Carsten Friis

    2012-01-01

    Background: Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over...... genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher...... that there is a positive selection towards mutations leading to amino acid changes. Conclusions: Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important...

  6. Variation in gene expression within clones of the earthworm Dendrobaena octaedra.

    Directory of Open Access Journals (Sweden)

    Marina Mustonen

    Full Text Available Gene expression is highly plastic, which can help organisms to both acclimate and adapt to changing environments. Possible variation in gene expression among individuals with the same genotype (among clones is not widely considered, even though it could impact the results of studies that focus on gene expression phenotypes, for example studies using clonal lines. We examined the extent of within and between clone variation in gene expression in the earthworm Dendrobaena octaedra, which reproduces through apomictic parthenogenesis. Five microsatellite markers were developed and used to confirm that offspring are genetic clones of their parent. After that, expression of 12 genes was measured from five individuals each from six clonal lines after exposure to copper contaminated soil. Variation in gene expression was higher over all genotypes than within genotypes, as initially assumed. A subset of the genes was also examined in the offspring of exposed individuals in two of the clonal lines. In this case, variation in gene expression within genotypes was as high as that observed over all genotypes. One gene in particular (chymotrypsin inhibitor also showed significant differences in the expression levels among genetically identical individuals. Gene expression can vary considerably, and the extent of variation may depend on the genotypes and genes studied. Ensuring a large sample, with many different genotypes, is critical in studies comparing gene expression phenotypes. Researchers should be especially cautious inferring gene expression phenotypes when using only a single clonal or inbred line, since the results might be specific to only certain genotypes.

  7. Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure.

    Science.gov (United States)

    Gordon, Sean P; Contreras-Moreira, Bruno; Woods, Daniel P; Des Marais, David L; Burgess, Diane; Shu, Shengqiang; Stritt, Christoph; Roulin, Anne C; Schackwitz, Wendy; Tyler, Ludmila; Martin, Joel; Lipzen, Anna; Dochy, Niklas; Phillips, Jeremy; Barry, Kerrie; Geuten, Koen; Budak, Hikmet; Juenger, Thomas E; Amasino, Richard; Caicedo, Ana L; Goodstein, David; Davidson, Patrick; Mur, Luis A J; Figueroa, Melania; Freeling, Michael; Catalan, Pilar; Vogel, John P

    2017-12-19

    While prokaryotic pan-genomes have been shown to contain many more genes than any individual organism, the prevalence and functional significance of differentially present genes in eukaryotes remains poorly understood. Whole-genome de novo assembly and annotation of 54 lines of the grass Brachypodium distachyon yield a pan-genome containing nearly twice the number of genes found in any individual genome. Genes present in all lines are enriched for essential biological functions, while genes present in only some lines are enriched for conditionally beneficial functions (e.g., defense and development), display faster evolutionary rates, lie closer to transposable elements and are less likely to be syntenic with orthologous genes in other grasses. Our data suggest that differentially present genes contribute substantially to phenotypic variation within a eukaryote species, these genes have a major influence in population genetics, and transposable elements play a key role in pan-genome evolution.

  8. Variations in testosterone pathway genes and susceptibility to testicular cancer in Norwegian men.

    Science.gov (United States)

    Kristiansen, W; Aschim, E L; Andersen, J M; Witczak, O; Fosså, S D; Haugen, T B

    2012-12-01

    Imbalance between the oestrogen and androgen levels in utero is hypothesized to influence testicular cancer (TC) risk. Thus, variation in genes involved in the action of sex hormones may contribute to variability of an individual's susceptibility to TC. Mutations in testosterone pathway genes may alter the level of testosterone in vivo and hypothetically the risk of developing TC. Luteinizing hormone receptor (LHR), 5α-reductase II (SRD5A2) and androgen receptor (AR) are key elements in androgen action. A case-control study comprising 651 TC cases and 313 controls in a Norwegian population was conducted for investigation of polymorphisms in the LHR, SRD5A and AR genes and their possible association with TC. A statistical significant difference was observed in patients being heterozygous for the LHR Asn312Ser polymorphism when comparing genotypes between all TC cases and controls (OR = 0.66, 95% CI = 0.48-0.89, p(adj) = 0.049). No statistically significant difference between the histological subtypes seminoma and non-seminoma was observed. Our results may suggest a possible association between genetic variation in the LHR gene and the risk of developing TC. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  9. Genetic variation in social influence on mate preferences

    Science.gov (United States)

    Rebar, Darren; Rodríguez, Rafael L.

    2013-01-01

    Patterns of phenotypic variation arise in part from plasticity owing to social interactions, and these patterns contribute, in turn, to the form of selection that shapes the variation we observe in natural populations. This proximate–ultimate dynamic brings genetic variation in social environments to the forefront of evolutionary theory. However, the extent of this variation remains largely unknown. Here, we use a member of the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae) to assess how mate preferences are influenced by genetic variation in the social environment. We used full-sibling split-families as ‘treatment’ social environments, and reared focal females alongside each treatment family, describing the mate preferences of the focal females. With this method, we detected substantial genetic variation in social influence on mate preferences. The mate preferences of focal females varied according to the treatment families along with which they grew up. We discuss the evolutionary implications of the presence of such genetic variation in social influence on mate preferences, including potential contributions to the maintenance of genetic variation, the promotion of divergence, and the adaptive evolution of social effects on fitness-related traits. PMID:23698010

  10. Random phenotypic variation of yeast (Saccharomyces cerevisiae) single-gene knockouts fits a double pareto-lognormal distribution.

    Science.gov (United States)

    Graham, John H; Robb, Daniel T; Poe, Amy R

    2012-01-01

    Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of

  11. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  12. Variation of clinical expression in patients with Stargardt dystrophy and sequence variations in the ABCR gene.

    Science.gov (United States)

    Fishman, G A; Stone, E M; Grover, S; Derlacki, D J; Haines, H L; Hockey, R R

    1999-04-01

    To report the spectrum of ophthalmic findings in patients with Stargardt dystrophy or fundus flavimaculatus who have a specific sequence variation in the ABCR gene. Twenty-nine patients with Stargardt dystrophy or fundus flavimaculatus from different pedigrees were identified with possible disease-causing sequence variations in the ABCR gene from a group of 66 patients who were screened for sequence variations in this gene. Patients underwent a routine ocular examination, including slitlamp biomicroscopy and a dilated fundus examination. Fluorescein angiography was performed on 22 patients, and electroretinographic measurements were obtained on 24 of 29 patients. Kinetic visual fields were measured with a Goldmann perimeter in 26 patients. Single-strand conformation polymorphism analysis and DNA sequencing were used to identify variations in coding sequences of the ABCR gene. Three clinical phenotypes were observed among these 29 patients. In phenotype I, 9 of 12 patients had a sequence change in exon 42 of the ABCR gene in which the amino acid glutamic acid was substituted for glycine (Gly1961Glu). In only 4 of these 9 patients was a second possible disease-causing mutation found on the other ABCR allele. In addition to an atrophic-appearing macular lesion, phenotype I was characterized by localized perifoveal yellowish white flecks, the absence of a dark choroid, and normal electroretinographic amplitudes. Phenotype II consisted of 10 patients who showed a dark choroid and more diffuse yellowish white flecks in the fundus. None exhibited the Gly1961Glu change. Phenotype III consisted of 7 patients who showed extensive atrophic-appearing changes of the retinal pigment epithelium. Electroretinographic cone and rod amplitudes were reduced. One patient showed the Gly1961Glu change. A wide variation in clinical phenotype can occur in patients with sequence changes in the ABCR gene. In individual patients, a certain phenotype seems to be associated with the presence of

  13. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  14. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  15. Meiotic gene-conversion rate and tract length variation in the human genome.

    Science.gov (United States)

    Padhukasahasram, Badri; Rannala, Bruce

    2013-02-27

    Meiotic recombination occurs in the form of two different mechanisms called crossing-over and gene-conversion and both processes have an important role in shaping genetic variation in populations. Although variation in crossing-over rates has been studied extensively using sperm-typing experiments, pedigree studies and population genetic approaches, our knowledge of variation in gene-conversion parameters (ie, rates and mean tract lengths) remains far from complete. To explore variability in population gene-conversion rates and its relationship to crossing-over rate variation patterns, we have developed and validated using coalescent simulations a comprehensive Bayesian full-likelihood method that can jointly infer crossing-over and gene-conversion rates as well as tract lengths from population genomic data under general variable rate models with recombination hotspots. Here, we apply this new method to SNP data from multiple human populations and attempt to characterize for the first time the fine-scale variation in gene-conversion parameters along the human genome. We find that the estimated ratio of gene-conversion to crossing-over rates varies considerably across genomic regions as well as between populations. However, there is a great degree of uncertainty associated with such estimates. We also find substantial evidence for variation in the mean conversion tract length. The estimated tract lengths did not show any negative relationship with the local heterozygosity levels in our analysis.European Journal of Human Genetics advance online publication, 27 February 2013; doi:10.1038/ejhg.2013.30.

  16. Preliminary evidence that allelic variation in the LMX1A gene influences training-related working memory improvement.

    Science.gov (United States)

    Bellander, Martin; Brehmer, Yvonne; Westerberg, Helena; Karlsson, Sari; Fürth, Daniel; Bergman, Olle; Eriksson, Elias; Bäckman, Lars

    2011-06-01

    LMX1A is a transcription factor involved in the development of dopamine (DA)-producing neurons in midbrain. Previous research has shown that allelic variations in three LMX1A single nucleotide polymorphisms (SNPs) were related to risk of Parkinson's disease (PD), suggesting that these SNPs may influence the number of mesencephalic DA neurons. Prompted by the established link between striatal DA functions and working memory (WM) performance, we examined two of these SNPs in relation to the ability to benefit from 4 weeks of WM training. One SNP (rs4657412) was strongly associated with the magnitude of training-related gains in verbal WM. The allele linked to larger gains has previously been suggested to be associated with higher dopaminergic nerve cell density. No differential gains of either SNP were observed for spatial WM, and the genotype groups were also indistinguishable in tests of attention, interference control, episodic memory, perceptual speed, and reasoning for both SNPs. This pattern of data is in agreement with previous findings from our group, suggesting that cognitive effects of DA-related genes may be more easily detected in a training context than for single-assessment performance scores. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

    Directory of Open Access Journals (Sweden)

    Zhifeng Zhang

    2017-09-01

    Full Text Available Objective The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20 was smaller than that in Texel sheep (17 to 21. The individuals with 19 thoracolumbar vertebrae (T13L6 were dominant in Kazakh sheep (79.2%. The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP (rs426367238 was suggested to associate with thoracic vertebral number statistically. Conclusion The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238 with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  18. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    Science.gov (United States)

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  19. The Influence of Major Life Events on Economic Attitudes in a World of Gene-Environment Interplay.

    Science.gov (United States)

    Hatemi, Peter K

    2013-10-01

    The role of "genes" on political attitudes has gained attention across disciplines. However, person-specific experiences have yet to be incorporated into models that consider genetic influences. Relying on a gene-environment interplay approach, this study explicates how life-events, such as losing one's job or suffering a financial loss, influence economic policy attitudes. The results indicate genetic and environmental variance on support for unions, immigration, capitalism, socialism and property tax is moderated by financial risks. Changes in the magnitude of genetic influences, however, are temporary. After two years, the phenotypic effects of the life events remain on most attitudes, but changes in the sources of individual differences do not. Univariate twin models that estimate the independent contributions of genes and environment on the variation of attitudes appear to provide robust baseline indicators of sources of individual differences. These estimates, however, are not event or day specific. In this way, genetic influences add stability, while environment cues change, and this process is continually updated.

  20. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population.

    Science.gov (United States)

    ArulJothi, K N; Suruthi Abirami, B; Devi, Arikketh

    2018-03-01

    Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster

    Science.gov (United States)

    Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José

    2016-01-01

    Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact

  2. Pulmonary phenotypes associated with genetic variation in telomere-related genes.

    Science.gov (United States)

    Hoffman, Thijs W; van Moorsel, Coline H M; Borie, Raphael; Crestani, Bruno

    2018-05-01

    Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.

  3. Transcriptome analysis reveals novel patterning and pigmentation genes underlying Heliconius butterfly wing pattern variation

    Directory of Open Access Journals (Sweden)

    Hines Heather M

    2012-06-01

    Full Text Available Abstract Background Heliconius butterfly wing pattern diversity offers a unique opportunity to investigate how natural genetic variation can drive the evolution of complex adaptive phenotypes. Positional cloning and candidate gene studies have identified a handful of regulatory and pigmentation genes implicated in Heliconius wing pattern variation, but little is known about the greater developmental networks within which these genes interact to pattern a wing. Here we took a large-scale transcriptomic approach to identify the network of genes involved in Heliconius wing pattern development and variation. This included applying over 140 transcriptome microarrays to assay gene expression in dissected wing pattern elements across a range of developmental stages and wing pattern morphs of Heliconius erato. Results We identified a number of putative early prepattern genes with color-pattern related expression domains. We also identified 51 genes differentially expressed in association with natural color pattern variation. Of these, the previously identified color pattern “switch gene” optix was recovered as the first transcript to show color-specific differential expression. Most differentially expressed genes were transcribed late in pupal development and have roles in cuticle formation or pigment synthesis. These include previously undescribed transporter genes associated with ommochrome pigmentation. Furthermore, we observed upregulation of melanin-repressing genes such as ebony and Dat1 in non-melanic patterns. Conclusions This study identifies many new genes implicated in butterfly wing pattern development and provides a glimpse into the number and types of genes affected by variation in genes that drive color pattern evolution.

  4. Gene transposition causing natural variation for growth in Arabidopsis thaliana.

    Science.gov (United States)

    Vlad, Daniela; Rappaport, Fabrice; Simon, Matthieu; Loudet, Olivier

    2010-05-13

    A major challenge in biology is to identify molecular polymorphisms responsible for variation in complex traits of evolutionary and agricultural interest. Using the advantages of Arabidopsis thaliana as a model species, we sought to identify new genes and genetic mechanisms underlying natural variation for shoot growth using quantitative genetic strategies. More quantitative trait loci (QTL) still need be resolved to draw a general picture as to how and where in the pathways adaptation is shaping natural variation and the type of molecular variation involved. Phenotypic variation for shoot growth in the Bur-0 x Col-0 recombinant inbred line set was decomposed into several QTLs. Nearly-isogenic lines generated from the residual heterozygosity segregating among lines revealed an even more complex picture, with major variation controlled by opposite linked loci and masked by the segregation bias due to the defective phenotype of SG3 (Shoot Growth-3), as well as epistasis with SG3i (SG3-interactor). Using principally a fine-mapping strategy, we have identified the underlying gene causing phenotypic variation at SG3: At4g30720 codes for a new chloroplast-located protein essential to ensure a correct electron flow through the photosynthetic chain and, hence, photosynthesis efficiency and normal growth. The SG3/SG3i interaction is the result of a structural polymorphism originating from the duplication of the gene followed by divergent paralogue's loss between parental accessions. Species-wide, our results illustrate the very dynamic rate of duplication/transposition, even over short periods of time, resulting in several divergent--but still functional-combinations of alleles fixed in different backgrounds. In predominantly selfing species like Arabidopsis, this variation remains hidden in wild populations but is potentially revealed when divergent individuals outcross. This work highlights the need for improved tools and algorithms to resolve structural variation

  5. Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries

    Science.gov (United States)

    Gericke, Niklas M.; Hagberg, Mariana; dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel N.

    2014-01-01

    The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is…

  6. Coevolutionary genetic variation in the legume-rhizobium transcriptome.

    Science.gov (United States)

    Heath, Katy D; Burke, Patricia V; Stinchcombe, John R

    2012-10-01

    Coevolutionary change requires reciprocal selection between interacting species, where the partner genotypes that are favoured in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype × genotype (G × G) interactions for fitness in interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G × G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G × G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation had the largest influence on nodule gene expression and that plant genotype and the plant genotype × rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome and illuminates potential molecular routes of coevolutionary change. © 2012 Blackwell Publishing Ltd.

  7. Factors influencing variation in dentist service rates.

    Science.gov (United States)

    Grembowski, D; Milgrom, P; Fiset, L

    1990-01-01

    In the previous article, we calculated dentist service rates for 200 general dentists based on a homogeneous, well-educated, upper-middle-class population of patients. Wide variations in the rates were detected. In this analysis, factors influencing variation in the rates were identified. Variation in rates for categories of dental services was explained by practice characteristics, patient exposure to fluoridated water supplies, and non-price competition in the dental market. Rates were greatest in large, busy practices in markets with high fees. Older practices consistently had lower rates across services. As a whole, these variables explained between 5 and 30 percent of the variation in the rates.

  8. Variation in the Williams syndrome GTF2I gene and anxiety proneness interactively affect prefrontal cortical response to aversive stimuli.

    Science.gov (United States)

    Jabbi, M; Chen, Q; Turner, N; Kohn, P; White, M; Kippenhan, J S; Dickinson, D; Kolachana, B; Mattay, V; Weinberger, D R; Berman, K F

    2015-08-18

    Characterizing the molecular mechanisms underlying the heritability of complex behavioral traits such as human anxiety remains a challenging endeavor for behavioral neuroscience. Copy-number variation (CNV) in the general transcription factor gene, GTF2I, located in the 7q11.23 chromosomal region that is hemideleted in Williams syndrome and duplicated in the 7q11.23 duplication syndrome (Dup7), is associated with gene-dose-dependent anxiety in mouse models and in both Williams syndrome and Dup7. Because of this recent preclinical and clinical identification of a genetic influence on anxiety, we examined whether sequence variation in GTF2I, specifically the single-nucleotide polymorphism rs2527367, interacts with trait and state anxiety to collectively impact neural response to anxiety-laden social stimuli. Two hundred and sixty healthy adults completed the Tridimensional Personality Questionnaire Harm Avoidance (HA) subscale, a trait measure of anxiety proneness, and underwent functional magnetic resonance imaging (fMRI) while matching aversive (fearful or angry) facial identity. We found an interaction between GTF2I allelic variations and HA that affects brain response: in individuals homozygous for the major allele, there was no correlation between HA and whole-brain response to aversive cues, whereas in heterozygotes and individuals homozygous for the minor allele, there was a positive correlation between HA sub-scores and a selective dorsolateral prefrontal cortex (DLPFC) responsivity during the processing of aversive stimuli. These results demonstrate that sequence variation in the GTF2I gene influences the relationship between trait anxiety and brain response to aversive social cues in healthy individuals, supporting a role for this neurogenetic mechanism in anxiety.

  9. Natural variation of rice blast resistance gene Pi-d2

    Science.gov (United States)

    Studying natural variation of rice resistance (R) genes in cultivated and wild rice relatives can predict resistance stability to rice blast fungus. In the present study, the protein coding regions of rice R gene Pi-d2 in 35 rice accessions of subgroups, aus (AUS), indica (IND), temperate japonica (...

  10. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness.

    Science.gov (United States)

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-04-13

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana.

  11. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome

    DEFF Research Database (Denmark)

    Joseph, Bindu; Corwin, Jason A.; Li, Baohua

    2013-01-01

    Understanding genome to phenotype linkages has been greatly enabled by genomic sequencing. However, most genome analysis is typically confined to the nuclear genome. We conducted a metabolomic QTL analysis on a reciprocal RIL population structured to examine how variation in the organelle genomes...... was a central hub in the epistatic network controlling the plant metabolome. This epistatic influence manifested such that the cytoplasmic background could alter or hide pairwise epistasis between nuclear loci. Thus, cytoplasmic genetic variation plays a central role in controlling natural variation...... in metabolomic networks. This suggests that cytoplasmic genomes must be included in any future analysis of natural variation....

  12. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  13. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  14. Natural selection in a population of Drosophila melanogaster explained by changes in gene expression caused by sequence variation in core promoter regions.

    Science.gov (United States)

    Sato, Mitsuhiko P; Makino, Takashi; Kawata, Masakado

    2016-02-09

    Understanding the evolutionary forces that influence variation in gene regulatory regions in natural populations is an important challenge for evolutionary biology because natural selection for such variations could promote adaptive phenotypic evolution. Recently, whole-genome sequence analyses have identified regulatory regions subject to natural selection. However, these studies could not identify the relationship between sequence variation in the detected regions and change in gene expression levels. We analyzed sequence variations in core promoter regions, which are critical regions for gene regulation in higher eukaryotes, in a natural population of Drosophila melanogaster, and identified core promoter sequence variations associated with differences in gene expression levels subjected to natural selection. Among the core promoter regions whose sequence variation could change transcription factor binding sites and explain differences in expression levels, three core promoter regions were detected as candidates associated with purifying selection or selective sweep and seven as candidates associated with balancing selection, excluding the possibility of linkage between these regions and core promoter regions. CHKov1, which confers resistance to the sigma virus and related insecticides, was identified as core promoter regions that has been subject to selective sweep, although it could not be denied that selection for variation in core promoter regions was due to linked single nucleotide polymorphisms in the regulatory region outside core promoter regions. Nucleotide changes in core promoter regions of CHKov1 caused the loss of two basal transcription factor binding sites and acquisition of one transcription factor binding site, resulting in decreased gene expression levels. Of nine core promoter regions regions associated with balancing selection, brat, and CG9044 are associated with neuromuscular junction development, and Nmda1 are associated with learning

  15. Association of interleukin-1 gene variations with moderate to severe chronic periodontitis in multiple ethnicities

    Science.gov (United States)

    Wu, X; Offenbacher, S; Lόpez, N J; Chen, D; Wang, H-Y; Rogus, J; Zhou, J; Beck, J; Jiang, S; Bao, X; Wilkins, L; Doucette-Stamm, L; Kornman, K

    2015-01-01

    in two additional studies consisting of Hispanics (OR = 1.95, p = 0.04) or Asians (OR = 3.27, p = 0.01). A meta-analysis of the three populations supported the association between the IL-1 genotype pattern and moderate to severe periodontitis (OR 1.95; p < 0.001). Our analysis also demonstrated that IL1B gene variations had added value to conventional risk factors in predicting chronic periodontitis. Conclusion This study validated the influence of IL-1 genetic factors on the severity of chronic periodontitis in four different ethnicities. PMID:24690098

  16. Transcriptomic variation among six Arabidopsis thaliana accessions identified several novel genes controlling aluminium tolerance.

    Science.gov (United States)

    Kusunoki, Kazutaka; Nakano, Yuki; Tanaka, Keisuke; Sakata, Yoichi; Koyama, Hiroyuki; Kobayashi, Yuriko

    2017-02-01

    Differences in the expression levels of aluminium (Al) tolerance genes are a known determinant of Al tolerance among plant varieties. We combined transcriptomic analysis of six Arabidopsis thaliana accessions with contrasting Al tolerance and a reverse genetic approach to identify Al-tolerance genes responsible for differences in Al tolerance between accession groups. Gene expression variation increased in the signal transduction process under Al stress and in growth-related processes in the absence of stress. Co-expression analysis and promoter single nucleotide polymorphism searching suggested that both trans-acting polymorphisms of Al signal transduction pathway and cis-acting polymorphisms in the promoter sequences caused the variations in gene expression associated with Al tolerance. Compared with the wild type, Al sensitivity increased in T-DNA knockout (KO) lines for five genes, including TARGET OF AVRB OPERATION1 (TAO1) and an unannotated gene (At5g22530). These were identified from 53 Al-inducible genes showing significantly higher expression in tolerant accessions than in sensitive accessions. These results indicate that the difference in transcriptional signalling is partly associated with the natural variation in Al tolerance in Arabidopsis. Our study also demonstrates the feasibility of comparative transcriptome analysis by using natural genetic variation for the identification of genes responsible for Al stress tolerance. © 2016 John Wiley & Sons Ltd.

  17. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness

    Science.gov (United States)

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-01-01

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI: http://dx.doi.org/10.7554/eLife.05604.001 PMID:25867014

  18. Temporal gene expression variation associated with eyespot size plasticity in Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Oliver

    Full Text Available Seasonal polyphenism demonstrates an organism's ability to respond to predictable environmental variation with alternative phenotypes, each presumably better suited to its respective environment. However, the molecular mechanisms linking environmental variation to alternative phenotypes via shifts in development remain relatively unknown. Here we investigate temporal gene expression variation in the seasonally polyphenic butterfly Bicyclus anynana. This species shows drastic changes in eyespot size depending on the temperature experienced during larval development. The wet season form (larvae reared over 24°C has large ventral wing eyespots while the dry season form (larvae reared under 19°C has much smaller eyespots. We compared the expression of three proteins, Notch, Engrailed, and Distal-less, in the future eyespot centers of the two forms to determine if eyespot size variation is associated with heterochronic shifts in the onset of their expression. For two of these proteins, Notch and Engrailed, expression in eyespot centers occurred earlier in dry season than in wet season larvae, while Distal-less showed no temporal difference between the two forms. These results suggest that differences between dry and wet season adult wings could be due to a delay in the onset of expression of these eyespot-associated genes. Early in eyespot development, Notch and Engrailed may be functioning as repressors rather than activators of the eyespot gene network. Alternatively, temporal variation in the onset of early expressed genes between forms may have no functional consequences to eyespot size regulation and may indicate the presence of an 'hourglass' model of development in butterfly eyespots.

  19. Variation-preserving normalization unveils blind spots in gene expression profiling

    Science.gov (United States)

    Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.

    2017-01-01

    RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435

  20. The influence of nutrigenetics on the lipid profile: interaction between genes and dietary habits.

    Science.gov (United States)

    de Andrade, Fabiana M; Bulhões, Andréa C; Maluf, Sharbel W; Schuch, Jaqueline B; Voigt, Francine; Lucatelli, Juliana F; Barros, Alessandra C; Hutz, Mara H

    2010-04-01

    Nutrigenetics is a new field with few studies in Latin America. Our aim is to investigate the way in which different genes related to the lipid profile influence the response to specific dietary habits. Eight polymorphisms on seven genes were investigated in a sample (n = 567) from Porto Alegre, RS, Brazil. All the volunteers completed a food diary that was then assessed and classified into nine food groups. A number of nutrigenetic interactions were detected primarily related to the apolipoprotein E (apoE) gene. For example, frequent consumption of foods rich in polyunsaturated fat resulted in the beneficial effect of increasing HDL-C only in individuals who were not carriers of the E*4 allele of the APOE gene, whereas variations in eating habits of E*4 carriers did not affect their HDL-C (P = 0.018). Our data demonstrate for the first time nutrigenetic interactions in a Brazilian population.

  1. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Directory of Open Access Journals (Sweden)

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  2. Genomic Features That Predict Allelic Imbalance in Humans Suggest Patterns of Constraint on Gene Expression Variation

    Science.gov (United States)

    Fédrigo, Olivier; Haygood, Ralph; Mukherjee, Sayan; Wray, Gregory A.

    2009-01-01

    Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although this variation often has a genetic component, identification of the genetic variants driving this relationship remains challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these results are consistent between the original data set and a second published data set in humans obtained using different technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary

  3. A comprehensive review of the prevalence of beta globin gene variations and the co-inheritance of related gene variants in Saudi Arabians with beta-thalassemia

    Science.gov (United States)

    Alaithan, Mousa A.; AbdulAzeez, Sayed; Borgio, J. Francis

    2018-01-01

    Beta-thalassemia is a genetic disorder that is caused by variations in the beta-hemoglobin (HBB) gene. Saudi Arabia is among the countries most affected by beta-thalassemia, and this is particularly problematic in the Eastern regions. This review article is an attempt to compile all the reported mutations to facilitate further national-level studies to prepare a Saudi repository of HBB gene variations. In Saudi Arabians, IVSI-5 (G>C) and Cd 39 (C>T) are the most prevalent HBB gene variations out of 42 variations. The coinheritance of HBB gene variations with ATRX, HBA1, HBA2, HBA12, AHSP, and KLF1 gene variations were observed to be common in the Saudi population. National surveys on the molecular nature of hemoglobinopathies should be set up through collaborations between research centers from various regions to create a well-documented molecular data bank. This data bank can be used to develop a premarital screening program and lead to the best treatment and prevention strategies for beta-thalassemia. PMID:29619482

  4. Genetic variation in eleven phase I drug metabolism genes in an ethnically diverse population.

    Science.gov (United States)

    Solus, Joseph F; Arietta, Brenda J; Harris, James R; Sexton, David P; Steward, John Q; McMunn, Chara; Ihrie, Patrick; Mehall, Janelle M; Edwards, Todd L; Dawson, Elliott P

    2004-10-01

    The extent of genetic variation found in drug metabolism genes and its contribution to interindividual variation in response to medication remains incompletely understood. To better determine the identity and frequency of variation in 11 phase I drug metabolism genes, the exons and flanking intronic regions of the cytochrome P450 (CYP) isoenzyme genes CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 were amplified from genomic DNA and sequenced. A total of 60 kb of bi-directional sequence was generated from each of 93 human DNAs, which included Caucasian, African-American and Asian samples. There were 388 different polymorphisms identified. These included 269 non-coding, 45 synonymous and 74 non-synonymous polymorphisms. Of these, 54% were novel and included 176 non-coding, 14 synonymous and 21 non-synonymous polymorphisms. Of the novel variants observed, 85 were represented by single occurrences of the minor allele in the sample set. Much of the variation observed was from low-frequency alleles. Comparatively, these genes are variation-rich. Calculations measuring genetic diversity revealed that while the values for the individual genes are widely variable, the overall nucleotide diversity of 7.7 x 10(-4) and polymorphism parameter of 11.5 x 10(-4) are higher than those previously reported for other gene sets. Several independent measurements indicate that these genes are under selective pressure, particularly for polymorphisms corresponding to non-synonymous amino acid changes. There is relatively little difference in measurements of diversity among the ethnic groups, but there are large differences among the genes and gene subfamilies themselves. Of the three CYP subfamilies involved in phase I drug metabolism (1, 2, and 3), subfamily 2 displays the highest levels of genetic diversity.

  5. Flagellar-phase variation: isolation of the rh1 gene

    International Nuclear Information System (INIS)

    Silverman, M.; Zieg, J.; Simon, M.

    1979-01-01

    In Salmonella, expression of flagellar antigen alternates between two serotypes (phases) encoded by two genes, H1 and H2. The mechanism which controls the alternative expression of the H1 and H2 genes was examined by cloning these genes and the genetic elements which control their activity on hybrid vehicles in Escherichia coli. H2 gene activity was shown to be controlled by a recombinational switch located adjacent to the H2 gene. Activity of the H1 gene is thought to be repressed, when the H2 gene is expressed, by the product of another gene, rhl (repressor of H1), which is controlled coordinately with the H2 gene. In this report, we describe the construction of hybrid lambda vehicles which contain, in addition to the H2 gene, a genetic activity corresponding to rhl. Variation of flagellar antigens analogous to that observed in Salmonella was observed when E. coli strains were transduced with the hybrid lambda. By using the lambda H2rhl hybrid to program protein syntheis in uv-irradiated cells, the synthesis of a polypeptide was correlated with rhl gene product activity. We conclude that the H2 region consists of two cotranscribed genes, H2 and rhl. The expression of both gene products is regulated by the same recombinational event

  6. Genomic and gene variation in Mycoplasma hominis strains

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Andersen, H; Birkelund, Svend

    1987-01-01

    DNAs from 14 strains of Mycoplasma hominis isolated from various habitats, including strain PG21, were analyzed for genomic heterogeneity. DNA-DNA filter hybridization values were from 51 to 91%. Restriction endonuclease digestion patterns, analyzed by agarose gel electrophoresis, revealed...... no identity or cluster formation between strains. Variation within M. hominis rRNA genes was analyzed by Southern hybridization of EcoRI-cleaved DNA hybridized with a cloned fragment of the rRNA gene from the mycoplasma strain PG50. Five of the M. hominis strains showed identical hybridization patterns....... These hybridization patterns were compared with those of 12 other mycoplasma species, which showed a much more complex band pattern. Cloned nonribosomal RNA gene fragments of M. hominis PG21 DNA were analyzed, and the fragments were used to demonstrate heterogeneity among the strains. A monoclonal antibody against...

  7. Sporozoite Route of Infection Influences In Vitro var Gene Transcription of Plasmodium falciparum Parasites From Controlled Human Infections.

    Science.gov (United States)

    Dimonte, Sandra; Bruske, Ellen I; Hass, Johanna; Supan, Christian; Salazar, Carmen L; Held, Jana; Tschan, Serena; Esen, Meral; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Bachmann, Anna; Sim, Betty K L; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Frank, Matthias

    2016-09-15

    Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P = .03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa  The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Global and disease-associated genetic variation in the human Fanconi anemia gene family.

    Science.gov (United States)

    Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J

    2014-12-20

    Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7

    Energy Technology Data Exchange (ETDEWEB)

    Duggirala, R.; Stern, M.P.; Reinhart, L.J. [Univ. of Texas Health Science Center, San Antonio, TX (United States)] [and others

    1996-09-01

    Despite the evidence that human obesity has strong genetic determinants, efforts at identifying specific genes that influence human obesity have largely been unsuccessful. Using the sibship data obtained from 32 low-income Mexican American pedigrees ascertained on a type II diabetic proband and a multipoint variance-components method, we tested for linkage between various obesity-related traits plus associated metabolic traits and 15 markers on human chromosome 7. We found evidence for linkage between markers in the OB gene region and various traits, as follows: D7S514 and extremity skinfolds (LOD = 3.1), human carboxypeptidase A1 (HCPA1) and 32,33-split proinsulin level (LOD = 4.2), and HCPA1 and proinsulin level (LOD = 3.2). A putative susceptibility locus linked to the marker D7S514 explained 56% of the total phenotypic variation in extremity skinfolds. Variation at the HCPA1 locus explained 64% of phenotypic variation in proinsulin level and {approximately}73% of phenotypic variation in split proinsulin concentration, respectively. Weaker evidence for linkage to several other obesity-related traits (e.g., waist circumference, body-mass index, fat mass by bioimpedance, etc.) was observed for a genetic location, which is {approximately}15 cM telomeric to OB. In conclusion, our study reveals that the OB region plays a significant role in determining the phenotypic variation of both insulin precursors and obesity-related traits, at least in Mexican Americans. 66 refs., 3 figs., 4 tabs.

  10. Gene-gene, gene-environment, gene-nutrient interactions and single nucleotide polymorphisms of inflammatory cytokines.

    Science.gov (United States)

    Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif

    2015-05-15

    Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.

  11. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count.

    Directory of Open Access Journals (Sweden)

    Kathiravan Periasamy

    Full Text Available Sheep chromosome 3 (Oar3 has the largest number of QTLs reported to be significantly associated with resistance to gastro-intestinal nematodes. This study aimed to identify single nucleotide polymorphisms (SNPs within candidate genes located in sheep chromosome 3 as well as genes involved in major immune pathways. A total of 41 SNPs were identified across 38 candidate genes in a panel of unrelated sheep and genotyped in 713 animals belonging to 22 breeds across Asia, Europe and South America. The variations and evolution of immune pathway genes were assessed in sheep populations across these macro-environmental regions that significantly differ in the diversity and load of pathogens. The mean minor allele frequency (MAF did not vary between Asian and European sheep reflecting the absence of ascertainment bias. Phylogenetic analysis revealed two major clusters with most of South Asian, South East Asian and South West Asian breeds clustering together while European and South American sheep breeds clustered together distinctly. Analysis of molecular variance revealed strong phylogeographic structure at loci located in immune pathway genes, unlike microsatellite and genome wide SNP markers. To understand the influence of natural selection processes, SNP loci located in chromosome 3 were utilized to reconstruct haplotypes, the diversity of which showed significant deviations from selective neutrality. Reduced Median network of reconstructed haplotypes showed balancing selection in force at these loci. Preliminary association of SNP genotypes with phenotypes recorded 42 days post challenge revealed significant differences (P<0.05 in fecal egg count, body weight change and packed cell volume at two, four and six SNP loci respectively. In conclusion, the present study reports strong phylogeographic structure and balancing selection operating at SNP loci located within immune pathway genes. Further, SNP loci identified in the study were found to have

  12. Genetic variation at Exon2 of TLR4 gene and its association with ...

    African Journals Online (AJOL)

    This study was conducted to analyze the polymorphisms of chicken Toll-like receptors 4(TLR4) gene and aimed to provide a theoretical foundation for a further research on correlation between chicken TLR4 gene and disease resistance. Genetic variations at exon 2 of TLR4 gene in 14 chicken breeds and the red jungle ...

  13. Theories of Population Variation in Genes and Genomes

    DEFF Research Database (Denmark)

    Christiansen, Freddy

    This textbook provides an authoritative introduction to both classical and coalescent approaches to population genetics. Written for graduate students and advanced undergraduates by one of the world’s leading authorities in the field, the book focuses on the theoretical background of population...... genetics, while emphasizing the close interplay between theory and empiricism. Traditional topics such as genetic and phenotypic variation, mutation, migration, and linkage are covered and advanced by contemporary coalescent theory, which describes the genealogy of genes in a population, ultimately...... connecting them to a single common ancestor. Effects of selection, particularly genomic effects, are discussed with reference to molecular genetic variation. The book is designed for students of population genetics, bioinformatics, evolutionary biology, molecular evolution, and theoretical biology—as well...

  14. Variation in the PTEN-induced putative kinase 1 gene associated ...

    Indian Academy of Sciences (India)

    with the increase risk of type 2 diabetes in northern Chinese. YANCHUN QU1†∗ ... and genetic variation analysis have indicated the involvement of PINK1 gene in the ... Qualitative variables were analysed by a chi-squared test. The level of ...

  15. Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population.

    Science.gov (United States)

    Narooie-Nejad, Mehrnaz; Moossavi, Maryam; Torkamanzehi, Adam; Moghtaderi, Ali

    2015-01-01

    Among the factors postulated to play a role in MS susceptibility, the role of vitamin D is outstanding. Since the function of vitamin D receptor (VDR) represents the effect of vitamin D on the body and genetic variations in VDR gene may affect its function, we aim to highlight the association of two VDR gene polymorphisms with MS susceptibility. In current study, we recruited 113 MS patients and 122 healthy controls. TaqI (rs731236) and ApaI (rs7975232) genetic variations in these two groups were evaluated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. All genotype and allele frequencies in both variations showed association with the disease status. However, to find the definite connection between genetic variations in VDR gene and MS disease in a population of South East of Iran, more researches on gene structure and its function with regard to patients' conditions are required.

  16. Cholecystokinin A receptor (CCKAR gene variation is associated with language lateralization.

    Directory of Open Access Journals (Sweden)

    Sebastian Ocklenburg

    Full Text Available Schizophrenia is a psychiatric disorder associated with atypical handedness and language lateralization. However, the molecular mechanisms underlying these functional changes are still poorly understood. Therefore, the present study was aimed at investigating whether variation in schizophrenia-related genes modulates individual lateralization patterns. To this end, we genotyped 16 single nucleotide polymorphisms that have previously been linked to schizophrenia on a meta-analysis level in a sample of 444 genetically unrelated healthy participants and examined the association of these polymorphisms with handedness, footedness and language lateralization. We found a significant association of the cholecystokinin-A receptor (CCKAR gene variation rs1800857 and language lateralization assessed using the dichotic listening task. Individuals carrying the schizophrenia risk allele C of this polymorphism showed a marked reduction of the typical left-hemispheric dominance for language processing. Since the cholecystokinin A receptor is involved in dopamine release in the central nervous system, these findings suggest that genetic variation in this receptor may modulate language lateralization due to its impact on dopaminergic pathways.

  17. Genomic variation and its impact on gene expression in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Andreas Massouras

    Full Text Available Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels, and complex variants (1 to 6,000 bp. While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.

  18. Maternal vernalization and vernalization-pathway genes influence progeny seed germination.

    Science.gov (United States)

    Auge, Gabriela A; Blair, Logan K; Neville, Hannah; Donohue, Kathleen

    2017-10-01

    Different life stages frequently respond to the same environmental cue to regulate development so that each life stage is matched to its appropriate season. We investigated how independently each life stage can respond to shared environmental cues, focusing on vernalization, in Arabidopsis thaliana plants. We first tested whether effects of rosette vernalization persisted to influence seed germination. To test whether genes in the vernalization flowering pathway also influence germination, we assessed germination of functional and nonfunctional alleles of these genes and measured their level of expression at different life stages in response to rosette vernalization. Rosette vernalization increased seed germination in diverse ecotypes. Genes in the vernalization flowering pathway also influenced seed germination. In the Columbia accession, functional alleles of most of these genes opposed the germination response observed in the ecotypes. Some genes influenced germination in a manner consistent with their known effects on FLOWERING LOCUS C gene regulation during the transition to flowering. Others did not, suggesting functional divergence across life stages. Despite persistent effects of environmental conditions across life stages, and despite pleiotropy of genes that affect both flowering and germination, the function of these genes can differ across life stages, potentially mitigating pleiotropic constraints and enabling independent environmental regulation of different life stages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Huntingtin gene repeat size variations affect risk of lifetime depression

    DEFF Research Database (Denmark)

    Gardiner, Sarah L.; van Belzen, Martine J.; Boogaard, Merel W.

    2017-01-01

    Huntington disease (HD) is a severe neuropsychiatric disorder caused by a cytosine-adenine-guanine (CAG) repeat expansion in the HTT gene. Although HD is frequently complicated by depression, it is still unknown to what extent common HTT CAG repeat size variations in the normal range could affect...

  20. The association of environmental, individual factors, and dopamine pathway gene variation with smoking cessation.

    Science.gov (United States)

    Li, Suyun; Wang, Qiang; Pan, Lulu; Yang, Xiaorong; Li, Huijie; Jiang, Fan; Zhang, Nan; Han, Mingkui; Jia, Chongqi

    2017-09-01

    This study aimed to examine whether dopamine (DA) pathway gene variation were associated with smoking cessation, and compare the relative importance of infulence factors on smoking cessation. Participants were recruited from 17 villages of Shandong Province, China. Twenty-five single nucleotide polymorphisms in 8 DA pathway genes were genotyped. Weighted gene score of each gene was used to analyze the whole gene effect. Logistic regression was used to calculate odds ratios (OR) of the total gene score for smoking cessation. Dominance analysis was employed to compare the relative importance of individual, heaviness of smoking, psychological and genetic factors on smoking cessation. 415 successful spontaneous smoking quitters served as the cases, and 404 unsuccessful quitters served as the controls. A significant negative association of total DA pathway gene score and smoking cessation was observed (p smoking cessation was heaviness of smoking score (42%), following by individual (40%), genetic (10%) and psychological score (8%). In conclusion, although the DA pathway gene variation was significantly associated with successful smoking cessation, heaviness of smoking and individual factors had bigger effect than genetic factors on smoking cessation.

  1. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P; Krishna, Nithin; Mitchell, Braxton D; Liu, Judy; Glassman, Matthew; Hong, L Elliot; Gold, James M

    2014-12-01

    Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The percentage of bacterial genes on leading versus lagging strands is influenced by multiple balancing forces

    Science.gov (United States)

    Mao, Xizeng; Zhang, Han; Yin, Yanbin; Xu, Ying

    2012-01-01

    The majority of bacterial genes are located on the leading strand, and the percentage of such genes has a large variation across different bacteria. Although some explanations have been proposed, these are at most partial explanations as they cover only small percentages of the genes and do not even consider the ones biased toward the lagging strand. We have carried out a computational study on 725 bacterial genomes, aiming to elucidate other factors that may have influenced the strand location of genes in a bacterium. Our analyses suggest that (i) genes of some functional categories such as ribosome have higher preferences to be on the leading strands; (ii) genes of some functional categories such as transcription factor have higher preferences on the lagging strands; (iii) there is a balancing force that tends to keep genes from all moving to the leading and more efficient strand and (iv) the percentage of leading-strand genes in an bacterium can be accurately explained based on the numbers of genes in the functional categories outlined in (i) and (ii), genome size and gene density, indicating that these numbers implicitly contain the information about the percentage of genes on the leading versus lagging strand in a genome. PMID:22735706

  3. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  4. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    Background Escherichia coli exists in commensal and pathogenic forms. By measuring the variation of individual genes across more than a hundred sequenced genomes, gene variation can be studied in detail, including the number of mutations found for any given gene. This knowledge will be useful...... for creating better phylogenies, for determination of molecular clocks and for improved typing techniques. Results We find 3,051 gene clusters/families present in at least 95% of the genomes and 1,702 gene clusters present in 100% of the genomes. The former 'soft core' of about 3,000 gene families is perhaps...... more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...

  5. Understanding gene sequence variation in the context of transcription regulation in yeast.

    Directory of Open Access Journals (Sweden)

    Irit Gat-Viks

    2010-01-01

    Full Text Available DNA sequence polymorphism in a regulatory protein can have a widespread transcriptional effect. Here we present a computational approach for analyzing modules of genes with a common regulation that are affected by specific DNA polymorphisms. We identify such regulatory-linkage modules by integrating genotypic and expression data for individuals in a segregating population with complementary expression data of strains mutated in a variety of regulatory proteins. Our procedure searches simultaneously for groups of co-expressed genes, for their common underlying linkage interval, and for their shared regulatory proteins. We applied the method to a cross between laboratory and wild strains of S. cerevisiae, demonstrating its ability to correctly suggest modules and to outperform extant approaches. Our results suggest that middle sporulation genes are under the control of polymorphism in the sporulation-specific tertiary complex Sum1p/Rfm1p/Hst1p. In another example, our analysis reveals novel inter-relations between Swi3 and two mitochondrial inner membrane proteins underlying variation in a module of aerobic cellular respiration genes. Overall, our findings demonstrate that this approach provides a useful framework for the systematic mapping of quantitative trait loci and their role in gene expression variation.

  6. Sequence variation in TgROP7 gene among Toxoplasma gondii ...

    African Journals Online (AJOL)

    Yomi

    2012-03-27

    Mar 27, 2012 ... Toxoplasma gondii can infect a wide range of hosts including mammals and birds, causing toxoplasmosis which is one of the most common parasitic zoonoses worldwide. The present study examined sequence variation in rhoptry 7 (ROP7) gene among different T. gondii isolates from different hosts and ...

  7. Genetic variation in selenoprotein genes, lifestyle, and risk of colon and rectal cancer.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available BACKGROUND: Associations between selenium and cancer have directed attention to role of selenoproteins in the carcinogenic process. METHODS: We used data from two population-based case-control studies of colon (n = 1555 cases, 1956 controls and rectal (n = 754 cases, 959 controls cancer. We evaluated the association between genetic variation in TXNRD1, TXNRD2, TXNRD3, C11orf31 (SelH, SelW, SelN1, SelS, SepX, and SeP15 with colorectal cancer risk. RESULTS: After adjustment for multiple comparisons, several associations were observed. Two SNPs in TXNRD3 were associated with rectal cancer (rs11718498 dominant OR 1.42 95% CI 1.16,1.74 pACT 0.0036 and rs9637365 recessive 0.70 95% CI 0.55,0.90 pACT 0.0208. Four SNPs in SepN1 were associated with rectal cancer (rs11247735 recessive OR 1.30 95% CI 1.04,1.63 pACT 0.0410; rs2072749 GGvsAA OR 0.53 95% CI 0.36,0.80 pACT 0.0159; rs4659382 recessive OR 0.58 95% CI 0.39,0.86 pACT 0.0247; rs718391 dominant OR 0.76 95% CI 0.62,0.94 pACT 0.0300. Interaction between these genes and exposures that could influence these genes showed numerous significant associations after adjustment for multiple comparisons. Two SNPs in TXNRD1 and four SNPs in TXNRD2 interacted with aspirin/NSAID to influence colon cancer; one SNP in TXNRD1, two SNPs in TXNRD2, and one SNP in TXNRD3 interacted with aspirin/NSAIDs to influence rectal cancer. Five SNPs in TXNRD2 and one in SelS, SeP15, and SelW1 interacted with estrogen to modify colon cancer risk; one SNP in SelW1 interacted with estrogen to alter rectal cancer risk. Several SNPs in this candidate pathway influenced survival after diagnosis with colon cancer (SeP15 and SepX1 increased HRR and rectal cancer (SepX1 increased HRR. CONCLUSIONS: Findings support an association between selenoprotein genes and colon and rectal cancer development and survival after diagnosis. Given the interactions observed, it is likely that the impact of cancer susceptibility from genotype is

  8. Influence of flood variation on seasonal floodplain vegetation ...

    African Journals Online (AJOL)

    This study investigated the influence of flooding variation on floodplain vegetation in the Nxaraga Lagoon seasonal floodplains by sampling community composition and soil nutrient content in 1997, when flood levels were unusually low, and again in 2010 when flood levels were unusually high. In each of the eight ...

  9. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2016-01-01

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovari...

  10. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  11. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  12. Expression patterns of the aquaporin gene family during renal development: influence of genetic variability.

    Science.gov (United States)

    Parreira, Kleber S; Debaix, Huguette; Cnops, Yvette; Geffers, Lars; Devuyst, Olivier

    2009-08-01

    High-throughput analyses have shown that aquaporins (AQPs) belong to a cluster of genes that are differentially expressed during kidney organogenesis. However, the spatiotemporal expression patterns of the AQP gene family during tubular maturation and the potential influence of genetic variation on these patterns and on water handling remain unknown. We investigated the expression patterns of all AQP isoforms in fetal (E13.5 to E18.5), postnatal (P1 to P28), and adult (9 weeks) kidneys of inbred (C57BL/6J) and outbred (CD-1) mice. Using quantitative polymerase chain reaction (PCR), we evidenced two mRNA patterns during tubular maturation in C57 mice. The AQPs 1-7-11 showed an early (from E14.5) and progressive increase to adult levels, similar to the mRNA pattern observed for proximal tubule markers (Megalin, NaPi-IIa, OAT1) and reflecting the continuous increase in renal cortical structures during development. By contrast, AQPs 2-3-4 showed a later (E15.5) and more abrupt increase, with transient postnatal overexpression. Most AQP genes were expressed earlier and/or stronger in maturing CD-1 kidneys. Furthermore, adult CD-1 kidneys expressed more AQP2 in the collecting ducts, which was reflected by a significant delay in excreting a water load. The expression patterns of proximal vs. distal AQPs and the earlier expression in the CD-1 strain were confirmed by immunoblotting and immunostaining. These data (1) substantiate the clustering of important genes during tubular maturation and (2) demonstrate that genetic variability influences the regulation of the AQP gene family during tubular maturation and water handling by the mature kidney.

  13. Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago truncatula.

    Science.gov (United States)

    Gorton, Amanda J; Heath, Katy D; Pilet-Nayel, Marie-Laure; Baranger, Alain; Stinchcombe, John R

    2012-11-01

    Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.

  14. Individual Variation in Life History Characteristics Can Influence Extinction Risk

    Energy Technology Data Exchange (ETDEWEB)

    Jager, H I

    2001-01-01

    The white sturgeon (Acipenser transmontanus) shows great individual variation in the age at maturation. This study examines the consequences of model assumptions about individual variation in the age at maturation on predicted population viability. I considered: (1) the effects of variation in age at maturation alone; (2) the effects of heritability; and (3) the influence of a stable and an altered selective regime. Two selective regimes represented conditions before and after the impoundment of a river, blocking access of anadromous white sturgeon populations to the ocean. In contrast to previous simulation studies, I found that increased individual variation in the age at maturity did not necessarily lead to a higher likelihood of persistence. Individual variation increased the simulated likelihood of persistence when the variation was heritable and the selective regime had changed such that the mean age at maturity was no longer optimal.

  15. Influence of matrix metalloproteinase gene polymorphisms in healthy North Indians compared to variations in other ethnic groups worldwide.

    Science.gov (United States)

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama Devi

    2009-01-01

    Matrix metalloproteinases have a range of biological functions, including the liberation of cytokines and membrane-bound receptors, with roles in promotion of tumor invasion and angiogenesis. Several polymorphisms in MMPs have been implicated in the development of cancer as well as other diseases. Since their frequency distributions in the general North Indian population is not known the present study was conducted with the focus on MMP-1(-519) Aandgt; G, MMP-1(-1607) 1Gandgt; 2G, and MMP-7(-181) Aandgt; G gene polymorphisms. PCR-based analysis was conducted for 200 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of MMP-1(-519) Aandgt; G were 71.2% A; MMP-1(-1607) 1Gandgt; 2G 48.2% 1G; MMP-7(-181) Aandgt; G 60.7% A. The variant allele frequencies were 29% A in MMP-1(-519) Aandgt; G; 52% 2G in MMP-1(-1607) 1Gandgt; 2G; and 39.3% G in MMP-7(-181) Aandgt; G respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity globally. Our results suggest that frequency in these MMP genes exhibit distinctive patterns in India that could perhaps be attributed to ethnic variation. This study is important as it can form a baseline for screening individuals who are at high risk when exposed to environmental carcinogens. More emphasis is needed on evaluating polymorphisms, alone or in combination, as modifiers of risk from relevant environmental/lifestyle exposures.

  16. Expression profiles of variation integration genes in bladder urothelial carcinoma.

    Science.gov (United States)

    Wang, J M; Wang, Y Q; Gao, Z L; Wu, J T; Shi, B K; Yu, C C

    2014-04-30

    Bladder cancer is a common cancer worldwide and its incidence continues to increase. There are approximately 261,000 cases of bladder cancer resulting in 115,000 deaths annually. This study aimed to integrate bladder cancer genome copy number variation information and bladder cancer gene transcription level expression data to construct a causal-target module network of the range of bladder cancer-related genomes. Here, we explored the control mechanism underlying bladder cancer phenotype expression regulation by the major bladder cancer genes. We selected 22 modules as the initial module network to expand the search to screen more networks. After bootstrapping 100 times, we obtained 16 key regulators. These 16 key candidate regulatory genes were further expanded to identify the expression changes of 11,676 genes in 275 modules, which may all have the same regulation. In conclusion, a series of modules associated with the terms 'cancer' or 'bladder' were considered to constitute a potential network.

  17. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig.

    Science.gov (United States)

    Ryan, Marion T; Hamill, Ruth M; O'Halloran, Aisling M; Davey, Grace C; McBryan, Jean; Mullen, Anne M; McGee, Chris; Gispert, Marina; Southwood, Olwen I; Sweeney, Torres

    2012-07-25

    The PRKAG3 gene encodes the γ3 subunit of adenosine monophosphate activated protein kinase (AMPK), a protein that plays a key role in energy metabolism in skeletal muscle. Non-synonymous single nucleotide polymorphisms (SNPs) in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP) and intramuscular fat (IMF) in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.-995A>G and g.-311A>G) characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98), Duroc (n = 99) and Pietrain (n = 98) purebreds. Four major haplotypes including promoter SNP's g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL) and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT), pH at 45 min in LTL (pH(45)LT) and pH at 45 min in the M. semimembranosus muscle (pH(45)SM). HAP3 was associated with driploss%, pHULT pH(45)LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2, HAP3 and HAP4) in the Duroc breed. The

  18. SNP variation in the promoter of the PRKAG3 gene and association with meat quality traits in pig

    Directory of Open Access Journals (Sweden)

    Ryan Marion T

    2012-07-01

    Full Text Available Abstract Background The PRKAG3 gene encodes the γ3 subunit of adenosine monophosphate activated protein kinase (AMPK, a protein that plays a key role in energy metabolism in skeletal muscle. Non-synonymous single nucleotide polymorphisms (SNPs in this gene such as I199V are associated with important pork quality traits. The objective of this study was to investigate the relationship between gene expression of the PRKAG3 gene, SNP variation in the PRKAG3 promoter and meat quality phenotypes in pork. Results PRKAG3 gene expression was found to correlate with a number of traits relating to glycolytic potential (GP and intramuscular fat (IMF in three phenotypically diverse F1 crosses comprising of 31 Large White, 23 Duroc and 32 Pietrain sire breeds. The majority of associations were observed in the Large White cross. There was a significant association between genotype at the g.-311A>G locus and PRKAG3 gene expression in the Large White cross. In the same population, ten novel SNPs were identified within a 1.3 kb region spanning the promoter and from this three major haplotypes were inferred. Two tagging SNPs (g.-995A>G and g.-311A>G characterised the haplotypes within the promoter region being studied. These two SNPs were subsequently genotyped in larger populations consisting of Large White (n = 98, Duroc (n = 99 and Pietrain (n = 98 purebreds. Four major haplotypes including promoter SNP’s g.-995A>G and g.-311A>G and I199V were inferred. In the Large White breed, HAP1 was associated with IMF% in the M. longissmus thoracis et lumborum (LTL and driploss%. HAP2 was associated with IMFL% GP-influenced traits pH at 24 hr in LTL (pHULT, pH at 45 min in LTL (pH45LT and pH at 45 min in the M. semimembranosus muscle (pH45SM. HAP3 was associated with driploss%, pHULT pH45LT and b* Minolta. In the Duroc breed, associations were observed between HAP1 and driploss% and pHUSM. No associations were observed with the remaining haplotypes (HAP2

  19. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion.

    Science.gov (United States)

    Zhang, J R; Norris, S J

    1998-08-01

    The Lyme disease spirochete Borrelia burgdorferi possesses 15 silent vls cassettes and a vls expression site (vlsE) encoding a surface-exposed lipoprotein. Segments of the silent vls cassettes have been shown to recombine with the vlsE cassette region in the mammalian host, resulting in combinatorial antigenic variation. Despite promiscuous recombination within the vlsE cassette region, the 5' and 3' coding sequences of vlsE that flank the cassette region are not subject to sequence variation during these recombination events. The segments of the silent vls cassettes recombine in the vlsE cassette region through a unidirectional process such that the sequence and organization of the silent vls loci are not affected. As a result of recombination, the previously expressed segments are replaced by incoming segments and apparently degraded. These results provide evidence for a gene conversion mechanism in VlsE antigenic variation.

  20. Novel sequence variations in LAMA2 and SGCG genes modulating cis-acting regulatory elements and RNA secondary structure

    Directory of Open Access Journals (Sweden)

    Olfa Siala

    2010-01-01

    Full Text Available In this study, we detected new sequence variations in LAMA2 and SGCG genes in 5 ethnic populations, and analysed their effect on enhancer composition and mRNA structure. PCR amplification and DNA sequencing were performed and followed by bioinformatics analyses using ESEfinder as well as MFOLD software. We found 3 novel sequence variations in the LAMA2 (c.3174+22_23insAT and c.6085 +12delA and SGCG (c.*102A/C genes. These variations were present in 210 tested healthy controls from Tunisian, Moroccan, Algerian, Lebanese and French populations suggesting that they represent novel polymorphisms within LAMA2 and SGCG genes sequences. ESEfinder showed that the c.*102A/C substitution created a new exon splicing enhancer in the 3'UTR of SGCG genes, whereas the c.6085 +12delA deletion was situated in the base pairing region between LAMA2 mRNA and the U1snRNA spliceosomal components. The RNA structure analyses showed that both variations modulated RNA secondary structure. Our results are suggestive of correlations between mRNA folding and the recruitment of spliceosomal components mediating splicing, including SR proteins. The contribution of common sequence variations to mRNA structural and functional diversity will contribute to a better study of gene expression.

  1. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    Science.gov (United States)

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  2. Genes Underlying Positive Influence Of Prenatal Environmental ...

    African Journals Online (AJOL)

    Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And ... Prenatal environmental enrichment (EE) has been proven to positively affect but ... Conclusion: The negative-positive prenatal effect could contribute to altered ...

  3. Genic intolerance to functional variation and the interpretation of personal genomes.

    Directory of Open Access Journals (Sweden)

    Slavé Petrovski

    Full Text Available A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP. Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and identifying pathogenic mutations.

  4. Facing the facts: The Runx2 gene is associated with variation in facial morphology in primates.

    Science.gov (United States)

    Ritzman, Terrence B; Banovich, Nicholas; Buss, Kaitlin P; Guida, Jennifer; Rubel, Meagan A; Pinney, Jennifer; Khang, Bao; Ravosa, Matthew J; Stone, Anne C

    2017-10-01

    The phylogenetic and adaptive factors that cause variation in primate facial form-including differences among the major primate clades and variation related to feeding and/or social behavior-are relatively well understood. However, comparatively little is known about the genetic mechanisms that underlie diversity in facial form in primates. Because it is essential for osteoblastic differentiation and skeletal development, the runt-related transcription factor 2 (Runx2) is one gene that may play a role in these genetic mechanisms. Specifically, polymorphisms in the QA ratio (determined by the ratio of the number of polyglutamines to polyalanines in one functional domain of Runx2) have been shown to be correlated with variation in facial length and orientation in other mammal groups. However, to date, the relationship between variation in this gene and variation in facial form in primates has not been explicitly tested. To test the hypothesis that the QA ratio is correlated with facial form in primates, the current study quantified the QA ratio, facial length, and facial angle in a sample of 33 primate species and tested for correlation using phylogenetic generalized least squares. The results indicate that the QA ratio of the Runx2 gene is positively correlated with variation in relative facial length in anthropoid primates. However, no correlation was found in strepsirrhines, and there was no correlation between facial angle and the QA ratio in any groups. These results suggest that, in primates, the QA ratio of the Runx2 gene may play a role in modulating facial size, but not facial orientation. This study therefore provides important clues about the genetic and developmental mechanisms that may underlie variation in facial form in primates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Color differences among feral pigeons (Columba livia) are not attributable to sequence variation in the coding region of the melanocortin-1 receptor gene (MC1R)

    Science.gov (United States)

    2013-01-01

    Background Genetic variation at the melanocortin-1 receptor (MC1R) gene is correlated with melanin color variation in many birds. Feral pigeons (Columba livia) show two major melanin-based colorations: a red coloration due to pheomelanic pigment and a black coloration due to eumelanic pigment. Furthermore, within each color type, feral pigeons display continuous variation in the amount of melanin pigment present in the feathers, with individuals varying from pure white to a full dark melanic color. Coloration is highly heritable and it has been suggested that it is under natural or sexual selection, or both. Our objective was to investigate whether MC1R allelic variants are associated with plumage color in feral pigeons. Findings We sequenced 888 bp of the coding sequence of MC1R among pigeons varying both in the type, eumelanin or pheomelanin, and the amount of melanin in their feathers. We detected 10 non-synonymous substitutions and 2 synonymous substitution but none of them were associated with a plumage type. It remains possible that non-synonymous substitutions that influence coloration are present in the short MC1R fragment that we did not sequence but this seems unlikely because we analyzed the entire functionally important region of the gene. Conclusions Our results show that color differences among feral pigeons are probably not attributable to amino acid variation at the MC1R locus. Therefore, variation in regulatory regions of MC1R or variation in other genes may be responsible for the color polymorphism of feral pigeons. PMID:23915680

  6. Genetic variations of MMP9 gene and intracerebral hemorrhage susceptibility: a case-control study in Chinese Han population.

    Science.gov (United States)

    Yang, Jie; Wu, Bo; Lin, Sen; Zhou, Junshan; Li, Yingbin; Dong, Wei; Arima, Hisatomi; Zhang, Chanfei; Liu, Yukai; Liu, Ming

    2014-06-15

    To investigate the association between genetic variations of matrix metalloproteinase 9 (MMP9) gene and intracerebral hemorrhage (ICH) susceptibility in Chinese Han population. The clinical data and peripheral blood samples from the patients with ICH and hypertension, and controlled subjects with hypertension only, were collected. MassARRAY Analyzer was used to genotype the tagger single nucleotide polymorphism (SNP) of MMP9 gene. Haploview4.2 and Unphased3.1.7 were employed to construct haplotypes and to analyze the association between genetic variations (alleles, genotypes and haplotypes) of MMP9 gene and ICH susceptibility. 181 patients with ICH and hypertension, and 197 patients with hypertension only, were recruited between Sep 2009 and Oct 2010. Patients in the ICH group were younger (61.80 ± 13.27 vs. 72.44 ± 12.71 years, ppopulation. Our logistical regression analysis showed that there were no significant associations between genetic variations of the MPP9 gene and ICH susceptibility (all p>0.05). The genetic variations of MMP9 gene were not significantly associated with ICH susceptibility in the Chinese Han population. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  8. Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity

    Science.gov (United States)

    2014-01-01

    Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals

  9. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity.

    Science.gov (United States)

    Granados-Cifuentes, Camila; Bellantuono, Anthony J; Ridgway, Tyrone; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2013-04-08

    Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.

  10. Influence of kynurenine 3-monooxygenase (KMO) gene polymorphism on cognitive function in schizophrenia✰,✰✰

    Science.gov (United States)

    Wonodi, Ikwunga; McMahon, Robert P.; Krishna, Nithin; Mitchell, Braxton D.; Liu, Judy; Glassman, Matthew; Hong, L. Elliot; Gold, James M.

    2015-01-01

    Background Cognitive deficits compromise quality of life and productivity for individuals with schizophrenia and have no effective treatments. Preclinical data point to the kynurenine pathway of tryptophan metabolism as a potential target for pro-cognitive drug development. We have previously demonstrated association of a kynurenine 3-monooxygenase (KMO) gene variant with reduced KMO gene expression in postmortem schizophrenia cortex, and neurocognitive endophenotypic deficits in a clinical sample. KMO encodes kynurenine 3-monooxygenase (KMO), the rate-limiting microglial enzyme of cortical kynurenine metabolism. Aberration of the KMO gene might be the proximal cause of impaired cortical kynurenine metabolism observed in schizophrenia. However, the relationship between KMO variation and cognitive function in schizophrenia is unknown. This study examined the effects of the KMO rs2275163C>T C (risk) allele on cognitive function in schizophrenia. Methods We examined the association of KMO polymorphisms with general neuropsychological performance and P50 gating in a sample of 150 schizophrenia and 95 healthy controls. Results Consistent with our original report, the KMO rs2275163C>T C (risk) allele was associated with deficits in general neuropsychological performance, and this effect was more marked in schizophrenia compared with controls. Additionally, the C (Arg452) allele of the missense rs1053230C>T variant (KMO Arg452Cys) showed a trend effect on cognitive function. Neither variant affected P50 gating. Conclusions These data suggest that KMO variation influences a range of cognitive domains known to predict functional outcome. Extensive molecular characterization of this gene would elucidate its role in cognitive function with implications for vertical integration with basic discovery. PMID:25464917

  11. [Genetic variation analysis of canine parvovirus VP2 gene in China].

    Science.gov (United States)

    Yi, Li; Cheng, Shi-Peng; Yan, Xi-Jun; Wang, Jian-Ke; Luo, Bin

    2009-11-01

    To recognize the molecular biology character, phylogenetic relationship and the state quo prevalent of Canine parvovirus (CPV), Faecal samnples from pet dogs with acute enteritis in the cities of Beijing, Wuhan, and Nanjing were collected and tested for CPV by PCR and other assay between 2006 and 2008. There was no CPV to FPV (MEV) variation by PCR-RFLP analysis in all samples. The complete ORFs of VP2 genes were obtained by PCR from 15 clinical CPVs and 2 CPV vaccine strains. All amplicons were cloned and sequenced. Analysis of the VP2 sequences showed that clinical CPVs both belong to CPV-2a subtype, and could be classified into a new cluster by amino acids contrasting which contains Tyr-->Ile (324) mutation. Besides the 2 CPV vaccine strains belong to CPV-2 subtype, and both of them have scattered variation in amino acids residues of VP2 protein. Construction of the phylogenetic tree based on CPV VP2 sequence showed these 15 CPV clinical strains were in close relationship with Korea strain K001 than CPV-2a isolates in other countries at early time, It is indicated that the canine parvovirus genetic variation was associated with location and time in some degree. The survey of CPV capsid protein VP2 gene provided the useful information for the identification of CPV types and understanding of their genetic relationship.

  12. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans

    OpenAIRE

    Schalling Martin; Lonsdorf Tina B; Jensen Karin B; Kosek Eva; Ingvar Martin

    2009-01-01

    Abstract Background There is evidence from animal studies that serotonin (5-HT) can influence the antinociceptive effects of opioids at the spinal cord level. Therefore, there could be an influence of genetic polymorphisms in the serotonin system on individual variability in response to opioid treatment of pain. The serotonin transporter (5-HTT) is a key regulator of serotonin metabolism and availability and its gene harbors several known polymorphisms that are known to affect 5-HTT expressio...

  13. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  14. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC).

    Science.gov (United States)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Chornokur, Ganna; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja Kh; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Sieh, Weiva; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hasmad, Hanis N; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Iversen, Edwin S; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kellar, Melissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Vierkant, Robert A; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Ian; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Thomsen, Lotte; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Palmieri Weber, Rachel; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Schernhammer, Eva; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston-Campbell, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Amankwah, Ernest; Berchuck, Andrew; Schildkraut, Joellen M; Kelemen, Linda E; Ramus, Susan J; Monteiro, Alvaro N A; Goode, Ellen L; Narod, Steven A; Gayther, Simon A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant association was rs117104877 in BMAL1 (OR = 0.79, 95% CI = 0.68-0.90, p = 5.59 × 10 -4 ]. Functional analysis revealed a significant down regulation of BMAL1 expression following cMYC overexpression and increasing transformation in ovarian surface epithelial (OSE) cells as well as alternative splicing of BMAL1 exons in ovarian and granulosa cells. These results suggest that variation in circadian genes, and specifically BMAL1 , may be associated with risk of ovarian cancer, likely through disruption of hormonal pathways.

  15. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Barker Gary LA

    2009-07-01

    Full Text Available Abstract Background The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone. Results There were substantial transcriptional differences between four C. elegans lines under the same environmental conditions. The expression of approximately 2,000 genes differed between genetically different lines, with each line showing a largely line-specific transcriptional profile. The expression of genes that are markers of larval moulting suggested that the lines may be developing at different rates. The expression of a total of 89 genes was putatively affected by dauer larva or non-dauer larva-inducing conditions. Among the upstream regions of these genes there was an over-representation of DAF-16-binding motifs. Conclusion Under the same environmental conditions genetically different lines of C. elegans had substantial transcriptional differences. This variation may be due to differences in the developmental rates of the lines. Different environmental conditions had a rather smaller effect on transcription. The preponderance of DAF-16-binding motifs upstream of these genes was consistent with these genes playing a key role in the decision between development into dauer or into non-dauer larvae. There was little overlap between the genes whose expression was affected by environmental conditions and previously identified loci involved in

  16. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    Science.gov (United States)

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  17. Natural Variation of Epstein-Barr Virus Genes, Proteins, and Primary MicroRNA.

    Science.gov (United States)

    Correia, Samantha; Palser, Anne; Elgueta Karstegl, Claudio; Middeldorp, Jaap M; Ramayanti, Octavia; Cohen, Jeffrey I; Hildesheim, Allan; Fellner, Maria Dolores; Wiels, Joelle; White, Robert E; Kellam, Paul; Farrell, Paul J

    2017-08-01

    Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains, including many primary isolates, have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1, and the BART microRNA (miRNA) cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains, named QCIGP, results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through single-nucleotide polymorphisms (SNPs) in the primary miRNA outside the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future, more directed analysis of association of specific EBV variations with EBV biology and EBV-associated diseases. IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Thus, relationships between EBV genome sequence variation and health, disease, geography, and ethnicity of the host may be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focusing on variation in LMP1, Zp, gp350, EBNA1, and the BART miRNA cluster 2, new relationships with the known

  18. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies.

    Science.gov (United States)

    Passot, Christophe; Azzopardi, Nicolas; Renault, Sylvaine; Baroukh, Nadine; Arnoult, Christophe; Ohresser, Marc; Boisdron-Celle, Michèle; Gamelin, Erick; Watier, Hervé; Paintaud, Gilles; Gouilleux-Gruart, Valérie

    2013-01-01

    The neonatal Fc receptor (FcRn) encoded by FCGRT is known to be involved in the pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs). Variability in the expression of FCGRT gene and consequently in the FcRn protein level could explain differences in PK observed between patients treated with mAbs. We studied whether the previously described variable number tandem repeat (VNTR) or copy number variation (CNV) of FCGRT are associated with individual variations of PK parameters of cetuximab. VNTR and CNV were assessed on genomic DNA of 198 healthy individuals and of 94 patients treated with the therapeutic mAb. VNTR and CNV were analyzed by allele-specific PCR and duplex real-time PCR with Taqman (®) technology, respectively. The relationship between FCGRT polymorphisms (VNTR and CNV) and PK parameters of patients treated with cetuximab was studied. VNTR3 homozygote patients had a lower cetuximab distribution clearance than VNTR2/VNTR3 and VNTR3/VNTR4 patients (p = 0.021). We observed no affects of VNTR genotype on elimination clearance. One healthy person (0.5%) and 1 patient (1.1%) had 3 copies of FCGRT. The PK parameters of this patient did not differ from those of patients with 2 copies. The FCGRT promoter VNTR may influence mAbs' distribution in the body. CNV of FCGRT cannot be used as a relevant pharmacogenetic marker because of its low frequency.

  19. Rapid Gene Turnover as a Significant Source of Genetic Variation in a Recently Seeded Population of a Healthcare-Associated Pathogen

    Directory of Open Access Journals (Sweden)

    Lucía Graña-Miraglia

    2017-09-01

    Full Text Available Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.

  20. Sequence variations in the FAD2 gene in seeded pumpkins.

    Science.gov (United States)

    Ge, Y; Chang, Y; Xu, W L; Cui, C S; Qu, S P

    2015-12-21

    Seeded pumpkins are important economic crops; the seeds contain various unsaturated fatty acids, such as oleic acid and linoleic acid, which are crucial for human and animal nutrition. The fatty acid desaturase-2 (FAD2) gene encodes delta-12 desaturase, which converts oleic acid to linoleic acid. However, little is known about sequence variations in FAD2 in seeded pumpkins. Twenty-seven FAD2 clones from 27 accessions of Cucurbita moschata, Cucurbita maxima, Cucurbita pepo, and Cucurbita ficifolia were obtained (totally 1152 bp; a single gene without introns). More than 90% nucleotide identities were detected among the 27 FAD2 clones. Nucleotide substitution, rather than nucleotide insertion and deletion, led to sequence polymorphism in the 27 FAD2 clones. Furthermore, the 27 FAD2 selected clones all encoded the FAD2 enzyme (delta-12 desaturase) with amino acid sequence identities from 91.7 to 100% for 384 amino acids. The same main-function domain between 47 and 329 amino acids was identified. The four species clustered separately based on differences in the sequences that were identified using the unweighted pair group method with arithmetic mean. Geographic origin and species were found to be closely related to sequence variation in FAD2.

  1. Genetic and epigenetic variation in 5S ribosomal RNA genes reveals genome dynamics in Arabidopsis thaliana.

    Science.gov (United States)

    Simon, Lauriane; Rabanal, Fernando A; Dubos, Tristan; Oliver, Cecilia; Lauber, Damien; Poulet, Axel; Vogt, Alexander; Mandlbauer, Ariane; Le Goff, Samuel; Sommer, Andreas; Duborjal, Hervé; Tatout, Christophe; Probst, Aline V

    2018-04-06

    Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.

  2. Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function

    Directory of Open Access Journals (Sweden)

    dePamphilis Claude W

    2005-02-01

    Full Text Available Abstract Background The analysis of synonymous and nonsynonymous rates of DNA change can help in the choice among competing explanations for rate variation, such as differences in constraint, mutation rate, or the strength of genetic drift. Nonphotosynthetic plants of the Orobanchaceae have increased rates of DNA change. In this study 38 taxa of Orobanchaceae and relatives were used and 3 plastid genes were sequenced for each taxon. Results Phylogenetic reconstructions of relative rates of sequence evolution for three plastid genes (rbcL, matK and rps2 show significant rate heterogeneity among lineages and among genes. Many of the non-photosynthetic plants have increases in both synonymous and nonsynonymous rates, indicating that both (1 selection is relaxed, and (2 there has been a change in the rate at which mutations are entering the population in these species. However, rate increases are not always immediate upon loss of photosynthesis. Overall there is a poor correlation of synonymous and nonsynonymous rates. There is, however, a strong correlation of synonymous rates across the 3 genes studied and the lineage-speccific pattern for each gene is strikingly similar. This indicates that the causes of synonymous rate variation are affecting the whole plastid genome in a similar way. There is a weaker correlation across genes for nonsynonymous rates. Here the picture is more complex, as could be expected if there are many causes of variation, differing from taxon to taxon and gene to gene. Conclusions The distinctive pattern of rate increases in Orobanchaceae has at least two causes. It is clear that there is a relaxation of constraint in many (though not all non-photosynthetic lineages. However, there is also some force affecting synonymous sites as well. At this point, it is not possible to tell whether it is generation time, speciation rate, mutation rate, DNA repair efficiency or some combination of these factors.

  3. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.; Coll, Francesc; Bergval, Indra; Anthony, Richard M.; Warren, Rob; Sampson, Samantha L.; Gey van Pittius, Nicolaas C.; Glynn, Judith R.; Crampin, Amelia C.; Alves, Adriana; Bessa, Theolis Barbosa; Campino, Susana; Dheda, Keertan; Grandjean, Louis; Hasan, Rumina; Hasan, Zahra; Miranda, Anabela; Moore, David; Panaiotov, Stefan; Perdigao, Joao; Portugal, Isabel; Sheen, Patricia; de Oliveira Sousa, Erivelton; Streicher, Elizabeth M.; van Helden, Paul D.; Viveiros, Miguel; Hibberd, Martin L.; Pain, Arnab; McNerney, Ruth; Clark, Taane G.

    2016-01-01

    . tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified

  4. Variations in Spike Glycoprotein Gene of MERS-CoV, South Korea, 2015.

    Science.gov (United States)

    Kim, Dae-Won; Kim, You-Jin; Park, Sung Han; Yun, Mi-Ran; Yang, Jeong-Sun; Kang, Hae Ji; Han, Young Woo; Lee, Han Saem; Kim, Heui Man; Kim, Hak; Kim, A-Reum; Heo, Deok Rim; Kim, Su Jin; Jeon, Jun Ho; Park, Deokbum; Kim, Joo Ae; Cheong, Hyang-Min; Nam, Jeong-Gu; Kim, Kisoon; Kim, Sung Soon

    2016-01-01

    An outbreak of nosocomial infections with Middle East respiratory syndrome coronavirus occurred in South Korea in May 2015. Spike glycoprotein genes of virus strains from South Korea were closely related to those of strains from Riyadh, Saudi Arabia. However, virus strains from South Korea showed strain-specific variations.

  5. Genetic Influences on Adolescent Sexual Behavior: Why Genes Matter for Environmentally-Oriented Researchers

    Science.gov (United States)

    Harden, K. Paige

    2013-01-01

    There are dramatic individual differences among adolescents in how and when they become sexually active adults, and “early” sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically-informed research on adolescent sexual behavior compares twins and family members as a form of “quasi-experiment”: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically-informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of gene × environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally-oriented theory and research. PMID:23855958

  6. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    International Nuclear Information System (INIS)

    Chistiakov, Dimitry A.; Voronova, Natalia V.; Chistiakov, Pavel A.

    2008-01-01

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  7. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Chistiakov, Dimitry A. (Dept. of Pathology, Univ. of Pittsburgh, Pittsburgh (US)); Voronova, Natalia V. (Dept. of Molecular Diagnostics, National Research Center GosNIIgenetika, Moscow (RU)); Chistiakov, Pavel A. (Dept. of Radiology, Cancer Research Center, Moscow (RU))

    2008-06-15

    Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population

  8. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast).

    Science.gov (United States)

    Yang, Jian-Rong; Maclean, Calum J; Park, Chungoo; Zhao, Huabin; Zhang, Jianzhi

    2017-09-01

    It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Genetic variation in glia-neuron signalling modulates ageing rate.

    Science.gov (United States)

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  10. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  11. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.

    2009-01-01

    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the

  12. Triarchic Psychopathy Dimensions in Chimpanzees (Pan troglodytes: Investigating Associations with Genetic Variation in the Vasopressin Receptor 1A Gene

    Directory of Open Access Journals (Sweden)

    Robert D. Latzman

    2017-07-01

    Full Text Available Vasopressin is a neuropeptide known to be associated with the development and evolution of complex socio-emotional behaviors including those relevant to psychopathic personality. In both humans and chimpanzees, recent research suggests a strong genetic contribution to individual variation in psychopathic traits. To date, however, little is known concerning specific genes that might explain the observed heritability of psychopathy. In a relatively large sample of captive chimpanzees (N = 164, the current study thus sought to investigate gene-environment associations between triarchic psychopathy dimensions (i.e., disinhibition, meanness, and boldness and (1 early social rearing experiences and (2 polymorphisms in the promoter region of the V1A receptor gene (AVPR1A. Among chimpanzees raised by their biological conspecific mothers, AVPR1A was found to uniquely explain variability in disinhibition and in sex-specific ways for boldness and a total psychopathy score; however, in contrast, no significant associations were found between AVPR1A and any of the triarchic psychopathy dimensions in chimpanzees raised the first 3 years of life in a human nursery. Thus, when considered in its entirety, results suggest an important contributory influence of V1A receptor genotype variation in the explanation of the development of psychopathy under some but not all early rearing conditions. Results of the current study provide additional support for the assertion that psychopathic tendencies are rooted in basic, evolutionarily-meaningful dispositions, and provide support for a primate-translational operationalization of key neurobehavioral constructs relevant both to psychopathy and to broader forms of psychopathology.

  13. Single-nucleotide variations in the genes encoding the mitochondrial Hsp60/Hsp10 chaperone system and their disease-causing potential

    DEFF Research Database (Denmark)

    Bross, Peter; Li, Zhijie; Hansen, Jakob

    2007-01-01

    for variations in the HSPD1 and HSPE1 genes encoding the mitochondrial Hsp60/Hsp10 chaperone complex: two patients with multiple mitochondrial enzyme deficiency, 61 sudden infant death syndrome cases (MIM: #272120), and 60 patients presenting with ethylmalonic aciduria carrying non-synonymous susceptibility...... variations in the ACADS gene (MIM: *606885 and #201470). Besides previously reported variations we detected six novel variations: two in the bidirectional promoter region, and one synonymous and three non-synonymous variations in the HSPD1 coding region. One of the non-synonymous variations was polymorphic...... in patient and control samples, and the rare variations were each only found in single patients and absent in 100 control chromosomes. Functional investigation of the effects of the variations in the promoter region and the non-synonymous variations in the coding region indicated that none of them had...

  14. The evolution of gene expression QTL in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    James Ronald

    2007-08-01

    Full Text Available Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL.

  15. Sweet taste receptor gene variation and aspartame taste in primates and other species.

    Science.gov (United States)

    Li, Xia; Bachmanov, Alexander A; Maehashi, Kenji; Li, Weihua; Lim, Raymond; Brand, Joseph G; Beauchamp, Gary K; Reed, Danielle R; Thai, Chloe; Floriano, Wely B

    2011-06-01

    Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.

  16. Copy number variation in VEGF gene as a biomarker of susceptibility to age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Norshakimah Md Bakri

    2018-07-01

    Full Text Available Background: Several studies in various populations have been conducted to determine candidate genes that could contribute to age-related macular degeneration (AMD pathogenesis. Objective: The present study was undertaken to determine the association of high temperature requirement A-1 (HTRA1, vascular endothelial growth factor (VEGF and very-low-density receptor (VLDR genes with wet AMD subjects in Malaysia. Methods: A total of 125 subjects with wet AMD and 120 subjects without AMD from the Malaysian population were selected for this study. Genomic DNA was extracted and copy number variations (CNVs were determined using quantitative real-time Polymerase Chain Reaction (qPCR and comparison between the two groups was done. The demographic characteristics were also recorded. Statistical analysis was carried out using software where a level of P  0.05. Conclusion: Observations of an association between CNVs of VEGF gene and wet AMD have revealed that the CNVs of VEGF gene appears to be a possible contributor to wet AMD subjects in Malaysia. Keywords: Age-related macular degeneration, Copy number variations, VEGF, HTRA1, VLDR genes and Malaysia

  17. The genetic influences on oxycodone response characteristics in human experimental pain

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Sato, Hiroe; Nielsen, Lecia M

    2015-01-01

    Human experimental pain studies are of value to study basic pain mechanisms under controlled conditions. The aim of this study was to investigate whether genetic variation across selected mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1and OPRD1, respectively) influenced analgesic respon......; therefore, variation in opioid receptor genes may partly explain responder characteristics to oxycodone....

  18. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes

    DEFF Research Database (Denmark)

    Sørensen, Mette; Nygaard, Marianne; Debrabant, Birgit

    2016-01-01

    additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed......In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16...... in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes...

  19. PAX6 gene variations associated with aniridia in south India

    Directory of Open Access Journals (Sweden)

    Shashikant Shetty

    2004-04-01

    Full Text Available Abstract Background Mutations in the transcription factor gene PAX6 have been shown to be the cause of the aniridia phenotype. The purpose of this study was to analyze patients with aniridia to uncover PAX6 gene mutations in south Indian population. Methods Total genomic DNA was isolated from peripheral blood of twenty-eight members of six clinically diagnosed aniridia families and 60 normal healthy controls. The coding exons of the human PAX6 gene were amplified by PCR and allele specific variations were detected by single strand conformation polymorphism (SSCP followed by automated sequencing. Results The sequencing results revealed novel PAX6 mutations in three patients with sporadic aniridia: c.715ins5, [c.1201delA; c.1239A>G] and c.901delA. Two previously reported nonsense mutations were also found: c.482C>A, c.830G>A. A neutral polymorphism was detected (IVS9-12C>T at the boundary of intron 9 and exon 10. The two nonsense mutations found in the coding region of human PAX6 gene are reported for the first time in the south Indian population. Conclusion The genetic analysis confirms that haploinsuffiency of the PAX6 gene causes the classic aniridia phenotype. Most of the point mutations detected in our study results in stop codons. Here we add three novel PAX6 gene mutations in south Indian population to the existing spectrum of mutations, which is not a well-studied ethnic group. Our study supports the hypothesis that a mutation in the PAX6 gene correlates with expression of aniridia.

  20. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    Directory of Open Access Journals (Sweden)

    Michelle N. Arbeitman

    2016-07-01

    Full Text Available Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.

  1. A relative variation-based method to unraveling gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Yali Wang

    Full Text Available Gene regulatory network (GRN reconstruction is essential in understanding the functioning and pathology of a biological system. Extensive models and algorithms have been developed to unravel a GRN. The DREAM project aims to clarify both advantages and disadvantages of these methods from an application viewpoint. An interesting yet surprising observation is that compared with complicated methods like those based on nonlinear differential equations, etc., methods based on a simple statistics, such as the so-called Z-score, usually perform better. A fundamental problem with the Z-score, however, is that direct and indirect regulations can not be easily distinguished. To overcome this drawback, a relative expression level variation (RELV based GRN inference algorithm is suggested in this paper, which consists of three major steps. Firstly, on the basis of wild type and single gene knockout/knockdown experimental data, the magnitude of RELV of a gene is estimated. Secondly, probability for the existence of a direct regulation from a perturbed gene to a measured gene is estimated, which is further utilized to estimate whether a gene can be regulated by other genes. Finally, the normalized RELVs are modified to make genes with an estimated zero in-degree have smaller RELVs in magnitude than the other genes, which is used afterwards in queuing possibilities of the existence of direct regulations among genes and therefore leads to an estimate on the GRN topology. This method can in principle avoid the so-called cascade errors under certain situations. Computational results with the Size 100 sub-challenges of DREAM3 and DREAM4 show that, compared with the Z-score based method, prediction performances can be substantially improved, especially the AUPR specification. Moreover, it can even outperform the best team of both DREAM3 and DREAM4. Furthermore, the high precision of the obtained most reliable predictions shows that the suggested algorithm may be

  2. Influence of LOD variations on seismic energy release

    Science.gov (United States)

    Riguzzi, F.; Krumm, F.; Wang, K.; Kiszely, M.; Varga, P.

    2009-04-01

    Tidal friction causes significant time variations of geodynamical parameters, among them geometrical flattening. The axial despinning of the Earth due to tidal friction through the change of flattening generates incremental meridional and azimuthal stresses. The stress pattern in an incompressible elastic upper mantle and crust is symmetric to the equator and has its inflection points at the critical latitude close to ±45°. Consequently the distribution of seismic energy released by strong, shallow focus earthquakes should have also sharp maxima at this latitude. To investigate the influence of length of day (LOD) variations on earthquake activity an earthquake catalogue of strongest seismic events (M>7.0) was completed for the period 1900-2007. It is shown with the use of this catalogue that for the studied time-interval the catalogue is complete and consists of the seismic events responsible for more than 90% of released seismic energy. Study of the catalogue for earthquakes M>7.0 shows that the seismic energy discharged by the strongest seismic events has significant maxima at ±45°, what renders probably that the seismic activity of our planet is influenced by an external component, i.e. by the tidal friction, which acts through the variation of the hydrostatic figure of the Earth caused by it. Distribution along the latitude of earthquake numbers and energies was investigated also for the case of global linear tectonic structures, such as mid ocean ridges and subduction zones. It can be shown that the number of the shallow focus shocks has a repartition along the latitude similar to the distribution of the linear tectonic structures. This means that the position of foci of seismic events is mainly controlled by the tectonic activity.

  3. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    DEFF Research Database (Denmark)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    . As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC......BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes...... and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted...

  4. The Ser311Cys variation in the paraoxonase 2 gene increases the ...

    Indian Academy of Sciences (India)

    Supplementary data: The Ser311Cys variation in the paraoxonase 2 gene increases the risk of type 2 diabetes in northern Chinese. Yanchun Qu, Ze Yang, Feng Jin, Liang Sun, Chuanfang Zhang, Linong Ji, Hong Sun, Binyou Wang and Li Wang. J. Genet. 87, 165–169. Table 1. Clinical characteristics of case and control.

  5. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Science.gov (United States)

    Ali, Shafat; Chopra, Rupali; Manvati, Siddharth; Singh, Yoginder Pal; Kaul, Nabodita; Behura, Anita; Mahajan, Ankit; Sehajpal, Prabodh; Gupta, Subash; Dhar, Manoj K; Chainy, Gagan B N; Bhanwer, Amarjit S; Sharma, Swarkar; Bamezai, Rameshwar N K

    2013-01-01

    Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, ppopulation. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  6. Distinguishing the rates of gene activation from phenotypic variations.

    Science.gov (United States)

    Chen, Ye; Lv, Cheng; Li, Fangting; Li, Tiejun

    2015-06-18

    Stochastic genetic switching driven by intrinsic noise is an important process in gene expression. When the rates of gene activation/inactivation are relatively slow, fast, or medium compared with the synthesis/degradation rates of mRNAs and proteins, the variability of protein and mRNA levels may exhibit very different dynamical patterns. It is desirable to provide a systematic approach to identify their key dynamical features in different regimes, aiming at distinguishing which regime a considered gene regulatory network is in from their phenotypic variations. We studied a gene expression model with positive feedbacks when genetic switching rates vary over a wide range. With the goal of providing a method to distinguish the regime of the switching rates, we first focus on understanding the essential dynamics of gene expression system in different cases. In the regime of slow switching rates, we found that the effective dynamics can be reduced to independent evolutions on two separate layers corresponding to gene activation and inactivation states, and the transitions between two layers are rare events, after which the system goes mainly along deterministic ODE trajectories on a particular layer to reach new steady states. The energy landscape in this regime can be well approximated by using Gaussian mixture model. In the regime of intermediate switching rates, we analyzed the mean switching time to investigate the stability of the system in different parameter ranges. We also discussed the case of fast switching rates from the viewpoint of transition state theory. Based on the obtained results, we made a proposal to distinguish these three regimes in a simulation experiment. We identified the intermediate regime from the fact that the strength of cellular memory is lower than the other two cases, and the fast and slow regimes can be distinguished by their different perturbation-response behavior with respect to the switching rates perturbations. We proposed a

  7. Discovery and replication of gene influences on brain structure using LASSO regression

    Directory of Open Access Journals (Sweden)

    Omid eKohannim

    2012-08-01

    Full Text Available We implemented LASSO (least absolute shrinkage and selection operator regression to evaluate gene effects in genome-wide association studies (GWAS of brain images, using an MRI-derived temporal lobe volume measure from 729 subjects scanned as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI. Sparse groups of SNPs in individual genes were selected by LASSO, which identifies efficient sets of variants influencing the data. These SNPs were considered jointly when assessing their association with neuroimaging measures. We discovered 22 genes that passed genome-wide significance for influencing temporal lobe volume. This was a substantially greater number of significant genes compared to those found with standard, univariate GWAS. These top genes are all expressed in the brain and include genes previously related to brain function or neuropsychiatric disorders such as MACROD2, SORCS2, GRIN2B, MAGI2, NPAS3, CLSTN2, GABRG3, NRXN3, PRKAG2, GAS7, RBFOX1, ADARB2, CHD4 and CDH13. The top genes we identified with this method also displayed significant and widespread post-hoc effects on voxelwise, tensor-based morphometry (TBM maps of the temporal lobes. The most significantly associated gene was an autism susceptibility gene known as MACROD2. We were able to successfully replicate the effect of the MACROD2 gene in an independent cohort of 564 young, Australian healthy adult twins and siblings scanned with MRI (mean age: 23.8±2.2 SD years. In exploratory analyses, three selected SNPs in the MACROD2 gene were also significantly associated with performance intelligence quotient (PIQ. Our approach powerfully complements univariate techniques in detecting influences of genes on the living brain.

  8. Genetic variation in genes of the fatty acid synthesis pathway and breast cancer risk

    DEFF Research Database (Denmark)

    Campa, Daniele; McKay, James; Sinilnikova, Olga

    2009-01-01

    and FASN) is related to breast cancer risk and body-mass index (BMI) by studying 1,294 breast cancer cases and 2,452 controls from the European Prospective Investigation on Cancer (EPIC). We resequenced the FAS gene and combined information of SNPs found by resequencing and SNPs from public databases....... Using a tagging approach and selecting 20 SNPs, we covered all the common genetic variation of these genes. In this study we were not able to find any statistically significant association between the SNPs in the FAS, ChREBP and SREPB-1 genes and an increased risk of breast cancer overall...

  9. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    International Nuclear Information System (INIS)

    Adams, Scott V.; Barrick, Brian; Christopher, Emily P.; Shafer, Martin M.; Makar, Karen W.; Song, Xiaoling; Lampe, Johanna W.; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  10. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Scott V., E-mail: sadams@fhcrc.org [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Barrick, Brian [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Christopher, Emily P. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Shafer, Martin M. [Environmental Chemistry and Technology, Wisconsin State Laboratory of Hygiene, University of Wisconsin, 2601 Agriculture Dr., Madison, WI 53718 (United States); Makar, Karen W.; Song, Xiaoling [Public Health Science Biomarker Laboratory, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Lampe, Johanna W. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States); Vilchis, Hugo [Border Epidemiology and Environmental Health Center, New Mexico State University, Box 30001 MSC 3BEC, Las Cruces, NM 88003 (United States); Ulery, April [Department of Plant and Environmental Sciences, New Mexico State University, Box 30003 MSC 3Q, Las Cruces, NM 88003 (United States); Newcomb, Polly A. [Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109 (United States)

    2015-12-15

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.

  11. Application of heteroduplex analysis for detecting variation within the growth hormone 2 gene in Salmo trutta L. (brown trout).

    Science.gov (United States)

    Gross, R; Nilsson, J

    1995-03-01

    A new method to detect variation at a single copy nuclear gene in brown trout, Salmo trutta L., is provided. The technique entails (i) selective gene amplification by the polymerase chain reaction (PCR), (ii) digestion of amplification products by restriction endonucleases to obtain fragments of suitable size, (iii) hybridization with heterologous DNA followed by denaturation and reannealing to obtain heteroduplex molecules, and (iv) screening for variation in polyacrylamide gels. Variation was studied within a growth hormone 2 gene 1489 bp segment and polymorphism was detected in two HinfI-digested fragments. Formation of different heteroduplex patterns in experimental mixtures of digested amplification products from brown trout and Atlantic salmon, Salmo salar L., allowed us to determine the genotype of the brown trout. Polymorphism was observed in four out of six studied populations.

  12. Geographic Variation in Advertisement Calls in a Tree Frog Species: Gene Flow and Selection Hypotheses

    Science.gov (United States)

    Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.

    2011-01-01

    Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene

  13. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    Science.gov (United States)

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  14. Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.

    Science.gov (United States)

    Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J

    2007-09-01

    To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.

  15. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: a Systematic Review.

    Science.gov (United States)

    Misiak, Błażej; Stramecki, Filip; Gawęda, Łukasz; Prochwicz, Katarzyna; Sąsiadek, Maria M; Moustafa, Ahmed A; Frydecka, Dorota

    2017-08-18

    Schizophrenia and bipolar disorder (BD) are complex and multidimensional disorders with high heritability rates. The contribution of genetic factors to the etiology of these disorders is increasingly being recognized as the action of multiple risk variants with small effect sizes, which might explain only a minor part of susceptibility. On the other site, numerous environmental factors have been found to play an important role in their causality. Therefore, in recent years, several studies focused on gene × environment interactions that are believed to bridge the gap between genetic underpinnings and environmental insults. In this article, we performed a systematic review of studies investigating gene × environment interactions in BD and schizophrenia spectrum phenotypes. In the majority of studies from this field, interacting effects of variation in genes encoding catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF), and FK506-binding protein 5 (FKBP5) have been explored. Almost consistently, these studies revealed that polymorphisms in COMT, BDNF, and FKBP5 genes might interact with early life stress and cannabis abuse or dependence, influencing various outcomes of schizophrenia spectrum disorders and BD. Other interactions still require further replication in larger clinical and non-clinical samples. In addition, future studies should address the direction of causality and potential mechanisms of the relationship between gene × environment interactions and various categories of outcomes in schizophrenia and BD.

  16. The influence of nitride thickness variations on the switching speed of MNOS memory transistors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1978-01-01

    The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well with measu......The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well...

  17. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    Science.gov (United States)

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  18. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    Science.gov (United States)

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  19. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Directory of Open Access Journals (Sweden)

    Melanie G Mayer

    2015-06-01

    Full Text Available Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as

  20. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups.

    Directory of Open Access Journals (Sweden)

    Shafat Ali

    Full Text Available Type 2 diabetes (T2D is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E-04 with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E-08 in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR<1.38 increased to OR = 2.44, (95%CI = 1.67-3.59 when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.

  1. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  2. Roles of putative sodium-hydrogen antiporter (SHA) genes in S. coelicolor A3(2) culture with pH variation.

    Science.gov (United States)

    Kim, Yoon Jung; Moon, Myung Hee; Lee, Jae Sun; Hong, Soon-Kwang; Chang, Yong Keun

    2011-09-01

    Culture pH change has some important roles in signal transduction and secondary metabolism. We have already reported that acidic pH shock enhanced actinorhodin production in Streptomyces coelicolor. Among many potential governing factors on pH variation, the putative Na(+)/H(+) antiporter (sha) genes in S. coelicolor have been investigated in this study to elucidate the association of the sha on pH variation and secondary metabolism. Through the transcriptional analysis and overexpression experiments on 8 sha genes, we observed that most of the sha expressions were promoted by pH shock, and in the opposite way the pH changes and actinorhodin production were enhanced by the overexpression of each sha. We also confirmed that sha8 especially has a main role in maintaining cell viability and pH homeostasis through Na(+) extrusion, in salt effect experiment under the alkaline medium condition by deleting sha8. Moreover, this gene was observed to have a function of pH recovery after pH variation such as the pH shock, being able to cause the sporulation. However, actinorhodin production was not induced by the only pH recovery. The sha8 gene could confer on the host cell the ability to recover pH to the neutral level after pH variation like a pH drop. Sporulation was closely associated with this pH recovery caused by the action of sha8, whereas actinorhodin production was not due to such pH variation patterns alone.

  3. Natural genetic variation in transcriptome reflects network structure inferred with major effect mutations: insulin/TOR and associated phenotypes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Harshman Lawrence G

    2009-03-01

    Full Text Available Abstract Background A molecular process based genotype-to-phenotype map will ultimately enable us to predict how genetic variation among individuals results in phenotypic alterations. Building such a map is, however, far from straightforward. It requires understanding how molecular variation re-shapes developmental and metabolic networks, and how the functional state of these networks modifies phenotypes in genotype specific way. We focus on the latter problem by describing genetic variation in transcript levels of genes in the InR/TOR pathway among 72 Drosophila melanogaster genotypes. Results We observe tight co-variance in transcript levels of genes not known to influence each other through direct transcriptional control. We summarize transcriptome variation with factor analyses, and observe strong co-variance of gene expression within the dFOXO-branch and within the TOR-branch of the pathway. Finally, we investigate whether major axes of transcriptome variation shape phenotypes expected to be influenced through the InR/TOR pathway. We find limited evidence that transcript levels of individual upstream genes in the InR/TOR pathway predict fly phenotypes in expected ways. However, there is no evidence that these effects are mediated through the major axes of downstream transcriptome variation. Conclusion In summary, our results question the assertion of the 'sparse' nature of genetic networks, while validating and extending candidate gene approaches in the analyses of complex traits.

  4. Influence of leukotriene gene polymorphisms on chronic rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Duval Melanie

    2008-03-01

    Full Text Available Abstract Background Chronic rhinosinusitis (CRS is increasingly viewed as an inflammatory condition of the sinonasal mucosa interacting with bacteria and/or fungi. However, factors conferring susceptibility to disease remain unknown. Advances in genomics offer powerful tools to explore this disorder. The goal of this study was to evaluate the effect of single nucleotide polymorphisms (SNP on CRS in a panel of genes related to cysteinyl leukotriene metabolism. Methods Severe cases of CRS and postal code match controls were recruited prospectively. A total of 206 cases and 200 controls were available for the present study. Using a candidate gene approach, five genes related to cysteinyl leukotriene metabolism were assessed. For each gene, we selected the maximally informative set of common SNPs (tagSNPs using the European-derived (CEU HapMap dataset. These SNPs are in arachidonate 5-lipoxygenase (ALOX5, arachidonate 5-lipoxygenase-activating protein (ALOX5AP, leukotriene C4 synthase (LTC4S, cysteinyl leukotriene receptor 1 (CYSLTR1 and cysteinyl leukotriene receptor 2 (CYSLTR2 genes. Results A total of 59 SNPs were genotyped to capture the common genetic variations within these genes. Three SNPs located within the ALOX5, CYSLTR1 and ALOX5AP genes reached the nominal p-value threshold (p Conclusion While these initial results do not support that polymorphsims in genes assessed involved in the leukotriene pathways are contributing to the pathogenesis of CRS, this initial study was not powered to detect polymorphisms with relative risk of 2.0 or less, where we could expect many gene effects for complex diseases to occur. Thus, despite this lack of significant association noted in this study, we believe that validation with external populations and the use of better-powered studies in the future may allow more conclusive findings.

  5. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica and 93-11 (Indica during oxidative stress.

    Directory of Open Access Journals (Sweden)

    Fengxia Liu

    Full Text Available Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L. subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS. In this study, methyl viologen (MV as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica. Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs. These CIPs were analyzed by gene ontology (GO and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs, P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS. Further insertion/deletion (InDel and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.

  6. Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene

    KAUST Repository

    Julkowska, Magdalena

    2016-02-11

    Natural variation among Arabidopsis accessions is an important genetic resource to identify mechanisms underlying plant development and stress tolerance. To evaluate the natural variation in salinity stress tolerance, two large-scale experiments were performed on two populations consisting of 160 Arabidopsis accessions each. Multiple traits, including projected rosette area, and fresh and dry weight were collected as an estimate for salinity tolerance. Our results reveal a correlation between rosette size under salt stress conditions and developmental differences between the accessions grown in control conditions, suggesting that in general larger plants were more salt tolerant. This correlation was less pronounced when plants were grown under severe salt stress conditions. Subsequent genome wide association study (GWAS) revealed associations with novel candidate genes for salinity tolerance such as LRR-KISS (At4g08850), flowering locus KH-domain containing protein and a DUF1639-containing protein. Accessions with high LRR-KISS expression developed larger rosettes under salt stress conditions. Further characterization of allelic variation in candidate genes identified in this study will provide more insight into mechanisms of salt stress tolerance due to enhanced shoot growth.

  7. Striking variations in consultation rates with general practice reveal family influence.

    NARCIS (Netherlands)

    Cardol, M.; Dijk, L. van; Bosch, W.J.H.M. van den; Spreeuwenberg, P.; Bakker, D.H. de; Groenewegen, P.P.

    2007-01-01

    BACKGROUND: The reasons why patients decide to consult a general practitioner vary enormously. While there may be individual reasons for this variation, the family context has a significant and unique influence upon the frequency of individuals' visits. The objective of this study was to explore

  8. Striking variations in consultation rates with general practice reveal family influence

    NARCIS (Netherlands)

    Cardol, Mieke; Dijk, Liset van; Bosch, Wil J.H.M. van den; Spreeuwenberg, Peter; Bakker, Dinny H. de; Groenewegen, Peter P.

    2007-01-01

    Background: The reasons why patients decide to consult a general practitioner vary enormously. While there may be individual reasons for this variation, the family context has a significant and unique influence upon the frequency of individuals' visits. The objective of this study was to explore

  9. MHC class II genes in the European badger (Meles meles) : Characterization, patterns of variation, and transcription analysis

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the alpha 1 and beta 1 domains that form the antigen-binding site (ABS) for the

  10. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  11. Recent advances in human gene-longevity association studies

    DEFF Research Database (Denmark)

    De Benedictis, G; Tan, Q; Jeune, B

    2001-01-01

    This paper reviews the recent literature on genes and longevity. The influence of genes on human life span has been confirmed in studies of life span correlation between related individuals based on family and twin data. Results from major twin studies indicate that approximately 25......% of the variation in life span is genetically determined. Taking advantage of recent developments in molecular biology, researchers are now searching for candidate genes that might have an influence on life span. The data on unrelated individuals emerging from an ever-increasing number of centenarian studies makes...... this possible. This paper summarizes the rich literature dealing with the various aspects of the influence of genes on individual survival. Common phenomena affecting the development of disease and longevity are discussed. The major methodological difficulty one is confronted with when studying the epidemiology...

  12. Sequence Variation in Toxoplasma gondii rop17 Gene among Strains from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Nian-Zhang Zhang

    2014-01-01

    Full Text Available Genetic diversity of T. gondii is a concern of many studies, due to the biological and epidemiological diversity of this parasite. The present study examined sequence variation in rhoptry protein 17 (ROP17 gene among T. gondii isolates from different hosts and geographical regions. The rop17 gene was amplified and sequenced from 10 T. gondii strains, and phylogenetic relationship among these T. gondii strains was reconstructed using maximum parsimony (MP, neighbor-joining (NJ, and maximum likelihood (ML analyses. The partial rop17 gene sequences were 1375 bp in length and A+T contents varied from 49.45% to 50.11% among all examined T. gondii strains. Sequence analysis identified 33 variable nucleotide positions (2.1%, 16 of which were identified as transitions. Phylogeny reconstruction based on rop17 gene data revealed two major clusters which could readily distinguish Type I and Type II strains. Analyses of sequence variations in nucleotides and amino acids among these strains revealed high ratio of nonsynonymous to synonymous polymorphisms (>1, indicating that rop17 shows signs of positive selection. This study demonstrated the existence of slightly high sequence variability in the rop17 gene sequences among T. gondii strains from different hosts and geographical regions, suggesting that rop17 gene may represent a new genetic marker for population genetic studies of T. gondii isolates.

  13. Evaluation of bovine chemerin (RARRES2 gene variation on beef cattle production traits

    Directory of Open Access Journals (Sweden)

    Amanda K Lindholm-Perry

    2012-03-01

    Full Text Available A previous study in cattle based on >48,000 markers identified markers on chromosome 4 near the chemerin gene associated with average daily feed intake (ADFI in steers (P<0.008. Chemerin is an adipokine associated with obesity and metabolic syndrome in humans, representing a strong candidate gene potentially underlying the observed association. To evaluate whether the bovine chemerin gene is involved in feed intake, 16 markers within and around the gene were tested for association in the same resource population. Eleven were nominally significant for ADFI (P<0.05 and two were significant after Bonferroni correction. Two and five SNP in this region were nominally significant for the related traits of average daily gain (ADG and residual feed intake (RFI, respectively. All markers were evaluated for effects on meat quality and carcass phenotypes. Many of the markers associated with ADFI were associated with hot carcass weight (HCW, adjusted fat thickness (AFT, and marbling (P<0.05. Marker alleles that were associated with lower ADFI were also associated with lower HCW, AFT, and marbling. Markers associated with ADFI were genotyped in a validation population of steers representing 14 breeds to determine predictive merit across populations. No consistent relationships for ADFI were detected. To determine whether cattle feed intake or growth phenotypes might be related to chemerin transcript abundance, the expression of chemerin was evaluated in adipose of 114 heifers that were siblings of the steers in the discovery population. Relative chemerin transcript abundance was not correlated with ADFI, ADG, or RFI, but associations with body condition score and yearling weight were observed. We conclude that variation in the chemerin gene may underlie observed association in the resource population, but that additional research is required to determine if this variation is widespread among breeds and to develop robust markers with predictive merit across

  14. MTHFR Gene C677T Mutation and ACE Gene I/D Polymorphism in Turkish Patients with Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Ahmet Inanir

    2013-01-01

    Full Text Available Osteoarthritis is a degenerative joint disorder resulting in destruction of articular cartilage, osteophyte formation, and subchondral bone sclerosis. In recent years, numerous genetic factors have been identified and implicated in osteoarthritis. The aim of the current study was to examine the influence of methylenetetrahydrofolate reductase (MTHFR gene C677T mutation and angiotensin converting enzyme (ACE gene insertion/deletion (I/D variations on the risk of osteoarthritis.

  15. Genetic Variation in the Nuclear and Organellar Genomes Modulates Stochastic Variation in the Metabolome, Growth, and Defense

    Science.gov (United States)

    Joseph, Bindu; Corwin, Jason A.; Kliebenstein, Daniel J.

    2015-01-01

    Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype. PMID:25569687

  16. [Influence of a variation potential on photosynthesis in pumpkin seedlings (Cucurbita pepo L.)].

    Science.gov (United States)

    Sukhov, V S; Shesterneva, O N; Surova, L M; Rumiantsev, E A; Vodeneev, V A

    2013-01-01

    The influence of a variation potential on photosynthesis in pumpkin seedlings (Cucurbita pepo L.) was investigated in our work. It was shown that the variation potential induced by cotyledon burning propagates into a leaf. It decreases CO2 assimilation and transpiration as well as increases nonphotochemical quenching. Investigation of isolated chloroplasts showed that lowering of the pH in incubation medium from 6.9-7.2 to 6.5 increases nonphotochemical quenching. It was proposed that lowering of the cytoplasmic pH induced by the variation potential takes place in the photosynthetic response development.

  17. Blood type gene locus has no influence on ACE association with Alzheimer's disease.

    Science.gov (United States)

    Braae, Anne; Medway, Christopher; Carrasquillo, Minerva; Younkin, Steven; Kehoe, Patrick G; Morgan, Kevin

    2015-04-01

    The ABO blood group locus was recently found to contribute independently and via interactions with angiotensin-converting enzyme (ACE) gene variation to plasma levels of ACE. Variation in ACE has previously been not only implicated as individually conferring susceptibility for Alzheimer's disease (AD) but also proposed to confer risk via interactions with other as yet unknown genes. More recently, larger studies have not supported ACE as a risk factor for AD, whereas the role of ACE pathway in AD has come under increased levels of scrutiny with respect to various aspects of AD pathology and possible therapies. We explored the potential combined involvement of ABO and ACE variations in the genetic susceptibility of 2067 AD cases compared with 1376 nondemented elderly. Including the effects of ABO haplotype did not provide any evidence for the genetic association of ACE with AD. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Multiscale mechanisms of nutritionally induced property variation in spider silks

    Science.gov (United States)

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  19. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma

    Directory of Open Access Journals (Sweden)

    Gascoyne Randy D

    2009-11-01

    Full Text Available Abstract Background Translocations are hallmarks of non-Hodgkin lymphoma (NHL genomes. Because lymphoid cell development processes require the creation and repair of double stranded breaks, it is not surprising that disruption of this type of DNA repair can cause cancer. The members of the MRE11-RAD50-NBS1 (MRN complex and BLM have central roles in maintenance of DNA integrity. Severe mutations in any of these genes cause genetic disorders, some of which are characterized by increased risk of lymphoma. Methods We surveyed the genetic variation in these genes in constitutional DNA of NHL patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility to NHL in a population-based collection of 797 NHL cases and 793 controls. Results 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed association results suggestive of an effect on NHL, they were not significant after correction for multiple tests. Conclusion These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could confirm such a role.

  20. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Science.gov (United States)

    Garcia, Justin R; MacKillop, James; Aller, Edward L; Merriwether, Ann M; Wilson, David Sloan; Lum, J Koji

    2010-11-30

    Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity. We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand") and report a more than 50% increase in instances of sexual infidelity. DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  1. Associations between Dopamine D4 Receptor Gene Variation with Both Infidelity and Sexual Promiscuity

    Science.gov (United States)

    Garcia, Justin R.; MacKillop, James; Aller, Edward L.; Merriwether, Ann M.; Wilson, David Sloan; Lum, J. Koji

    2010-01-01

    Background Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity. Methodology/Principal Findings We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a “one-night stand”) and report a more than 50% increase in instances of sexual infidelity. Conclusions/Significance DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism. PMID:21152404

  2. Associations between dopamine D4 receptor gene variation with both infidelity and sexual promiscuity.

    Directory of Open Access Journals (Sweden)

    Justin R Garcia

    2010-11-01

    Full Text Available Human sexual behavior is highly variable both within and between populations. While sex-related characteristics and sexual behavior are central to evolutionary theory (sexual selection, little is known about the genetic bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR polymorphism in exon III of the human dopamine D4 receptor gene (DRD4 has been correlated with an array of behavioral phenotypes and may be predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity.We administered an anonymous survey on personal history of sexual behavior and intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we show that individuals with at least one 7-repeat allele (7R+ report a greater categorical rate of promiscuous sexual behavior (i.e., having ever had a "one-night stand" and report a more than 50% increase in instances of sexual infidelity.DRD4 VNTR genotype varies considerably within and among populations and has been subject to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the considerable global allelic variation for this polymorphism.

  3. Variations of influence quantities in industrial irradiators and their effect on dosimetry performance

    International Nuclear Information System (INIS)

    Chu, R.D.H.

    1999-01-01

    Many environmental factors, including irradiation temperature, post-irradiation storage temperature, dose rate, relative humidity, oxygen content and the energy spectrum may affect the response of dosimetry systems used in industrial radiation processing. Although the effects of individual influence quantities have been extensively studied, the variations of these influence quantities in production irradiators and the complex relationships between the effects of different influence quantities make it difficult to assess the overall effect on the measurement uncertainty. In the development of new dosimetry systems it is important to know the effect of each influence quantity and developers of new dosimetry systems should perform studies over a wide range of irradiation conditions. Analysis parameters and manufacturing specifications should be chosen to minimize the effect of influence quantities in the environments where the dosimeters will be used. Because of possible relationships between different influence quantities, care must be taken to ensure that the response function determined in the calibration of the dosimetry system is applicable for the conditions in which the dosimeters will be used. Reference standard dosimetry systems which have been thoroughly studied and have known relationships between dose response and influence quantities should be used to verify the calibration of routine dosimetry systems under the actual conditions of use. Better understanding of the variations in influence quantities in industrial irradiators may be obtained by modeling or direct measurements and may provide improvements in the calibration of routine dosimetry system and reduction of the overall measurement uncertainty. (author)

  4. Genetically-based olfactory signatures persist despite dietary variation.

    Directory of Open Access Journals (Sweden)

    Jae Kwak

    Full Text Available Individual mice have a unique odor, or odortype, that facilitates individual recognition. Odortypes, like other phenotypes, can be influenced by genetic and environmental variation. The genetic influence derives in part from genes of the major histocompatibility complex (MHC. A major environmental influence is diet, which could obscure the genetic contribution to odortype. Because odortype stability is a prerequisite for individual recognition under normal behavioral conditions, we investigated whether MHC-determined urinary odortypes of inbred mice can be identified in the face of large diet-induced variation. Mice trained to discriminate urines from panels of mice that differed both in diet and MHC type found the diet odor more salient in generalization trials. Nevertheless, when mice were trained to discriminate mice with only MHC differences (but on the same diet, they recognized the MHC difference when tested with urines from mice on a different diet. This indicates that MHC odor profiles remain despite large dietary variation. Chemical analyses of urinary volatile organic compounds (VOCs extracted by solid phase microextraction (SPME and analyzed by gas chromatography/mass spectrometry (GC/MS are consistent with this inference. Although diet influenced VOC variation more than MHC, with algorithmic training (supervised classification MHC types could be accurately discriminated across different diets. Thus, although there are clear diet effects on urinary volatile profiles, they do not obscure MHC effects.

  5. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    DEFF Research Database (Denmark)

    Purrington, Kristen S; Slettedahl, Seth; Bolla, Manjeet K

    2014-01-01

    polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10......Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide......(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene...

  6. Immune gene expression in Bombus terrestris: signatures of infection despite strong variation among populations, colonies, and sister workers.

    Directory of Open Access Journals (Sweden)

    Franziska S Brunner

    Full Text Available Ecological immunology relies on variation in resistance to parasites. Colonies of the bumblebee Bombus terrestris vary in their susceptibility to the trypanosome gut parasite Crithidia bombi, which reduces colony fitness. To understand the possible origin of this variation in resistance we assayed the expression of 28 immunologically important genes in foraging workers. We deliberately included natural variation of the host "environment" by using bees from colonies collected in two locations and sampling active foraging workers that were not age controlled. Immune gene expression patterns in response to C. bombi showed remarkable variability even among genetically similar sisters. Nevertheless, expression varied with parasite exposure, among colonies and, perhaps surprisingly, strongly among populations (collection sites. While only the antimicrobial peptide abaecin is universally up regulated upon exposure, linear discriminant analysis suggests that the overall exposure effect is driven by a combination of several immune pathways and further immune functions such as ROS regulation. Also, the differences among colonies in their immune gene expression profiles provide clues to the mechanistic basis of well-known inter-colony variation in susceptibility to this parasite. Our results show that transcriptional responses to parasite exposure can be detected in ecologically heterogeneous groups despite strong background noise.

  7. Influence of genetic variation on plasma protein levels in older adults using a multi-analyte panel.

    Directory of Open Access Journals (Sweden)

    Sungeun Kim

    Full Text Available Proteins, widely studied as potential biomarkers, play important roles in numerous physiological functions and diseases. Genetic variation may modulate corresponding protein levels and point to the role of these variants in disease pathophysiology. Effects of individual single nucleotide polymorphisms (SNPs within a gene were analyzed for corresponding plasma protein levels using genome-wide association study (GWAS genotype data and proteomic panel data with 132 quality-controlled analytes from 521 Caucasian participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI cohort. Linear regression analysis detected 112 significant (Bonferroni threshold p=2.44×10(-5 associations between 27 analytes and 112 SNPs. 107 out of these 112 associations were tested in the Indiana Memory and Aging Study (IMAS cohort for replication and 50 associations were replicated at uncorrected p<0.05 in the same direction of effect as those in the ADNI. We identified multiple novel associations including the association of rs7517126 with plasma complement factor H-related protein 1 (CFHR1 level at p<1.46×10(-60, accounting for 40 percent of total variation of the protein level. We serendipitously found the association of rs6677604 with the same protein at p<9.29×10(-112. Although these two SNPs were not in the strong linkage disequilibrium, 61 percent of total variation of CFHR1 was accounted for by rs6677604 without additional variation by rs7517126 when both SNPs were tested together. 78 other SNP-protein associations in the ADNI sample exceeded genome-wide significance (5×10(-8. Our results confirmed previously identified gene-protein associations for interleukin-6 receptor, chemokine CC-4, angiotensin-converting enzyme, and angiotensinogen, although the direction of effect was reversed in some cases. This study is among the first analyses of gene-protein product relationships integrating multiplex-panel proteomics and targeted genes extracted from a GWAS

  8. CAG repeat length variation in the polymerase gamma (POLG) gene: effect on semen quality

    NARCIS (Netherlands)

    Westerveld, G. H.; Kaaij-Visser, L.; Tanck, M.; van der Veen, F.; Repping, S.

    2008-01-01

    Several case-control studies have investigated the effect of CAG repeat length variation in the POLG gene on male fertility and semen quality. Some described an association between the homozygous not10 CAG-repeat genotype and male subfertility and/or reduced semen quality, whereas others did not.

  9. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  10. [Phenotypic effects of puroindoline gene alleles of bread wheat].

    Science.gov (United States)

    Chebotar, S V; Kurakina, K O; Khokhlov, O M; Chebotar, H O; Syvolap, Iu M

    2012-01-01

    85 winter bread wheat varieties and lines that have been developed mostly in Ukraine were analyzed with NIR for parameters of hardness and protein content. The hardness data were compared with the data of puroindoline gene alleles analysis done earlier and the published data. Significant variation of parameters of hardness was revealed when there was low polymorphism of puroindoline genes indicating the presence of additional genes that influence the hardness parameters.

  11. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2011-01-01

    Full Text Available Abstract Background The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. Results The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. Conclusion The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.

  12. Race/Ethnic Based Genetic Variations in Human Genes: Defining the Genetic Evidence for Disparity of Prostate Cancer Risk and Mortality Between Different Populations

    National Research Council Canada - National Science Library

    Franklin, John

    1999-01-01

    .... The study will evaluate variations in androgen receptor gene, the vitamin D receptor gene, and the APOJ/clusterin gene by amplifying specific DNA segments from certain genes utilizing a commonly used...

  13. Effects of abhydrolase domain containing 5 gene (ABHD5) expression and variations on chicken fat metabolism.

    Science.gov (United States)

    Ouyang, Hongjia; Liu, Qing; Xu, Jiguo; Zeng, Fang; Pang, Xiaolin; Jebessa, Endashaw; Liang, Shaodong; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/β-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P  C SNP was also associated with chicken body weight (P chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens. © 2015 Poultry Science Association Inc.

  14. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium

    KAUST Repository

    Parkinson, John Everett; Baumgarten, Sebastian; Michell, Craig; Baums, Iliana B.; LaJeunesse, Todd C.; Voolstra, Christian R.

    2016-01-01

    Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages (“Clades A-I”) and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e. cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and inter-individual variation in non-model organisms.

  15. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium

    KAUST Repository

    Parkinson, John Everett

    2016-02-11

    Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages (“Clades A-I”) and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e. cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and inter-individual variation in non-model organisms.

  16. Schooling and variation in the COMT gene: the devil is in the details.

    Science.gov (United States)

    Campbell, Daniel; Bick, Johanna; Yrigollen, Carolyn M; Lee, Maria; Joseph, Antony; Chang, Joseph T; Grigorenko, Elena L

    2013-10-01

    Schooling is considered one of the major contributors to the development of intelligence within societies and individuals. Genetic variation might modulate the impact of schooling and explain, at least partially, the presence of individual differences in classrooms. We studied a sample of 1,502 children (mean age = 11.7 years) from Zambia. Approximately 57% of these children were enrolled in school, and the rest were not. To quantify genetic variation, we investigated a number of common polymorphisms in the catechol-O-methyltransferase (COMT) gene that controls the production of the protein thought to account for >60% of the dopamine degradation in the prefrontal cortex. Haplotype analyses generated results ranging from the presence to absence of significant interactions between a number of COMT haplotypes and indicators of schooling (i.e., in- vs. out-of-school and grade completed) in the prediction of nonverbal intelligence, depending on the parameter specification. However, an investigation of the distribution of corresponding p-values suggested that these positive results were false. Convincing evidence that the variation in the COMT gene is associated with individual differences in nonverbal intelligence either directly or through interactions with schooling was not found. p-values produced by the method of testing for haplotype effects employed here may be sensitive to parameter settings, invalid under default settings, and should be checked for validity through simulation. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.

  17. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  18. Allele-specific gene expression in a wild nonhuman primate population

    Science.gov (United States)

    Tung, J.; Akinyi, M. Y.; Mutura, S.; Altmann, J.; Wray, G. A.; Alberts, S. C.

    2015-01-01

    Natural populations hold enormous potential for evolutionary genetic studies, especially when phenotypic, genetic and environmental data are all available on the same individuals. However, untangling the genotype-phenotype relationship in natural populations remains a major challenge. Here, we describe results of an investigation of one class of phenotype, allele-specific gene expression (ASGE), in the well-studied natural population of baboons of the Amboseli basin, Kenya. ASGE measurements identify cases in which one allele of a gene is overexpressed relative to the alternative allele of the same gene, within individuals, thus providing a control for background genetic and environmental effects. Here, we characterize the incidence of ASGE in the Amboseli baboon population, focusing on the genetic and environmental contributions to ASGE in a set of eleven genes involved in immunity and defence. Within this set, we identify evidence for common ASGE in four genes. We also present examples of two relationships between cis-regulatory genetic variants and the ASGE phenotype. Finally, we identify one case in which this relationship is influenced by a novel gene-environment interaction. Specifically, the dominance rank of an individual’s mother during its early life (an aspect of that individual’s social environment) influences the expression of the gene CCL5 via an interaction with cis-regulatory genetic variation. These results illustrate how environmental and ecological data can be integrated into evolutionary genetic studies of functional variation in natural populations. They also highlight the potential importance of early life environmental variation in shaping the genetic architecture of complex traits in wild mammals. PMID:21226779

  19. Polymorphism of the VEGF gene and its association with growth ...

    African Journals Online (AJOL)

    Thus, mutations of this gene may exert a significant influence on animal growth. We screened the exons of the caprine VEGF gene using PCR-SSCP and DNA sequencing methods in 459 individuals from four goat breeds to identify sequence variations that may have an effect on protein structure and function, and might be ...

  20. Colony-level behavioural variation correlates with differences in expression of the foraging gene in red imported fire ants.

    Science.gov (United States)

    Bockoven, Alison A; Coates, Craig J; Eubanks, Micky D

    2017-11-01

    Among social insects, colony-level variation is likely to be widespread and has significant ecological consequences. Very few studies, however, have documented how genetic factors relate to behaviour at the colony level. Differences in expression of the foraging gene have been associated with differences in foraging and activity of a wide variety of organisms. We quantified expression of the red imported fire ant foraging gene (sifor) in workers from 21 colonies collected across the natural range of Texas fire ant populations, but maintained under standardized, environmentally controlled conditions. Colonies varied significantly in their behaviour. The most active colonies had up to 10 times more active foragers than the least active colony and more than 16 times as many workers outside the nest. Expression differences among colonies correlated with this colony-level behavioural variation. Colonies with higher sifor expression in foragers had, on average, significantly higher foraging activity, exploratory activity and recruitment to nectar than colonies with lower expression. Expression of sifor was also strongly correlated with worker task (foraging vs. working in the interior of the nest). These results provide insight into the genetic and physiological processes underlying collective differences in social behaviour. Quantifying variation in expression of the foraging gene may provide an important tool for understanding and predicting the ecological consequences of colony-level behavioural variation. © 2017 John Wiley & Sons Ltd.

  1. Variations and classification of toxic epitopes related to celiac disease among α-gliadin genes from four Aegilops genomes.

    Science.gov (United States)

    Li, Jie; Wang, Shunli; Li, Shanshan; Ge, Pei; Li, Xiaohui; Ma, Wujun; Zeller, F J; Hsam, Sai L K; Yan, Yueming

    2012-07-01

    The α-gliadins are associated with human celiac disease. A total of 23 noninterrupted full open reading frame α-gliadin genes and 19 pseudogenes were cloned and sequenced from C, M, N, and U genomes of four diploid Aegilops species. Sequence comparison of α-gliadin genes from Aegilops and Triticum species demonstrated an existence of extensive allelic variations in Gli-2 loci of the four Aegilops genomes. Specific structural features were found including the compositions and variations of two polyglutamine domains (QI and QII) and four T cell stimulatory toxic epitopes. The mean numbers of glutamine residues in the QI domain in C and N genomes and the QII domain in C, N, and U genomes were much higher than those in Triticum genomes, and the QI domain in C and N genomes and the QII domain in C, M, N, and U genomes displayed greater length variations. Interestingly, the types and numbers of four T cell stimulatory toxic epitopes in α-gliadins from the four Aegilops genomes were significantly less than those from Triticum A, B, D, and their progenitor genomes. Relationships between the structural variations of the two polyglutamine domains and the distributions of four T cell stimulatory toxic epitopes were found, resulting in the α-gliadin genes from the Aegilops and Triticum genomes to be classified into three groups.

  2. Ghrelin Gene Variants Influence on Metabolic Syndrome Components in Aged Spanish Population

    OpenAIRE

    Mora, Mireia; Adam, Victoria; Palomera, Elisabet; Blesa, Sebastian; Díaz, Gonzalo; Buquet, Xavier; Serra-Prat, Mateu; Martín-Escudero, Juan Carlos; Palanca, Ana; Chaves, Javier Felipe; Puig-Domingo, Manuel

    2015-01-01

    BACKGROUND: The role of genetic variations within the ghrelin gene on cardiometabolic profile and nutritional status is still not clear in humans, particularly in elderly people. OBJECTIVES: We investigated six SNPs of the ghrelin gene and their relationship with metabolic syndrome (MS) components. SUBJECTS AND METHODS: 824 subjects (413 men/411 women, age 77.31±5.04) participating in the Mataró aging study (n = 310) and the Hortega study (n = 514) were analyzed. Anthropometric variables, ghr...

  3. Differential hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees.

    Science.gov (United States)

    Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Kramer, R; Schilkey, F; van der Linden, A M

    2013-01-01

    There is significant and often heritable variation in cognition and its underlying neural mechanisms, yet specific genetic contributions to such variation are not well characterized. Black-capped chickadees present a good model to investigate the genetic basis of cognition because they exhibit tremendous climate-related variation in memory, hippocampal morphology and neurogenesis rates throughout the North American continent, and these cognitive traits appear to have a heritable basis. We examined the hippocampal transcriptome profiles of laboratory-reared chickadees from the two most divergent populations to test whether differential gene expression in the hippocampus is associated with population differences in spatial memory, hippocampal morphology and adult hippocampal neurogenesis rates. Using high-resolution mRNA sequencing coupled to a de novo transcriptome assembly, we generated 23 295 consensus sequences, which predicted 16 206 protein sequences with 13 982 showing high similarity to known protein sequences or conserved hypothetical proteins in other species. Of these, we identified differential expression in nearly 380 genes, with 47 genes specifically linked to neurogenesis, apoptosis, synaptic function, and learning and memory processes. Many of the other differentially expressed genes, however, may be associated with other functions. Our study presents the first avian hippocampal transcriptome, and it is the first study identifying differential gene expression associated with natural variation in cognition and the hippocampus. Our results provide additional support to the hypothesis that population differences in memory, hippocampal morphology and neurogenesis in chickadees have likely resulted from natural selection that appears to act on memory and its underlying neural mechanisms. © 2012 Blackwell Publishing Ltd.

  4. Expression profiles of sugarcane under drought conditions: Variation in gene regulation

    Directory of Open Access Journals (Sweden)

    Júlio César Farias de Andrade

    2015-01-01

    Full Text Available AbstractDrought is a major factor in decreased sugarcane productivity because of the resulting morphophysiological effects that it causes. Gene expression studies that have examined the influence of water stress in sugarcane have yielded divergent results, indicating the absence of a fixed pattern of changes in gene expression. In this work, we investigated the expression profiles of 12 genes in the leaves of a drought-tolerant genotype (RB72910 of sugarcane and compared the results with those of other studies. The genotype was subjected to 80–100% water availability (control condition and 0–20% water availability (simulated drought. To analyze the physiological status, the SPAD index, Fv/Fm ratio, net photosynthesis (A, stomatal conductance (gs and stomatal transpiration (E were measured. Total RNA was extracted from leaves and the expression of SAMDC, ZmPIP2-1 protein, ZmTIP4-2 protein, WIP protein, LTP protein, histone H3, DNAj, ferredoxin I, β-tubulin, photosystem I, gene 1 and gene 2 was analyzed by quantitative real-time PCR (RT-PCR. Important differences in the expression profiles of these genes were observed when compared with other genotypes, suggesting that complex defense mechanisms are activated in response to water stress. However, there was no recognizable pattern for the changes in expression of the different proteins associated with tolerance to drought stress.

  5. Melanopsin Gene Variations Interact With Season to Predict Sleep Onset and Chronotype

    OpenAIRE

    Roecklein, Kathryn A.; Wong, Patricia M.; Franzen, Peter L.; Hasler, Brant P.; Wood-Vasey, W. Michael; Nimgaonkar, Vishwajit L.; Miller, Megan A.; Kepreos, Kyle M.; Ferrell, Robert E.; Manuck, Stephen B.

    2012-01-01

    The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are asso...

  6. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Science.gov (United States)

    Dulik, Matthew C; Osipova, Ludmila P; Schurr, Theodore G

    2011-03-11

    Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*). In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th) century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  7. Y-chromosome variation in Altaian Kazakhs reveals a common paternal gene pool for Kazakhs and the influence of Mongolian expansions.

    Directory of Open Access Journals (Sweden)

    Matthew C Dulik

    Full Text Available Kazakh populations have traditionally lived as nomadic pastoralists that seasonally migrate across the steppe and surrounding mountain ranges in Kazakhstan and southern Siberia. To clarify their population history from a paternal perspective, we analyzed the non-recombining portion of the Y-chromosome from Kazakh populations living in southern Altai Republic, Russia, using a high-resolution analysis of 60 biallelic markers and 17 STRs. We noted distinct differences in the patterns of genetic variation between maternal and paternal genetic systems in the Altaian Kazakhs. While they possess a variety of East and West Eurasian mtDNA haplogroups, only three East Eurasian paternal haplogroups appear at significant frequencies (C3*, C3c and O3a3c*. In addition, the Y-STR data revealed low genetic diversity within these lineages. Analysis of the combined biallelic and STR data also demonstrated genetic differences among Kazakh populations from across Central Asia. The observed differences between Altaian Kazakhs and indigenous Kazakhs were not the result of admixture between Altaian Kazakhs and indigenous Altaians. Overall, the shared paternal ancestry of Kazakhs differentiates them from other Central Asian populations. In addition, all of them showed evidence of genetic influence by the 13(th century CE Mongol Empire. Ultimately, the social and cultural traditions of the Kazakhs shaped their current pattern of genetic variation.

  8. Somatic Genetic Variation in Solid Pseudopapillary Tumor of the Pancreas by Whole Exome Sequencing

    Directory of Open Access Journals (Sweden)

    Meng Guo

    2017-01-01

    Full Text Available Solid pseudopapillary tumor of the pancreas (SPT is a rare pancreatic disease with a unique clinical manifestation. Although CTNNB1 gene mutations had been universally reported, genetic variation profiles of SPT are largely unidentified. We conducted whole exome sequencing in nine SPT patients to probe the SPT-specific insertions and deletions (indels and single nucleotide polymorphisms (SNPs. In total, 54 SNPs and 41 indels of prominent variations were demonstrated through parallel exome sequencing. We detected that CTNNB1 mutations presented throughout all patients studied (100%, and a higher count of SNPs was particularly detected in patients with older age, larger tumor, and metastatic disease. By aggregating 95 detected variation events and viewing the interconnections among each of the genes with variations, CTNNB1 was identified as the core portion in the network, which might collaborate with other events such as variations of USP9X, EP400, HTT, MED12, and PKD1 to regulate tumorigenesis. Pathway analysis showed that the events involved in other cancers had the potential to influence the progression of the SNPs count. Our study revealed an insight into the variation of the gene encoding region underlying solid-pseudopapillary neoplasm tumorigenesis. The detection of these variations might partly reflect the potential molecular mechanism.

  9. Prevalence of variations in melanoma susceptibility genes among Slovenian melanoma families

    Directory of Open Access Journals (Sweden)

    Besic Nikola

    2008-09-01

    Full Text Available Abstract Background Two high-risk genes have been implicated in the development of CM (cutaneous melanoma. Germline mutations of the CDKN2A gene are found in CDK4 gene reported to date. Beside those high penetrance genes, certain allelic variants of the MC1R gene modify the risk of developing the disease. The aims of our study were: to determine the prevalence of germline CDKN2A mutations and variants in members of families with familial CM and in patients with multiple primary CM; to search for possible CDK4 mutations, and to determine the frequency of variations in the MC1R gene. Methods From January 2001 until January 2007, 64 individuals were included in the study. The group included 28 patients and 7 healthy relatives belonging to 25 families, 26 patients with multiple primary tumors and 3 children with CM. Additionally 54 healthy individuals were included as a control group. Mutations and variants of the melanoma susceptibility genes were identified by direct sequencing. Results Seven families with CDKN2A mutations were discovered (7/25 or 28.0%. The L94Q mutation found in one family had not been previously reported in other populations. The D84N variant, with possible biological impact, was discovered in the case of patient without family history but with multiple primary CM. Only one mutation carrier was found in the control group. Further analysis revealed that c.540C>T heterozygous carriers were more common in the group of CM patients and their healthy relatives (11/64 vs. 2/54. One p14ARF variant was discovered in the control group and no mutations of the CDK4 gene were found. Most frequently found variants of the MC1R gene were T314T, V60L, V92M, R151C, R160W and R163Q with frequencies slightly higher in the group of patients and their relatives than in the group of controls, but the difference was statistically insignificant. Conclusion The present study has shown high prevalence of p16INK4A mutations in Slovenian population of

  10. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps

    Directory of Open Access Journals (Sweden)

    Joke J. F. A. Van Vugt

    2015-09-01

    Full Text Available Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus in a classical conditioning paradigm, where plant odors become associated to the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM and one type of transcription-independent, anesthesia-resistant memory (ARM can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In

  11. Variation in the γ-glutamyltransferase 1 gene and risk of chronic pancreatitis.

    Science.gov (United States)

    Brand, Harrison; Diergaarde, Brenda; O'Connell, Michael R; Whitcomb, David C; Brand, Randall E

    2013-07-01

    Individuals with chronic pancreatitis are at increased risk for pancreatic cancer. We hypothesized that genetic variation in the γ-glutamyltransferase 1 (GGT1) gene, which was recently reported associated with pancreatic cancer risk in a genome-wide association study, is also associated with risk of chronic pancreatitis. Associations between common polymorphisms in GGT1 and chronic pancreatitis were evaluated using data and samples from the North American Pancreatitis Study 2. Patients (n = 496) and control subjects (n = 465) were genotyped for 4 single-nucleotide polymorphisms: rs4820599, rs2017869, rs8135987, and rs5751901. Odds ratios (ORs) and corresponding 95% confidence intervals (95% CI) for chronic pancreatitis risk were calculated using multiple logistic regression models. Interactions with cigarette smoking and alcohol use were explored. Single-nucleotide polymorphisms rs8135987 and rs4820599 were both statistically significantly associated with risk of chronic pancreatitis; compared with common allele homozygotes, individuals with at least 1 minor allele were at increased risk (rs8135987: OR, 1.36; 95% CI, 1.03-1.80 [P(trend) = 0.01]; rs4820599: OR, 1.39; 95% CI, 1.04-1.84 [P(trend) = 0.0]; adjusted for age, sex, race, smoking status, and alcohol use). No significant interactions with cigarette smoking and alcohol use were observed. Our results suggest that common variation in the GGT1 gene may also affect risk of chronic pancreatitis.

  12. Amygdala Volume in Offspring from Multiplex for Alcohol Dependence Families: The Moderating Influence of Childhood Environment and 5-HTTLPR Variation.

    Science.gov (United States)

    Hill, Shirley Y; Wang, Shuhui; Carter, Howard; McDermott, Michael D; Zezza, Nicholas; Stiffler, Scott

    2013-12-12

    The increased susceptibility for developing alcohol dependence seen in offspring from families with alcohol dependence may be related to structural and functional differences in brain circuits that influence emotional processing. Early childhood environment, genetic variation in the serotonin transporter-linked polymorphic region (5-HTTLPR) of the SLCA4 gene and allelic variation in the Brain Derived Neurotrophic Factor (BDNF) gene have each been reported to be related to volumetric differences in the temporal lobe especially the amygdala. Magnetic resonance imaging was used to obtain amygdala volumes for 129 adolescent/young adult individuals who were either High-Risk (HR) offspring from families with multiple cases of alcohol dependence (N=71) or Low-Risk (LR) controls (N=58). Childhood family environment was measured prospectively using age-appropriate versions of the Family Environment Scale during a longitudinal follow-up study. The subjects were genotyped for Brain-Derived Neurotrophic Factor (BDNF) Val66Met and the serotonin transporter polymorphism (5-HTTLPR). Two family environment scale scores (Cohesion and Conflict), genotypic variation, and their interaction were tested for their association with amygdala volumes. Personal and prenatal exposure to alcohol and drugs were considered in statistical analyses in order to more accurately determine the effects of familial risk group differences. Amygdala volume was reduced in offspring from families with multiple alcohol dependent members in comparison to offspring from control families. High-Risk offspring who were carriers of the S variant of the 5-HTTLPR polymorphism had reduced amygdala volume in comparison to those with an LL genotype. Larger amygdala volume was associated with greater family cohesion but only in Low-Risk control offspring. Familial risk for alcohol dependence is an important predictor of amygdala volume even when removing cases with significant personal exposure and covarying for

  13. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  14. Analysis of Temporal-spatial Co-variation within Gene Expression Microarray Data in an Organogenesis Model

    Science.gov (United States)

    Ehler, Martin; Rajapakse, Vinodh; Zeeberg, Barry; Brooks, Brian; Brown, Jacob; Czaja, Wojciech; Bonner, Robert F.

    The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. We used a novel clustering method based on Laplacian Eigenmaps, a nonlinear dimension reduction method, to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our new method provided greater biological specificity than classical clustering algorithms in terms of identifying more biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates. This new methodology builds on the advantages of LCM to isolate pure phenotypic populations within complex tissues and allows improved ability to identify critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and extracting spatial and temporal co-variations appear to be a powerful approach to understanding the gene regulatory networks that specify mammalian organogenesis.

  15. Influence of 5-HTT variation, childhood trauma and self-efficacy on anxiety traits: a gene-environment-coping interaction study.

    Science.gov (United States)

    Schiele, Miriam A; Ziegler, Christiane; Holitschke, Karoline; Schartner, Christoph; Schmidt, Brigitte; Weber, Heike; Reif, Andreas; Romanos, Marcel; Pauli, Paul; Zwanzger, Peter; Deckert, Jürgen; Domschke, Katharina

    2016-08-01

    Environmental vulnerability factors such as adverse childhood experiences in interaction with genetic risk variants, e.g., the serotonin transporter gene linked polymorphic region (5-HTTLPR), are assumed to play a role in the development of anxiety and affective disorders. However, positive influences such as general self-efficacy (GSE) may exert a compensatory effect on genetic disposition, environmental adversity, and anxiety traits. We, thus, assessed childhood trauma (Childhood Trauma Questionnaire, CTQ) and GSE in 678 adults genotyped for 5-HTTLPR/rs25531 and their interaction on agoraphobic cognitions (Agoraphobic Cognitions Questionnaire, ACQ), social anxiety (Liebowitz Social Anxiety Scale, LSAS), and trait anxiety (State-Trait Anxiety Inventory, STAI-T). The relationship between anxiety traits and childhood trauma was moderated by self-efficacy in 5-HTTLPR/rs25531 LALA genotype carriers: LALA probands maltreated as children showed high anxiety scores when self-efficacy was low, but low anxiety scores in the presence of high self-efficacy despite childhood maltreatment. Our results extend previous findings regarding anxiety-related traits showing an interactive relationship between 5-HTT genotype and adverse childhood experiences by suggesting coping-related measures to function as an additional dimension buffering the effects of a gene-environment risk constellation. Given that anxiety disorders manifest already early in childhood, this insight could contribute to the improvement of psychotherapeutic interventions by including measures strengthening self-efficacy and inform early targeted preventive interventions in at-risk populations, particularly within the crucial time window of childhood and adolescence.

  16. Genetic variation in the CYP1A1 gene is related to circulating PCB118 levels in a population-based sample

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Lars [Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala (Sweden); Penell, Johanna [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden); Syvänen, Anne-Christine; Axelsson, Tomas [Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Ingelsson, Erik [Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala (Sweden); Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Morris, Andrew P.; Lindgren, Cecilia [Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford (United Kingdom); Salihovic, Samira; Bavel, Bert van [MTM Research Centre, School of Science and Technology, Örebro University, Örebro (Sweden); Lind, P. Monica, E-mail: monica.lind@medsci.uu.se [Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala (Sweden)

    2014-08-15

    Several of the polychlorinated biphenyls (PCBs), i.e. the dioxin-like PCBs, are known to induce the P450 enzymes CYP1A1, CYP1A2 and CYP1B1 by activating the aryl hydrocarbon receptor (Ah)-receptor. We evaluated if circulating levels of PCBs in a population sample were related to genetic variation in the genes encoding these CYPs. In the population-based Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study (1016 subjects all aged 70), 21 SNPs in the CYP1A1, CYP1A2 and CYP1B1 genes were genotyped. Sixteen PCB congeners were analysed by high-resolution chromatography coupled to high-resolution mass spectrometry (HRGC/ HRMS). Of the investigated relationships between SNPs in the CYP1A1, CYP1A2 and CYP1B1 and six PCBs (congeners 118, 126, 156, 169, 170 and 206) that captures >80% of the variation of all PCBs measured, only the relationship between CYP1A1 rs2470893 was significantly related to PCB118 levels following strict adjustment for multiple testing (p=0.00011). However, there were several additional SNPs in the CYP1A2 and CYP1B1 that showed nominally significant associations with PCB118 levels (p-values in the 0.003–0.05 range). Further, several SNPs in the CYP1B1 gene were related to both PCB156 and PCB206 with p-values in the 0.005–0.05 range. Very few associations with p<0.05 were seen for PCB126, PCB169 or PCB170. Genetic variation in the CYP1A1 was related to circulating PCB118 levels in the general elderly population. Genetic variation in CYP1A2 and CYP1B1 might also be associated with other PCBs. - Highlights: • We studied the relationship between PCBs and the genetic variation in the CYP genes. • Cross sectional data from a cohort of elderly were analysed. • The PCB levels were evaluated versus 21 SNPs in three CYP genes. • PCB 118 was related to variation in the CYP1A1 gene.

  17. [Variation of CAG repeats in coding region of ATXN2 gene in different ethnic groups].

    Science.gov (United States)

    Chen, Xiao-Chen; Sun, Hao; Mi, Dong-Qing; Huang, Xiao-Qin; Lin, Ke-Qin; Yi, Wen; Yu, Liang; Shi, Lei; Shi, Li; Yang, Zhao-Qing; Chu, Jia-You

    2011-04-01

    Toinvestigate CAG repeats variation of ATXN2 gene coding region in six ethnic groups that live in comparatively different environments, to evaluate whether these variations are under positive selection, and to find factors driving selection effects, 291 unrelated healthy individuals were collected from six ethnic groups and their STR geneotyping was performed. The frequencies of alleles and genotypes were counted and thereby Slatkin's linearized Fst values were calculated. The UPGMA tree against this gene was constructed. The MDS analysis among these groups was carried out as well. The results from the linearized Fst values indicated that there were significant evolutionary differences of the STR in ATXN2 gene between Hui and Yi groups, but not among the other 4 groups. Further analysis was performed by combining our data with published data obtained from other groups. These results indicated that there were significant differences between Japanese and other groups including Hui, Hani, Yunnan Mongolian, and Inner Mongolian. Both Hui and Mongolian from Inner Mongolia were significantly different from Han. In conclusion, the six ethnic groups had their own distribution characterizations of allelic frequencies of ATXN2 STR, and the potential cause of frequency changes in rare alleles could be the consequence of positive selection.

  18. Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought

    Directory of Open Access Journals (Sweden)

    Pei eXu

    2015-10-01

    Full Text Available Asparagus bean (Vigna unguiculata ssp. sesquipedalis is the Asian subspecies of cowpea, a drought-resistant legume crop native to Africa. In order to explore the genetic variation of drought responses in asparagus bean, we conducted multi-year phenotyping of drought resistance traits across the Chinese asparagus bean mini-core. The phenotypic distribution indicated that the ssp. sesquipedalis subgene pool has maintained high natural variation in drought responses despite known domestic bottleneck. Thirty-nine SNP loci were found to show an association with drought resistance via a genome-wide association study (GWAS. Whole-plant water relations were compared among four genotypes by lysimetric assay. Apparent genotypic differences in transpiration patterns and the critical soil water threshold in relation to dehydration avoidance were observed, indicating a delicate adaptive mechanism for each genotype to its own climate. Microarray gene expression analyses revealed that known drought resistance pathways such as the ABA and phosphate lipid signaling pathways are conserved between genotypes, while differential regulation of certain aquaporin genes and hormonal genes may be important for the genotypic differences. Our results suggest that divergent sensitivity to soil water content is an important mechanism configuring the genotypic specific responses to water deficit. The SNP markers identified provide useful resources for marker-assisted breeding.

  19. Natural variation and gene regulatory basis for the responses of asparagus beans to soil drought

    Science.gov (United States)

    Xu, Pei; Moshelion, Menachem; Wu, XiaoHua; Halperin, Ofer; Wang, BaoGen; Luo, Jie; Wallach, Rony; Wu, Xinyi; Lu, Zhongfu; Li, Guojing

    2015-01-01

    Asparagus bean (Vigna unguiculata ssp. sesquipedalis) is the Asian subspecies of cowpea, a drought-resistant legume crop native to Africa. In order to explore the genetic variation of drought responses in asparagus bean, we conducted multi-year phenotyping of drought resistance traits across the Chinese asparagus bean mini-core. The phenotypic distribution indicated that the ssp. sesquipedalis subgene pool has maintained high natural variation in drought responses despite known domestic bottleneck. Thirty-nine SNP loci were found to show an association with drought resistance via a genome-wide association study (GWAS). Whole-plant water relations were compared among four genotypes by lysimetric assay. Apparent genotypic differences in transpiration patterns and the critical soil water threshold in relation to dehydration avoidance were observed, indicating a delicate adaptive mechanism for each genotype to its own climate. Microarray gene expression analyses revealed that known drought resistance pathways such as the ABA and phosphate lipid signaling pathways are conserved between different genotypes, while differential regulation of certain aquaporin genes and hormonal genes may be important for the genotypic differences. Our results suggest that divergent sensitivity to soil water content is an important mechanism configuring the genotypic specific responses to water deficit. The SNP markers identified provide useful resources for marker-assisted breeding. PMID:26579145

  20. Religious influences on human capital variations in imperial Russia

    Directory of Open Access Journals (Sweden)

    Tomila Lankina

    2012-01-01

    Full Text Available Historical legacies, particularly imperial tutelage and religion, have featured prominently in recent scholarship on political regime variations in post-communist settings, challenging earlier temporally proximate explanations. The overlap between tutelage, geography, and religion has complicated the uncovering of the spatially uneven effects of the various legacies. The author addresses this challenge by conducting sub-national analysis of religious influences within one imperial domain, Russia. In particular, the paper traces how European settlement in imperial Russia has had a bearing on human development in the imperial periphery. The causal mechanism that the paper proposes to account for this influence is the Western communities’ impact on literacy, which is in turn linked in the analysis to the Western Christian, particularly Protestant, roots, of settler populations. The author makes this case by constructing an original dataset based on sub-national data from the hitherto underutilised first imperial census of 1897.

  1. Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody E.

    2016-02-29

    Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  2. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar; Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Coll, Francesc; Hill-Cawthorne, Grant A.; Nair, Mridul; Clark, Taane G.; Zaver, Ambreen; Jafri, Sana; Hasan, Rumina

    2015-01-01

    Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs and INDELs in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  3. A general scenario of Hox gene inventory variation among major sarcopterygian lineages

    Directory of Open Access Journals (Sweden)

    Wang Chaolin

    2011-01-01

    Full Text Available Abstract Background Hox genes are known to play a key role in shaping the body plan of metazoans. Evolutionary dynamics of these genes is therefore essential in explaining patterns of evolutionary diversity. Among extant sarcopterygians comprising both lobe-finned fishes and tetrapods, our knowledge of the Hox genes and clusters has largely been restricted in several model organisms such as frogs, birds and mammals. Some evolutionary gaps still exist, especially for those groups with derived body morphology or occupying key positions on the tree of life, hindering our understanding of how Hox gene inventory varied along the sarcopterygian lineage. Results We determined the Hox gene inventory for six sarcopterygian groups: lungfishes, caecilians, salamanders, snakes, turtles and crocodiles by comprehensive PCR survey and genome walking. Variable Hox genes in each of the six sarcopterygian group representatives, compared to the human Hox gene inventory, were further validated for their presence/absence by PCR survey in a number of related species representing a broad evolutionary coverage of the group. Turtles, crocodiles, birds and placental mammals possess the same 39 Hox genes. HoxD12 is absent in snakes, amphibians and probably lungfishes. HoxB13 is lost in frogs and caecilians. Lobe-finned fishes, amphibians and squamate reptiles possess HoxC3. HoxC1 is only present in caecilians and lobe-finned fishes. Similar to coelacanths, lungfishes also possess HoxA14, which is only found in lobe-finned fishes to date. Our Hox gene variation data favor the lungfish-tetrapod, turtle-archosaur and frog-salamander relationships and imply that the loss of HoxD12 is not directly related to digit reduction. Conclusions Our newly determined Hox inventory data provide a more complete scenario for evolutionary dynamics of Hox genes along the sarcopterygian lineage. Limbless, worm-like caecilians and snakes possess similar Hox gene inventories to animals with

  4. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

    Directory of Open Access Journals (Sweden)

    Yu ZHAO

    2017-09-01

    Full Text Available Background: Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis.Methods: The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10 gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI and maximum parsimony (MP. Results: Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes.Conclusion: TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  5. Sequence Variation in Rhoptry Neck Protein 10 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations.

    Science.gov (United States)

    Zhao, Yu; Zhou, Donghui; Chen, Jia; Sun, Xiaolin

    2017-01-01

    Toxoplasma gondii, as a eukaryotic parasite of the phylum Apicomplexa, can infect almost all the warm-blooded animals and humans, causing toxoplasmosis. Rhoptry neck proteins (RONs) play a key role in the invasion process of T. gondii and are potential vaccine candidate molecules against toxoplasmosis. The present study examined sequence variation in the rhoptry neck protein 10 (TgRON10) gene among 10 T. gondii isolates from different hosts and geographical locations from Lanzhou province during 2014, and compared with the corresponding sequences of strains ME49 and VEG obtained from the ToxoDB database, using polymerase chain reaction (PCR) amplification, sequence analysis, and phylogenetic reconstruction by Bayesian inference (BI) and maximum parsimony (MP). Analysis of all the 12 TgRON10 genomic and cDNA sequences revealed 7 exons and 6 introns in the TgRON10 gDNA. The complete genomic sequence of the TgRON10 gene ranged from 4759 bp to 4763 bp, and sequence variation was 0-0.6% among the 12 T. gondii isolates, indicating a low sequence variation in TgRON10 gene. Phylogenetic analysis of TgRON10 sequences showed that the cluster of the 12 T. gondii isolates was not completely consistent with their respective genotypes. TgRON10 gene is not a suitable genetic marker for the differentiation of T. gondii isolates from different hosts and geographical locations, but may represent a potential vaccine candidate against toxoplasmosis, worth further studies.

  6. Individual co-variation between viral RNA load and gene expression reveals novel host factors during early dengue virus infection of the Aedes aegypti midgut.

    Directory of Open Access Journals (Sweden)

    Vincent Raquin

    2017-12-01

    Full Text Available Dengue virus (DENV causes more human infections than any other mosquito-borne virus. The current lack of antiviral strategies has prompted genome-wide screens for host genes that are required for DENV infectivity. Earlier transcriptomic studies that identified DENV host factors in the primary vector Aedes aegypti used inbred laboratory colonies and/or pools of mosquitoes that erase individual variation. Here, we performed transcriptome sequencing on individual midguts in a field-derived Ae. aegypti population to identify new candidate host factors modulating DENV replication. We analyzed the transcriptomic data using an approach that accounts for individual co-variation between viral RNA load and gene expression. This approach generates a prediction about the agonist or antagonist effect of candidate genes on DENV replication based on the sign of the correlation between gene expression and viral RNA load. Using this method, we identified 39 candidate genes that went undetected by conventional pairwise comparison of gene expression levels between DENV-infected midguts and uninfected controls. Only four candidate genes were detected by both methods, emphasizing their complementarity. We demonstrated the value of our approach by functional validation of a candidate agonist gene encoding a sterol regulatory element-binding protein (SREBP, which was identified by correlation analysis but not by pairwise comparison. We confirmed that SREBP promotes DENV infection in the midgut by RNAi-mediated gene knockdown in vivo. We suggest that our approach for transcriptomic analysis can empower genome-wide screens for potential agonist or antagonist factors by leveraging inter-individual variation in gene expression. More generally, this method is applicable to a wide range of phenotypic traits displaying inter-individual variation.

  7. Landscape and variation of RNA secondary structure across the human transcriptome.

    OpenAIRE

    Wan, Y; Qu, K; Zhang, QC; Flynn, RA; Manor, O; Ouyang, Z; Zhang, J; Spitale, RC; Snyder, MP; Segal, E; Chang, HY

    2014-01-01

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comp...

  8. Variations in KIR Genes: A Study in HIV-1 Serodiscordant Couples

    Directory of Open Access Journals (Sweden)

    Vijay R. Chavan

    2014-01-01

    Full Text Available Background. NK cells have anti-HIV activity mediated through killer cell immunoglobulin-like receptors (KIRs. The current prospective cohort study evaluated whether variation in KIR genes is associated with HIV infection in discordant couples (DCs, where one spouse remains seronegative (HSN despite repeated exposure to the HIV. Methods. KIR was genotyped using PCR SSP. Viral load and CD4 counts were estimated using commercially available reagents. Data were analyzed using SPSS software. Results. Among the 47 DCs, HSN spouses had significantly (P=0.006 higher frequencies of KIR3DS1. Regression analysis revealed significant (P=0.009 association of KIR2DS1 with low viral load. KIR2DS4 variant was associated (P=0.032 with high viral load. Three pairs of KIR genes were in strong LD in HSNs and two pairs in HSPs. There were 60 KIR genotypes, and 16 are reported the first time in the Indian population. Exclusive genotypes were present either in HSPs (N=22, 11 unique genotypes or in HSNs (n=27, 9 unique genotypes. Conclusions. This study highlights for the first time in the Indian population an association of KIR genes in HIV infection where presence of exclusive and unique genotypes indicates possible association with either HIV infection or with protection.

  9. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    Science.gov (United States)

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait

  10. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    International Nuclear Information System (INIS)

    Fliniaux, Ophélie; Gaillard, Gwenaelle; Lion, Antoine; Cailleu, Dominique; Mesnard, François; Betsou, Fotini

    2011-01-01

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4°C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4°C. Five or ten serum freeze–thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  11. [Association of the genetic variations of bone morphogenetic protein 7 gene with diabetes and insulin resistance in Xinjiang Uygur population].

    Science.gov (United States)

    Yan, Zhi-tao; Li, Nan-fang; Guo, Yan-ying; Yao, Xiao-guang; Wang, Hong-mei; Hu, Jun-li

    2011-06-01

    To investigate the association between the genetic variations of the functional region in bone morphogenetic protein gene (BMP7) with type 2 diabetes mellitus in Chinese Uygur individuals. A case-control study was conducted based on epidemiological investigation. A total of 717 Uygur subjects (276 males and 441 females) were selected and divided into two groups: diabetes mellitus group (n = 502, 191 males and 311 females) and control group (n = 215, 85 males and 130 females). All exons, flanking introns and the promoter regions of (BMP7) gene were sequenced in 48 Uygur diabetics. Representative variations were selected according to the minor allele frequency (MAF) and linkage disequilibrium and genotyped using the TaqMan polymerase chain reaction method in 717 Uygur individuals, a relatively isolated general population in a relatively homogeneous environment and a case-control study was conducted to test the association between the genetic variations of (BMP7) gene and type 2 diabetes mellitus. Five novel and 8 known variations in the (BMP7) gene were identified. All genotype distributions were tested for deviations from Hardy-Weinberg equilibrium (P> 0.05). There was significant difference of genotype distribution of rs6025422 between type 2 diabetes mellitus and control groups in the male population (P 0.05), but there was no difference in total and female population (P> 0.05). And the means of fasting blood glucose (FBG), fasting insulin and HOMA-index significantly decreased in individuals with AA, AG and GG genotypes of rs6025422 in male population (Ppopulation (P> 0.05). The logistic regression analysis showed that GG genotype of rs6025422 variation might be a protective factor for diabetes in male (OR= 0.637, 95% confidence interval 0.439-0.923, P< 0.05). The present study suggests that the rs6025422 polymorphism in (BMP7) gene may be associated with diabetes mellitus and insulin resistance in Uygur men.

  12. Haplotypes and Sequence Variation in the Ovine Adiponectin Gene (ADIPOQ

    Directory of Open Access Journals (Sweden)

    Qing-Ming An

    2015-11-01

    Full Text Available The adiponectin gene (ADIPOQ plays an important role in energy homeostasis. In this study five separate regions (regions 1 to 5 of ovine ADIPOQ were analysed using PCR-SSCP. Four different PCR-SSCP patterns (A1-D1, A2-D2 were detected in region-1 and region-2, respectively, with seven and six SNPs being revealed. In region-3, three different patterns (A3-C3 and three SNPs were observed. Two patterns (A4-B4, A5-B5 and two and one SNPs were observed in region-4 and region-5, respectively. In total, nineteen SNPs were detected, with five of them in the coding region and two (c.46T/C and c.515G/A putatively resulting in amino acid changes (p.Tyr16His and p.Lys172Arg. In region-1, -2 and -3 of 316 sheep from eight New Zealand breeds, variants A1, A2 and A3 were the most common, although variant frequencies differed in the eight breeds. Across region-1 and region-3, nine haplotypes were identified and haplotypes A1-A3, A1-C3, B1-A3 and B1-C3 were most common. These results indicate that the ADIPOQ gene is polymorphic and suggest that further analysis is required to see if the variation in the gene is associated with animal production traits.

  13. The effect of genetic variation of the serotonin 1B receptor gene on impulsive aggressive behavior and suicide.

    Science.gov (United States)

    Zouk, Hana; McGirr, Alexander; Lebel, Véronique; Benkelfat, Chawky; Rouleau, Guy; Turecki, Gustavo

    2007-12-05

    Impulsive-aggressive behaviors (IABs) are regarded as possible suicide intermediate phenotypes, mediating the relationship between genes and suicide outcome. In this study, we aimed to investigate the putative relationship between genetic variation at the 5-HT1B receptor gene, which in animal models is involved in impulse-aggression control, IABs, and suicide risk. We investigated the relationship of variation at five 5-HT1B loci and IAB measures in a sample of 696 subjects, including 338 individuals who died by suicide and 358 normal epidemiological controls. We found that variation at the 5-HT1B promoter A-161T locus had a significant effect on levels of IABs, as measured by the Buss-Durkee Hostility Inventory (BDHI). Suicides also differed from controls in distribution of variants at this locus. The A-161T locus, which seems to impact 5-HT1B transcription, could play a role in suicide predisposition by means of mediating impulsive-aggressive behaviors. 2007 Wiley-Liss, Inc.

  14. Site-specific variation in gene expression from Symbiodinium spp. associated with offshore and inshore Porites astreoides in the lower Florida Keys is lost with bleaching and disease stress.

    Directory of Open Access Journals (Sweden)

    Briana Hauff Salas

    Full Text Available Scleractinian coral are experiencing unprecedented rates of mortality due to increases in sea surface temperatures in response to global climate change. Some coral species however, survive high temperature events due to a reduced susceptibility to bleaching. We investigated the relationship between bleaching susceptibility and expression of five metabolically related genes of Symbiodinium spp. from the coral Porites astreoides originating from an inshore and offshore reef in the Florida Keys. The acclimatization potential of Symbiodinium spp. to changing temperature regimes was also measured via a two-year reciprocal transplant between the sites. Offshore coral fragments displayed significantly higher expression in Symbiodinium spp. genes PCNA, SCP2, G3PDH, PCP and psaE than their inshore counterparts (p<0.05, a pattern consistent with increased bleaching susceptibility in offshore corals. Additionally, gene expression patterns in Symbiodinium spp. from site of origin were conserved throughout the two-year reciprocal transplant, indicating acclimatization did not occur within this multi-season time frame. Further, laboratory experiments were used to investigate the influence of acute high temperature (32°C for eight hours and disease (lipopolysaccharide of Serratia marcescens on the five metabolically related symbiont genes from the same offshore and inshore P. astreoides fragments. Gene expression did not differ between reef fragments, or as a consequence of acute exposure to heat or heat and disease, contrasting to results found in the field. Gene expression reported here indicates functional variation in populations of Symbiodinium spp. associated with P. astreoides in the Florida Keys, and is likely a result of localized adaptation. However, gene expression patterns observed in the lab imply that functional variation in zooxanthellae observed under conditions of chronic moderate stress is lost under the acute extreme conditions studied here.

  15. Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis

    DEFF Research Database (Denmark)

    Schwab, Sebastian; Lehmann, Jennifer; Lutz, Philipp

    2017-01-01

    BACKGROUND: The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense...... in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. CONCLUSION: These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once...... from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. PATIENTS AND METHODS: Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing...

  16. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A.C.

    Seasonal variations in the fouling diatom community from a monsoon influenced tropical estuary were investigated. The community composition did not differ significantly between stainless steel and polystyrene substrata due to dominance by Navicula...

  17. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    Energy Technology Data Exchange (ETDEWEB)

    Fliniaux, Ophelie [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Gaillard, Gwenaelle [Biobanque de Picardie (France); Lion, Antoine [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Cailleu, Dominique [Batiment Serres-Transfert, rue de Mai/rue Dallery, Plateforme Analytique (France); Mesnard, Francois, E-mail: francois.mesnard@u-picardie.fr [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Betsou, Fotini [Integrated Biobank of Luxembourg (Luxembourg)

    2011-12-15

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4 Degree-Sign C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4 Degree-Sign C. Five or ten serum freeze-thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  18. The Genetic Variation of Bali Cattle (Bos javanicus Based on Sex Related Y Chromosome Gene

    Directory of Open Access Journals (Sweden)

    A Winaya

    2011-09-01

    Full Text Available Bali cattle is very popular Indonesian local beef related to their status in community living process of farmers in Indonesia, especially as providers of meat and exotic animal. Bali cattle were able to adapt the limited environment and becoming local livestock that existed until recently.  In our early study by microsatellites showed that Bali cattle have specific allele. In this study we analyzed the variance of partly sex related Y (SRY gene sequence in Bali cattle bull as a source of cement for Artificial Insemination (AI.  Blood from 17 two location of AI center, Singosari, Malang and Baturiti, Bali was collected and then extracted to get the DNA genome.  PCR reaction was done to amplify partially of SRY gene segment and followed by sequencing PCR products to get the DNA sequence of SRY gene. The SRY gene sequence was used to determine the genetic variation and phylogenetic relationship.  We found that Bali cattle bull from Singosari has relatively closed genetic relationship with Baturiti. It is also supported that in early data some Bali bulls of Singosari were came from Baturiti. It has been known that Baturiti is the one source of Bali cattle bull with promising genetic potential. While, in general that Bali bull where came from two areas were not different on reproductive performances. It is important to understand about the genetic variation of Bali cattle in molecular level related to conservation effort and maintaining the genetic characters of the local cattle. So, it will not become extinct or even decreased the genetic quality of Indonesian indigenous cattle.   Key Words : Bali cattle, SRY gene, artificial insemination, phylogenetic, allele   Animal Production 13(3:150-155 (2011

  19. Transposable elements generate population-specific insertional patterns and allelic variation in genes of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

    Science.gov (United States)

    Domb, Katherine; Keidar, Danielle; Yaakov, Beery; Khasdan, Vadim; Kashkush, Khalil

    2017-10-27

    Natural populations of the tetraploid wild emmer wheat (genome AABB) were previously shown to demonstrate eco-geographically structured genetic and epigenetic diversity. Transposable elements (TEs) might make up a significant part of the genetic and epigenetic variation between individuals and populations because they comprise over 80% of the wild emmer wheat genome. In this study, we performed detailed analyses to assess the dynamics of transposable elements in 50 accessions of wild emmer wheat collected from 5 geographically isolated sites. The analyses included: the copy number variation of TEs among accessions in the five populations, population-unique insertional patterns, and the impact of population-unique/specific TE insertions on structure and expression of genes. We assessed the copy numbers of 12 TE families using real-time quantitative PCR, and found significant copy number variation (CNV) in the 50 wild emmer wheat accessions, in a population-specific manner. In some cases, the CNV difference reached up to 6-fold. However, the CNV was TE-specific, namely some TE families showed higher copy numbers in one or more populations, and other TE families showed lower copy numbers in the same population(s). Furthermore, we assessed the insertional patterns of 6 TE families using transposon display (TD), and observed significant population-specific insertional patterns. The polymorphism levels of TE-insertional patterns reached 92% among all wild emmer wheat accessions, in some cases. In addition, we observed population-specific/unique TE insertions, some of which were located within or close to protein-coding genes, creating allelic variations in a population-specific manner. We also showed that those genes are differentially expressed in wild emmer wheat. For the first time, this study shows that TEs proliferate in wild emmer wheat in a population-specific manner, creating new alleles of genes, which contribute to the divergent evolution of homeologous genes

  20. Good genes, complementary genes and human mate preferences.

    Science.gov (United States)

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  1. Comparative Transcriptome Analysis of Chinary, Assamica and Cambod tea (Camellia sinensis) Types during Development and Seasonal Variation using RNA-seq Technology

    Science.gov (United States)

    Kumar, Ajay; Chawla, Vandna; Sharma, Eshita; Mahajan, Pallavi; Shankar, Ravi; Yadav, Sudesh Kumar

    2016-11-01

    Tea quality and yield is influenced by various factors including developmental tissue, seasonal variation and cultivar type. Here, the molecular basis of these factors was investigated in three tea cultivars namely, Him Sphurti (H), TV23 (T), and UPASI-9 (U) using RNA-seq. Seasonal variation in these cultivars was studied during active (A), mid-dormant (MD), dormant (D) and mid-active (MA) stages in two developmental tissues viz. young and old leaf. Development appears to affect gene expression more than the seasonal variation and cultivar types. Further, detailed transcript and metabolite profiling has identified genes such as F3‧H, F3‧5‧H, FLS, DFR, LAR, ANR and ANS of catechin biosynthesis, while MXMT, SAMS, TCS and XDH of caffeine biosynthesis/catabolism as key regulators during development and seasonal variation among three different tea cultivars. In addition, expression analysis of genes related to phytohormones such as ABA, GA, ethylene and auxin has suggested their role in developmental tissues during seasonal variation in tea cultivars. Moreover, differential expression of genes involved in histone and DNA modification further suggests role of epigenetic mechanism in coordinating global gene expression during developmental and seasonal variation in tea. Our findings provide insights into global transcriptional reprogramming associated with development and seasonal variation in tea.

  2. The influence of L-opsin gene polymorphisms and neural ageing on spatio-chromatic contrast sensitivity in 20-71 year olds.

    Science.gov (United States)

    Dees, Elise W; Gilson, Stuart J; Neitz, Maureen; Baraas, Rigmor C

    2015-11-01

    Chromatic contrast sensitivity may be a more sensitive measure of an individual's visual function than achromatic contrast sensitivity. Here, the first aim was to quantify individual- and age-related variations in chromatic contrast sensitivity to a range of spatial frequencies for stimuli along two complementary directions in color space. The second aim was to examine whether polymorphisms at specific amino acid residues of the L- and M-opsin genes (OPN1LW and OPN1MW) known to affect spectral tuning of the photoreceptors could influence spatio-chromatic contrast sensitivity. Chromatic contrast sensitivity functions were measured in 50 healthy individuals (20-71 years) employing a novel pseudo-isochromatic grating stimulus. The spatio-chromatic contrast sensitivity functions were found to be low pass for all subjects, independent of age and color vision. The results revealed a senescent decline in spatio-chromatic contrast sensitivity. There were considerable between-individual differences in sensitivity within each age decade for individuals 49 years old or younger, and age did not predict sensitivity for these age decades alone. Forty-six subjects (including a color deficient male and eight female carriers) were genotyped for L- and M-opsin genes. The Ser180Ala polymorphisms on the L-opsin gene were found to influence the subject's color discrimination and their sensitivity to spatio-chromatic patterns. The results expose the significant role of neural and genetic factors in the deterioration of visual function with increasing age. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impacts of Neanderthal-Introgressed Sequences on the Landscape of Human Gene Expression.

    Science.gov (United States)

    McCoy, Rajiv C; Wakefield, Jon; Akey, Joshua M

    2017-02-23

    Regulatory variation influencing gene expression is a key contributor to phenotypic diversity, both within and between species. Unfortunately, RNA degrades too rapidly to be recovered from fossil remains, limiting functional genomic insights about our extinct hominin relatives. Many Neanderthal sequences survive in modern humans due to ancient hybridization, providing an opportunity to assess their contributions to transcriptional variation and to test hypotheses about regulatory evolution. We developed a flexible Bayesian statistical approach to quantify allele-specific expression (ASE) in complex RNA-seq datasets. We identified widespread expression differences between Neanderthal and modern human alleles, indicating pervasive cis-regulatory impacts of introgression. Brain regions and testes exhibited significant downregulation of Neanderthal alleles relative to other tissues, consistent with natural selection influencing the tissue-specific regulatory landscape. Our study demonstrates that Neanderthal-inherited sequences are not silent remnants of ancient interbreeding but have measurable impacts on gene expression that contribute to variation in modern human phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Multiple Interaction Analysis Reveals ADRB3 as a Potential Candidate for Gallbladder Cancer Predisposition via a Complex Interaction with Other Candidate Gene Variations

    Directory of Open Access Journals (Sweden)

    Rajani Rai

    2015-11-01

    Full Text Available Gallbladder cancer is the most common and a highly aggressive biliary tract malignancy with a dismal outcome. The pathogenesis of the disease is multifactorial, comprising the combined effect of multiple genetic variations of mild consequence along with numerous dietary and environmental risk factors. Previously, we demonstrated the association of several candidate gene variations with GBC risk. In this study, we aimed to identify the combination of gene variants and their possible interactions contributing towards genetic susceptibility of GBC. Here, we performed Multifactor-Dimensionality Reduction (MDR and Classification and Regression Tree Analysis (CRT to investigate the gene–gene interactions and the combined effect of 14 SNPs in nine genes (DR4 (rs20576, rs6557634; FAS (rs2234767; FASL (rs763110; DCC (rs2229080, rs4078288, rs7504990, rs714; PSCA (rs2294008, rs2978974; ADRA2A (rs1801253; ADRB1 (rs1800544; ADRB3 (rs4994; CYP17 (rs2486758 involved in various signaling pathways. Genotyping was accomplished by PCR-RFLP or Taqman allelic discrimination assays. SPSS software version 16.0 and MDR software version 2.0 were used for all the statistical analysis. Single locus investigation demonstrated significant association of DR4 (rs20576, rs6557634, DCC (rs714, rs2229080, rs4078288 and ADRB3 (rs4994 polymorphisms with GBC risk. MDR analysis revealed ADRB3 (rs4994 to be crucial candidate in GBC susceptibility that may act either alone (p < 0.0001, CVC = 10/10 or in combination with DCC (rs714 and rs2229080, p < 0.0001, CVC = 9/10. Our CRT results are in agreement with the above findings. Further, in-silico results of studied SNPs advocated their role in splicing, transcriptional and/or protein coding regulation. Overall, our result suggested complex interactions amongst the studied SNPs and ADRB3 rs4994 as candidate influencing GBC susceptibility.

  5. Variation in extracellular matrix genes is associated with weight regain after weight loss in a sex-specific manner

    DEFF Research Database (Denmark)

    Roumans, Nadia J T; Vink, Roel G; Gielen, Marij

    2015-01-01

    The extracellular matrix (ECM) of adipocytes is important for body weight regulation. Here, we investigated whether genetic variation in ECM-related genes is associated with weight regain among participants of the European DiOGenes study. Overweight and obese subjects (n = 469, 310 females, 159 m.......40-5.63). Concluding, variants of ECM genes are associated with weight regain after weight loss in a sex-specific manner....

  6. Common Variation in the DOPA Decarboxylase (DDC) Gene and Human Striatal DDC Activity In Vivo.

    Science.gov (United States)

    Eisenberg, Daniel P; Kohn, Philip D; Hegarty, Catherine E; Ianni, Angela M; Kolachana, Bhaskar; Gregory, Michael D; Masdeu, Joseph C; Berman, Karen F

    2016-08-01

    The synthesis of multiple amine neurotransmitters, such as dopamine, norepinephrine, serotonin, and trace amines, relies in part on DOPA decarboxylase (DDC, AADC), an enzyme that is required for normative neural operations. Because rare, loss-of-function mutations in the DDC gene result in severe enzymatic deficiency and devastating autonomic, motor, and cognitive impairment, DDC common genetic polymorphisms have been proposed as a source of more moderate, but clinically important, alterations in DDC function that may contribute to risk, course, or treatment response in complex, heritable neuropsychiatric illnesses. However, a direct link between common genetic variation in DDC and DDC activity in the living human brain has never been established. We therefore tested for this association by conducting extensive genotyping across the DDC gene in a large cohort of 120 healthy individuals, for whom DDC activity was then quantified with [(18)F]-FDOPA positron emission tomography (PET). The specific uptake constant, Ki, a measure of DDC activity, was estimated for striatal regions of interest and found to be predicted by one of five tested haplotypes, particularly in the ventral striatum. These data provide evidence for cis-acting, functional common polymorphisms in the DDC gene and support future work to determine whether such variation might meaningfully contribute to DDC-mediated neural processes relevant to neuropsychiatric illness and treatment.

  7. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12.

    Directory of Open Access Journals (Sweden)

    Jill A McKay

    Full Text Available Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA and gene specific (IGF2, ZNT5, IGFBP3 DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B(12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B(12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032 and inversely with ZNT5 methylation (rho = -0.13, p = 0.017. Methylation of the IGFBP3 locus correlated inversely with infant vitamin B(12 concentration (rho = -0.16, p = 0.007, whilst global DNA methylation correlated inversely with maternal vitamin B(12 concentrations (rho = 0.18, p = 0.044. Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ(2 = 8.82, p = 0.003 and maternal MTHFR 677C>T genotype with IGF2 methylation (χ(2 = 2.77, p = 0.006. These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B(12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for

  8. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  9. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.; Naik, S.D.; Gaonkar, C.C.

    and an assessment of the health of such an ecosystem benefits from high resolution observations. Virulent pathogenic Vibrio species are expected more frequently in tropical marine environments, since the virulence gene expression seems to increase at elevated... cells ml−1 (July 2009) to 5.9 x 107 cells ml−1 (February 2011) (Fig. 2b). Inter annual variations point out that the total bacterial abundance increased 5 from 2009 to 2011, while the viable bacterial numbers decreased. Complex physical, chemical...

  10. Obesity and Cardiovascular Risk: Variations in Visfatin Gene Can Modify the Obesity Associated Cardiovascular Risk. Results from the Segovia Population Based-Study. Spain.

    Directory of Open Access Journals (Sweden)

    María Teresa Martínez Larrad

    Full Text Available Our aim was to investigate if genetic variations in the visfatin gene (SNPs rs7789066/ rs11977021/rs4730153 could modify the cardiovascular-risk (CV-risk despite the metabolic phenotype (obesity and glucose tolerance. In addition, we investigated the relationship between insulin sensitivity and variations in visfatin gene.A population-based study in rural and urban areas of the Province of Segovia, Spain, was carried out in the period of 2001-2003 years. A total of 587 individuals were included, 25.4% subjects were defined as obese (BMI ≥30 Kg/m2.Plasma visfatin levels were significantly higher in obese subjects with DM2 than in other categories of glucose tolerance. The genotype AA of the rs4730153 SNP was significantly associated with fasting glucose, fasting insulin and HOMA-IR (Homeostasis model assessment-insulin resistance after adjustment for gender, age, BMI and waist circumference. The obese individuals carrying the CC genotype of the rs11977021 SNP showed higher circulating levels of fasting proinsulin after adjustment for the same variables. The genotype AA of the rs4730153 SNP seems to be protective from CV-risk either estimated by Framingham or SCORE charts in general population; and in obese and non-obese individuals. No associations with CV-risk were observed for other studied SNPs (rs11977021/rs7789066.In summary, this is the first study which concludes that the genotype AA of the rs4730153 SNP appear to protect against CV-risk in obese and non-obese individuals, estimated by Framingham and SCORE charts. Our results confirm that the different polymorphisms in the visfatin gene might be influencing the glucose homeostasis in obese individuals.

  11. No Association between Variation in Longevity Candidate Genes and Aging-related Phenotypes in Oldest-old Danes.

    Science.gov (United States)

    Soerensen, Mette; Nygaard, Marianne; Debrabant, Birgit; Mengel-From, Jonas; Dato, Serena; Thinggaard, Mikael; Christensen, Kaare; Christiansen, Lene

    2016-06-01

    In this study we explored the association between aging-related phenotypes previously reported to predict survival in old age and variation in 77 genes from the DNA repair pathway, 32 genes from the growth hormone 1/ insulin-like growth factor 1/insulin (GH/IGF-1/INS) signalling pathway and 16 additional genes repeatedly considered as candidates for human longevity: APOE, APOA4, APOC3, ACE, CETP, HFE, IL6, IL6R, MTHFR, TGFB1, SIRTs 1, 3, 6; and HSPAs 1A, 1L, 14. Altogether, 1,049 single nucleotide polymorphisms (SNPs) were genotyped in 1,088 oldest-old (age 92-93 years) Danes and analysed with phenotype data on physical functioning (hand grip strength), cognitive functioning (mini mental state examination and a cognitive composite score), activity of daily living and self-rated health. Five SNPs showed association to one of the phenotypes; however, none of these SNPs were associated with a change in the relevant phenotype over time (7 years of follow-up) and none of the SNPs could be confirmed in a replication sample of 1,281 oldest-old Danes (age 94-100). Hence, our study does not support association between common variation in the investigated longevity candidate genes and aging-related phenotypes consistently shown to predict survival. It is possible that larger sample sizes are needed to robustly reveal associations with small effect sizes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran.

    Science.gov (United States)

    Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B

    2015-07-01

    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.

  13. Selection of Housekeeping Genes for Transgene Expression Analysis in Eucommia ulmoides Oliver Using Real-Time RT-PCR

    Directory of Open Access Journals (Sweden)

    Ren Chen

    2010-01-01

    Full Text Available In order to select appropriate housekeeping genes for accurate calibration of experimental variations in real-time (RT- PCR results in transgene expression analysis, particularly with respect to the influence of transgene on stability of endogenous housekeeping gene expression in transgenic plants, we outline a reliable strategy to identify the optimal housekeeping genes from a set of candidates by combining statistical analyses of their (RT- PCR amplification efficiency, gene expression stability, and transgene influences. We used the strategy to select two genes, ACTα and EF1α, from 10 candidate housekeeping genes, as the optimal housekeeping genes to evaluate transgenic Eucommia ulmoides Oliver root lines overexpressing IPPI or FPPS1 genes, which are involved in isoprenoid biosynthesis.

  14. Ovine leukocyte profiles do not associate with variation in the prion gene, but are breed-dependent

    Science.gov (United States)

    Prion genotype in sheep confer resistance to scrapie. In cattle, lymphocyte profile has been found to be associated with prion genotype. Therefore, the aim of this study was to determine if variations in the sheep prion gene were associated with leukocyte populations as measured by complete blood ce...

  15. Influence of megapolis on the physical field variations

    Science.gov (United States)

    Riabova, Svetlana; Loktev, Dmitry; Spivak, Alexander

    2016-04-01

    The research of geophysical fields in the conditions of megapolis attracts particular interest not only in terms of their influence on the operation of precision equipment and technological processes associated with nanotechnology, but also it is perhaps the most important in terms of the formation of a special human and other biological objects' habitat. Indeed, the megapolis causes significant changes in regime of the physical fields both directly and indirectly. Negative factors of megapolis associated with elevated vibrations of soil as a result of traffic, acoustic load in the construction of infrastructure and transport communications, etc. are complemented by another negative factor, which until quite recently wasn't known much. It is a variation of physical fields (primarily electric and magnetic) induced by anthropogenic activities. As a result of the evolution a man has adapted to the natural regime of physical fields. Therefore, any, even the short-term changes of physical fields in the environment, their deviations from the natural rate can have a significant influence on human health including changes in the psycho-emotional state. In the present work we have evaluated the influence of the megapolis (in our case, Moscow) on the nature and regime of microseismic, electric and acoustic field in the surface atmosphere. We have analyzed data obtained as a result of continuous simultaneous registration of physical fields and meteorological parameters at the Center for geophysical monitoring of Moscow of Institute of Geosphere Dynamics of Russian Academy of Sciences. For determination of the characteristics of physical fields in the megapolis obtained data were compared with the results of the registration carried out at the Geophysical Observatory "Mikhnevo" of IDG RAS (located 85 km south from Moscow). The work is shown that the influence of the megapolis appears to increase the amplitude of physical fields, change of their spectral composition

  16. Allelic Variations at Four Major Maturity E Genes and Transcriptional Abundance of the E1 Gene Are Associated with Flowering Time and Maturity of Soybean Cultivars

    Science.gov (United States)

    Wang, Yueqiang; Chen, Xin; Ren, Haixiang; Yang, Jiayin; Cheng, Wen; Zong, Chunmei; Gu, Heping; Qiu, Hongmei; Wu, Hongyan; Zhang, Xingzheng; Cui, Tingting; Xia, Zhengjun

    2014-01-01

    The time to flowering and maturity are ecologically and agronomically important traits for soybean landrace and cultivar adaptation. As a typical short-day crop, long day conditions in the high-latitude regions require soybean cultivars with photoperiod insensitivity that can mature before frost. Although the molecular basis of four major E loci (E1 to E4) have been deciphered, it is not quite clear whether, or to what degree, genetic variation and the expression level of the four E genes are associated with the time to flowering and maturity of soybean cultivars. In this study, we genotyped 180 cultivars at E1 to E4 genes, meanwhile, the time to flowering and maturity of those cultivars were investigated at six geographic locations in China from 2011 to 2012 and further confirmed in 2013. The percentages of recessive alleles at E1, E2, E3 and E4 loci were 38.34%, 84.45%, 36.33%, and 7.20%, respectively. Statistical analysis showed that allelic variations at each of four loci had a significant effect on flowering time as well as maturity. We classified the 180 cultivars into eight genotypic groups based on allelic variations of the four major E loci. The genetic group of e1-nf representing dysfunctional alleles at the E1 locus flowered earliest in all the geographic locations. In contrast, cultivars in the E1E2E3E4 group originated from the southern areas flowered very late or did not flower before frost at high latitude locations. The transcriptional abundance of functional E1 gene was significantly associated with flowering time. However, the ranges of time to flowering and maturity were quite large within some genotypic groups, implying the presence of some other unknown genetic factors that are involved in control of flowering time or maturity. Known genes (e.g. E3 and E4) and other unknown factors may function, at least partially, through regulation of the expression of the E1 gene. PMID:24830458

  17. Garlic Influences Gene Expression In Vivo and In Vitro.

    Science.gov (United States)

    Charron, Craig S; Dawson, Harry D; Novotny, Janet A

    2016-02-01

    There is a large body of preclinical research aimed at understanding the roles of garlic and garlic-derived preparations in the promotion of human health. Most of this research has targeted the possible functions of garlic in maintaining cardiovascular health and in preventing and treating cancer. A wide range of outcome variables has been used to investigate the bioactivity of garlic, ranging from direct measures of health status such as cholesterol concentrations, blood pressure, and changes in tumor size and number, to molecular and biochemical measures such as mRNA gene expression, protein concentration, enzyme activity, and histone acetylation status. Determination of how garlic influences mRNA gene expression has proven to be a valuable approach to elucidating the mechanisms of garlic bioactivity. Preclinical studies investigating the health benefits of garlic far outnumber human studies and have made frequent use of mRNA gene expression measurement. There is an immediate need to understand mRNA gene expression in humans as well. Although safety and ethical constraints limit the types of available human tissue, peripheral whole blood is readily accessible, and measuring mRNA gene expression in whole blood may provide a unique window to understanding how garlic intake affects human health. © 2016 American Society for Nutrition.

  18. Using gene expression noise to understand gene regulation

    NARCIS (Netherlands)

    Munsky, B.; Neuert, G.; van Oudenaarden, A.

    2012-01-01

    Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and environmental variation. However, even genetically identical cells in identical environments display variable phenotypes. Stochastic gene expression, or gene expression "noise," has been suggested as a

  19. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Science.gov (United States)

    Choi, Kyuha; Reinhard, Carsten; Serra, Heïdi; Ziolkowski, Piotr A; Underwood, Charles J; Zhao, Xiaohui; Hardcastle, Thomas J; Yelina, Nataliya E; Griffin, Catherine; Jackson, Matthew; Mézard, Christine; McVean, Gil; Copenhaver, Gregory P; Henderson, Ian R

    2016-07-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  20. Melanopsin gene variations interact with season to predict sleep onset and chronotype.

    Science.gov (United States)

    Roecklein, Kathryn A; Wong, Patricia M; Franzen, Peter L; Hasler, Brant P; Wood-Vasey, W Michael; Nimgaonkar, Vishwajit L; Miller, Megan A; Kepreos, Kyle M; Ferrell, Robert E; Manuck, Stephen B

    2012-10-01

    The human melanopsin gene has been reported to mediate risk for seasonal affective disorder (SAD), which is hypothesized to be caused by decreased photic input during winter when light levels fall below threshold, resulting in differences in circadian phase and/or sleep. However, it is unclear if melanopsin increases risk of SAD by causing differences in sleep or circadian phase, or if those differences are symptoms of the mood disorder. To determine if melanopsin sequence variations are associated with differences in sleep-wake behavior among those not suffering from a mood disorder, the authors tested associations between melanopsin gene polymorphisms and self-reported sleep timing (sleep onset and wake time) in a community sample (N = 234) of non-Hispanic Caucasian participants (age 30-54 yrs) with no history of psychological, neurological, or sleep disorders. The authors also tested the effect of melanopsin variations on differences in preferred sleep and activity timing (i.e., chronotype), which may reflect differences in circadian phase, sleep homeostasis, or both. Daylength on the day of assessment was measured and included in analyses. DNA samples were genotyped for melanopsin gene polymorphisms using fluorescence polarization. P10L genotype interacted with daylength to predict self-reported sleep onset (interaction p sleep onset among those with the TT genotype was later in the day when individuals were assessed on longer days and earlier in the day on shorter days, whereas individuals in the other genotype groups (i.e., CC and CT) did not show this interaction effect. P10L genotype also interacted in an analogous way with daylength to predict self-reported morningness (interaction p sleep onset and chronotype as a function of daylength, whereas other genotypes at P10L do not seem to have effects that vary by daylength. A better understanding of how melanopsin confers heightened responsivity to daylength may improve our understanding of a broad range of

  1. Genetic variation in hormone metabolizing genes and risk of testicular germ cell tumors.

    Science.gov (United States)

    Figueroa, Jonine D; Sakoda, Lori C; Graubard, Barry I; Chanock, Stephen; Rubertone, Mark V; Erickson, R Loren; McGlynn, Katherine A

    2008-11-01

    Testicular germ cell tumors (TGCT) that arise in young men are composed of two histologic types, seminomas and nonseminomas. Risk patterns for the two types appear to be similar and may be related to either endogenous or exogenous hormonal exposures in utero. Why similar risk patterns would result in different histologic types is unclear, but could be related to varying genetic susceptibility profiles. Genetic variation in hormone metabolizing genes could potentially modify hormonal exposures, and thereby affect which histologic type a man develops. To examine this hypothesis, 33 single nucleotide polymorphisms (SNPs) in four hormone metabolism candidate genes (CYP1A1, CYP17A1, HSD17B1, HSD17B4) and the androgen receptor gene (AR) were genotyped. Associations with TGCT were evaluated among 577 TGCT cases (254 seminoma, 323 nonseminoma) and 707 controls from the US Servicemen's Testicular Tumor Environmental and Endocrine Determinants (STEED) study. There were no significant associations with TGCT overall based on a test using an additive model. However, compared to homozygotes of the most common allele, two nonredundant SNPs in CYP1A1 were inversely associated with nonseminoma: CYP1A1 promoter SNP rs4886605 OR = 0.75 (95% CI = 0.54-1.04) among the heterozygotes and OR = 0.37, 95% CI = 0.12-1.11 among the homozygotes with a p-value for trend = 0.02; rs2606345 intron 1 SNP, OR = 0.69 (95% CI = 0.51-0.93) among heterozygotes and OR = 0.70 (95% CI = 0.42-1.17) among homozygotes, with a p-value for trend = 0.02. Caution in interpretation is warranted until findings are replicated in other studies; however, the results suggest that genetic variation in CYP1A1 may be associated with nonseminoma.

  2. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood

    DEFF Research Database (Denmark)

    Santana-Farré, Ruymán; Mirecki-Garrido, Mercedes; Bocos, Carlos

    2012-01-01

    Thyroid hormones are required for normal growth and development in mammals. Congenital-neonatal hypothyroidism (CH) has a profound impact on physiology, but its specific influence in liver is less understood. Here, we studied how CH influences the liver gene expression program in adulthood. Pregn...

  3. The Influence of Weather Variation, Urban Design and Built Environment on Objectively Measured Sedentary Behaviour in Children.

    Science.gov (United States)

    Katapally, Tarun Reddy; Rainham, Daniel; Muhajarine, Nazeem

    2016-01-01

    With emerging evidence indicating that independent of physical activity, sedentary behaviour (SB) can be detrimental to health, researchers are increasingly aiming to understand the influence of multiple contexts such as urban design and built environment on SB. However, weather variation, a factor that continuously interacts with all other environmental variables, has been consistently underexplored. This study investigated the influence of diverse environmental exposures (including weather variation, urban design and built environment) on SB in children. This cross-sectional observational study is part of an active living research initiative set in the Canadian prairie city of Saskatoon. Saskatoon's neighbourhoods were classified based on urban street design into grid-pattern, fractured grid-pattern and curvilinear types of neighbourhoods. Diverse environmental exposures were measured including, neighbourhood built environment, and neighbourhood and household socioeconomic environment. Actical accelerometers were deployed between April and June 2010 (spring-summer) to derive SB of 331 10-14 year old children in 25 one week cycles. Each cycle of accelerometry was conducted on a different cohort of children within the total sample. Accelerometer data were matched with localized weather patterns derived from Environment Canada weather data. Multilevel modeling using Hierarchical Linear and Non-linear Modeling software was conducted by factoring in weather variation to depict the influence of diverse environmental exposures on SB. Both weather variation and urban design played a significant role in SB. After factoring in weather variation, it was observed that children living in grid-pattern neighbourhoods closer to the city centre (with higher diversity of destinations) were less likely to be sedentary. This study demonstrates a methodology that could be replicated to integrate geography-specific weather patterns with existing cross-sectional accelerometry data to

  4. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Rochellys Diaz Heijtz

    2018-02-01

    Interpretation: Naturally occurring genetic variation in the dopamine system can influence treatment outcomes in children with cerebral palsy. A polygenic dopamine score might be valid for treatment outcome prediction and for designing individually tailored interventions for children with cerebral palsy.

  5. Influence of Dopamine-Related Genes on Neurobehavioral Recovery after Traumatic Brain Injury during Early Childhood.

    Science.gov (United States)

    Treble-Barna, Amery; Wade, Shari L; Martin, Lisa J; Pilipenko, Valentina; Yeates, Keith Owen; Taylor, H Gerry; Kurowski, Brad G

    2017-06-01

    The present study examined the association of dopamine-related genes with short- and long-term neurobehavioral recovery, as well as neurobehavioral recovery trajectories over time, in children who had sustained early childhood traumatic brain injuries (TBI) relative to children who had sustained orthopedic injuries (OI). Participants were recruited from a prospective, longitudinal study evaluating outcomes of children who sustained a TBI (n = 68) or OI (n = 72) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at the immediate post-acute period (0-3 months after injury); 6, 12, and 18 months after injury; and an average of 3.5 and 7 years after injury. Thirty-two single nucleotide polymorphisms (SNPs) in dopamine-related genes (dopamine receptor D2 [DRD2], solute carrier family 6 member 3 [SLC6A3], solute carrier family 18 member A2 [SLC18A2], catechol-o-methyltransferase [COMT], and ankyrin repeat and kinase domain containing 1 [ANKK1]) were examined in association with short- and long-term executive function and behavioral adjustment, as well as their trajectories over time. After controlling for premorbid child functioning, genetic variation within the SLC6A3 (rs464049 and rs460000) gene was differentially associated with neurobehavioral recovery trajectories over time following TBI relative to OI, with rs464049 surviving multiple testing corrections. In addition, genetic variation within the ANKK1 (rs1800497 and rs2734849) and SLC6A3 (rs464049, rs460000, and rs1042098) genes was differentially associated with short- and long-term neurobehavioral recovery following TBI, with rs460000 and rs464049 surviving multiple testing corrections. The findings provide preliminary evidence that genetic variation in genes involved in DRD2 expression and density (ANKK1) and dopamine transport (SLC6A3) plays a role in neurobehavioral recovery following pediatric TBI.

  6. Influence of Design Variations on Systems Performance

    Science.gov (United States)

    Tumer, Irem Y.; Stone, Robert B.; Huff, Edward M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    High-risk aerospace components have to meet very stringent quality, performance, and safety requirements. Any source of variation is a concern, as it may result in scrap or rework. poor performance, and potentially unsafe flying conditions. The sources of variation during product development, including design, manufacturing, and assembly, and during operation are shown. Sources of static and dynamic variation during development need to be detected accurately in order to prevent failure when the components are placed in operation. The Systems' Health and Safety (SHAS) research at the NASA Ames Research Center addresses the problem of detecting and evaluating the statistical variation in helicopter transmissions. In this work, we focus on the variations caused by design, manufacturing, and assembly of these components, prior to being placed in operation (DMV). In particular, we aim to understand and represent the failure and variation information, and their correlation to performance and safety and feed this information back into the development cycle at an early stage. The feedback of such critical information will assure the development of more reliable components with less rework and scrap. Variations during design and manufacturing are a common source of concern in the development and production of such components. Accounting for these variations, especially those that have the potential to affect performance, is accomplished in a variety ways, including Taguchi methods, FMEA, quality control, statistical process control, and variation risk management. In this work, we start with the assumption that any of these variations can be represented mathematically, and accounted for by using analytical tools incorporating these mathematical representations. In this paper, we concentrate on variations that are introduced during design. Variations introduced during manufacturing are investigated in parallel work.

  7. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster.

    Science.gov (United States)

    Tatarenkov, Andrey; Ayala, Francisco J

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  8. Fine Physical Bin Mapping of the Powdery Mildew Resistance Gene Pm21 Based on Chromosomal Structural Variations in Wheat

    Directory of Open Access Journals (Sweden)

    Shanying Zhu

    2018-02-01

    Full Text Available Pm21, derived from wheat wild relative Dasypyrum villosum, is one of the most effective powdery mildew resistance genes and has been widely applied in wheat breeding in China. Mapping and cloning Pm21 are of importance for understanding its resistance mechanism. In the present study, physical mapping was performed using different genetic stocks involving in structural variations of chromosome 6VS carrying Pm21. The data showed that 6VS could be divided into eight distinguishable chromosomal bins, and Pm21 was mapped to the bin FLb4–b5/b6 closely flanked by the markers 6VS-08.6 and 6VS-10.2. Comparative genomic mapping indicated that the orthologous regions of FLb4–b5/b6 carrying Pm21 were narrowed to a 117.7 kb genomic region harboring 19 genes in Brachypodium and a 37.7 kb region harboring 5 genes in rice, respectively. The result was consistent with that given by recent genetic mapping in diploid D. villosum. In conclusion, this study demonstrated that physical mapping based on chromosomal structural variations is an efficient method for locating alien genes in wheat background.

  9. Seasonal variation of plankton communities influenced by environmental factors in an artificial lake

    Science.gov (United States)

    Li, Xuemei; Yu, Yuhe; Zhang, Tanglin; Feng, Weisong; Ao, Hongyi; Yan, Qingyun

    2012-05-01

    We evaluated the seasonal variation in plankton community composition in an artificial lake. We conducted microscopic analysis and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA and 18S rRNA genes to characterize the plankton community. The clustering of unweighted pair group method with arithmetic mean (UPGMA) was then used to investigate the similarity of these plankton communities. DGGE fingerprinting revealed that samples collected at the different sites within a season shared high similarity and were generally grouped together. In contrast, we did not observe any seasonal variation based on microscopic analysis. Redundancy analysis (RDA) of the plankton operational taxonomic units (OTUs) in relation to environmental factors revealed that transparency was negatively correlated with the first axis ( R=-0.931), and temperature and total phosphorus (TP) were positively correlated with the first axis ( R=0.736 and R=0.660, respectively). In conclusion, plankton communities in the artificial lake exhibited significant seasonal variation. Transparency, phosphorus and temperature appear to be the major factors driving the differences in plankton composition.

  10. Genetic variation of Taenia pisiformis collected from Sichuan, China, based on the mitochondrial cytochrome B gene.

    Science.gov (United States)

    Yang, Deying; Ren, Yongjun; Fu, Yan; Xie, Yue; Nie, Huaming; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2013-08-01

    Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. FST and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

  11. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  12. Gene-based Association Approach Identify Genes Across Stress Traits in Fruit Flies

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Edwards, Stefan McKinnon; Sarup, Pernille Merete

    Identification of genes explaining variation in quantitative traits or genetic risk factors of human diseases requires both good phenotypic- and genotypic data, but also efficient statistical methods. Genome-wide association studies may reveal association between phenotypic variation and variation...... approach grouping variants accordingly to gene position, thus lowering the number of statistical tests performed and increasing the probability of identifying genes with small to moderate effects. Using this approach we identify numerous genes associated with different types of stresses in Drosophila...... melanogaster, but also identify common genes that affects the stress traits....

  13. Genetic influence of radiation measured by the effect on the mutation rate of human minisatellite genes

    International Nuclear Information System (INIS)

    Kodaira, Mieko

    2002-01-01

    Human minisatellite genes are composed from 0.1-30 kb with a high frequency of polymorphism. The genes exist in mammalian genomes and mice's ones are well studied after irradiation of their gonad cells by X-ray and γ-ray. Following five reports concerning the significant and/or insignificant increases of the mutation rate of the genes post A-bomb exposure, Chernobyl accident and nuclear weapons test in Semipalatinsk are reviewed and discussed on the subject number, exposed dose, problems of the control group, regions examined of loci and exposure conditions. Genetic influences of radiation examined by the author's facility are not recognized in the mutation rate (3.21% vs 4.94% in the control) of minisatellite genes in children of A-bomb survivors and their parents. The mutation rates are 4.27 vs 2.52% (positive influence) and 4.2-6.01% vs 3.5-6.34% in Chernobyl, and 4.3 (parents) and 3.8% (F 1 ) vs 2.5% (positive). Mutation of human minisatellite genes can be an important measure of genetic influences at the medical level. (K.H.)

  14. Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Science.gov (United States)

    Hörger, Anja C.; Ilyas, Muhammad; Stephan, Wolfgang; Tellier, Aurélien; van der Hoorn, Renier A. L.; Rose, Laura E.

    2012-01-01

    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant–pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the “Guard-Hypothesis,” R proteins (the “guards”) can sense modification of target molecules in the host (the “guardees”) by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the “guardee-effector” interface for pathogen recognition, natural selection acts on the “guard-guardee” interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto

  15. Balancing selection at the tomato RCR3 Guardee gene family maintains variation in strength of pathogen defense.

    Directory of Open Access Journals (Sweden)

    Anja C Hörger

    Full Text Available Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors and host resistance genes such as the major histocompatibility complex (MHC in mammals or resistance (R genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the "Guard-Hypothesis," R proteins (the "guards" can sense modification of target molecules in the host (the "guardees" by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3 and its guard (Cf-2. We conclude that, in addition to coevolution at the "guardee-effector" interface for pathogen recognition, natural selection acts on the "guard-guardee" interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in

  16. The processing of Brazilian Portuguese anaphora and the influence of dialectal variation

    Directory of Open Access Journals (Sweden)

    Maria Cláudia Mesquita Lacerda

    2014-09-01

    Full Text Available The objective of this research was to investigate whether different types of recovery [se, Ø, ele(a] may influence the coreferential processing of reflective structures, relating to these, the semantics of the verbal predicate. To verify whether the dialectal variation of the use of anaphora “se” (use, removal, and replacement could influence the processing of these structures, we performed a self-paced reading experiment in Minas Gerais and Paraíba. The results showed a significant effect on the type of retrieval, indicating the possibility of the influence of verb type. It is believed that syntactic constraints of the Binding theory (Chomsky, 1981 were activated in early stages of processing (NICOL; SWINNEY, 1989, however, the interpretability from the verbal semantics and the discursive question related to usage factors (range meant that there was a re-examination by the parser.

  17. Genetic variations in the MCT1 (SLC16A1) gene in the Chinese population of Singapore.

    Science.gov (United States)

    Lean, Choo Bee; Lee, Edmund Jon Deoon

    2009-01-01

    MCT1(SLC16A1) is the first member of the monocarboxylate transporter (MCT) and its family is involved in the transportation of metabolically important monocarboxylates such as lactate, pyruvate, acetate and ketone bodies. This study identifies genetic variations in SLC16A1 in the ethnic Chinese group of the Singaporean population (n=95). The promoter, coding region and exon-intron junctions of the SLC16A1 gene encoding the MCT1 transporter were screened for genetic variation in the study population by DNA sequencing. Seven genetic variations of SLC16A1, including 4 novel ones, were found: 2 in the promoter region, 2 in the coding exons (both nonsynonymous variations), 2 in the 3' untranslated region (3'UTR) and 1 in the intron. Of the two mutations detected in the promoter region, the -363-855T>C is a novel mutation. The 1282G>A (Val(428)Ile) is a novel SNP and was found as heterozygotic in 4 subjects. The 1470T>A (Asp(490)Glu) was found to be a common polymorphism in this study. Lastly, IVS3-17A>C in intron 3 and 2258 (755)A>G in 3'UTR are novel mutations found to be common polymorphisms in the local Chinese population. To our knowledge, this is the first report of a comprehensive analysis on the MCT1 gene in any population.

  18. Determinants of intra-specific variation in basal metabolic rate.

    Science.gov (United States)

    Konarzewski, Marek; Książek, Aneta

    2013-01-01

    Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and 'omics' studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.

  19. Association of the gene expression variation of tumor necrosis factor-α and expressions changes of dopamine receptor genes in progression of diabetic severe foot ulcers

    Directory of Open Access Journals (Sweden)

    Hajar Vaseghi

    2017-11-01

    Full Text Available Objective(s:Regulation of pro-inflammatory factors such as TNF-, which are secreted by the immune cells through induction of their several receptors including dopamine receptors (especially DRD2 and DRD3 is one of the noticeable problems in diabetic severe foot ulcer healing. This study was conducted to evaluate the alteration of TNF- in plasma as well as DRD2 and DRD3 changes in PBMCs of diabetics with severe foot ulcers. Materials and Methods: Peripheral blood samples were collected from 31 subjects with ulcers, 29 without ulcers, and 25 healthy individuals. Total mRNA was extracted from PBMCs for the study of DRD2, DRD3, and TNF- gene expression variations. Expression patterns of these genes were evaluated by real-time PCR. Consequently, concentration of TNF- was investigated in plasma. Results: Significant decrease in gene expression and plasma concentration of TNF- in PBMCs was observed in both patient groups at P Conclusion: We concluded that DRD2 and DRD3 expression alteration and presence of new DRD3 transcripts can be effective in reduction of TNF-α expression as a pro-inflammatory factor. Performing complementary studies, may explain that variations in DRD2 and DRD3 are prognostic and effective markers attributed to the development of diabetes severe foot ulcers.

  20. Influence of the experimental design of gene expression studies on the inference of gene regulatory networks: environmental factors

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2013-02-01

    Full Text Available The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I observational gene expression data: normal environmental condition, (II interventional gene expression data: growth in rich media, (III interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

  1. Identification of landscape features influencing gene flow: How useful are habitat selection models?

    Science.gov (United States)

    Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart

    2016-01-01

    Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...

  2. Individual variation in life history characteristics can influence extinction risk (vol 144, pg 61, 2001) Correction

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2009-01-01

    The white sturgeon (Acipenser transmontanus) shows great individual variation in the age at maturation. This study examines the consequences of model assumptions about individual variation in the age at maturation on predicted population viability. I considered: (1) the effects of variation in age at maturation alone; (2) the effects of heritability; and (3) the influence of a stable and an altered selective regime. Two selective regimes represented conditions before and after the impoundment of a river, blocking access of anadromous white sturgeon populations to the ocean. In contrast to previous simulation studies, I found that increased individual variation in the age at maturity did not necessarily lead to a higher likelihood of persistence. Individual variation increased the simulated likelihood of persistence when the variation was heritable and the selective regime had changed such that the mean age at maturity was no longer optimal.

  3. Diagnosing Atmospheric Influences on the Interannual 18O/16O Variations in Western U.S. Precipitation

    Directory of Open Access Journals (Sweden)

    Kei Yoshimura

    2013-07-01

    Full Text Available Many climate proxies in geological archives are dependent on the isotopic content of precipitation (δ18Op, which over sub-annual timescales has been linked to temperature, condensation height, atmospheric circulation, and post-condensation exchanges in the western U.S. However, many proxies do not resolve temporal changes finer than interannual-scales. This study explores causes of the interannual variations in δ18Op within the western U.S. Simulations with the Isotope-incorporated Global Spectral Model (IsoGSM revealed an amplifying influence of post-condensation exchanges (i.e., raindrop evaporation and vapor equilibration on interannual δ18Op variations throughout the western U.S. Mid-latitude and subtropical vapor tagging simulations showed that the influence of moisture advection on δ18Op was relatively strong in the Pacific Northwest, but weak over the rest of the western U.S. The vapor tags correlated well with interannual variations in the 18O/16O composition of vapor, an indication that isotopes in vapor trace atmospheric circulation. However, vertical-tagging simulations revealed a strong influence of condensation height on δ18Op in California. In the interior of the western U.S., a strong temperature effect was found only after annual mean temperatures were weighted by monthly precipitation totals. These multiple influences on δ18Op complicate interpretations of western U.S. climate proxies that are derived from isotopes in precipitation.

  4. Natural variation in sensory-motor white matter organization influences manifestations of Huntington's disease.

    Science.gov (United States)

    Orth, Michael; Gregory, Sarah; Scahill, Rachael I; Mayer, Isabella Sm; Minkova, Lora; Klöppel, Stefan; Seunarine, Kiran K; Boyd, Lara; Borowsky, Beth; Reilmann, Ralf; Bernhard Landwehrmeyer, G; Leavitt, Blair R; Roos, Raymund Ac; Durr, Alexandra; Rees, Geraint; Rothwell, John C; Langbehn, Douglas; Tabrizi, Sarah J

    2016-12-01

    While the HTT CAG-repeat expansion mutation causing Huntington's disease (HD) is highly correlated with the rate of pathogenesis leading to disease onset, considerable variance in age-at-onset remains unexplained. Therefore, other factors must influence the pathogenic process. We asked whether these factors were related to natural biological variation in the sensory-motor system. In 243 participants (96 premanifest and 35 manifest HD; 112 controls), sensory-motor structural MRI, tractography, resting-state fMRI, electrophysiology (including SEP amplitudes), motor score ratings, and grip force as sensory-motor performance were measured. Following individual modality analyses, we used principal component analysis (PCA) to identify patterns associated with sensory-motor performance, and manifest versus premanifest HD discrimination. We did not detect longitudinal differences over 12 months. PCA showed a pattern of loss of caudate, grey and white matter volume, cortical thickness in premotor and sensory cortex, and disturbed diffusivity in sensory-motor white matter tracts that was connected to CAG repeat length. Two further major principal components appeared in controls and HD individuals indicating that they represent natural biological variation unconnected to the HD mutation. One of these components did not influence HD while the other non-CAG-driven component of axial versus radial diffusivity contrast in white matter tracts were associated with sensory-motor performance and manifest HD. The first component reflects the expected CAG expansion effects on HD pathogenesis. One non-CAG-driven component reveals an independent influence on pathogenesis of biological variation in white matter tracts and merits further investigation to delineate the underlying mechanism and the potential it offers for disease modification. Hum Brain Mapp 37:4615-4628, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Average correlation clustering algorithm (ACCA) for grouping of co-regulated genes with similar pattern of variation in their expression values.

    Science.gov (United States)

    Bhattacharya, Anindya; De, Rajat K

    2010-08-01

    Distance based clustering algorithms can group genes that show similar expression values under multiple experimental conditions. They are unable to identify a group of genes that have similar pattern of variation in their expression values. Previously we developed an algorithm called divisive correlation clustering algorithm (DCCA) to tackle this situation, which is based on the concept of correlation clustering. But this algorithm may also fail for certain cases. In order to overcome these situations, we propose a new clustering algorithm, called average correlation clustering algorithm (ACCA), which is able to produce better clustering solution than that produced by some others. ACCA is able to find groups of genes having more common transcription factors and similar pattern of variation in their expression values. Moreover, ACCA is more efficient than DCCA with respect to the time of execution. Like DCCA, we use the concept of correlation clustering concept introduced by Bansal et al. ACCA uses the correlation matrix in such a way that all genes in a cluster have the highest average correlation values with the genes in that cluster. We have applied ACCA and some well-known conventional methods including DCCA to two artificial and nine gene expression datasets, and compared the performance of the algorithms. The clustering results of ACCA are found to be more significantly relevant to the biological annotations than those of the other methods. Analysis of the results show the superiority of ACCA over some others in determining a group of genes having more common transcription factors and with similar pattern of variation in their expression profiles. Availability of the software: The software has been developed using C and Visual Basic languages, and can be executed on the Microsoft Windows platforms. The software may be downloaded as a zip file from http://www.isical.ac.in/~rajat. Then it needs to be installed. Two word files (included in the zip file) need to

  6. Balancing selection and recombination as evolutionary forces caused population genetic variations in golden pheasant MHC class I genes.

    Science.gov (United States)

    Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong

    2016-02-18

    The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic

  7. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia.

    Science.gov (United States)

    Gu, Fangyi; Zhang, Han; Hyland, Paula L; Berndt, Sonja; Gapstur, Susan M; Wheeler, William; Ellipse Consortium, The; Amos, Christopher I; Bezieau, Stephane; Bickeböller, Heike; Brenner, Hermann; Brennan, Paul; Chang-Claude, Jenny; Conti, David V; Doherty, Jennifer Anne; Gruber, Stephen B; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Houlston, Richard S; Hung, Rayjean J; Jenkins, Mark A; Kraft, Peter; Lawrenson, Kate; McKay, James; Markt, Sarah; Mucci, Lorelei; Phelan, Catherine M; Qu, Conghui; Risch, Angela; Rossing, Mary Anne; Wichmann, H-Erich; Shi, Jianxin; Schernhammer, Eva; Yu, Kai; Landi, Maria Teresa; Caporaso, Neil E

    2017-11-01

    Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (p pathway  circadian rhythm pathway in GAME-ON (p pathway  = 0.021); this association was not confirmed in GECCO (p pathway  = 0.76) or the combined data (p pathway  = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms. © 2017 UICC.

  8. Variations in host genes encoding adhesion molecules and susceptibility to falciparum malaria in India

    Directory of Open Access Journals (Sweden)

    Tyagi Prajesh K

    2008-12-01

    Full Text Available Abstract Background Host adhesion molecules play a significant role in the pathogenesis of Plasmodium falciparum malaria and changes in their structure or levels in individuals can influence the outcome of infection. The aim of this study was to investigate the association of SNPs of three adhesion molecule genes, ICAM1, PECAM1 and CD36, with severity of falciparum malaria in a malaria-endemic and a non-endemic region of India. Methods The frequency distribution of seven selected SNPs of ICAM1, PECAM1 and CD36 was determined in 552 individuals drawn from 24 populations across India. SNP-disease association was analysed in a case-control study format. Genotyping of the population panel was performed by Sequenom mass spectroscopy and patient/control samples were genotyped by SNaPshot method. Haplotypes and linkage disequilibrium (LD plots were generated using PHASE and Haploview, respectively. Odds-ratio (OR for risk assessment was estimated using EpiInfo™ version 3.4. Results Association of the ICAM1 rs5498 (exon 6 G allele and the CD36 exon 1a A allele with increased risk of severe malaria was observed (severe versus control, OR = 1.91 and 2.66, P = 0.02 and 0.0012, respectively. The CD36 rs1334512 (-53 T allele as well as the TT genotype associated with protection from severe disease (severe versus control, TT versus GG, OR = 0.37, P = 0.004. Interestingly, a SNP of the PECAM1 gene (rs668, exon 3, C/G with low minor allele frequency in populations of the endemic region compared to the non-endemic region exhibited differential association with disease in these regions; the G allele was a risk factor for malaria in the endemic region, but exhibited significant association with protection from disease in the non-endemic region. Conclusion The data highlights the significance of variations in the ICAM1, PECAM1 and CD36 genes in the manifestation of falciparum malaria in India. The PECAM1 exon 3 SNP exhibits altered association with disease in the

  9. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system.

    Science.gov (United States)

    Du, Jing; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke; Zhang, Yan

    2015-03-01

    The variation of five antibiotic resistance genes (ARGs)-tetG, tetW, tetX, sul1, and intI1-in a full-scale municipal wastewater treatment plant with A(2)O-MBR system was studied. The concentrations of five resistance genes both in influent and in membrane bioreactor (MBR) effluent decreased as sul1 > intI1 > tetX > tetG > tetW, and an abundance of sul1 was statistically higher than three other tetracycline resistance genes (tetG, tetW, and tetX) (p MBR effluent. The reduction of tetW, intI1, and sul1 was all significantly positively correlated with the reduction of 16S ribosomal DNA (rDNA) in the wastewater treatment process (p MBR was observed for all ARGs.

  10. Wild rodents as a model to discover genes and pathways underlying natural variation in infectious disease susceptibility.

    Science.gov (United States)

    Turner, A K; Paterson, S

    2013-11-01

    Individuals vary in their susceptibility to infectious disease, and it is now well established that host genetic factors form a major component of this variation. The discovery of genes underlying susceptibility has the potential to lead to improved disease control, through the identification and management of vulnerable individuals and the discovery of novel therapeutic targets. Laboratory rodents have proved invaluable for ascertaining the function of genes involved in immunity to infection. However, these captive animals experience conditions very different to the natural environment, lacking the genetic diversity and environmental pressures characteristic of natural populations, including those of humans. It has therefore often proved difficult to translate basic laboratory research to the real world. In order to further our understanding of the genetic basis of infectious disease resistance, and the evolutionary forces that drive variation in susceptibility, we propose that genetic research traditionally conducted on laboratory animals is expanded to the more ecologically valid arena of natural populations. In this article, we highlight the potential of using wild rodents as a new resource for biomedical research, to link the functional genetic knowledge gained from laboratory rodents with the variation in infectious disease susceptibility observed in humans and other natural populations. © 2013 John Wiley & Sons Ltd.

  11. Genetic variation in natural honeybee populations, Apis mellifera capensis

    Science.gov (United States)

    Hepburn, Randall; Neumann, Peter; Radloff, Sarah E.

    2004-09-01

    Genetic variation in honeybee, Apis mellifera, populations can be considerably influenced by breeding and commercial introductions, especially in areas with abundant beekeeping. However, in southern Africa apiculture is based on the capture of wild swarms, and queen rearing is virtually absent. Moreover, the introduction of European subspecies constantly failed in the Cape region. We therefore hypothesize a low human impact on genetic variation in populations of Cape honeybees, Apis mellifera capensis. A novel solution to studying genetic variation in honeybee populations based on thelytokous worker reproduction is applied to test this hypothesis. Environmental effects on metrical morphological characters of the phenotype are separated to obtain a genetic residual component. The genetic residuals are then re-calculated as coefficients of genetic variation. Characters measured included hair length on the abdomen, width and length of wax plate, and three wing angles. The data show for the first time that genetic variation in Cape honeybee populations is independent of beekeeping density and probably reflects naturally occurring processes such as gene flow due to topographic and climatic variation on a microscale.

  12. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens.

    Science.gov (United States)

    Clifford, Jennifer C; Buchanan, Alex; Vining, Oliver; Kidarsa, Teresa A; Chang, Jeff H; McPhail, Kerry L; Loper, Joyce E

    2016-10-01

    Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus.

    Science.gov (United States)

    Hurgobin, Bhavna; Golicz, Agnieszka A; Bayer, Philipp E; Chan, Chon-Kit Kenneth; Tirnaz, Soodeh; Dolatabadian, Aria; Schiessl, Sarah V; Samans, Birgit; Montenegro, Juan D; Parkin, Isobel A P; Pires, J Chris; Chalhoub, Boulos; King, Graham J; Snowdon, Rod; Batley, Jacqueline; Edwards, David

    2018-07-01

    Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk.

    Science.gov (United States)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S L; Chen, Zhihua; Chen, Ann Y; Permuth-Wey, Jennifer; Aben, Katja K H; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V; Bean, Yukie T; Beckmann, Matthias W; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A; Brooks-Wilson, Angela; Bunker, Clareann H; Butzow, Ralf; Campbell, Ian G; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S; Cramer, Daniel W; Cunningham, Julie M; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F; Eccles, Diana M; Edwards, Robert P; Ekici, Arif B; Fasching, Peter A; Fridley, Brooke L; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G; Glasspool, Rosalind; Goodman, Marc T; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A T; Hillemanns, Peter; Hogdall, Claus K; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y; Kelemen, Linda E; Kellar, Mellissa; Kiemeney, Lambertus A; Krakstad, Camilla; Kjaer, Susanne K; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D; Lee, Alice W; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F A G; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R; McNeish, Iain; Menon, Usha; Milne, Roger L; Modugno, Francesmary; Moysich, Kirsten B; Ness, Roberta B; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L; Pejovic, Tanja; Pelttari, Liisa M; Pike, Malcolm C; Poole, Elizabeth M; Risch, Harvey A; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H; Rudolph, Anja; Runnebaum, Ingo B; Rzepecka, Iwona K; Salvesen, Helga B; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L; Thompson, Pamela J; Thomsen, Lotte; Tangen, Ingvild L; Tworoger, Shelley S; van Altena, Anne M; Vierkant, Robert A; Vergote, Ignace; Walsh, Christine S; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S; Wicklund, Kristine G; Wilkens, Lynne R; Wu, Anna H; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N; Berchuck, Andrew; Iversen, Edwin S; Schildkraut, Joellen M; Ramus, Susan J; Goode, Ellen L; Monteiro, Alvaro N A; Gayther, Simon A; Narod, Steven A; Pharoah, Paul D P; Sellers, Thomas A; Phelan, Catherine M

    2015-01-01

    Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). These results, generated on a large cohort of women, revealed associations between inherited cellular transport

  15. Antigenic variation of Anaplasma marginale msp2 occurs by combinatorial gene conversion.

    Science.gov (United States)

    Brayton, Kelly A; Palmer, Guy H; Lundgren, Anna; Yi, Jooyoung; Barbet, Anthony F

    2002-03-01

    The rickettsial pathogen Anaplasma marginale establishes lifelong persistent infection in the mammalian reservoir host, during which time immune escape variants continually arise in part because of variation in the expressed copy of the immunodominant outer membrane protein MSP2. A key question is how the small 1.2 Mb A. marginale genome generates sufficient variants to allow long-term persistence in an immunocompetent reservoir host. The recombination of whole pseudogenes into the single msp2 expression site has been previously identified as one method of generating variants, but is inadequate to generate the number of variants required for persistent infection. In the present study, we demonstrate that recombination of a whole pseudogene is followed by a second level of variation in which small segments of pseudogenes recombine into the expression site by gene conversion. Evidence for four short sequential changes in the hypervariable region of msp2 coupled with the identification of nine pseudogenes from a single strain of A. marginale provides for a combinatorial number of possible expressed MSP2 variants sufficient for lifelong persistence.

  16. Multi-allelic major effect genes interact with minor effect QTLs to control adaptive color pattern variation in Heliconius erato.

    Directory of Open Access Journals (Sweden)

    Riccardo Papa

    Full Text Available Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.

  17. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  18. Genetic influences on variation in female orgasmic function: a twin study

    Science.gov (United States)

    Dunn, Kate M; Cherkas, Lynn F; Spector, Tim D

    2005-01-01

    Orgasmic dysfunction in females is commonly reported in the general population with little consensus on its aetiology. We performed a classical twin study to explore whether there were observable genetic influences on female orgasmic dysfunction. Adult females from the TwinsUK register were sent a confidential survey including questions on sexual problems. Complete responses to the questions on orgasmic dysfunction were obtained from 4037 women consisting of 683 monozygotic and 714 dizygotic pairs of female twins aged between 19 and 83 years. One in three women (32%) reported never or infrequently achieving orgasm during intercourse, with a corresponding figure of 21% during masturbation. A significant genetic influence was seen with an estimated heritability for difficulty reaching orgasm during intercourse of 34% (95% confidence interval 27–40%) and 45% (95% confidence interval 38–52%) for orgasm during masturbation. These results show that the wide variation in orgasmic dysfunction in females has a genetic basis and cannot be attributed solely to cultural influences. These results should stimulate further research into the biological and perhaps evolutionary processes governing female sexual function. PMID:17148182

  19. Restriction genes for retroviruses influence the risk of multiple sclerosis

    DEFF Research Database (Denmark)

    Nexø, Bjørn A; Hansen, Bettina; Nissen, Kari K

    2013-01-01

    known for a long time. Today human restriction genes for retroviruses include amongst others TRIMs, APOBEC3s, BST2 and TREXs. We have therefore looked for a role of these retroviral restriction genes in MS using genetic epidemiology. We here report that markers in two TRIMs, TRIM5 and TRIM22...... and a marker in BST2, associated statistically with the risk of getting MS, while markers in or near APOBEC3s and TREXs showed little or no effect. This indicates that the two TRIMs and BST2 influence the risk of disease and thus supports the hypothesis of a viral involvement....

  20. Genetic Variation in the β2-Adrenocepter Gene Is Associated with Susceptibility to Bacterial Meningitis in Adults

    Science.gov (United States)

    Adriani, Kirsten S.; Brouwer, Matthijs C.; Baas, Frank; Zwinderman, Aeilko H.; van der Ende, Arie; van de Beek, Diederik

    2012-01-01

    Recently, the biased β2-adrenoceptor/β-arrestin pathway was shown to play a pivotal role in crossing of the blood brain barrier by Neisseria meningitidis. We hypothesized that genetic variation in the β2-adrenoceptor gene (ADRB2) may influence susceptibility to bacterial meningitis. In a prospective genetic association study we genotyped 542 patients with CSF culture proven community acquired bacterial meningitis and 376 matched controls for 2 functional single nucleotide polymorphisms in the β2-adrenoceptor gene (ADRB2). Furthermore, we analyzed if the use of non-selective beta-blockers, which bind to the β2-adrenoceptor, influenced the risk of bacterial meningitis. We identified a functional polymorphism in ADRB2 (rs1042714) to be associated with an increased risk for bacterial meningitis (Odds ratio [OR] 1.35, 95% confidence interval [CI] 1.04–1.76; p = 0.026). The association remained significant after correction for age and was more prominent in patients with pneumococcal meningitis (OR 1.52, 95% CI 1.12–2.07; p = 0.007). For meningococcal meningitis the difference in genotype frequencies between patients and controls was similar to that in pneumococcal meningitis, but this was not statistically significant (OR 1.43, 95% CI 0.60–3.38; p = 0.72). Patients with bacterial meningitis had a lower frequency of non-selective beta-blockers use compared to the age matched population (0.9% vs. 1.8%), although this did not reach statistical significance (OR 1.96 [95% CI 0.88–4.39]; p = 0.09). In conclusion, we identified an association between a genetic variant in the β2-adrenoceptor and increased susceptibility to bacterial meningitis. The potential benefit of pharmacological treatment targeting the β2-adrenoceptor to prevent bacterial meningitis in the general population or patients with bacteraemia should be further studied in both experimental studies and observational cohorts. PMID:22624056

  1. [Spatial variation in diurnal courses of stem temperature of Betula platyphylla and Fraxinus mandshurica and its influencing factors].

    Science.gov (United States)

    Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi

    2017-10-01

    Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.

  2. Big bees do a better job: intraspecific size variation influences pollination effectiveness

    Directory of Open Access Journals (Sweden)

    Pat Willmer

    2014-09-01

    Full Text Available 1. Bumblebees (Bombus spp. are efficient pollinators of many flowering plants, yet the pollen deposition performance of individual bees has not been investigated. Worker bumblebees exhibit large intraspecific and intra-nest size variation, in contrast with other eusocial bees; and their size influences collection and deposition of pollen grains. 2. Laboratory studies with B. terrestris workers and Vinca minor flowers showed that pollination effectiveness PE, as measured from pollen grains deposited on stigmas in single visits (SVD, was significantly positively related to bee size; larger bees deposited more grains, while the smallest individuals, with proportionally shorter tongues, were unable to collect or deposit pollen in these flowers. Individuals did not increase their pollen deposition over time, so handling experience does not influence SVD in Vinca minor. 3. Field studies using Geranium sanguineum and Echium vulgare, and multiple visiting species, confirmed that individual size affects SVD. All bumblebee species showed positive SVD/size effects, though even the smallest individuals did deposit pollen. Apis with its limited size variation showed no such detectable effect when visiting Geranium flowers. Two abundant hoverfly species also showed size effects, particularly when feeding for nectar on Echium. 4. Mean size of foragers also varied diurnally, with larger individuals active earlier and later, so that pollination effectiveness varies through a day; flowers routinely pollinated by bees may best be served by early morning dehiscence and visits from larger individuals. 5. Thus, while there are well-documented species-level variations in pollination effectiveness, the fine-scale individual differences between foragers should also be taken into account when assessing the reproductive outputs of biotically-pollinated plants.

  3. Geographical, environmental and pathophysiological influences on the human blood transcriptome.

    Science.gov (United States)

    Tabassum, Rubina; Nath, Artika; Preininger, Marcela; Gibson, Greg

    2013-12-01

    Gene expression variation provides a read-out of both genetic and environmental influences on gene activity. Geographical, genomic and sociogenomic studies have highlighted how life circumstances of an individual modify the expression of hundreds and in some cases thousands of genes in a co-ordinated manner. This review places such results in the context of a conserved set of 90 transcripts known as Blood Informative Transcripts (BIT) that capture the major conserved components of variation in the peripheral blood transcriptome. Pathophysiological states are also shown to associate with the perturbation of transcript abundance along the major axes. Discussion of false negative rates leads us to argue that simple significance thresholds provide a biased perspective on assessment of differential expression that may cloud the interpretation of studies with small sample sizes.

  4. Influence of the IL6 Gene in Susceptibility to Systemic Sclerosis

    NARCIS (Netherlands)

    Cenit, M.C.; Simeon, C.P.; Vonk, M.C.; Callejas-Rubio, J.L.; Espinosa, G.; Carreira, P.; Blanco, F.J.; Narvaez, J.; Tolosa, C.; Roman-Ivorra, J.A.; Gomez-Garcia, I.; Garcia-Hernandez, F.J.; Gallego, M.; Garcia-Portales, R.; Egurbide, M.V.; Fonollosa, V.; Garcia de la Pena, P.; Lopez-Longo, F.J.; Gonzalez-Gay, M.A.; The Spanish Scleroderma, G.; Hesselstrand, R.; Riemekasten, G.; Witte, T.J.M. de; Voskuyl, A.E.; Schuerwegh, A.J.; Madhok, R.; Fonseca, C.; Denton, C.; Nordin, A.; Palm, O.; Laar, J.M. van; Hunzelmann, N.; Distler, J.H.; Kreuter, A.; Herrick, A.; Worthington, J.; Koeleman, B.P.; Radstake, T.R.D.J.; Martin, J.

    2012-01-01

    OBJECTIVE: Systemic sclerosis (SSc) is a genetically complex autoimmune disease; the genetic component has not been fully defined. Interleukin 6 (IL-6) plays a crucial role in immunity and fibrosis, both key aspects of SSc. We investigated the influence of IL6 gene in the susceptibility and

  5. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    Directory of Open Access Journals (Sweden)

    Jacqueline Stockley

    Full Text Available The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12 could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =, both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =. Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.

  6. Identification and Characterization of Novel Variations in Platelet G-Protein Coupled Receptor (GPCR) Genes in Patients Historically Diagnosed with Type 1 von Willebrand Disease.

    Science.gov (United States)

    Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E

    2015-01-01

    The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.

  7. Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index

    DEFF Research Database (Denmark)

    Freathy, Rachel M; Kazeem, Gbenga R; Morris, Richard W

    2011-01-01

    Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers, but ......, but its association with BMI is unknown. We hypothesized that genotype would accurately reflect smoking exposure and that, if smoking were causally related to weight, it would be associated with BMI in smokers, but not in never smokers.......Cigarette smoking is associated with lower body mass index (BMI), and a commonly cited reason for unwillingness to quit smoking is a concern about weight gain. Common variation in the CHRNA5-CHRNA3-CHRNB4 gene region (chromosome 15q25) is robustly associated with smoking quantity in smokers...

  8. Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children.

    Science.gov (United States)

    Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita

    2003-06-13

    Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.

  9. Influence of artificial carbon nanotubes on expression of Rb gene and viability of lymphocytes

    International Nuclear Information System (INIS)

    Zhornik, E.V.

    2010-01-01

    Nanotechnologies that received the development last decades are the most perspective field of modern engineering and medicine. Alongside with the strong advantages nanoparticles can render negative influence on living cells and organisms. In connection with increasing use of nanotechnologies there is the necessity of studying the potential toxicity related to influence of nanoparticles. The changes in expression of Rb gene of human lymphocytes after short-term action of multiwalled carbon nanotubes at 100 mg/ml concentration was investigated to assess the potential risks of using the artificial nanotubes, and also the vitality of blood lymphocytes after their incubation with artificial nanotubes. The increase in the expression of Rb gene in time-dependent manner and the influence of nanoparticles on survival rate of lymphocytes in comparison with control samples were shown. (authors)

  10. Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Marit eHaram

    2015-01-01

    Full Text Available Social dysfunction is common in patients with psychotic disorders. Oxytocin is a neuropeptide with a central role in social behaviour. This study aims to explore the relationship between oxytocin pathway genes and symptoms related to social dysfunction in patients with psychotic disorders. We performed association analyses between four oxytocin pathway genes (OXT, OXTR, AVP, CD38 and four areas of social behaviour-related psychopathology as measured by Positive and Negative Syndrome Scale (PANSS. For this purpose, we used both a polygenic risk score (PGRS and single OXTR candidate SNPs previously reported in the literature (rs53576, rs237902, rs2254298. A total of 734 subjects with DSM-IV psychotic spectrum disorders and 420 healthy controls were included. Oxytocin pathway PGRSs were calculated based on the independent Psychiatric Genomics Consortium study sample. There was a significant association between symptom of Emotional Withdrawal and the previously reported OXTR risk allele A in rs53576. No significant associations between oxytocin pathway gene variants and a diagnosis of psychotic disorder were found. Our findings indicate that while oxytocin pathway genes do not appear to contribute to the susceptibility to psychotic disorders, variations in the OXTR gene might play a role in the development of impaired social behaviour.

  11. Surgeon Influence on Variation in Receipt of Contralateral Prophylactic Mastectomy for Women With Breast Cancer.

    Science.gov (United States)

    Katz, Steven J; Hawley, Sarah T; Hamilton, Ann S; Ward, Kevin C; Morrow, Monica; Jagsi, Reshma; Hofer, Timothy P

    2018-01-01

    Rates of contralateral prophylactic mastectomy (CPM) have markedly increased but we know little about the influence of surgeons on variability of the procedure in the community. To quantify the influence of the attending surgeon on rates of CPM and clinician attitudes that explained it. In this population-based survey study, we identified 7810 women with stages 0 to II breast cancer treated in 2013 to 2015 through the Surveillance, Epidemiology, and End Results registries of Georgia and Los Angeles County. Surveys were sent approximately 2 months after surgery. Surveys were also sent to 488 attending surgeons identified by the patients. We conducted multilevel analyses to examine the impact of surgeon influence on variations in patient receipt of CPM using information from patient and surgeon surveys merged to Surveillance, Epidemiology, and End Results data. A total of 5080 women responded to the survey (70% response rate), and 377 surgeons responded (77% response rate). The mean (SD) age of responding women was 61.9 (11) years; 28% had an increased risk of second primary cancer, and 16% received CPM. Half of surgeons (52%) practiced for more than 20 years and 30% treated more than 50 new patients with breast cancer annually. Attending surgeon explained a large amount (20%) of the variation in CPM, controlling for patient factors. The odds of a patient receiving CPM increased almost 3-fold (odds ratio, 2.8; 95% CI, 2.1-3.4) if she saw a surgeon with a practice approach 1 SD above a surgeon with the mean CPM rate (independent of age, diagnosis date, BRCA status, and risk of second primary). One-quarter (25%) of the surgeon influence was explained by attending attitudes about initial recommendations for surgery and responses to patient requests for CPM. The estimated rate of CPM was 34% for surgeons who least favored initial breast conservation and were least reluctant to perform CPM vs 4% for surgeons who most favored initial breast conservation and were most

  12. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma

    Directory of Open Access Journals (Sweden)

    Ye H

    2015-06-01

    Full Text Available Hua Ye, Kai Yang, Xue-Mei Tan, Xiao-Juan Fu, Han-Xue LiDepartment of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaBackground: Recent studies have demonstrated that the clock gene PER1 regulates various tumor-related genes. Abnormal expressions and circadian rhythm alterations of PER1 are closely related to carcinogenesis. However, the dynamic circadian variations of PER1 and tumor-related genes at different stages of carcinogenesis remain unknown. This study was conducted to investigate the daily rhythm variation of PER1 and expression of tumor-related genes VEGF, KI67, C-MYC, and P53 in different stages of carcinogenesis.Materials and methods: Dimethylbenzanthracene was used to establish a golden hamster model of buccal mucosa carcinogenesis. Hamsters with normal buccal mucosa, precancerous lesion, and cancerous lesion were sacrificed at six different time points during a 24-hour period of a day. Pathological examination was conducted using routine hematoxylin and eosin staining. PER1, VEGF, KI67, C-MYC, and P53 mRNAs were detected by real-time reverse transcriptase polymerase chain reaction, and a cosinor analysis was applied to analyze the daily rhythm.Results: PER1, VEGF, C-MYC, and P53 mRNA exhibited daily rhythmic expression in three carcinogenesis stages, and KI67 mRNA exhibited daily rhythmic expression in the normal and precancerous stages. The daily rhythmic expression of KI67 was not observed in cancerous stages. The mesor and amplitude of PER1 and P53 mRNA expression decreased upon the development of cancer (P<0.05, whereas the mesor and amplitude of VEGF, KI67, and C-MYC mRNA increased upon the development of cancer (P<0.05. Compared with the normal tissues, the acrophases of PER1, VEGF, and C-MYC mRNA occurred earlier, whereas the acrophases of P53 and KI67 mRNA lagged remarkably in the precancerous lesions. In the cancer stage, the acrophases

  13. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  14. Serotonin and Early Cognitive Development: Variation in the Tryptophan Hydroxylase 2 Gene Is Associated with Visual Attention in 7-Month-Old Infants

    Science.gov (United States)

    Leppanen, Jukka M.; Peltola, Mikko J.; Puura, Kaija; Mantymaa, Mirjami; Mononen, Nina; Lehtimaki, Terho

    2011-01-01

    Background: Allelic variation in the promoter region of a gene that encodes tryptophan hydroxylase isoform 2 (TPH2), a rate-limiting enzyme of serotonin synthesis in the central nervous system, has been associated with variations in cognitive function and vulnerability to affective spectrum disorders. Little is known about the effects of this gene…

  15. Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.

    Science.gov (United States)

    Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J

    2018-04-01

    Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.

  16. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana.

    Science.gov (United States)

    Stinchcombe, John R; Weinig, Cynthia; Heath, Katy D; Brock, Marcus T; Schmitt, Johanna

    2009-07-01

    The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure-in particular the genetic correlations between branch number and flowering time traits-and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.

  17. A combination of PhP typing and β-d-glucuronidase gene sequence variation analysis for differentiation of Escherichia coli from humans and animals.

    Science.gov (United States)

    Masters, N; Christie, M; Katouli, M; Stratton, H

    2015-06-01

    We investigated the usefulness of the β-d-glucuronidase gene variance in Escherichia coli as a microbial source tracking tool using a novel algorithm for comparison of sequences from a prescreened set of host-specific isolates using a high-resolution PhP typing method. A total of 65 common biochemical phenotypes belonging to 318 E. coli strains isolated from humans and domestic and wild animals were analysed for nucleotide variations at 10 loci along a 518 bp fragment of the 1812 bp β-d-glucuronidase gene. Neighbour-joining analysis of loci variations revealed 86 (76.8%) human isolates and 91.2% of animal isolates were correctly identified. Pairwise hierarchical clustering improved assignment; where 92 (82.1%) human and 204 (99%) animal strains were assigned to their respective cluster. Our data show that initial typing of isolates and selection of common types from different hosts prior to analysis of the β-d-glucuronidase gene sequence improves source identification. We also concluded that numerical profiling of the nucleotide variations can be used as a valuable approach to differentiate human from animal E. coli. This study signifies the usefulness of the β-d-glucuronidase gene as a marker for differentiating human faecal pollution from animal sources.

  18. Investigating the potential role of genetic and epigenetic variation of DNA methyltransferase genes in hyperplastic polyposis syndrome.

    Directory of Open Access Journals (Sweden)

    Musa Drini

    2011-02-01

    Full Text Available Hyperplastic Polyposis Syndrome (HPS is a condition associated with multiple serrated polyps, and an increased risk of colorectal cancer (CRC. At least half of CRCs arising in HPS show a CpG island methylator phenotype (CIMP, potentially linked to aberrant DNA methyltransferase (DNMT activity. CIMP is associated with methylation of tumor suppressor genes including regulators of DNA mismatch repair (such as MLH1, MGMT, and negative regulators of Wnt signaling (such as WIF1. In this study, we investigated the potential for interaction of genetic and epigenetic variation in DNMT genes, in the aetiology of HPS.We utilized high resolution melting (HRM analysis to screen 45 cases with HPS for novel sequence variants in DNMT1, DNMT3A, DNMT3B, and DNMT3L. 21 polyps from 13 patients were screened for BRAF and KRAS mutations, with assessment of promoter methylation in the DNMT1, DNMT3A, DNMT3B, DNMT3L MLH1, MGMT, and WIF1 gene promoters.No pathologic germline mutations were observed in any DNA-methyltransferase gene. However, the T allele of rs62106244 (intron 10 of DNMT1 gene was over-represented in cases with HPS (p<0.01 compared with population controls. The DNMT1, DNMT3A and DNMT3B promoters were unmethylated in all instances. Interestingly, the DNMT3L promoter showed low levels of methylation in polyps and normal colonic mucosa relative to matched disease free cells with methylation level negatively correlated to expression level in normal colonic tissue. DNMT3L promoter hypomethylation was more often found in polyps harbouring KRAS mutations (p = 0.0053. BRAF mutations were common (11 out of 21 polyps, whilst KRAS mutations were identified in 4 of 21 polyps.Genetic or epigenetic alterations in DNMT genes do not appear to be associated with HPS, but further investigation of genetic variation at rs62106244 is justified given the high frequency of the minor allele in this case series.

  19. SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling

    International Nuclear Information System (INIS)

    Edvardsen, Hege; Landmark-Høyvik, Hege; Reinertsen, Kristin V.; Zhao, Xi; Grenaker-Alnæs, Grethe Irene; Nebdal, Daniel; Syvänen, Ann-Christine; Rødningen, Olaug; Alsner, Jan; Overgaard, Jens; Borresen-Dale, Anne-Lise; Fosså, Sophie D.; Kristensen, Vessela N.

    2013-01-01

    Purpose: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). Methods and Materials: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independent BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. Results: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P≤.005). Conclusion: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance

  20. Molecular variation at a candidate gene implicated in the regulation of fire ant social behavior.

    Directory of Open Access Journals (Sweden)

    Dietrich Gotzek

    2007-11-01

    Full Text Available The fire ant Solenopsis invicta and its close relatives display an important social polymorphism involving differences in colony queen number. Colonies are headed by either a single reproductive queen (monogyne form or multiple queens (polygyne form. This variation in social organization is associated with variation at the gene Gp-9, with monogyne colonies harboring only B-like allelic variants and polygyne colonies always containing b-like variants as well. We describe naturally occurring variation at Gp-9 in fire ants based on 185 full-length sequences, 136 of which were obtained from S. invicta collected over much of its native range. While there is little overall differentiation between most of the numerous alleles observed, a surprising amount is found in the coding regions of the gene, with such substitutions usually causing amino acid replacements. This elevated coding-region variation may result from a lack of negative selection acting to constrain amino acid replacements over much of the protein, different mutation rates or biases in coding and non-coding sequences, negative selection acting with greater strength on non-coding than coding regions, and/or positive selection acting on the protein. Formal selection analyses provide evidence that the latter force played an important role in the basal b-like lineages coincident with the emergence of polygyny. While our data set reveals considerable paraphyly and polyphyly of S. invicta sequences with respect to those of other fire ant species, the b-like alleles of the socially polymorphic species are monophyletic. An expanded analysis of colonies containing alleles of this clade confirmed the invariant link between their presence and expression of polygyny. Finally, our discovery of several unique alleles bearing various combinations of b-like and B-like codons allows us to conclude that no single b-like residue is completely predictive of polygyne behavior and, thus, potentially causally

  1. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  2. Novel Nucleotide Variations, Haplotypes Structure and Associations with Growth Related Traits of Goat AT Motif-Binding Factor ( Gene

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhang

    2015-10-01

    Full Text Available The AT motif-binding factor (ATBF1 not only interacts with protein inhibitor of activated signal transducer and activator of transcription 3 (STAT3 (PIAS3 to suppress STAT3 signaling regulating embryo early development and cell differentiation, but is required for early activation of the pituitary specific transcription factor 1 (Pit1 gene (also known as POU1F1 critically affecting mammalian growth and development. The goal of this study was to detect novel nucleotide variations and haplotypes structure of the ATBF1 gene, as well as to test their associations with growth-related traits in goats. Herein, a total of seven novel single nucleotide polymorphisms (SNPs (SNP 1-7 within this gene were found in two well-known Chinese native goat breeds. Haplotypes structure analysis demonstrated that there were four haplotypes in Hainan black goat while seventeen haplotypes in Xinong Saanen dairy goat, and both breeds only shared one haplotype (hap1. Association testing revealed that the SNP2, SNP5, SNP6, and SNP7 loci were also found to significantly associate with growth-related traits in goats, respectively. Moreover, one diplotype in Xinong Saanen dairy goats significantly linked to growth related traits. These preliminary findings not only would extend the spectrum of genetic variations of the goat ATBF1 gene, but also would contribute to implementing marker-assisted selection in genetics and breeding in goats.

  3. AIRE variations in Addison's disease and autoimmune polyendocrine syndromes (APS): partial gene deletions contribute to APS I.

    Science.gov (United States)

    Bøe Wolff, A S; Oftedal, B; Johansson, S; Bruland, O; Løvås, K; Meager, A; Pedersen, C; Husebye, E S; Knappskog, P M

    2008-03-01

    Autoimmune Addison's disease (AAD) is often associated with other components in autoimmune polyendocrine syndromes (APS). Whereas APS I is caused by mutations in the AIRE gene, the susceptibility genes for AAD and APS II are unclear. In the present study, we investigated whether polymorphisms or copy number variations in the AIRE gene were associated with AAD and APS II. First, nine SNPs in the AIRE gene were analyzed in 311 patients with AAD and APS II and 521 healthy controls, identifying no associated risk. Second, in a subgroup of 25 of these patients, AIRE sequencing revealed three novel polymorphisms. Finally, the AIRE copy number was determined by duplex quantitative PCR in 14 patients with APS I, 161 patients with AAD and APS II and in 39 healthy subjects. In two Scandinavian APS I patients previously reported to be homozygous for common AIRE mutations, we identified large deletions of the AIRE gene covering at least exon 2 to exon 8. We conclude that polymorphisms in the AIRE gene are not associated with AAD and APS II. We further suggest that DNA analysis of the parents of patients found to be homozygous for mutations in AIRE, always should be performed.

  4. Variations among Japanese of the factor IX gene (F9) detected by PCR-denaturing gradient gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Chiyoko; Takahashi, Norio; Asakawa, Junichi; Hiyama, Keiko; Kodaira, Meiko (Radiation Effects Research Foundation, Hiroshima (Japan))

    1993-01-01

    In the course of feasibility studies to examine the efficiencies and practicalities of various techniques for screening for genetic variations, the human coagulation factor IX (F9) genes of 63 Japanese families were examined by PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Four target sequences with lengths of 983-2,891 bp from the F9 genes of 126 unrelated individuals from Hiroshima and their 100 children were amplified by PCR, digested with restriction enzymes to approximately 500-bp fragments, and examined by DGGE - a total of 6,724 bp being examined per individual. GC-rich sequences (GC-clamps) of 40 bp were attached to both ends of the target sequences, as far as was feasible. Eleven types of new nucleotide substitutions were detected in the population, none of which produced RFLPs or caused hemophilia B. By examining two target sequences in a single lane, approximately 8,000 bp in a diploid individual could be examined. This approach is very effective for the detection of variations in DNA and is applicable to large-scale population studies. 46 refs., 3 figs., 1 tab.

  5. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    International Nuclear Information System (INIS)

    Yizengaw, Endawoke; Carter, Brett A.

    2017-01-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K p >3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  6. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Energy Technology Data Exchange (ETDEWEB)

    Yizengaw, Endawoke [Boston College, Chestnut Hill, MA (United States). Inst. for Scientific Research; Carter, Brett A. [RMIT Univ., Melbourne, VIC (Australia). SPACE Research Centre

    2017-07-01

    It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ). The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998-2014) of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian) have been analyzed. All observations performed during magnetically active periods (K{sub p}>3) have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  7. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC Risk.

    Directory of Open Access Journals (Sweden)

    Ganna Chornokur

    Full Text Available Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC, we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC. Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS. SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020; this SNP was also associated with the borderline/low malignant potential (LMP tumors (P = 0.021. Other genes significantly associated with EOC histological subtypes (p<0.05 included the UGT1A (endometrioid, SLC25A45 (mucinous, SLC39A11 (low malignant potential, and SERPINA7 (clear cell carcinoma. In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4.These results, generated on a large cohort of women, revealed associations between inherited cellular

  9. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    Science.gov (United States)

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia; Bruinsma, Fiona; Bandera, Elisa V.; Bean, Yukie T.; Beckmann, Matthias W.; Bisogna, Maria; Bjorge, Line; Bogdanova, Natalia; Brinton, Louise A.; Brooks-Wilson, Angela; Bunker, Clareann H.; Butzow, Ralf; Campbell, Ian G.; Carty, Karen; Chang-Claude, Jenny; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; Dansonka-Mieszkowska, Agnieszka; du Bois, Andreas; Despierre, Evelyn; Dicks, Ed; Doherty, Jennifer A.; Dörk, Thilo; Dürst, Matthias; Easton, Douglas F.; Eccles, Diana M.; Edwards, Robert P.; Ekici, Arif B.; Fasching, Peter A.; Fridley, Brooke L.; Gao, Yu-Tang; Gentry-Maharaj, Aleksandra; Giles, Graham G.; Glasspool, Rosalind; Goodman, Marc T.; Gronwald, Jacek; Harrington, Patricia; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hildebrandt, Michelle A. T.; Hillemanns, Peter; Hogdall, Claus K.; Hogdall, Estrid; Hosono, Satoyo; Jakubowska, Anna; Jensen, Allan; Ji, Bu-Tian; Karlan, Beth Y.; Kelemen, Linda E.; Kellar, Mellissa; Kiemeney, Lambertus A.; Krakstad, Camilla; Kjaer, Susanne K.; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lambrechts, Sandrina; Le, Nhu D.; Lee, Alice W.; Lele, Shashi; Leminen, Arto; Lester, Jenny; Levine, Douglas A.; Liang, Dong; Lim, Boon Kiong; Lissowska, Jolanta; Lu, Karen; Lubinski, Jan; Lundvall, Lene; Massuger, Leon F. A. G.; Matsuo, Keitaro; McGuire, Valerie; McLaughlin, John R.; McNeish, Iain; Menon, Usha; Milne, Roger L.; Modugno, Francesmary; Moysich, Kirsten B.; Ness, Roberta B.; Nevanlinna, Heli; Eilber, Ursula; Odunsi, Kunle; Olson, Sara H.; Orlow, Irene; Orsulic, Sandra; Weber, Rachel Palmieri; Paul, James; Pearce, Celeste L.; Pejovic, Tanja; Pelttari, Liisa M.; Pike, Malcolm C.; Poole, Elizabeth M.; Risch, Harvey A.; Rosen, Barry; Rossing, Mary Anne; Rothstein, Joseph H.; Rudolph, Anja; Runnebaum, Ingo B.; Rzepecka, Iwona K.; Salvesen, Helga B.; Schernhammer, Eva; Schwaab, Ira; Shu, Xiao-Ou; Shvetsov, Yurii B.; Siddiqui, Nadeem; Sieh, Weiva; Song, Honglin; Southey, Melissa C.; Spiewankiewicz, Beata; Sucheston, Lara; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Thomsen, Lotte; Tangen, Ingvild L.; Tworoger, Shelley S.; van Altena, Anne M.; Vierkant, Robert A.; Vergote, Ignace; Walsh, Christine S.; Wang-Gohrke, Shan; Wentzensen, Nicolas; Whittemore, Alice S.; Wicklund, Kristine G.; Wilkens, Lynne R.; Wu, Anna H.; Wu, Xifeng; Woo, Yin-Ling; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Hasmad, Hanis N.; Berchuck, Andrew; Iversen, Edwin S.; Schildkraut, Joellen M.; Ramus, Susan J.; Goode, Ellen L.; Monteiro, Alvaro N. A.; Gayther, Simon A.; Narod, Steven A.; Pharoah, Paul D. P.; Sellers, Thomas A.; Phelan, Catherine M.

    2015-01-01

    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations

  10. Broad distribution spectrum from Gaussian to power law appears in stochastic variations in RNA-seq data.

    Science.gov (United States)

    Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J

    2018-05-29

    Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.

  11. Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility

    OpenAIRE

    Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla

    2011-01-01

    Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which ...

  12. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    NARCIS (Netherlands)

    Heap, Graham A.; Trynka, Gosia; Jansen, Ritsert C.; Bruinenberg, Marcel; Swertz, Morris A.; Dinesen, Lotte C.; Hunt, Karen A.; Wijmenga, Cisca; vanHeel, David A.; Franke, Lude; Heel, David A van

    2009-01-01

    Background: Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods: We correlated gene expression and genetic variation in untouched

  13. Patterns of cis regulatory variation in diverse human populations.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    Full Text Available The genetic basis of gene expression variation has long been studied with the aim to understand the landscape of regulatory variants, but also more recently to assist in the interpretation and elucidation of disease signals. To date, many studies have looked in specific tissues and population-based samples, but there has been limited assessment of the degree of inter-population variability in regulatory variation. We analyzed genome-wide gene expression in lymphoblastoid cell lines from a total of 726 individuals from 8 global populations from the HapMap3 project and correlated gene expression levels with HapMap3 SNPs located in cis to the genes. We describe the influence of ancestry on gene expression levels within and between these diverse human populations and uncover a non-negligible impact on global patterns of gene expression. We further dissect the specific functional pathways differentiated between populations. We also identify 5,691 expression quantitative trait loci (eQTLs after controlling for both non-genetic factors and population admixture and observe that half of the cis-eQTLs are replicated in one or more of the populations. We highlight patterns of eQTL-sharing between populations, which are partially determined by population genetic relatedness, and discover significant sharing of eQTL effects between Asians, European-admixed, and African subpopulations. Specifically, we observe that both the effect size and the direction of effect for eQTLs are highly conserved across populations. We observe an increasing proximity of eQTLs toward the transcription start site as sharing of eQTLs among populations increases, highlighting that variants close to TSS have stronger effects and therefore are more likely to be detected across a wider panel of populations. Together these results offer a unique picture and resource of the degree of differentiation among human populations in functional regulatory variation and provide an estimate for

  14. Gene by Environment Interaction and Resilience: Effects of Child Maltreatment and Serotonin, Corticotropin Releasing Hormone, Dopamine, and Oxytocin Genes

    Science.gov (United States)

    Cicchetti, Dante; Rogosch, Fred A.

    2013-01-01

    In this investigation, gene-environment interaction effects in predicting resilience in adaptive functioning among maltreated and nonmaltreated low-income children (N = 595) were examined. A multi-component index of resilient functioning was derived and levels of resilient functioning were identified. Variants in four genes, 5-HTTLPR, CRHR1, DRD4 -521C/T, and OXTR, were investigated. In a series of ANCOVAs, child maltreatment demonstrated a strong negative main effect on children’s resilient functioning, whereas no main effects for any of the genotypes of the respective genes were found. However, gene-environment interactions involving genotypes of each of the respective genes and maltreatment status were obtained. For each respective gene, among children with a specific genotype, the relative advantage in resilient functioning of nonmaltreated compared to maltreated children was stronger than was the case for nonmaltreated and maltreated children with other genotypes of the respective gene. Across the four genes, a composite of the genotypes that more strongly differentiated resilient functioning between nonmaltreated and maltreated children provided further evidence of genetic variations influencing resilient functioning in nonmaltreated children, whereas genetic variation had a negligible effect on promoting resilience among maltreated children. Additional effects were observed for children based on the number of subtypes of maltreatment children experienced, as well as for abuse and neglect subgroups. Finally, maltreated and nonmaltreated children with high levels of resilience differed in their average number of differentiating genotypes. These results suggest that differential resilient outcomes are based on the interaction between genes and developmental experiences. PMID:22559122

  15. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Science.gov (United States)

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal

  16. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Directory of Open Access Journals (Sweden)

    John H Huber

    2018-05-01

    Full Text Available Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (reemerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation. Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting

  17. Genetic variation in a DNA double strand break repair gene in saudi population: a comparative study with worldwide ethnic groups.

    Science.gov (United States)

    Areeshi, Mohammed Yahya

    2013-01-01

    DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  18. Clinical Relevance of Gene Copy Number Variation in Metastatic Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Nouhaud, François-Xavier; Blanchard, France; Sesboue, Richard; Flaman, Jean-Michel; Sabourin, Jean-Christophe; Pfister, Christian; Di Fiore, Frédéric

    2018-02-23

    Gene copy number variations (CNVs) have been reported to be frequent in renal cell carcinoma (RCC), with potential prognostic value for some. However, their clinical utility, especially to guide treatment of metastatic disease remains to be established. Our objectives were to assess CNVs on a panel of selected genes and determine their clinical relevance in patients who underwent treatment of metastatic RCC. The genetic assessment was performed on frozen tissue samples of clear cell metastatic RCC using quantitative multiplex polymerase chain reaction of short fluorescent fragment method to detect CNVs on a panel of 14 genes of interest. The comparison of the electropherogram obtained from both tumor and normal renal adjacent tissue allowed for CNV identification. The clinical, biologic, and survival characteristics were assessed for their associations with the most frequent CNVs. Fifty patients with clear cell metastatic RCC were included. The CNV rate was 21.4%. The loss of CDKN2A and PLG was associated with a higher tumor stage (P relevance, especially those located on CDKN2A, PLG, and ALDOB, in a homogeneous cohort of patients with clear cell metastatic RCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Genome-wide variation in recombination rate in Eucalyptus.

    Science.gov (United States)

    Gion, Jean-Marc; Hudson, Corey J; Lesur, Isabelle; Vaillancourt, René E; Potts, Brad M; Freeman, Jules S

    2016-08-09

    Meiotic recombination is a fundamental evolutionary process. It not only generates diversity, but influences the efficacy of natural selection and genome evolution. There can be significant heterogeneity in recombination rates within and between species, however this variation is not well understood outside of a few model taxa, particularly in forest trees. Eucalypts are forest trees of global economic importance, and dominate many Australian ecosystems. We studied recombination rate in Eucalyptus globulus using genetic linkage maps constructed in 10 unrelated individuals, and markers anchored to the Eucalyptus reference genome. This experimental design provided the replication to study whether recombination rate varied between individuals and chromosomes, and allowed us to study the genomic attributes and population genetic parameters correlated with this variation. Recombination rate varied significantly between individuals (range = 2.71 to 3.51 centimorgans/megabase [cM/Mb]), but was not significantly influenced by sex or cross type (F1 vs. F2). Significant differences in recombination rate between chromosomes were also evident (range = 1.98 to 3.81 cM/Mb), beyond those which were due to variation in chromosome size. Variation in chromosomal recombination rate was significantly correlated with gene density (r = 0.94), GC content (r = 0.90), and the number of tandem duplicated genes (r = -0.72) per chromosome. Notably, chromosome level recombination rate was also negatively correlated with the average genetic diversity across six species from an independent set of samples (r = -0.75). The correlations with genomic attributes are consistent with findings in other taxa, however, the direction of the correlation between diversity and recombination rate is opposite to that commonly observed. We argue this is likely to reflect the interaction of selection and specific genome architecture of Eucalyptus. Interestingly, the differences amongst

  20. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.

    Science.gov (United States)

    Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F

    2015-01-01

    Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.

  1. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes

    Directory of Open Access Journals (Sweden)

    Mondal U

    2008-01-01

    Full Text Available Purpose: To anlyse codon usage patterns of five complete genomes of Salmonella , predict highly expressed genes, examine horizontally transferred pathogenicity-related genes to detect their presence in the strains, and scrutinize the nature of highly expressed genes to infer upon their lifestyle. Methods: Protein coding genes, ribosomal protein genes, and pathogenicity-related genes were analysed with Codon W and CAI (codon adaptation index Calculator. Results: Translational efficiency plays a role in codon usage variation in Salmonella genes. Low bias was noticed in most of the genes. GC3 (guanine cytosine at third position composition does not influence codon usage variation in the genes of these Salmonella strains. Among the cluster of orthologous groups (COGs, translation, ribosomal structure biogenesis [J], and energy production and conversion [C] contained the highest number of potentially highly expressed (PHX genes. Correspondence analysis reveals the conserved nature of the genes. Highly expressed genes were detected. Conclusions: Selection for translational efficiency is the major source of variation of codon usage in the genes of Salmonella . Evolution of pathogenicity-related genes as a unit suggests their ability to infect and exist as a pathogen. Presence of a lot of PHX genes in the information and storage-processing category of COGs indicated their lifestyle and revealed that they were not subjected to genome reduction.

  2. Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC)

    DEFF Research Database (Denmark)

    Jim, Heather S L; Lin, Hui-Yi; Tyrer, Jonathan P

    2015-01-01

    where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine...... single nucleotide polymorphisms (SNPs) in circadian genes BMAL1, CRY2, CSNK1E, NPAS2, PER3, REV1 and TIMELESS and downstream transcription factors KLF10 and SENP3 as predictors of risk of epithelial ovarian cancer (EOC) and histopathologic subtypes. The study included a test set of 3,761 EOC cases and 2......,722 controls and a validation set of 44,308 samples including 18,174 (10,316 serous) cases and 26,134 controls from 43 studies participating in the Ovarian Cancer Association Consortium (OCAC). Analysis of genotype data from 36 genotyped SNPs and 4600 imputed SNPs indicated that the most significant...

  3. Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish.

    Science.gov (United States)

    Brauer, Chris J; Unmack, Peter J; Beheregaray, Luciano B

    2017-12-01

    Understanding whether small populations with low genetic diversity can respond to rapid environmental change via phenotypic plasticity is an outstanding research question in biology. RNA sequencing (RNA-seq) has recently provided the opportunity to examine variation in gene expression, a surrogate for phenotypic variation, in nonmodel species. We used a comparative RNA-seq approach to assess expression variation within and among adaptively divergent populations of a threatened freshwater fish, Nannoperca australis, found across a steep hydroclimatic gradient in the Murray-Darling Basin, Australia. These populations evolved under contrasting selective environments (e.g., dry/hot lowland; wet/cold upland) and represent opposite ends of the species' spectrum of genetic diversity and population size. We tested the hypothesis that environmental variation among isolated populations has driven the evolution of divergent expression at ecologically important genes using differential expression (DE) analysis and an anova-based comparative phylogenetic expression variance and evolution model framework based on 27,425 de novo assembled transcripts. Additionally, we tested whether gene expression variance within populations was correlated with levels of standing genetic diversity. We identified 290 DE candidate transcripts, 33 transcripts with evidence for high expression plasticity, and 50 candidates for divergent selection on gene expression after accounting for phylogenetic structure. Variance in gene expression appeared unrelated to levels of genetic diversity. Functional annotation of the candidate transcripts revealed that variation in water quality is an important factor influencing expression variation for N. australis. Our findings suggest that gene expression variation can contribute to the evolutionary potential of small populations. © 2017 John Wiley & Sons Ltd.

  4. Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands.

    Directory of Open Access Journals (Sweden)

    Aines Castro-Prieto

    Full Text Available Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses and extracellular (e.g. helminths origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs.Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found.Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.

  5. Analysis of the genome-wide variations among multiple strains of the plant pathogenic bacterium Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2006-09-01

    Full Text Available Abstract Background The Gram-negative, xylem-limited phytopathogenic bacterium Xylella fastidiosa is responsible for causing economically important diseases in grapevine, citrus and many other plant species. Despite its economic impact, relatively little is known about the genomic variations among strains isolated from different hosts and their influence on the population genetics of this pathogen. With the availability of genome sequence information for four strains, it is now possible to perform genome-wide analyses to identify and categorize such DNA variations and to understand their influence on strain functional divergence. Results There are 1,579 genes and 194 non-coding homologous sequences present in the genomes of all four strains, representing a 76. 2% conservation of the sequenced genome. About 60% of the X. fastidiosa unique sequences exist as tandem gene clusters of 6 or more genes. Multiple alignments identified 12,754 SNPs and 14,449 INDELs in the 1528 common genes and 20,779 SNPs and 10,075 INDELs in the 194 non-coding sequences. The average SNP frequency was 1.08 × 10-2 per base pair of DNA and the average INDEL frequency was 2.06 × 10-2 per base pair of DNA. On an average, 60.33% of the SNPs were synonymous type while 39.67% were non-synonymous type. The mutation frequency, primarily in the form of external INDELs was the main type of sequence variation. The relative similarity between the strains was discussed according to the INDEL and SNP differences. The number of genes unique to each strain were 60 (9a5c, 54 (Dixon, 83 (Ann1 and 9 (Temecula-1. A sub-set of the strain specific genes showed significant differences in terms of their codon usage and GC composition from the native genes suggesting their xenologous origin. Tandem repeat analysis of the genomic sequences of the four strains identified associations of repeat sequences with hypothetical and phage related functions. Conclusion INDELs and strain specific genes

  6. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-abaxial Polarity Establishment in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Jianli eLiang

    2016-02-01

    Full Text Available Alterations in leaf adaxial–abaxial (ad-ab polarity are one of the main factors that are responsible for leaf curvature. In Chinese cabbage, to form a leafy head, leaf incurvature is an essential prerequisite. Identifying ad-ab patterning genes and investigating its genetic variations will facilitate in elucidating the mechanism underlying leaf incurvature during head formation. In the present study we conducted comparative genomic analysis of the identification of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs in Arabidopsis thaliana, indicating that these genes underwent expansion and were retained after whole genome triplication (WGT. We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima’s D indices and nucleotide diversity reduction in heading accessions compared to that in non-heading accessions, indicating that these underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature that is associated in the formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.

  7. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  8. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  9. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  10. Common Variation in the NOS1AP Gene Is Associated With Drug-Induced QT Prolongation and Ventricular Arrhythmia

    NARCIS (Netherlands)

    Jamshidi, Yalda; Nolte, Ilja M.; Dalageorgou, Chrysoula; Zheng, Dongling; Johnson, Toby; Bastiaenen, Rachel; Ruddy, Suzanne; Talbott, Daniel; Norris, Kris J.; Snieder, Harold; George, Alfred L.; Marshall, Vanessa; Shakir, Saad; Kannankeril, Prince J.; Munroe, Patricia B.; Camm, A. John; Jeffery, Steve; Roden, Dan M.; Behr, Elijah R.

    2012-01-01

    Objectives This study sought to determine whether variations in NOS1AP affect drug-induced long QT syndrome (LQTS). Background Use of antiarrhythmic drugs is limited by the high incidence of serious adverse events including QT prolongation and torsades de pointes. NOS1AP gene variants play a role in

  11. The Influence of Circadian Variation on Aetiological Markers of Ankle Injury.

    Science.gov (United States)

    Brogden, Chris; Marrin, Kelly; Page, Richard; Greig, Matt

    2018-03-15

    Clinical and functional assessments are performed regularly in sporting environments to screen for performance deficits and injury risk. Circadian rhythms have been demonstrated to affect human performance, however the influence of time of day on a battery of multiple ankle injury risk factors has yet to be established within athletic populations. To investigate the influence of circadian variation on a battery of tests, used to screen for ankle aetiological risk factors. Randomised crossover design. University laboratory. Thirty-three semi-professional soccer players (age 24.9 ± 4.4 years; height 1.77 ± 0.17 m; body mass 75.47 ± 7.98 kg) completed three randomized experimental trials (07:00 h, 12:00 h, 19:00 h) Main Outcome Measures: Trials involved the completion of a standardized test battery comprising Biodex Stability System (BSS), Star Excursion Balance Test (SEBT), isokinetic inversion: eversion ratio, joint position sense, and a drop landing inversion cutting manoeuvre. Repeated measures analysis of variance revealed significantly (P < 0.05) lower values for all BSS indicia; Overall Stability Index (1.10 ± 0.31 a.u), Anterior-Posterior (0.76 ± 0.21 a.u) and Medio-Lateral (0.68 ± 0.23) at 12:00 h when compared to 07:00 h. (1.30 ± 0.45 a.u; 0.96 ± 0.26 a.u; 0.82 ± 0.40 a.u) respectively. However, no significant (P ≥ 0.05) main effects for time of day were reported for any other test. Circadian influence on ankle aetiological risk factors was task dependent, with measures of proprioception, strength and SEBT displaying no circadian variation, indicating no association between time of day and markers of injury risk. However, the BSS displayed improved performance at midday, indicating postural stability tasks requiring unanticipated movements to display a time of day effect and potential increased injury risk. Consequently, time of testing for this task should be standardized to ensure correct interpretations of assessments and/or interventions.

  12. Longitudinal, seasonal and solar cycle variation in lunar tide influence on the equatorial electrojet

    Directory of Open Access Journals (Sweden)

    E. Yizengaw

    2017-04-01

    Full Text Available It has been well documented that the lunar tidal waves can modulate the ionospheric electrodynamics and create a visible influence on the equatorial electrojet (EEJ. The lunar tide influence gets intensified around noon, primarily during new and full Moon periods. However, the longitudinal, seasonal and solar cycle variability in the lunar tide influence on ionospheric current systems is not well understood yet. In order to investigate this, 17 years (1998–2014 of extensive magnetometer observations at four longitudinal sectors (western American, western and eastern African, and Asian have been analyzed. All observations performed during magnetically active periods (Kp>3 have been excluded for this study to eliminate storm contributions to the geomagnetic field variation at the geomagnetic equator. This study's quantitative analysis revealed significant longitudinal, seasonal and solar cycle dependence of the lunar tide influence on the equatorial electrojet.

  13. Supplementary Material for: Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Approximately 10 % of the Mycobacterium tuberculosis genome is made up of two families of genes that are poorly characterized due to their high GC content and highly repetitive nature. The PE and PPE families are typified by their highly conserved N-terminal domains that incorporate proline-glutamate (PE) and proline-proline-glutamate (PPE) signature motifs. They are hypothesised to be important virulence factors involved with host-pathogen interactions, but their high genetic variability and complexity of analysis means they are typically disregarded in genome studies. Results To elucidate the structure of these genes, 518 genomes from a diverse international collection of clinical isolates were de novo assembled. A further 21 reference M. tuberculosis complex genomes and long read sequence data were used to validate the approach. SNP analysis revealed that variation in the majority of the 168 pe/ppe genes studied was consistent with lineage. Several recombination hotspots were identified, notably pe_pgrs3 and pe_pgrs17. Evidence of positive selection was revealed in 65 pe/ppe genes, including epitopes potentially binding to major histocompatibility complex molecules. Conclusions This, the first comprehensive study of the pe and ppe genes, provides important insight into M. tuberculosis diversity and has significant implications for vaccine development.

  14. Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.

    Science.gov (United States)

    Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa

    2012-08-01

    The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  15. Influence of seasonal variations in sea level on the salinity regime of a coastal groundwater-fed wetland.

    Science.gov (United States)

    Wood, Cameron; Harrington, Glenn A

    2015-01-01

    Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater-fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level-driven movement of the fresh water-sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two-dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater-dependent ecosystems. © 2014, National Ground Water Association.

  16. Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba

    Directory of Open Access Journals (Sweden)

    Charles W Knapp

    2012-11-01

    Full Text Available Numerous studies have quantified antibiotic resistance genes (ARG in rivers and streams around the world, and significant relationships have been shown that relate different pollutant outputs and increased local ARG levels. However, most studies have not considered ambient flow conditions, which can vary dramatically especially in tropical countries. Here, ARG were quantified in water-column and sediment samples during the dry-and wet-seasons to assess how seasonal and other factors influence ARG transport down the Almendares River (Havana, Cuba. Eight locations were sampled and stream flow estimated during both seasons; qPCR was used to quantify four tetracycline, two erythromycin, and three beta-lactam resistance genes. ARG concentrations were higher in wet-season versus dry-season samples, which combined with higher flows, indicated greater ARG transport downstream during the wet season. Water-column ARG levels were more spatially variable in the dry-season than the wet-season, with the proximity of waste outfalls strongly influencing local ARG levels. Results confirm that dry-season sampling provides a useful picture of the impact of individual waste inputs on local stream ARG levels, whereas, the majority of ARGs in this tropical river were transported downstream during the wet season, possibly due to re-entrainment of ARG from sediments.

  17. Spatial and temporal variation in selection of genes associated with pearl millet varietal quantitative traits in situ

    Directory of Open Access Journals (Sweden)

    Cedric Mariac

    2016-07-01

    Full Text Available Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of two years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability.

  18. Polymorphic Variation in Double Strand Break Repair Gene in Indian Population: A Comparative Approach with Worldwide Ethnic Group Variations.

    Science.gov (United States)

    Mandal, Raju Kumar; Mittal, Rama Devi

    2018-04-01

    DNA repair capacity is essential in maintaining cellular functions and homeostasis. Identification of genetic polymorphisms responsible for reduced DNA repair capacity may allow better cancer prevention. Double strand break repair pathway plays critical roles in maintaining genome stability. Present study was conducted to determine distribution of XRCC3 Exon 7 (C18067T, rs861539) and XRCC7 Intron 8 (G6721T, rs7003908) gene polymorphisms in North Indian population and compare with different populations globally. The genotype assays were performed in 224 normal healthy individuals of similar ethnicity using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Allelic frequencies of wild type were 79% (C) in XRCC3 Exon 7 C > T and 57% (G) in XRCC7 Intron 8 (G > T) 57% (G) observed. On the other hand, the variant allele frequency were 21% (T) in XRCC3 Exon 7 C > T and 43% (T) in XRCC7 Intron 8 G > T respectively. Major differences from other ethnic populations were observed. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  19. Genetic variation in toll-like receptors and retinoic acid-inducible gene I and outcome of hepatitis C virus infection

    DEFF Research Database (Denmark)

    Clausen, L N; Ladelund, S; Weis, N

    2014-01-01

    We evaluated the effects of genetic variation in toll-like receptors (TLR), retinoic acid-inducible gene I (RIG-I) and their signalling pathways on spontaneous hepatitis C virus (HCV) resolution. We screened 95 single-nucleotide polymorphisms (SNPs) in 22 genes. SNPs significantly associated...... with resolution in the discovery cohort were genotyped in a validation cohort. Multivariate logistic regression adjusted for sex, hepatitis B surface antigen, HIV infection and the interleukin-28B rs12979860 SNP was performed in the combined cohort. Haplotype reconstruction and linkage disequilibrium analysis...

  20. Effects of DARPP-32 Genetic Variation on Prefrontal Cortex Volume and Episodic Memory Performance

    Directory of Open Access Journals (Sweden)

    Ninni Persson

    2017-05-01

    Full Text Available Despite evidence of a fundamental role of DARPP-32 in integrating dopamine and glutamate signaling, studies examining gene coding for DARPP-32 in relation to neural and behavioral correlates in humans are scarce. Post mortem findings suggest genotype specific expressions of DARPP-32 in the dorsal frontal lobes. Therefore, we investigated the effects of genomic variation in DARPP-32 coding on frontal lobe volumes and episodic memory. Volumetric data from the dorsolateral (DLPFC, and visual cortices (VC were obtained from 61 younger and older adults (♀54%. The major homozygote G, T, or A genotypes in single nucleotide polymorphisms (SNPs: rs879606; rs907094; rs3764352, the two latter in complete linkage disequilibrium, at the DARPP-32 regulating PPP1R1B gene, influenced frontal gray matter volume and episodic memory (EM. Homozygous carriers of allelic variants with lower DARPP-32 expression had an overall larger prefrontal volume in addition to greater EM recall accuracy after accounting for the influence of age. The SNPs did not influence VC volume. The genetic effects on DLPFC were greater in young adults and selective to this group for EM. Our findings suggest that genomic variation maps onto individual differences in frontal brain volumes and cognitive functions. Larger DLPFC volumes were also related to better EM performance, suggesting that gene-related differences in frontal gray matter may contribute to individual differences in EM. These results need further replication from experimental and longitudinal reports to determine directions of causality.

  1. SLC26A4 gene copy number variations in Chinese patients with non-syndromic enlarged vestibular aqueduct

    Directory of Open Access Journals (Sweden)

    Zhao Jiandong

    2012-05-01

    Full Text Available Abstract Background Many patients with enlarged vestibular aqueduct (EVA have either only one allelic mutant of the SLC26A4 gene or lack any detectable mutation. In this study, multiplex ligation-dependent probe amplification (MLPA was used to screen for copy number variations (CNVs of SLC26A4 and to reveal the pathogenic mechanisms of non-syndromic EVA (NSEVA. Methods Between January 2003 and March 2010, 923 Chinese patients (481 males, 442 females with NSEVA were recruited. Among these, 68 patients (7.4% were found to carry only one mutant allele of SLC26A4 and 39 patients (4.2% lacked any detectable mutation in SLC26A4; these 107 patients without double mutant alleles were assigned to the patient group. Possible copy number variations in SLC26A4 were detected by SALSA MLPA. Results Using GeneMapper, no significant difference was observed between the groups, as compared with the standard probe provided in the assay. The results of the capillary electrophoresis showed no significant difference between the patients and controls. Conclusion Our results suggest that CNVs and the exon deletion in SLC26A4 are not important factors in NSEVA. However, it would be premature to conclude that CNVs have no role in EVA. Genome-wide studies to explore CNVs within non-coding regions of the SLC26A4 gene and neighboring regions are warranted, to elucidate their roles in NSEVA etiology.

  2. Constitutional sequence variation in the Fanconi anaemia group C (FANCC) gene in childhood acute myeloid leukaemia.

    Science.gov (United States)

    Barber, Lisa M; McGrath, Helen E N; Meyer, Stefan; Will, Andrew M; Birch, Jillian M; Eden, Osborn B; Taylor, G Malcolm

    2003-04-01

    The extent to which genetic susceptibility contributes to the causation of childhood acute myeloid leukaemia (AML) is not known. The inherited bone marrow failure disorder Fanconi anaemia (FA) carries a substantially increased risk of AML, raising the possibility that constitutional variation in the FA (FANC) genes is involved in the aetiology of childhood AML. We have screened genomic DNA extracted from remission blood samples of 97 children with sporadic AML and 91 children with sporadic acute lymphoblastic leukaemia (ALL), together with 104 cord blood DNA samples from newborn children, for variations in the Fanconi anaemia group C (FANCC) gene. We found no evidence of known FANCC pathogenic mutations in children with AML, ALL or in the cord blood samples. However, we detected 12 different FANCC sequence variants, of which five were novel to this study. Among six FANCC variants leading to amino-acid substitutions, one (S26F) was present at a fourfold greater frequency in children with AML than in the cord blood samples (odds ratio: 4.09, P = 0.047; 95% confidence interval 1.08-15.54). Our results thus do not exclude the possibility that this polymorphic variant contributes to the risk of a small proportion of childhood AML.

  3. A Comprehensive Survey of Sequence Variation in the ABCA4 (ABCR) Gene in Stargardt Disease and Age-Related Macular Degeneration

    OpenAIRE

    Rivera, Andrea; White, Karen; Stöhr, Heidi; Steiner, Klaus; Hemmrich, Nadine; Grimm, Timo; Jurklies, Bernhard; Lorenz, Birgit; Scholl, Hendrik P. N.; Apfelstedt-Sylla, Eckhart; Weber, Bernhard H. F.

    2000-01-01

    Stargardt disease (STGD) is a common autosomal recessive maculopathy of early and young-adult onset and is caused by alterations in the gene encoding the photoreceptor-specific ATP-binding cassette (ABC) transporter (ABCA4). We have studied 144 patients with STGD and 220 unaffected individuals ascertained from the German population, to complete a comprehensive, population-specific survey of the sequence variation in the ABCA4 gene. In addition, we have assessed the proposed role for ABCA4 in ...

  4. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction

    Energy Technology Data Exchange (ETDEWEB)

    Andreassi, Maria Grazia, E-mail: andreas@ifc.cnr.it [CNR Institute of Clinical Physiology, G. Pasquinucci Hospital, Via Aurelia Sud, Massa (Italy)

    2009-07-10

    Despite remarkable progress in diagnosis and understanding of risk factors, cardiovascular disease (CVD) remains still the leading cause of morbidity and mortality in the world's developed countries. The metabolic syndrome, a cluster of risk factors (visceral obesity, insulin resistance, dyslipidaemia, and hypertension), is increasingly being recognized as a new risk factor for type 2 diabetes and atherosclerotic cardiovascular disease. Nevertheless, there is wide variation in both the occurrence of disease and age of onset, even in individuals who display very similar risk profiles. There is now compelling evidence that a complex interplay between genetic determinants and environmental factors (still largely unknown) is the reason for this large inter-individual variation in disease susceptibility. The purpose of the present review is to describe the current status of our knowledge concerning the gene-environment interactions potentially implicated in the pathogenesis of metabolic syndrome, diabetes and cardiovascular disease. It focuses predominantly on studies of genes (peroxisome proliferator-activated receptor-gamma, alcohol dehydrogenase type 1C, apolipoprotein E, glutathione S-transferases T1 and M1) that are known to be modified by dietary and lifestyle habits (fat diet, intake of alcohol and smoking habit). It also describes the limited current understanding of the role of genetic variants of xenobiotic metabolizing enzymes and their interactions with environmental toxicants. Additional studies are needed in order to clarify whether inter-individual differences in detoxification of environmental toxicants may have an essential role in the development of CVD and contribute to the emerging field of 'environmental cardiology'. Such knowledge may be particularly relevant for improving cardiovascular risk stratification and conceiving the development of 'personalized intervention program'.

  5. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction

    International Nuclear Information System (INIS)

    Andreassi, Maria Grazia

    2009-01-01

    Despite remarkable progress in diagnosis and understanding of risk factors, cardiovascular disease (CVD) remains still the leading cause of morbidity and mortality in the world's developed countries. The metabolic syndrome, a cluster of risk factors (visceral obesity, insulin resistance, dyslipidaemia, and hypertension), is increasingly being recognized as a new risk factor for type 2 diabetes and atherosclerotic cardiovascular disease. Nevertheless, there is wide variation in both the occurrence of disease and age of onset, even in individuals who display very similar risk profiles. There is now compelling evidence that a complex interplay between genetic determinants and environmental factors (still largely unknown) is the reason for this large inter-individual variation in disease susceptibility. The purpose of the present review is to describe the current status of our knowledge concerning the gene-environment interactions potentially implicated in the pathogenesis of metabolic syndrome, diabetes and cardiovascular disease. It focuses predominantly on studies of genes (peroxisome proliferator-activated receptor-gamma, alcohol dehydrogenase type 1C, apolipoprotein E, glutathione S-transferases T1 and M1) that are known to be modified by dietary and lifestyle habits (fat diet, intake of alcohol and smoking habit). It also describes the limited current understanding of the role of genetic variants of xenobiotic metabolizing enzymes and their interactions with environmental toxicants. Additional studies are needed in order to clarify whether inter-individual differences in detoxification of environmental toxicants may have an essential role in the development of CVD and contribute to the emerging field of 'environmental cardiology'. Such knowledge may be particularly relevant for improving cardiovascular risk stratification and conceiving the development of 'personalized intervention program'.

  6. Adaptive genetic variation at three loci in South African vervet monkeys (Chlorocebus pygerythrus and the role of selection within primates

    Directory of Open Access Journals (Sweden)

    Willem G. Coetzer

    2018-06-01

    Full Text Available Vervet monkeys (Chlorocebus pygerythrus are one of the most widely distributed non-human primate species found in South Africa. They occur across all the South African provinces, inhabiting a large variety of habitats. These habitats vary sufficiently that it can be assumed that various factors such as pathogen diversity could influence populations in different ways. In turn, these factors could lead to varied levels of selection at specific fitness linked loci. The Toll-like receptor (TLR gene family, which play an integral role in vertebrate innate immunity, is a group of fitness linked loci which has been the focus of much research. In this study, we assessed the level of genetic variation at partial sequences of two TLR loci (TLR4 and 7 and a reproductively linked gene, acrosin (ACR, across the different habitat types within the vervet monkey distribution range. Gene variation and selection estimates were also made among 11–21 primate species. Low levels of genetic variation for all three gene regions were observed within vervet monkeys, with only two polymorphic sites identified for TLR4, three sites for TLR7 and one site for ACR. TLR7 variation was positively correlated with high mean annual rainfall, which was linked to increased pathogen abundance. The observed genetic variation at TLR4 might have been influenced by numerous factors including pathogens and climatic conditions. The ACR exonic regions showed no variation in vervet monkeys, which could point to the occurrence of a selective sweep. The TLR4 and TLR7 results for the among primate analyses was mostly in line with previous studies, indicating a higher rate of evolution for TLR4. Within primates, ACR coding regions also showed signs of positive selection, which was congruent with previous reports on mammals. Important additional information to the already existing vervet monkey knowledge base was gained from this study, which can guide future research projects on this highly

  7. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  8. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation.

    Science.gov (United States)

    Zhao, Yan; Huang, Jin; Wang, Zhizheng; Jing, Shengli; Wang, Yang; Ouyang, Yidan; Cai, Baodong; Xin, Xiu-Fang; Liu, Xin; Zhang, Chunxiao; Pan, Yufang; Ma, Rui; Li, Qiaofeng; Jiang, Weihua; Zeng, Ya; Shangguan, Xinxin; Wang, Huiying; Du, Bo; Zhu, Lili; Xu, Xun; Feng, Yu-Qi; He, Sheng Yang; Chen, Rongzhi; Zhang, Qifa; He, Guangcun

    2016-10-24

    Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9 These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9 These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.

  9. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens

    DEFF Research Database (Denmark)

    Abildgaard, L; Engberg, RM; Pedersen, Karl

    2009-01-01

    The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in a-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio......-hepatitis. The a-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C perfringens were sequenced and translated in silico to amino acid sequences and the a-toxin production was investigated in batch cultures of 45 of the strains using an enzyme...

  10. Promoter polymorphisms in genes involved in porcine myogenesis influence their transcriptional activity.

    Science.gov (United States)

    Bongiorni, Silvia; Tilesi, Francesca; Bicorgna, Silvia; Iacoponi, Francesca; Willems, Daniela; Gargani, Maria; D'Andrea, MariaSilvia; Pilla, Fabio; Valentini, Alessio

    2014-11-07

    Success of meat production and selection for improvement of meat quality is among the primary aims in animal production. Meat quality traits are economically important in swine; however, the underlying genetic nature is very complex. Therefore, an improved pork production strongly depends on identifying and studying how genetic variations contribute to modulate gene expression. Promoters are key regions in gene modulation as they harbour several binding motifs to transcription regulatory factors. Therefore, polymorphisms in these regions are likely to deeply affect RNA levels and consequently protein synthesis. In this study, we report the identification of single nucleotide polymorphisms (SNPs) in promoter regions of candidate genes involved in development, cellular differentiation and muscle growth in Sus scrofa. We identified SNPs in the promoter regions of genes belonging to the Myogenic Regulatory Factors (MRF) gene family (the Myogenic Differentiation gene, MYOD1) and to Growth and Differentiation Factors (GDF) gene family (Myostatin gene, MSTN, GDF8), in Casertana and Large White breeds. The purpose of this study was to investigate if polymorphisms in the promoters could affect the transcriptional activity of these genes. With this aim, we evaluated in vitro the functional activity of the luciferase reporter gene luc2 activity, driven by two constructs carrying different promoter haplotypes. We tested the effects of the G302A (U12574) transition on the promoter efficiency in MYOD1 gene. We ascertained a difference in transcription efficiency for the two variants. A stronger activity of the A-carrying construct is more evident in C2C12. The luciferase expression driven by the MYOD1-A allelic variant displayed a 3.8-fold increased transcriptional activity. We investigated the activity of two haplotype variants (AY527152) in the promoter of GDF8 gene. The haploptype-1 (A435-A447-A879) up-regulated the expression of the reporter gene by a two-fold increase, and

  11. Structural influence of gene networks on their inference: analysis of C3NET

    Directory of Open Access Journals (Sweden)

    Emmert-Streib Frank

    2011-06-01

    Full Text Available Abstract Background The availability of large-scale high-throughput data possesses considerable challenges toward their functional analysis. For this reason gene network inference methods gained considerable interest. However, our current knowledge, especially about the influence of the structure of a gene network on its inference, is limited. Results In this paper we present a comprehensive investigation of the structural influence of gene networks on the inferential characteristics of C3NET - a recently introduced gene network inference algorithm. We employ local as well as global performance metrics in combination with an ensemble approach. The results from our numerical study for various biological and synthetic network structures and simulation conditions, also comparing C3NET with other inference algorithms, lead a multitude of theoretical and practical insights into the working behavior of C3NET. In addition, in order to facilitate the practical usage of C3NET we provide an user-friendly R package, called c3net, and describe its functionality. It is available from https://r-forge.r-project.org/projects/c3net and from the CRAN package repository. Conclusions The availability of gene network inference algorithms with known inferential properties opens a new era of large-scale screening experiments that could be equally beneficial for basic biological and biomedical research with auspicious prospects. The availability of our easy to use software package c3net may contribute to the popularization of such methods. Reviewers This article was reviewed by Lev Klebanov, Joel Bader and Yuriy Gusev.

  12. Youth temperament, harsh parenting, and variation in the oxytocin receptor gene forecast allostatic load during emerging adulthood.

    Science.gov (United States)

    Brody, Gene H; Yu, Tianyi; Barton, Allen W; Miller, Gregory E; Chen, Edith

    2017-08-01

    An association has been found between receipt of harsh parenting in childhood and adult health problems. However, this research has been principally retrospective, has treated children as passive recipients of parental behavior, and has overlooked individual differences in youth responsivity to harsh parenting. In a 10-year multiple-wave prospective study of African American families, we addressed these issues by focusing on the influence of polymorphisms in the oxytocin receptor gene (OXTR), variants of which appear to buffer or amplify responses to environmental stress. The participants were 303 youths, with a mean age of 11.2 at the first assessment, and their parents, all of whom were genotyped for variations in the rs53576 (A/G) polymorphism. Teachers rated preadolescent (ages 11 to 13) emotionally intense and distractible temperaments, and adolescents (ages 15 and 16) reported receipt of harsh parenting. Allostatic load was assessed during young adulthood (ages 20 and 21). Difficult preadolescent temperament forecast elevated receipt of harsh parenting in adolescence, and adolescents who experienced harsh parenting evinced high allostatic load during young adulthood. However, these associations emerged only among children and parents who carried A alleles of the OXTR genotype. The results suggest the oxytocin system operates along with temperament and parenting to forecast young adults' allostatic load.

  13. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  14. Short rare hTERT-VNTR2-2nd alleles are associated with prostate cancer susceptibility and influence gene expression

    International Nuclear Information System (INIS)

    Yoon, Se-Lyun; Cheon, Sang-Hyeon; Leem, Sun-Hee; Jung, Se-Il; Do, Eun-Ju; Lee, Se-Ra; Lee, Sang-Yeop; Chu, In-Sun; Kim, Wun-Jae; Jung, Jaeil; Kim, Choung Soo

    2010-01-01

    The hTERT (human telomerase reverse transcriptase) gene contains five variable number tandem repeats (VNTR) and previous studies have described polymorphisms for hTERT-VNTR2-2 nd . We investigated how allelic variation in hTERT-VNTR2-2 nd may affect susceptibility to prostate cancer. A case-control study was performed using DNA from 421 cancer-free male controls and 329 patients with prostate cancer. In addition, to determine whether the VNTR polymorphisms have a functional consequence, we examined the transcriptional levels of a reporter gene linked to these VNTRs and driven by the hTERT promoter in cell lines. Three new rare alleles were detected from this study, two of which were identified only in cancer subjects. A statistically significant association between rare hTERT-VNTR2-2 nd alleles and risk of prostate cancer was observed [OR, 5.17; 95% confidence interval (CI), 1.09-24.43; P = 0.021]. Furthermore, the results indicated that these VNTRs inserted in the enhancer region could influence the expression of hTERT in prostate cancer cell lines. This is the first study to report that rare hTERT VNTRs are associated with prostate cancer predisposition and that the VNTRs can induce enhanced levels of hTERT promoter activity in prostate cancer cell lines. Thus, the hTERT-VNTR2-2 nd locus may function as a modifier of prostate cancer risk by affecting gene expression

  15. Influence of temporal variation and host condition on helminth abundance in the lizard Tropidurus hispidus from north-eastern Brazil.

    Science.gov (United States)

    Filho, J A Araujo; Brito, S V; Lima, V F; Pereira, A M A; Mesquita, D O; Albuquerque, R L; Almeida, W O

    2017-05-01

    Ecological characteristics and environmental variation influence both host species composition and parasite abundance. Abiotic factors such as rainfall and temperature can improve parasite development and increase its reproduction rate. The comparison of these assemblages between different environments may give us a more refined analysis of how environment affects the variation of helminth parasite abundance. The aim of the present study was to evaluate how temporal variation, host size, sex and reproduction affect helminth abundance in the Tropidurus hispidus lizard in Caatinga, Restinga and Atlantic Forest environments. Overall, larger-sized lizards showed higher helminth abundance. We found a monthly variation in the helminth species abundance in all studied areas. In the Caatinga area, monoxenic and heteroxenic parasites were related to the rainy season and to the reproductive period of lizards. In Restinga, monoxenic and heteroxenic helminth species were more abundant during the driest months. In the Atlantic Forest, the rainy and host reproductive season occurred continuously throughout the year, so parasite abundance was relatively constant. Nevertheless, heteroxenic species were more abundant in this area. The present results showed that the temporal variation, body size, sex, reproductive period and habitat type influence the abundance and composition of helminth species in T. hispidus.

  16. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    Science.gov (United States)

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation

  17. Polymorphisms in Renal Ammonia Metabolism Genes Correlate With 24-Hour Urine pH

    Directory of Open Access Journals (Sweden)

    Benjamin K. Canales

    2017-11-01

    Discussion: Overall, these findings suggest that variants in common genes involved in ammonia metabolism may substantively contribute to basal urine pH regulation. These variations might influence the likelihood of developing disease conditions associated with altered urine pH, such as uric acid or calcium phosphate kidney stones.

  18. Causes and consequences of range size variation: the influence of traits, speciation, and extinction

    Directory of Open Access Journals (Sweden)

    Steven M. Vamosi

    2012-12-01

    Full Text Available The tremendous variation in species richness observed among related clades across the tree of life has long caught the imagination of biologists. Recently, there has been growing attention paid to the possible contribution of range size variation, either alone or in combination with putative key innovations, to these patterns. Here, we review three related topics relevant to range size evolution, speciation, and extinction. First, we provide a brief overview of the debate surrounding patterns and mechanisms for phylogenetic signal in range size. Second, we discuss some recent findings regarding the joint influence of traits and range size on diversification. Finally, we present the preliminary results of a study investigating whether range size is negatively correlated with contemporary extinction risk in flowering plants.

  19. Could age modify the effect of genetic variants in IL6 and TNF-α genes in multiple myeloma?

    Science.gov (United States)

    Martino, Alessandro; Buda, Gabriele; Maggini, Valentina; Lapi, Francesco; Lupia, Antonella; Di Bello, Domenica; Orciuolo, Enrico; Galimberti, Sara; Barale, Roberto; Petrini, Mario; Rossi, Anna Maria

    2012-05-01

    Cytokines play a central role in multiple myeloma (MM) pathogenesis thus genetic variations within cytokines coding genes could influence MM susceptibility and therapy outcome. We investigated the impact of 8 SNPs in these genes in 202 MM cases and 235 controls also evaluating their impact on therapy outcome in a subset of 91 patients. Despite the overall negative findings, we found a significant age-modified effect of IL6 and TNF-α SNPs, on MM risk and therapy outcome, respectively. Therefore, this observation suggests that genetic variation in inflammation-related genes could be an important mediator of the complex interplay between ageing and cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The influence of population characteristics on variation in general practice based morbidity estimations

    Directory of Open Access Journals (Sweden)

    van den Dungen C

    2011-11-01

    Full Text Available Abstract Background General practice based registration networks (GPRNs provide information on morbidity rates in the population. Morbidity rate estimates from different GPRNs, however, reveal considerable, unexplained differences. We studied the range and variation in morbidity estimates, as well as the extent to which the differences in morbidity rates between general practices and networks change if socio-demographic characteristics of the listed patient populations are taken into account. Methods The variation in incidence and prevalence rates of thirteen diseases among six Dutch GPRNs and the influence of age, gender, socio economic status (SES, urbanization level, and ethnicity are analyzed using multilevel logistic regression analysis. Results are expressed in median odds ratios (MOR. Results We observed large differences in morbidity rate estimates both on the level of general practices as on the level of networks. The differences in SES, urbanization level and ethnicity distribution among the networks' practice populations are substantial. The variation in morbidity rate estimates among networks did not decrease after adjusting for these socio-demographic characteristics. Conclusion Socio-demographic characteristics of populations do not explain the differences in morbidity estimations among GPRNs.

  1. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans.

    Science.gov (United States)

    Kosek, Eva; Jensen, Karin B; Lonsdorf, Tina B; Schalling, Martin; Ingvar, Martin

    2009-07-01

    There is evidence from animal studies that serotonin (5-HT) can influence the antinociceptive effects of opioids at the spinal cord level. Therefore, there could be an influence of genetic polymorphisms in the serotonin system on individual variability in response to opioid treatment of pain. The serotonin transporter (5-HTT) is a key regulator of serotonin metabolism and availability and its gene harbors several known polymorphisms that are known to affect 5-HTT expression (e.g. 5-HTTLPR, rs25531). The aim of this study was to investigate if the triallelic 5-HTTLPR influences pain sensitivity or the analgesic effect of opioids in humans. 43 healthy volunteers (12 men, 31 women, mean age 26 years) underwent heat pain stimulations before and after intravenous injection of Remifentanil; a rapid and potent opioid drug acting on micro-type receptors. Subjects rated their perceived pain on a visual analogue scale (VAS). All participants were genotyped for the 5-HTTLPR and the rs25531 polymorphism. We recruited by advertising, with no history of drug abuse, chronic pain or psychiatric disorders. At baseline, there was no difference in pain ratings for the different triallelic 5-HTTLPR genotype groups. However, the opiod drug had a differential analgesic effect depending on the triallelic 5-HTTLPR genotype. Remifentanil had a significantly better analgesic effect in individuals with a genotype coding for low 5-HTT expression (SA/SA and SA/LG) as compared to those with high expression(LA/LA), p desensitization of 5-HT1 receptors have an increased analgesic response to opioids during acute pain stimuli, but may still be at increased risk of developing chronic pain conditions.

  2. [Investigation into the relationship between mitochondrial 12 S rRNA gene, tRNA gene and cytochrome oxidase Ⅱ gene variations and the risk of noise-induced hearing loss].

    Science.gov (United States)

    Jiao, J; Gu, G Z; Chen, G S; Li, Y H; Zhang, H L; Yang, Q Y; Xu, X R; Zhou, W H; Wu, H; He, L H; Zheng, Y X; Yu, S F

    2017-01-06

    Objective: To explore the relationship between mitochondrial 12 S rRNA gene variation, tRNA gene variation and cytochrome oxidase Ⅱ gene point mutations and the risk of noise-induced hearing loss (NIHL). Methods: A nested case-control study was performed that followed a cohort of 7 445 noise-exposed workers in a steel factory in Henan province, China, from January 1, 2006 to December 31, 2015. Subjects whose average hearing threshold was more than 40 dB(A) in high frequency were defined as the case group, and subjects whose average hearing threshold was less than 35 dB(A) in high frequency and less than 25 dB (A) in speech frequency were defined as the control group. Subjects was recruited into the case group ( n =286) and the control group ( n= 286) according to gender, age, job category and time of exposure to noise, and a 1∶1 case-control study was carried out. We genotyped eight single nucleotide polymorphisms in the mitochondrial 12 S rRNA gene, the mitochondrial tRNA gene and the mitochondrial cytochrome oxidase Ⅱ gene using SNPscan high-throughput genotyping technology from the recruited subjects. The relationship between polymorphic sites and NIHL, adjusted for covariates, was analyzed using conditional logistic regression analysis, as were the subgroup data. Results: The average age of the recruited subjects was (40.3±8.1) years and the length of service exposure to noise was (18.6±8.9) years. The range of noise exposed levels and cumulative noise exposure (CNE) was 80.1- 93.4 dB (A) and 86.8- 107.9 dB (A) · year, respectively. For workers exposed to noise at a CNE level<98 dB (A) · year, smokers showed an increased risk of NIHL of 1.88 (1.16-3.05) compared with non-smokers; for workers exposed to noise at a CNE level ≥98 dB(A) · year, smokers showed an increased risk of NIHL of 2.53 (1.49- 4.30) compared with non-smokers. For workers exposed to noise at a CNE level<98 dB (A) · year, the results of univariate analysis and multifactor analysis

  3. DOG1 expression is predicted by the seed-maturation envornment and contributes to geographical variation in germination in Arabidopsis thaliana

    OpenAIRE

    Chiang, G.C.K.; Bartsch, M.; Barua, D.; Nakabayashi, K.; Debieu, M.; Kronholm, I.; Koornneef, M.; Soppe, W.J.J.; Donohue, K.; Meaux, De, J.

    2011-01-01

    Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DO...

  4. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    Science.gov (United States)

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  5. Robust assignment of cancer subtypes from expression data using a uni-variate gene expression average as classifier

    International Nuclear Information System (INIS)

    Lauss, Martin; Frigyesi, Attila; Ryden, Tobias; Höglund, Mattias

    2010-01-01

    Genome wide gene expression data is a rich source for the identification of gene signatures suitable for clinical purposes and a number of statistical algorithms have been described for both identification and evaluation of such signatures. Some employed algorithms are fairly complex and hence sensitive to over-fitting whereas others are more simple and straight forward. Here we present a new type of simple algorithm based on ROC analysis and the use of metagenes that we believe will be a good complement to existing algorithms. The basis for the proposed approach is the use of metagenes, instead of collections of individual genes, and a feature selection using AUC values obtained by ROC analysis. Each gene in a data set is assigned an AUC value relative to the tumor class under investigation and the genes are ranked according to these values. Metagenes are then formed by calculating the mean expression level for an increasing number of ranked genes, and the metagene expression value that optimally discriminates tumor classes in the training set is used for classification of new samples. The performance of the metagene is then evaluated using LOOCV and balanced accuracies. We show that the simple uni-variate gene expression average algorithm performs as well as several alternative algorithms such as discriminant analysis and the more complex approaches such as SVM and neural networks. The R package rocc is freely available at http://cran.r-project.org/web/packages/rocc/index.html

  6. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    Science.gov (United States)

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  7. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    Science.gov (United States)

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  8. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  9. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  10. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

    Science.gov (United States)

    Elia, Josephine; Glessner, Joseph T; Wang, Kai; Takahashi, Nagahide; Shtir, Corina J; Hadley, Dexter; Sleiman, Patrick M A; Zhang, Haitao; Kim, Cecilia E; Robison, Reid; Lyon, Gholson J; Flory, James H; Bradfield, Jonathan P; Imielinski, Marcin; Hou, Cuiping; Frackelton, Edward C; Chiavacci, Rosetta M; Sakurai, Takeshi; Rabin, Cara; Middleton, Frank A; Thomas, Kelly A; Garris, Maria; Mentch, Frank; Freitag, Christine M; Steinhausen, Hans-Christoph; Todorov, Alexandre A; Reif, Andreas; Rothenberger, Aribert; Franke, Barbara; Mick, Eric O; Roeyers, Herbert; Buitelaar, Jan; Lesch, Klaus-Peter; Banaschewski, Tobias; Ebstein, Richard P; Mulas, Fernando; Oades, Robert D; Sergeant, Joseph; Sonuga-Barke, Edmund; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Meyer, Jobst; Pálmason, Haukur; Seitz, Christiane; Loo, Sandra K; Smalley, Susan L; Biederman, Joseph; Kent, Lindsey; Asherson, Philip; Anney, Richard J L; Gaynor, J William; Shaw, Philip; Devoto, Marcella; White, Peter S; Grant, Struan F A; Buxbaum, Joseph D; Rapoport, Judith L; Williams, Nigel M; Nelson, Stanley F; Faraone, Stephen V; Hakonarson, Hakon

    2014-01-01

    Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts. PMID:22138692

  11. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Jacob A Tennessen

    Full Text Available New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails.Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected. Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2 Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1 with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated.The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation.

  12. Genetic Variation Throughout the Folate Metabolic Pathway Influences Negative Symptom Severity in Schizophrenia

    OpenAIRE

    Roffman, Joshua L.; Brohawn, David G.; Nitenson, Adam Z.; Macklin, Eric A.; Smoller, Jordan W.; Goff, Donald C.

    2011-01-01

    Low serum folate levels previously have been associated with negative symptom risk in schizophrenia, as has the hypofunctional 677C>T variant of the MTHFR gene. This study examined whether other missense polymorphisms in folate-regulating enzymes, in concert with MTHFR, influence negative symptoms in schizophrenia, and whether total risk allele load interacts with serum folate status to further stratify negative symptom risk. Medicated outpatients with schizophrenia (n = 219), all of European...

  13. Random transposon mutagenesis of the Saccharopolyspora erythraea genome reveals additional genes influencing erythromycin biosynthesis

    Science.gov (United States)

    Fedashchin, Andrij; Cernota, William H.; Gonzalez, Melissa C.; Leach, Benjamin I.; Kwan, Noelle; Wesley, Roy K.; Weber, J. Mark

    2015-01-01

    A single cycle of strain improvement was performed in Saccharopolyspora erythraea mutB and 15 genotypes influencing erythromycin production were found. Genotypes generated by transposon mutagenesis appeared in the screen at a frequency of ∼3%. Mutations affecting central metabolism and regulatory genes were found, as well as hydrolases, peptidases, glycosyl transferases and unknown genes. Only one mutant retained high erythromycin production when scaled-up from micro-agar plug fermentations to shake flasks. This mutant had a knockout of the cwh1 gene (SACE_1598), encoding a cell-wall-associated hydrolase. The cwh1 knockout produced visible growth and morphological defects on solid medium. This study demonstrated that random transposon mutagenesis uncovers strain improvement-related genes potentially useful for strain engineering. PMID:26468041

  14. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    Directory of Open Access Journals (Sweden)

    Stallcup Michael R

    2009-01-01

    Full Text Available Abstract Background Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. Methods We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95: African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. Results We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants. We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26. A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other

  15. Screening and association testing of common coding variation in steroid hormone receptor co-activator and co-repressor genes in relation to breast cancer risk: the Multiethnic Cohort

    International Nuclear Information System (INIS)

    Haiman, Christopher A; Stallcup, Michael R; Greene, Geoffrey L; Press, Michael F; Garcia, Rachel R; Hsu, Chris; Xia, Lucy; Ha, Helen; Sheng, Xin; Le Marchand, Loic; Kolonel, Laurence N; Henderson, Brian E

    2009-01-01

    Only a limited number of studies have performed comprehensive investigations of coding variation in relation to breast cancer risk. Given the established role of estrogens in breast cancer, we hypothesized that coding variation in steroid receptor coactivator and corepressor genes may alter inter-individual response to estrogen and serve as markers of breast cancer risk. We sequenced the coding exons of 17 genes (EP300, CCND1, NME1, NCOA1, NCOA2, NCOA3, SMARCA4, SMARCA2, CARM1, FOXA1, MPG, NCOR1, NCOR2, CALCOCO1, PRMT1, PPARBP and CREBBP) suggested to influence transcriptional activation by steroid hormone receptors in a multiethnic panel of women with advanced breast cancer (n = 95): African Americans, Latinos, Japanese, Native Hawaiians and European Americans. Association testing of validated coding variants was conducted in a breast cancer case-control study (1,612 invasive cases and 1,961 controls) nested in the Multiethnic Cohort. We used logistic regression to estimate odds ratios for allelic effects in ethnic-pooled analyses as well as in subgroups defined by disease stage and steroid hormone receptor status. We also investigated effect modification by established breast cancer risk factors that are associated with steroid hormone exposure. We identified 45 coding variants with frequencies ≥ 1% in any one ethnic group (43 non-synonymous variants). We observed nominally significant positive associations with two coding variants in ethnic-pooled analyses (NCOR2: His52Arg, OR = 1.79; 95% CI, 1.05–3.05; CALCOCO1: Arg12His, OR = 2.29; 95% CI, 1.00–5.26). A small number of variants were associated with risk in disease subgroup analyses and we observed no strong evidence of effect modification by breast cancer risk factors. Based on the large number of statistical tests conducted in this study, the nominally significant associations that we observed may be due to chance, and will need to be confirmed in other studies. Our findings suggest that common coding

  16. Genetic Variation in Functional Traits Influences Arthropod Community Composition in Aspen (Populus tremula L.)

    Science.gov (United States)

    Robinson, Kathryn M.; Ingvarsson, Pär K.; Jansson, Stefan; Albrectsen, Benedicte R.

    2012-01-01

    We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp) collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores. PMID:22662190

  17. Genetic variation in functional traits influences arthropod community composition in aspen (Populus tremula L..

    Directory of Open Access Journals (Sweden)

    Kathryn M Robinson

    Full Text Available We conducted a study of natural variation in functional leaf traits and herbivory in 116 clones of European aspen, Populus tremula L., the Swedish Aspen (SwAsp collection, originating from ten degrees of latitude across Sweden and grown in a common garden. In surveys of phytophagous arthropods over two years, we found the aspen canopy supports nearly 100 morphospecies. We identified significant broad-sense heritability of plant functional traits, basic plant defence chemistry, and arthropod community traits. The majority of arthropods were specialists, those coevolved with P. tremula to tolerate and even utilize leaf defence compounds. Arthropod abundance and richness were more closely related to plant growth rates than general chemical defences and relationships were identified between the arthropod community and stem growth, leaf and petiole morphology, anthocyanins, and condensed tannins. Heritable genetic variation in plant traits in young aspen was found to structure arthropod community; however no single trait drives the preferences of arthropod folivores among young aspen genotypes. The influence of natural variation in plant traits on the arthropod community indicates the importance of maintaining genetic variation in wild trees as keystone species for biodiversity. It further suggests that aspen can be a resource for the study of mechanisms of natural resistance to herbivores.

  18. Patient-specific factors influence somatic variation patterns in von Hippel?Lindau disease renal tumours

    OpenAIRE

    Fei, Suzanne S.; Mitchell, Asia D.; Heskett, Michael B.; Vocke, Cathy D.; Ricketts, Christopher J.; Peto, Myron; Wang, Nicholas J.; S?nmez, Kemal; Linehan, W. Marston; Spellman, Paul T.

    2016-01-01

    Cancer development is presumed to be an evolutionary process that is influenced by genetic background and environment. In laboratory animals, genetics and environment are variables that can largely be held constant. In humans, it is possible to compare independent tumours that have developed in the same patient, effectively constraining genetic and environmental variation and leaving only stochastic processes. Patients affected with von Hippel?Lindau disease are at risk of developing multiple...

  19. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  20. Genetic variation in the HSD17B1 gene and risk of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Peter Kraft

    2005-11-01

    Full Text Available Steroid hormones are believed to play an important role in prostate carcinogenesis, but epidemiological evidence linking prostate cancer and steroid hormone genes has been inconclusive, in part due to small sample sizes or incomplete characterization of genetic variation at the locus of interest. Here we report on the results of a comprehensive study of the association between HSD17B1 and prostate cancer by the Breast and Prostate Cancer Cohort Consortium, a large collaborative study. HSD17B1 encodes 17beta-hydroxysteroid dehydrogenase 1, an enzyme that converts dihydroepiandrosterone to the testosterone precursor Delta5-androsterone-3beta,17beta-diol and converts estrone to estradiol. The Breast and Prostate Cancer Cohort Consortium researchers systematically characterized variation in HSD17B1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nucleotide polymorphisms (htSNPs that efficiently predict common variants in U.S. and European whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs in 8,290 prostate cancer cases and 9,367 study-, age-, and ethnicity-matched controls. We found no evidence that HSD17B1 htSNPs (including the nonsynonymous coding SNP S312G or htSNP haplotypes were associated with risk of prostate cancer or tumor stage in the pooled multiethnic sample or in U.S. and European whites. Analyses stratified by age, body mass index, and family history of disease found no subgroup-specific associations between these HSD17B1 htSNPs and prostate cancer. We found significant evidence of heterogeneity in associations between HSD17B1 haplotypes and prostate cancer across ethnicity: one haplotype had a significant (p < 0.002 inverse association with risk of prostate cancer in Latinos and Japanese Americans but showed no evidence of association in African Americans, Native Hawaiians, or whites. However, the smaller numbers of Latinos and Japanese Americans in this study makes

  1. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    Science.gov (United States)

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  2. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2013-01-01

    Full Text Available Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses. Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature and environmental (nurture factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  3. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Science.gov (United States)

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission. PMID:23343982

  4. [Influence of interleukin-1 beta gene polymorphism and childhood maltreatment on antidepressant treatment].

    Science.gov (United States)

    Chen, Ying; Zhang, Zhijun; Xu, Zhi; Pu, Mengjia; Geng, Leiyu

    2015-12-01

    To explore the influence of interleukin-1 beta (IL1B) gene polymorphism and childhood maltreatment on antidepressant treatment. Two hundred and four patients with major depressive disorder (MDD) have received treatment with single antidepressant drugs and were followed up for 8 weeks. Hamilton depression scale-17 (HAMD-17) was used to evaluate the severity of depressive symptoms and therapeutic effect. Childhood maltreatment was assessed using Childhood Trauma Questionnaire, a 28-item Short Form (CTQ-SF). Single nucleotide polymorphism (SNP) of the IL1B gene was determined using a SNaPshot method. Correlation of rs16944 gene polymorphism with response to treatment was analyzed using Unphased 3.0.13 software. The main and interactive effects of SNP and childhood maltreatment on the antidepressant treatment were analyzed using Logistic regression analysis. No significant difference of gender, age, year of education, family history, episode time, and antidepressant agents was detected between the remitters and non-remitters. Association analysis has found that the SNP rs16944 in the IL1B AA genotype carriers antidepressant response was poorer (χ2=3.931, P=0.047). No significant difference was detected in the CTQ scores between the two groups. Genetic and environmental interaction analysis has demonstrated a significant correlation between rs16944 AA genotype and childhood maltreatment and poorer response to antidepressant treatment. The SNP rs16944 in the IL1B gene and its interaction with childhood maltreatment may influence the effect of antidepressant treatment for patients with MDD.

  5. Lead in Chinese villager house dust: Geographical variation and influencing factors

    International Nuclear Information System (INIS)

    Bi, Xiangyang; Liu, Jinling; Han, Zhixuan; Yang, Wenlin

    2015-01-01

    House dust has been recognized as an important contributor to Pb exposure of children. Here we conducted a comprehensive study to investigate geographical variation of Pb in Chinese villager house dust. The influences of outdoor soil Pb concentrations, dates of construction, house decoration materials, heating types, and site specific pollution on Pb concentrations in house dust were evaluated. The concentrations of Pb in 477 house dust samples collected from twenty eight areas throughout China varied from 12 to 2510 mg/kg, with a median concentration of 42 mg/kg. The median Pb concentrations in different geographical areas ranged from 16 (Zhangjiakou, Hebei) to 195 mg/kg (Loudi, Hunan). No correlations were found between the house dust Pb concentrations and the age of houses, as well as house decoration materials. Whereas outdoor soil, coal combustion, and site specific pollution may be potential Pb sources. Principal component analysis (PCA) confirmed that elemental compositions of the house dust were controlled by both anthropogenic and geogenic sources. Using scanning electron microscopy (SEM), the Pb bearing particles in the house dust were also studied. - Highlights: • Geographical variation in house dust Pb concentrations were observed. • Dust Pb concentrations were not associated with house age and decoration materials. • Soil, coal combustion, and site specific pollution were potential Pb sources. • Pb bearing particles were identified by SEM-EDX. - The variations of Pb in Chinese villager house dust were controlled by outdoor soil, coal combustion, and site specific pollution sources.

  6. Ancestral Variations of the PCDHG Gene Cluster Predispose to Dyslexia in a Multiplex Family

    Directory of Open Access Journals (Sweden)

    Teesta Naskar

    2018-02-01

    Full Text Available Dyslexia is a heritable neurodevelopmental disorder characterized by difficulties in reading and writing. In this study, we describe the identification of a set of 17 polymorphisms located across 1.9 Mb region on chromosome 5q31.3, encompassing genes of the PCDHG cluster, TAF7, PCDH1 and ARHGAP26, dominantly inherited with dyslexia in a multi-incident family. Strikingly, the non-risk form of seven variations of the PCDHG cluster, are preponderant in the human lineage, while risk alleles are ancestral and conserved across Neanderthals to non-human primates. Four of these seven ancestral variations (c.460A > C [p.Ile154Leu], c.541G > A [p.Ala181Thr], c.2036G > C [p.Arg679Pro] and c.2059A > G [p.Lys687Glu] result in amino acid alterations. p.Ile154Leu and p.Ala181Thr are present at EC2: EC3 interacting interface of γA3-PCDH and γA4-PCDH respectively might affect trans-homophilic interaction and hence neuronal connectivity. p.Arg679Pro and p.Lys687Glu are present within the linker region connecting trans-membrane to extracellular domain. Sequence analysis indicated the importance of p.Ile154, p.Arg679 and p.Lys687 in maintaining class specificity. Thus the observed association of PCDHG genes encoding neural adhesion proteins reinforces the hypothesis of aberrant neuronal connectivity in the pathophysiology of dyslexia. Additionally, the striking conservation of the identified variants indicates a role of PCDHG in the evolution of highly specialized cognitive skills critical to reading.

  7. Identifying the factors influencing practice variation in thrombosis medicine: A qualitative content analysis of published practice-pattern surveys.

    Science.gov (United States)

    Skeith, Leslie; Gonsalves, Carol

    2017-11-01

    Practice variation, the differences in clinical management between physicians, is one reason why patient outcomes may differ. Identifying factors that contribute to practice variation in areas of clinical uncertainty or equipoise may have implications for understanding and improving patient care. To discern what factors may influence practice variation, we completed a qualitative content analysis of all practice-pattern surveys in thrombosis medicine in the last 10years. Out of 2117 articles screened using a systematic search strategy, 33 practice-pattern surveys met eligibility criteria. Themes were identified using constant comparative analysis of qualitative data. Practice variation was noted in all 33 practice-pattern surveys. Contributing factors to variation included lack of available evidence, lack of clear and specific guideline recommendations, past experience, patient context, institutional culture and the perceived risk and benefit of a particular treatment. Additional themes highlight the value placed on expertise in challenging clinical scenarios, the complexity of practice variation and the value placed on minimizing practice variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification of key pathways and genes influencing prognosis in bladder urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Ning X

    2017-03-01

    enrichment of the cyclic guanosine monophosphate-protein kinase G signaling pathway, angiogenesis, cell proliferation, and differentiation, which are associated with tumor angiogenesis and cancer prognosis.Conclusion: Genes and pathways related to cell cycle and DNA damage and repair may play a crucial role in BUC pathogenesis, whereas those pertaining to tumor angiogenesis may be key factors in influencing BUC prognosis, especially in advanced disease stages. Keywords: bioinformatics analytical tools, bladder urothelial carcinoma, microarray, differentially expressed gene, prognosis 

  9. Genetic variation in the Cytb gene of human cerebral Taenia solium cysticerci recovered from clinically and radiologically heterogeneous patients with neurocysticercosis

    Directory of Open Access Journals (Sweden)

    Hector Palafox-Fonseca

    2013-11-01

    Full Text Available Neurocysticercosis (NC is a clinically and radiologically heterogeneous parasitic disease caused by the establishment of larval Taenia solium in the human central nervous system. Host and/or parasite variations may be related to this observed heterogeneity. Genetic differences between pig and human-derived T. solium cysticerci have been reported previously. In this study, 28 cysticerci were surgically removed from 12 human NC patients, the mitochondrial gene that encodes cytochrome b was amplified from the cysticerci and genetic variations that may be related to NC heterogeneity were characterised. Nine different haplotypes (Ht, which were clustered in four haplogroups (Hg, were identified. Hg 3 and 4 exhibited a tendency to associate with age and gender, respectively. However, no significant associations were found between NC heterogeneity and the different T. solium cysticerci Ht or Hg. Parasite variants obtained from patients with similar NC clinical or radiological features were genetically closer than those found in groups of patients with a different NC profile when using the Mantel test. Overall, this study establishes the presence of genetic differences in the Cytb gene of T. solium isolated from human cysticerci and suggests that parasite variation could contribute to NC heterogeneity.

  10. Influence of sublethal concentrations of common disinfectants on expression of virulence genes in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Larsen, M. H.; Gram, Lone

    2010-01-01

    Listeria monocytogenes is a food-borne human pathogen that causes listeriosis, a relatively rare infection with a high fatality rate. The regulation of virulence gene expression is influenced by several environmental factors, and the aim of the present study was to determine how disinfectants use......, such as antibiotic resistance....... by Northern blot analysis. Eleven disinfectants representing four different groups of active components were evaluated in this study. Disinfectants with the same active ingredients had a similar effect on gene expression. Peroxy and chlorine compounds reduced the expression of the virulence genes...

  11. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-03-01

    Background: Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multi-gene family. Although the function of the members of the PE_PGRS multi-gene family is not yet known, it is hypothesized that the PE_PGRS genes may be associated with genetic variability. Material and methods: Whole genome sequencing analysis was performed on (n= 37) extensively drug resistant (XDR) MTB strains from Pakistan which included Central Asian (n= 23), East African Indian (n= 2), X3 (n= 1), T group (n= 3) and Orphan (n= 8) MTB strains. Results: By analyzing 42 PE_PGRS genes, 111 SNPs were identified, of which 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in the PE_PGRS genes were as follows: 6, 9, 10 and 55 present in each of the CAS, EAI, Orphan, T1 and X3 XDR MTB strains studied. Deletions in PE_PGRS genes: 19, 21 and 23 were observed in 7 (35.0%) CAS1 and 3 (37.5%) in Orphan XDR MTB strains, while deletions in the PE_PGRS genes: 49 and 50 were observed in 36 (95.0%) CAS1 and all CAS, CAS2 and Orphan XDR MTB strains. An insertion in PE_PGRS6 gene was observed in all CAS, EAI3 and Orphan, while insertions in the PE_PGRS genes 19 and 33 were observed in 19 (95%) CAS1 and all CAS, CAS2, EAI3 and Orphan XDR MTB strains. Conclusion: Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs, Insertions and Deletions in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  12. Variations of the candidate SEZ6L2 gene on Chromosome 16p11.2 in patients with autism spectrum disorders and in human populations.

    Directory of Open Access Journals (Sweden)

    Marina Konyukh

    Full Text Available BACKGROUND: Autism spectrum disorders (ASD are a group of severe childhood neurodevelopmental disorders with still unknown etiology. One of the most frequently reported associations is the presence of recurrent de novo or inherited microdeletions and microduplications on chromosome 16p11.2. The analysis of rare variations of 8 candidate genes among the 27 genes located in this region suggested SEZ6L2 as a compelling candidate. METHODOLOGY/PRINCIPAL FINDINGS: We further explored the role of SEZ6L2 variations by screening its coding part in a group of 452 individuals, including 170 patients with ASD and 282 individuals from different ethnic backgrounds of the Human Genome Diversity Panel (HGDP, complementing the previously reported screening. We detected 7 previously unidentified non-synonymous variations of SEZ6L2 in ASD patients. We also identified 6 non-synonymous variations present only in HGDP. When we merged our results with the previously published, no enrichment of non-synonymous variation in SEZ6L2 was observed in the ASD group compared with controls. CONCLUSIONS/SIGNIFICANCE: Our results provide an extensive ascertainment of the genetic variability of SEZ6L2 in human populations and do not support a major role for SEZ6L2 sequence variations in the susceptibility to ASD.

  13. To What Extent Does DNA Methylation Affect Phenotypic Variation in Cattle?

    Directory of Open Access Journals (Sweden)

    Stephanie McKAY

    2015-07-01

    Full Text Available DNA methylation is an environmentally influenced epigenetic modification that regulates gene transcription and has the potential to influence variation in economically important phenotypes in agricultural species. We have utilized a novel approach to evaluate the relationship between genetic and epigenetic variation and downstream phenotypes. To begin with, we have integrated RNA-Seq and methyl binding domain sequencing (MBD-Seq data in order to determine the extent to which DNA methylation affects phenotypic variation in economically important traits of cattle. MBD-Seq is a technique that involves the sample enrichment of methylated genomic regions followed by their next-generation sequencing. This study utilized Illumina next generation sequencing technology to perform both RNA-Seq and MBD-Seq. NextGENe software (SoftGenetics, State College, PA was employed for quality trimming and aligning the sequence reads to the UMD3.1 bovine reference genome, generating counts of matched reads and methylated peak identification. Subsequently, we identified and quantified genome-wide methylated regions and characterized the extent of differential methylation and differential expression between two groups of animals with extreme phenotypes. The program edgeR from the R software package (version 3.0.1 was employed for identifying differentially methylated regions and regions of differential expression. Finally, Partial Correlation with Information Theory (PCIT was performed to identify transcripts and methylation events that exhibit differential hubbing. A differential hub is defined as a gene network hub that is more highly connected in one treatment group than the other. This analysis produced every possible pair-wise interaction that subsequently enabled us to look at network interactions of how methylation affects expression. (co-expression, co-methylation, methylation x expression. Genomic regions of interest derived from this analysis were then aligned

  14. Variation in the autism candidate gene GABRB3 modulates tactile sensitivity in typically developing children

    Directory of Open Access Journals (Sweden)

    Tavassoli Teresa

    2012-07-01

    Full Text Available Abstract Background Autism spectrum conditions have a strong genetic component. Atypical sensory sensitivities are one of the core but neglected features of autism spectrum conditions. GABRB3 is a well-characterised candidate gene for autism spectrum conditions. In mice, heterozygous Gabrb3 deletion is associated with increased tactile sensitivity. However, no study has examined if tactile sensitivity is associated with GABRB3 genetic variation in humans. To test this, we conducted two pilot genetic association studies in the general population, analysing two phenotypic measures of tactile sensitivity (a parent-report and a behavioural measure for association with 43 SNPs in GABRB3. Findings Across both tactile sensitivity measures, three SNPs (rs11636966, rs8023959 and rs2162241 were nominally associated with both phenotypes, providing a measure of internal validation. Parent-report scores were nominally associated with six SNPs (P Conclusions This is the first human study to show an association between GABRB3 variation and tactile sensitivity. This provides support for the evidence from animal models implicating the role of GABRB3 variation in the atypical sensory sensitivity in autism spectrum conditions. Future research is underway to directly test this association in cases of autism spectrum conditions.

  15. Influence of obesity gene in quantitative traits of swine

    Directory of Open Access Journals (Sweden)

    Graciele Segantini do Nascimento Borges

    2002-01-01

    -grandparental generation, when the male grandparent is replaced by the great-grandparental generation. The obesity gene did not influence any of the carcass evaluation data from crossbred animals. In pure swine, where the only genotypes were TT and TC, it greatly influenced shoulder weight and meat texture, with the highest average in heterozygotes (shoulder: 4.07 vs. 3.93; texture: 2.62 vs. 1.82, suggesting better carcass quality and worse meat quality than in homozygotes. The obesity gene did not influence any trait in the expected progeny difference (EPD study.

  16. NDVI-Based analysis on the influence of human activities on vegetation variation on Hainan Island

    Science.gov (United States)

    Luo, Hongxia; Dai, Shengpei; Xie, Zhenghui; Fang, Jihua

    2018-02-01

    Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index (NDVI) dataset, we analyzed the predicted NDVI values variation and the influence of human activities on vegetation on Hainan Island during 2001-2015. We investigated the roles of human activities in vegetation variation, particularly from 2002 when implemented the Grain-for-Greenprogram on Hainan Island. The trend analysis, linear regression model and residual analysis were used to analyze the data. The results of the study showed that (1) The predicted vegetation on Hainan Island showed an general upward trend with a linear growth rate of 0.0025/10y (phuman activities. (3) In general, human activities had played a positive role in the vegetation increase on Hainan Island, and the residual NDVI trend of this region showed positive outcomes for vegetation variation after implementing ecological engineering projects. However, it indicated a growing risk of vegetation degradation in the coastal region of Hainan Island as a result of rapid urbanization, land reclamation.

  17. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  18. Influence of variation of etching conditions on the sensitivity of PADC detectors with a new evaluation method

    International Nuclear Information System (INIS)

    Fiechtner-Scharrer, A.; Mayer, S.; Boschung, M.; Whitelaw, A.

    2011-01-01

    At the Paul Scherrer Institut, a personal neutron dosimetry system based on chemically etched poly allyl diglycol carbonate (PADC) detectors and an automatic track counting (Autoscan 60) for neutron dose evaluations has been in routine use since 1998. Today, the hardware and the software of the Autoscan 60 are out of date, no spare components are available anymore and more sophisticated image-analysis systems are already developed. Therefore, a new evaluation system, the 'TASLIMAGE', was tested thoroughly in 2009 for linearity, reproducibility, influence of etching conditions and so forth, with the intention of replacing the Autoscan 60 in routine evaluations. The TASLIMAGE system is based on a microscope (high-quality Nikon optics) and an ultra-fast three-axis motorised control for scanning the detectors. In this paper, the TASLIMAGE system and its possibilities for neutron dose calculation are explained in more detail and the study of the influence of the variation of etching conditions on the sensitivity and background of the PADC detectors is described. The etching temperature and etching duration were varied, which showed that the etching conditions do not have a significant influence on the results of non-irradiated detectors. However, the sensitivity of irradiated detectors decreases by 5 % per 1 deg. C when increasing the etching temperature. For the variation of the etching duration, the influence on the sensitivity of irradiated detectors is less pronounced. (authors)

  19. In silico detection of sequence variations modifying transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Malin C Andersen

    2008-01-01

    Full Text Available Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers. The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation.

  20. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    Science.gov (United States)

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  1. PPARGC1A sequence variation and cardiovascular risk-factor levels

    DEFF Research Database (Denmark)

    Brito, E C; Vimaleswaran, K S; Brage, S

    2009-01-01

    .005; rs13117172, p = 0.008) and fasting glucose concentrations (rs7657071, p = 0.002). None remained significant after correcting for the number of statistical comparisons. We proceeded by testing for gene x physical activity interactions for the polymorphisms that showed nominal evidence of association...... in the main effect models. None of these tests was statistically significant. CONCLUSIONS/INTERPRETATION: Variants at PPARGC1A may influence several metabolic traits in this European paediatric cohort. However, variation at PPARGC1A is unlikely to have a major impact on cardiovascular or metabolic health...

  2. Reprogramming LCLs to iPSCs Results in Recovery of Donor-Specific Gene Expression Signature.

    Directory of Open Access Journals (Sweden)

    Samantha M Thomas

    2015-05-01

    Full Text Available Renewable in vitro cell cultures, such as lymphoblastoid cell lines (LCLs, have facilitated studies that contributed to our understanding of genetic influence on human traits. However, the degree to which cell lines faithfully maintain differences in donor-specific phenotypes is still debated. We have previously reported that standard cell line maintenance practice results in a loss of donor-specific gene expression signatures in LCLs. An alternative to the LCL model is the induced pluripotent stem cell (iPSC system, which carries the potential to model tissue-specific physiology through the use of differentiation protocols. Still, existing LCL banks represent an important source of starting material for iPSC generation, and it is possible that the disruptions in gene regulation associated with long-term LCL maintenance could persist through the reprogramming process. To address this concern, we studied the effect of reprogramming mature LCL cultures from six unrelated donors to iPSCs on the ensuing gene expression patterns within and between individuals. We show that the reprogramming process results in a recovery of donor-specific gene regulatory signatures, increasing the number of genes with a detectable donor effect by an order of magnitude. The proportion of variation in gene expression statistically attributed to donor increases from 6.9% in LCLs to 24.5% in iPSCs (P < 10-15. Since environmental contributions are unlikely to be a source of individual variation in our system of highly passaged cultured cell lines, our observations suggest that the effect of genotype on gene regulation is more pronounced in iPSCs than in LCLs. Our findings indicate that iPSCs can be a powerful model system for studies of phenotypic variation across individuals in general, and the genetic association with variation in gene regulation in particular. We further conclude that LCLs are an appropriate starting material for iPSC generation.

  3. A Study of Korean EFL Learners' Apology Speech Acts: Strategy and Pragmatic Transfer Influenced by Sociolinguistic Variations.

    Science.gov (United States)

    Yang, Tae-Kyoung

    2002-01-01

    Examines how apology speech act strategies frequently used in daily life are transferred in the framework of interlanguage pragmatics and sociolinguistics and how they are influenced by sociolinguistic variations such as social status, social distance, severity of offense, and formal or private relationships. (Author/VWL)

  4. Natural biological variation of white matter microstructure is accentuated in Huntington's disease.

    Science.gov (United States)

    Gregory, Sarah; Crawford, Helen; Seunarine, Kiran; Leavitt, Blair; Durr, Alexandra; Roos, Raymund A C; Scahill, Rachael I; Tabrizi, Sarah J; Rees, Geraint; Langbehn, Douglas; Orth, Michael

    2018-04-22

    Huntington's disease (HD) is a monogenic neurodegenerative disorder caused by a CAG-repeat expansion in the Huntingtin gene. Presence of this expansion signifies certainty of disease onset, but only partly explains age at which onset occurs. Genome-wide association studies have shown that naturally occurring genetic variability influences HD pathogenesis and disease onset. Investigating the influence of biological traits in the normal population, such as variability in white matter properties, on HD pathogenesis could provide a complementary approach to understanding disease modification. We have previously shown that while white matter diffusivity patterns in the left sensorimotor network were similar in controls and HD gene-carriers, they were more extreme in the HD group. We hypothesized that the influence of natural variation in diffusivity on effects of HD pathogenesis on white matter is not limited to the sensorimotor network but extends to cognitive, limbic, and visual networks. Using tractography, we investigated 32 bilateral pathways within HD-related networks, including motor, cognitive, and limbic, and examined diffusivity metrics using principal components analysis. We identified three independent patterns of diffusivity common to controls and HD gene-carriers that predicted HD status. The first pattern involved almost all tracts, the second was limited to sensorimotor tracts, and the third encompassed cognitive network tracts. Each diffusivity pattern was associated with network specific performance. The consistency in diffusivity patterns across both groups coupled with their association with disease status and task performance indicates that naturally-occurring patterns of diffusivity can become accentuated in the presence of the HD gene mutation to influence clinical brain function. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Normally occurring environmental and behavioral influences on gene activity: from central dogma to probabilistic epigenesis.

    Science.gov (United States)

    Gottlieb, G

    1998-10-01

    The central dogma of molecular biology holds that "information" flows from the genes to the structure of the proteins that the genes bring about through the formula DNA-->RNA-->Protein. In this view, a set of master genes activates the DNA necessary to produce the appropriate proteins that the organism needs during development. In contrast to this view, probabilistic epigenesis holds that necessarily there are signals from the internal and external environment that activate DNA to produce the appropriate proteins. To support this view, a substantial body of evidence is reviewed showing that external environmental influences on gene activation are normally occurring events in a large variety of organisms, including humans. This demonstrates how genes and environments work together to produce functional organisms, thus extending the author's model of probabilistic epigenesis.

  6. Endostatin gene variation and protein levels in breast cancer susceptibility and severity

    International Nuclear Information System (INIS)

    Balasubramanian, Sabapathy P; Cross, Simon S; Globe, Jenny; Cox, Angela; Brown, Nicola J; Reed, Malcolm W

    2007-01-01

    Endostatin is a potent endogenous anti-angiogenic agent which inhibits tumour growth. A non-synonymous coding polymorphism in the Endostatin gene is thought to affect Endostatin activity. We aimed to determine the role of this Endostatin polymorphism in breast cancer pathogenesis and any influence on serum Endostatin levels in healthy volunteers. Endostatin protein expression on a breast cancer micro array was also studied to determine any relationship to genotype and to breast cancer prognosis. The 4349G > A (coding non-synonymous) polymorphism in exon 42 of the Endostatin gene was genotyped in approximately 846 breast cancer cases and 707 appropriate controls. In a separate healthy cohort of 57 individuals, in addition to genotyping, serum Endostatin levels were measured using enzyme linked immunosorbant assay (ELISA). A semi-quantitative assessment of Endostatin protein expression on immunostained tissue micro arrays (TMA) constructed from breast cancer samples of patients with genotype data was performed. The rare allele (A) was significantly associated with invasive breast cancers compared to non-invasive tumours (p = 0.03), but there was no association with tumour grade, nodal status, vascular invasion or overall survival. There was no association with breast cancer susceptibility. Serum Endostatin levels and Endostatin protein expression on the tissue micro array were not associated with genotype. The Endostatin 4349A allele is associated with invasive breast cancer. The Endostatin 4349G > A polymorphism however does not appear to be associated with breast cancer susceptibility or severity in invasive disease. By studying circulating levels and tumour Endostatin protein expression, we have shown that any influence of this polymorphism is unlikely to be through an effect on the levels of protein produced

  7. Allelic variations of a light harvesting chlorophyll a/b-binding protein gene (Lhcb1 associated with agronomic traits in barley.

    Directory of Open Access Journals (Sweden)

    Yanshi Xia

    Full Text Available Light-harvesting chlorophyll a/b-binding protein (LHCP is one of the most abundant chloroplast proteins in plants. Its main function is to collect and transfer light energy to photosynthetic reaction centers. However, the roles of different LHCPs in light-harvesting antenna systems remain obscure. Exploration of nucleotide variation in the genes encoding LHCP can facilitate a better understanding of the functions of LHCP. In this study, nucleotide variations in Lhcb1, a LHCP gene in barley, were investigated across 292 barley accessions collected from 35 different countries using EcoTILLING technology, a variation of the Targeting Induced Local Lesions In Genomes (TILLING. A total of 23 nucleotide variations were detected including three insert/deletions (indels and 20 single nucleotide polymorphisms (SNPs. Among them, 17 SNPs were in the coding region with nine missense changes. Two SNPs with missense changes are predicted to be deleterious to protein function. Seventeen SNP formed 31 distinguishable haplotypes in the barley collection. The levels of nucleotide diversity in the Lhcb1 locus differed markedly with geographic origins and species of accessions. The accessions from Middle East Asia exhibited the highest nucleotide and haplotype diversity. H. spontaneum showed greater nucleotide diversity than H. vulgare. Five SNPs in Lhcb1 were significantly associated with at least one of the six agronomic traits evaluated, namely plant height, spike length, number of grains per spike, thousand grain weight, flag leaf area and leaf color, and these SNPs may be used as potential markers for improvement of these barley traits.

  8. Contribution of Myostatin gene polymorphisms to normal variation in lean mass, fat mass and peak BMD in Chinese male offspring

    Institute of Scientific and Technical Information of China (English)

    Hua YUE; Miao LI; Yu-juan LIU; Song-hua WU; Zhen-lin ZHANG; Jin-wei HE; Hao ZHANG; Chun WANG; Wei-wei HU; Jie-mei GU; Yao-hua KE; Wen-zhen FU; Yun-qiu HU

    2012-01-01

    Myostatin gene is a member of the transforming growth factor-β (TGF-β) family that negatively regulates skeletal muscle growth.Genetic polymorphisms in Myostatin were found to be associated with the peak bone mineral density (BMD) in Chinese women.The purpose of this study was to investigate whether Myostatin played a role in the normal variation in peak BMD,lean mass (LM),and fat mass (FM) of Chinese men.Methods:Four hundred male-offspring nuclear families of Chinese Han ethnic group were recruited.Anthropometric measurements,includingthe peak BMD,body LM and FM were measured using dual-energy X-ray absorptiometry (DXA).The single nucleotide polymorphisms (SNPs) studied were tag-SNPs selected by sequencing.Both rs2293284 and +2278G>A were genotyped using TaqMan assay,and rs3791783 was genotyped with PCR-restriction fragment length polymorphism (RFLP) analysis.The associations of the SNPs with anthropometfic variations were analyzed using the quantitative transmission disequilibrium test (QTDT).Results:Using QTDT to detect within-family associations,neither single SNP nor haplotype was found to be associated with peak BMD at any bone site.However,rs3791783 was found to be significantly associated with fat mass of the trunk (P<0.001).Moreover,for within-family associations,haplotypes AGG,AAA,and TGG were found to be significantly associated with the trunk fat mass (all P<0.001).Conclusion:Our results suggest that genetic variation within Myostatin may play a role in regulating the variation in fat mass in Chinese males.Additionally,the Myostatin gene may be a candidate that determines body fat mass in Chinese men.

  9. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  10. Temporal and spatial variation in Hg accumulation in zebra mussels (Dreissena polymorpha): possible influences of DOC and diet.

    Science.gov (United States)

    Kraemer, Lisa D; Evans, Douglas; Dillon, Peter J

    2013-05-01

    Zebra mussels (Dreissena polymorpha) are filter feeders located near the base of the foodweb and these animals are able to utilize a variety of carbon sources that may also vary seasonally. We conducted both a spatial and a temporal study in order to test the hypotheses: (1) dissolved organic carbon (DOC) concentrations influence Hg accumulation in zebra mussels sampled from a series of lakes and (2) seasonal variations in diet influence Hg accumulation. In the spatial study, we found a significant negative relationship between Hg concentrations and DOC concentrations, suggesting an influence of DOC on Hg bioaccumulation. In the temporal study, we used stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) as ecological tools to provide a temporally integrated description of the feeding ecology of zebra mussels. Both δ(15)N and δ(13)C varied seasonally in a similar manner: more depleted values occurred in the summer and more enriched values occurred in the fall. Mercury concentrations also varied significantly over the year, with highest concentrations occurring in the summer, followed by a progressive decrease in concentrations into the fall. The C/N ratio of zebra mussels also varied significantly over the year with the lowest values occurring mid-summer and then values increased in the fall and winter, suggesting that there was significant variation in lipid stores. These results indicate that in addition to any effect of seasonal dietary changes, seasonal variation in energy stores also appeared to be related to Hg levels in the zebra mussels. Collectively results from this study suggest that DOC concentrations, seasonal variation in diet and seasonal depletion of energy stores are all important variables to consider when understanding Hg accumulation in zebra mussels. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Variation in soil aluminium tolerance genes is associated with local adaptation to soils at the Park Grass Experiment.

    Science.gov (United States)

    Gould, Billie; McCouch, Susan; Geber, Monica

    2014-12-01

    Studies of the wild grass Anthoxanthum odoratum at the long-term Park Grass Experiment (PGE, Harpenden, UK) document a well-known example of rapid plant evolution in response to environmental change. Repeated fertilizer applications have acidified the soil in some experimental plots over the past 150+ years, and Anthoxanthum subpopulations have quickly become locally adapted. Early reciprocal transplants showed subpopulation differentiation specifically in response to soil aluminium (Al) toxicity across the experiment, even at small (30 m) spatial scales. Almost 40 years after its original measurement, we reassessed the degree of local adaptation to soil Al at the PGE using updated phenotyping methods and identified genes with variation linked to the tolerance trait. Root growth assays show that plants are locally adapted to soil Al at both the seedling and adult growth stages, but to a smaller extent than previously inferred. Among a large suite of candidate loci that were previously shown to have Al-sensitive expression differences between sensitive and tolerant plants, three loci contained SNPs that are associated with both Al tolerance and soil acidity: an Al-sensitive malate transporter (ALMT), a tonoplast intrinsic protein (TIP) and the putative homolog of the rice cell-wall modification gene STAR1. Natural genetic variation at these loci is likely to have contributed to the recent rapid evolution at PGE. Continued study of Al tolerance variants in Anthoxanthum will allow us to test hypotheses about the nature and source of genetic variation that enables some species to adapt to soil acidification and other types of rapid environmental change. © 2014 John Wiley & Sons Ltd.

  12. Interactions between the adducin 2 gene and antihypertensive drug therapies in determining blood pressure in people with hypertension

    Directory of Open Access Journals (Sweden)

    Barkley Ruth

    2007-09-01

    Full Text Available Abstract Background As part of the NHLBI Family Blood Pressure Program, the Genetic Epidemiology Network of Arteriopathy (GENOA recruited 575 sibships (n = 1583 individuals from Rochester, MN who had at least two hypertensive siblings diagnosed before age 60. Linkage analysis identified a region on chromosome 2 that was investigated using 70 single nucleotide polymorphisms (SNPs typed in 7 positional candidate genes, including adducin 2 (ADD2. Method To investigate whether blood pressure (BP levels in these hypertensives (n = 1133 were influenced by gene-by-drug interactions, we used cross-validation statistical methods (i.e., estimating a model for predicting BP levels in one subgroup and testing it in a different subgroup. These methods greatly reduced the chance of false positive findings. Results Eight SNPs in ADD2 were significantly associated with systolic BP in untreated hypertensives (p-value Conclusion Our findings suggest that hypertension candidate gene variation may influence BP responses to specific antihypertensive drug therapies and measurement of genetic variation may assist in identifying subgroups of hypertensive patients who will benefit most from particular antihypertensive drug therapies.

  13. Network hubs buffer environmental variation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Sasha F Levy

    2008-11-01

    Full Text Available Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a

  14. Deep Sequencing of 71 Candidate Genes to Characterize Variation Associated with Alcohol Dependence.

    Science.gov (United States)

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Kumar, Gaurav; Aberg, Karolina A; Nerella, Srilaxmi; Xie, Linying; Collins, Ann L; Crowley, James J; Quackenbush, Corey R; Hilliard, Christopher E; Shabalin, Andrey A; Vrieze, Scott I; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; McGue, Matt; Maes, Hermine; Iacono, William G; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2017-04-01

    Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies. We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate. No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 -5 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 -5 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family. To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD. Copyright © 2017 by the Research Society on

  15. Exploiting natural variation in Arabidopsis

    NARCIS (Netherlands)

    Molenaar, J.A.; Keurentjes, J.J.B.; Sanchez-Serrano, J.J.; Salinas, J.

    2014-01-01

    Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of

  16. Genetic determination of human facial morphology: links between cleft-lips and normal variation.

    Science.gov (United States)

    Boehringer, Stefan; van der Lijn, Fedde; Liu, Fan; Günther, Manuel; Sinigerova, Stella; Nowak, Stefanie; Ludwig, Kerstin U; Herberz, Ruth; Klein, Stefan; Hofman, Albert; Uitterlinden, Andre G; Niessen, Wiro J; Breteler, Monique M B; van der Lugt, Aad; Würtz, Rolf P; Nöthen, Markus M; Horsthemke, Bernhard; Wieczorek, Dagmar; Mangold, Elisabeth; Kayser, Manfred

    2011-11-01

    Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and other previous studies showed distinctly differing facial distance measurements when comparing unaffected relatives of NSCL/P patients with normal controls. Here, we test the hypothesis that genetic loci involved in NSCL/P also influence normal variation in facial morphology. We tested 11 SNPs from 10 genomic regions previously showing replicated evidence of association with NSCL/P for association with normal variation of nose width and bizygomatic distance in two cohorts from Germany (N=529) and the Netherlands (N=2497). The two most significant associations found were between nose width and SNP rs1258763 near the GREM1 gene in the German cohort (P=6 × 10(-4)), and between bizygomatic distance and SNP rs987525 at 8q24.21 near the CCDC26 gene (P=0.017) in the Dutch sample. A genetic prediction model explained 2% of phenotype variation in nose width in the German and 0.5% of bizygomatic distance variation in the Dutch cohort. Although preliminary, our data provide a first link between genetic loci involved in a pathological facial trait such as NSCL/P and variation of normal facial morphology. Moreover, we present a first approach for understanding the genetic basis of human facial appearance, a highly intriguing trait with implications on clinical practice, clinical genetics, forensic intelligence, social interactions and personal identity.

  17. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study.

    Directory of Open Access Journals (Sweden)

    Alexandra C Nica

    2011-02-01

    Full Text Available While there have been studies exploring regulatory variation in one or more tissues, the complexity of tissue-specificity in multiple primary tissues is not yet well understood. We explore in depth the role of cis-regulatory variation in three human tissues: lymphoblastoid cell lines (LCL, skin, and fat. The samples (156 LCL, 160 skin, 166 fat were derived simultaneously from a subset of well-phenotyped healthy female twins of the MuTHER resource. We discover an abundance of cis-eQTLs in each tissue similar to previous estimates (858 or 4.7% of genes. In addition, we apply factor analysis (FA to remove effects of latent variables, thus more than doubling the number of our discoveries (1,822 eQTL genes. The unique study design (Matched Co-Twin Analysis--MCTA permits immediate replication of eQTLs using co-twins (93%-98% and validation of the considerable gain in eQTL discovery after FA correction. We highlight the challenges of comparing eQTLs between tissues. After verifying previous significance threshold-based estimates of tissue-specificity, we show their limitations given their dependency on statistical power. We propose that continuous estimates of the proportion of tissue-shared signals and direct comparison of the magnitude of effect on the fold change in expression are essential properties that jointly provide a biologically realistic view of tissue-specificity. Under this framework we demonstrate that 30% of eQTLs are shared among the three tissues studied, while another 29% appear exclusively tissue-specific. However, even among the shared eQTLs, a substantial proportion (10%-20% have significant differences in the magnitude of fold change between genotypic classes across tissues. Our results underline the need to account for the complexity of eQTL tissue-specificity in an effort to assess consequences of such variants for complex traits.

  18. Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531 influences the analgesic response to the short acting opioid Remifentanil in humans

    Directory of Open Access Journals (Sweden)

    Schalling Martin

    2009-07-01

    Full Text Available Abstract Background There is evidence from animal studies that serotonin (5-HT can influence the antinociceptive effects of opioids at the spinal cord level. Therefore, there could be an influence of genetic polymorphisms in the serotonin system on individual variability in response to opioid treatment of pain. The serotonin transporter (5-HTT is a key regulator of serotonin metabolism and availability and its gene harbors several known polymorphisms that are known to affect 5-HTT expression (e.g. 5-HTTLPR, rs25531. The aim of this study was to investigate if the triallelic 5-HTTLPR influences pain sensitivity or the analgesic effect of opioids in humans. 43 healthy volunteers (12 men, 31 women, mean age 26 years underwent heat pain stimulations before and after intravenous injection of Remifentanil; a rapid and potent opioid drug acting on μ-type receptors. Subjects rated their perceived pain on a visual analogue scale (VAS. All participants were genotyped for the 5-HTTLPR and the rs25531 polymorphism. We recruited by advertising, with no history of drug abuse, chronic pain or psychiatric disorders. Results At baseline, there was no difference in pain ratings for the different triallelic 5-HTTLPR genotype groups. However, the opiod drug had a differential analgesic effect depending on the triallelic 5-HTTLPR genotype. Remifentanil had a significantly better analgesic effect in individuals with a genotype coding for low 5-HTT expression (SA/SA and SA/LG as compared to those with high expression(LA/LA, p Conclusion This is the first report showing an influence of the triallelic 5-HTTLPR on pain sensitivity or the analgesic effect of opioids in humans. Previously the 5-HTTLPR s-allele has been associated with higher risk of developing chronic pain conditions but in this study we show that the genotype coding for low 5-HTT expression is associated with a better analgesic effect of an opioid. The s-allele has been associated with downregulation of

  19. Evaluation of Fanconi anaemia genes FANCA, FANCC and FANCL in cervical cancer susceptibility.

    Science.gov (United States)

    Juko-Pecirep, Ivana; Ivansson, Emma L; Gyllensten, Ulf B

    2011-08-01

    Disrupting the function of any of the 13 Fanconi anaemia (FA) genes causes a DNA repair deficiency disorder, with patients being susceptible to a number of cancer types. Variation in the family of FA genes has been suggested to affect risk of cervical cancer. The current study evaluates the influence of three genes in the FA pathway on cervical cancer risk in Swedish women. TagSNPs in FANCA, FANCC and FANCL were selected using the Tagger algorithm in Haploview. A total of 81 tagSNPs were genotyped in 782 cases (CIN3 or ICC) and 775 controls using the Illumina GoldenGate Assay and statistically analyzed for association with cervical cancer. 72 SNPs were successfully genotyped in >98% of the samples. Nominal associations were detected for FANCA rs11649196 (p=0.05) and rs4128763 in FANCC (p=0.02). The associations did not withstand correction for multiple testing. The current study does not support that genetic variation in FANCA, FANCC or FANCL genes affects susceptibility to cervical cancer in the Swedish population. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Characterization of genomic variations in SNPs of PE_PGRS genes reveals deletions and insertions in extensively drug resistant (XDR) M. tuberculosis strains from Pakistan

    KAUST Repository

    Kanji, Akbar

    2015-01-21

    Background Mycobacterium tuberculosis (MTB) PE_PGRS genes belong to the PE multigene family. Although the function of PE_PGRS genes is unknown, it is hypothesized that the PE_PGRS genes may be associated with antigenic variability in MTB. Material and methods Whole genome sequencing analysis was performed on (n = 37) extensively drug-resistant (XDR) MTB strains from Pakistan, which included Lineage 1 (East African Indian, n = 2); Other lineage 1 (n = 3); Lineage 3 (Central Asian, n = 24); Other lineage 3 (n = 4); Lineage 4 (X3, n = 1) and T group (n = 3) MTB strains. Results There were 107 SNPs identified from the analysis of 42 PE_PGRS genes; of these, 13 were non-synonymous SNPs (nsSNPs). The nsSNPs identified in PE_PGRS genes – 6, 9 and 10 – were common in all EAI, CAS, Other lineages (1 and 3), T1 and X3. Deletions (DELs) in PE_PGRS genes – 3 and 19 – were observed in 17 (80.9%) CAS1 and 6 (85.7%) in Other lineages (1 and 3) XDR MTB strains, while DELs in the PE_PGRS49 were observed in all CAS1, CAS, CAS2 and Other lineages (1 and 3) XDR MTB strains. All CAS, EAI and Other lineages (1 and 3) strains showed insertions (INS) in PE_PGRS6 gene, while INS in the PE_PGRS genes 19 and 33 were observed in 20 (95.2%) CAS1, all CAS, CAS2, EAI and Other lineages (1 and 3) XDR MTB strains. Conclusion Genetic diversity in PE_PGRS genes contributes to antigenic variability and may result in increased immunogenicity of strains. This is the first study identifying variations in nsSNPs and INDELs in the PE_PGRS genes of XDR-TB strains from Pakistan. It highlights common genetic variations which may contribute to persistence.

  1. Variation in regulator of G-protein signaling 17 gene (RGS17 is associated with multiple substance dependence diagnoses

    Directory of Open Access Journals (Sweden)

    Zhang Huiping

    2012-05-01

    Full Text Available Abstract Background RGS17 and RGS20 encode two members of the regulator of G-protein signaling RGS-Rz subfamily. Variation in these genes may alter their transcription and thereby influence the function of G protein-coupled receptors, including opioid receptors, and modify risk for substance dependence. Methods The association of 13 RGS17 and eight RGS20 tag single nucleotide polymorphisms (SNPs was examined with four substance dependence diagnoses (alcohol (AD, cocaine (CD, opioid (OD or marijuana (MjD] in 1,905 African Americans (AAs: 1,562 cases and 343 controls and 1,332 European Americans (EAs: 981 cases and 351 controls. Analyses were performed using both χ2 tests and logistic regression analyses that covaried sex, age, and ancestry proportion. Correlation of genotypes and mRNA expression levels was assessed by linear regression analyses. Results Seven RGS17 SNPs showed a significant association with at least one of the four dependence traits after a permutation-based correction for multiple testing (0.003≤Pempirical≤0.037. The G allele of SNP rs596359, in the RGS17 promoter region, was associated with AD, CD, OD, or MjD in both populations (0.005≤Pempirical≤0.019. This allele was also associated with significantly lower mRNA expression levels of RGS17 in YRI subjects (P = 0.002 and non-significantly lower mRNA expression levels of RGS17 in CEU subjects (P = 0.185. No RGS20 SNPs were associated with any of the four dependence traits in either population. Conclusions This study demonstrated that variation in RGS17 was associated with risk for substance dependence diagnoses in both AA and EA populations.

  2. Removal of unwanted variation reveals novel patterns of gene expression linked to sleep homeostasis in murine cortex

    Directory of Open Access Journals (Sweden)

    Jason R. Gerstner

    2016-10-01

    Full Text Available Abstract Background Why we sleep is still one of the most perplexing mysteries in biology. Strong evidence indicates that sleep is necessary for normal brain function and that sleep need is a tightly regulated process. Surprisingly, molecular mechanisms that determine sleep need are incompletely described. Moreover, very little is known about transcriptional changes that specifically accompany the accumulation and discharge of sleep need. Several studies have characterized differential gene expression changes following sleep deprivation. Much less is known, however, about changes in gene expression during the compensatory response to sleep deprivation (i.e. recovery sleep. Results In this study we present a comprehensive analysis of the effects of sleep deprivation and subsequent recovery sleep on gene expression in the mouse cortex. We used a non-traditional analytical method for normalization of genome-wide gene expression data, Removal of Unwanted Variation (RUV. RUV improves detection of differential gene expression following sleep deprivation. We also show that RUV normalization is crucial to the discovery of differentially expressed genes associated with recovery sleep. Our analysis indicates that the majority of transcripts upregulated by sleep deprivation require 6 h of recovery sleep to return to baseline levels, while the majority of downregulated transcripts return to baseline levels within 1–3 h. We also find that transcripts that change rapidly during recovery (i.e. within 3 h do so on average with a time constant that is similar to the time constant for the discharge of sleep need. Conclusions We demonstrate that proper data normalization is essential to identify changes in gene expression that are specifically linked to sleep deprivation and recovery sleep. Our results provide the first evidence that recovery sleep is comprised of two waves of transcriptional regulation that occur at different times and affect functionally

  3. Genetic diversity of selected genes that are potentially economically important in feral sheep of New Zealand

    Directory of Open Access Journals (Sweden)

    Sedcole J Richard

    2010-12-01

    Full Text Available Abstract Background Feral sheep are considered to be a source of genetic variation that has been lost from their domestic counterparts through selection. Methods This study investigates variation in the genes KRTAP1-1, KRT33, ADRB3 and DQA2 in Merino-like feral sheep populations from New Zealand and its offshore islands. These genes have previously been shown to influence wool, lamb survival and animal health. Results All the genes were polymorphic, but no new allele was identified in the feral populations. In some of these populations, allele frequencies differed from those observed in commercial Merino sheep and other breeds found in New Zealand. Heterozygosity levels were comparable to those observed in other studies on feral sheep. Our results suggest that some of the feral populations may have been either inbred or outbred over the duration of their apparent isolation. Conclusion The variation described here allows us to draw some conclusions about the likely genetic origin of the populations and selective pressures that may have acted upon them, but they do not appear to be a source of new genetic material, at least for these four genes.

  4. The Grandest Genetic Experiment Ever Performed on Man? - A Y-Chromosomal Perspective on Genetic Variation in India.

    Science.gov (United States)

    Carvalho-Silva, Denise R; Tyler-Smith, Chris

    2008-05-01

    We have analysed Y-chromosomal data from Indian caste, Indian tribal and East Asian populations in order to investigate the impact of the caste system on male genetic variation. We find that variation within populations is lower in India than in East Asia, while variation between populations is overall higher. This observation can be explained by greater subdivision within the Indian population, leading to more genetic drift. However, the effect is most marked in the tribal populations, and the level of variation between caste populations is similar to the level between Chinese populations. The caste system has therefore had a detectable impact on Y-chromosomal variation, but this has been less strong than the influence of the tribal system, perhaps because of larger population sizes in the castes, more gene flow or a shorter period of time.

  5. Investigation of the effect of ionizing radiation on gene expression variation by the 'DNA chips': feasibility of a biological dosimeter

    International Nuclear Information System (INIS)

    Gruel, G.

    2005-01-01

    After having described the different biological effects of ionizing radiation and the different approaches to biological dosimetry, and introduced 'DNA chips' or DNA micro-arrays, the author reports the characterization of gene expression variations in the response of cells to a gamma irradiation. Both main aspects of the use DNA chips are investigated: fundamental research and diagnosis. This research thesis thus proposes an analysis of the effect of ionizing radiation using DNA chips, notably by comparing gene expression modifications measured in mouse irradiated lung, heart and kidney. It reports a feasibility study of bio-dosimeter based on expression profiles

  6. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga) populations.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2012-01-01

    Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC), play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga) populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.

  7. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation.

    Science.gov (United States)

    Lu, Di; Zhuo, Jianyong; Yang, Modan; Wang, Chao; Linhui, Pan; Xie, Haiyang; Xu, Xiao; Zheng, Shusen

    2018-04-05

    Hepatitis B recurrence adversely affects patients' survival after liver transplantation. This study aims to find association between donor gene variations of one carbon metabolism and post-transplant hepatitis B recurrence. This study enrolled 196 patients undergoing liver transplantation for HBV related end-stage liver diseases. We detected 11 single nucleotide polymorphisms (SNP) of 7 one-carbon metabolism pathway genes (including MTHFR, MTR, MTRR, ALDH1L1, GART, SHMT1 and CBS) in donor livers and analyzed their association with HBV reinfection after liver transplantation. Hepatitis B recurrence was observed in 19 of the 196 patients (9.7%) undergoing liver transplantation. Hepatitis B recurrence significantly affected post-transplant survival in the 196 patients (p = 0.018), and correlate with tumor recurrence in the subgroup of HCC patients (n = 99, p = 0.006). Among the 11 SNPs, donor liver mutation in rs1979277 (G > A) was adversely associated with post-transplant hepatitis B recurrence (p = 0.042). In the subgroup of HCC patients, survival analysis showed donor liver mutations in rs1801133 (G > A) and rs1979277 (G > A) were risk factors for hepatitis B recurrence (p B recurrence in non-HCC patients (n = 97, p > 0.05). Hepatitis B recurrence impaired post-transplant survival. Donor liver genetic variations in one-carbon metabolism pathway genes were significantly associated with post-transplant hepatitis B recurrence. Copyright © 2017. Published by Elsevier B.V.

  8. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    Science.gov (United States)

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  9. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    Science.gov (United States)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  10. Comparison of CpG island methylator phenotype (CIMP frequency in colon cancer using different probe- and gene-specific scoring alternatives on recommended multi-gene panels.

    Directory of Open Access Journals (Sweden)

    Marianne Berg

    Full Text Available BACKGROUND: In colorectal cancer a distinct subgroup of tumours demonstrate the CpG island methylator phenotype (CIMP. However, a consensus of how to score CIMP is not reached, and variation in definition may influence the reported CIMP prevalence in tumours. Thus, we sought to compare currently suggested definitions and cut-offs for methylation markers and how they influence CIMP classification in colon cancer. METHODS: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA, with subsequent fragment analysis, was used to investigate methylation of tumour samples. In total, 31 CpG sites, located in 8 different genes (RUNX3, MLH1, NEUROG1, CDKN2A, IGF2, CRABP1, SOCS1 and CACNA1G were investigated in 64 distinct colon cancers and 2 colon cancer cell lines. The Ogino gene panel includes all 8 genes, in addition to the Weisenberger panel of which only 5 of the 8 genes included were investigated. In total, 18 alternative combinations of scoring of CIMP positivity on probe-, gene-, and panel-level were analysed and compared. RESULTS: For 47 samples (71%, the CIMP status was constant and independent of criteria used for scoring; 34 samples were constantly scored as CIMP negative, and 13 (20% consistently scored as CIMP positive. Only four of 31 probes (13% investigated showed no difference in the numbers of positive samples using the different cut-offs. Within the panels a trend was observed that increasing the gene-level stringency resulted in a larger difference in CIMP positive samples than increasing the probe-level stringency. A significant difference between positive samples using 'the most stringent' as compared to 'the least stringent' criteria (20% vs 46%, respectively; p<0.005 was demonstrated. CONCLUSIONS: A statistical significant variation in the frequency of CIMP depending on the cut-offs and genes included in a panel was found, with twice as many positives samples by least compared to most stringent definition

  11. Allelic Variation of Bile Salt Hydrolase Genes in Lactobacillus salivarius Does Not Determine Bile Resistance Levels▿ †

    Science.gov (United States)

    Fang, Fang; Li, Yin; Bumann, Mario; Raftis, Emma J.; Casey, Pat G.; Cooney, Jakki C.; Walsh, Martin A.; O'Toole, Paul W.

    2009-01-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host. PMID:19592587

  12. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Science.gov (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  13. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  14. Association between variations in the fat mass and obesity-associated gene and pancreatic cancer risk: a case–control study in Japan

    International Nuclear Information System (INIS)

    Lin, Yingsong; Kikuchi, Shogo; Ueda, Junko; Yagyu, Kiyoko; Ishii, Hiroshi; Ueno, Makoto; Egawa, Naoto; Nakao, Haruhisa; Mori, Mitsuru; Matsuo, Keitaro

    2013-01-01

    It is clear that genetic variations in the fat mass and obesity-associated (FTO) gene affect body mass index and the risk of obesity. Given the mounting evidence showing a positive association between obesity and pancreatic cancer, this study aimed to investigate the relation between variants in the FTO gene, obesity and pancreatic cancer risk. We conducted a hospital-based case–control study in Japan to investigate whether genetic variations in the FTO gene were associated with pancreatic cancer risk. We genotyped rs9939609 in the FTO gene of 360 cases and 400 control subjects. An unconditional logistic model was used to estimate the odds ratio (OR) and 95% confidence interval (CI) for the association between rs9939609 and pancreatic cancer risk. The minor allele frequency of rs9939609 was 0.18 among control subjects. BMI was not associated with pancreatic cancer risk. Compared with individuals with the common homozygous TT genotype, those with the heterozygous TA genotype and the minor homozygous AA genotype had a 48% (OR=1.48; 95%CI: 1.07–2.04), and 66% increased risk (OR=1.66; 95%CI: 0.70–3.90), respectively, of pancreatic cancer after adjustment for sex, age, body mass index, cigarette smoking and history of diabetes. The per-allele OR was 1.41 (95%CI: 1.07–1.85). There were no significant interactions between TA/AA genotypes and body mass index. Our findings indicate that rs9939609 in the FTO gene is associated with pancreatic cancer risk in Japanese subjects, possibly through a mechanism that is independent of obesity. Further investigation and replication of our results is required in other independent samples

  15. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis.

    Science.gov (United States)

    Benna, Clara; Helfrich-Förster, Charlotte; Rajendran, Senthilkumar; Monticelli, Halenya; Pilati, Pierluigi; Nitti, Donato; Mocellin, Simone

    2017-04-04

    The number of studies on the association between clock genes' polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1).We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. We conducted a systematic review and meta-analysis of the evidence on the association between clock genes' germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate

  16. Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways

    Science.gov (United States)

    Costain, Gregory; Merico, Daniele; Migita, Ohsuke; Liu, Ben; Yuen, Tracy; Rickaby, Jessica; Thiruvahindrapuram, Bhooma; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2012-01-01

    Structural genetic changes, especially copy number variants (CNVs), represent a major source of genetic variation contributing to human disease. Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, but to date little is known about the role of CNVs in the etiology of TOF. Using high-resolution genome-wide microarrays and stringent calling methods, we investigated rare CNVs in a prospectively recruited cohort of 433 unrelated adults with TOF and/or pulmonary atresia at a single centre. We excluded those with recognized syndromes, including 22q11.2 deletion syndrome. We identified candidate genes for TOF based on converging evidence between rare CNVs that overlapped the same gene in unrelated individuals and from pathway analyses comparing rare CNVs in TOF cases to those in epidemiologic controls. Even after excluding the 53 (10.7%) subjects with 22q11.2 deletions, we found that adults with TOF had a greater burden of large rare genic CNVs compared to controls (8.82% vs. 4.33%, p = 0.0117). Six loci showed evidence for recurrence in TOF or related congenital heart disease, including typical 1q21.1 duplications in four (1.18%) of 340 Caucasian probands. The rare CNVs implicated novel candidate genes of interest for TOF, including PLXNA2, a gene involved in semaphorin signaling. Independent pathway analyses highlighted developmental processes as potential contributors to the pathogenesis of TOF. These results indicate that individually rare CNVs are collectively significant contributors to the genetic burden of TOF. Further, the data provide new evidence for dosage sensitive genes in PLXNA2-semaphorin signaling and related developmental processes in human cardiovascular development, consistent with previous animal models. PMID:22912587

  17. Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp.

    Science.gov (United States)

    Phan, Jana L.; Tucker, Matthew R.; Khor, Shi Fang; Shirley, Neil; Lahnstein, Jelle; Beahan, Cherie; Bacic, Antony; Burton, Rachel A.

    2016-01-01

    Xylans are the most abundant non-cellulosic polysaccharide found in plant cell walls. A diverse range of xylan structures influence tissue function during growth and development. Despite the abundance of xylans in nature, details of the genes and biochemical pathways controlling their biosynthesis are lacking. In this study we have utilized natural variation within the Plantago genus to examine variation in heteroxylan composition and structure in seed coat mucilage. Compositional assays were combined with analysis of the glycosyltransferase family 61 (GT61) family during seed coat development, with the aim of identifying GT61 sequences participating in xylan backbone substitution. The results reveal natural variation in heteroxylan content and structure, particularly in P. ovata and P. cunninghamii, species which show a similar amount of heteroxylan but different backbone substitution profiles. Analysis of the GT61 family identified specific sequences co-expressed with IRREGULAR XYLEM 10 genes, which encode putative xylan synthases, revealing a close temporal association between xylan synthesis and substitution. Moreover, in P. ovata, several abundant GT61 sequences appear to lack orthologues in P. cunninghamii. Our results indicate that natural variation in Plantago species can be exploited to reveal novel details of seed coat development and polysaccharide biosynthetic pathways. PMID:27856710

  18. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration.

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-07-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. © 2014 American Society for Nutrition.

  19. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field.

    Science.gov (United States)

    Kerwin, Rachel E; Feusier, Julie; Muok, Alise; Lin, Catherine; Larson, Brandon; Copeland, Daniel; Corwin, Jason A; Rubin, Matthew J; Francisco, Marta; Li, Baohua; Joseph, Bindu; Weinig, Cynthia; Kliebenstein, Daniel J

    2017-08-01

    Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions. Epistasis × environment interactions accounted for up to 48% of the relative fitness variation in the field. At a single field site, the impact of epistasis on relative fitness varied significantly over 2 yr, showing that epistasis × environment interactions within a location can be temporally dynamic. These results suggest that the environmental dependency of epistasis can profoundly influence the response to selection, shaping the adaptive trajectories of natural populations in complex ways, and deserves further consideration in future evolutionary studies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Complex nature of SNP genotype effects on gene expression in primary human leucocytes

    Directory of Open Access Journals (Sweden)

    Dinesen Lotte C

    2009-01-01

    Full Text Available Abstract Background Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. Methods We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110 from individuals with celiac disease – a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90, and performed a meta-analysis to increase power to detect non-tissue specific effects. Results In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (cis expression quantitative trait loci, eQTLs. 135 of the detected SNP-probe effects (reflecting 51 unique probes were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. Conclusion In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.

  1. Endocannabinoid receptor 1 gene variations increase risk for obesity and modulate body mass index in European populations

    DEFF Research Database (Denmark)

    Benzinou, Michael; Chèvre, Jean-Claude; Ward, Kirsten J

    2008-01-01

    The therapeutic effects of cannabinoid receptor blockade on obesity-associated phenotypes underline the importance of the endocannabinoid pathway on the energy balance. Using a staged-approach, we examined the contribution of the endocannabinoid receptor 1 gene (CNR1) on obesity and body mass ind...... variations increase the risk for obesity and modulate BMI in our European population. As CB1 is a drug target for obesity, a pharmacogenetic analysis of the endocannabinoid blockade obesity treatment may be of interest to identify best responders....

  2. Striking variations in consultation rates with general practice reveal family influence

    Directory of Open Access Journals (Sweden)

    Spreeuwenberg Peter

    2007-01-01

    Full Text Available Abstract Background The reasons why patients decide to consult a general practitioner vary enormously. While there may be individual reasons for this variation, the family context has a significant and unique influence upon the frequency of individuals' visits. The objective of this study was to explore which family factors can explain the differences between strikingly high, and correspondingly low, family consultation rates in families with children aged up to 21. Methods Data were used from the second Dutch national survey of general practice. This survey extracted from the medical records of 96 practices in the Netherlands, information on all consultations with patients during 2001. We defined, through multilevel analysis, two groups of families. These had respectively, predominantly high, and low, contact frequencies due to a significant family influence upon the frequency of the individual's first contacts. Binomial logistic regression analyses were used to analyse which of the family factors, related to shared circumstances and socialisation conditions, can explain the differences in consultation rates between the two groups of families. Results In almost 3% of all families, individual consultation rates decrease significantly due to family influence. In 11% of the families, individual consultation rates significantly increase due to family influence. While taking into account the health status of family members, family factors can explain family consultation rates. These factors include circumstances such as their economic status and number of children, as well as socialisation conditions such as specific health knowledge and family beliefs. The chance of significant low frequencies of contact due to family influences increases significantly with factors such as, paid employment of parents in the health care sector, low expectations of general practitioners' care for minor ailments and a western cultural background. Conclusion Family

  3. Childhood quality influences genetic sensitivity to environmental influences across adulthood: A life-course Gene × Environment interaction study.

    Science.gov (United States)

    Keers, Robert; Pluess, Michael

    2017-12-01

    While environmental adversity has been shown to increase risk for psychopathology, individuals differ in their sensitivity to these effects. Both genes and childhood experiences are thought to influence sensitivity to the environment, and these factors may operate synergistically such that the effects of childhood experiences on later sensitivity are greater in individuals who are more genetically sensitive. In line with this hypothesis, several recent studies have reported a significant three-way interaction (Gene × Environment × Environment) between two candidate genes and childhood and adult environment on adult psychopathology. We aimed to replicate and extend these findings in a large, prospective multiwave longitudinal study using a polygenic score of environmental sensitivity and objectively measured childhood and adult material environmental quality. We found evidence for both Environment × Environment and Gene × Environment × Environment effects on psychological distress. Children with a poor-quality material environment were more sensitive to the negative effects of a poor environment as adults, reporting significantly higher psychological distress scores. These effects were further moderated by a polygenic score of environmental sensitivity. Genetically sensitive children were more vulnerable to adversity as adults, if they had experienced a poor childhood environment but were significantly less vulnerable if their childhood environment was positive. These findings are in line with the differential susceptibility hypothesis and suggest that a life course approach is necessary to elucidate the role of Gene × Environment in the development of mental illnesses.

  4. Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth

    Directory of Open Access Journals (Sweden)

    Tisdale Michele

    2009-09-01

    Full Text Available Abstract Background Like humans, the living elephants are unusual among mammals in being sparsely covered with hair. Relative to extant elephants, the extinct woolly mammoth, Mammuthus primigenius, had a dense hair cover and extremely long hair, which likely were adaptations to its subarctic habitat. The fibroblast growth factor 5 (FGF5 gene affects hair length in a diverse set of mammalian species. Mutations in FGF5 lead to recessive long hair phenotypes in mice, dogs, and cats; and the gene has been implicated in hair length variation in rabbits. Thus, FGF5 represents a leading candidate gene for the phenotypic differences in hair length notable between extant elephants and the woolly mammoth. We therefore sequenced the three exons (except for the 3' UTR and a portion of the promoter of FGF5 from the living elephantid species (Asian, African savanna and African forest elephants and, using protocols for ancient DNA, from a woolly mammoth. Results Between the extant elephants and the mammoth, two single base substitutions were observed in FGF5, neither of which alters the amino acid sequence. Modeling of the protein structure suggests that the elephantid proteins fold similarly to the human FGF5 protein. Bioinformatics analyses and DNA sequencing of another locus that has been implicated in hair cover in humans, type I hair keratin pseudogene (KRTHAP1, also yielded negative results. Interestingly, KRTHAP1 is a pseudogene in elephantids as in humans (although fully functional in non-human primates. Conclusion The data suggest that the coding sequence of the FGF5 gene is not the critical determinant of hair length differences among elephantids. The results are discussed in the context of hairlessness among mammals and in terms of the potential impact of large body size, subarctic conditions, and an aquatic ancestor on hair cover in the Proboscidea.

  5. Influences of spatial and temporal variation on fish-habitat relationships defined by regression quantiles

    Science.gov (United States)

    Dunham, J.B.; Cade, B.S.; Terrell, J.W.

    2002-01-01

    We used regression quantiles to model potentially limiting relationships between the standing crop of cutthroat trout Oncorhynchus clarki and measures of stream channel morphology. Regression quantile models indicated that variation in fish density was inversely related to the width:depth ratio of streams but not to stream width or depth alone. The spatial and temporal stability of model predictions were examined across years and streams, respectively. Variation in fish density with width:depth ratio (10th-90th regression quantiles) modeled for streams sampled in 1993-1997 predicted the variation observed in 1998-1999, indicating similar habitat relationships across years. Both linear and nonlinear models described the limiting relationships well, the latter performing slightly better. Although estimated relationships were transferable in time, results were strongly dependent on the influence of spatial variation in fish density among streams. Density changes with width:depth ratio in a single stream were responsible for the significant (P 80th). This suggests that stream-scale factors other than width:depth ratio play a more direct role in determining population density. Much of the variation in densities of cutthroat trout among streams was attributed to the occurrence of nonnative brook trout Salvelinus fontinalis (a possible competitor) or connectivity to migratory habitats. Regression quantiles can be useful for estimating the effects of limiting factors when ecological responses are highly variable, but our results indicate that spatiotemporal variability in the data should be explicitly considered. In this study, data from individual streams and stream-specific characteristics (e.g., the occurrence of nonnative species and habitat connectivity) strongly affected our interpretation of the relationship between width:depth ratio and fish density.

  6. Mitochondrial DNA T4216C and A4917G variations in multiple sclerosis

    DEFF Research Database (Denmark)

    Andalib, Sasan; Talebi, Mahnaz; Sakhinia, Ebrahim

    2015-01-01

    DNA gene and A4917G variation in the mtDNA NADH Dehydrogenase 2 (ND2) gene are associated with MS in an Iranian population. MATERIAL AND METHODS: Blood samples were collected from 100 patients with MS and 100 unrelated healthy controls, and DNA extraction was performed by salting-out. By means.......637). Logistic regression analysis revealed an odds ratio (OR) of 1.2 with 95% CI of 0.4-3.5. CONCLUSION: The present study revealed no association between MS and T4216C variation in the ND1 mtDNA gene and A4917G variation in the mtDNA ND2 gene in the Iranian population....... focuses on the neurogenetics of the complex pathogenesis of MS in relation to factors such as mitochondrial DNA (mtDNA) variations. T4216C and A4917G are common mitochondrial gene variations associated with MS. The present study tested whether mtDNA T4216C variation in the NADH Dehydrogenase 1 (ND1) mt...

  7. Landscape and variation of RNA secondary structure across the human transcriptome.

    Science.gov (United States)

    Wan, Yue; Qu, Kun; Zhang, Qiangfeng Cliff; Flynn, Ryan A; Manor, Ohad; Ouyang, Zhengqing; Zhang, Jiajing; Spitale, Robert C; Snyder, Michael P; Segal, Eran; Chang, Howard Y

    2014-01-30

    In parallel to the genetic code for protein synthesis, a second layer of information is embedded in all RNA transcripts in the form of RNA structure. RNA structure influences practically every step in the gene expression program. However, the nature of most RNA structures or effects of sequence variation on structure are not known. Here we report the initial landscape and variation of RNA secondary structures (RSSs) in a human family trio (mother, father and their child). This provides a comprehensive RSS map of human coding and non-coding RNAs. We identify unique RSS signatures that demarcate open reading frames and splicing junctions, and define authentic microRNA-binding sites. Comparison of native deproteinized RNA isolated from cells versus refolded purified RNA suggests that the majority of the RSS information is encoded within RNA sequence. Over 1,900 transcribed single nucleotide variants (approximately 15% of all transcribed single nucleotide variants) alter local RNA structure. We discover simple sequence and spacing rules that determine the ability of point mutations to impact RSSs. Selective depletion of 'riboSNitches' versus structurally synonymous variants at precise locations suggests selection for specific RNA shapes at thousands of sites, including 3' untranslated regions, binding sites of microRNAs and RNA-binding proteins genome-wide. These results highlight the potentially broad contribution of RNA structure and its variation to gene regulation.

  8. Characterization and potential functional significance of human-chimpanzee large INDEL variation

    Directory of Open Access Journals (Sweden)

    Polavarapu Nalini

    2011-10-01

    Full Text Available Abstract Background Although humans and chimpanzees have accumulated significant differences in a number of phenotypic traits since diverging from a common ancestor about six million years ago, their genomes are more than 98.5% identical at protein-coding loci. This modest degree of nucleotide divergence is not sufficient to explain the extensive phenotypic differences between the two species. It has been hypothesized that the genetic basis of the phenotypic differences lies at the level of gene regulation and is associated with the extensive insertion and deletion (INDEL variation between the two species. To test the hypothesis that large INDELs (80 to 12,000 bp may have contributed significantly to differences in gene regulation between the two species, we categorized human-chimpanzee INDEL variation mapping in or around genes and determined whether this variation is significantly correlated with previously determined differences in gene expression. Results Extensive, large INDEL variation exists between the human and chimpanzee genomes. This variation is primarily attributable to retrotransposon insertions within the human lineage. There is a significant correlation between differences in gene expression and large human-chimpanzee INDEL variation mapping in genes or in proximity to them. Conclusions The results presented herein are consistent with the hypothesis that large INDELs, particularly those associated with retrotransposons, have played a significant role in human-chimpanzee regulatory evolution.

  9. Serum levels of selenium and smoking habits at age 50 influence long term prostate cancer risk; a 34 year ULSAM follow-up

    International Nuclear Information System (INIS)

    Grundmark, Birgitta; Zethelius, Björn; Garmo, Hans; Holmberg, Lars

    2011-01-01

    Serum selenium level (s-Se) has been associated with prostate cancer (PrCa) risk. We investigated the relation between s-Se, smoking and non-screening detected PrCa and explored if polymorphisms in two DNA repair genes: OGG1 and MnSOD, influenced any effect of s-Se. ULSAM, a population based Swedish male cohort (n = 2322) investigated at age 50 for s-Se and s-Se influencing factors: serum cholesterol, erythrocyte sedimentation rate and smoking habits. At age 71 a subcohort, (n = 1005) was genotyped for OGG1 and MnSOD polymorphisms. In a 34-year-follow-up, national registries identified 208 PrCa cases further confirmed in medical records. Participants with s-Se in the upper tertile had a non-significantly lower risk of PrCa. Smokers with s-Se in the two lower tertiles (≤80 μg/L) experienced a higher cumulative incidence of PrCa than smokers in the high selenium tertile (Hazard Ratio 2.39; 95% CI: 1.09-5.25). A high tertile selenium level in combination with non-wt rs125701 of the OGG1 gene in combination with smoking status or rs4880 related variation of MnSOD gene appeared to protect from PrCa. S-Se levels and smoking habits influence long-term risk of PrCa. Smoking as a risk factor for PrCa in men with low s-Se is relevant to explore further. Exploratory analyses of variations in OGG1 and MnSOD genes indicate that hypotheses about patterns of exposure to selenium and smoking combined with data on genetic variation in genes involved in DNA repair can be valuable to pursue

  10. Influence of IL1B, IL6 and IL10 gene variants and plasma fatty acid interaction on metabolic syndrome risk in a cross-sectional population-based study.

    Science.gov (United States)

    Maintinguer Norde, Marina; Oki, Erica; Ferreira Carioca, Antonio Augusto; Teixeira Damasceno, Nágila Raquel; Fisberg, Regina Mara; Lobo Marchioni, Dirce Maria; Rogero, Marcelo Macedo

    2018-04-01

    Metabolic syndrome (MetS) is a cluster of interrelated risk factors for type 2 diabetes mellitus, and cardiovascular disease, with underlying inflammatory pathophysiology. Genetic variations and diet are well-known risk factor for MetS, but the interaction between these two factors is less explored. The aim of the study was to evaluate the influence of interaction between SNP of inflammatory genes (encoding interleukin (IL)-6, IL-1β and IL-10) and plasma fatty acids on the odds of MetS, in a population-based cross-sectional study. Among participants of the Health Survey - São Paulo, 301 adults (19-59 y) from whom a blood sample was collected were included. Individuals with and without MetS were compared according to their plasma inflammatory biomarkers, fatty acid profile, and genotype frequency of the IL1B (rs16944, rs1143623, rs1143627, rs1143634 and rs1143643), IL6 (rs1800795, rs1800796 and rs1800797) and IL10 (rs1554286, rs1800871, rs1800872, rs1800890 and rs3024490) genes SNP. The influence of gene-fatty acids interaction on MetS risk was investigated. IL6 gene SNP rs1800795 G allele was associated with higher odds for MetS (OR = 1.88; p = 0.017). Gene-fatty acid interaction was found between the IL1B gene SNP rs116944 and stearic acid (p inter = 0.043), and between rs1143634 and EPA (p inter = 0.017). For the IL10 gene SNP rs1800896, an interaction was found for arachidonic acid (p inter = 0.007) and estimated D5D activity (p inter = 0.019). The IL6 gene SNP rs1800795 G allele is associated with increased odds for MetS. Plasma fatty acid profile interacts with the IL1B and IL10 gene variants to modulate the odds for MetS. This and other interactions of risk factors can account for the unexplained heritability of MetS, and their elucidation can lead to new strategies for genome-customized prevention of MetS. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. [Circadian rhythm variation of the clock genes Per1 and cell cycle related genes in different stages of carcinogenesis of buccal mucosa in animal model].

    Science.gov (United States)

    Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong

    2015-07-01

    To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P circadian rhythm of clock gene Per1 and cell cycle genes p53, CyclinD1, CDK1, CyclinB1 expression remarkably varied with the occurrence and development of carcinoma. Further research into the interaction between circadian and cell cycle of two cycle activity and relationship with the carcinogenesis may

  12. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  13. Gene flow and geographic variation in natural populations of Alnus acuminata ssp. arguta (Fagales: Betulaceae in Costa Rica and Panama

    Directory of Open Access Journals (Sweden)

    Olman Murillo

    1999-12-01

    Full Text Available Seventeen natural populations in Costa Rica and Panama were used to asses gene flow and geographic patterns of genetic variation in this tree species. Gene flow analysis was based on the methods of rare alleles and FST (Index of genetic similarity M, using the only four polymorphic gene loci among 22 investigated (PGI-B, PGM-A, MNR-A and IDH-A. The geographic variation analysis was based on Pearson`s correlations between four geographic and 14 genetic variables. Some evidence of isolation by distance and a weak gene flow among geographic regions was found. Patterns of clinal variation in relation to altitude (r = -0.62 for genetic diversity and latitude (r= -0.77 for PGI-B3 were also observed, supporting the hypothesis of isolation by distance. No private alleles were found at the single population level.Diecisiete poblaciones naturales de esta especie forestal en Costa Rica y Panamá, fueron investigadas en relación con sus patrones de flujo genético y de variación geográfica. El análisis de flujo genético fue basado en los métodos de los alelos raros y de FST (Indice de similaridad genética M. Los análisis fueron a su vez basados en los únicos cuatro loci genéticos de un total de 22 investigados que mostraron polimorfismo (PGI-B, PGM-A, MNR-A and IDH-A. Los análisis de variación geográfica fueron basados en el desarrollo de correlaciones de Pearson entre 4 variables geográficas y 14 variables genéticas. Alguna evidencia de aislamiento por distancia así como un débil flujo genético entre regiones geográficas fue encontrado. Fueron también observados patrones de variación clinal en relación con la altitud (r = -0.62 para la diversidad genética y latitud (r= -0.77 en PGI-B3, que apoyan la hipotesis de aislamiento por distancia para esta especie. No se encontraron alelos privados en ninguna de las poblaciones investigadas.

  14. Longevity is independent of common variations in genes associated with cardiovascular risk

    DEFF Research Database (Denmark)

    Bladbjerg, E M; Andersen-Ranberg, K; Maat, M de

    1999-01-01

    Do extremely old persons have a genetically favourable profile which has protected them from cardiovascular death? We have tried to answer this question by measuring DNA polymorphisms of selected cardiovascular risk indicators [factor VII, FVII (R/Q353, intron 7 (37bp)n, and -323ins10), beta fibr......, ACE (intron 16 ins287), and angiotensinogen (M/T235)]. Blood was collected from 187 unselected Danish centenarians, and 201 healthy Danish blood donors, aged 20-64 years (mean age 42 years). Genomic DNA was amplified using PCR and the genotype was determined by RFLP methods or allele.......33; for ACE 0.52; and for angiotensinogen 0.36. Comparable frequencies were observed in the blood donors. Subgroup analysis of men and women separately gave similar results. The genotype frequencies in the centenarians and the blood donors were similar for all polymorphisms, and this study suggests...... that common variations in genes associated with cardiovascular risk do not contribute significantly to longevity....

  15. Analysis of new lactotransferrin gene variants in a case-control study related to periodontal disease in dog.

    Science.gov (United States)

    Morinha, Francisco; Albuquerque, Carlos; Requicha, João; Dias, Isabel; Leitão, José; Gut, Ivo; Guedes-Pinto, Henrique; Viegas, Carlos; Bastos, Estela

    2012-04-01

    The molecular and genetic research has contributed to a better understanding of the periodontal disease (PD) in humans and has shown that many genes play a role in the predisposition and progression of this complex disease. Variations in human lactotransferrin (LTF) gene appear to affect anti-microbial functions of this molecule, influencing the PD susceptibility. PD is also a major health problem in small animal practice, being the most common inflammatory disease found in dogs. Nevertheless, the research in genetic predisposition to PD is an unexplored subject in this species. This work aims to contribute to the characterization of the genetic basis of canine PD. In order to identify genetic variations and verify its association with PD, was performed a molecular analysis of LTF gene in a case-control approach, including 40 dogs in the PD cases group and 50 dogs in the control group. In this study were detected and characterized eight new single nucleotide variations in the dog LTF gene. Genotype and allele frequencies of these variations showed no statistically significant differences between the control and PD cases groups. Our data do not give evidence for the contribution of these LTF variations to the genetic background of canine PD. Nevertheless, the sequence variant L/15_g.411C > T leads to an aminoacid change (Proline to Leucine) and was predicted to be possibly damaging to the LTF protein. Further investigations would be of extreme value to clarify the biological importance of these new findings.

  16. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy.

    Science.gov (United States)

    Michel, S; Busato, F; Genuneit, J; Pekkanen, J; Dalphin, J-C; Riedler, J; Mazaleyrat, N; Weber, J; Karvonen, A M; Hirvonen, M-R; Braun-Fahrländer, C; Lauener, R; von Mutius, E; Kabesch, M; Tost, J

    2013-03-01

    Genetic susceptibility and environmental influences are important contributors to the development of asthma and atopic diseases. Epigenetic mechanisms may facilitate gene by environment interactions in these diseases. We studied the rural birth cohort PASTURE (Protection against allergy: study in rural environments) to investigate (a) whether epigenetic patterns in asthma candidate genes are influenced by farm exposure in general, (b) change over the first years of life, and (c) whether these changes may contribute to the development of asthma. DNA was extracted from cord blood and whole blood collected at the age of 4.5 years in 46 samples per time point. DNA methylation in 23 regions in ten candidate genes (ORMDL1, ORMDL2, ORMDL3, CHI3L1, RAD50, IL13, IL4, STAT6, FOXP3, and RUNX3) was assessed by pyrosequencing, and differences between strata were analyzed by nonparametric Wilcoxon-Mann-Whitney tests. In cord blood, regions in ORMDL1 and STAT6 were hypomethylated in DNA from farmers' as compared to nonfarmers' children, while regions in RAD50 and IL13 were hypermethylated (lowest P-value (STAT6) = 0.001). Changes in methylation over time occurred in 15 gene regions (lowest P-value (IL13) = 1.57*10(-8)). Interestingly, these differences clustered in the genes highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL13, and IL4), but not in the T-regulatory genes (FOXP3, RUNX3). In this first pilot study, DNA methylation patterns change significantly in early childhood in specific asthma- and allergy-related genes in peripheral blood cells, and early exposure to farm environment seems to influence methylation patterns in distinct genes. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  17. Genomic variation in myeloma: design, content, and initial application of the Bank On A Cure SNP Panel to detect associations with progression-free survival

    Directory of Open Access Journals (Sweden)

    Fang Gang

    2008-09-01

    Full Text Available Abstract Background We have engaged in an international program designated the Bank On A Cure, which has established DNA banks from multiple cooperative and institutional clinical trials, and a platform for examining the association of genetic variations with disease risk and outcomes in multiple myeloma. We describe the development and content of a novel custom SNP panel that contains 3404 SNPs in 983 genes, representing cellular functions and pathways that may influence disease severity at diagnosis, toxicity, progression or other treatment outcomes. A systematic search of national databases was used to identify non-synonymous coding SNPs and SNPs within transcriptional regulatory regions. To explore SNP associations with PFS we compared SNP profiles of short term (less than 1 year, n = 70 versus long term progression-free survivors (greater than 3 years, n = 73 in two phase III clinical trials. Results Quality controls were established, demonstrating an accurate and robust screening panel for genetic variations, and some initial racial comparisons of allelic variation were done. A variety of analytical approaches, including machine learning tools for data mining and recursive partitioning analyses, demonstrated predictive value of the SNP panel in survival. While the entire SNP panel showed genotype predictive association with PFS, some SNP subsets were identified within drug response, cellular signaling and cell cycle genes. Conclusion A targeted gene approach was undertaken to develop an SNP panel that can test for associations with clinical outcomes in myeloma. The initial analysis provided some predictive power, demonstrating that genetic variations in the myeloma patient population may influence PFS.

  18. Variation in Sperm Displacement and Its Association with Accessory Gland Protein Loci in Drosophila Melanogaster

    OpenAIRE

    Clark, A. G.; Aguade, M.; Prout, T.; Harshman, L. G.; Langley, C. H.

    1995-01-01

    Genes that influence mating and/or fertilization success may be targets for strong natural selection. If females remate frequently relative to the duration of sperm storage and rate of sperm use, sperm displacement may be an important component of male reproductive success. Although it has long been known that mutant laboratory stocks of Drosophila differ in sperm displacement, the magnitude of the naturally occurring genetic variation in this character has not been systematically quantified....

  19. Molecular Characterization of Bovine SMO Gene and Effects of Its Genetic Variations on Body Size Traits in Qinchuan Cattle (Bos taurus)

    Science.gov (United States)

    Zhang, Ya-Ran; Gui, Lin-Sheng; Li, Yao-Kun; Jiang, Bi-Jie; Wang, Hong-Cheng; Zhang, Ying-Ying; Zan, Lin-Sen

    2015-01-01

    Smoothened (Smo)-mediated Hedgehog (Hh) signaling pathway governs the patterning, morphogenesis and growth of many different regions within animal body plans. This study evaluated the effects of genetic variations of the bovine SMO gene on economically important body size traits in Chinese Qinchuan cattle. Altogether, eight single nucleotide polymorphisms (SNPs: 1–8) were identified and genotyped via direct sequencing covering most of the coding region and 3ʹUTR of the bovine SMO gene. Both the p.698Ser.>Ser. synonymous mutation resulted from SNP1 and the p.700Ser.>Pro. non-synonymous mutation caused by SNP2 mapped to the intracellular C-terminal tail of bovine Smo protein; the other six SNPs were non-coding variants located in the 3ʹUTR. The linkage disequilibrium was analyzed, and five haplotypes were discovered in 520 Qinchuan cattle. Association analyses showed that SNP2, SNP3/5, SNP4 and SNP6/7 were significantly associated with some body size traits (p 0.05). Meanwhile, cattle with wild-type combined haplotype Hap1/Hap1 had significantly (p < 0.05) greater body length than those with Hap2/Hap2. Our results indicate that variations in the SMO gene could affect body size traits of Qinchuan cattle, and the wild-type haplotype Hap1 together with the wild-type alleles of these detected SNPs in the SMO gene could be used to breed cattle with superior body size traits. Therefore, our results could be helpful for marker-assisted selection in beef cattle breeding programs. PMID:26225956

  20. The downside of strong emotional memories: how human memory-related genes influence the risk for posttraumatic stress disorder--a selective review.

    Science.gov (United States)

    Wilker, Sarah; Elbert, Thomas; Kolassa, Iris-Tatjana

    2014-07-01

    A good memory for emotionally arousing experiences may be intrinsically adaptive, as it helps the organisms to predict safety and danger and to choose appropriate responses to prevent potential harm. However, under conditions of repeated exposure to traumatic stressors, strong emotional memories of these experiences can lead to the development of trauma-related disorders such as posttraumatic stress disorder (PTSD). This syndrome is characterized by distressing intrusive memories that can be so intense that the survivor is unable to discriminate past from present experiences. This selective review on the role of memory-related genes in PTSD etiology is divided in three sections. First, we summarize studies indicating that the likelihood to develop PTSD depends on the cumulative exposure to traumatic stressors and on individual predisposing risk factors, including a substantial genetic contribution to PTSD risk. Second, we focus on memory processes supposed to be involved in PTSD etiology and present evidence for PTSD-associated alterations in both implicit (fear conditioning, fear extinction) and explicit memory for emotional material. This is supplemented by a brief description of structural and functional alterations in memory-relevant brain regions in PTSD. Finally, we summarize a selection of studies indicating that genetic variations found to be associated with enhanced fear conditioning, reduced fear extinction or better episodic memory in human experimental studies can have clinical implications in the case of trauma exposure and influence the risk of PTSD development. Here, we focus on genes involved in noradrenergic (ADRA2B), serotonergic (SLC6A4), and dopaminergic signaling (COMT) as well as in the molecular cascades of memory formation (PRKCA and WWC1). This is supplemented by initial evidence that such memory-related genes might also influence the response rates of exposure-based psychotherapy or pharmacological treatment of PTSD, which underscores the

  1. Genealogy and gene trees.

    Science.gov (United States)

    Rasmuson, Marianne

    2008-02-01

    Heredity can be followed in persons or in genes. Persons can be identified only a few generations back, but simplified models indicate that universal ancestors to all now living persons have occurred in the past. Genetic variability can be characterized as variants of DNA sequences. Data are available only from living persons, but from the pattern of variation gene trees can be inferred by means of coalescence models. The merging of lines backwards in time leads to a MRCA (most recent common ancestor). The time and place of living for this inferred person can give insights in human evolutionary history. Demographic processes are incorporated in the model, but since culture and customs are known to influence demography the models used ought to be tested against available genealogy. The Icelandic data base offers a possibility to do so and points to some discrepancies. Mitochondrial DNA and Y chromosome patterns give a rather consistent view of human evolutionary history during the latest 100 000 years but the earlier epochs of human evolution demand gene trees with longer branches. The results of such studies reveal as yet unsolved problems about the sources of our genome.

  2. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga populations.

    Directory of Open Access Journals (Sweden)

    Pauline L Kamath

    Full Text Available Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC, play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.

  3. No evidence that genetic variation in the myeloid-derived suppressor cell pathway influences ovarian cancer survival

    DEFF Research Database (Denmark)

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I

    2017-01-01

    BACKGROUND: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immune suppressive/pro-tumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be one prominent mechanism contributing to immunologic...... tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. METHODS: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype...

  4. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner.

    Science.gov (United States)

    Love, Tiffany M; Enoch, Mary-Anne; Hodgkinson, Colin A; Peciña, Marta; Mickey, Brian; Koeppe, Robert A; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2012-08-01

    Oxytocin, classically involved in social and reproductive activities, is increasingly recognized as an antinociceptive and anxiolytic agent, effects which may be mediated via oxytocin's interactions with the dopamine system. Thus, genetic variation within the oxytocin gene (OXT) is likely to explain variability in dopamine-related stress responses. As such, we examined how OXT variation is associated with stress-induced dopaminergic neurotransmission in a healthy human sample. Fifty-five young healthy volunteers were scanned using [¹¹C]raclopride positron emission tomography while they underwent a standardized physical and emotional stressor that consisted of moderate levels of experimental sustained deep muscle pain, and a baseline, control state. Four haplotype tagging single nucleotide polymorphisms located in regions near OXT were genotyped. Measures of pain, affect, anxiety, well-being and interpersonal attachment were also assessed. Female rs4813625 C allele carriers demonstrated greater stress-induced dopamine release, measured as reductions in receptor availability from baseline to the pain-stress condition relative to female GG homozygotes. No significant differences were detected among males. We also observed that female rs4813625 C allele carriers exhibited higher attachment anxiety, higher trait anxiety and lower emotional well-being scores. In addition, greater stress-induced dopamine release was associated with lower emotional well-being scores in female rs4813625 C allele carriers. Our results suggest that variability within the oxytocin gene appear to explain interindividual differences in dopaminergic responses to stress, which are shown to be associated with anxiety traits, including those linked to attachment style, as well as emotional well-being in women. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans.

    Science.gov (United States)

    Berg, Ingrid L; Neumann, Rita; Lam, Kwan-Wood G; Sarbajna, Shriparna; Odenthal-Hesse, Linda; May, Celia A; Jeffreys, Alec J

    2010-10-01

    PRDM9 has recently been identified as a likely trans regulator of meiotic recombination hot spots in humans and mice. PRDM9 contains a zinc finger array that, in humans, can recognize a short sequence motif associated with hot spots, with binding to this motif possibly triggering hot-spot activity via chromatin remodeling. We now report that human genetic variation at the PRDM9 locus has a strong effect on sperm hot-spot activity, even at hot spots lacking the sequence motif. Subtle changes within the zinc finger array can create hot-spot nonactivating or enhancing variants and can even trigger the appearance of a new hot spot, suggesting that PRDM9 is a major global regulator of hot spots in humans. Variation at the PRDM9 locus also influences aspects of genome instability-specifically, a megabase-scale rearrangement underlying two genomic disorders as well as minisatellite instability-implicating PRDM9 as a risk factor for some pathological genome rearrangements.

  6. [Correlation of intraocular pressure variation after visual field examination with 24-hour intraocular pressure variations in primary open-angle glaucoma].

    Science.gov (United States)

    Noro, Takahiko; Nakamoto, Kenji; Sato, Makoto; Yasuda, Noriko; Ito, Yoshinori; Ogawa, Shumpei; Nakano, Tadashi; Tsuneoka, Hiroshi

    2014-10-01

    We retrospectively examined intraocular pressure variations after visual field examination in primary open angle glaucoma (POAG), together with its influencing factors and its association with 24-hour intraocular pressure variations. Subjects were 94 eyes (52 POAG patients) subjected to measurements of 24-hour intraocular pressure and of changes in intraocular pressure after visual field examination using a Humphrey Visual Field Analyzer. Subjects were classified into three groups according to the magnitude of variation (large, intermediate and small), and 24-hour intraocular pressure variations were compared among the three groups. Factors influencing intraocular pressure variations after visual field examination and those associated with the large variation group were investigated. Average intraocular pressure variation after visual field examination was -0.28 ± 1.90 (range - 6.0(-) + 5.0) mmHg. No significant influencing factors were identified. The intraocular pressure at 3 a.m. was significantly higher in the large variation group than other two groups (p field examination. Increases in intraocular pressure during the night might be associated with large intraocular pressure variations after visual field examination.

  7. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  8. Population differentiation and behavioural association of the two 'personality' genes DRD4 and SERT in dunnocks (Prunella modularis).

    Science.gov (United States)

    Holtmann, B; Grosser, S; Lagisz, M; Johnson, S L; Santos, E S A; Lara, C E; Robertson, B C; Nakagawa, S

    2016-02-01

    Quantifying the variation in behaviour-related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non-native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two 'personality' genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F'st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight-initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour-related genes. © 2015 John Wiley & Sons Ltd.

  9. Copy number variation of Fc gamma receptor genes in HIV-infected and HIV-tuberculosis co-infected individuals in sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Lee R Machado

    Full Text Available AIDS, caused by the retrovirus HIV, remains the largest cause of morbidity in sub-Saharan Africa yet almost all genetic studies have focused on cohorts from Western countries. HIV shows high co-morbidity with tuberculosis (TB, as HIV stimulates the reactivation of latent tuberculosis (TB. Recent clinical trials suggest that an effective anti-HIV response correlates with non-neutralising antibodies. Given that Fcγ receptors are critical in mediating the non-neutralising effects of antibodies, analysis of the extensive variation at Fcγ receptor genes is important. Single nucleotide variation and copy number variation (CNV of Fcγ receptor genes affects the expression profile, activatory/inhibitory balance, and IgG affinity of the Fcγ receptor repertoire of each individual. In this study we investigated whether CNV of FCGR2C, FCGR3A and FCGR3B as well as the HNA1 allotype of FCGR3B is associated with HIV load, response to highly-active antiretroviral therapy (HAART and co-infection with TB. We confirmed an effect of TB-co-infection status on HIV load and response to HAART, but no conclusive effect of the genetic variants we tested. We observed a small effect, in Ethiopians, of FCGR3B copy number, where deletion was more frequent in HIV-TB co-infected patients than those infected with HIV alone.

  10. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  11. Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes.

    Directory of Open Access Journals (Sweden)

    Martin Poot

    2011-05-01

    Full Text Available Understanding complex networks that modulate development in humans is hampered by genetic and phenotypic heterogeneity within and between populations. Here we present a method that exploits natural variation in highly diverse mouse genetic reference panels in which genetic and environmental factors can be tightly controlled. The aim of our study is to test a cross-species genetic mapping strategy, which compares data of gene mapping in human patients with functional data obtained by QTL mapping in recombinant inbred mouse strains in order to prioritize human disease candidate genes.We exploit evolutionary conservation of developmental phenotypes to discover gene variants that influence brain development in humans. We studied corpus callosum volume in a recombinant inbred mouse panel (C57BL/6J×DBA/2J, BXD strains using high-field strength MRI technology. We aligned mouse mapping results for this neuro-anatomical phenotype with genetic data from patients with abnormal corpus callosum (ACC development.From the 61 syndromes which involve an ACC, 51 human candidate genes have been identified. Through interval mapping, we identified a single significant QTL on mouse chromosome 7 for corpus callosum volume with a QTL peak located between 25.5 and 26.7 Mb. Comparing the genes in this mouse QTL region with those associated with human syndromes (involving ACC and those covered by copy number variations (CNV yielded a single overlap, namely HNRPU in humans and Hnrpul1 in mice. Further analysis of corpus callosum volume in BXD strains revealed that the corpus callosum was significantly larger in BXD mice with a B genotype at the Hnrpul1 locus than in BXD mice with a D genotype at Hnrpul1 (F = 22.48, p<9.87*10(-5.This approach that exploits highly diverse mouse strains provides an efficient and effective translational bridge to study the etiology of human developmental disorders, such as autism and schizophrenia.

  12. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability.

    Directory of Open Access Journals (Sweden)

    Sarah M Short

    2017-07-01

    Full Text Available The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81-92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

  13. Genetic influences on exercise participation in 37,051 twin pairs from seven countries.

    Directory of Open Access Journals (Sweden)

    Janine H Stubbe

    2006-12-01

    Full Text Available A sedentary lifestyle remains a major threat to health in contemporary societies. To get more insight in the relative contribution of genetic and environmental influences on individual differences in exercise participation, twin samples from seven countries participating in the GenomEUtwin project were used.Self-reported data on leisure time exercise behavior from Australia, Denmark, Finland, Norway, The Netherlands, Sweden and United Kingdom were used to create a comparable index of exercise participation in each country (60 minutes weekly at a minimum intensity of four metabolic equivalents.Modest geographical variation in exercise participation was revealed in 85,198 subjects, aged 19-40 years. Modeling of monozygotic and dizygotic twin resemblance showed that genetic effects play an important role in explaining individual differences in exercise participation in each country. Shared environmental effects played no role except for Norwegian males. Heritability of exercise participation in males and females was similar and ranged from 48% to 71% (excluding Norwegian males.Genetic variation is important in individual exercise behavior and may involve genes influencing the acute mood effects of exercise, high exercise ability, high weight loss ability, and personality. This collaborative study suggests that attempts to find genes influencing exercise participation can pool exercise data across multiple countries and different instruments.

  14. Multiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Valentina Guida

    2010-01-01

    Full Text Available GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs, mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis.

  15. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.

    NARCIS (Netherlands)

    Jaakson, K.; Zernant, J.; Kulm, M.; Hutchinson, A.; Tonisson, N.; Glavac, D.; Ravnik-Glavac, M.; Hawlina, M.; Meltzer, M.R.; Caruso, R.C.; Testa, F.; Maugeri, A.; Hoyng, C.B.; Gouras, P.; Simonelli, F.; Lewis, R.A.; Lupski, J.R.; Cremers, F.P.M.; Allikmets, R.

    2003-01-01

    Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics

  16. Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila

    Science.gov (United States)

    Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad

    The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.

  17. Influence of Temperature Variation on Optical Receiver Sensitivity and its Compensation

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2007-09-01

    Full Text Available In the paper, the influence of temperature variation on the sensitivity of an avalanche-photodiode-based optical receiver applied in the free space optical communication link is discussed. Communication systems of this type are exposed to a wide range of operating temperatures, which markedly affect many photodiode and preamplifier parameters. The paper presents a receiver sensitivity calculation, taking into consideration the temperature dependence of avalanche photodiode gain, excess noise factor, dark current and thermal noise of preamplifier resistances, and describes the compensation of temperature effects on photodiode gain based on a corresponding change in the reverse voltage applied to the diode. The calculations are demonstrated on the connection of a small-area silicon APD operating in the wavelength range from 820 to 1150 nm with a transimpedance preamplifier using a bipolar junction transistor.

  18. Autocrine secretion of tumor necrosis factor under the influence of interferon-γ amplifies HLA-DR gene induction in human monocytes

    International Nuclear Information System (INIS)

    Arenzana-Seisdedos, F.; Mogensen, S.C.; Vuillier, F.; Fiers, W.; Virelizier, J.L.

    1988-01-01

    Recombinant interferon-γ (IFN-γ) induced HLA-DR gene expression in both U937 and THP-1 human monocytic cell lines, although the former was only very weakly inducible. Combination of recombinant tumor necrosis factor (TNF) and IFN-γ resulted in a synergistic enhancement of DR mRNA and protein induction in both cell lines. TNF alone increased the constitutive expression of the DR gene in THP-1 cells. In the HLA class II-negative U937 cells, TNF used alone was not able to induce DR gene expression. Such a negative result was not due to a lack of TNF receptor expression in U937 cells, since TNF clearly induced HLA class I and TNF gene expression in this cell line. THP-1, but not U937, cells secreted TNF under the influence of IFN-γ. Neutralization of TNF by a specific antibody decreased IFN-γ-induced DR antigen expression in THP-1 cultures. These observations indicate that TNF is not able to directly induce DR gene expression, but rather amplifies ongoing expression of this gene, whether constitutive or induced by IFN-γ. In the two cell lines tested, the level of DR inducibility under the influence of IFN-γ used alone depended on a different inducibility of TNF secretion by IFN-γ. Altogether, the observations indicate that TNF, whether exogenous or endogenously produced under the influence of IFN-γ, amplifies DR gene expression in monocytes, a phenomenon that may provide to such antigen-presenting cells a selective sensitivity to the DR-inducing effects of IFN-γ

  19. Genes expressed in dental enamel development are associated with molar-incisor hypomineralization.

    Science.gov (United States)

    Jeremias, Fabiano; Koruyucu, Mine; Küchler, Erika C; Bayram, Merve; Tuna, Elif B; Deeley, Kathleen; Pierri, Ricardo A; Souza, Juliana F; Fragelli, Camila M B; Paschoal, Marco A B; Gencay, Koray; Seymen, Figen; Caminaga, Raquel M S; dos Santos-Pinto, Lourdes; Vieira, Alexandre R

    2013-10-01

    Genetic disturbances during dental development influence variation of number and shape of the dentition. In this study, we tested if genetic variation in enamel formation genes is associated with molar-incisor hypomineralization (MIH), also taking into consideration caries experience. DNA samples from 163 cases with MIH and 82 unaffected controls from Turkey, and 71 cases with MIH and 89 unaffected controls from Brazil were studied. Eleven markers in five genes [ameloblastin (AMBN), amelogenin (AMELX), enamelin (ENAM), tuftelin (TUFT1), and tuftelin-interacting protein 11 (TFIP11)] were genotyped by the TaqMan method. Chi-square was used to compare allele and genotype frequencies between cases with MIH and controls. In the Brazilian data, distinct caries experience within the MIH group was also tested for association with genetic variation in enamel formation genes. The ENAM rs3796704 marker was associated with MIH in both populations (Brazil: p=0.03; OR=0.28; 95% C.I.=0.06-1.0; Turkey: p=1.22e-012; OR=17.36; 95% C.I.=5.98-56.78). Associations between TFIP11 (p=0.02), ENAM (p=0.00001), and AMELX (p=0.01) could be seen with caries independent of having MIH or genomic DNA copies of Streptococcus mutans detected by real time PCR in the Brazilian sample. Several genes involved in enamel formation appear to contribute to MIH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Vidal-Russell Romina

    2004-10-01

    be influencing only some taxa and some mitochondrial genes, thus indicating that the process is acting at the single gene (not whole genome level.