WorldWideScience

Sample records for gene variability mhc

  1. Sequence polymorphism and evolution of three cetacean MHC genes.

    Science.gov (United States)

    Xu, Shi Xia; Ren, Wen Hua; Li, Shu Zhen; Wei, Fu Wen; Zhou, Kai Ya; Yang, Guang

    2009-09-01

    Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.

  2. The MHC class I genes of zebrafish.

    Science.gov (United States)

    Dirscherl, Hayley; McConnell, Sean C; Yoder, Jeffrey A; de Jong, Jill L O

    2014-09-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.

  3. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  4. MHC Genes Linked to Autoimmune Disease.

    Science.gov (United States)

    Deitiker, Philip; Atassi, M Zouhair

    2015-01-01

    Autoimmune diseases (ADs), or autoinflammatoiy diseases, are growing in complexity as diagnoses improve and many factors escalate disease risk. Considerable genetic similarity is found among ADs, and they are frequently associated with major histocompatibility complex (MHC) genes. However, a given disease may be associated with more than one human leukocyte antigen (HLA) allotype, and a given HLA may be associated with more than one AD. The associations of non-MHC genes with AD present an additional problem, and the situation is further complicated by the role that other factors, such as age, diet, therapeutic drugs, and regional influences, play in disease. This review discusses some of the genetics and biochemistry of HLA-linked AD and inflammation, covering some of the best-studied examples and summarizing indicators for class I- and II-mediated disease. However, the scope of this review limits a detailed discussion of all known ADs.

  5. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner.

    Science.gov (United States)

    Neerincx, Andreas; Rodriguez, Galaxia M; Steimle, Viktor; Kufer, Thomas A

    2012-05-15

    Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.

  6. Allelic Polymorphism, Gene Duplication and Balancing Selection of MHC Class IIB Genes in the Omei Treefrog (Rhacophorus omeimontis)

    Institute of Scientific and Technical Information of China (English)

    Li HUANG; Mian ZHAO; Zhenhua LUO; Hua WU

    2016-01-01

    The worldwide declines in amphibian populations have largely been caused by infectious fungi and bacteria. Given that vertebrate immunity against these extracellular pathogens is primarily functioned by the major histocompatibility complex (MHC) class II molecules, the characterization and the evolution of amphibian MHC class II genes have attracted increasing attention. The polymorphism of MHC class II genes was found to be correlated with susceptibility to fungal pathogens in many amphibian species, suggesting the importance of studies on MHC class II genes for amphibians. However, such studies on MHC class II gene evolution have rarely been conducted on amphibians in China. In this study, we chose Omei treefrog (Rhacophorus omeimontis), which lived moist environments easy for breeding bacteria, to study the polymorphism of its MHC class II genes and the underlying evolutionary mechanisms. We amplified the entire MHC class IIB exon 2 sequence in the R. omeimontis using newly designed primers. We detected 102 putative alleles in 146 individuals. The number of alleles per individual ranged from one to seven, indicating that there are at least four loci containing MHC class IIB genes in R. omeimontis. The allelic polymorphism estimated from the 102 alleles in R. omeimontis was not high compared to that estimated in other anuran species. No significant gene recombination was detected in the 102 MHC class IIB exon 2 sequences. In contrast, both gene duplication and balancing selection greatly contributed to the variability in MHC class IIB exon 2 sequences of R. omeimontis. This study lays the groundwork for the future researches to comprehensively analyze the evolution of amphibian MHC genes and to assess the role of MHC gene polymorphisms in resistance against extracellular pathogens for amphibians in China.

  7. MHC Class II and Non-MHC Class II Genes Differentially Influence Humoral Immunity to Bacillus anthracis Lethal Factor and Protective Antigen

    Directory of Open Access Journals (Sweden)

    Judith A. James

    2012-12-01

    Full Text Available Anthrax Lethal Toxin consists of Protective Antigen (PA and Lethal Factor (LF, and current vaccination strategies focus on eliciting antibodies to PA. In human vaccination, the response to PA can vary greatly, and the response is often directed toward non-neutralizing epitopes. Variable vaccine responses have been shown to be due in part to genetic differences in individuals, with both MHC class II and other genes playing roles. Here, we investigated the relative contribution of MHC class II versus non-MHC class II genes in the humoral response to PA and LF immunization using three immunized strains of inbred mice: A/J (H-2k at the MHC class II locus, B6 (H-2b, and B6.H2k (H-2k. IgG antibody titers to LF were controlled primarily by the MHC class II locus, whereas IgG titers to PA were strongly influenced by the non-MHC class II genetic background. Conversely, the humoral fine specificity of reactivity to LF appeared to be controlled primarily through non-MHC class II genes, while the specificity of reactivity to PA was more dependent on MHC class II. Common epitopes, reactive in all strains, occurred in both LF and PA responses. These results demonstrate that MHC class II differentially influences humoral immune responses to LF and PA.

  8. Does variability matter? Major histocompatibility complex (MHC) variation and its associations to parasitism in natural small mammal populations

    OpenAIRE

    Meyer-Lucht, Yvonne

    2009-01-01

    The adaptive evolutionary potential of a species or population to cope with omnipresent environmental challenges is based on its genetic variation. Variability at immune genes, such as the major histocompatibility complex (MHC) genes, is assumed to be a very powerful and effective tool to keep pace with diverse and rapidly evolving pathogens. In my thesis, I studied natural levels of variation at the MHC genes, which have a key role in immune defence, and parasite burden in different small ma...

  9. Characterization of duck (Anas platyrhynchos) MHC class I gene in two duck lines

    Indian Academy of Sciences (India)

    LIN ZHANG; WEI-JIE LIU; JIA-QIANG WU; MIN-LI XU; ZHENG-JIE KONG; YAN-YAN HUANG; SHAO-HUA YANG

    2017-06-01

    To enrich gene polymorphism ofDuMHCI and provide data for further studies on disease resistance, 14DuMHCI genes from Weishan Ma duck and Cherry Valley duck were cloned, and their characterization were investigated. The overallconservation of the 14 alleles could be observed within the sequences, and relative conservation were also displayed in the peptide-binding domain and CD8 interaction sites. Based on full-length amino acid homology, MHC class I fromdifferent duck lines could be divided into 13 gene groups and three novel gene groups existed.Moreover, 14 key variable residues corresponding to gene groups division were exhibited on the homology modelling constructed based on theresolved protein structure of DuMHC I. This study explicit the characteristics of DuMHC I in the two duck lines and could contribute to design effective diagnostics and vaccines for the species against various infections.

  10. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes.

    Science.gov (United States)

    Dijkstra, Johannes Martinus; Katagiri, Takayuki; Hosomichi, Kazuyoshi; Yanagiya, Kazuyo; Inoko, Hidetoshi; Ototake, Mitsuru; Aoki, Takashi; Hashimoto, Keiichiro; Shiina, Takashi

    2007-04-01

    Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: "U" and "Z/ZE." However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage "L" because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the alpha1 domain, (2) a low GC content of the alpha1 and alpha2 exons, and (3) an HINLTL motif including a possible glycosylation site in the alpha3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as "Onmy-LBA-like." Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.

  11. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  12. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    Science.gov (United States)

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.

  13. A genome-wide survey of Major Histocompatibility Complex (MHC genes and their paralogues in zebrafish

    Directory of Open Access Journals (Sweden)

    Figueroa Felipe

    2005-11-01

    Full Text Available Abstract Background The genomic organisation of the Major Histocompatibility Complex (MHC varies greatly between different vertebrates. In mammals, the classical MHC consists of a large number of linked genes (e.g. greater than 200 in humans with predominantly immune function. In some birds, it consists of only a small number of linked MHC core genes (e.g. smaller than 20 in chickens forming a minimal essential MHC and, in fish, the MHC consists of a so far unknown number of genes including non-linked MHC core genes. Here we report a survey of MHC genes and their paralogues in the zebrafish genome. Results Using sequence similarity searches against the zebrafish draft genome assembly (Zv4, September 2004, 149 putative MHC gene loci and their paralogues have been identified. Of these, 41 map to chromosome 19 while the remaining loci are spread across essentially all chromosomes. Despite the fragmentation, a set of MHC core genes involved in peptide transport, loading and presentation are still found in a single linkage group. Conclusion The results extend the linkage information of MHC core genes on zebrafish chromosome 19 and show the distribution of the remaining MHC genes and their paralogues to be genome-wide. Although based on a draft genome assembly, this survey demonstrates an essentially fragmented MHC in zebrafish.

  14. Evolution of MHC class I genes in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian

  15. Evolution of MHC class I genes in the European badger (Meles meles)

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian M

  16. MHC class I genes in a New World primate, the cotton-top tamarin (Saguinus oedipus), have evolved by an active process of loci turnover.

    Science.gov (United States)

    Cadavid, L F; Mejía, B E; Watkins, D I

    1999-03-01

    Lymphocytes of a New World primate, the cotton-top tamarin (Saguinus oedipus), express classical G-related major histocompatibility complex (MHC) class I molecules with unusually limited polymorphism and variability. Three G-related loci, an F locus, an E locus, and two pseudogenes (So-N1 and So-N3) have been identified by cDNA library screening and extensive PCR analysis of both cDNA and genomic DNA from the cotton-top tamarin. Furthermore, each genus of the subfamily Callitrichinae (tamarins and marmosets) appears to express its own unique set of MHC class I genes, likely due to a rapid turnover of loci. The rapid emergence of unique MHC class I genes in the Callitrichinae genera, resulting from an active process of duplication and inactivation of loci, may account for the limited diversity of the MHC class I genes in the cotton-top tamarin. To determine the nature of the entire complement of MHC class I genes in the cotton-top tamarin, we synthesized a genomic DNA library and screened it with MHC class I-specific probes. We isolated nine new MHC class I pseudogenes from this library. These newly isolated tamarin G-related MHC class I pseudogenes are not closely related to any of their functional counterparts in the tamarin, suggesting that they do not share a recent common ancestral gene with the tamarin's currently expressed MHC class I loci. In addition, these tamarin sequences display a high rate of nonsynonymous substitutions in their putative peptide binding region. This indicates that the genes from which they have derived were likely subject to positive selection and, therefore, were once functional. Our data support the notion that an extremely high rate of loci turnover is largely responsible for the limited diversity of the MHC class I genes in the cotton-top tamarin.

  17. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    Science.gov (United States)

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  18. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  19. Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    Directory of Open Access Journals (Sweden)

    Canal David

    2010-09-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes hosts. Findings Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain. Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles. The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species. Conclusions Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci.

  20. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.

    Science.gov (United States)

    Sutton, Jolene T; Nakagawa, Shinichi; Robertson, Bruce C; Jamieson, Ian G

    2011-11-01

    The major histocompatibility complex (MHC) forms an integral component of the vertebrate immune response and, due to strong selection pressures, is one of the most polymorphic regions of the entire genome. Despite over 15 years of research, empirical studies offer highly contradictory explanations of the relative roles of different evolutionary forces, selection and genetic drift, acting on MHC genes during population bottlenecks. Here, we take a meta-analytical approach to quantify the results of studies into the effects of bottlenecks on MHC polymorphism. We show that the consequences of selection acting on MHC loci prior to a bottleneck event, combined with drift during the bottleneck, will result in overall loss of MHC polymorphism that is ∼15% greater than loss of neutral genetic diversity. These results are counter to general expectations that selection should maintain MHC polymorphism, but do agree with the results of recent simulation models and at least two empirical studies. Notably, our results suggest that negative frequency-dependent selection could be more important than overdominance for maintaining high MHC polymorphism in pre-bottlenecked populations. © 2011 Blackwell Publishing Ltd.

  1. Extensive shared polymorphism at non-MHC immune genes in recently diverged North American prairie grouse

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A; Oyler-McCance, Sara J.; Dunn, Peter O

    2017-01-01

    Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.

  2. Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii).

    Science.gov (United States)

    Miller, Hilary C; Bowker-Wright, Gemma; Kharkrang, Marie; Ramstad, Kristina

    2011-04-01

    Major histocompatibility complex (MHC) genes are important for vertebrate immune response and typically display high levels of diversity due to balancing selection from exposure to diverse pathogens. An understanding of the structure of the MHC region and diversity among functional MHC genes is critical to understanding the evolution of the MHC and species resilience to disease exposure. In this study, we characterise the structure and diversity of class II MHC genes in little spotted kiwi Apteryx owenii, a ratite bird representing the basal avian lineage (paleognaths). Results indicate that little spotted kiwi have a more complex MHC structure than that of other non-passerine birds, with at least five class II MHC genes, three of which are expressed and likely to be functional. Levels of MHC variation among little spotted kiwi are extremely low, with 13 birds assayed having nearly identical MHC genotypes (only two genotypes containing four alleles, three of which are fixed). These results suggest that recent genetic drift due to a species-wide bottleneck of at most seven birds has overwhelmed past selection for high MHC diversity in little spotted kiwi, potentially leaving the species highly susceptible to disease.

  3. MHC2TA and FCRL3 genes are not associated with rheumatoid arthritis in Mexican patients.

    Science.gov (United States)

    Mendoza Rincón, J F; Rodríguez Elias, A K; Fragoso, J M; Vargas Alarcón, G; Maldonado Murillo, K; Rivas Jiménez, M L; Barbosa Cobos, R E; Jimenez Morales, S; Lugo Zamudio, G; Tovilla Zárate, C; Ramírez Bello, J

    2016-02-01

    Rheumatoid arthritis (RA) is a multifactorial disease. A combination of genetic and environmental risk factors contributes to its etiology. Several genes have been reported to be associated with susceptibility to the development of RA. The MHC2TA and FCRL3 genes have been associated previously with RA in Swedish and Japanese populations, respectively. In two recent reports, we show an association between FCRL3 and juvenile rheumatoid arthritis (JRA), and MHC2TA and acute coronary syndrome (ACS) in Mexican population. We assessed the association between three single nucleotide polymorphisms (SNPs) of the MHC2TA (-168G/A; rs3087456, and +16G/C; rs4774) and FCRL3 (-169T/C; rs7528684) genes and rheumatoid arthritis in Mexican population through a genotyping method using allelic discrimination assays with TaqMan probes. Our case-control study included 249 patients with RA and 314 controls. We found no evidence of an association between the MHC2TA -168G/A and +1614G/C or FCRL3 -169T/C polymorphisms and RA in this Mexican population. In this cohort of Mexican patients with RA, we observed no association between the MHC2TA or FCRL3 genes and this autoimmune disease.

  4. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J. [Univ. of Western Australia, Perth (Australia); Townend, D.C. [Sir Charles Gairdner Hospital, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital, Perth (Australia)]|[Univ. of Western Australia, Perth (Australia)]|[Sir Charles Gairdner Hospital, Perth (Australia)

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  5. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure.

    Science.gov (United States)

    Herdegen, M; Babik, W; Radwan, J

    2014-11-01

    Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.

  6. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    Science.gov (United States)

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  7. Coloniality and migration are related to selection on MHC genes in birds.

    Science.gov (United States)

    Minias, Piotr; Whittingham, Linda A; Dunn, Peter O

    2017-02-01

    The major histocompatibility complex (MHC) plays a key role in pathogen recognition as a part of the vertebrate adaptive immune system. The great diversity of MHC genes in natural populations is maintained by different forms of balancing selection and its strength should correlate with the diversity of pathogens to which a population is exposed and the rate of exposure. Despite this prediction, little is known about how life-history characteristics affect selection at the MHC. Here, we examined whether the strength of balancing selection on MHC class II genes in birds (as measured with nonsynonymous nucleotide substitutions, dN) was related to their social or migratory behavior, two life-history characteristics correlated with pathogen exposure. Our comparative analysis indicated that the rate of nonsynonymous substitutions was higher in colonial and migratory species than solitary and resident species, suggesting that the strength of balancing selection increases with coloniality and migratory status. These patterns could be attributed to: (1) elevated transmission rates of pathogens in species that breed in dense aggregations, or (2) exposure to a more diverse fauna of pathogens and parasites in migratory species. Our study suggests that differences in social structure and basic ecological traits influence MHC diversity in natural vertebrate populations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  8. Diversification of porcine MHC class II genes: evidence for selective advantage.

    Science.gov (United States)

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred.

  9. MHC-dependent mate choice is linked to a trace-amine-associated receptor gene in a mammal.

    Science.gov (United States)

    Santos, Pablo S C; Courtiol, Alexandre; Heidel, Andrew J; Höner, Oliver P; Heckmann, Ilja; Nagy, Martina; Mayer, Frieder; Platzer, Matthias; Voigt, Christian C; Sommer, Simone

    2016-12-12

    Major histocompatibility complex (MHC) genes play a pivotal role in vertebrate self/nonself recognition, parasite resistance and life history decisions. In evolutionary terms, the MHC's exceptional diversity is likely maintained by sexual and pathogen-driven selection. Even though MHC-dependent mating preferences have been confirmed for many species, the sensory and genetic mechanisms underlying mate recognition remain cryptic. Since olfaction is crucial for social communication in vertebrates, variation in chemosensory receptor genes could explain MHC-dependent mating patterns. Here, we investigated whether female mate choice is based on MHC alleles and linked to variation in chemosensory trace amine-associated receptors (TAARs) in the greater sac-winged bat (Saccopteryx bilineata). We sequenced several MHC and TAAR genes and related their variation to mating and paternity data. We found strong evidence for MHC class I-dependent female choice for genetically diverse and dissimilar males. We also detected a significant interaction between mate choice and the female TAAR3 genotype, with TAAR3-heterozygous females being more likely to choose MHC-diverse males. These results suggest that TAARs and olfactory cues may be key mediators in mammalian MHC-dependent mate choice. Our study may help identify the ligands involved in the chemical communication between potential mates.

  10. Further observations on the role of the MHC genes and certain hearing disorders

    NARCIS (Netherlands)

    Bernstein, JM; Shanahan, TC; Schaffer, FM

    1996-01-01

    The pathogenetic mechanism of many hearing disorders have not been fully defined. Studies of certain hearing disorders in man have suggested a role for the major histocompatibility complex (MHC)-encoded genes in disease pathogenesis, In a cohort of unrelated patients with Meniere's Disease, otoscler

  11. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea).

    Science.gov (United States)

    Lau, Quintin; Chow, Natalie; Gray, Rachael; Gongora, Jaime; Higgins, Damien P

    2015-01-01

    Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species.

  12. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  13. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  14. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    Science.gov (United States)

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  15. Association of polymorphisms in non-classic MHC genes with susceptibility to autoimmune hepatitis

    Institute of Scientific and Technical Information of China (English)

    JieTang; ChengZhou; Zhi-JunZhang; Shu-SenZheng

    2012-01-01

    BACKGROUND: Autoimmune hepatitis is a chronic, generally progressive inflammatory disorder of the liver, of which the cause is unclear. It was demonstrated that genetic factors are involved in its pathogenesis. Previous studies showed that human leukocyte antigen in the major histocompatibility complex (MHC) is associated with susceptibility to autoimmune hepatitis. Current genome scanning studies suggest that genes outside the MHC also play a critical role in autoimmune disorders. This article focuses on our current understanding of the polymorphisms of these genes and their roles in the pathogenesis of autoimmune hepatitis. DATA  SOURCES: Studies were identified by searching MEDLINE and PubMed for articles using the keywords autoimmune hepatitis, polymorphism, CTLA-4, Fas, TNF-α, TGF-β1, TBX21 and VDR up to May 2011. Additional papers were identified by a manual search of the references from key articles. RESULTS:  According to the case-control studies on genetic polymorphisms, at least six genes (CTLA-4, Fas, TNF-α, TGF-β1, TBX21 and VDR) are involved in autoimmune hepatitis besides HLA. So far, there has been no agreement about gene susceptibility and the actual clinical significance of these genes is still controversial. CONCLUSION: Studies on gene polymorphisms outside the MHC and knowledge of genetic predispositions for autoimmune hepatitis may not only elucidate pathogenic mechanisms, but also provide new targets for therapy in the future.

  16. Characterization, polymorphism and selection of major histocompatibility complex (MHC DAB genes in vulnerable Chinese egret (Egretta eulophotes.

    Directory of Open Access Journals (Sweden)

    Zeng Wang

    Full Text Available The major histocompatibility complex (MHC is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes. Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids.

  17. The roles of MHC class II genes and post-translational modification in celiac disease.

    Science.gov (United States)

    Sollid, Ludvig M

    2017-08-01

    Our increasing understanding of the etiology of celiac disease, previously considered a simple food hypersensitivity disorder caused by an immune response to cereal gluten proteins, challenges established concepts of autoimmunity. HLA is a chief genetic determinant, and certain HLA-DQ allotypes predispose to the disease by presenting posttranslationally modified (deamidated) gluten peptides to CD4(+) T cells. The deamidation of gluten peptides is mediated by transglutaminase 2. Strikingly, celiac disease patients generate highly disease-specific autoantibodies to the transglutaminase 2 enzyme. The dual role of transglutaminase 2 in celiac disease is hardly coincidental. This paper reviews the genetic mapping and involvement of MHC class II genes in disease pathogenesis, and discusses the evidence that MHC class II genes, via the involvement of transglutaminase 2, influence the generation of celiac disease-specific autoantibodies.

  18. Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC

    Directory of Open Access Journals (Sweden)

    Cheng Yuanyuan

    2012-03-01

    Full Text Available Abstract Background The Tasmanian devil (Sarcophilus harrisii is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD. DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Results Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the northwestern devil population and lowest in southeastern areas. Conclusions The third sequenced marsupial MHC provides insights into the evolution of this dynamic genomic region among the diverse marsupial species. The two sequenced devil MHC haplotypes revealed three copy number variations that are likely to significantly affect immune response and suggest that future work should focus on the role of copy number variations in disease susceptibility in this species.

  19. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    Science.gov (United States)

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  20. MHC-restricted antigen presentation and recognition: constraints on gene, recombinant and peptide vaccines in humans

    Directory of Open Access Journals (Sweden)

    Cunha-Neto E.

    1999-01-01

    Full Text Available The target of any immunization is to activate and expand lymphocyte clones with the desired recognition specificity and the necessary effector functions. In gene, recombinant and peptide vaccines, the immunogen is a single protein or a small assembly of epitopes from antigenic proteins. Since most immune responses against protein and peptide antigens are T-cell dependent, the molecular target of such vaccines is to generate at least 50-100 complexes between MHC molecule and the antigenic peptide per antigen-presenting cell, sensitizing a T cell population of appropriate clonal size and effector characteristics. Thus, the immunobiology of antigen recognition by T cells must be taken into account when designing new generation peptide- or gene-based vaccines. Since T cell recognition is MHC-restricted, and given the wide polymorphism of the different MHC molecules, distinct epitopes may be recognized by different individuals in the population. Therefore, the issue of whether immunization will be effective in inducing a protective immune response, covering the entire target population, becomes an important question. Many pathogens have evolved molecular mechanisms to escape recognition by the immune system by variation of antigenic protein sequences. In this short review, we will discuss the several concepts related to selection of amino acid sequences to be included in DNA and peptide vaccines.

  1. Characterization of a nonclassical class I MHC gene in a reptile, the Galapagos marine iguana (Amblyrhynchus cristatus.

    Directory of Open Access Journals (Sweden)

    Scott Glaberman

    Full Text Available Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification.

  2. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    Science.gov (United States)

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  3. Analysis of the sequence variations in the Mhc DRB1-like gene of the endangered Humboldt penguin (Spheniscus humboldti).

    Science.gov (United States)

    Kikkawa, Eri F; Tsuda, Tomi T; Naruse, Taeko K; Sumiyama, Daisuke; Fukuda, Michio; Kurita, Masanori; Murata, Koichi; Wilson, Rory P; LeMaho, Yvon; Tsuda, Michio; Kulski, Jerzy K; Inoko, Hidetoshi

    2005-04-01

    The Major Histocompatibility Complex (Mhc) genomic region of many vertebrates is known to contain at least one highly polymorphic class II gene that is homologous in sequence to one or other of the human Mhc DRB1 class II genes. The diversity of the avian Mhc class II gene sequences have been extensively studied in chickens, quails, and some songbirds, but have been largely ignored in the oceanic birds, including the flightless penguins. We have previously reported that several penguin species have a high degree of polymorphism on exon 2 of the Mhc class II DRB1-like gene. In this study, we present for the first time the complete nucleotide sequences of exon 2, intron 2, and exon 3 of the DRB1-like gene of 20 Humboldt penguins, a species that is presently vulnerable to the dangers of extinction. The Humboldt DRB1-like nucleotide and amino acid sequences reveal at least eight unique alleles. Phylogenetic analysis of all the available avian DRB-like sequences showed that, of five penguin species and nine other bird species, the sequences of the Humboldt penguins grouped most closely to the Little penguin and the mallard, respectively. The present analysis confirms that the sequence variations of the Mhc class II gene, DRB1, are useful for discriminating among individuals within the same penguin population as well those within different penguin population groups and species.

  4. Renitelo cattle dermatophilosis and PCR-RFLP analysis of MHC gene.

    Science.gov (United States)

    Razafindraibe, Hanta; Raliniaina, Modestine; Maillard, Jean-Charles; Rakotondravao

    2006-10-01

    Renitelo breed is a cattle breed created at Kianjasoa station (Madagascar) by a triple crossing Malagasy Zebu x Limousine x Afrikander. This breed besides many valuable advantages, such as rapid growth and drought power, presents a huge disadvantage which is sensitivity to skin disease, dermatophilosis, previously known as streptotrichosis. This disease caused by Dermatophilus congolensis is one of the major threats for the population of Renitelo cattle. An allele of MHC gene has been shown to be dramatically associated to hypersensitivity to the disease in other cattle breed. To bring further information to tick borne disease clinical survey, mainly dermatophilosis, we wanted to verify if such allele could be found in this breed. Renitelo cattle included in this study were chosen for the presence of dermatophilosis lesions in more or less severe form (N = 17). These animals were blood sampled and a genetic analysis on the MHC gene BoLA-DRB3 was performed, by PCR amplification using BOD 31 & BOD 32 primers. Amplified products were analyzed by RFLP using enzymes. Restriction band profiles were characterized according to previously defined patterns. Three cows out of the 17 cattle analyzed for MHC gene presented the hypersensitive allele FDA. Two out of the three hypersensitive cows were pure breed while one was half breed. All the cows presented dermatophilosis lesions at least during rainy season but one of them particularly suffered from severe lesions covering all its body and died of the illness. This study shows that hypersensitivity allele found in other bovine breeds can be found in Renitelo breed. This result seemed to suggest that this characterization could be utilized in breeding program for this breed.

  5. Donor MHC gene to mitigate rejection of transplantation in recipient mice

    Institute of Scientific and Technical Information of China (English)

    LI Tong; ZHANG Zhi-tai; LI Hui; YAN Jun; TAN Jia-li; L(U) Yue-ping; HOU Sheng-cai; LI Shen-tao; XU Qing; TONG Xue-hong; DING Jie

    2011-01-01

    Background Donor organ rejection continues to be a significant problem for patients receiving transplants.We therefore tested whether transferring a donor's major histocompatibility complex (MHC) gene to the recipient would mitigate the rejection of transplanted hearts in mice.Methods H-2Kkgene from donor mice was amplified using nested polymerase chain reaction (PCR) and ligated into a mammalian expression vector,which was then transfected into thymus ground mass cells collected from the recipients.Clones stably expressing the transgene were then injected into the recipients' thymus visualized using ultrasound.Control mice were administered cells previously transfected with empty vector.Following heart transplantation,cardiac activity was monitored electrocardiographically.Recipient thymus cells were tested for MHC antigenicity using flow cytometry and spleen cells were subjected to mixed lymphocyte culture tests.Finally,the transplanted hearts were sectioned,stained and examined under light microscopy.Results Southern analysis following nested PCR revealed clear expression of H-2Kk gene.Following transplantation,electrocardiosignals were detectable highly significantly longer in recipients administered thymal cells expressing donor H-2Kk than in those receiving control cells.Flow cytometric analysis using an anti-H-2Kk antibody confirmed its expression in H-2Kk treated recipients but not in control mice.Mixed lymphocyte cultures containing H-2Kk treated cells showed significantly less proliferation than those containing control cells.Hearts from control mice showed substantially greater lymphocyte infiltration than those from H-2Kk treated mice and large areas of necrosis.Conclusion Rejection of transplanted hearts can be mitigated substantially by introducing the donor's MHC into the recipient.

  6. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    Directory of Open Access Journals (Sweden)

    Keith T Ballingall

    Full Text Available Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries. We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201 differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901, which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T

  7. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  8. MHC class II genes in the European badger (Meles meles) : Characterization, patterns of variation, and transcription analysis

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the alpha 1 and beta 1 domains that form the antigen-binding site (ABS) for the

  9. MHC class II genes in the European badger (Meles meles) : Characterization, patterns of variation, and transcription analysis

    NARCIS (Netherlands)

    Sin, Yung Wa; Dugdale, Hannah L.; Newman, Chris; Macdonald, David W.; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the alpha 1 and beta 1 domains that form the antigen-binding site (ABS) for the pre

  10. pRB is required for interferon-gamma-induction of the MHC class II abeta gene.

    Science.gov (United States)

    Zhu, X; Pattenden, S; Bremner, R

    1999-09-02

    pRB is required for IFN-gamma-induction of MHC class II in human tumor cell lines, providing a potential link between tumor suppressors and the immune system. However, other genes, such as cyclin D1, show pRB-dependency only in tumor cells, so by analogy, pRB may not be necessary for cII-regulation in normal cells. Here, we demonstrate that induction of the mouse MHC class II I-A heterodimer is normal in RB+/+ mouse embryonic fibroblasts (MEFs), but deficient in RB-/- MEFs. Inducibility is restored in RB-/- MEFs stably transfected with wild type RB cDNA or infected with an adenovirus expressing pRB. Thus, involvement of pRB in MHC class II expression is conserved in the mouse and is not an aberrant feature of tumorigenic, aneuploid, human tumor cells. Although cII genes are generally induced in a coordinate fashion, suggesting a common mechanism, we found that pRB was specifically required for induction of the Abeta, but not Aalpha or other MHC cII genes including Ebeta, Ii and H2-Malpha. Finally, IFN-gamma-induction of class II transactivator (CIITA), was pRB-independent, suggesting that pRB works downstream of this master-regulator of MHC class II expression.

  11. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte;

    2006-01-01

    was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  12. In vivo expression of MHC class I genes depends on the presence of a downstream barrier element.

    Directory of Open Access Journals (Sweden)

    Helit Cohen

    Full Text Available Regulation of MHC class I gene expression is critical to achieve proper immune surveillance. In this work, we identify elements downstream of the MHC class I promoter that are necessary for appropriate in vivo regulation: a novel barrier element that protects the MHC class I gene from silencing and elements within the first two introns that contribute to tissue specific transcription. The barrier element is located in intergenic sequences 3' to the polyA addition site. It is necessary for stable expression in vivo, but has no effect in transient transfection assays. Accordingly, in both transgenic mice and stably transfected cell lines, truncation of the barrier resulted in transcriptional gene silencing, increased nucleosomal density and decreased histone H3K9/K14 acetylation and H3K4 di-methylation across the gene. Significantly, distinct sequences within the barrier element govern anti-silencing and chromatin modifications. Thus, this novel barrier element functions to maintain transcriptionally permissive chromatin organization and prevent transcriptional silencing of the MHC class I gene, ensuring it is poised to respond to immune signaling.

  13. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    Science.gov (United States)

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  14. Matching for the non-conventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    NARCIS (Netherlands)

    Carapito, Raphael; Jung, Nicolas; Kwemou, Marius; Untrau, Meiggie; Michel, Sandra; Pichot, Angélique; Giacometti, Gaëlle; Macquin, Cécile; Ilias, Wassila; Morlon, Aurore; Kotova, Irina; Apostolova, Petya; Schmitt-Graeff, Annette; Cesbron, Anne; Gagne, Katia; Oudshoorn, Machteld; van der Holt, Bronno; Labalette, Myriam; Spierings, Eric; Picard, Christophe; Loiseau, Pascale; Tamouza, Ryad; Toubert, Antoine; Parissiadis, Anne; Dubois, Valérie; Lafarge, Xavier; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Vago, Luca; Ciceri, Fabio; Paillard, Catherine; Querol, Sergi; Sierra, Jorge; Fleischhauer, Katharina; Nagler, Arnon; Labopin, Myriam; Inoko, Hidetoshi; von dem Borne, Peter A; Kuball, Jürgen H E; Ota, Masao; Katsuyama, Yoshihiko; Michallet, Mauricette; Lioure, Bruno; Peffault de Latour, Régis; Blaise, Didier; Cornelissen, Jan J; Yakoub-Agha, Ibrahim; Claas, Frans; Moreau, Philippe; Milpied, Noël; Charron, Dominique; Mohty, Mohamad; Zeiser, Robert; Socié, Gérard; Bahram, Seiamak

    2016-01-01

    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic "MHC class I chain-related gene A", MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the i

  15. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    NARCIS (Netherlands)

    Carapito, R. (Raphael); Jung, N. (Nicolas); Kwemou, M. (Marius); Untrau, M. (Meiggie); Michel, S. (Sandra); Pichot, A. (Angélique); Giacometti, G. (Gaëlle); Macquin, C. (Cécile); Ilias, W. (Wassila); Morlon, A. (Aurore); Kotova, I. (Irina); Apostolova, P. (Petya); Schmitt-Graeff, A. (Annette); Cesbron, A. (Anne); K. Gagne (Katia); M. Oudshoorn (Machteld); B. van der Holt (Bronno); Labalette, M. (Myriam); E. Spierings (E.); Picard, C. (Christophe); P. Loiseau (Pascale); Tamouza, R. (Ryad); Toubert, A. (Antoine); Parissiadis, A. (Anne); V. Dubois (Valerie); Lafarge, X. (Xavier); Maumy-Bertrand, M. (Myriam); Bertrand, F. (Frédéric); Vago, L. (Luca); F. Ciceri (Fabio); Paillard, C. (Catherine); Querol, S. (Sergi); J. Sierra (Jorge); Fleischhauer, K. (Katharina); A. Nagler (Arnon); M. Labopin (Myriam); H. Inoko (Hidetoshi); P.A. von dem Borne (P. A.); J. Kuball (Jürgen); Ota, M. (Masao); Katsuyama, Y. (Yoshihiko); M. Michallet (M.); B. Lioure; De Latour, R.P. (Régis Peffault); D. Blaise (Didier); J.J. Cornelissen (Jan); I. Yakoub-Agha (Ibrahim); F.H.J. Claas (Frans); P. Moreau; N. Milpied; Charron, D. (Dominique); M. Mohty (Mohamad); Zeiser, R. (Robert); G. Socie (Gerard); Bahram, S. (Seiamak)

    2016-01-01

    textabstractGraft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts

  16. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    NARCIS (Netherlands)

    Carapito, R. (Raphael); Jung, N. (Nicolas); Kwemou, M. (Marius); Untrau, M. (Meiggie); Michel, S. (Sandra); Pichot, A. (Angélique); Giacometti, G. (Gaëlle); Macquin, C. (Cécile); Ilias, W. (Wassila); Morlon, A. (Aurore); Kotova, I. (Irina); Apostolova, P. (Petya); Schmitt-Graeff, A. (Annette); Cesbron, A. (Anne); K. Gagne (Katia); M. Oudshoorn (Machteld); B. van der Holt (Bronno); Labalette, M. (Myriam); E. Spierings (E.); Picard, C. (Christophe); P. Loiseau (Pascale); Tamouza, R. (Ryad); Toubert, A. (Antoine); Parissiadis, A. (Anne); V. Dubois (Valerie); Lafarge, X. (Xavier); Maumy-Bertrand, M. (Myriam); Bertrand, F. (Frédéric); Vago, L. (Luca); F. Ciceri (Fabio); Paillard, C. (Catherine); Querol, S. (Sergi); J. Sierra (Jorge); Fleischhauer, K. (Katharina); A. Nagler (Arnon); M. Labopin (Myriam); H. Inoko (Hidetoshi); P.A. von dem Borne (P. A.); J. Kuball (Jürgen); Ota, M. (Masao); Katsuyama, Y. (Yoshihiko); M. Michallet (M.); B. Lioure; De Latour, R.P. (Régis Peffault); D. Blaise (Didier); J.J. Cornelissen (Jan); I. Yakoub-Agha (Ibrahim); F.H.J. Claas (Frans); P. Moreau; N. Milpied; Charron, D. (Dominique); M. Mohty (Mohamad); Zeiser, R. (Robert); G. Socie (Gerard); Bahram, S. (Seiamak)

    2016-01-01

    textabstractGraft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts

  17. Matching for the non-conventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    NARCIS (Netherlands)

    Carapito, Raphael; Jung, Nicolas; Kwemou, Marius; Untrau, Meiggie; Michel, Sandra; Pichot, Angélique; Giacometti, Gaëlle; Macquin, Cécile; Ilias, Wassila; Morlon, Aurore; Kotova, Irina; Apostolova, Petya; Schmitt-Graeff, Annette; Cesbron, Anne; Gagne, Katia; Oudshoorn, Machteld; van der Holt, Bronno; Labalette, Myriam; Spierings, Eric; Picard, Christophe; Loiseau, Pascale; Tamouza, Ryad; Toubert, Antoine; Parissiadis, Anne; Dubois, Valérie; Lafarge, Xavier; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Vago, Luca; Ciceri, Fabio; Paillard, Catherine; Querol, Sergi; Sierra, Jorge; Fleischhauer, Katharina; Nagler, Arnon; Labopin, Myriam; Inoko, Hidetoshi; von dem Borne, Peter A; Kuball, Jürgen H E; Ota, Masao; Katsuyama, Yoshihiko; Michallet, Mauricette; Lioure, Bruno; Peffault de Latour, Régis; Blaise, Didier; Cornelissen, Jan J; Yakoub-Agha, Ibrahim; Claas, Frans; Moreau, Philippe; Milpied, Noël; Charron, Dominique; Mohty, Mohamad; Zeiser, Robert; Socié, Gérard; Bahram, Seiamak

    2016-01-01

    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic "MHC class I chain-related gene A", MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the

  18. Application of computational algorithms to assess the functionality of non-synonymous substitutions in MHC DRB gene of Nigerian goats

    Directory of Open Access Journals (Sweden)

    Yakubu Abdulmojeed

    2017-01-01

    Full Text Available The Major Histocompatibility Complex (MHC contains highly variable multi-gene families, which play a key role in the adaptive immune response within vertebrates. Among the Capra MHC class II genes, the expressed DRB locus is highly polymorphic, particularly in exon 2, which encodes the antigen-binding site. Models of variable non-synonymous/synonymous rate ratios among sites may provide important insights into functional constraints at different amino acid sites and may be used to detect sites under positive selection. Many non-synonymous single nucleotide polymorphisms (nsSNPs at the DRB locus in goats are suspected to impact protein function. This study, therefore, aimed at comparing the efficiency of six computational approaches to predict the likelihood of a particular non-synonymous (amino acid change coding SNP to cause a functional impact on the protein. This involved the use of PANTHER, SNAP, SIFT, PolyPhen-2, PROVEAN and nsSNPAnalyzer bioinformatics analytical tools in detecting harmful and beneficial effects at H57G, Y89R, V104D and Y112I substitutions in the peptide binding region of the DRB gene of Nigerian goats. The results from PANTHER analysis revealed that H57G, Y89R and Y112I substitutions (Pdeleterious= 0.113, 0.204 and 0.472, respectively were beneficial; while that of V104D was deleterious (Pdeleterious= 0.756, an indication that it was non-neutral. As regards the SNAP approach, H57G and Y89R substitutions were returned neutral with expected accuracy of 53 and 69%, respectively while V104D and Y112I substitutions were harmful. H57G and Y89R substitutions were also found harmless in the SIFT analysis. However, only H57G (PROVEAN and V104D (nsSNPAnalyzer amino acid substitutions were found to be beneficial. Interestingly, the predicted 3D structures of both native and mutant DRB protein appeared similar as validated by Ramachandran plots. The consensus reached by PANTHER, SNAP, SIFT and PolyPhen-2 approaches on the neutrality

  19. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    Science.gov (United States)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  20. Possible assortment of a1 and a2 region gene segments in human MHC class I molecules.

    Science.gov (United States)

    Johnson, G; Wu, T T

    1998-06-01

    Using pair-wise comparison of aligned nucleotide sequences of distinct and complete human MHC class I molecules, we have constructed triangular tables to study the similarities and differences of various a1 (exon 2) and a2 (exon 3) region sequences. There are two HLA-A (A*6901 and A*6601) and 13 HLA-B (B*4201, B*8101, B*4102, B*4801, B*4007, B*4001, B*4802, Dw53, B*4406, B*4402, B*3901, B*1514 and B*3702) sequences that have identical a1 sequences with other known MHC class I molecules, while their a2 sequences are the same as those of different ones. Of these 15, A*6901, B*4001 and B*4802 have previously been suggested as the results of recombination between A*6801 and A*0201, B*4101 and B*8101, and B*4801 and B*3501, respectively. However, many other sequences can also be used to generate them by recombination. Furthermore, their reciprocal products have never been identified. Thus, gene conversion has subsequently been suggested as an alternative. Another possible genetic mechanism for generating these nucleotide sequence similarities can be assortment, or that some gene segments can be duplicated or multiplicated to be used in different human MHC class I molecules. Interestingly, this genetic mechanism is probably absent for the generation of different mouse MHC class I molecules.

  1. MHC and non-MHC genes regulate elimination of lymphocytic choriomeningitis virus and antiviral cytotoxic T lymphocyte and delayed-type hypersensitivity mediating T lymphocyte activity in parallel

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Marker, O

    1989-01-01

    The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion, indicat......The course of systemic infection with lymphocytic choriomeningitis virus was studied in mouse strains differing in the MHC or non-MHC background. Virus clearance rates differed significantly between H-2 identical strains as well as between congenic strains differing in the H-2L subregion...

  2. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes.

    Science.gov (United States)

    Hannier, S; Triebel, F

    1999-11-01

    Previous studies indicated that signaling through lymphocyte activation gene-3 (LAG-3), a MHC class II ligand, induced by multivalent anti-receptor antibodies led to unresponsiveness to TCR stimulation. Here, lateral distribution of the LAG-3 molecules and its topological relationship (mutual proximity) to the TCR, CD8, CD4, and MHC class I and II molecules were studied in the plasma membrane of activated human T cells in co-capping experiments and conventional fluorescence microscopy. Following TCR engagement by either TCR-specific mAb or MHC-peptide complex recognition in T-B cell conjugates, LAG-3 was found to be specifically associated with the CD3-TCR complex. Similarly, following CD8 engagement LAG-3 and CD8 were co-distributed on the cell surface while only a low percentage of CD4-capped cells displayed LAG-3 co-caps. In addition, LAG-3 was found to be associated with MHC class II (i.e. DR, DP and DQ) and partially with MHC class I molecules. The supramolecular assemblies described here between LAG-3, CD3, CD8 and MHC class II molecules may result from an organization in raft microdomains, a phenomenon known to regulate early events of T cell activation.

  3. Extremely prolonged HIV seroconversion associated with an MHC haplotype carrying disease susceptibility genes for antibody deficiency disorders.

    Science.gov (United States)

    Padiglione, Alex; Aleksic, Eman; French, Martyn; Arnott, Alicia; Wilson, Kim M; Tippett, Emma; Kaye, Matthew; Gray, Lachlan; Ellett, Anne; Crane, Megan; Leslie, David E; Lewin, Sharon R; Breschkin, Alan; Birch, Chris; Gorry, Paul R; McPhee, Dale A; Crowe, Suzanne M

    2010-11-01

    Severe immunodeficiency during primary human immunodeficiency virus (HIV) infection is unusual. Here, we characterized viral and immunological parameters in a subject presenting with Pneumocystis jirovecii pneumonia in the setting of prolonged primary HIV illness and delayed seroconversion. HIV antibody was only detected by enzyme-linked immunosorbent assay 12 months after presentation, and Western blot profiles remain indeterminate. Isolated virus was of R5 phenotype, exhibited poor viral fitness, but was otherwise unremarkable. Analysis of HIV antibody isotypes showed failure to mount a detectable HIV IgG response over nearly 2 years of infection, in particular IgG(1)- and IgG(3)-specific responses, despite normal responses to common infections and vaccines. Genetic analysis demonstrated homozygosity for part of an MHC haplotype containing susceptibility genes for common variable immunodeficiency (CVID) syndrome and other antibody deficiency disorders. Thus, a primary disorder of specific antibody production may explain exceptionally slow antibody development in an otherwise severe seroconversion illness. This highlights the need for multiparameter testing, in particular use of a fourth generation HIV test, for confirming HIV infection and underscores the importance of host factors in HIV pathogenesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. 凹耳蛙MHC Ⅱ类B基因第二外显子多态性分析%Polymorphism of exon 2 of MHC Class Ⅱ B gene in the Chinese concave-eared torrent frog (Odorrana tormota)

    Institute of Scientific and Technical Information of China (English)

    李方; 疏义林; 吴海龙

    2012-01-01

    Currently, amphibians are experiencing global population decline, and it is believed that several amphibian mass extinction events were caused by environmental pathogens (such as chytrid fungus). Major histocompatibility complex (MHC) genes play a critical role in the course of immune response in all jawed vertebrates. MHC gene is considered to be one of the best candidates to analyze animal's adaptive evolution because its polymorphisms are usually associated with resistance or susceptibility to animal diseases. Here, we report our preliminary research on the allelic diversity of MHC class II B gene from the Chinese concave-eared frog (Odorrana tormota), a species endemic to eastern China. We initially amplified a 180-bp fragment of MHC II exon2 gene in O. Tormota using published polymerase chain reaction primers. Based on these results, we successfully obtained sequences of the gene's flanking regions using a ligation-mediated PCR method. After splicing, we obtained a sequence with length of 2,030 bp including whole exon2 and partial sequences of intronl and intron2. Then two exon2-specific primers (IIQ1BU/IIQ1BD) were designed forthe species and were used to investigate the B gene diversity of a wild population (Huangshan Mt., ?=32) using PCR, cloning and sequencing. In total, 34 distinct alleles were obtained and 2 to 5 alleles were found per individual. The proportion of variable sites for nucleotide and amino acid sequences across the 34 alleles was 16.17% (33/204) and 26.87% (18/67), respectively, and the majority of variable amino acids were located in antigen binding sites (ABS). Based on cDNA data and individual allelic diversity, we conclude that O. Tormota possesses at least three class II B loci. These results showed that though the species exhibits a restricted distribution, the Chinese concave-eared frog displays high diversity at the B loci compared to that of other species in Ranidae. Patterns of nucleotide substitution exhibited the signature of

  5. Genetic variation of the major histocompatibility complex (MHC class II B gene in the threatened Hume's pheasant, Syrmaticus humiae.

    Directory of Open Access Journals (Sweden)

    Weicai Chen

    Full Text Available Major histocompatibility complex (MHC genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae, which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  6. Epigenetic regulations in the IFNγ signalling pathway: IFNγ-mediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigen-presenting machinery genes.

    Science.gov (United States)

    Vlková, Veronika; Štěpánek, Ivan; Hrušková, Veronika; Šenigl, Filip; Mayerová, Veronika; Šrámek, Martin; Šímová, Jana; Bieblová, Jana; Indrová, Marie; Hejhal, Tomáš; Dérian, Nicolas; Klatzmann, David; Six, Adrien; Reiniš, Milan

    2014-08-30

    Downregulation of MHC class I expression on tumour cells, a common mechanism by which tumour cells can escape from specific immune responses, can be associated with coordinated silencing of antigen-presenting machinery genes. The expression of these genes can be restored by IFNγ. In this study we documented association of DNA demethylation of selected antigen-presenting machinery genes located in the MHC genomic locus (TAP-1, TAP-2, LMP-2, LMP-7) upon IFNγ treatment with MHC class I upregulation on tumour cells in several MHC class I-deficient murine tumour cell lines (TC-1/A9, TRAMP-C2, MK16 and MC15). Our data also documented higher methylation levels in these genes in TC-1/A9 cells, as compared to their parental MHC class I-positive TC-1 cells. IFNγ-mediated DNA demethylation was relatively fast in comparison with demethylation induced by DNA methyltransferase inhibitor 5-azacytidine, and associated with increased histone H3 acetylation in the promoter regions of APM genes. Comparative transcriptome analysis in distinct MHC class I-deficient cell lines upon their treatment with either IFNγ or epigenetic agents revealed that a set of genes, significantly enriched for the antigen presentation pathway, was regulated in the same manner. Our data demonstrate that IFNγ acts as an epigenetic modifier when upregulating the expression of antigen-presenting machinery genes.

  7. Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience.

    Science.gov (United States)

    Choisy-Rossi, Caroline-Morgane; Holl, Thomas M; Pierce, Melissa A; Chapman, Harold D; Serreze, David V

    2004-09-15

    For unknown reasons, the common MHC class I variants encoded by the H2g7 haplotype (Kd, Db) aberrantly elicit autoreactive CD8 T cell responses essential to type 1 diabetes development when expressed in NOD mice, but not other strains. In this study, we show that interactive non-MHC genes allow a NOD-derived diabetogenic CD8 T cell clonotype (AI4) to be negatively selected at far greater efficiency in C57BL/6 mice congenically expressing H2g7 (B6.H2g7). However, the few AI4 T cells escaping negative selection in B6.H2g7 mice are exported from the thymus more efficiently, and are more functionally aggressive than those of NOD origin. This provides mechanistic insight to previous findings that resistant mouse strains carry some genes conferring greater diabetes susceptibility than the corresponding NOD allele. In the B6.H2g7 stock, non-MHC gene-controlled elevations in TCR expression are associated with both enhanced negative selection of diabetogenic CD8 T cells and increased aggressiveness of those escaping this process. An implication of this finding is that the same phenotype, in this case relatively high TCR expression levels, could have double-edged sword effects, contributing to type 1 diabetes resistance at one level of T cell development, but at another actually promoting pathogenesis.

  8. Collagen induced arthritis (CIA) in mice features regulatory transcriptional network connecting major histocompatibility complex (MHC H2) with autoantigen genes in the thymus.

    Science.gov (United States)

    Donate, Paula B; Fornari, Thaís A; Junta, Cristina M; Magalhães, Danielle A; Macedo, Cláudia; Cunha, Thiago M; Nguyen, Catherine; Cunha, Fernando Q; Passos, Geraldo A

    2011-05-01

    Considering that imbalance of central tolerance in the thymus contributes to aggressive autoimmunity, we compared the expression of peripheral tissue autoantigens (PTA) genes, which are involved in self-representation in the thymic stroma, of two mouse strains; DBA-1/J (MHC-H2(q)) susceptible and DBA-2/J (MHC-H2(d)) resistant to collagen induced arthritis (CIA). We evaluate whether these strains differ in their thymic gene expression, allowing identification of genes that might play a role in susceptibility/resistance to CIA. Microarray profiling showed that 1093 PTA genes were differentially modulated between collagen immunized DBA-1/J and DBA-2/J mice. These genes were assigned to 17 different tissues/organs, including joints/bone, characterizing the promiscuous gene expression (PGE), which is implicated in self-representation. Hierarchical clustering of microarray data and quantitative RT-PCR analysis showed that Aire (autoimmune regulator), an important regulator of the PGE process, Aire-dependent (insulin), Aire-independent (Col2A1 and Gad67), and other 22 joint/bone autoantigen genes were down-regulated in DBA-1/J compared with DBA-2/J in the thymus. Considering the importance of MHC-H2 in peptide-self presentation and autoimmunity susceptibility, we reconstructed transcriptional networks of both strains based on actual microarray data. The networks clearly demonstrated different MHC-H2 transcriptional interactions with PTAs genes. DBA-1/J strain featured MHC-H2 as a node influencing downstream genes. Differently, in DBA-2/J strain network MHC-H2 was exclusively self-regulated and does not control other genes. These findings provide evidence that CIA susceptibility in mice may be a reflex of a cascade-like transcriptional control connecting different genes to MHC-H2 in the thymus.

  9. Polymorphic analysis of Mhc-DPB1 gene exon 2 in Tibetan macaques (Macaca thibetana)%藏酋猴 Mhc-DPB1基因 exon2的多态性

    Institute of Scientific and Technical Information of China (English)

    李佳薏; 姚永芳; 周亮; 徐怀亮

    2012-01-01

    主要组织相容性复合体(Major histocompatibility complex,MHC)对许多疾病的易感性和抵抗力起着 重要的作用.为了解藏酋猴(Macaca thibetana)的 MHC 基因遗传背景,以促进藏酋猴遗传资源的保护及其在生 物医学研究中的应用,文章采用 PCR 扩增和克隆测序等方法对来自四川地区的 70 个藏酋猴样品的 Mhc-DPB1 基因 exon 2 进行了检测和分析.首次在藏酋猴中获得了 18 个 DPB1 等位基因(Math-DPB1),其中 1 个为假基因(Math- DPB1*01:06N).18 个等位基因中,Math-DPB1*06:01:01 (67.14%) 的阳性检出率最高,其次为 Math-DPB1*01:03:01 (37.14%)、Math-DPB1*09:02(25.71%)和 Math-DPB1*22:01(15.71%).氨基酸序列比对发现,藏酋猴 Math-DPB1 等位基因编码的氨基酸序列中,有 5 个氨基酸残基变异位点表现出物种特异性.不同物种来源的 DPB1 等位基 因系统发生树表明,藏酋猴、猕猴(Macaca mulatta)和食蟹猴(Macaca fascicularis)的 DPB1 等位基因不是以物种 特异性方式聚类,而是种间混聚在一起,并显示出明显的跨物种多态性(Trans-species polymorphism).选择性检 验表明,平衡选择(Balancing selection)在维持 Math-DPB1 基因的多态性中起着重要的作用.%Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background of the Tibetan macaques (Macaca thibetana), and thereby facilitate their protection and application in biomedical research, the second exon of the Mhc-DPBl genes from 70 Tibetan macaques in Sichuan Province were characterized by PCR, cloning, sequencing, and statistical analysis. A total of 18 Mhc-DPB1 alleles were identified from Tibetan macaques, of which one (Math-DPB1* 01:06N) was a pseudogene. Math-DPB1*06:01:01 (67.14%) was the most frequent allele in all the 18 alleles detected, followed by Math-DPBl* 01:03:01 (37.14%), Math-DPB 1*09:02 (25.71%), and Math-DPB 1

  10. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys.

    Directory of Open Access Journals (Sweden)

    Juan S Lugo

    Full Text Available The MHC class I (MHC-I region in New World monkeys (Platyrrhini has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10 and -B (15 loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i MHC-I genes has expanded differentially among Platyrrhini species, ii Callitrichinae (tamarins and marmosets MHC-B loci have limited or tissue-specific expression, iii MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding.

  11. MHC II-β chain gene expression studies define the regional organization of the thymus in the developing bony fish Dicentrarchus labrax (L.).

    Science.gov (United States)

    Picchietti, S; Abelli, L; Guerra, L; Randelli, E; Proietti Serafini, F; Belardinelli, M C; Buonocore, F; Bernini, C; Fausto, A M; Scapigliati, G

    2015-02-01

    MHC II-β chain gene transcripts were quantified by real-time PCR and localised by in situ hybridization in the developing thymus of the teleost Dicentrarchus labrax, regarding the specialization of the thymic compartments. MHC II-β expression significantly rose when the first lymphoid colonization of the thymus occurred, thereafter increased further when the organ progressively developed cortex and medulla regions. The evolving patterns of MHC II-β expression provided anatomical insights into some mechanisms of thymocyte selection. Among the stromal cells transcribing MHC II-β, scattered cortical epithelial cells appeared likely involved in the positive selection, while those abundant in the cortico-medullary border and medulla in the negative selection. These latter most represent dendritic cells, based on typical localization and phenotype. These findings provide further proofs that efficient mechanisms leading to maturation of naïve T cells are operative in teleosts, strongly reminiscent of the models conserved in more evolved gnathostomes.

  12. Colonizing the world in spite of reduced MHC variation

    DEFF Research Database (Denmark)

    Gangoso, Laura; Alcaide, Miguel; Grande, Juan M;

    2012-01-01

    the genus) is very high, falcons exhibit ancestrally low intra- and interspecific MHC variability. This pattern is not due to the inadvertent survey of paralogous genes or pseudogenes. Further, patterns of variation in mitochondrial or other nuclear genes do not indicate a generalized low level of genome-wide...

  13. Diversification of both KIR and NKG2 natural killer cell receptor genes in macaques - implications for highly complex MHC-dependent regulation of natural killer cells.

    Science.gov (United States)

    Walter, Lutz; Petersen, Beatrix

    2017-02-01

    The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells. © 2016 John Wiley & Sons Ltd.

  14. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus).

    Science.gov (United States)

    Glaberman, Scott; Moreno, Maria A; Caccone, Adalgisa

    2009-08-01

    Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.

  15. Polymorphism Analysis on Exon 2 of MHC-DQA Gene in 4 Rabbit Breeds%4个家兔品种MHC-DQA基因外显子2Mbo Ⅱ酶切多态性分析

    Institute of Scientific and Technical Information of China (English)

    邝良德; 谢晓红; 黄邓萍; 易军; 雷岷; 任永军; 郭志强; 李丛艳; 郑洁

    2011-01-01

    采用PCR-RFLP方法对4个不同品种家兔MHC-DQA基因外显子2的遗传多态性进行检测,并进行聚类分析.结果表明,在家兔MHC-DQA基因外显子2的第103 bp处表现出多态性;x2适合性检验结果表明,Mbo Ⅱ酶切位点在齐卡大型新西兰白兔和齐卡巨型白兔群体均没有达到Hardy-Weinberg平衡状态(P0.05);聚类分析结果表明,齐卡大型新西兰白兔与齐卡巨型白兔亲缘关系最近.试验结果为进一步利用MHC进行抗病育种提供了分子生物学基础.%Genetic polymorphism on exon 2 of MHC-DQA gene was investigated in 4 rabbits breeds by PCR-RFLP method with Mbo Ⅱ enzyme, and cluster analysis was also performed.The results showed that there was a polymorphism at position 103 bp of exon 2 of MHC-DQA.The x2 tests showed that Mbo Ⅱ restriction enzyme sites were not in Hardy-Weinberg equilibrium among ZIKA large New Zealand white rabbits and ZIKA giant white rabbits(P<0.05), while in Hardy-Weinberg equilibrium among California rabbit and Qixin rabbit(P>0.05), cluster analysis showed that ZIKA large New Zealand white rabbits had the closest genetic relationship with ZIKA giant white rabbits.The results obtained in this study will provide a molecular biological basis for further analysis of relationship of MHC polymorphism and disease resistance in rabbit.

  16. Trans-species polymorphism of the Mhc class II DRB-like gene in banded penguins (genus Spheniscus).

    Science.gov (United States)

    Kikkawa, Eri F; Tsuda, Tomi T; Sumiyama, Daisuke; Naruse, Taeko K; Fukuda, Michio; Kurita, Masanori; Wilson, Rory P; LeMaho, Yvon; Miller, Gary D; Tsuda, Michio; Murata, Koichi; Kulski, Jerzy K; Inoko, Hidetoshi

    2009-05-01

    The Major Histocompatibility Complex (Mhc) class II DRB locus of vertebrates is highly polymorphic and some alleles may be shared between closely related species as a result of balancing selection in association with resistance to parasites. In this study, we developed a new set of PCR primers to amplify, clone, and sequence overlapping portions of the Mhc class II DRB-like gene from the 5'UTR end to intron 3, including exons 1, 2, and 3 and introns 1 and 2 in four species (20 Humboldt, six African, five Magellanic, and three Galapagos penguins) of penguin from the genus Spheniscus (Sphe). Analysis of gene sequence variation by the neighbor-joining method of 21 Sphe sequences and 20 previously published sequences from four other penguin species revealed overlapping clades within the Sphe species, but species-specific clades for the other penguin species. The overlap of the DRB-like gene sequence variants between the four Sphe species suggests that, despite their allopatric distribution, the Sphe species are closely related and that some shared DRB1 alleles may have undergone a trans-species inheritance because of balancing selection and/or recent rapid speciation. The new primers and PCR assays that we have developed for the identification of the DRB1 DNA and protein sequence variations appear to be useful for the characterization of the molecular evolution of the gene in closely related Penguin species and might be helpful for the assessment of the genetic health and the management of the conservation and captivity of these endangered species.

  17. MHC-correlated mate choice in humans: a review.

    Science.gov (United States)

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  18. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes

    DEFF Research Database (Denmark)

    Walker, Brian A; Hunt, Lawrence G; Sowa, Anna K

    2011-01-01

    In most mammals, the MHC class I molecules are polymorphic and determine the specificity of peptide presentation, whereas the transporter associated with antigen presentation (TAP) heterodimers are functionally monomorphic. In chickens, there are two classical class I genes but only one is expres...

  19. Genetic diversity of MHC class I loci in six non-model frogs is shaped by positive selection and gene duplication

    Science.gov (United States)

    Kiemnec-Tyburczy, K M; Richmond, J Q; Savage, A E; Lips, K R; Zamudio, K R

    2012-01-01

    Comparative studies of major histocompatibility complex (MHC) genes across vertebrate species can reveal the evolutionary processes that shape the structure and function of immune regulatory proteins. In this study, we characterized MHC class I sequences from six frog species representing three anuran families (Hylidae, Centrolenidae and Ranidae). Using cDNA from our focal species, we amplified a total of 79 unique sequences spanning exons 2–4 that encode the extracellular domains of the functional alpha chain protein. We compared intra- and interspecific nucleotide and amino-acid divergence, tested for recombination, and identified codon sites under selection by estimating the rate of non-synonymous to synonymous substitutions with multiple codon-based maximum likelihood methods. We determined that positive (diversifying) selection was acting on specific amino-acid sites located within the domains that bind pathogen-derived peptides. We also found significant signals of recombination across the physical distance of the genes. Finally, we determined that all the six species expressed two or three putative classical class I loci, in contrast to the single locus condition of Xenopus laevis. Our results suggest that MHC evolution in anurans is a dynamic process and that variation in numbers of loci and genetic diversity can exist among taxa. Thus, the accumulation of genetic data for more species will be useful in further characterizing the relative importance of processes such as selection, recombination and gene duplication in shaping MHC loci among amphibian lineages. PMID:22549517

  20. Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations.

    Science.gov (United States)

    Fraser, B A; Ramnarine, I W; Neff, B D

    2010-02-01

    The highly diverse genes of the major histocompatibility complex (MHC) are important in the adaptive immune system and are expected to be under selection from pathogens. Thus, the MHC genes provide an exceptional opportunity to investigate patterns of selection within and across populations. In this study, we analyzed genetic variation at the MHC class IIB gene and six microsatellite loci across 10 populations of guppies (Poecilia reticulata) in the northern range of Trinidad. We found a high level of diversity at the MHC, with a total of 43 alleles in 142 individuals. At the population level, we found that neutral evolution could not fully account for the variability found at the MHC. Instead, we found that MHC F(ST) statistics were lower than F(ST) derived from the microsatellite loci; 33 of 45 population pairwise estimates for the MHC were significantly lower than those for the microsatellite loci, and MHC F(ST) estimates were consistently lower than those predicted by a coalescent model of neutral evolution. These results suggest a similar selection acting across populations, and we discuss the potential roles of directional and balancing selection. At the sequence level, we found evidence for both positive and purifying selection. Furthermore, positive selection was detected within and adjacent to the putative peptide-binding region (PBR) of the MHC. Surprisingly, we also found a purifying selection at two sites within the putative PBR. Overall, our data provide evidence for selection for functional diversity at the MHC class IIB gene at both the population and nucleotide levels of guppy populations.

  1. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD.

    Science.gov (United States)

    Carapito, Raphael; Jung, Nicolas; Kwemou, Marius; Untrau, Meiggie; Michel, Sandra; Pichot, Angélique; Giacometti, Gaëlle; Macquin, Cécile; Ilias, Wassila; Morlon, Aurore; Kotova, Irina; Apostolova, Petya; Schmitt-Graeff, Annette; Cesbron, Anne; Gagne, Katia; Oudshoorn, Machteld; van der Holt, Bronno; Labalette, Myriam; Spierings, Eric; Picard, Christophe; Loiseau, Pascale; Tamouza, Ryad; Toubert, Antoine; Parissiadis, Anne; Dubois, Valérie; Lafarge, Xavier; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Vago, Luca; Ciceri, Fabio; Paillard, Catherine; Querol, Sergi; Sierra, Jorge; Fleischhauer, Katharina; Nagler, Arnon; Labopin, Myriam; Inoko, Hidetoshi; von dem Borne, Peter A; Kuball, Jürgen; Ota, Masao; Katsuyama, Yoshihiko; Michallet, Mauricette; Lioure, Bruno; Peffault de Latour, Régis; Blaise, Didier; Cornelissen, Jan J; Yakoub-Agha, Ibrahim; Claas, Frans; Moreau, Philippe; Milpied, Noël; Charron, Dominique; Mohty, Mohamad; Zeiser, Robert; Socié, Gérard; Bahram, Seiamak

    2016-10-13

    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain-related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI, 1.45-1.55; P < .001), and nonelapse mortality (HR, 1.35; 95% CI, 1.24-1.46; P < .001). The increased risk for GVHD was mirrored by a lower risk for relapse (HR, 0.50; 95% CI, 0.43-0.59; P < .001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice.

  2. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD

    Science.gov (United States)

    Carapito, Raphael; Jung, Nicolas; Kwemou, Marius; Untrau, Meiggie; Michel, Sandra; Pichot, Angélique; Giacometti, Gaëlle; Macquin, Cécile; Ilias, Wassila; Morlon, Aurore; Kotova, Irina; Apostolova, Petya; Schmitt-Graeff, Annette; Cesbron, Anne; Gagne, Katia; Oudshoorn, Machteld; van der Holt, Bronno; Labalette, Myriam; Spierings, Eric; Picard, Christophe; Loiseau, Pascale; Tamouza, Ryad; Toubert, Antoine; Parissiadis, Anne; Dubois, Valérie; Lafarge, Xavier; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Vago, Luca; Ciceri, Fabio; Paillard, Catherine; Querol, Sergi; Sierra, Jorge; Fleischhauer, Katharina; Nagler, Arnon; Labopin, Myriam; Inoko, Hidetoshi; von dem Borne, Peter A.; Kuball, Jürgen; Ota, Masao; Katsuyama, Yoshihiko; Michallet, Mauricette; Lioure, Bruno; Peffault de Latour, Régis; Blaise, Didier; Cornelissen, Jan J.; Yakoub-Agha, Ibrahim; Claas, Frans; Moreau, Philippe; Milpied, Noël; Charron, Dominique; Mohty, Mohamad; Zeiser, Robert; Socié, Gérard

    2016-01-01

    Graft-versus-host disease (GVHD) is among the most challenging complications in unrelated donor hematopoietic cell transplantation (HCT). The highly polymorphic MHC class I chain–related gene A, MICA, encodes a stress-induced glycoprotein expressed primarily on epithelia. MICA interacts with the invariant activating receptor NKG2D, expressed by cytotoxic lymphocytes, and is located in the MHC, next to HLA-B. Hence, MICA has the requisite attributes of a bona fide transplantation antigen. Using high-resolution sequence-based genotyping of MICA, we retrospectively analyzed the clinical effect of MICA mismatches in a multicenter cohort of 922 unrelated donor HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 10/10 allele-matched HCT pairs. Among the 922 pairs, 113 (12.3%) were mismatched in MICA. MICA mismatches were significantly associated with an increased incidence of grade III-IV acute GVHD (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.50-2.23; P < .001), chronic GVHD (HR, 1.50; 95% CI, 1.45-1.55; P < .001), and nonelapse mortality (HR, 1.35; 95% CI, 1.24-1.46; P < .001). The increased risk for GVHD was mirrored by a lower risk for relapse (HR, 0.50; 95% CI, 0.43-0.59; P < .001), indicating a possible graft-versus-leukemia effect. In conclusion, when possible, selecting a MICA-matched donor significantly influences key clinical outcomes of HCT in which a marked reduction of GVHD is paramount. The tight linkage disequilibrium between MICA and HLA-B renders identifying a MICA-matched donor readily feasible in clinical practice. PMID:27549307

  3. MHC polymorphism under host-pathogen coevolution.

    Science.gov (United States)

    Borghans, José A M; Beltman, Joost B; De Boer, Rob J

    2004-02-01

    The genes encoding major histocompatibility (MHC) molecules are among the most polymorphic genes known for vertebrates. Since MHC molecules play an important role in the induction of immune responses, the evolution of MHC polymorphism is often explained in terms of increased protection of hosts against pathogens. Two selective pressures that are thought to be involved are (1) selection favoring MHC heterozygous hosts, and (2) selection for rare MHC alleles by host-pathogen coevolution. We have developed a computer simulation of coevolving hosts and pathogens to study the relative impact of these two mechanisms on the evolution of MHC polymorphism. We found that heterozygote advantage per se is insufficient to explain the high degree of polymorphism at the MHC, even in very large host populations. Host-pathogen coevolution, on the other hand, can easily account for realistic polymorphisms of more than 50 alleles per MHC locus. Since evolving pathogens mainly evade presentation by the most common MHC alleles in the host population, they provide a selective pressure for a large variety of rare MHC alleles. Provided that the host population is sufficiently large, a large set of MHC alleles can persist over many host generations under host-pathogen coevolution, despite the fact that allele frequencies continuously change.

  4. The Genetic Diversity of TLR4 MHC-DRB Genes in Dairy Goats Using PCR-RFLP Technique

    Directory of Open Access Journals (Sweden)

    M. Petlane

    2012-08-01

    Full Text Available This research was aimed at evaluating the genetic polymorphism of TLR4 and MHC-DRB genes in dairy goats [(Saanen, Etawah Grade-Saanen Crossbred (PESA, and Etawah Grade (PE] using PCR -RFLP. The two genes are involved in immunity where they play a crucial role in pathogens recognition and presentation to T-cells and CD4 cells. PCR was used to amplify genomic DNA for TLR4 (382 bp and CaLA-DRB (285 bp genes fragments. Genetic polymorphism was detected by digesting TLR4 amplimer with AluI while DRB amplimers were digested with PstI and TaqI in two separate reactions. The results showed that TLR4|AluI was monomorphic and fixed with allele T in all three breeds while DRB|TaqI and DRB|PstI loci were found polymorphic for all breeds. Heterozygosity expected (He and PIC were found low at both DRB|TaqI and DRB|PstI loci in PE and Saanen. Χ2 results showed that DRB|PstI in PE and DRB|TaqI in PESA were not in H-W equilibrium and did not display homozygous recessive genotype. The results declared that TLR4|AluI was not a good for marker for diseases resistance whereas DRB|TaqI and DRB|PstI gave hope for resistance based on their PIC.

  5. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics.

    Science.gov (United States)

    Tollenaere, C; Bryja, J; Galan, M; Cadet, P; Deter, J; Chaval, Y; Berthier, K; Ribas Salvador, A; Voutilainen, L; Laakkonen, J; Henttonen, H; Cosson, J-F; Charbonnel, N

    2008-09-01

    We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.

  6. Differential transcript profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes during the ontogeny of thymus and other tissues.

    Science.gov (United States)

    Melo-Lima, Breno Luiz; Evangelista, Adriane Feijó; de Magalhães, Danielle Aparecida Rosa; Passos, Geraldo Aleixo; Moreau, Philippe; Donadi, Eduardo Antonio

    2014-01-01

    Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8(+) and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitting the negative selection events. Aiming to characterize the transcriptional profiles of nonclassical MHC class I genes in spatial-temporal association with the Aire expression, we evaluated the gene expression of H2-Q7(Qa-2), H2-T23(Qa-1), H2-Q10(Qa-10), and Aire during fetal and postnatal development of thymus and other tissues. In the thymus, H2-Q7(Qa-2) transcripts were detected at high levels throughout development and were positively correlated with Aire expression during fetal ages. H2-Q7(Qa-2) and H2-T23(Qa-1) showed distinct expression patterns with gradual increasing levels according to age in most tissues analyzed. H2-Q10(Qa-10) was preferentially expressed by the liver. The Aire transcriptional profile showed increased levels during the fetal period and was detectable in postnatal ages in the thymus. Overall, nonclassical MHC class I genes started to be expressed early during the ontogeny. Their levels varied according to age, tissue, and mouse strain analyzed. This differential expression may contribute to the distinct patterns of mouse susceptibility/resistance to infectious and noninfectious disorders.

  7. 扬子鳄种群MHC Ⅱ类B基因第3外元多态性分析%Polymorphism of Exon 3 of MHC Class Ⅱ B Gene in Chinese Alligator (Alligator sinensis)

    Institute of Scientific and Technical Information of China (English)

    刘辉; 吴孝兵; 晏鹏; 蒋志刚

    2007-01-01

    The polymorphism of MHC class Ⅱ B gene in 14 Chinese alligators was analyzed, which came from three different areas: a wild population from Xuancheng, Anhui, a captive population from Changxing, Zhejiang, and a captive population from Anhui Research Center for Reproduction of Chinese Alligators. The gene fragment was amplified using a pair of specific primers designed from the MHC gene sequence of the spectacled caiman. A total of 34 sequence haplotypes of exon 3 were detected in the sampled Chinese alligators. The numbers of haplotypes of the 3 Chinese alligator populations were 15, 10, and 9, respectively. The overall estimation of the MHC polymorphism in the Chinese alligator population was higher than those in mammals and in cyprinid fish. The rates of nonsynonymous substitutions (dN) occurred at a significantly lower frequency than that of synonymous substitutions (ds), which were not consistent with the common rule. This result might suggest that the polymorphism of exon 3 seemed not to be maintained by the balancing selection. The neutrality test of Tajima excluded the null hypothesis that the polymorphism of exon 3 was generated by a random drift, and the fact that D = -0.401 indicated an excess of rare mutations in the Chinese alligator.The nucleotide diversity of the sequences and the phylogenetic relations were also analyzed, and the results suggested that there was no significant difference in genetic diversity among the 3 populations of Chinese alligator.%分析了取自安徽宣城野生种群、安徽省扬子鳄繁殖研究中心和浙江长兴养殖种群的14条扬子鳄MHCⅡ类B基因第3外元的多态性.在这些扬子鳄样本中共检测到34个单倍型,每个亚种群内检测到的单倍型数量分别为15,9和10个,与其他一些动物如哺乳动物和鲤科鱼类相比,扬子鳄MHC Ⅱ类B基因第3外元多态性较高.另外,非同义替换率显著小于同义替换率,这可能表明扬子鳄种群MHC Ⅱ类B基因第3外元

  8. The relationship between MHC-DRB1 gene second exon polymorphism and hydatidosis resistance of Chinese merino (Sinkiang Junken type), Kazakh and Duolang sheep

    OpenAIRE

    Li R.Y.; Hui W.Q.; Jia B; Shi G.Q.; Zhao Z.S.; Shen H.; Peng Q; Lv L.M.; Zhou Q.W.; Li H.T.

    2011-01-01

    The present study aimed at detecting the association of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon and susceptibility or resistance to hydatidosis in three sheep breeds of Sinkiang. The MHC-DRB1 second exon was amplified by polymerase chain reaction (PCR) from DNA samples of healthy sheep and sheep with hydatidosis. PCR products were characterized by the restriction fragment length polymorphism (RFLP) technique. Five restriction enzymes, MvaI, HaeIII, SacI...

  9. Spatially and temporally fluctuating selection at non-MHC immune genes: evidence from TAP polymorphism in populations of brown trout ( Salmo trutta , L.)

    DEFF Research Database (Denmark)

    Jensen, L.F.; Hansen, Michael Møller; Mensberg, Karen-Lise Dons;

    2008-01-01

    Temporal samples of Danish brown trout (Salmo trutta) from populations representing varying geographical scales were analysed using eight putatively neutral microsatellite loci and two microsatellite loci embedded in TAP genes (Transporter associated with Antigen Processing). These genes encode....... Moreover, signals of divergent selection among temporal samples within localities suggest that selection also might fluctuate at a temporal scale. These results suggest that immune genes other than the classical MHC class I and II might be subject to selection and warrant further studies of functional...

  10. Developmental and cytokine-mediated regulation of MHC class II gene promoter occupancy in vivo.

    Science.gov (United States)

    Kara, C J; Glimcher, L H

    1993-06-01

    The class II genes of the major histocompatibility complex are a family of genes whose expression is regulated developmentally in cells of the B lineage and by IFN-gamma in many other cell types. Using the approach of in vivo footprinting, which allows for the examination of protein-promoter interactions within intact cells, we demonstrated a transition from unoccupied to occupied to once again unoccupied class II promoters in cell lines representing the developmental pathway of B cells. IFN-gamma treatment of HeLa cells led to increased promoter occupancy of the DR alpha and DR beta promoters at the same sites that are constitutively bound in mature B cells. No IFN-gamma-specific binding site was induced. Additionally, an octamer element in the DR alpha gene displayed preferential binding in B cells. These results demonstrate that changes in the transcription of the class II genes are associated with changes in factor binding at the promoter in vivo. Moreover, given the ubiquity of class II promoter binding proteins, these results suggest that throughout B cell development and upon IFN-gamma stimulation, the accessibility of class II promoter DNA is subject to regulation.

  11. Domain structures and molecular evolution of class I and class II major histocompatibility gene complex (MHC) products deduced from amino acid and nucleotide sequence homologies.

    Science.gov (United States)

    Ohnishi, K

    1984-01-01

    Domain structures of class I and class II MHC products were analyzed from a viewpoint of amino acid and nucleotide sequence homologies. Alignment statistics revealed that class I (transplantation) antigen H chains consist of four mutually homologous domains, and that class II (HLA-DR) antigen beta and alpha chains are both composed of three mutually homologous ones. The N-terminal three and two domains of class I and class II (both beta and alpha) gene products, respectively, all of which being approximately 90 residues long, were concluded to be homologous to beta2-microglobulin (beta2M). The membrane-embedded C-terminal shorter domains of these MHC products were also found to be homologous to one another and to the third domain of class I H chains. Class I H chains were found to be more closely related to class II alpha chains than to class II beta chains. Based on these findings, an exon duplication history from a common ancestral gene encoding a beta2M-like primodial protein of one-domain-length up to the contemporary MHC products was proposed.

  12. MHC B-L基因多态性与鸡白痢沙门氏菌易感性的关联分析%Association of MHC B-L gene polymorphism with susceptibility of Salmonella pullorum

    Institute of Scientific and Technical Information of China (English)

    张泽樘; 龚超; 陈卓宇; 张细权; 罗庆斌

    2012-01-01

    为研究MHCB-L基因的多态性与鸡白痢沙门氏菌感染之间的关系,采用PCR产物直接测序技术对供试鸡MHcRL基因外显子2进行单核苷酸多态性检测,分别利用Plinkl.07软件和PHASEV2.1软件进行病例一对照关联分析和单倍型分析。结果发现,在270bp的序列内共检测到42个单核苷酸多态性位点(SNPs)。C.280C>A位点等位基因在病例一对照样本中的分布存在显著差异(P<0.05);C.246G>T、C.249A>G位点基因型在病例一对照样本中的分布存在显著差异(P<0.05)。C.229T>A和C.249A>G位点组成的单倍型与抗鸡白痢性状差异不显著(P>0.05);同时C.285G>A、C.287A>T和C.288C>A位点组成的单倍型与抗鸡白痢性状的差异也不显著(P>0.05)。结果表明,MHCB-L基因外显子2多态性与抗鸡白痢性状显著相关,为开展沙门氏茵抗性分子标记辅助选择研究提供了一定的依据。%To study the association between MHC B-L gene polymorphism and Salmonella pullorum infection,polymerase chain reaction sequence-based typing method was used to detect the polymorphism of MHC B-L gene exon 2. The Plinkl. 07 and PHASE V2. 1 software was used as case-control association study and haplotype analysis, respectively. There were 42 single nucleotide polymorphisms(SNPs) in 270 bp DNA sequence. The distribution of C. 280C〉A alleles had a significant difference in case-control samples. The distribution of C. 246G〉T and C. 249A〉G genotypes had a significant difference in case-control samples. Haplotypes within the C. 229T〉A and C. 249A〉G sites and within the C. 285G〉A,C. 287A〉T and C. 288C〉A sites did not associate with anti-pullorum disease trait. The results showed that the polymorphism of MHC B-L gene exon 2 was significant associated with anti-pullorum disease trait, and provided some bases for developing marker assisted selection programmes for anti-salmonellosis.

  13. Compatibility counts: MHC-associated mate choice in a wild promiscuous primate.

    Science.gov (United States)

    Schwensow, Nina; Eberle, Manfred; Sommer, Simone

    2008-03-07

    The mechanisms and temporal aspects of mate choice according to genetic constitution are still puzzling. Recent studies indicate that fitness is positively related to diversity in immune genes (MHC). Both sexes should therefore choose mates of high genetic quality and/or compatibility. However, studies addressing the role of MHC diversity in pre- and post-copulatory mate choice decisions in wild-living animals are few. We investigated the impact of MHC constitution and of neutral microsatellite variability on pre- and post-copulatory mate choice in both sexes in a wild population of a promiscuous primate, the grey mouse lemur (Microcebus murinus). There was no support for pre-copulatory male or female mate choice, but our data indicate post-copulatory mate choice that is associated with genetic constitution. Fathers had a higher number of MHC supertypes different from those of the mother than randomly assigned males. Fathers also had a higher amino acid distance to the females' MHC as well as a higher total number of MHC supertypes and a higher degree of microsatellite heterozygosity than randomly assigned males. Female cryptic choice may be the underlying mechanism that operates towards an optimization of the genetic constitution of offspring. This is the first study that provides support for the importance of the MHC constitution in post-copulatory mate choice in non-human primates.

  14. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    Science.gov (United States)

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Zhao, Zun-Lan; Zhao, Wen-Tao; Fan, Quan-Rong; Wang, Sheng-Chun; Li, Jing; Zhang, Yu-Qing; Shi, Jun-Wen; Lin, Xiao-Lin; Yang, Sheng; Xie, Rao-Ying [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Liu, Wei [Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515 (China); Zhang, Ting-Ting; Sun, Yong-Liang [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Xu, Kang, E-mail: xukang1995@yahoo.com [Department of General Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou 510120 (China); Yao, Kai-Tai, E-mail: Yaokaitai@yahoo.com.cn [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Xiao, Dong, E-mail: Xiao_d@hotmail.com [Cancer Research Institute, Southern Medical University, Guangzhou 510515 (China); Institute of Comparative Medicine and Laboratory Animal Center, Southern Medical University, Guangzhou 510515 (China)

    2013-02-15

    Highlights: ► miR-9 can negatively or positively modulate interferon-induced gene expression. ► miR-9 can up-regulate major histocompatibility complex class I molecule expression. ► miR-9 can down-regulate the expression of interleukin-related genes. -- Abstract: The functions of miR-9 in some cancers are recently implicated in regulating proliferation, epithelial–mesenchymal transition (EMT), invasion and metastasis, apoptosis, and tumor angiogenesis, etc. miR-9 is commonly down-regulated in nasopharyngeal carcinoma (NPC), but the exact roles of miR-9 dysregulation in the pathogenesis of NPC remains unclear. Therefore, we firstly used miR-9-expressing CNE2 cells to determine the effects of miR-9 overexpression on global gene expression profile by microarray analysis. Microarray-based gene expression data unexpectedly demonstrated a significant number of up- or down-regulated immune- and inflammation-related genes, including many well-known interferon (IFN)-induced genes (e.g., IFI44L, PSMB8, IRF5, PSMB10, IFI27, PSB9{sub H}UMAN, IFIT2, TRAIL, IFIT1, PSB8{sub H}UMAN, IRF1, B2M and GBP1), major histocompatibility complex (MHC) class I molecules (e.g., HLA-B, HLA-C, HLA-F and HLA-H) and interleukin (IL)-related genes (e.g., IL20RB, GALT, IL7, IL1B, IL11, IL1F8, IL1A, IL6 and IL7R), which was confirmed by qRT-PCR. Moreover, the overexpression of miR-9 with the miRNA mimics significantly up- or down-regulated the expression of above-mentioned IFN-inducible genes, MHC class I molecules and IL-related genes; on the contrary, miR-9 inhibition by anti-miR-9 inhibitor in CNE2 and 5–8F cells correspondingly decreased or increased the aforementioned immune- and inflammation-related genes. Taken together, these findings demonstrate, for the first time, that miR-9 can modulate the expression of IFN-induced genes and MHC class I molecules in human cancer cells, suggesting a novel role of miR-9 in linking inflammation and cancer, which remains to be fully characterized.

  16. ZBTB32 is an early repressor of the CIITA and MHC class II gene expression during B cell differentiation to plasma cells.

    Science.gov (United States)

    Yoon, Hye Suk; Scharer, Christopher D; Majumder, Parimal; Davis, Carl W; Butler, Royce; Zinzow-Kramer, Wendy; Skountzou, Ioanna; Koutsonanos, Dimitrios G; Ahmed, Rafi; Boss, Jeremy M

    2012-09-01

    CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.

  17. Microsatellite allele 5 of MHC class I chain-related gene a increases the risk for insulin-dependent diabetes mellitus in latvians.

    Science.gov (United States)

    Shtauvere-Brameus, A; Ghaderi, M; Rumba, I; Sanjeevi, C B

    2002-04-01

    Insulin-dependent diabetes mellitus (IDDM) is one of the most common chronic diseases. It is an autoimmune, polygenic disease, associated with several genes on different chromosomes. The most important gene is human leukocyte antigen (HLA), also known as major histocompatibility complex (MHC), which is located on chromosome 6p21.3. HLA-DQ8/DR4 and DQ2/DR3 are positively associated with IDDM and DQ6 is negatively associated with IDDM in most Caucasian populations. The MICA gene is located in the MHC class I region and is expressed by monocytes, keratinocytes, and endothelial cells. Sequence determination of the MICA gene identifies 5 alleles with 4, 5, 6, and 9 repetitions of GCT or 5 repetitions of GCT with 1 additional insertion (GGCT), and the alleles are referred to as A4, A5, A5.1, A6, and A9. Analysis of allele distribution among 93 Latvian IDDM patients and 108 healthy controls showed that allele A5 of MICA is significantly increased in IDDM patients [33/93 (35%)] compared to healthy controls [22/108 (20%)] (OR = 2.15; P = 0.016). In conclusion, we believe that MICA may play an important role in the etiopathogenesis of IDDM.

  18. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates.

    Science.gov (United States)

    Ohta, Yuko; Flajnik, Martin F

    2015-09-01

    Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC.

  19. Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): Lessons from cold-blooded vertebrates

    Science.gov (United States)

    Ohta, Yuko; Flajnik, Martin F.

    2015-01-01

    Summary Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  20. MHC Region and Its Related Disease Study

    DEFF Research Database (Denmark)

    Cao, Hongzhi

    The major histocompatibility complex (MHC) is one of the most gene dense regions in the human genome and many disorders, including primary immune deficiencies, autoimmune conditions, infections, cancers and mental disorder have been found to be associated with this region. However, due to a high...... detection as well as HLA gene typing and large structural variation detection using optical mapping technic, to provide comprehensive and accurate information of the MHC region and apply them into disease causal mutation’s fine-mapping....

  1. Non-MHC genes influence virus clearance through regulation of the antiviral T-cell response: correlation between virus clearance and Tc and Td activity in segregating backcross progeny

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    To determine the mechanism by which non-MHC genes control the rate of virus clearance in mice infected with lymphocytic choriomeningitis virus, a segregating backcross population was studied. Thirty BC1 animals were infected with virus, and virus-specific delayed-type hypersensitivity (DTH...... and the ability to clear virus. Amongst Tc low responders a correlation between DTH reactivity and virus clearance was observed. Taken together, these results indicate that non-MHC genes affect virus clearance through regulation of the antiviral T-cell response, especially the virus-specific Tc response. However...

  2. Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals.

    Science.gov (United States)

    Boudinot, Pierre; Mondot, Stanislas; Jouneau, Luc; Teyton, Luc; Lefranc, Marie-Paule; Lantz, Olivier

    2016-05-24

    Whereas major histocompatibility class-1 (MH1) proteins present peptides to T cells displaying a large T-cell receptor (TR) repertoire, MH1Like proteins, such as CD1D and MR1, present glycolipids and microbial riboflavin precursor derivatives, respectively, to T cells expressing invariant TR-α (iTRA) chains. The groove of such MH1Like, as well as iTRA chains used by mucosal-associated invariant T (MAIT) and natural killer T (NKT) cells, respectively, may result from a coevolution under particular selection pressures. Herein, we investigated the evolutionary patterns of the iTRA of MAIT and NKT cells and restricting MH1Like proteins: MR1 appeared 170 Mya and is highly conserved across mammals, evolving more slowly than other MH1Like. It has been pseudogenized or independently lost three times in carnivores, the armadillo, and lagomorphs. The corresponding TRAV1 gene also evolved slowly and harbors highly conserved complementarity determining regions 1 and 2. TRAV1 is absent exclusively from species in which MR1 is lacking, suggesting that its loss released the purifying selection on MR1. In the rabbit, which has very few NKT and no MAIT cells, a previously unrecognized iTRA was identified by sequencing leukocyte RNA. This iTRA uses TRAV41, which is highly conserved across several groups of mammals. A rabbit MH1Like gene was found that appeared with mammals and is highly conserved. It was independently lost in a few groups in which MR1 is present, like primates and Muridae, illustrating compensatory emergences of new MH1Like/Invariant T-cell combinations during evolution. Deciphering their role is warranted to search similar effector functions in humans.

  3. Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region.

    Science.gov (United States)

    Sena, L; Schneider, M P C; Brenig, B B; Honeycutt, R L; Honeycutt, D A; Womack, J E; Skow, L C

    2011-08-01

    In cattle (Bos taurus), there is evidence of more than 50 alleles of BoLA-DQB (bovine lymphocyte antigen DQB) that are distributed across at least five DQB loci, making this region one of the most complex in the BoLA gene family. In this study, DQB alleles were analysed for the water buffalo (Bubalus bubalis), another economically important bovine species. Twelve alleles for Bubu-DQB (Bubalis bubalis DQB) were determined by nucleotide sequence analysis. A phylogenetic analysis revealed numerous trans-species polymorphisms, with alleles from water buffalo assigned to at least three different loci (BoLA-DQB1, BoLA-DQB3 and BoLA-DQB4) that are also found in cattle. These presumptive loci were analysed for patterns of synonymous (d(S)) and non-synonymous (d(N)) substitution. Like BoLA-DQB1, Bubu-DQB1 was observed to be under strong positive selection for polymorphism. We conclude that water buffalo and cattle share the current arrangement of their DQB region because of their common ancestry. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  4. Mhc-linked survival and lifetime reproductive success in a wild population of great tits.

    Science.gov (United States)

    Sepil, Irem; Lachish, Shelly; Sheldon, Ben C

    2013-01-01

    Major histocompatibility complex (Mhc) genes are frequently used as a model for adaptive genetic diversity. Although associations between Mhc and disease resistance are frequently documented, little is known about the fitness consequences of Mhc variation in wild populations. Further, most work to date has involved testing associations between Mhc genotypes and fitness components. However, the functional diversity of the Mhc, and hence the mechanism by which selection on Mhc acts, depends on how genotypes map to the functional properties of Mhc molecules. Here, we test three hypotheses that relate Mhc diversity to fitness: (i) the maximal diversity hypothesis, (ii) the optimal diversity hypothesis and (iii) effect of specific Mhc types. We combine mark-recapture methods with analysis of long-term breeding data to investigate the effects of Mhc class I functional diversity (Mhc supertypes) on individual fitness in a wild great tit (Parus major) population. We found that the presence of three different Mhc supertypes was associated with three different components of individual fitness: survival, annual recruitment and lifetime reproductive success (LRS). Great tits possessing Mhc supertype 3 experienced higher survival rates than those that did not, whereas individuals with Mhc supertype 6 experienced higher LRS and were more likely to recruit offspring each year. Conversely, great tits that possessed Mhc supertype 5 had reduced LRS. We found no evidence for a selective advantage of Mhc diversity, in terms of either maximal or optimal supertype diversity. Our results support the suggestion that specific Mhc types are an important determinant of individual fitness.

  5. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  6. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  7. Genetic Polymorphism of the Exon 2 of MHC-DQB Gene in Yunnan Humped Cattle%云南高峰牛MHC-DQB基因外显子2遗传多态性分析

    Institute of Scientific and Technical Information of China (English)

    禹文海; 鲁绍雄; 和占龙; 刘红文; 陆润峰; 金建斌

    2011-01-01

    本研究采用PCR直接测序和PCR-RFLP法研究了云南高峰牛MHC-DQB基因外显子2(DQB.2)的遗传多态性,并利用DNAMAN软件分析了云南高峰牛与部分物种DQB.2相应核苷酸序列的同源性.结果发现,共检测到了17个等位基因,其中HaeⅢ酶切位点存在10种基因型,由A、B、C、D和E5个复等位基因控制;RsaⅠ酶切位点存在22种基因型,由A、B、C、D、E、F、G、H、I、J和K共11个复等位基因控制;Taq Ⅰ酶切位点只出现了1种基因型.分析发现,云南高峰牛DQB.2基因的12、25、63、96、106、126、152、156、165、204位的碱基表现出了多态性.所分析的物种该基因片段大小相同均为270 bp,云南高峰牛第224位碱基缺失及236位碱基插入现象.云南高峰牛与人、猪、马、绵羊、黄牛×瘤牛的核苷酸序列的同源性分别为81.4%、83.3%、78.1%、87.7%、86.6%.经x2检验结果表明,HaeⅢ和Taq Ⅰ酶切位点处于Hardy-Weinberg平衡状态(P>0.05),而RsaⅠ酶切位点则未达到Hardy-Weinberg平衡状态(P<0.05).%In this paper, the genetic polymorphism of the exon 2 of MHC-DQB gene was investigated by directly sequencing and PCR-RFLP in Yunnan humped cattle. Homology of the nucleotide acid sequences was analysis by DNAMAN software. The results showed that 17 alleles were found in this experiment, 10 kinds of genotypes and 5 (At B, C. D. E) alleles were found with enzyme Hae Ⅲ;22 kinds of genotypes and 11 (A, B, C, D, E, F, G, H, I, J, K) alleles were found with enzyme Rsa I;ionly one kind of genotype were found with enzyme Taq I . Polymorphic sites were detected at base position 12, 25, 63, 96, 106, 126, 152, 156, 165 and 204. The results showed that there were same lengths (270 bp) of gene fragment in various species, but there was a nucleotide missing at position 224 and a nucleotide insertion at position 236 in Yunnan humped cattle. The homology between Yunnan humped cattle and human, swine, horse, sheep, Yellow

  8. A female signal reflects MHC genotype in a social primate

    Directory of Open Access Journals (Sweden)

    Benavides Julio

    2010-04-01

    Full Text Available Abstract Background Males from many species are believed to advertise their genetic quality through striking ornaments that attract mates. Yet the connections between signal expression, body condition and the genes associated with individual quality are rarely elucidated. This is particularly problematic for the signals of females in species with conventional sex roles, whose evolutionary significance has received little attention and is poorly understood. Here we explore these questions in the sexual swellings of female primates, which are among the most conspicuous of mammalian sexual signals and highly variable in size, shape and colour. We investigated the relationships between two components of sexual swellings (size and shape, body condition, and genes of the Major Histocompatibility Complex (MHC in a wild baboon population (Papio ursinus where males prefer large swellings. Results Although there was no effect of MHC diversity on the sexual swelling components, one specific MHC supertype (S1 was associated with poor body condition together with swellings of small size and a particular shape. The variation in swelling characteristics linked with the possession of supertype S1 appeared to be partially mediated by body condition and remained detectable when taking into account the possession of other supertypes. Conclusions These findings suggest a pathway from immunity genes to sexual signals via physical condition for the first time in females. They further indicate that mechanisms of sexual selection traditionally assigned to males can also operate in females.

  9. Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins.

    Science.gov (United States)

    Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A

    2016-10-01

    The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.

  10. Magnetic-Activated Cell Sorting of TCR-engineered T cells using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4 and CD8 T cells

    NARCIS (Netherlands)

    Govers, C.; Berrevoets, C.; Treffers-Westerlaken, E.; Broertjes, M.; Debets, R.

    2012-01-01

    T cell sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cel

  11. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells

    NARCIS (Netherlands)

    C.C.F.M. Govers (Coen); C.A. Berrevoets (Cor); E. Treffers-Westerlaken (Elike); M. Broertjes (Marieke); J.E.M.A. Debets (Reno)

    2012-01-01

    textabstractT cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability

  12. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    Science.gov (United States)

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  13. Cryopreservation of MHC multimers

    DEFF Research Database (Denmark)

    Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline;

    2015-01-01

    and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented...

  14. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...

  15. Distribution of TAP gene polymorphisms and extended MHC haplotypes in Mexican Mestizos and in Seri Indians from northwest Mexico.

    Science.gov (United States)

    Balladares, S; Alaez, C; Pujol, J; Duran, C; Navarro, J L; Gorodezky, C

    2002-04-01

    The study of the genetic structure is very useful for investigating the biological significance of polymorphism and may provide clues to understand population origins. We present TAP1/TAP2 gene analysis in the Seri indians from Sonora, and in Mestizos from the highlands of Mexico. Thirty-two Seri and 89 Mestizos were studied. TAP genes were typed using the ARMS-PCR technique. The most frequent alleles in Seri were: TAP1*0101/02, (68.8%); TAP1*02011/02012, (31.2%); TAP2*0201, (38.7%) and TAP2*0101, (29.0%). TAP1*0301, TAP1*0401, TAP2*0102 TAP2*0103 and TAP2H were absent in them. For Mestizos, the prevalent alleles were: TAP1*0101/02 (75.8%); TAP1*02011/12 (20.3%); TAP2*0101 (45.4%) and TAP2*0201 (29.3%). These results are similar to those found in Kaingang and Caucasians from Brazil, four Mediterranean, other Caucasians, two Oriental and one African group. In Seri, the extended prevalent haplotypes are typically Amerindian, such as TAP1*0101/2-TAP2*0201-QBP3.21-DQB1*0302-QAP*3.1-DQA1*03011-DRB1*0407-B*3501-A*0201 (HF = 16.6%). Thirty-two extended haplotypes were found in Seri, although TAP contributed scarcely to diversity. Mestizos show Amerindian and Caucasian combinations. No difference was detected in the distribution of amino acids in the individual variable sites, between both groups. These findings are the basis for further anthropological studies and to explore the contribution of TAP genes to disease expression in Mexicans.

  16. Optimización de la técnica rsca para la tipificación de los genes MHC-DRB del mono Aotus nancymaae

    Directory of Open Access Journals (Sweden)

    Delgado Murcia Lucy Gabriela

    2007-04-01

    Full Text Available La investigación en el diseño de vacunas contra la malaria basadas en péptidos sintéticos modificados, requiere
    del conocimiento de la estructura y variabilidad de las moléculas del sistema inmune implicadas en la unión y presentación de estos antígenos para inducir respuestas inmunes protectivas, dentro de tales moléculas se encuentran las del complejo mayor de histocompatibilidad (MHC clase II. Estudios de clonación y secuenciación han mostrado un gran polimorfismo en el exón 2 de los genes MHC-DRB del mono Aotus nancymaae, fragmento implicado en la eficacia de las vacunas peptídicas probadas en este modelo animal. Por esto se hace necesaria la implementación de un método confiable y rápido para la tipificación de los genes MHC-DRB con el fin de evaluar la respuesta de los individuos ante las vacunas. La técnica RSCA (Reference Strand Mediated Conformational Analyis se ha usado como una alternativa para la caracterización de genes del MHC en humanos, cánidos, felinos para aplicaciones clínicas y recientemente en primates no humanos como monos del género Aotus. En este trabajo se han optimizado las condiciones para la realización de RSCA con el empleo de un sistema de separación de fragmentos por electroforesis capilar en el analizador genético ABI Prism 310, en el que no se tienen antecedentes de la tipificación de alelos no humanos. Se obtuvo un panel de muestras control de DNA compuesto por 12 alelos clonados e identificados por secuenciación del exón 2 de 15 individuos. Se escogió el alelo AonaDRB*W3001 para la construcción de una sonda flluoromarcada (FLR con las que se determinaron patrones de migración para cada alelo. Con los parámetros electrocinéticas de inyección determinados (tiempo inyección 15 s, voltaje inyección 15 kV y las condiciones de electroforesis (tiempo 16 min, voltaje de corrido 15 kV y temperatura 30 °C se lograron resolver de manera óptima, reproducible y confiable alelos

  17. Evidence for the 'good genes' model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris.

    Directory of Open Access Journals (Sweden)

    Julia Schad

    Full Text Available The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The 'good genes' model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB, ectoparasite loads (ticks and bat flies and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02 associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the 'good genes' model.

  18. Evidence for the 'good genes' model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris.

    Science.gov (United States)

    Schad, Julia; Dechmann, Dina K N; Voigt, Christian C; Sommer, Simone

    2012-01-01

    The adaptive immune system has a major impact on parasite resistance and life history strategies. Immunological defence is costly both in terms of immediate activation and long-term maintenance. The 'good genes' model predicts that males with genotypes that promote a good disease resistance have the ability to allocate more resources to reproductive effort which favours the transmission of good alleles into future generations. Our study shows a correlation between immune gene constitution (Major Histocompatibility Complex, MHC class II DRB), ectoparasite loads (ticks and bat flies) and the reproductive state in a neotropical bat, Noctilio albiventris. Infestation rates with ectoparasites were linked to specific Noal-DRB alleles, differed among roosts, increased with body size and co-varied with reproductive state particularly in males. Non-reproductive adult males were more infested with ectoparasites than reproductively active males, and they had more often an allele (Noal-DRB*02) associated with a higher tick infestation than reproductively active males or subadults. We conclude that the individual immune gene constitution affects ectoparasite susceptibility, and contributes to fitness relevant trade-offs in male N. albiventris as suggested by the 'good genes' model.

  19. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells.

    Science.gov (United States)

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke; Debets, Reno

    2012-06-01

    T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100(280-288)/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer(®), when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4(+) T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4(+) T cells.

  20. Genetic basis for MHC-dependent mate choice.

    Science.gov (United States)

    Yamazaki, Kunio; Beauchamp, Gary K

    2007-01-01

    Genes in the major histocompatibility complex (MHC), best known for their role in immune recognition and transplantation success, are also involved in modulating mate choice in mice. Early studies with inbred, congenic mouse lines showed that mate choice tended to favor nonself MHC types. A similar phenomenon was demonstrated with semi-wild mice as well. Subsequent studies showed that, rather than nonself choices, it was more accurate to say that mice chose nonparental MHC types for mates since preferences for nonself could be reversed if mice were fostered from birth on parents with nonself MHC types. Other studies have demonstrated that parent-offspring recognition is also regulated by MHC-determined signals suggesting that this system is one of general importance for mouse behavior. Many studies have now demonstrated that volatile mouse body odors are regulated by MHC genes and it is presumably these odor differences that underlie mate choice and familial recognition. Recent studies have shown that many odorants are controlled by the MHC but the mechanism by which MHC genes exert their influence has not been identified. Surprisingly, not only are volatile body odors influenced by MHC genes but so too are nonvolatile signals. Peptides bound to the MHC protein may also function in individual recognition. The extent to which this system is involved in mate choice of other species is unclear although there are some suggestive studies. Indeed, there is tentative evidence that MHC differences, presumably acting via odor changes, may influence human partner selection. Further studies should clarify both the mechanism underlying MHC influence on body odors as well as the generality of their importance in mate selection.

  1. The diversity of bovine MHC class II DRB3 genes in Japanese Black, Japanese Shorthorn, Jersey and Holstein cattle in Japan.

    Science.gov (United States)

    Takeshima, S; Saitou, N; Morita, M; Inoko, H; Aida, Y

    2003-10-16

    We sequenced exon 2 of the major histocompatibility complex (MHC) class II DRB3 gene from 471 individuals in four different Japanese populations of cattle (201 Japanese Black, 101 Holstein, 100 Japanese Shorthorn, and 69 Jersey cattle) using a new method for sequence-based typing (SBT). We identified the 34 previously reported alleles and four novel alleles. These alleles were 80.0-100.0% identical at the nucleotide level and 77.9-100.0% identical at the amino acid level to the bovine MHC (BoLA)-DRB3 cDNA clone NR1. Among the 38 alleles, eight alleles were found in only one breed in this study. However, these alleles did not form specific clusters on a phylogenetic tree of 236-base pairs (bp) nucleotide sequences. Furthermore, these breeds exhibited similar variations with respect to average frequencies of nucleotides and amino acids, as well as synonymous and non-synonymous substitutions, in all pairwise comparisons of the alleles found in this study. By contrast, analysis of the frequencies of the various BoLA-DRB3 alleles in each breed indicated that DRB3*1101 was the most frequent allele in Holstein cattle (16.8%), DRB3*4501 was the most frequent allele in Jersey cattle (18.1%), DRB3*1201 was the most frequent allele in Japanese Shorthorn cattle (16.0%) and DRB3*1001 was the most frequent allele in Japanese Black cattle (17.4%), indicating that the frequencies of alleles were differed in each breed. In addition, a population tree based on the frequency of BoLA-DRB3 alleles in each breed suggested that Holstein and Japanese Black cattle were the most closely related, and that Jersey cattle were more different from both these breeds than Japanese Shorthorns.

  2. Polymorphism in the major histocompatibility complex (MHC class II B) genes of the Rufous-backed Bunting (Emberiza jankowskii)

    Science.gov (United States)

    Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang

    2017-01-01

    Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0

  3. MHC class I and class II phenotype, gene, and haplotype frequencies in Greeks using molecular typing data.

    Science.gov (United States)

    Papassavas, E C; Spyropoulou-Vlachou, M; Papassavas, A C; Schipper, R F; Doxiadis, I N; Stavropoulos-Giokas, C

    2000-06-01

    In the present study, DNA typing for HLA-A, C, B, DRB1, DRB3, DRB4, DRB5, DQA1, DQB1, and DPB1 was performed for 246 healthy, unrelated Greek volunteers of 20-59 years of age. Phenotype, genotype frequencies, Hardy-Weinberg equilibrium fit, and 3-locus haplotype frequencies for HLA-A, C, B, HLA-A, B, DRB1, HLA-DRB1, DQA1, DQB1, and HLA-DRB1, DQB1, DPB1 were calculated. Furthermore, linkage disequilibrium, deltas, relative deltas and p-values for significance of the deltas were defined. The population studied is in Hardy-Weinberg equilibrium, and many MHC haplotypes are in linkage disequilibrium. The most frequent specificities were HLA-A*02 (phenotype frequency = 44.3%) followed by HLA-A*24 (27.2%), HLA-B*51 (28.5%), HLA-B*18 (26.8%) and HLA-B*35 (26.4%) and HLA-Cw*04 (30.1%) and HLA-Cw*12 (26.8%). The most frequent MHC class II alleles were HLA-DRB1*1104 (34.1%), HLA-DQB1*0301 (54.5%) and HLA-DPB1*0401 with a phenotype frequency of 59.8%. The most prominent HLA-A, C, B haplotypes were HLA-A*24, Cw*04, B*35, and HLA-A*02, Cw*04, B*35, each of them observed in 21/246 individuals. The most frequent HLA-A, B, DRB1 haplotype was HLA-A*02, B*18, DRB1*1104 seen in 20/246 individuals, while the haplotype HLA-DRB1*1104, DQB1*0301, DPB1*0401 was found in 49/246 individuals. Finally, the haplotype DRB1*1104, DQA1*0501, DQB1*0301 was observed in 83/246 individuals. These results can be used for the estimation of the probability of finding a suitable haplotypically identical related or unrelated stem cell donor for patients of Greek ancestry. In addition, they can be used for HLA and disease association studies, genetic distance studies in the Balkan and Mediterranean area, paternity cases, and matching probability calculations for the optimal allocation of kidneys in Greece.

  4. 山东地方绵羊MHC-DRB3基因PCR-RFLPs反应体系的优化%Optimization of PCR-RFLPs Reaction System for Shandong Province Indigenous Sheep MHC-DRB3 Gene Analysis

    Institute of Scientific and Technical Information of China (English)

    尚友国; 宋美玲; 王建民

    2005-01-01

    本文探讨了影响山东地方绵羊MHC-DRB3基因PCR-RFLPs扩增的因素,实验结果表明:抗凝剂、模板的浓度、纯度、Mg2+的浓度、引物的浓度、变性温度、Taq聚合酶、退火温度等因素对扩增结果的影响,为此我们对影响扩增结果的各个因素和反应程序进行了研究和浓度梯度的对比试验,建立了绵羊MHC-DRB3基因PCR-RFLPs的最佳反应体系和反应程序.

  5. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    Science.gov (United States)

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.

  6. Quantitative analysis of mouse urine volatiles: in search of MHC-dependent differences.

    Directory of Open Access Journals (Sweden)

    Frank Röck

    Full Text Available Genes of the major histocompatibility complex (MHC, which play a critical role in immune recognition, influence mating preference and other social behaviors in mice. Training experiments using urine scent from mice differing only in the MHC complex, from MHC class I mutants or from knock-out mice lacking functional MHC class I molecules (beta2m-deficient, suggest that these behavioral effects are mediated by differences in MHC-dependent volatile components. In search for the physical basis of these behavioral studies, we have conducted a comparison of urinary volatiles in three sub-strains of C57BL/6 mice, a beta2m-deficient mutant lacking functional MHC class I expression and two unrelated inbred strains, using the technique of sorptive extraction with polydimethylsiloxan and subsequent analysis by gas chromatography/mass spectrometry. We show (i that qualitative differences occur between different inbred strains but not in mice with the C57BL/6 background, (ii that the individual variability in abundance in the same mouse strain is strongly component-dependent, (iii that C57BL/6 sub-strains obtained from different provenance show a higher fraction of quantitative differences than a sub-strain and its beta2m-mutant obtained from the same source and (iv that comparison of the spectra of beta2m mice and the corresponding wild type reveals no qualitative differences in close to 200 major and minor components and only minimal differences in a few substances from an ensemble of 69 selected for quantitative analysis. Our data suggest that odor is shaped by ontogenetic, environmental and genetic factors, and the gestalt of this scent may identify a mouse on the individual and population level; but, within the limits of the ensemble of components analysed, the results do not support the notion that functional MHC class I molecules influence the urinary volatile composition.

  7. 4个绵羊品种MHC-DRB3基因外显子2的多态性分析%Polymorphisms of Exon 2 of MHC-DRB3 Gene in Four Sheep Breeds

    Institute of Scientific and Technical Information of China (English)

    魏丽君; 石国庆; 王晓申; 柳楠; 管峰; 代荣; 任航行

    2007-01-01

    采用PCR-RFLP方法分析4个绵羊品种(阿勒泰羊、中国美利奴肉用多胎品系、湖羊和陶塞特羊)MHC-DRB3基因第2外显子的多态性,并进行聚类分析以及基因杂合度和多态信息含量的计算.结果表明:在绵羊MHC-DRB3基因第2外显子第122、154、168、220和241 bp碱基处表现出多态性;χ2适合性检验结果表明,4个绵羊群体MHC-DRB3基因的第2外显子的PstⅠ酶切位点达到了Hardy-Weinberg平衡状态,TaqⅠ和HaeⅢ酶切位点多态性均未达到Hardy-Weinberg平衡状态;4个绵羊群体基因杂合度和多态信息含量值分别在0.693~0.774和0.662~0.738之间,表明4个绵羊品种具有丰富的遗传多样性;聚类结果表明,中国美利奴肉用多胎羊和湖羊亲缘关系最近,阿勒泰羊和陶塞特羊关系较远,与实际选育过程一致,MHC-DRB3多态性可作为绵羊育种标记进一步研究.

  8. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...... viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  9. 小尾寒羊MHC-DRB3基因外显子2的多态性分析%Polymorphisms of Exon2 of MHC-DRB3 Gene in Little-Tailed Han Sheep

    Institute of Scientific and Technical Information of China (English)

    尚友国; 宋美玲; 李建平; 于艳; 王建民

    2006-01-01

    采用PCR RFLP方法对小尾寒羊MHC-DRB3基因第二外显子285 bp的扩增产物进行多态性分析,结果共检测到内切酶Pst Ⅰ的3种基因型,由2个等位基因控制,通过酶切图谱分析结果表明:小尾寒羊的MHC-DRB3基因第二外显子的第241位的碱基表现出多态性,等位基因B的基因频率为0.81879.x2适合性检验结果表明:小尾寒的MHC-DRB3基因的第2外显子的Pst Ⅰ酶切位点达到了Hardy-Weinberg平衡状态.

  10. Polymorphism Analysis of MHC-DRB3 Gene in Dolang Sheep with PCR-RFLP%多浪羊MHC-DRB3基因座的PCR-RFLP多态性分析

    Institute of Scientific and Technical Information of China (English)

    刘云芳; 剡根强; 王新峰

    2004-01-01

    主要组织相容性复合体(MHC)是由紧密连锁的高度多态的基因位点所组成的染色体上的一个遗传区域,它在动物机体的免疫系统中发挥着非常重要的作用.应用PCR-RFLP技术首次对多浪羊的MHC-DRB3的外显子2进行分子遗传多态性检测与分析.结果显示,多浪羊MHC-DRB3基因的外显子2在TaqⅠ、PstⅠ和HaeⅢ酶切位点存在多态,其酶切位点分别由2、2和6种共显性等位基因控制.综合3种酶切结果,本实验研究在多浪羊中检测到了DRB3基因的24种等位基因.

  11. MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Gongora, Jaime

    2012-11-01

    Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785-HQ008789, HQ008791-HQ008798, HQ008808-HQ008815, HQ008824, HQ008826-HQ008830, HQ008835, HQ008839, HQ008842-HQ008850, and JX023536-JX023540.

  12. Polymorphisms in the F8 gene and MHC-II variants as risk factors for the development of inhibitory anti-factor VIII antibodies during the treatment of hemophilia a: a computational assessment.

    Directory of Open Access Journals (Sweden)

    Gouri Shankar Pandey

    Full Text Available The development of neutralizing anti-drug-antibodies to the Factor VIII protein-therapeutic is currently the most significant impediment to the effective management of hemophilia A. Common non-synonymous single nucleotide polymorphisms (ns-SNPs in the F8 gene occur as six haplotypes in the human population (denoted H1 to H6 of which H3 and H4 have been associated with an increased risk of developing anti-drug antibodies. There is evidence that CD4+ T-cell response is essential for the development of anti-drug antibodies and such a response requires the presentation of the peptides by the MHC-class-II (MHC-II molecules of the patient. We measured the binding and half-life of peptide-MHC-II complexes using synthetic peptides from regions of the Factor VIII protein where ns-SNPs occur and showed that these wild type peptides form stable complexes with six common MHC-II alleles, representing 46.5% of the North American population. Next, we compared the affinities computed by NetMHCIIpan, a neural network-based algorithm for MHC-II peptide binding prediction, to the experimentally measured values and concluded that these are in good agreement (area under the ROC-curve of 0.778 to 0.972 for the six MHC-II variants. Using a computational binding predictor, we were able to expand our analysis to (a include all wild type peptides spanning each polymorphic position; and (b consider more MHC-II variants, thus allowing for a better estimation of the risk for clinical manifestation of anti-drug antibodies in the entire population (or a specific sub-population. Analysis of these computational data confirmed that peptides which have the wild type sequence at positions where the polymorphisms associated with haplotypes H3, H4 and H5 occur bind MHC-II proteins significantly more than a negative control. Taken together, the experimental and computational results suggest that wild type peptides from polymorphic regions of FVIII constitute potential T-cell epitopes

  13. The relationship between MHC-DRB1 gene second exon polymorphism and hydatidosis resistance of Chinese Merino (Sinkiang Junken type), Kazakh and Duolang sheep.

    Science.gov (United States)

    Li, R Y; Hui, W Q; Jia, B; Shi, G Q; Zhao, Z S; Shen, H; Peng, Q; Lv, L M; Zhou, Q W; Li, H T

    2011-05-01

    The present study aimed at detecting the association of ovine major histocompatibility complex class II (Ovar II) DRB1 gene second exon and susceptibility or resistance to hydatidosis in three sheep breeds of Sinkiang. The MHC-DRB1 second exon was amplified by polymerase chain reaction (PCR) from DNA samples of healthy sheep and sheep with hydatidosis. PCR products were characterized by the restriction fragment length polymorphism (RFLP) technique. Five restriction enzymes, Mval, Haelll, Sacl, Sacll, Hin1l, were used, yielding 14 alleles and 31 restriction patterns. Frequencies of patterns Mvalbc, Hin1lab, Sacllab, Haelllde, Haellldf, Haellldd (P Sinkiang Junken type) sheep, were significantly higher in healthy sheep compared with infected sheep. These results indicated a strong association between these patterns and hydatidosis resistance. In contrast, the frequencies of Mvalbb, Saclaa, Hinl lbb, Haelllef (P Sinkiang Junken type) were significantly lower in healthy sheep compared with infected sheep. This indicated a strong association between these patterns and hydatidosis susceptibility. In addition, sheep with the pattern of Haelllef demonstrated a high hydatidosis susceptibility (P Sinkiang Junken type). These results suggest that the Ovar-DRB1 gene plays a role in resistance to hydatidosis infection in the three sheep breeds.

  14. Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants.

    Science.gov (United States)

    Zhu, Rong; Chen, Zhong-yuan; Wang, Jun; Yuan, Jiang-di; Liao, Xiang-yong; Gui, Jian-Fang; Zhang, Qi-Ya

    2014-02-01

    A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.

  15. Characterization of major histocompatibility complex class I loci of the lark sparrow (Chondestes grammacus) and insights into avian MHC evolution.

    Science.gov (United States)

    Lyons, Amanda C; Hoostal, Matthew J; Bouzat, Juan L

    2015-08-01

    The major histocompatibilty complex (MHC) has become increasingly important in the study of the immunocapabilities of non-model vertebrates due to its direct involvement in the immune response. The characterization of MHC class I loci in the lark sparrow (Chondestes grammacus) revealed multiple MHC class I loci with elevated genetic diversity at exon 3, evidence of differential selection between the peptide binding region (PBR) and non-PBR, and the presence of multiple pseudogenes with limited divergence. The minimum number of functional MHC class I loci was estimated at four. Sequence analysis revealed d N /d S ratios significantly less than one at non-PBR sites, indicative of negative selection, whereas PBR sites associated with antigen recognition showed ratios greater than 1 but non-significant. GenBank surveys and phylogenetic analyses of previously reported avian MHC class I sequences revealed variable signatures of evolutionary processes acting upon this gene family, including gene duplication and potential concerted evolution. An increase in the number of class I loci across species coincided with an increase in pseudogene prevalence, revealing the importance of gene duplication in the expansion of multigene families and the creation of pseudogenes.

  16. Genetic variation and balancing selection at MHC class II exon 2 in cultured stocks and wild populations of orange-spotted grouper (Epinephelus coioides).

    Science.gov (United States)

    Meng, Z N; Yang, S; Fan, B; Wang, L; Lin, H R

    2012-11-12

    Major histocompatibility complex (MHC) molecules play vital roles in triggering adaptive immune responses and are considered the most variable molecules in vertebrates. Recently, many studies have focused on the polymorphism and evolution mode of MHC in both model and non-model organisms. Here, we analyzed the MHC class II exon 2-encoding β chain in comparison with the mitochondrial Cytb gene and our previously published microsatellite data set in three cultured stocks and four wild populations of the orange-spotted grouper (Epinephelus coioides) in order to investigate its genetic variation and mechanism of evolution. We detected one to four alleles in one individual, suggesting that at least two loci exist in the orange-spotted grouper, as well as a particularly high level of allelic diversity at the MHC loci. Furthermore, the cultured stocks exhibited reduced allelic diversity compared to the wild counterparts. We found evidence of balancing selection at MHC class II exon 2, and codon sites under positive selection were largely correspondent to the protein-binding region. In addition, MHC class II exon 2 revealed significant differences between population differentiation patterns from the neutral mitochondrial Cytb and microsatellites, which may indicate local adaptation at MHC loci in orange-spotted grouper originating from the South China Sea and Southeast Asia.

  17. The major histocompatibility complex (Mhc class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken

    Directory of Open Access Journals (Sweden)

    Kulski Jerzy K

    2006-12-01

    Full Text Available Abstract Background The quail and chicken major histocompatibility complex (Mhc genomic regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated class I, class IIB, natural killer (NK-receptor-like, lectin-like and BG genes. Therefore, the elucidation of genetic factors that contribute to the greater Mhc diversity in the quail would help to establish it as a model experimental animal in the investigation of avian Mhc associated diseases. Aims and approaches The main aim here was to characterize the genetic and genomic features of the transcribed major quail MhcIIB (CojaIIB region that is located between the Tapasin and BRD2 genes, and to compare our findings to the available information for the chicken MhcIIB (BLB. We used four approaches in the study of the quail MhcIIB region, (1 haplotype analyses with polymorphic loci, (2 cloning and sequencing of the RT-PCR CojaIIB products from individuals with different haplotypes, (3 genomic sequencing of the CojaIIB region from the individuals with the different haplotypes, and (4 phylogenetic and duplication analysis to explain the variability of the region between the quail and the chicken. Results Our results show that the Tapasin-BRD2 segment of the quail Mhc is highly variable in length and in gene transcription intensity and content. Haplotypic sequences were found to vary in length between 4 to 11 kb. Tapasin-BRD2 segments contain one or two major transcribed CojaIIBs that were probably generated by segmental duplications involving c-type lectin-like genes and NK receptor-like genes, gene fusions between two CojaIIBs and transpositions between the major and minor CojaIIB segments. The relative evolutionary speed for generating the MhcIIBs genomic structures from the ancestral BLB2 was estimated to be two times faster in the quail than in the chicken after their separation from a common ancestor. Four types of genomic rearrangement

  18. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage;

    2009-01-01

    region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  19. Interaction analysis between HLA-DRB1 shared epitope alleles and MHC class II transactivator CIITA gene with regard to risk of rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Marcus Ronninger

    Full Text Available HLA-DRB1 shared epitope (SE alleles are the strongest genetic determinants for autoantibody positive rheumatoid arthritis (RA. One of the key regulators in expression of HLA class II receptors is MHC class II transactivator (CIITA. A variant of the CIITA gene has been found to associate with inflammatory diseases.We wanted to explore whether the risk variant rs3087456 in the CIITA gene interacts with the HLA-DRB1 SE alleles regarding the risk of developing RA. We tested this hypothesis in a case-control study with 11767 individuals from four European Caucasian populations (6649 RA cases and 5118 controls.We found no significant additive interaction for risk alleles among Swedish Caucasians with RA (n = 3869, attributable proportion due to interaction (AP = 0.2, 95%CI: -0.2-0.5 or when stratifying for anti-citrullinated protein antibodies (ACPA presence (ACPA positive disease: n = 2945, AP = 0.3, 95%CI: -0.05-0.6, ACPA negative: n = 2268, AP = -0.2, 95%CI: -1.0-0.6. We further found no significant interaction between the main subgroups of SE alleles (DRB1*01, DRB1*04 or DRB1*10 and CIITA. Similar analysis of three independent RA cohorts from British, Dutch and Norwegian populations also indicated an absence of significant interaction between genetic variants in CIITA and SE alleles with regard to RA risk.Our data suggest that risk from the CIITA locus is independent of the major risk for RA from HLA-DRB1 SE alleles, given that no significant interaction between rs3087456 and SE alleles was observed. Since a biological link between products of these genes is evident, the genetic contribution from CIITA and class II antigens in the autoimmune process may involve additional unidentified factors.

  20. Heterozygote advantage fails to explain the high degree of polymorphism of the MHC

    DEFF Research Database (Denmark)

    de Boer, R.J.; Borghans, J.A.M.; Boven, M.;

    2004-01-01

    Major histocompatibility (MHC) molecules are encoded by extremely polymorphic genes and play a crucial role in vertebrate immunity. Natural selection favors MHC heterozygous hosts because individuals heterozygous at the MHC can present a larger diversity of peptides from infectious pathogens than...

  1. MHC class II B diversity in blue tits : A preliminary study

    NARCIS (Netherlands)

    Rivero-de Aguilar, Juan; Schut, Elske; Merino, Santiago; Martinez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigate

  2. Polymorphisms of MHC-ORB3 Gene in Zigong Black Goat%自贡黑山羊MHC-DRB3基因的多态性研究

    Institute of Scientific and Technical Information of China (English)

    王杰; 郑玉才; 杨易; 王永; 欧阳熙

    2006-01-01

    本实验研究了自贡黑山羊、金堂黑山羊、乐至黑山羊和成都麻羊MHC-DRB3基因的多态性.MHC-DRB3第2外显子的PCR扩增产物分别经限制性核酸内切酶TaqⅠ、PstⅠ、HaeⅢ消化,结果在第122、154、168、220、241位碱基显示出多态性;4个山羊群体分别检测到9、10、7个和8个等位基因;聚类分析表明:金堂黑山羊和成都麻羊亲缘关系最近,首先聚为一类,再与乐至黑山羊聚为一类,最后自贡黑山羊与其他3个山羊品种聚为一类.

  3. Lysis of pig endothelium by IL-2 activated human natural killer cells is inhibited by swine and human major histocompatibility complex (MHC) class I gene products.

    Science.gov (United States)

    Itescu, S; Artrip, J H; Kwiatkowski, P A; Wang, S F; Minanov, O P; Morgenthau, A S; Michler, R E

    1997-01-01

    We have previously described a form of xenograft rejection, mediated by natural killer (NK) cells, occurring in pig-to-primate organ transplants beyond the period of antibody-mediated hyperacute rejection. In this study, two distinct NK activation pathways were identified as mechanisms of pig aortic endotheliual cell (PAEC) lysis by human NK cells. Using an antibody-dependent cellular cytotoxicity (ADCC) assay, a progressive increase in human NK lysis of PAEC was observed following incubation with human IgG at increasing serum titer. In the absence of IgG, a second mechanism of PAEC lysis by human NK cells was observed following activation with IL-2. IL-2 activation of human NK cells increased lysis of PAEC by over 3-fold compared with ADCC. These results indicate that IL-2 activation of human NK cells induces significantly higher levels of lytic activity than does conventional ADCC involving IgG and FcRIII. We next investigated the role of MHC class I molecules in the regulation of NK lysis following IL-2 activation. PAEC expression of SLA class I molecules was increased by up to 75% by treatment with human TNFa. Following treatment with TNFa at 1 u/ml, IL-2 activated human NK lysis of PAEC was inhibited at every effector:target (E:T) ratio tested. Maximal effect occurred at an E:T ratio of 10:1, with TNFa inhibiting specific lysis by 59% (p < 0.01). Incubation with an anti-SLA class I Mab, but not IgG isotype control, abrogated the protective effects of TNFa on NK lysis of PAEC, suggesting direct inhibitory effects of SLA class I molecules on human NK function. To investigate whether human MHC class I molecules might have similar effects on human NK lysis of PAEC, further experiments were performed using a soluble peptide derived from the alpha-helical region of HLA-B7. Incubation with the HLA-B7 derived peptide significantly reduced the IL-2 activated NK lytic activity against PAEC in a dose-dependent fashion. Maximal effect occurred at a concentration of 10 mg

  4. 败血症鲢肝与肾cDNA文库构建及MHC class Ⅰ的克隆与分析%Construction of a cDNA library and cloning of the MHC class Ⅰ gene in silver carp (Hypophthalmichthys molitrix) infected with bacterial septicemia

    Institute of Scientific and Technical Information of China (English)

    汪登强; 罗晓松; 陈大庆

    2011-01-01

    Silver carp (Hypophthalmichthys molitrix) is one of the most commonly cultured freshwater species in China. However, the development of silver carp aquaculture is threatened by bacterial septicemia. To isolate and study genes relevant to the disease, we constructed a cDNA library from silver carp liver and kidney tissue using a CloneMiner? cDNA kit. The primary cDNA library titer was 1.34× 107 cfu/mL yielding 2.68×l07cfu recombi-nants with 97.5% positive clones. The exogenous inserts of the recombinants ranged in size from 0.8 to 3.5 kb. We attempted to sequence 80 positive clones from both terminals to test the completeness of the coding sequence. We successfully sequenced 74 clones, of which 49 contained the complete coding sequence. Among the clones successfully sequenced, 57 sequences were identified to 49 known genes in GenBank. The cDNA library was subsequently screened by PCR yielding a single clone containing the complete coding sequence for MHC class I. The H. Molitrix MHC class I was 1 026 bp long and encoded a 341 amino acid (aa) protein that included a leader peptide, a\\, a2, a3, and transmembrane and cytosolic domains of 16, 88, 90, 87, and 60 aa, respectively. In addition, we identified sites that were highly conserved among vertebrate MHC class I. Phylogenetic comparison of the complete coding sequences and the a3 domain ofhH, molitrix MHC class I with other vertebrate species revealed different topology, suggesting a different evolutionary history for different domains of MHC class I and the occurrence of gene recombination among cyprinidae.%采用CloneMinerTM cDNA文库构建试剂盒构建了患败血症的鲢(Hypophthalmichthys molitrix)肝和肾的cDNA文库.经检验,文库的滴度为1.34×107 cfu/mL,总库容为2.68×107 cfu,阳性克隆率为97.5%,平均插入片段大于1.2 kb.对80个随机挑选的克隆进行两端测序,结果显示有74个测序成功.经在GenBank上BLAST比对,其中57个为已知功能基因,属于45

  5. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Duprat, E.; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system® (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  6. Microsatellite allele A5.1 of MHC class I chain-related gene A is associated with latent autoimmune diabetes in adults in Latvia.

    Science.gov (United States)

    Berzina, L; Shtauvere-Brameus, A; Rumba, I; Sanjeevi, C B

    2002-04-01

    NIDDM is one of the most common forms of diabetes. The diagnosis is based on WHO classification, which is a clinical classification and misses the autoimmune diabetes in adults. Therefore, among the clinically diagnosed NIDDM cases, there can be a certain number of patients with latent autoimmune diabetes in adults (LADA). The MICA gene is located in the MHC class I region and is expressed by monocytes, keratinocytes, and endothelial cells. Sequence determination of the MICA gene identifies trinucleotide repeat (GCT) microsatellite polymorphism, which identifies 5 alleles with 4, 5, 6, and 9 repetitions of GCT (A4, A5, A6, and A9) or 5 repetitions of GCT with 1 additional G insertion for allele A5.1. From our previous studies, we have shown that microsatellite allele A5 of MICA is associated with IDDM. The aim of this study was to test the hypothesis that certain MICA alleles are associated with LADA among clinically diagnosed NIDDM. Out of 100 clinically diagnosed NIDDM patients, 49 tested positive for GAD65 and IA-2 antibodies by use of 35S RIA. Samples from these 49 patients and 96 healthy controls were analyzed for MICA by PCR amplification, and fragment sizes were determined in an ABI prism DNA sequencer. Our results show that MICA allele A5.1 is significantly increased in antibody-positive (GAD65 or IA-2) NIDDM patients [35/49 (72%)] when compared to healthy controls [22/96 (23%)] (OR = 8.4; P < 0.0001). However, we do not see any association with each of the antibodies separately. From our study, we conclude that (a) MICA allele A5.1 is associated with LADA and (b) MICA may play an important role in the etiopathogenesis of LADA.

  7. Analysis of Composition and Structure of Genes in 349I12 BAC Positive Clone in MHC Class Ⅱ b Region of Chinese Merino Genome%中国美利奴绵羊MHC ClassⅡb区349I12BAC克隆插入片段基因组成与结构分析

    Institute of Scientific and Technical Information of China (English)

    白大章; 李桂芳; 董慧芹; 邱巍; 杨小亮; 陈芳; 马润林; 高剑峰

    2011-01-01

    利用已测序的中国美利奴绵羊细菌人工染色体(BAC)文库MHC区段阳性克隆插入片段制备探针,筛选中国美利奴绵羊(新疆军垦型)混合组织cDNA文库,以期获得该MHC片段的基因组成与结构信息.用中国美利奴绵羊MHC ClassⅡb区域内的349112 BAC克隆,BsaJ Ⅰ酶切后制备α-32P放射性探针,以噬菌斑原位杂交筛选正常中国美利奴绵羊cDNA文库,并将分离所得的cDNA阳性克隆测序后进行基因结构分析.以349I12 BAC克隆制备探针经过两轮的噬菌斑原位杂交筛选,获得19个cDNA阳性克隆,经测序、比对等进一步分析确定获得17条不同序列,其中7条序列与免疫相关.绵羊20号染色体上的MHC区段包含表达序列,且多为断裂基因,对其基因结构的分析将有助于相应基因功能及调控方面的研究.%A sequenced clone in MHC region from Chinese Merino bacterial artificial chromosome (BAC) library was used to make probes for screening cDNA expression library of Chinese Merino sheep for some information about composition and structure of genes in the clone. The BAC clone 349I12 was located at the Class II b domain of ovine major histocompatibility complex (MHC). After digested by BsaJ I , the clone 349112 was used to make probes with α-32P labeled. The probes were used to screen the Ovine cDNA library through phage in situ hybridization. The isolated positive cD-NA clones were sequenced, then analyzed the composition and structure of genes from the BAC positive clone 349112 by DNAstar. After screening twice, 19 candidate positive cDNA clones were isolated using the probes from the clone 349112. After further analysis through sequencing and GenBank inquiring, we finally got 17 pieces of different sequences, seven of them related to immunization. The MHC region located on No. 20 chromosome contains MHC genes, immune related genes and others genes, lots of them being split genes. The analysis of gene structures would help in

  8. Polymorphism Analysis of MHC-DRB3 Gene in Kalakuer Sheep%卡拉库尔羊MHC-DRB3基因的遗传多样性研究

    Institute of Scientific and Technical Information of China (English)

    买热帕提·帕拉提; 马合木提·哈力克

    2011-01-01

    目的:实验通过MCH-DRB3基因来探讨卡拉库尔羊的遗传多态性,为绵羊遗传资源的合理利用及保护提供理论基础和科学依据.方法:采用PCR-Clone测序方法首次对卡拉库尔羊的MHC-DRB3基因的第二外显子进行分子遗传多态性检测与分析.结果:总共检测出35种单倍型,总的单倍型多样度(Hd)为0.958,核苷酸多样性(Pi)为0.05786,平均核苷酸差异数(k)为16.49062,简约信息多态位点数为54.卡拉库尔羊MHC-DRB3基因的氨基酸序列的氨基酸组成进行分析可知含量最多的氨基酸是精氨酸(Arg),平均含量为12.9%,含量最低的氨基酸是蛋氨酸(Met),平均含量为0.018%.结论:从以上参数可以看出卡拉库尔羊具有很高的遗传多样性.

  9. Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method

    OpenAIRE

    Hailu Dadi; MinhThong Le; Hunduma Dinka; DinhTruong Nguyen; Hojun Choi; Hyesun Cho; Minkyeung Choi; Jin-Hoi Kim; Jin-Ki Park; Nagasundarapandian Soundrarajan; Chankyu Park

    2015-01-01

    The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-M...

  10. Genetic analysis of interferon induced thyroiditis (IIT): evidence for a key role for MHC and apoptosis related genes and pathways.

    Science.gov (United States)

    Hasham, Alia; Zhang, Weijia; Lotay, Vaneet; Haggerty, Shannon; Stefan, Mihaela; Concepcion, Erlinda; Dieterich, Douglas T; Tomer, Yaron

    2013-08-01

    Autoimmune thyroid diseases (AITD) have become increasingly recognized as a complication of interferon-alpha (IFNα) therapy in patients with chronic Hepatitis C virus (HCV) infection. Interferon-induced thyroiditis (IIT) can manifest as clinical thyroiditis in approximately 15% of HCV patients receiving IFNα and subclinical thyroiditis in up to 40% of patients, possibly resulting in either dose reduction or discontinuation of IFNα treatment. However, the exact mechanisms that lead to the development of IIT are unknown and may include IFNα-mediated immune-recruitment as well as direct toxic effects on thyroid follicular cells. We hypothesized that IIT develops in genetically predisposed individuals whose threshold for developing thyroiditis is lowered by IFNα. Therefore, our aim was to identify the susceptibility genes for IIT. We used a genomic convergence approach combining genetic association data with transcriptome analysis of genes upregulated by IFNα. Integrating results of genetic association, transcriptome data, pathway, and haplotype analyses enabled the identification of 3 putative loci, SP100/110/140 (2q37.1), HLA (6p21.3), and TAP1 (6p21.3) that may be involved in the pathogenesis of IIT. Immune-regulation and apoptosis emerged as the predominant mechanisms underlying the etiology of IIT.

  11. HLA-E polymorphism in Amerindians from Mexico (Mazatecans), Colombia (Wayu) and Chile (Mapuches): evolution of MHC-E gene.

    Science.gov (United States)

    Arnaiz-Villena, A; Vargas-Alarcon, G; Serrano-Vela, J I; Reguera, R; Martinez-Laso, J; Silvera-Redondo, C; Granados, J; Moscoso, J

    2007-04-01

    Human leukocyte antigen (HLA)-E is a nonclassical class I (Ib) gene with a restricted polymorphism. Only eight DNA alleles and three proteins of this gene have been described and their frequencies analyzed in Caucasian, Oriental, Asian Indian, and Negroid populations. In the present study, HLA-E polymorphism has been analyzed in six Amerindian and Mestizo populations from North and South America and compared with previously described populations. HLA-E*0101 is the most frequent allele found in all populations except in Afrocolombian and Wayu Amerindians, in which blood group analyses show a high admixture with Caucasian and African populations. Mazatecan and Mapuche (two Amerindian groups from North and South America, respectively) presented similar HLA-E frequencies, whereas Wayu Indians are more similar to the Afrocolombian population. The Mexican and Colombian Mestizo show similar allele frequencies to Amerindians with high frequencies of HLA-E*0101 and HLA-E*010302 alleles. Also, frequencies in Negroids and Asian Indians present a similar distribution of HLA-E alleles. These data are in agreement with worldwide restricted polymorphism of HLA-E because no new allele was detected in the six populations studied. The allelic frequencies show differences among Caucasian, Oriental, Mestizo and Indian populations. Ape major histocompatibility complex-E allelism is also very restricted: common chimpanzee (one allele); bonobo (two alleles); gorilla (two alleles); orangutan (one allele); rhesus monkey (eight alleles); cynomolgus monkey (two alleles); and green monkey (two alleles).

  12. Genomic location and characterisation of MIC genes in cattle.

    Science.gov (United States)

    Birch, James; De Juan Sanjuan, Cristina; Guzman, Efrain; Ellis, Shirley A

    2008-08-01

    Major histocompatibility complex (MHC) class I chain-related (MIC) genes have been previously identified and characterised in human. They encode polymorphic class I-like molecules that are stress-inducible, and constitute one of the ligands of the activating natural killer cell receptor NKG2D. We have identified three MIC genes within the cattle genome, located close to three non-classical MHC class I genes. The genomic position relative to other genes is very similar to the arrangement reported in the pig MHC region. Analysis of MIC cDNA sequences derived from a range of cattle cell lines suggest there may be four MIC genes in total. We have investigated the presence of the genes in distinct and well-defined MHC haplotypes, and show that one gene is consistently present, while configuration of the other three genes appears variable.

  13. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    Science.gov (United States)

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.

  14. A locus-wide approach to assessing variation in the avian MHC: the B-locus of the wild turkey.

    Science.gov (United States)

    Chaves, L D; Faile, G M; Hendrickson, J A; Mock, K E; Reed, K M

    2011-07-01

    Studies of major histocompatibility complex (MHC) diversity in non-model vertebrates typically focus on structure and sequence variation in the antigen-presenting loci: the highly variable and polymorphic class I and class IIB genes. Although these studies provide estimates of the number of genes and alleles/locus, they often overlook variation in functionally related and co-inherited genes important in the immune response. This study utilizes the sequence of the MHC B-locus derived from a commercial turkey to investigate MHC variation in wild birds. Sequences were obtained for nine interspersed MHC amplicons (non-class I/II) from each of 40 birds representing 3 subspecies of wild turkey (Meleagris gallopavo). Analysis of aligned sequences identified 238 single-nucleotide variants approximately one-third of which had minor allele frequencies >0.2 in the sampled birds. PHASE analysis identified 70 prospective MHC haplotypes in the wild turkeys, whereas a combined analysis with commercial birds identified almost 100 haplotypes in the species. Denaturing gradient gel electrophoresis (DGGE) of the class IIB loci was used to test the efficacy of single-nucleotide polymorphism (SNP) haplotyping to capture locus-wide variation. Diversity in SNP haplotypes and haplotype sharing among individuals was directly reflected in the DGGE patterns. Utilization of a reference haplotype to sequence interspersed regions of the MHC has significant advantages over other methods of surveying diversity while identifying high-frequency SNPs for genotyping. SNP haplotyping provides a means to identify both divergent haplotypes and homozygous individuals for assessment of immunological variation in wild and domestic populations.

  15. MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice in whitefish.

    Science.gov (United States)

    Wedekind, C; Walker, M; Portmann, J; Cenni, B; Müller, R; Binz, T

    2004-01-01

    Non-random gamete fusion is one of several potential cryptic female choice mechanisms that have been postulated and that may enhance the survival probability of the offspring. Previous studies have found that gamete fusion in mice is influenced by genes of the major histocompatibility complex (MHC) region. Here we test (i) whether there is MHC-dependent gamete fusion in whitefish (Coregonus sp.) and (ii) whether there is a link between the MHC and embryo susceptibility to an infection by the bacterium Pseudomonas fuorescens. We experimentally bred whitefish and reared sibships in several batches that either experienced or did not experience strong selection by P. fluorescens. We then determined the MHC class II B1 genotype of 1016 surviving larvae of several full sibships. We found no evidence for MHC-linked gamete fusion. However, in one of seven sibships we found a strong connection between the MHC class II genotype and embryo susceptibility to P. fluorescens. This connection was still significant after correcting for multiple testing. Hence, the MHC class II genotype can considerably influence embryo survival in whitefish, but gamete fusion seems to be random with respect to the MHC.

  16. The relationship between MHC-DRB1 gene second exon polymorphism and hydatidosis resistance of Chinese merino (Sinkiang Junken type, Kazakh and Duolang sheep

    Directory of Open Access Journals (Sweden)

    Li R.Y.

    2011-05-01

    Full Text Available The present study aimed at detecting the association of ovine major histocompatibility complex class II (Ovar II DRB1 gene second exon and susceptibility or resistance to hydatidosis in three sheep breeds of Sinkiang. The MHC-DRB1 second exon was amplified by polymerase chain reaction (PCR from DNA samples of healthy sheep and sheep with hydatidosis. PCR products were characterized by the restriction fragment length polymorphism (RFLP technique. Five restriction enzymes, MvaI, HaeIII, SacI, SacII, Hin1I, were used, yielding 14 alleles and 31 restriction patterns. Frequencies of patterns MvaIbc, Hin1Iab, SacIIab, HaeIIIde, HaeIIIdf, HaeIIIdd (P < 0.01 in Kazakh sheep, SacIab (P < 0.05 in Duolang sheep, and HaeIIIab, HaeIIIce, HaeIIIde, HaeIIIee (P < 0.01 in Chinese Merino (Sinkiang Junken type sheep, were significantly higher in healthy sheep compared with infected sheep. These results indicated a strong association between these patterns and hydatidosis resistance. In contrast, the frequencies of MvaIbb, SacIIaa, Hin1Ibb, HaeIIIef (P < 0.01 and HaeIIIab (P < 0.05 in Kazakh sheep, SacIbb, HaeIIIae, Hin1Iab (P < 0.05, HaeIIIaa, HaeIIIbe, HaeIIIef (P < 0.01 in Duolang sheep, SacIIaa (P < 0.05 and HaeIIIbd, Hin1Ibb, HaeIIIcf, HaeIIIef (P < 0.01 in Chinese Merino sheep (Sinkiang Junken type were significantly lower in healthy sheep compared with infected sheep. This indicated a strong association between these patterns and hydatidosis susceptibility. In addition, sheep with the pattern of HaeIIIef demonstrated a high hydatidosis susceptibility (P < 0.01 in all three breeds, while sheep with the pattern HaeIIIde demonstrated significant hydatidosis resistance (P < 0.01 in Kazakh and Chinese Merino sheep (Sinkiang Junken type. These results suggest that the Ovar-DRB1 gene plays a role in resistance to hydatidosis infection in the three sheep breeds.

  17. Evolution of MHC class I in the order Crocodylia.

    Science.gov (United States)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Ho, Simon Y W; Salomonsen, Jan; Skjodt, Karsten; Miles, Lee G; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.

  18. Modes of salmonid MHC class I and II evolution differ from the primate paradigm

    NARCIS (Netherlands)

    Shum, B.P.; Guethlein, L.; Flodin, L.R.; Adkison, M.A.; Hedrick, R.P.; Nehring, R.B.; Stet, R.J.M.; Secombes, C.; Parham, P.

    2001-01-01

    Rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) represent two salmonid genera separated for 15-20 million years. cDNA sequences were determined for the classical MHC class I heavy chain gene UBA and the MHC class II β-chain gene DAB from 15 rainbow and 10 brown trout. Both genes a

  19. Organizing MHC Class II Presentation

    Directory of Open Access Journals (Sweden)

    David R Fooksman

    2014-04-01

    Full Text Available Major histocompatibility complex (MHC class II molecules are ligands for CD4+ T cells and are critical for initiating the adaptive immune response. This review is focused on what is currently known about MHC class II organization at the plasma membrane of antigen presenting cells and how this affects antigen presentation to T cells. The organization and diffusion of class II molecules have been measured by a variety of biochemical and microscopic techniques. Membrane lipids and other proteins have been implicated in MHC class II organization and function. However, when compared with the organization of MHC class I or TCR complexes, much less is known about MHC class II. Since clustering of T cell receptors occurs during activation, the organization of MHC molecules prior to recognition and during synapse formation may be critical for antigen presentation.

  20. A Bayesian variable selection procedure for ranking overlapping gene sets

    DEFF Research Database (Denmark)

    Skarman, Axel; Mahdi Shariati, Mohammad; Janss, Luc

    2012-01-01

    described. In many cases, these methods test one gene set at a time, and therefore do not consider overlaps among the pathways. Here, we present a Bayesian variable selection method to prioritize gene sets that overcomes this limitation by considering all gene sets simultaneously. We applied Bayesian...... variable selection to differential expression to prioritize the molecular and genetic pathways involved in the responses to Escherichia coli infection in Danish Holstein cows. Results We used a Bayesian variable selection method to prioritize Kyoto Encyclopedia of Genes and Genomes pathways. We used our...... data to study how the variable selection method was affected by overlaps among the pathways. In addition, we compared our approach to another that ignores the overlaps, and studied the differences in the prioritization. The variable selection method was robust to a change in prior probability...

  1. A Bayesian variable selection procedure to rank overlapping gene sets

    Directory of Open Access Journals (Sweden)

    Skarman Axel

    2012-05-01

    Full Text Available Abstract Background Genome-wide expression profiling using microarrays or sequence-based technologies allows us to identify genes and genetic pathways whose expression patterns influence complex traits. Different methods to prioritize gene sets, such as the genes in a given molecular pathway, have been described. In many cases, these methods test one gene set at a time, and therefore do not consider overlaps among the pathways. Here, we present a Bayesian variable selection method to prioritize gene sets that overcomes this limitation by considering all gene sets simultaneously. We applied Bayesian variable selection to differential expression to prioritize the molecular and genetic pathways involved in the responses to Escherichia coli infection in Danish Holstein cows. Results We used a Bayesian variable selection method to prioritize Kyoto Encyclopedia of Genes and Genomes pathways. We used our data to study how the variable selection method was affected by overlaps among the pathways. In addition, we compared our approach to another that ignores the overlaps, and studied the differences in the prioritization. The variable selection method was robust to a change in prior probability and stable given a limited number of observations. Conclusions Bayesian variable selection is a useful way to prioritize gene sets while considering their overlaps. Ignoring the overlaps gives different and possibly misleading results. Additional procedures may be needed in cases of highly overlapping pathways that are hard to prioritize.

  2. No evidence for MHC class I-based disassortative mating in a wild population of great tits.

    Science.gov (United States)

    Sepil, I; Radersma, R; Santure, A W; De Cauwer, I; Slate, J; Sheldon, B C

    2015-03-01

    Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.

  3. Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method.

    Science.gov (United States)

    Dadi, Hailu; Le, MinhThong; Dinka, Hunduma; Nguyen, DinhTruong; Choi, Hojun; Cho, Hyesun; Choi, Minkyeung; Kim, Jin-Hoi; Park, Jin-Ki; Soundrarajan, Nagasundarapandian; Park, Chankyu

    2015-01-01

    The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.

  4. Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2 Gene and Development of a High-Resolution Typing Method.

    Directory of Open Access Journals (Sweden)

    Hailu Dadi

    Full Text Available The genetic structure and function of MHC class I chain-related (MIC genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.

  5. Can selective MHC downregulation explain the specificity and genetic diversity of NK cell receptors?

    Directory of Open Access Journals (Sweden)

    Paola eCarrillo-Bustamante

    2015-06-01

    Full Text Available Natural killer (NK cells express inhibiting receptors (iNKRs s which specifically bind MHC-I molecules on the surface of healthy cells. When the expression of MHC-I on the cell surface decreases, which might occur during certain viral infections and cancer, iNKRs s lose inhibiting signals and the infected cells become target for NK cell activation (missing-self detection. Although the detection of MHC-I deficient cells can be achieved by conserved receptor-ligand interactions, several iNKRs are encoded by gene families with a remarkable genetic diversity, containing many haplotypes varying in gene content and allelic polymorphism. So far, the biological function of this expansion within the NKR cluster has remained poorly understood. Here, we investigate whether the evolution of diverse iNKRs genes can be driven by a specific viral immunoevasive mechanism: selective MHC downregulation. Several viruses, including EBV, CMV, and HIV, decrease the expression of MHC-I to escape from T cell responses. This downregulation does not always affect all MHC loci in the same way, as viruses target particular MHC molecules. To study the selection pressure of selective MHC downregulation on iNKRs, we have developed an agent-based model simulating an evolutionary scenario of hosts infected with herpes-like viruses that are able to selectively downregulate the expression of MHC-I molecules on the cell surface. We show that iNKRs evolve specificity and, depending on the similarity of MHC alleles within each locus and the differences between the loci, they can specialize to a particular MHC-I locus. The easier it is to classify an MHC allele to its locus, the lower the required diversity of the NKRs. Thus, the diversification of the iNKR cluster depends on the locus specific MHC structure.

  6. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  7. Polymorphism at expressed DQ and DR loci in five common equine MHC haplotypes.

    Science.gov (United States)

    Miller, Donald; Tallmadge, Rebecca L; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A; Antczak, Douglas F

    2017-03-01

    The polymorphism of major histocompatibility complex (MHC) class II DQ and DR genes in five common equine leukocyte antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine bacterial artificial chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next generation sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse.

  8. MHC class II polymorphisms, autoreactive T-cells and autoimmunity

    Directory of Open Access Journals (Sweden)

    Sue eTsai

    2013-10-01

    Full Text Available Major histocompatibility complex (MHC genes, also known as human leukocyte antigen genes (HLA in humans, are the prevailing contributors of genetic susceptibility to autoimmune diseases such as Type 1 Diabetes (T1D, Multiple Sclerosis (MS, and Rheumatoid arthritis (RA, among others (Todd and Wicker, 2001;MacKay et al., 2002;Hafler et al., 2007. Although the pathways through which MHC molecules afford autoimmune risk or resistance remain to be fully mapped out, it is generally accepted that they do so by shaping the central and peripheral T cell repertoires of the host towards autoimmune proclivity or resistance, respectively. Disease-predisposing MHC alleles would both spare autoreactive thymocytes from central tolerance and bias their development towards a pathogenic phenotype. Protective MHC alleles, on the other hand, would promote central deletion of autoreactive thymocytes and skew their development towards non-pathogenic phenotypes. This interpretation of the data is at odds with two other observations: that in MHC-heterozygous individuals, resistance is dominant over susceptibility; and that it is difficult to understand how deletion of one or a few clonal autoreactive T cell types would suffice to curb autoimmune responses driven by hundreds if not thousands of autoreactive T cell specificities. This review provides an update on current advances in our understanding of the mechanisms underlying MHC class II-associated autoimmune disease susceptibility and/or resistance and attempts to reconcile these seemingly opposing concepts.

  9. Major Histocompatibility Complex (MHC Markers in Conservation Biology

    Directory of Open Access Journals (Sweden)

    Katherine Belov

    2011-08-01

    Full Text Available Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC. MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity.

  10. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  11. MHC class I loci of the Bar-Headed goose (Anser indicus

    Directory of Open Access Journals (Sweden)

    Qinglong Liang

    2010-01-01

    Full Text Available MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade.

  12. Antitumor immune response of MHC class Ⅰ chain-related gene A modified oral squamous cell carcinoma vaccine:An experimental study in mice%MHC-Ⅰ类链相关基因A修饰的口腔鳞癌细胞疫苗诱导抗肿瘤免疫应答的实验研究

    Institute of Scientific and Technical Information of China (English)

    李超; 石芳琼; 王洁; 杨丹; 翦新春; 蒋灿华

    2012-01-01

    PURPOSE: To investigate the vaccine potency of MHC class I chain-related gene A (MICA) modified oral squamous cell carcinoma cells. METHODS: Oral squamous cell carcinoma Tb cells transfected with eukaryotic expression vector pEGFP -Nl -MICA and overexpressing MICA protein were inactivated by 120Gy irradiation and vaccinated human peripheral blood leucocytes reconstituted SCID (Hu-PBL/SCID)mice via intra-peritoneal injection, and the non-transfected or blank vector transfected Tb cells were used as the controls. The inhibition effect on tumorigenicity of subcutaneously challenged Tb cells in vaccinated Hu-PBL/SCID mice was detected.The expression of NKG2D and the cytotoxicity in vitro to Tb cells of peripheral blood mononuclear cells (PBMCs) and spleen cells were measured by flow cytometry and lactate dehydrogenase (LDH) release assay. SPSS 16.0 software package was used for statistical analysis. RESULTS: MICA gene modified Tb tumor vaccine resulted in remarkable loss of tumor size and tumor weight in vaccinated Hu -PBL/SCID mice. Flow cytometry and lactate dehydrogenase (LDH) release assay showed MICA gene modified Tb tumor vaccine up -regulated the expression of NKG2D on PBMC and spleen cells and enhanced thecytotoxicity to tumor cells. Significant difference was found between MICA-transfected vaccine and non-transfected and blank vector-transfected vaccine (P<0.05). CONCLUSIONS: MICA gene modified oral squamous cell carcinoma vaccine can enhance the ability of antitumor immune response,and MICA may be considered as a promising immunotherapy target of oral squamous cell carcinoma.Supported by National Natural Science Foundation of China (30772437)and Foundation of Hunan Provincial Bureau of Science and Technology (06sk3026, 06sk3044).%目的:研究MHC-Ⅰ类链相关基因A(MHC class Ⅰ chain-related gene A,MICA)修饰的口腔鳞癌疫苗诱导机体抗肿瘤免疫应答的有效性并探讨其作用机制.方法:灭活稳定转染MICA基因的口腔鳞癌细

  13. Female rose bitterling prefer MHC-dissimilar males: experimental evidence.

    Directory of Open Access Journals (Sweden)

    Martin Reichard

    Full Text Available The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to "good allele" models of sexual selection, "compatible allele" models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC.

  14. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus)

    OpenAIRE

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingl...

  15. MHC基因与奶牛乳房炎相关性研究进展%Advances on the Relationship Between MHC Gene and Mastitis of Dairy Cow

    Institute of Scientific and Technical Information of China (English)

    赵福斌; 李建斌; 王洪梅; 李秋玲; 胡桂学; 仲跻峰

    2007-01-01

    奶牛乳房炎是一种严重危害奶牛生产的疾病,它的发生与管理、环境、遗传等多种因素有关.组织相容性复合体(Major Histocompatibility Complex,MHC)基因在动物机体的免疫系统中占有重要地位,并且存在极其丰富的多态性.MHC的部分等位基因型与奶牛乳房炎存在密切的相关性.本文对奶牛MHC基因多态性与乳房炎相关性进行了综述.

  16. The genetic structure of Mexican Mestizos of different locations: tracking back their origins through MHC genes, blood group systems, and microsatellites.

    Science.gov (United States)

    Gorodezky, C; Alaez, C; Vázquez-García, M N; de la Rosa, G; Infante, E; Balladares, S; Toribio, R; Pérez-Luque, E; Muñoz, L

    2001-09-01

    Mexican Mestizos, who are the result of the admixture of Spanish, Indian, and Black genes, were analyzed for different systems. Three populations from geographical distinct areas were studied: the north (State of Nuevo Leon ), the center (State of Guanajuato), and the highlands (mainly Mexico City). Ten blood group systems (N = 229), STRs (N = 107), HLA-A*, B*, C* (N = 116-167), and DRB1, DQA1, and DQB1 (N = 40, 101, 160, respectively) were analyzed in the samples of the highlands. The three groups cluster together in the same branch: Mestizos from Venezuela, Mediterranean and Jews close to the cluster of Orientals, followed by Amerindians. All markers demonstrate that Indian genes are strongly represented in the highlands: Di(a), O, D(-)(+), s, A*0201, *0206, B*1539 (*1541), *3902, *3905, *3512, *3517, *4002, *4005, Cw*0801, *0304, *0401 among others. Cw*0501, *1203, *1204, and *1601 are of White ancestry. The most frequent haplotypes *0407-*03011-*0302 and *0802-*0401-*0402 are of Indian descent as well. The center and mainly the north show a more Caucasian and Semitic profile. The results demonstrate the high variability resulting from interethnic admixture, suggesting that this mechanism is the main factor responsible for the large diversity found in urban populations.

  17. Meta-analysis based variable selection for gene expression data.

    Science.gov (United States)

    Li, Quefeng; Wang, Sijian; Huang, Chiang-Ching; Yu, Menggang; Shao, Jun

    2014-12-01

    Recent advance in biotechnology and its wide applications have led to the generation of many high-dimensional gene expression data sets that can be used to address similar biological questions. Meta-analysis plays an important role in summarizing and synthesizing scientific evidence from multiple studies. When the dimensions of datasets are high, it is desirable to incorporate variable selection into meta-analysis to improve model interpretation and prediction. According to our knowledge, all existing methods conduct variable selection with meta-analyzed data in an "all-in-or-all-out" fashion, that is, a gene is either selected in all of studies or not selected in any study. However, due to data heterogeneity commonly exist in meta-analyzed data, including choices of biospecimens, study population, and measurement sensitivity, it is possible that a gene is important in some studies while unimportant in others. In this article, we propose a novel method called meta-lasso for variable selection with high-dimensional meta-analyzed data. Through a hierarchical decomposition on regression coefficients, our method not only borrows strength across multiple data sets to boost the power to identify important genes, but also keeps the selection flexibility among data sets to take into account data heterogeneity. We show that our method possesses the gene selection consistency, that is, when sample size of each data set is large, with high probability, our method can identify all important genes and remove all unimportant genes. Simulation studies demonstrate a good performance of our method. We applied our meta-lasso method to a meta-analysis of five cardiovascular studies. The analysis results are clinically meaningful.

  18. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Neurons in the murine vomeronasal organ (VNO express a family of class Ib major histocompatibility complex (MHC proteins (M10s that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  19. Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.; Huey-Tubman, K.E.; Dulac, C.; Bjorkman, P.J.; /Caltech /Harvard U.

    2006-10-06

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.

  20. Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chickens

    DEFF Research Database (Denmark)

    Wallny, Hans-Joachim; Avila, David; Hunt, Lawrence G.

    2006-01-01

    Compared with the MHC of typical mammals, the chicken MHC is smaller and simpler, with only two class I genes found in the B12 haplotype. We make five points to show that there is a single-dominantly expressed class I molecule that can have a strong effect on MHC function. First, we find only one...

  1. Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard.

    Science.gov (United States)

    Radwan, Jacek; Kuduk, Katarzyna; Levy, Esther; LeBas, Natasha; Babik, Wiesław

    2014-12-01

    Major histocompatibility complex (MHC) gene polymorphism is thought to be driven by host-parasite co-evolution, but the evidence for an association between the selective pressure from parasites and the number of MHC alleles segregating in a population is scarce and inconsistent. Here, we characterized MHC class I polymorphism in a lizard whose habitat preferences (rock outcrops) lead to the formation of well-defined and stable populations. We investigated the association between the load of ticks, which were used as a proxy for the load of pathogens they transmit, and MHC class I polymorphism across populations in two types of habitat: undisturbed reserves and agricultural land. We hypothesized that the association would be positive across undisturbed reserve populations, but across fragmented agricultural land populations, the relationship would be distorted by the loss of MHC variation due to drift. After controlling for habitat, MHC diversity was not associated with tick number, and the habitats did not differ in this respect. Neither did we detect a difference between habitats in the relationship between MHC and neutral diversity, which was positive across all populations. However, there was extensive variation in the number of MHC alleles per individual, and we found that tick number was positively associated with the average number of alleles carried by lizards across reserve populations, but not across populations from disturbed agricultural land. Our results thus indicate that local differences in selection from parasites may contribute to MHC copy number variation within species, but habitat degradation can distort this relationship.

  2. Age Dependent Variability in Gene Expression in Fischer 344 ...

    Science.gov (United States)

    Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in

  3. Infection-dependent MHC expression in the three-spined stickleback, Gasterosteus aculeatus

    OpenAIRE

    Hibbeler, S.

    2006-01-01

    The study focused on two main topics. On the one hand primers and a PCR protocol were developed to find a suitable housekeeping gene for quantitative real-time PCR. On the other hand this study explored the expression of genes related to an immune response in cell cultures and organs of living fish. The main focus lay on the genes of the major histocompatibility complex (MHC). The MHC has been studied for several years. This is mainly because of the central role of MHC molecules in the adapti...

  4. Cross-species association of quail invariant chain with chicken and mouse MHC II molecules.

    Science.gov (United States)

    Chen, Fangfang; Wu, Chao; Pan, Ling; Xu, Fazhi; Liu, Xuelan; Yu, Weiyi

    2013-05-01

    There are different degrees of similarity among vertebrate invariant chains (Ii). The aim of this study was to determine the relationship between quail and other vertebrate Ii MHC class II molecules. The two quail Ii isoforms (qIi-1, qIi-2) were cloned by RACE, and qRT-PCR analysis of different organs showed that their expression levels were positively correlated with MHC II gene (B-LB) transcription levels. Confocal microscopy indicated that quail full-length Ii co-localized with MHC II of quail, chicken or mouse in 293FT cells co-transfected with both genes. Immunoprecipitation and western blotting further indicated that these aggregates corresponded to polymers of Ii and MHC class II molecules. This cross-species molecular association of quail Ii with chicken and mouse MHC II suggests that Ii molecules have a high structural and functional similarity and may thereby be used as potential immune carriers across species.

  5. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  6. Evolution of MHC class I in the Order Crocodylia

    DEFF Research Database (Denmark)

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P

    2014-01-01

    have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3...... events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia....

  7. A variable gene delivery carrier-biotinylated chitosan/polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yi-Chen; Young, Tai-Horng [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chang, Fu-Hsiung [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan (China); Wei, Ming-Feng, E-mail: thyoung@ntu.edu.t [Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan (China)

    2010-12-15

    A variable gene delivery system has been developed based on conjugating chitosan to biotin through a functionalized poly(ethylene glycol) (PEG) spacer, which can be used to further bind different molecules on the outer layer of a polymer/DNA complex by streptavidin (SA)-biotin linkage. In this study, TAT-conjugated SA was used as the model molecule to prove the conjugation function of the prepared complex. In addition, low-molecular-weight poly(ethyleneimine) (PEI) was added into the polymer/DNA complex to increase the transfection efficiency. The results of the luciferase assay show that the transfection efficiency of the prepared complex was significantly correlated with the amount of PEI and was further enhanced when TAT was conjugated to the complex by SA-biotin linkage. Considered to have negligible cytotoxic effects, the variable gene delivery complex prepared in this study would be of considerable potential as carriers for in vitro applications.

  8. Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution

    Science.gov (United States)

    Erickson, Keesha E.; Otoupal, Peter B.

    2017-01-01

    ABSTRACT Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment

  9. The Intensity of Human Body Odors and the MHC: Should We Expect a Link?

    Directory of Open Access Journals (Sweden)

    Claus Wedekind

    2006-01-01

    Full Text Available It is now well established that genes within the major histocompatibility complex (MHC somehow affect the production of body odors in several vertebrates, including humans. Here we discuss whether variation in the intensity of body odors may be influenced by the MHC. In order to examine this question, we have to control for MHC-linked odor perception on the smeller's side. Such a control is necessary because the perception of pleasantness and intensity seem to be confounded, and the causalities are still unsolved. It has previously been found that intense odors are scored as less pleasant if the signaler and the receiver are of MHC-dissimilar type, but not if they are of MHC similar type. We argue, and first data suggest, that an effect of the degree of MHC-heterozygosity and odor intensity is likely (MHC-homozygotes may normally smell more intense, while there is currently no strong argument for other possible links between the MHC and body odor intensity.

  10. Genetic variation at the MHC in a population of introduced wild turkeys.

    Science.gov (United States)

    Bauer, Miranda M; Miller, Marcia M; Briles, W Elwood; Reed, Kent M

    2013-01-01

    Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.

  11. Beta-amylase gene variability in introgressive wheat lines.

    Science.gov (United States)

    Antonyuk, Maksym; Navalikhina, Anastasiia; Ternovska, Tamara

    2017-05-01

    Variability of the beta-amylase gene in bread wheat, artificial amphidiploids, and derived introgression wheat lines was analyzed. Variation in homeologous beta-amylase sequences caused by the presence of MITE (Miniature Inverted-Repeat Transposable Element) and its footprint has been identified in bread wheat. The previously unknown location of MITE in Triticum urartu and T. aestivum L. beta-amylase gene has been found. These species have a MITE sequence in the third intron of beta-amylase, as opposed to Aegilops comosa and a number of other Triticeae species, which have it in the fourth intron. These two MITEs from Ae. comosa and T. aestivum were shown to have low identity scores. Miosa, an artificial amphidiploid, which has the M genome from Ae. comosa was shown to lose the MITE sequences. This loss might be caused by genomic shock due to allopolyploidization.

  12. Sequence Variability in Staphylococcal Enterotoxin Genes seb, sec, and sed

    Directory of Open Access Journals (Sweden)

    Sophia Johler

    2016-06-01

    Full Text Available Ingestion of staphylococcal enterotoxins preformed by Staphylococcus aureus in food leads to staphylococcal food poisoning, the most prevalent foodborne intoxication worldwide. There are five major staphylococcal enterotoxins: SEA, SEB, SEC, SED, and SEE. While variants of these toxins have been described and were linked to specific hosts or levels or enterotoxin production, data on sequence variation is still limited. In this study, we aim to extend the knowledge on promoter and gene variants of the major enterotoxins SEB, SEC, and SED. To this end, we determined seb, sec, and sed promoter and gene sequences of a well-characterized set of enterotoxigenic Staphylococcus aureus strains originating from foodborne outbreaks, human infections, human nasal colonization, rabbits, and cattle. New nucleotide sequence variants were detected for all three enterotoxins and a novel amino acid sequence variant of SED was detected in a strain associated with human nasal colonization. While the seb promoter and gene sequences exhibited a high degree of variability, the sec and sed promoter and gene were more conserved. Interestingly, a truncated variant of sed was detected in all tested sed harboring rabbit strains. The generated data represents a further step towards improved understanding of strain-specific differences in enterotoxin expression and host-specific variation in enterotoxin sequences.

  13. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates

    Directory of Open Access Journals (Sweden)

    de Groot Natasja G

    2009-04-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS, and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. Results First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate. Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When

  14. Polymorphisms of Exon 2 of MHC-DRB3 Gene in Mongolian and Kazakh Sheep%蒙古绵羊和哈萨克绵羊MHC-DRB3基因外显子2的多态性

    Institute of Scientific and Technical Information of China (English)

    孙东晓; 张沅; 李宁

    2003-01-01

    采用PCR-RFLP方法对蒙古绵羊和哈萨克绵羊MHC-DRB3基因第2外显子285 bp的扩增产物进行多态性分析,共检测到17种基因型,由A、B、C、D、E、F和H共7个复等位基因控制.通过酶切图谱分析表明,蒙古绵羊和哈萨克绵羊的MHC-DRB3基因第2外显子的第154、168和220位的碱基表现出多态性.统计分析表明,MHC-DRB3基因的部分基因型频率和等位基因频率在两个群体之间差异显著或极显著(P<0.10、P<0.05或P<0.01).χ2适合性检验结果表明,蒙古绵羊和哈萨克绵羊的MHC-DRB3基因第2外显子的HaeⅢ酶切位点均未达到Hardy-Weinberg平衡状态(P<0.01).

  15. Molecular characterization of major histocompatibility complex class 1 (MHC-I) from squirrel monkeys (Saimiri sciureus).

    Science.gov (United States)

    Pascalis, Hervé; Heraud, Jean-Michel; Fendel, Rolf; Lavergne, Anne; Kazanji, Mirdad

    2003-12-01

    Little is known about the major histocompatibility complex (MHC) class 1 in squirrel monkeys ( Saimiri sciureus). We cloned, sequenced and characterized two alleles and the cDNA of the coding region of MHC class 1 in these New World monkeys. Phylogenetic analyses showed that these sequences are related to HLA class 1 genes ( HLA-A and HLA-G). The structure and organization of one of the two identified clones was similar to that of a class 1 MHC gene ( HLA-A2). All the exon/intron splice acceptor/donor sites are conserved and their locations correspond to the HLA-A2 gene. The sequences of the newly described cDNAs reveal that they code for the characteristic class 1 MHC proteins, with all the features thought necessary for cell surface expression. Typical sequences for the leader peptide, alpha(1), alpha(2), alpha(3), transmembrane and cytoplasmic domains were found.

  16. Recipients with In Utero Induction of Tolerance Upregulated MHC Class I in the Engrafted Donor Skin

    Directory of Open Access Journals (Sweden)

    Jeng-Chang Chen

    2014-01-01

    Full Text Available The alterations in MHC class I expression play a crucial step in immune evasion of cancer or virus-infected cells. This study aimed to examine whether tolerized grafts modified MHC class I expression. FVB/N mice were rendered tolerant of C57BL/6 alloantigens by in utero transplantation of C57BL/6 marrows. Postnatally, engrafted donor skins and leukocytes were examined for their MHC expression by quantitative real-time PCR and flow cytometry. Engrafted donor skins upregulated their MHC class I related gene transcripts after short-term (1~2 weeks or long-term (>1 month engraftment. This biological phenomenon was simultaneously associated with upregulation of TAP1 gene transcripts, suggesting an important role of TAP1 in the regulation of MHC class I pathway. The surface MHC class I molecules of H-2Kb in engrafted donor leukocytes consistently showed overexpression. Conclusively, the induction of allograft tolerance involved biological modifications of donor transplants. The overexpression of MHC class I within engrafted transplants of tolerant mice might be used as the tolerance biomarkers for identifying a state of graft tolerance.

  17. Orf virus interferes with MHC class I surface expression by targeting vesicular transport and Golgi

    Directory of Open Access Journals (Sweden)

    Rohde Jörg

    2012-07-01

    Full Text Available Abstract Background The Orf virus (ORFV, a zoonotic Parapoxvirus, causes pustular skin lesions in small ruminants (goat and sheep. Intriguingly, ORFV can repeatedly infect its host, despite the induction of a specific immunity. These immune modulating and immune evading properties are still unexplained. Results Here, we describe that ORFV infection of permissive cells impairs the intracellular transport of MHC class I molecules (MHC I as a result of structural disruption and fragmentation of the Golgi apparatus. Depending on the duration of infection, we observed a pronounced co-localization of MHC I and COP-I vesicular structures as well as a reduction of MHC I surface expression of up to 50%. These subversion processes are associated with early ORFV gene expression and are accompanied by disturbed carbohydrate trimming of post-ER MHC I. The MHC I population remaining on the cell surface shows an extended half-life, an effect that might be partially controlled also by late ORFV genes. Conclusions The presented data demonstrate that ORFV down-regulates MHC I surface expression in infected cells by targeting the late vesicular export machinery and the structure and function of the Golgi apparatus, which might aid to escape cellular immune recognition.

  18. Analysis of porcine MHC expression profile

    Institute of Scientific and Technical Information of China (English)

    JIANG Fanbo; CHEN Chen; DENG Yajun; YU Jun; HU Songnian

    2005-01-01

    The porcine major histocompatibility complex (MHC, also named swine leukocyte antigen, SLA) is associated not only with immune responsibility and disease susceptibility, but also with some reproductive and productive traits such as growth rate and carcass composition. As yet systematical research on SLA expression profile is not reported. In order to illustrate SLA expression comprehensively and deepen our understanding of its function, we outlined the expression profile of SLA in 51 tissues of Landrace by analyzing a large amount of ESTs produced by "Sino-Danish Porcine Genome Project". In addition, we also compared the expression profile of SLA in several tissues from different development stages and from another breed (Erhualian). The result shows: (i) classical SLA genes are highly expressed in immune tissues and middle part of intestine; (ii) although SLA-3 is an SLA Ia gene, its expression abundance and pattern are quite different from those of the other two SLA Ia genes. The same phenomenon is seen in HLA-C expression, suggesting that the two genes may function similarly and undergo convergent evolution; (iii) except in jejunum, the antigen presenting genes are more highly expressed in breed Erhualian than in Landrace. The difference might associate with the higher resistance to bad conditions (including pathogens) of Erhualian and higher growth rates of Landrace.

  19. Prokaryotic Expression and Polyclonal Antibody Preparation of Chicken MHC Ⅰα andβ2m Genes%鸡MHCⅠα和β2m的原核表达与多克隆抗体的制备

    Institute of Scientific and Technical Information of China (English)

    戴银; 王承志; 刘生杰; 沈学怀; 赵瑞宏; 胡晓苗; 张丹俊

    2016-01-01

    为制备 MHCⅠ基因工程疫苗的基础材料,构建了鸡 MHCⅠ分子重组质粒并进行原核表达,进而制备鸡 MHCⅠ分子的多克隆抗体。应用 PCR 方法,克隆鸡 MHCⅠα和β2m 基因,构建重组载体 pET-MHCⅠα和 pET-MHCⅠβ2m,经 PCR、双酶切和测序鉴定后,将重组质粒在大肠埃希菌 Rosetta 中进行诱导表达,融合蛋白纯化后,接种昆明小鼠制备多克隆抗体,血清稀释后用免疫印迹法(Western blot)分析。结果表明,鸡 MHCⅠα和β2m 基因在大肠埃希菌中成功表达,融合蛋白分子质量分别约为52.1 ku 和33.0 ku;制备的鼠抗鸡 MHCⅠα和β2m 链多克隆抗体,经 Western blot 检测证实抗体特异性较强,可进一步用于鸡 MHCⅠ分子的研究。%To explore MHC Ⅰ function as DNA vaccine,chicken MHCgenes were expressed by using Escherichia coli prokaryotic expression system,and polyclonal antibodies against the recombinant protein MHCⅠwere prepared.Chicken MHCⅠαandβ2m genes were cloned,the recombinant plasmid pET-MHCⅠα,pET-MHCⅠβ2m were constructed,and confirmed by PCR amplification,double enzyme digestion and DNA sequencing.Next,the recombinant plasmids were expressed in E.coli Rosetta induced by using IPTG.After purification of the recombinant protein,the polyclonal antibodies against the recombinant pro-tein were prepared in Kunming mice.The reactivity of the prepared polyclonal antibodies were determined by Western blot.The results revealed that the MHCⅠαandβ2m genes were successfully expressed in E. coli,and the fusion proteins were about 52.1 ku and 33.0 ku,respectively.The polyclonal antibodies had the specific reactinogenicity,it was proved by Western blot.All this made it possible to do further studies on chicken MHCⅠmolecule.

  20. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Shiina, Takashi; Kono, Azumi; Westphal, Nico; Suzuki, Shingo; Hosomichi, Kazuyoshi; Kita, Yuki F; Roos, Christian; Inoko, Hidetoshi; Walter, Lutz

    2011-08-01

    Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.

  1. Olfactory signals and the MHC: a review and a case study in Lemur catta.

    Science.gov (United States)

    Knapp, Leslie A; Robson, Julie; Waterhouse, John S

    2006-06-01

    The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates. Copyright 2006 Wiley-Liss, Inc.

  2. Ultrahigh-dimensional variable selection method for whole-genome gene-gene interaction analysis

    Directory of Open Access Journals (Sweden)

    Ueki Masao

    2012-05-01

    Full Text Available Abstract Background Genome-wide gene-gene interaction analysis using single nucleotide polymorphisms (SNPs is an attractive way for identification of genetic components that confers susceptibility of human complex diseases. Individual hypothesis testing for SNP-SNP pairs as in common genome-wide association study (GWAS however involves difficulty in setting overall p-value due to complicated correlation structure, namely, the multiple testing problem that causes unacceptable false negative results. A large number of SNP-SNP pairs than sample size, so-called the large p small n problem, precludes simultaneous analysis using multiple regression. The method that overcomes above issues is thus needed. Results We adopt an up-to-date method for ultrahigh-dimensional variable selection termed the sure independence screening (SIS for appropriate handling of numerous number of SNP-SNP interactions by including them as predictor variables in logistic regression. We propose ranking strategy using promising dummy coding methods and following variable selection procedure in the SIS method suitably modified for gene-gene interaction analysis. We also implemented the procedures in a software program, EPISIS, using the cost-effective GPGPU (General-purpose computing on graphics processing units technology. EPISIS can complete exhaustive search for SNP-SNP interactions in standard GWAS dataset within several hours. The proposed method works successfully in simulation experiments and in application to real WTCCC (Wellcome Trust Case–control Consortium data. Conclusions Based on the machine-learning principle, the proposed method gives powerful and flexible genome-wide search for various patterns of gene-gene interaction.

  3. MHC class II expression in human basophils: induction and lack of functional significance.

    Directory of Open Access Journals (Sweden)

    Astrid L Voskamp

    Full Text Available The antigen-presenting abilities of basophils and their role in initiating a Th2 phenotype is a topic of current controversy. We aimed to determine whether human basophils can be induced to express MHC Class II and act as antigen presenting cells for T cell stimulation. Isolated human basophils were exposed to a panel of cytokines and TLR-ligands and assessed for MHC Class II expression. MHC Class II was expressed in up to 17% of isolated basophils following incubation with a combination of IL-3, IFN-γ and GM-CSF for 72 hours. Costimulatory molecules (CD80 and CD86 were expressed at very low levels after stimulation. Gene expression analysis of MHC Class II-positive basophils confirmed up-regulation of HLA-DR, HLA-DM, CD74 and Cathepsin S. However, MHC Class II expressing basophils were incapable of inducing antigen-specific T cell activation or proliferation. This is the first report of significant cytokine-induced MHC Class II up-regulation, at both RNA and protein level, in isolated human basophils. By testing stimulation with relevant T cell epitope peptide as well as whole antigen, the failure of MHC Class II expressing basophils to induce T cell response was shown not to be solely due to inefficient antigen uptake and/or processing.

  4. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata).

    Science.gov (United States)

    Fraser, Bonnie A; Ramnarine, Indar W; Neff, Bryan D

    2010-07-01

    Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by F(ST), which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.

  5. Population-specific recombination sites within the human MHC region

    OpenAIRE

    2013-01-01

    Genetic rearrangement by recombination is one of the major driving forces for genome evolution, and recombination is known to occur in non-random, discreet recombination sites within the genome. Mapping of recombination sites has proved to be difficult, particularly, in the human MHC region that is complicated by both population variation and highly polymorphic HLA genes. To overcome these problems, HLA-typed individuals from three representative populations: Asian, European an...

  6. MHC Class I Chain-Related Gene A Polymorphisms and Linkage Disequilibrium with HLA-B and HLA-C Alleles in Ocular Toxoplasmosis.

    Science.gov (United States)

    Ayo, Christiane Maria; Camargo, Ana Vitória da Silveira; Frederico, Fábio Batista; Siqueira, Rubens Camargo; Previato, Mariana; Murata, Fernando Henrique Antunes; Silveira-Carvalho, Aparecida Perpétuo; Barbosa, Amanda Pires; Brandão de Mattos, Cinara de Cássia; de Mattos, Luiz Carlos

    2015-01-01

    This study investigated whether polymorphisms of the MICA (major histocompatibility complex class I chain-related gene A) gene are associated with eye lesions due to Toxoplasma gondii infection in a group of immunocompetent patients from southeastern Brazil. The study enrolled 297 patients with serological diagnosis of toxoplasmosis. Participants were classified into two distinct groups after conducting fundoscopic exams according to the presence (n = 148) or absence (n = 149) of ocular scars/lesions due to toxoplasmosis. The group of patients with scars/lesions was further subdivided into two groups according to the type of the ocular manifestation observed: primary (n = 120) or recurrent (n = 28). Genotyping of the MICA and HLA alleles was performed by the polymerase chain reaction-sequence specific oligonucleotide technique (PCR-SSO; One Lambda®) and the MICA-129 polymorphism (rs1051792) was identified by nested polymerase chain reaction (PCR-RFLP). Significant associations involving MICA polymorphisms were not found. Although the MICA*002~HLA-B*35 haplotype was associated with increased risk of developing ocular toxoplasmosis (P-value = 0.04; OR = 2.20; 95% CI = 1.05-4.60), and the MICA*008~HLA-C*07 haplotype was associated with protection against the development of manifestations of ocular toxoplasmosis (P-value = 0.009; OR: 0.44; 95% CI: 0.22-0.76), these associations were not statistically significant after adjusting for multiple comparisons. MICA polymorphisms do not appear to influence the development of ocular lesions in patients diagnosed with toxoplasmosis in this study population.

  7. MHC class II compartment, endocytosis and phagocytic activity of macrophages and putative dendritic cells isolated from normal tissues rich in synovium.

    Science.gov (United States)

    Moghaddami, Mahin; Mayrhofer, Graham; Cleland, Leslie G

    2005-08-01

    The endocytic and phagocytic activities of a population of MHC IIhi CD11c+ dendritic cell (DC)-like cells in synovium-rich tissues (SRTs) of normal rat paws were compared with CD163+ cells (putative macrophages) from the same tissues and pseudo-afferent lymph DCs, peritoneal macrophages and blood monocytes. Fifty percent of CD11c+ cells and 75% of CD163+ cells isolated from SRT internalized fluorescein-conjugated dextran (FITC-DX). Of these endocytic cells, half of those expressing CD11c, but only 30% of those expressing CD163, were surface MHC class II+ (sMHC II+). CD11c+ cells were more endocytic than monocytes or pseudo-afferent lymph DC, but some CD163+ cells (type A synoviocytes) were found to be highly endocytic. CD163+ cells from SRT were more phagocytic (25%) than the general MHC class II+ population (16%). Of phagocytic cells, 40% of CD163+ cells were sMHC II(variable) and they constituted 60% of all MHC class II+ phagocytic cells. Only 18% of phagocytic MHC II+ cells expressed CD11c and the most of these were MHC IIhi. In comparison, 60% of CD163+ peritoneal macrophages were phagocytic, while blood monocytes were poorly phagocytic. Intracellular MHC class II-rich compartments (MIIC) were prominent in sMHC IIhi cells in SRT but rare in CD163+ cells. Most MHC IIhi CD11c+ cells did not have a detectable MIIC.

  8. MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae).

    Science.gov (United States)

    Clark, Emily S; Wilkins, Laetitia G E; Wedekind, Claus

    2013-10-01

    Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

  9. New insights into the role of MHC diversity in devil facial tumour disease.

    Directory of Open Access Journals (Sweden)

    Amanda Lane

    Full Text Available BACKGROUND: Devil facial tumour disease (DFTD is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease. METHODOLOGY/PRINCIPAL FINDINGS: We compared MHC class I sequences in 29 healthy and 22 diseased Tasmanian devils from West Pencil Pine, a population in north-western Tasmania exhibiting reduced disease impacts of DFTD. Amplified alleles were assigned to four loci, Saha-UA, Saha-UB, Saha-UC and Saha-UD based on recently obtained genomic sequence data. Copy number variation (caused by a deletion at Saha-UA was confirmed using a PCR assay. No association between the frequency of this deletion and disease status was identified. All individuals had alleles at Saha-UD, disproving theories of disease susceptibility relating to copy number variation at this locus. Genetic variation between the two sub-groups (healthy and diseased was also compared using eight MHC-linked microsatellite markers. No significant differences were identified in allele frequency, however differences were noted in the genotype frequencies of two microsatellites located near non-antigen presenting genes within the MHC. CONCLUSIONS/SIGNIFICANCE: We did not find predictable differences in MHC class I copy number variation to account for differences in susceptibility to DFTD. Genotypic data was equivocal but

  10. Strict major histocompatibility complex (MHC molecule class-specific binding by co-receptors enforces MHC-restricted αβTCR recognition during T lineage subset commitment

    Directory of Open Access Journals (Sweden)

    Xiao-long eLi

    2013-11-01

    Full Text Available Since the discovery of co-receptor dependent αβTCR recognition, considerable effort has been spent on elucidating the basis of CD4 and CD8 lineage commitment in the thymus. The latter is responsible for generating mature CD4 helper and CD8αβ cytotoxic T cell subsets. Although CD4+ and CD8+ T cell recognition of peptide antigens is known to be MHC class I- and MHC class II-restricted, respectively, the mechanism of single positive (SP thymocyte lineage commitment from bipotential double positive (DP progenitors is not fully elucidated. Classical models to explain thymic CD4 versus CD8 fate determination have included a stochastic selection model or instructional models. The latter are based either on strength of signal or duration of signal impacting fate. More recently, differential co-receptor gene imprinting has been shown to be involved in expression of transcription factors impacting cytotoxic T cell development. Here, we address commitment from a structural perspective, focusing on the nature of co-receptor binding to MHC molecules. By surveying 58 MHC class II and 224 MHC class I crystal structures in the Protein Data Bank (PDB, it becomes clear that CD4 cannot bind to MHC I molecules, nor can CD8αβ or CD8αα bind to MHC II molecules. Given that the co-receptor delivers Lck to phosphorylate exposed CD3 ITAMs within a peptide/MHC (pMHC-ligated TCR complex to initiate cell signaling, this strict co-receptor recognition fosters MHC class-restricted SP thymocyte lineage commitment at the DP stage even though both co-receptors are expressed on a single cell. In short, the binding preference of an αβTCR for a peptide complexed with an MHC molecule dictates which co-receptor subsequently binds, thereby supporting development of that subset lineage. How function within the lineage is linked further to biopotential fate determination is discussed.

  11. The cytoplasmic and the transmembrane domains are not sufficient for class I MHC signal transduction.

    Science.gov (United States)

    Gur, H; Geppert, T D; Wacholtz, M C; Lipsky, P E

    1999-02-01

    Class I MHC molecules deliver activation signals to T cells. To analyze the role of the cytoplasmic and the transmembrane (TM) domains of class I MHC molecules in T cell activation, Jurkat cells were transfected with genes for truncated class I MHC molecules which had only four intracytoplasmic amino acids and no potential phosphorylation sites or native molecules or both. Cross-linking either the native or the truncated molecules induced IL-2 production even under limiting stimulation conditions of low engagement of the stimulating mAb. Moreover, direct comparison of transfected truncated and native class I MHC molecules expressed on the same cell revealed significant stimulation induced by cross-linking the truncated molecules, despite low expression. In addition, truncated class I MHC molecules were as able to synergize with CD3, CD2, or CD28 initiated IL-2 production as native molecules. In further experiments, hybrid constructs made of the extracellular portion of the murine CD8 alpha chain and of the TM and the intracytoplasmic domains of H-2Kk class I MHC molecule were transfected into Jurkat T cells. The expression of the transfected hybrid molecules was comparable to that of the native HLA-B7 molecules. Cross-linking the intact monomorphic HLA-A,B,C epitope or the polymorphic HLA-B7 epitope induced IL-2 production upon costimulation with PMA. In contrast, cross-linking the hybrid molecules generated neither an increase in intracellular calcium concentration ([Ca2+]i) nor stimulated IL-2 production. By contrast, cross-linking intact murine class I MHC molecules induced [Ca2+]i, signal and IL-2 production in transfected Jurkat cells. The data therefore indicate that unlike many other signaling molecules, signaling via class I MHC molecules does not involve the cytoplasmic and the TM portions of the molecule, but rather class I MHC signal transduction is likely to be mediated by the extracellular domain of the molecule.

  12. The MHC molecules of nonmammalian vertebrates

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    There is very little known about the long-term evolution of the MHC and MHC-like molecules. This is because both the theory (the evolutionary questions and models) and the practice (the animals systems, functional assays and reagents to identify and characterize these molecules) have been difficu...

  13. Antigen presentation by MHC-dressed cells

    Directory of Open Access Journals (Sweden)

    Masafumi eNakayama

    2015-01-01

    Full Text Available Professional antigen presenting cells (APCs such as conventional dendritic cells (DCs process protein antigens to MHC-bound peptides and then present the peptide-MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI and/or MHC class II (MHCII from neighboring cells through a process of cell-cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide-MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC.

  14. Structural Properties of MHC Class II Ligands, Implications for the Prediction of MHC Class II Epitopes

    DEFF Research Database (Denmark)

    Jørgensen, Kasper Winther; Buus, Søren; Nielsen, Morten

    2010-01-01

    properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface exposure characteristics in the context of the native structure......Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated by the open binding cleft of the MHC class II molecule...... of the corresponding source protein. We demonstrated that MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method for MHC...

  15. Genetic variability testing of neurodevelopmental genes in schizophrenic patients.

    Science.gov (United States)

    Terzić, Tea; Kastelic, Matej; Dolžan, Vita; Plesničar, Blanka Kores

    2015-05-01

    This study investigated the associations between single nucleotide polymorphisms in the neurodevelopmental Disrupted In Schizophrenia 1 (DISC1 ), neuregulin 1 (NRG1), brain-derived neurotrophic factor (BDNF) and NOTCH4 genes and the clinical symptoms and the occurrence of treatment-resistant schizophrenia in the Slovenian population. We included 138 schizophrenia patients, divided into treatment-responsive and treatment-resistant group and 94 healthy blood donors. All subjects were genotyped for eight polymorphisms (DISC1 rs6675281, DISC1 rs821616, NRG1 rs3735781, NRG1 rs3735782, NRG1 rs10503929, NRG1 rs3924999, BDNF rs6265, NOTCH rs367398) and investigated for associations with clinical variables. NOTCH4 rs367398 AA/AG was significantly associated with worse Positive and Negative Syndrome Scale (PANSS) and Clinical Global Impression (CGI) score. NOTCH4 rs367398 was not statistically significantly associated with the occurrence of treatment-resistant schizophrenia after the correction for multiple testing. Our data indicate that NOTCH4 polymorphism can influence clinical symptoms in Slovenian patients with schizophrenia.

  16. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.

  17. Absence of evidence for MHC-dependent mate selection within HapMap populations.

    Directory of Open Access Journals (Sweden)

    Adnan Derti

    2010-04-01

    Full Text Available The major histocompatibility complex (MHC of immunity genes has been reported to influence mate choice in vertebrates, and a recent study presented genetic evidence for this effect in humans. Specifically, greater dissimilarity at the MHC locus was reported for European-American mates (parents in HapMap Phase 2 trios than for non-mates. Here we show that the results depend on a few extreme data points, are not robust to conservative changes in the analysis procedure, and cannot be reproduced in an equivalent but independent set of European-American mates. Although some evidence suggests an avoidance of extreme MHC similarity between mates, rather than a preference for dissimilarity, limited sample sizes preclude a rigorous investigation. In summary, fine-scale molecular-genetic data do not conclusively support the hypothesis that mate selection in humans is influenced by the MHC locus.

  18. No evidence for the effect of MHC on male mating success in the brown bear.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuduk

    Full Text Available Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.

  19. Cloning and Fusion Expression of Chicken MHC Ⅰ Molecule%鸡MHC Ⅰ类分子克隆及其二聚体融合

    Institute of Scientific and Technical Information of China (English)

    戴银; 程宝艳; 胡晓苗; 王骏俊; 陈芳芳; 余为一

    2011-01-01

    To explore MHC mechanism presenting antigen and function as vaccine carrier, we cloned MHCgene from chicken by RT-PCR,and constructed a recombined plasmid containing MHC Ⅰ β2m-α fusion gene and expressed in a prokaryotic system. Chicken MHC Ⅰα and β2m chains were cloned from chicken by RT-PCR, the recombinant gene MHC Ⅰ β2m-α was linked with a DNA sequence coding for short peptide(Gly4 Ser)4, and confirmed by PCR amplification,double restriction digestion and DNA sequencing. The recombinant plasmid was expressed in E. coli BL21 after induction by IPTG. SDS-PAGE and Western blotting were used to detect expression products. The results revealed that the lengths of MHC Ⅰ α and β2m chains were 1014 and 300 bp,respectively, and the recombinant fusion gene was 1194 bp. The fusion protein was about 62.0 ku and had the reactinogenicity with specific antibody.%为进一步研究MHCI类分子作用机制,以及为制备MHCI基因工程疫苗奠定基础,克隆鸡MHCⅠ基因,并构建MHC Ⅰβ2m-a融合基因进行原核表达.运用RT-PCR方法,克隆鸡MHC Ⅰa和β2m链基因,并通过编码连接肽(Gly4 Ser).的基因序列将两者头尾相连,构建了pET-32a-MHC Ⅰβ2m-a重组质粒,经PCR扩增、双酶切和测序鉴定后,重组质粒在E.coliBL2 Ⅰ细胞进行IPTG诱导表达融合蛋白,采用SDS-PAGE和Western blotting方法分别检测表达产物.结果表明,成功克隆了MHCⅠa和β2m链基因,长度分别为1014和300 by;构建的融合基因MHCⅠβ2m-a长度为1194 by,经原核表达,融合蛋白分子质量约为62.0 ku,能与相应的抗体结合,具有一定的免疫学活性.

  20. Targeted capture enrichment and sequencing identifies extensive nucleotide variation in the turkey MHC-B.

    Science.gov (United States)

    Reed, Kent M; Mendoza, Kristelle M; Settlage, Robert E

    2016-03-01

    Variation in the major histocompatibility complex (MHC) is increasingly associated with disease susceptibility and resistance in avian species of agricultural importance. This variation includes sequence polymorphisms but also structural differences (gene rearrangement) and copy number variation (CNV). The MHC has now been described for multiple galliform species including the best defined assemblies of the chicken (Gallus gallus) and domestic turkey (Meleagris gallopavo). Using this sequence resource, this study applied high-throughput sequencing to investigate MHC variation in turkeys of North America (NA turkeys). An MHC-specific SureSelect (Agilent) capture array was developed, and libraries were created for 14 turkeys representing domestic (commercial bred), heritage breed, and wild turkeys. In addition, a representative of the Ocellated turkey (M. ocellata) and chicken (G. gallus) was included to test cross-species applicability of the capture array allowing for identification of new species-specific polymorphisms. Libraries were hybridized to ∼12 K cRNA baits and the resulting pools were sequenced. On average, 98% of processed reads mapped to the turkey whole genome sequence and 53% to the MHC target. In addition to the MHC, capture hybridization recovered sequences corresponding to other MHC regions. Sequence alignment and de novo assembly indicated the presence of several additional BG genes in the turkey with evidence for CNV. Variant detection identified an average of 2245 polymorphisms per individual for the NA turkeys, 3012 for the Ocellated turkey, and 462 variants in the chicken (RJF-256). This study provides an extensive sequence resource for examining MHC variation and its relation to health of this agriculturally important group of birds.

  1. Polymorphism and molecular phylogenetic analysis of MHC B -G locus in 9 indigenous chicken breeds%9个地方鸡种MHCB-G座位多态性及其分子系统进化分析

    Institute of Scientific and Technical Information of China (English)

    屠云洁; 苏一军; 王克华; 张学余; 李国辉; 殷建玫

    2012-01-01

    以我国9个地方鸡为研究对象,对其MHC B-G座位全基因序列进行测序,以揭示这9个地方鸡种MHC B -G基因的遗传多样性,并构建其系统进化树.结果表明,9个地方鸡种MHC B-G基因序列具有较高的遗传多样性,在9个地方鸡种中共存在666个突变位点,其中单一位点突变554个,简约信息112个,共缺失782 bp.核苷酸多样度(Pi)为0.03079±0.004 39,平均核昔酸差异(K)为182.639.9个地方鸡品种为9个单倍型,单倍型多样度为1.00±0.052.9个鸡种MHC B-G基因Kiumura双参数遗传距离范围为0.010~0.070,鹿苑鸡与新狼山鸡的遗传距离最小,为0.010;茶花鸡与东乡绿壳蛋鸡遗传距离最大,为0.070.根据9个鸡品种MHC B-G基因全序列构建的NJ树和ME树,茶花鸡单独聚为1类,其他8个品种被聚为2大类.Tajima's D值为-1.5546,且差异不显著(0.10>P>0.05),说明MHC B -G基因为负向选择,不遵循中性进化理论,MHC B -G基因多态性不是遗传漂变的结果,而是自然选择和人工选择的结果.%The MHC B - G locus in nine indigenous chicken breeds was sequenced to explore genetic diversity in these nine chicken breeds and to construct their phylogenetic tree. The study revealed that the genetic diversity of the MHC B - G locus in these breeds was relatively high, where there were 666 polymophic sites, among of which singleton variable sites were 554, parsimony informative sites were 112. Sites with alignment gaps or missing data were 782 bp. Nucleotide diversity ( P,) was 0. 030 79 ± 0. 004 39. Average number of nucleotide differences (K) was 182. 639. There was nine haplotypes in nine chicken breeds. The haplotype diversity was 1. 00 ±0. 052. Kimura 2 - parameter distance between nine chicken breeds was 0.010 -0.070, where the minimum was 0.010 between Luyuan and Newlangshan, while the maximum was 0.070 between Chahua and Dongxiang blue. Neighbor - Joining (NJ) tree and Minimum -Evolution (ME) tree based on MHC B - G DNA

  2. 454 screening of individual MHC variation in an endemic island passerine

    NARCIS (Netherlands)

    Gonzalez-Quevedo, Catalina; Phillips, Karl P.; Spurgin, Lewis G.; Richardson, David S.

    Genes of the major histocompatibility complex (MHC) code for receptors that are central to the adaptive immune response of vertebrates. These genes are therefore important genetic markers with which to study adaptive genetic variation in the wild. Next-generation sequencing (NGS) has increasingly

  3. Genomic sequence analysis of the MHC class I G/F segment in common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Kono, Azumi; Brameier, Markus; Roos, Christian; Suzuki, Shingo; Shigenari, Atsuko; Kametani, Yoshie; Kitaura, Kazutaka; Matsutani, Takaji; Suzuki, Ryuji; Inoko, Hidetoshi; Walter, Lutz; Shiina, Takashi

    2014-04-01

    The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.

  4. Properties of MHC class I presented peptides that enhance immunogenicity.

    Directory of Open Access Journals (Sweden)

    Jorg J A Calis

    2013-10-01

    Full Text Available T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4-6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/ was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.

  5. Genome Variability and Gene Content in Chordopoxviruses: Dependence on Microsatellites

    Science.gov (United States)

    Hatcher, Eneida L.; Wang, Chunlin; Lefkowitz, Elliot J.

    2015-01-01

    To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution. PMID:25912716

  6. MHC adaptive divergence between closely related and sympatric African cichlids.

    Directory of Open Access Journals (Sweden)

    Jonatan Blais

    Full Text Available BACKGROUND: The haplochromine cichlid species assemblages of Lake Malawi and Victoria represent some of the most important study systems in evolutionary biology. Identifying adaptive divergence between closely-related species can provide important insights into the processes that may have contributed to these spectacular radiations. Here, we studied a pair of sympatric Lake Malawi species, Pseudotropheus fainzilberi and P. emmiltos, whose reproductive isolation depends on olfactory communication. We tested the hypothesis that these species have undergone divergent selection at MHC class II genes, which are known to contribute to olfactory-based mate choice in other taxa. METHODOLOGY/PRINCIPAL FINDINGS: Divergent selection on functional alleles was inferred from the higher genetic divergence at putative antigen binding sites (ABS amino acid sequences than at putatively neutrally evolving sites at intron 1, exon 2 synonymous sequences and exon 2 amino acid residues outside the putative ABS. In addition, sympatric populations of these fish species differed significantly in communities of eukaryotic parasites. CONCLUSIONS/SIGNIFICANCE: We propose that local host-parasite coevolutionary dynamics may have driven adaptive divergence in MHC alleles, influencing odor-mediated mate choice and leading to reproductive isolation. These results provide the first evidence for a novel mechanism of adaptive speciation and the first evidence of adaptive divergence at the MHC in closely related African cichlid fishes.

  7. Molecular requirements for MHC class II alpha-chain engagement and allelic discrimination by the bacterial superantigen streptococcal pyrogenic exotoxin C.

    Science.gov (United States)

    Kasper, Katherine J; Xi, Wang; Rahman, A K M Nur-Ur; Nooh, Mohammed M; Kotb, Malak; Sundberg, Eric J; Madrenas, Joaquín; McCormick, John K

    2008-09-01

    Superantigens (SAgs) are microbial toxins that bind to both TCR beta-chain variable domains (Vbetas) and MHC class II molecules, resulting in the activation of T cells in a Vbeta-specific manner. It is now well established that different isoforms of MHC II molecules can play a significant role in the immune response to bacterial SAgs. In this work, using directed mutational studies in conjunction with functional analyses, we provide a complete functional map of the low-affinity MHC II alpha-chain binding interface of the SAg streptococcal pyrogenic exotoxin C (SpeC) and identify a functional epitope in the beta-barrel domain that is required for the activation of T cells. Using cell lines that exclusively express individual MHC II isoforms, our studies provide a molecular basis for the selectivity of SpeC-MHC II recognition, and provide one mechanism by how SAgs are capable of distinguishing between different MHC II alleles.

  8. Confirmation and expression analysis of three predicted genes in sheep MHC region%绵羊MHC区段3个预测基因的验证与表达分析

    Institute of Scientific and Technical Information of China (English)

    焦莎莎; 刘卡; 李刚; 高剑峰; 马润林

    2011-01-01

    对新疆美利奴细毛羊基因组MHC(Major histocompatibility complex)区段细菌人工染色体(BAC)文库的DNA序列进行测定,经过序列比对分析,首次预测了约130个新基因,其中有8个CDS(Coding sequences)未在其他物种中发现其同源序列,推测可能系绵羊所特有.在此基础上,文章对绵羊MHC区段预测的3个新基因(分别命名为OaN2、OaN5、OaN6)进行了实验验证和表达分析.从绵羊肺组织中克隆到了OaN2的cDNA序列,其长度为270 bp;从肠系淋巴结中扩增得到OaN5和OaN6的cDNA序列,长度分别为309 bp和205 bp.上述3个基因的GenBank登录号分别为JF330782、JF330783和JF330784.利用Northern blotting技术进行转录本水平分析,发现这3个新基因均在免疫器官肠系淋巴结中高表达.通过Western blotting和原位免疫组化技术对OaN2蛋白水平进行了表达谱分析,结果表明OaN2蛋白在绵羊脾脏和肠系淋巴结等免疫器官中高表达,在心、肝及胰脏中不表达.这是首次通过实验验证绵羊MHC区段的3个预测的新基因,为其在绵羊免疫器官中的功能研究奠定了基础.%Previous DNA sequencing of BAC clones covering entire ovine MHC (OLA) region resulted in identification of approximately 130 functional genes in the region, of which 8 were predicted by computer software to be exclusively existed in sheep, but not in any other species known to date. In the present study, we successfully identified and cloned cDNA sequence of OaN2, OaN5, and OaN6 from representative sheep tissues, confirmed their existence in reality. The sequences obtained experimentally exactly identical to those predicted previously. The length of cDNA fragments for OaN2, OaN5, and OaN6 was 270 bp, 309 bp, and 205 bp, respectively, with GenBank accession number assigned as JF330782(OaN2), JF330783 (OaN5), and JF330784 (OaN6). Northern analyses indicated that the mRNA transcripts of OaN2 were mainly seen in ovine mesenteric lymph nodes and spleen

  9. Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach

    Science.gov (United States)

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…

  10. Very high MHC Class IIB diversity without spatial differentiation in the mediterranean population of greater Flamingos.

    Science.gov (United States)

    Gillingham, Mark A F; Béchet, Arnaud; Courtiol, Alexandre; Rendón-Martos, Manuel; Amat, Juan A; Samraoui, Boudjéma; Onmuş, Ortaç; Sommer, Simone; Cézilly, Frank

    2017-02-20

    Selective pressure from pathogens is thought to shape the allelic diversity of major histocompatibility complex (MHC) genes in vertebrates. In particular, both local adaptation to pathogens and gene flow are thought to explain a large part of the intraspecific variation observed in MHC allelic diversity. To date, however, evidence that adaptation to locally prevalent pathogens maintains MHC variation is limited to species with limited dispersal and, hence, reduced gene flow. On the one hand high gene flow can disrupt local adaptation in species with high dispersal rates, on the other hand such species are much more likely to experience spatial variation in pathogen pressure, suggesting that there may be intense pathogen mediated selection pressure operating across breeding sites in panmictic species. Such pathogen mediated selection pressure operating across breeding sites should therefore be sufficient to maintain high MHC diversity in high dispersing species in the absence of local adaptation mechanisms. We used the Greater Flamingo, Phoenicopterus roseus, a long-lived colonial bird showing a homogeneous genetic structure of neutral markers at the scale of the Mediterranean region, to test the prediction that higher MHC allelic diversity with no population structure should occur in large panmictic populations of long-distance dispersing birds than in other resident species. We assessed the level of allelic diversity at the MHC Class IIB exon 2 from 116 individuals born in four different breeding colonies of Greater Flamingo in the Mediterranean region. We found one of the highest allelic diversity (109 alleles, 2 loci) of any non-passerine avian species investigated so far relative to the number of individuals and loci genotyped. There was no evidence of population structure between the four major Mediterranean breeding colonies. Our results suggest that local adaptation at MHC Class IIB in Greater Flamingos is constrained by high gene flow and high MHC diversity

  11. Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice.

    Science.gov (United States)

    Kalluri, R; Danoff, T M; Okada, H; Neilson, E G

    1997-11-01

    We developed a new mouse model of human anti-glomerular basement membrane (GBM) disease to better characterize the genetic determinants of cell-mediated injury. While all major histocompatibility complex (MHC) haplotypes (H-2a, k, s, b, and d) immunized with alpha3 NC1 domains of type IV collagen produce anti-alpha3(IV) NC1 antibodies that cross-react with human Goodpasture [anti-GBM/anti-alpha3(IV) NC1] autoantibodies, only a few strains developed nephritis and lung hemorrhage associated with Goodpasture syndrome. Crescentic glomerulonephritis and lung hemorrhage were MHC-restricted in haplotypes H-2s, b, and d (A beta/A alpha region in H-2s) and associated with the emergence of an IL-12/Th1-like T cell phenotype. Lymphocytes or anti-alpha3(IV) NC1 antibodies from nephritogenic strains transfer disease to syngeneic recipients. However, passive transfer of isogenic alpha3(IV) NC1 antibodies into -/- T cell receptor-deficient mice failed to produce nephritis. Finally, nephritis and its associated IL-12/Th1-like T cell response attenuate in disease-susceptible mice tolerized orally to alpha3(IV) collagen before immunization. Our findings suggest collectively, as a hypothesis, that anti-GBM antibodies in mice only facilitate disease in MHC haplotypes capable of generating nephritogenic lymphocytes with special T cell repertoires.

  12. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    Science.gov (United States)

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.

  13. Towards the MHC-peptide combinatorics.

    Science.gov (United States)

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  14. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough.

    Science.gov (United States)

    Holland, Christopher J; Cole, David K; Godkin, Andrew

    2013-01-01

    Recombinant αβ T cell receptors, expressed on T cell membranes, recognize short peptides presented at the cell surface in complex with MHC molecules. There are two main subsets of αβ T cells: CD8(+) T cells that recognize mainly cytosol-derived peptides in the context of MHC class I (pMHC-I), and CD4(+) T cells that recognize peptides usually derived from exogenous proteins presented by MHC class II (pMHC-II). Unlike the more uniform peptide lengths (usually 8-13mers) bound in the MHC-I closed groove, MHC-II presented peptides are of a highly variable length. The bound peptides consist of a core bound 9mer (reflecting the binding motif for the particular MHC-II type) but with variable peptide flanking residues (PFRs) that can extend from both the N- and C-terminus of the MHC-II binding groove. Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell antigen presentation) and are very similar in overall conformation, there exist a number of subtle but important differences that may govern the functional dichotomy observed between CD8(+) and CD4(+) T cells. Here, we provide an overview of the impact of structural differences between pMHC-I and pMHC-II and the molecular interactions with the T cell receptor including the functional importance of MHC-II PFRs. We consider how factors such as anatomical location, inflammatory milieu, and particular types of antigen presenting cell might, in theory, contribute to the quantitative (i.e., pMHC ligand frequency) as well as qualitative (i.e., variable PFR) nature of peptide epitopes, and hence offer a means of control and influence of a CD4(+) T cell response. Lastly, we review our recent findings showing how modifications to MHC-II PFRs can modify CD4(+) T cell antigen recognition. These findings may have novel applications for the development of CD4(+) T cell peptide vaccines and diagnostics.

  15. Stepwise threshold clustering: a new method for genotyping MHC loci using next-generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    William E Stutz

    Full Text Available Genes of the vertebrate major histocompatibility complex (MHC are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms. Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1 a "gray zone" where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2 a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci--Stepwise Threshold Clustering (STC--that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications.

  16. Regulation of cell-to-cell variability in divergent gene expression

    Science.gov (United States)

    Yan, Chao; Wu, Shuyang; Pocetti, Christopher; Bai, Lu

    2016-03-01

    Cell-to-cell variability (noise) is an important feature of gene expression that impacts cell fitness and development. The regulatory mechanism of this variability is not fully understood. Here we investigate the effect on gene expression noise in divergent gene pairs (DGPs). We generated reporters driven by divergent promoters, rearranged their gene order, and probed their expressions using time-lapse fluorescence microscopy and single-molecule fluorescence in situ hybridization (smFISH). We show that two genes in a co-regulated DGP have higher expression covariance compared with the separate, tandem and convergent configurations, and this higher covariance is caused by more synchronized firing of the divergent transcriptions. For differentially regulated DGPs, the regulatory signal of one gene can stochastically `leak' to the other, causing increased gene expression noise. We propose that the DGPs' function in limiting or promoting gene expression noise may enhance or compromise cell fitness, providing an explanation for the conservation pattern of DGPs.

  17. Description and prediction of peptide-MHC binding: the 'human MHC project'

    DEFF Research Database (Denmark)

    Buus, S

    1999-01-01

    MHC molecules are crucially involved in controlling the specific immune system. They are highly polymorphic receptors sampling peptides from the cellular environment and presenting these peptides for scrutiny by immune cells. Recent advances in combinatorial peptide chemistry have improved the de...... the description and prediction of peptide-MHC binding. It is envisioned that a complete mapping of human immune reactivities will be possible....

  18. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...

  19. Identification of the T-cell receptor alpha variable (TRAV) gene(s) in T-cell malignancies.

    Science.gov (United States)

    Hinz, T; Kabelitz, D

    2000-12-01

    Due to the lack of a complete range of monoclonal antibodies (mAb) it is often impossible to rapidly identify by flow cytometry the T-cell receptor variable genes in patients suffering from T-cell malignancies. This applies especially to the alpha variable genes (TRAV), since only very few anti-TcR variable alpha mAb are available. We describe a very rapid method for inverse PCR amplification of the TcR alpha chain without prior purification of the double-stranded cDNA, provide the sequences for appropriate oligonucleotides, and describe a buffer system that dramatically enhances the amplification efficiency as compared to standard conditions.

  20. MHC allele frequency distributions under parasite-driven selection: A simulation model

    Directory of Open Access Journals (Sweden)

    Radwan Jacek

    2010-10-01

    Full Text Available Abstract Background The extreme polymorphism that is observed in major histocompatibility complex (MHC genes, which code for proteins involved in recognition of non-self oligopeptides, is thought to result from a pressure exerted by parasites because parasite antigens are more likely to be recognized by MHC heterozygotes (heterozygote advantage and/or by rare MHC alleles (negative frequency-dependent selection. The Ewens-Watterson test (EW is often used to detect selection acting on MHC genes over the recent history of a population. EW is based on the expectation that allele frequencies under balancing selection should be more even than under neutrality. We used computer simulations to investigate whether this expectation holds for selection exerted by parasites on host MHC genes under conditions of heterozygote advantage and negative frequency-dependent selection acting either simultaneously or separately. Results In agreement with simple models of symmetrical overdominance, we found that heterozygote advantage acting alone in populations does, indeed, result in more even allele frequency distributions than expected under neutrality, and this is easily detectable by EW. However, under negative frequency-dependent selection, or under the joint action of negative frequency-dependent selection and heterozygote advantage, distributions of allele frequencies were less predictable: the majority of distributions were indistinguishable from neutral expectations, while the remaining runs resulted in either more even or more skewed distributions than under neutrality. Conclusions Our results indicate that, as long as negative frequency-dependent selection is an important force maintaining MHC variation, the EW test has limited utility in detecting selection acting on these genes.

  1. Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype

    DEFF Research Database (Denmark)

    Hove, Hanne Buciek; Dunø, Morten; Daugaard-Jensen, Jette;

    Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype.......Transmission of the P250R mutation of the FGFR3 gene in four generations with highly variable phenotype....

  2. MHC class IIB additive and non-additive effects on fitness measures in the guppy Poecilia reticulata.

    Science.gov (United States)

    Fraser, B A; Neff, B D

    2009-12-01

    The genetic architecture of fitness at the class IIB gene of the major histocompatibility complex (MHC) in the guppy Poecilia reticulata was analysed. Diversity at the MHC is thought to be maintained by some form of balancing selection; heterozygote advantage, frequency-dependent selection or spatially and temporally fluctuating selection. Here these hypotheses are evaluated by using an algorithm that partitions the effect of specific MHC allele and genotypes on fitness measures. The effect of MHC genotype on surrogate measures of fitness was tested, including growth rate (at high and low bulk food diets), parasite load following a parasite challenge and survival. The number of copies of the Pore_a132 MHC allele was inversely related to infection by Gyrodactylus flukes and it appeared to be positively related to faster growth. Also, genotypes combining the Pore_a132 or other relatively common alleles paired with rare MHC alleles produced both advantageous and detrimental non-additive effects. Thus, the genetic architecture underlying fitness at the MHC is complex in the P. reticulata.

  3. CLONING AND ANALYSIS OF SEQUENCES OF MHC-DRB3 EXON2 GENES IN ALXABACTRIAN CAMEL AND SUNIT BACTRIAN CAMEL%阿拉善驼与苏尼特驼MHC-DRB3 exon2基因克隆及序列分析

    Institute of Scientific and Technical Information of China (English)

    亢孝珍; 姜建强; 包花尔; 王瑞; 王秀珍; 李盈; 额尔敦木图

    2015-01-01

    通过DNA测序,分别对两个品种双峰驼MHC-Ⅱ类基因DRB3外显子2的基因序列进行分析.通过序列比对,发现阿拉善双峰驼有83个突变位点,79个多态位点,苏尼特双峰驼有47个突变位点和43个多态位点;两个品种双峰驼共检测到DRB3 exon2的等位基因34种,等位基因的分布具有品种特异性,各等位基因之间存在大量的多态位点.在氨基酸序列中,阿拉善双峰驼共检测到44个变异位点,苏尼特双峰驼检测到25个变异位点;在阿拉善双峰驼氨基酸序列中有11个抗原结合位点,苏尼特双峰驼氨基酸序列中有9个抗原结合位点.

  4. Re-directing CD4+ T cell responses with the flanking residues of MHC class II-bound peptides: the core is not enough

    Directory of Open Access Journals (Sweden)

    David Kenneth Cole

    2013-07-01

    Full Text Available Recombinant αβ T cell receptors (TCRs recognise short peptides presented at the cell surface in complex with MHC molecules. There are two main subsets of αβ T cells: CD8+ T cells that recognise mainly cytosol-derived peptides in the context of MHC class I (pMHC-I, and CD4+ T cells that recognise peptides usually derived from exogenous proteins presented by MHC class II (pMHC-II. Unlike the more uniform peptide lengths (usually 8-13mers bound in the MHC-I closed groove, MHC-II presented peptides are of a highly variable length. The bound peptides consist of a core bound 9mer (reflecting the binding motif for the particular MHC-II type but with variable peptide flanking residues (PFRs that can extend from both the N- and C-terminus of the MHC-II binding groove. Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell antigen presentation and are very similar in overall conformation, there exist a number of subtle but important differences that may govern the functional dichotomy observed between CD8+ and CD4+ T cells. Here, we provide an overview of the impact of structural differences between pMHC-I and pMHC-II and the molecular interactions with the TCR including the functional importance of MHC-II peptide flanking residues. We consider how factors such as anatomical location, inflammatory milieu and particular types of APC might, in theory, contribute to the quantitative (i.e. pMHC ligand frequency as well as qualitative (i.e. variable PFR nature of peptide epitopes, and hence offer a means of control and influence of a CD4+ T cell response. Lastly, we review our recent findings showing how modifications to these flanking regions modify CD4+ T cell antigen recognition. These findings may have novel applications for the development of CD4+ T cell peptide vaccines and diagnostics.

  5. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Suárez-Alvarez

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM components and NKG2D ligands (NKG2D-L in hESCs, induced pluripotent stem cells (iPSCs and NTera2 (NT2 teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1 and tapasin (TPN components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs. Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell

  6. Genomic plasticity of the immune-related Mhc class I B region in macaque species

    Directory of Open Access Journals (Sweden)

    Bontrop Ronald E

    2008-10-01

    Full Text Available Abstract Background In sharp contrast to humans and great apes, the expanded Mhc-B region of rhesus and cynomolgus macaques is characterized by the presence of differential numbers and unique combinations of polymorphic class I B genes per haplotype. The MIB microsatellite is closely linked to the single class I B gene in human and in some great apes studied. The physical map of the Mhc of a heterozygous rhesus monkey provides unique material to analyze MIB and Mamu-B copy number variation and then allows one to decipher the compound evolutionary history of this region in primate species. Results In silico research pinpointed 12 MIB copies (duplicons, most of which are associated with expressed B-genes that cluster in a separate clade in the phylogenetic tree. Generic primers tested on homozygous rhesus and pedigreed cynomolgus macaques allowed the identification of eight to eleven MIB copies per individual. The number of MIB copies present per haplotype varies from a minimum of three to six in cynomolgus macaques and from five to eight copies in rhesus macaques. Phylogenetic analyses highlight a strong transpecific sharing of MIB duplicons. Using the physical map, we observed that, similar to MIB duplicons, highly divergent Mamu-B genes can be present on the same haplotype. Haplotype variation as reflected by the copy number variation of class I B loci is best explained by recombination events, which are found to occur between MIBs and Mamu-B. Conclusion The data suggest the existence of highly divergent MIB and Mamu-B lineages on a given haplotype, as well as variable MIB and B copy numbers and configurations, at least in rhesus macaque. Recombination seems to occur between MIB and Mamu-B loci, and the resulting haplotypic plasticity at the individual level may be a strategy to better cope with pathogens. Therefore, evolutionary inferences based on the multiplicated MIB loci but also other markers close to B-genes appear to be promising for

  7. MHC-unrestricted lysis of MUC1-expressing cells by human peripheral blood mononuclear cells.

    Science.gov (United States)

    Wright, Stephen E; Rewers-Felkins, Kathleen A; Quinlin, Imelda S; Fogler, William E; Phillips, Catherine A; Townsend, Mary; Robinson, William; Philip, Ramila

    2008-01-01

    Many human adenocarcinomas can be killed in vitro by targeted cytotoxic T-lymphocytes (CTL); however, major histocompatibility complex (MHC)-restrictions are typically required. The MUC1 antigen is common in many human adenocarcinomas, and is associated with a variable number of tandem repeats. It has been proposed that antigens with such repeated epitopes may be vulnerable to cytotoxic T-lymphocyte killing without MHC-restriction. Therefore, it is possible that MUC1-expressing malignant cells may be killed by targeted cytotoxic T-lymphocyte in the absence of MHC-restriction. In this study, a human MUC1-expressing murine mammary carcinoma cell line was used to determine if cytotoxic T-lymphocyte killing of MUC1-expressing adenocarcinoma cells requires MHC-restriction. Specifically, MUC1-stimulated human mononuclear cells (M1SMC) were observed to kill human MUC1-transfected, MUC1-expressing murine mammary carcinoma cells, but not the mock-transfected, non-MUC1-expressing murine mammary carcinoma cells. Furthermore, the killing was blocked by antibody to MUC1, indicating MUC1-specific killing. In conclusion, cytotoxic T-lymphocyte killing of MUC1-expressing adenocarcinoma cells can be MHC-unrestricted.

  8. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    Directory of Open Access Journals (Sweden)

    Otten Celine

    2008-06-01

    Full Text Available Abstract Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism.

  9. Making genetic biodiversity measurable : a review of statistical multivariate methods to study variability at gene level

    OpenAIRE

    2011-01-01

    Measures of agro-ecosystems genetic variability are essential to sustain scientific-based actions and policies tending to protect the ecosystem services they provide. To build the genetic variability datum it is necessary to deal with a large number and different types of variables. Molecular marker data is highly dimensional by nature, and frequently additional types of information are obtained, as morphological and physiological traits. This way, gene...

  10. Mimotopes for alloreactive and conventional T cells in a peptide-MHC display library.

    Directory of Open Access Journals (Sweden)

    Frances Crawford

    2004-04-01

    Full Text Available The use of peptide libraries for the identification and characterization of T cell antigen peptide epitopes and mimotopes has been hampered by the need to form complexes between the peptides and an appropriate MHC molecule in order to construct a complete T cell ligand. We have developed a baculovirus-based peptide library method in which the sequence encoding the peptide is embedded within the genes for the MHC molecule in the viral DNA, such that insect cells infected with virus encoding a library of different peptides each displays a unique peptide-MHC complex on its surface. We have fished in such a library with two different fluorescent soluble T cell receptors (TCRs, one highly peptide specific and the other broadly allo-MHC specific and hypothesized to be much less focused on the peptide portion of the ligand. A single peptide sequence was selected by the former alphabetaTCR that, not unexpectedly, was highly related to the immunizing peptide. As hypothesized, the other alphabetaTCR selected a large family of peptides, related only by a similarity to the immunizing peptide at the p5 position. These findings have implications for the relative importance of peptide and MHC in TCR ligand recognition. This display method has broad applications in T cell epitope identification and manipulation and should be useful in general in studying interactions between complex proteins.

  11. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  12. Inhibition of MHC class I is a virulence factor in herpes simplex virus infection of mice.

    Directory of Open Access Journals (Sweden)

    Mark T Orr

    2005-09-01

    Full Text Available Herpes simplex virus (HSV has a number of genes devoted to immune evasion. One such gene, ICP47, binds to the transporter associated with antigen presentation (TAP 1/2 thereby preventing transport of viral peptides into the endoplasmic reticulum, loading of peptides onto nascent major histocompatibility complex (MHC class I molecules, and presentation of peptides to CD8 T cells. However, ICP47 binds poorly to murine TAP1/2 and so inhibits antigen presentation by MHC class I in mice much less efficiently than in humans, limiting the utility of murine models to address the importance of MHC class I inhibition in HSV immunopathogenesis. To address this limitation, we generated recombinant HSVs that efficiently inhibit antigen presentation by murine MHC class I. These recombinant viruses prevented cytotoxic T lymphocyte killing of infected cells in vitro, replicated to higher titers in the central nervous system, and induced paralysis more frequently than control HSV. This increase in virulence was due to inhibition of antigen presentation to CD8 T cells, since these differences were not evident in MHC class I-deficient mice or in mice in which CD8 T cells were depleted. Inhibition of MHC class I by the recombinant viruses did not impair the induction of the HSV-specific CD8 T-cell response, indicating that cross-presentation is the principal mechanism by which HSV-specific CD8 T cells are induced. This inhibition in turn facilitates greater viral entry, replication, and/or survival in the central nervous system, leading to an increased incidence of paralysis.

  13. Evidence for gene conversion among immunoglobulin heavy chain variable region genes.

    Science.gov (United States)

    Clarke, S H; Rudikoff, S

    1984-03-01

    We have previously reported that the VH region amino acid sequence of a phosphocholine (PC)-binding hybridoma antibody of CBA/J origin, HP101 6G6 (6G6), differs extensively from the VH regions of other PC-binding antibodies. The sequence of 6G6 VH appears to be derived from a gene homologous to the BALB/c V11 gene, a member of the PC VH (T15 VH) gene family not normally used to encode PC-binding antibodies. The 6G6 VH sequence differs from the translated sequence of V11 by six amino acids, four of which occur at the same position in other members of this gene family. This coincidence led to the proposal that the 6G6 VH gene was derived by gene conversion involving three genes of the PC VH gene family. We report here the nucleic acid sequence of the rearranged VH gene of hybridoma 6G6. This sequence supports our previous suggestion of gene conversion by confirming those differences, relative to the BALB/c V11 gene sequence, that are encoded by other members of this gene family, and extends this correlation to include three silent base pair substitutions as well. In addition, 5' noncoding region sequence and Southern blot analysis using probes derived from the coding and 5' noncoding regions confirm that the 6G6 VH gene is likely to be derived from the V11 homologue in CBA/J mice, and suggest that all three genes believed to be involved in the generation of the 6G6 VH gene are present in the CBA/J genome, a prerequisite for their involvement in gene conversion.

  14. Clustering of diverse replicated sequences in the MHC: Evidence for en bloc duplication

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Pinelli, M. [Univ. Western Australia, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital (Australia)

    1995-07-15

    The MHC contains clusters of polymorphic duplicated genes and gene sequences. It has been thought that these duplicated genes and sequences have arisen from single gene duplications. We compared the cloned region between TNF and HLA-B with the region in close proximity to HLA-A using sequence analysis and DNA hybridization. The results indicate that several sequences existing in the region centromeric of HLA-B are also present in close proximity to HLA-A. These include sequences belonging to the P5, BAT1, and PERB11 gene families as well as HLA class I gene sequences. Interestingly, when the two regions of approximately 200 kilobases are compared, the replicated sequences are organized similarly but in an inverted fashion suggesting the existence of an historical inverted en bloc duplication. Thus, we propose that the origin of these MHC gene clusters involves several mechanisms. In addition to single gene replication, a long-range duplication of a genomic block must have occurred. It is possible that a block at the telomeric end of the MHC represents a basic functional genomic unit conserved and duplicated en bloc. 49 refs., 3 figs., 3 tabs.

  15. The properties of the single chicken MHC classical class II alpha chain ( B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules

    DEFF Research Database (Denmark)

    Salomonsen, Jan; Marston, Denise; Avila, David;

    2003-01-01

    for the cloning and sequencing of the cDNA. We found only one class II alpha chain transcript, which bears the major features of a classical class II alpha sequence, including the critical peptide-binding residues. The chicken sequence is more similar to human DR than to the DQ, DP, DO or DM isotypes, most......In mammals, there are MHC class II molecules with distinctive sequence features, such as the classical isotypes DR, DQ and DP. These particular isotypes have not been reported in non-mammalian vertebrates. We have isolated the class II (B-L) alpha chain from outbred chickens as the basis...... significantly in the peptide-binding alpha(1) domain. The cDNA and genomic DNA sequences from chickens of diverse origins show few alleles, which differ in only four nucleotides and one amino acid. In contrast, significant restriction fragment length polymorphism is detected by Southern blot analysis of genomic...

  16. MHC Class II epitope predictive algorithms

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lund, Ole; Buus, S

    2010-01-01

    in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make...

  17. The MHC molecules of nonmammalian vertebrates

    DEFF Research Database (Denmark)

    Kaufman, J; Skjoedt, K; Salomonsen, J

    1990-01-01

    to develop. There is no molecular evidence yet to decide whether vertebrate immune systems (and particularly the MHC molecules) are evolutionarily related to invertebrate allorecognition systems, and the functional evidence can be interpreted either way. Even among the vertebrates, there is great...

  18. 扬子鳄MHCⅡ类B基因第二外元的克隆及序列分析%Cloning and Sequences Analysis of the Second Exon of MHC Class Ⅱ B Genes in Chinese Alligator,Alligator sinensis

    Institute of Scientific and Technical Information of China (English)

    史燕; 吴孝兵; 晏鹏; 陈壁辉

    2004-01-01

    3头扬子鳄血样取自宣城安徽省扬子鳄繁殖研究中心.利用一对简并引物对MHC Ⅱ类B基因第二外元的部分片段进行扩增;通过克隆、单链构象多态性分析、测序,并将测得序列与下载的8个物种MHC序列比对,确定序列差异和变异位点;利用MEGA软件构建NJ树,PAUP4.0构建MP树.结果得到10种不同的序列,片段长166bp.核苷酸序列中有38个变异位点,氨基酸序列中有23个变异位点;推定的抗原结合位点非同义替换(dN)明显高于同义替换(dS).10种序列的NJ树和MP树极为相似,均为A、B两个分支,两个分支明显的特异性位点核苷酸序列中有9个,氨基酸序列中有7个.表明扬子鳄MHC Ⅱ类B基因第二外元有较高的多态性,有利于扬子鳄饲养种群的遗传保护.

  19. Cloning and Sequence Analysis of Light Variable Region Gene of Anti-human Retinoblastoma Monoclonal Antibody

    Institute of Scientific and Technical Information of China (English)

    Xiufeng Zhong; Yongping Li; Shuqi Huang; Bo Ning; Chunyan Zhang; Jianliang Zheng; Guanguang Feng

    2002-01-01

    Purpose: To clone the variable region gene of light chain of monoclonal antibody against human retinoblastoma and to analyze the characterization of its nucleotide sequence as well as amino acid sequence.Methods: Total RNA was extracted from 3C6 hybridoma cells secreting specific monoclonal antibody(McAb)against human retinoblastoma(RB), then transcripted reversely into cDNA with olig-dT primers.The variable region of the light chain (VL) gene fragments was amplified using polymeerase chain reaction(PCR) and further cloned into pGEM(R) -T Easy vector. Then, 3C6 VL cDNA was sequenced by Sanger's method.Homologous analysis was done by NCBI BLAST.Results: The complete nucleotide sequence of 3C6 VL cDNA consisted of 321 bp encoding 107 amino acid residues, containing four workframe regions(FRs)and three complementarity-determining regions (CDRs) as well as the typical structure of two cys residues. The sequence is most homological to a member of the Vk9 gene family, and its chain utilizes the Jkl gene segment.Conclusion: The light chain variable region gene of the McAb against human RB was amplified successfully , which belongs to the Vk9 gene family and utilizes Vk-Jk1 gene rearrangement. This study lays a good basis for constructing a recombinant antibody and for making a new targeted therapeutic agents against retinoblastoma.

  20. Evolution and comparative analysis of the MHC Class III inflammatory region

    OpenAIRE

    Speed Terence P; Sims Sarah; Palmer Sophie; Coggill Penny; Cross Joseph GR; Belov Katherine; Papenfuss Anthony T; Deakin Janine E; Beck Stephan; Graves Jennifer

    2006-01-01

    Abstract Background The Major Histocompatibility Complex (MHC) is essential for immune function. Historically, it has been subdivided into three regions (Class I, II, and III), but a cluster of functionally related genes within the Class III region has also been referred to as the Class IV region or "inflammatory region". This group of genes is involved in the inflammatory response, and includes members of the tumour necrosis family. Here we report the sequencing, annotation and comparative a...

  1. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  2. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    Science.gov (United States)

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  3. Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures

    Directory of Open Access Journals (Sweden)

    Liu Yufeng

    2011-01-01

    Full Text Available Abstract Background Multiple breast cancer gene expression profiles have been developed that appear to provide similar abilities to predict outcome and may outperform clinical-pathologic criteria; however, the extent to which seemingly disparate profiles provide additive prognostic information is not known, nor do we know whether prognostic profiles perform equally across clinically defined breast cancer subtypes. We evaluated whether combining the prognostic powers of standard breast cancer clinical variables with a large set of gene expression signatures could improve on our ability to predict patient outcomes. Methods Using clinical-pathological variables and a collection of 323 gene expression "modules", including 115 previously published signatures, we build multivariate Cox proportional hazards models using a dataset of 550 node-negative systemically untreated breast cancer patients. Models predictive of pathological complete response (pCR to neoadjuvant chemotherapy were also built using this approach. Results We identified statistically significant prognostic models for relapse-free survival (RFS at 7 years for the entire population, and for the subgroups of patients with ER-positive, or Luminal tumors. Furthermore, we found that combined models that included both clinical and genomic parameters improved prognostication compared with models with either clinical or genomic variables alone. Finally, we were able to build statistically significant combined models for pathological complete response (pCR predictions for the entire population. Conclusions Integration of gene expression signatures and clinical-pathological factors is an improved method over either variable type alone. Highly prognostic models could be created when using all patients, and for the subset of patients with lymph node-negative and ER-positive breast cancers. Other variables beyond gene expression and clinical-pathological variables, like gene mutation status or DNA

  4. Effect of promoter architecture on the cell-to-cell variability in gene expression.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    2011-03-01

    Full Text Available According to recent experimental evidence, promoter architecture, defined by the number, strength and regulatory role of the operators that control transcription, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect variability in gene expression in a systematic rather than case-by-case fashion. In this article we make such a systematic investigation, based on a microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous and how each of these affects the level of variability in transcriptional output from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can be used to test kinetic models of gene regulation. The emphasis of the discussion is on prokaryotic gene regulation, but our analysis can be extended to eukaryotic cells as well.

  5. Gene-Environment Interplay in Physical, Psychological, and Cognitive Domains in Mid to Late Adulthood: Is APOE a Variability Gene?

    Science.gov (United States)

    Reynolds, Chandra A; Gatz, Margaret; Christensen, Kaare; Christiansen, Lene; Dahl Aslan, Anna K; Kaprio, Jaakko; Korhonen, Tellervo; Kremen, William S; Krueger, Robert; McGue, Matt; Neiderhiser, Jenae M; Pedersen, Nancy L

    2016-01-01

    Despite emerging interest in gene-environment interaction (GxE) effects, there is a dearth of studies evaluating its potential relevance apart from specific hypothesized environments and biometrical variance trends. Using a monozygotic within-pair approach, we evaluated evidence of G×E for body mass index (BMI), depressive symptoms, and cognition (verbal, spatial, attention, working memory, perceptual speed) in twin studies from four countries. We also evaluated whether APOE is a 'variability gene' across these measures and whether it partly represents the 'G' in G×E effects. In all three domains, G×E effects were pervasive across country and gender, with small-to-moderate effects. Age-cohort trends were generally stable for BMI and depressive symptoms; however, they were variable-with both increasing and decreasing age-cohort trends-for different cognitive measures. Results also suggested that APOE may represent a 'variability gene' for depressive symptoms and spatial reasoning, but not for BMI or other cognitive measures. Hence, additional genes are salient beyond APOE.

  6. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    Directory of Open Access Journals (Sweden)

    Yasukochi Yoshiki

    2012-11-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus. Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other

  7. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters

    Indian Academy of Sciences (India)

    Malcolm Von Schantz

    2008-12-01

    Circadian rhythms and sleep are two separate but intimately related processes. Circadian rhythms are generated through the precisely controlled, cyclic expression of a number of genes designated clock genes. Genetic variability in these genes has been associated with a number of phenotypic differences in circadian as well as sleep parameters, both in mouse models and in humans. Diurnal preferences as determined by the selfreported Horne–Östberg (HÖ) questionnaire, has been associated with polymorphisms in the human genes CLOCK, PER1, PER2 and PER3. Circadian rhythm-related sleep disorders have also been associated with mutations and polymorphisms in clock genes, with the advanced type cosegrating in an autosomal dominant inheritance pattern with mutations in the genes PER2 and CSNK1D, and the delayed type associating without discernible Mendelian inheritance with polymorphisms in CLOCK and PER3. Several mouse models of clock gene null alleles have been demonstrated to have affected sleep homeostasis. Recent findings have shown that the variable number tandem polymorphism in PER3, previously linked to diurnal preference, has profound effects on sleep homeostasis and cognitive performance following sleep loss, confirming the close association between the processes of circadian rhythms and sleep at the genetic level.

  8. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Schuller Dorit

    2011-04-01

    Full Text Available Abstract Background Saccharomyces cerevisiae (Baker's yeast is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift. Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.

  9. A novel HURRAH protocol reveals high numbers of monomorphic MHC class II loci and two asymmetric multi-locus haplotypes in the Pere David's deer.

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Wan

    Full Text Available The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1 All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2 these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1 and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2. The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.

  10. Cloning, sequencing and variability analysis of the gap gene from Mycoplasma hominis

    DEFF Research Database (Denmark)

    Mygind, Tina; Jacobsen, Iben Søgaard; Melkova, Renata

    2000-01-01

    The gap gene encodes the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The gene was cloned and sequenced from the Mycoplasma hominis type strain PG21(T). The intraspecies variability was investigated by inspection of restriction fragment length polymorphism (RFLP) patterns...... after polymerase chain reaction (PCR) amplification of the gap gene from 15 strains and furthermore by sequencing of part of the gene in eight strains. The M. hominis gap gene was found to vary more than the Escherichia coli counterpart, but the variation at nucleotide level gave rise to only a few...... to a 104-kDa band in addition to the expected 36-kDa band. The protein reacting at 104 kDa is a M. hominis protein with either an epitope similar to one on GAPDH, or it is an immunoglobulin binding protein...

  11. How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression.

    Directory of Open Access Journals (Sweden)

    Justin Werfel

    Full Text Available Changes in extracellular matrix (ECM structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation.

  12. Prediction of MHC class I binding peptides, using SVMHC

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2002-09-01

    Full Text Available Abstract Background T-cells are key players in regulating a specific immune response. Activation of cytotoxic T-cells requires recognition of specific peptides bound to Major Histocompatibility Complex (MHC class I molecules. MHC-peptide complexes are potential tools for diagnosis and treatment of pathogens and cancer, as well as for the development of peptide vaccines. Only one in 100 to 200 potential binders actually binds to a certain MHC molecule, therefore a good prediction method for MHC class I binding peptides can reduce the number of candidate binders that need to be synthesized and tested. Results Here, we present a novel approach, SVMHC, based on support vector machines to predict the binding of peptides to MHC class I molecules. This method seems to perform slightly better than two profile based methods, SYFPEITHI and HLA_BIND. The implementation of SVMHC is quite simple and does not involve any manual steps, therefore as more data become available it is trivial to provide prediction for more MHC types. SVMHC currently contains prediction for 26 MHC class I types from the MHCPEP database or alternatively 6 MHC class I types from the higher quality SYFPEITHI database. The prediction models for these MHC types are implemented in a public web service available at http://www.sbc.su.se/svmhc/. Conclusions Prediction of MHC class I binding peptides using Support Vector Machines, shows high performance and is easy to apply to a large number of MHC class I types. As more peptide data are put into MHC databases, SVMHC can easily be updated to give prediction for additional MHC class I types. We suggest that the number of binding peptides needed for SVM training is at least 20 sequences.

  13. Arginine deiminase pathway genes and arginine degradation variability in Oenococcus oeni strains.

    Science.gov (United States)

    Araque, Isabel; Gil, Joana; Carreté, Ramon; Constantí, Magda; Bordons, Albert; Reguant, Cristina

    2016-03-01

    Trace amounts of the carcinogenic ethyl carbamate can appear in wine as a result of a reaction between ethanol and citrulline, which is produced from arginine degradation by some bacteria used in winemaking. In this study, arginine deiminase (ADI) pathway genes were evaluated in 44 Oenococcus oeni strains from wines originating from several locations in order to establish the relationship between the ability of a strain to degrade arginine and the presence of related genes. To detect the presence of arc genes of the ADI pathway in O. oeni, pairs of primers were designed to amplify arcA, arcB, arcC and arcD1 sequences. All strains contained these four genes. The same primers were used to confirm the organization of these genes in an arcABCD1 operon. Nevertheless, considerable variability in the ability to degrade arginine among these O. oeni strains was observed. Therefore, despite the presence of the arc genes in all strains, the expression patterns of individual genes must be strain dependent and influenced by the different wine conditions. Additionally, the presence of arc genes was also determined in the 57 sequenced strains of O. oeni available in GenBank, and the complete operon was found in 83% of strains derived from wine. The other strains were found to lack the arcB, arcC and arcD genes, but all contained sequences homologous to arcA, and some of them had also ADI activity.

  14. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  15. Construction and characterization of single-chain variable fragment antibody library derived from germline rearranged immunoglobulin variable genes.

    Directory of Open Access Journals (Sweden)

    Man Cheng

    Full Text Available Antibody repertoires for library construction are conventionally harvested from mRNAs of immune cells. To examine whether germline rearranged immunoglobulin (Ig variable region genes could be used as source of antibody repertoire, an immunized phage-displayed scFv library was prepared using splenocytic genomic DNA as template. In addition, a novel frame-shifting PCR (fsPCR step was introduced to rescue stop codon and to enhance diversity of the complementarity-determining region 3 (CDR3. The germline scFv library was initially characterized against the hapten antigen phenyloxazolone (phOx. Sequence analysis of the phOx-selective scFvs indicated that the CDRs consisted of novel as well as conserved motifs. In order to illustrate that the diversity of CDR3 was increased by the fsPCR step, a second scFv library was constructed using a single scFv clone L3G7C as a template. Despite showing similar binding characteristics towards phOx, the scFv clones that were obtained from the L3G7C-derived antibody library gave a lower non-specific binding than that of the parental L3G7C clone. To determine whether germline library represented the endogenous immune status, specific scFv clones for nucleocapsid (N protein of SARS-associated coronavirus (SCoV were obtained both from naïve and immunized germline scFv libraries. Both libraries yielded specific anti-N scFvs that exhibited similar binding characteristics towards recombinant N protein, except the immunized library gave a larger number of specific anti-N scFv, and clones with identical nucleotide sequences were found. In conclusion, highly diversified antibody library can be efficiently constructed using germline rearranged immunoglobulin variable genes as source of antibody repertoires and fsPCR to diversify the CDR3.

  16. Characterisation of silent and active genes for a variable large protein of Borrelia recurrentis

    Directory of Open Access Journals (Sweden)

    Scragg Ian G

    2002-10-01

    Full Text Available Abstract Background We report the characterisation of the variable large protein (vlp gene expressed by clinical isolate A1 of Borrelia recurrentis; the agent of the life-threatening disease louse-borne relapsing fever. Methods The major vlp protein of this isolate was characterised and a DNA probe created. Use of this together with standard molecular methods was used to determine the location of the vlp1B. recurrentis A1 gene in both this and other isolates. Results This isolate was found to carry silent and expressed copies of the vlp1B. recurrentis A1 gene on plasmids of 54 kbp and 24 kbp respectively, whereas a different isolate, A17, had only the silent vlp1B. recurrentis A17 on a 54 kbp plasmid. Silent and expressed vlp1 have identical mature protein coding regions but have different 5' regions, both containing different potential lipoprotein leader sequences. Only one form of vlp1 is transcribed in the A1 isolate of B. recurrentis, yet both 5' upstream sequences of this vlp1 gene possess features of bacterial promoters. Conclusion Taken together these results suggest that antigenic variation in B. recurrentis may result from recombination of variable large and small protein genes at the junction between lipoprotein leader sequence and mature protein coding region. However, this hypothetical model needs to be validated by further identification of expressed and silent variant protein genes in other B. recurrentis isolates.

  17. Flux variability scanning based on enforced objective flux for identifying gene amplification targets

    Directory of Open Access Journals (Sweden)

    Park Jong

    2012-08-01

    Full Text Available Abstract Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF with grouping reaction (GR constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm

  18. Variability of DNA Microarray Gene Expression Profiles in Cultured Rat Primary Hepatocytes

    Directory of Open Access Journals (Sweden)

    Jun Xu

    2007-01-01

    Full Text Available DNA microarray is a powerful tool in biomedical research. However, transcriptomic profiling using DNA microarray is subject to many variations including biological variability. To evaluate the different sources of variation in mRNA gene expression profiles, gene expression profiles were monitored using the Affymetrix RatTox U34 arrays in cultured primary hepatocytes derived from six rats over a 26 hour period at 6 time points (0h, 2h, 5h, 8h, 14h and 26h with two replicate arrays at each time point for each animal. In addition, the impact of sample size on the variability of differentially expressed gene lists and the consistency of biological responses were also investigated. Excellent intra-animal reproducibility was obtained at all time points with 0 out of 370 present probe sets across all time points showing significant difference between the 2 replicate arrays (3-way ANOVA, p 0.0001. However, large inter-animal biological variation in mRNA expression profi les was observed with 337 out of 370 present probe sets showing significant differences among 6 animals (3-way ANOVA, p 0.05. Principal Component Analysis (PCA revealed that time effect (PC1 in this data set accounted for 47.4% of total variance indicating the dynamics of transcriptomics. The second and third largest effects came from animal difference, which accounted for 16.9% (PC2 and PC3 of the total variance. The reproducibility of gene lists and their functional classification was declined considerably when the sample size was decreased. Overall, our results strongly support that there is significant inter-animal variability in the time-course gene expression profi les, which is a confounding factor that must be carefully evaluated to correctly interpret microarray gene expression studies. The consistency of the gene lists and their biological functional classification are also sensitive to sample size with the reproducibility decreasing considerably under small sample size.

  19. Isolation of a 97-kb minimal essential MHC B locus from a new reverse-4D BAC library of the golden pheasant.

    Directory of Open Access Journals (Sweden)

    Qing Ye

    Full Text Available The bacterial artificial chromosome (BAC system is widely used in isolation of large genomic fragments of interest. Construction of a routine BAC library requires several months for picking clones and arraying BACs into superpools in order to employ 4D-PCR to screen positive BACs, which might be time-consuming and laborious. The major histocompatibility complex (MHC is a cluster of genes involved in the vertebrate immune system, and the classical avian MHC-B locus is a minimal essential one, occupying a 100-kb genomic region. In this study, we constructed a more effective reverse-4D BAC library for the golden pheasant, which first creates sub-libraries and then only picks clones of positive sub-libraries, and identified several MHC clones within thirty days. The full sequencing of a 97-kb reverse-4D BAC demonstrated that the golden pheasant MHC-B locus contained 20 genes and showed good synteny with that of the chicken. The notable differences between these two species were the numbers of class II B loci and NK genes and the inversions of the TAPBP gene and the TAP1-TAP2 region. Furthermore, the inverse TAP2-TAP1 was unique in the golden pheasant in comparison with that of chicken, turkey, and quail. The newly defined genomic structure of the golden pheasant MHC will give an insight into the evolutionary history of the avian MHC.

  20. NLRC5 regulates MHC class Ⅰ antigen presentation in host defense against intracellular pathogens

    Institute of Scientific and Technical Information of China (English)

    Yikun Yao; Yalong Wang; Fuxiang Chen; Yin Huang; Shu Zhu; Qibin Leng; Hongyan Wang; Yufang Shi; Youcun Qian

    2012-01-01

    NOD-like receptors (NLRs) are a family of intracellular proteins that play critical roles in innate immunity against microbial infection.NLRC5,the largest member of the NLR family,has recently attracted much attention.However,in vitro studies have reported inconsistent results about the roles of NLRC5 in host defense and in regulating immune signaling pathways.The in vivo function of NLRC5 remains unknown.Here,we report that NLRC5 is a critical regulator of host defense against intraeellular pathogens in vivo.NLRC5 was specifically required for the expression of genes involved in MHC class Ⅰ antigen presentation.NLRC5-deficient mice showed a profound defect in the expression of MHC class Ⅰ genes and a concomitant failure to activate L.monocytogenes-specific CD8+ T cell responses,including activation,proliferation and cytotoxicity,and the mutant mice were more susceptible to the pathogen infection.NLRP3-mediated inflammasome activation was also partially impaired in NLRC5-deficient mice.However,NLRC5 was dispensable for pathogen-induced expression of NF-KB-dependent pro-inflammatory genes as well as type I interferon genes.Thus,NLRC5 critically regulates MHC class Ⅰ antigen presentation to control intracellular pathogen infection.

  1. Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene

    Energy Technology Data Exchange (ETDEWEB)

    Chesler, Elissa J [ORNL; Mogil, Jeffrey [McGill University, Montreal, Quebec; Miermeister, Frank [Institute of Physiology and Pathophysiology, Univ of Erlangen, Germany; Frank, Seifert [Institute of Physiology and Pathophysiology, Univ of Erlangen, Germany; Strasburg, Kate [McGill University, Montreal, Quebec; Zimmermann, Katharina [Institute of Physiology and Pathophysiology, Univ of Erlangen, Germany; Reinold, Heiko [Institute of Physiology and Pathophysiology, Univ of Erlangen, Germany; Austin, Jean [McGill University, Montreal, Quebec; Bernardini, Nadia [Institute of Physiology and Pathophysiology, Univ of Erlangen, Germany

    2005-01-01

    Heat sensitivity shows considerable functional variability in humans and laboratory animals, and is fundamental to inflammatory and possibly neuropathic pain. In the mouse, at least, much of this variability is genetic because inbred strains differ robustly in their behavioral sensitivity to noxious heat. These strain differences are shown here to reflect differential responsiveness of primary afferent thermal nociceptors to heat stimuli. We further present convergent behavioral and electrophysiological evidence that the variable responses to noxious heat are due to strain-dependence of CGRP expression and sensitivity. Strain differences in behavioral response to noxious heat could be abolished by peripheral injection of CGRP, blockade of cutaneous and spinal CGRP receptors, or long-term inactivation of CGRP with a CGRP-binding Spiegelmer. Linkage mapping supports the contention that the genetic variant determining variable heat pain sensitivity across mouse strains affects the expression of the Calca gene that codes for CGRP

  2. PCR-SSCP Detection and DNA Sequence Analysis of MHC-DRB1 Gene Exon 3 in Tibetan Sheep%藏绵羊MHC-DRB1基因第3外显子的PCR-SSCP检测及其序列分析

    Institute of Scientific and Technical Information of China (English)

    徐飞; 成述儒; 刘秀; 王继卿; 胡江; 罗玉柱

    2011-01-01

    为了研究藏绵羊DRB1基因第3外显子多态性,确定其等位基因数、核苷酸多态位点、变异类型和各等位基因间的遗传关系,本研究采用PCR-SSCP方法,分析了500只藏绵羊(Ovis aries )DRB1基因第3外显子多态性,并对不同等位基因进行克隆和测序.结果表明,藏绵羊DRB1基因第3外显子表现了8个等位基因,8个单倍型序列分析发现了15个核苷酸多态位点,与GenBank序列对比分析,有7个DRB1的等位基因是首次发现.8个DRB1第3外显子的单倍型序列NJ系统发育树呈2支分化趋势.3个种群藏绵羊中B均为优势等位基因,该位点PIC> 0.5,为高度多态且显著偏离Hardy-Weinberg平衡状态.研究认为,藏绵羊DRB1基因第3外显子具有丰富的多态性;藏绵羊DRBI基因最初是由2个等位基因突变分化成两大类等位基因.%In order to study DRB1 gene exon 3 polymorphism in Tibetan sheep, The number of alleles, single nucleotide polymorphisms (SNPs) sites, variation type, the genetic relationship and evolutionary significance of the alleles had been analyzed. Variation in the 500 Tibetan sheep (Ovis aries) DRB1 gene exon 3 was investigated by PCR-SSCP method, followed by cloning and DNA sequencing. The results showed that 8 alleles were identified, 15 nucleotide polymorphism sites were identified in 8 sheep DRB1 gene haplotypes and 7 novel DRB1 exon 3 alleles were found comparison with GenBank sequences. The phylogenetic tree results showed that the 8 haplotypes of Tibetan sheep DRB1 exon 3 could divide into two clusters. Allele B was the most common allele in three Tibetan sheep populations, and that allelic and genotype frequency were significantly deviated from Hardy-Weinberg balanced. The polymorphism was higher with PIC more man 0.5 at DRB1 gene exon 8 in three Tibetan sheep populations. The results suggest that Tibetan sheep DRB1 gene exon 3 has high level of sequence polymorphism, Tibetan sheep DRB1 gene is differentiated into two

  3. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change.

    Directory of Open Access Journals (Sweden)

    Truong D Nguyen-Huu

    2015-07-01

    Full Text Available Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels.

  4. Variable coordination of cotranscribed genes in Escherichia coli following antisense repression

    Directory of Open Access Journals (Sweden)

    Kulyté Agne

    2006-11-01

    Full Text Available Abstract Background A majority of bacterial genes belong to tight clusters and operons, which complicates gene functional studies using conventional knock-out methods. Antisense agents can down-regulate the expression of genes without disrupting the genome because they bind mRNA and block its expression. However, it is unclear how antisense inhibition affects expression from genes that are cotranscribed with the target. Results To examine the effects of antisense inhibition on cotranscribed genes, we constructed a plasmid expressing the two reporter genes gfp and DsRed as one transcriptional unit. Incubation with antisense peptide nucleic acid (PNA targeted to the mRNA start codon region of either the upstream gfp or the downstream DsRed gene resulted in a complete expression discoordination from this artificial construct. The same approach was applied to the three cotranscribed genes in the endogenously expressed lac-operon (lacZ, Y and A and partial downstream expression coordination was seen when the lacZ start codon was targeted with antisense PNA. Targeting the lacY mRNA start codon region showed no effect on the upstream lacZ gene expression whereas expression from the downstream lacA gene was affected as strongly as the lacY gene. Determination of lacZ and lacY mRNA levels revealed a pattern of reduction that was similar to the Lac-proteins, indicating a relation between translation inhibition and mRNA degradation as a response to antisense PNA treatment. Conclusion The results show that antisense mediated repression of genes within operons affect cotranscribed genes to a variable degree. Target transcript stability appears to be closely related to inhibition of translation and presumably depends on translating ribosomes protecting the mRNA from intrinsic decay mechanisms. Therefore, for genes within operons and clusters it is likely that the nature of the target transcript will determine the inhibitory effects on cotranscribed genes

  5. SVAw - a web-based application tool for automated surrogate variable analysis of gene expression studies.

    Science.gov (United States)

    Pirooznia, Mehdi; Seifuddin, Fayaz; Goes, Fernando S; Leek, Jeffrey T; Zandi, Peter P

    2013-03-11

    Surrogate variable analysis (SVA) is a powerful method to identify, estimate, and utilize the components of gene expression heterogeneity due to unknown and/or unmeasured technical, genetic, environmental, or demographic factors. These sources of heterogeneity are common in gene expression studies, and failing to incorporate them into the analysis can obscure results. Using SVA increases the biological accuracy and reproducibility of gene expression studies by identifying these sources of heterogeneity and correctly accounting for them in the analysis. Here we have developed a web application called SVAw (Surrogate variable analysis Web app) that provides a user friendly interface for SVA analyses of genome-wide expression studies. The software has been developed based on open source bioconductor SVA package. In our software, we have extended the SVA program functionality in three aspects: (i) the SVAw performs a fully automated and user friendly analysis workflow; (ii) It calculates probe/gene Statistics for both pre and post SVA analysis and provides a table of results for the regression of gene expression on the primary variable of interest before and after correcting for surrogate variables; and (iii) it generates a comprehensive report file, including graphical comparison of the outcome for the user. SVAw is a web server freely accessible solution for the surrogate variant analysis of high-throughput datasets and facilitates removing all unwanted and unknown sources of variation. It is freely available for use at http://psychiatry.igm.jhmi.edu/sva. The executable packages for both web and standalone application and the instruction for installation can be downloaded from our web site.

  6. Major histocompatibility complex genes in the common carp (Cyprinus carpio L.).

    NARCIS (Netherlands)

    Erp, van S.H.M.

    1996-01-01

    This thesis describes a study of the major histocompatibility complex (Mhc) genes of the common carp (Cyprinus carpio L.). The molecules encoded by Mhc genes play an essential role in the specific immune response, by presenting antigens to T lymphocytes. Knowledge of the Mhc of carp, therefore, cont

  7. The mouse (Mus musculus) T cell receptor alpha (TRA) and delta (TRD) variable genes.

    Science.gov (United States)

    Bosc, Nathalie; Lefranc, Marie-Paule

    2003-01-01

    'The Mouse (Mus musculus) T cell receptor alpha (TRA) and delta (TRD) variable genes' 'IMGT Locus in Focus' report provides the first complete list of the mouse TRAV and TRDV genes which span 1550 kb on chromosome 14 at 19.7 cM. The total number of TRAV genes per haploid genome is 98 belonging to 23 subgroups. This includes 10 TRAV/DV genes which belong to seven subgroups. The functional TRAV genomic repertoire comprises 72-82 TRAV (including 9-10 TRAV/DV) belonging to 19 subgroups. The total number of TRDV genes per haploid genome is 16 (including the 10 TRAV/DV) belonging to 12 subgroups. The functional TRDV genomic repertoire comprises 14-15 genes (5 TRDV and 9-10 TRAV/DV) belonging to 11-12 subgroups. The eight tables and three figures of this report are available at the IMGT Marie-Paule page of IMGT. The international ImMunoGeneTics information system (http://imgt.cines.fr) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France.

  8. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages.

    Science.gov (United States)

    Van Parys, Alexander; Boyen, Filip; Verbrugghe, Elin; Leyman, Bregje; Bram, Flahou; Haesebrouck, Freddy; Pasmans, Frank

    2012-06-13

    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host's immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig's immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  9. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Van Parys Alexander

    2012-06-01

    Full Text Available Abstract Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology.

  10. Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II peptidome

    OpenAIRE

    Jean-Simon eFortin; Maryse eCloutier; Jacques eThibodeau

    2013-01-01

    The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common...

  11. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXR{beta} motif and NF-{kappa}B cytoplasmic sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Zhan, TaiLan; Li, Chang [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan (China); Liu, Mugen, E-mail: lium@mail.hust.edu.cn [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan (China); Wang, Qing K., E-mail: qkwang@mail.hust.edu.cn [Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan (China); Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2009-10-16

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXR{beta} binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-{alpha}-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-{kappa}B. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-{alpha} (which can activate NF-{kappa}B directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated.

  12. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Celeste Sassi

    Full Text Available The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP, is a central event in Alzheimer's disease (AD(Amyloid hypothesis. Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test and cumulative (gene-based association test effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4genes mainly involved in Aβ extracellular degradation (TTR, ACE, clearance (LRP1 and APP trafficking and recycling (SORL1. These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests, that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 variability in APP-Aβ genes is not a critical factor for AD development and 2 Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.

  13. Influence of Coding Variability in APP-Aβ Metabolism Genes in Sporadic Alzheimer’s Disease

    Science.gov (United States)

    Sassi, Celeste; Ridge, Perry G.; Nalls, Michael A.; Gibbs, Raphael; Ding, Jinhui; Lupton, Michelle K.; Troakes, Claire; Lunnon, Katie; Al-Sarraj, Safa; Brown, Kristelle S.; Medway, Christopher; Lord, Jenny; Turton, James; Morgan, Kevin; Powell, John F.; Kauwe, John S.; Cruchaga, Carlos; Bras, Jose; Goate, Alison M.; Singleton, Andrew B.; Guerreiro, Rita; Hardy, John

    2016-01-01

    The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD. PMID:27249223

  14. MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.

    Science.gov (United States)

    Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba

    2011-04-15

    Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.

  15. An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks.

    Science.gov (United States)

    Criscitiello, Michael F; Saltis, Mark; Flajnik, Martin F

    2006-03-28

    Distinctive Ig and T cell receptor (TcR) chains define the two major lineages of vertebrate lymphocyte yet similarly recognize antigen with a single, membrane-distal variable (V) domain. Here we describe the first antigen receptor chain that employs two V domains, which are generated by separate VDJ gene rearrangement events. These molecules have specialized "supportive" TcRdeltaV domains membrane-proximal to domains with most similarity to IgNAR V. The ancestral NAR V gene encoding this domain is hypothesized to have recombined with the TRD locus in a cartilaginous fish ancestor >200 million years ago and encodes the first V domain shown to be used in both Igs and TcRs. Furthermore, these data support the view that gamma/delta TcRs have for long used structural conformations recognizing free antigen.

  16. Transient changes in intercellular protein variability identify sources of noise in gene expression.

    Science.gov (United States)

    Singh, Abhyudai

    2014-11-01

    Protein levels differ considerably between otherwise identical cells, and these differences significantly affect biological function and phenotype. Previous work implicated various noise mechanisms that drive variability in protein copy numbers across an isogenic cell population. For example, transcriptional bursting of mRNAs has been shown to be a major source of noise in the expression of many genes. Additional expression variability, referred to as extrinsic noise, arises from intercellular variations in mRNA transcription and protein translation rates attributed to cell-to-cell differences in cell size, abundance of ribosomes, etc. We propose a method to determine the magnitude of different noise sources in a given gene of interest. The method relies on blocking transcription and measuring changes in protein copy number variability over time. Our results show that this signal has sufficient information to quantify both the extent of extrinsic noise and transcription bursting in gene expression. Moreover, if the mean mRNA count is known, then the relative contributions of transcription versus translation rate fluctuations to extrinsic noise can also be determined. In summary, our study provides an easy-to-implement method for characterizing noisy protein expression that complements existing techniques for studying stochastic dynamics of genetic circuits.

  17. Possible deletion of a developmentally regulated heavy-chain variable region gene in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Pei-Ming; Olee, Tsaiwei; Kozin, F.; Carson, D.A.; Chen, P.P. (Research Institute of Scripps Clinic, La Jolla, CA (USA)); Olsen, N.J. (Vanderbilt Univ., Nashville, TN (USA)); Siminovitch, K.A. (Univ. of Toronto (Canada))

    1990-10-01

    Several autoantibody-associated variable region (V) genes are preferentially expressed during early ontogenic development, suggesting strongly that they are of developmental and physiological importance. As such, it is possible that polymorphisms in one or more of these genes may alter susceptibility to autoimmune disease. The authors have searched extensively for a probe related to a developmentally regulated V gene that has the power to differentiate among highly homologous V genes in human populations. Using such a probe (i.e., Humhv3005/P1) related to both anti-DNA and anti-IgG autoantibodies, they studied restriction fragment length polymorphisms in patients with rheumatoid arthritis and systemic lupus erythematosus and found an apparent heavy-chain V (V{sub H}) gene deletion that was nearly restricted to the autoimmune patients. These data suggest that deletions of physiologically important V{sub H} genes may increase the risk of autoimmunity through indirect effects on the development and homeostasis of the B-cell repertoire.

  18. MHC-dependent survival in a wild population : evidence for hidden genetic benefits gained through extra-pair fertilizations

    NARCIS (Netherlands)

    Brouwer, Lyanne; Barr, Iain; van de Pol, Martijn; Burke, Terry; Komdeur, Jan; Richardson, David S.

    Females should prefer to be fertilized by males that increase the genetic quality of their offspring. In vertebrates, genes of the major histocompatibility complex (MHC) play a key role in the acquired immune response and have been shown to affect mating preferences. They are therefore important

  19. Regulation of TCR delta and alpha repertoires by local and long-distance control of variable gene segment chromatin structure.

    Science.gov (United States)

    Hawwari, Abbas; Krangel, Michael S

    2005-08-15

    Murine Tcrd and Tcra gene segments reside in a single genetic locus and undergo recombination in CD4- CD8- (double negative [DN]) and CD4+ CD8+ (double positive [DP]) thymocytes, respectively. TcraTcrd locus variable gene segments are subject to complex regulation. Only a small subset of approximately 100 variable gene segments contributes substantially to the adult TCRdelta repertoire. Moreover, although most contribute to the TCRalpha repertoire, variable gene segments that are Jalpha proximal are preferentially used during primary Tcra recombination. We investigate the role of local chromatin accessibility in determining the developmental pattern of TcraTcrd locus variable gene segment recombination. We find variable gene segments to be heterogeneous with respect to acetylation of histones H3 and H4. Those that dominate the adult TCRdelta repertoire are hyperacetylated in DN thymocytes, independent of their position in the locus. Moreover, proximal variable gene segments show dramatic increases in histone acetylation and germline transcription in DP thymocytes, a result of super long-distance regulation by the Tcra enhancer. Our results imply that differences in chromatin accessibility contribute to biases in TcraTcrd locus variable gene segment recombination in DN and DP thymocytes and extend the distance over which the Tcra enhancer can regulate chromatin structure to a remarkable 525 kb.

  20. Clonal CD8+ T Cell Persistence and Variable Gene Usage Bias in a Human Transplanted Hand.

    Directory of Open Access Journals (Sweden)

    Joseph Y Kim

    Full Text Available Immune prophylaxis and treatment of transplanted tissue rejection act indiscriminately, risking serious infections and malignancies. Although animal data suggest that cellular immune responses causing rejection may be rather narrow and predictable based on genetic background, there are only limited data regarding the clonal breadth of anti-donor responses in humans after allogeneic organ transplantation. We evaluated the graft-infiltrating CD8+ T lymphocytes in skin punch biopsies of a transplanted hand over 178 days. Profiling of T cell receptor (TCR variable gene usage and size distribution of the infiltrating cells revealed marked skewing of the TCR repertoire indicating oligoclonality, but relatively normal distributions in the blood. Although sampling limitation prevented complete assessment of the TCR repertoire, sequencing further identified 11 TCR clonal expansions that persisted through varying degrees of clinical rejection and immunosuppressive therapy. These 11 clones were limited to three TCR beta chain variable (BV gene families. Overall, these data indicate significant oligoclonality and likely restricted BV gene usage of alloreactive CD8+ T lymphocytes, and suggest that changes in rejection status are more due to varying regulation of their activity or number rather than shifts in the clonal populations in the transplanted organ. Given that controlled animal models produce predictable BV usage in T lymphocytes mediating rejection, understanding the determinants of TCR gene usage associated with rejection in humans may have application in specifically targeted immunotherapy.

  1. EpsinR, a target for pyrenocine B, role in endogenous MHC-II-restricted antigen presentation.

    Science.gov (United States)

    Shishido, Tatsuya; Hachisuka, Masami; Ryuzaki, Kai; Miura, Yuko; Tanabe, Atsushi; Tamura, Yasuaki; Kusayanagi, Tomoe; Takeuchi, Toshifumi; Kamisuki, Shinji; Sugawara, Fumio; Sahara, Hiroeki

    2014-11-01

    While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen.

  2. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Jonathan Harton

    2016-03-01

    Full Text Available Major histocompatibility complex (MHC class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease.

  3. Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails.

    Science.gov (United States)

    Pedrini-Martha, Veronika; Niederwanger, Michael; Kopp, Renate; Schnegg, Raimund; Dallinger, Reinhard

    2016-01-01

    The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail's stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd(2+), Zn(2+), Cu(+)) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors.

  4. Sequence Comparison of MHC Class Ⅱβ (Exon 2) and Phylogenetic Relationship Between Poultry and Mammalian

    Institute of Scientific and Technical Information of China (English)

    XU Ri-fu; LI Kui; CHEN Guo-hong; QIANG Ba-yang-zong; MO De-lin; LI Chang-chun; FAN Bin; LIU Bang

    2005-01-01

    A fragment spanning over exon 2 and intron 2 of major histocompatibility complex B-LB Ⅱ genes was amplified using PCR,cloned and sequenced in 13 individuals from eight Chinese indigenous chicken breeds and one introduced breed. Another 41 sequences of MHC class Ⅱβ from ten vertebrate species were cited from the NCBI GenBank. Thirteen new B-LB Ⅱ alleles were found in the chicken breeds sampled. Alignment of the exon 2 sequences revealed 91.1-97.8% similarity to each other within the chickens sampled, and the chickens shared 84.1-87.0% homology to Phasianus colchicus, 78.5-81.5% similarity to Coturnixjaponica. The sequences in poultry showed 62.6-68.1% identity to HLA-DRBl, 50-61.5% similarity to DQB (HLA-, SLA- and H2-BB), 53.7-60% to HLA-DPB and 53.3-57.8% similarity to HLA-DOB. The frequency of nonsynonymous substitutions of nucleotide was higher than that of synonymous substitutions, and the frequencies of nonsynonymous and synonymous substitutions in poultry B-LB Ⅱ genes were lower than those observed in mammalian DRB1 and DQB1 genes. The deduced amino acid sequences of MHC class Ⅱβ1 domain exhibited extreme difference in conversed region and variable region patterns among the various species, but the two conserved cysteines forming disulfide-bond were shown consistent in poultry with that in mammalian species; and the carbohydrate attachment site was found more conserved in chicken, Homo sapiens, Bos taurus, Ovis aries and Capra hircus than in Sus scrofa and rodent animals. Compared with exon 2 of DQB1 genes of Homo sapiens, ruminant species and Sus scrofa, the differentia that the deletion of six nucleotides at position195 to 200 of exon 2 of DQB1 genes, and insertion of three nucleotides at position 247 to 249 of the exon 2 existed in rodent species were found, which led to the absence of three AA residues at position 65, 66,and 67 within β1 domain of DQB1 chain, and the insertion of one AA residue at position 85. The difference of the deletion

  5. MHCcluster, a method for functional clustering of MHC molecules

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren;

    2013-01-01

    binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  6. The systems biology of MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra

    2012-01-01

    Major histocompatibility class II molecules (MHC class II) are one of the key regulators of adaptive immunity because of their specific expression by professional antigen presenting cells (APC). They present peptides derived from endocytosed material to T helper lymphocytes. Consequently, MHC class

  7. MHC Class I Chain-Related Gene A (MICA) Donor-Recipient Mismatches and MICA-129 Polymorphism in Unrelated Donor Hematopoietic Cell Transplantations Has No Impact on Outcomes in Acute Lymphoblastic Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome: A Center for International Blood and Marrow Transplant Research Study.

    Science.gov (United States)

    Askar, Medhat; Sobecks, Ronald; Wang, Tao; Haagenson, Mike; Majhail, Navneet; Madbouly, Abeer; Thomas, Dawn; Zhang, Aiwen; Fleischhauer, Katharina; Hsu, Katharine; Verneris, Michael; Lee, Stephanie J; Spellman, Stephen R; Fernández-Viña, Marcelo

    2017-03-01

    Single-center studies have previously reported associations of MHC Class I Chain-Related Gene A (MICA) polymorphisms and donor-recipient MICA mismatching with graft-versus-host disease (GVHD) after unrelated donor hematopoietic cell transplantation (HCT). In this study, we investigated the association of MICA polymorphism (MICA-129, MM versus MV versus VV) and MICA mismatches after HCT with 10/10 HLA-matched (n = 552) or 9/10 (n = 161) unrelated donors. Included were adult patients with a first unrelated bone marrow or peripheral blood HCT for acute lymphoblastic leukemia, acute myeloid leukemia, or myelodysplastic syndrome that were reported to the Center for International Blood and Marrow Transplant Research between 1999 and 2011. Our results showed that neither MICA mismatch nor MICA-129 polymorphism were associated with any transplantation outcome (P acute GVHD grades II to IV (HR, 1.4; P = .013) There were no significant interactions between MICA mismatches and HLA matching (9/10 versus 10/10). In conclusion, the findings in this cohort did not confirm prior studies reporting that MICA polymorphism and MICA mismatches were associated with HCT outcomes.

  8. Genetic variability in mitochondrial and nuclear genes of Larus dominicanus (Charadriiformes, Laridae from the Brazilian coast

    Directory of Open Access Journals (Sweden)

    Gisele Pires de Mendonça Dantas

    2012-01-01

    Full Text Available Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase and high diversity for a nuclear locus (intron 7 of the β-fibrinogen. The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded.

  9. Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE

    Directory of Open Access Journals (Sweden)

    Brentani Helena

    2004-08-01

    Full Text Available Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE, "Digital Northern" or Massively Parallel Signature Sequencing (MPSS, is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries" and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.

  10. Genetic variability in mitochondrial and nuclear genes of Larus dominicanus (Charadriiformes, Laridae) from the Brazilian coast

    Science.gov (United States)

    de Mendonça Dantas, Gisele Pires; Meyer, Diogo; Godinho, Raquel; Ferrand, Nuno; Morgante, João Stenghel

    2012-01-01

    Several phylogeographic studies of seabirds have documented low genetic diversity that has been attributed to bottleneck events or individual capacity for dispersal. Few studies have been done in seabirds on the Brazilian coast and all have shown low genetic differentiation on a wide geographic scale. The Kelp Gull is a common species with a wide distribution in the Southern Hemisphere. In this study, we used mitochondrial and nuclear markers to examine the genetic variability of Kelp Gull populations on the Brazilian coast and compared this variability with that of sub-Antarctic island populations of this species. Kelp Gulls showed extremely low genetic variability for mitochondrial markers (cytb and ATPase) and high diversity for a nuclear locus (intron 7 of the β-fibrinogen). The intraspecific evolutionary history of Kelp Gulls showed that the variability found in intron 7 of the β-fibrinogen gene was compatible with the variability expected under neutral evolution but suggested an increase in population size during the last 10,000 years. However, none of the markers revealed evidence of a bottleneck population. These findings indicate that the recent origin of Kelp Gulls is the main explanation for their nuclear diversity, although selective pressure on the mtDNA of this species cannot be discarded. PMID:23271950

  11. [Relationships among immune traits and MHC B-LBII genetic variation in three chicken breeds].

    Science.gov (United States)

    Li, Fuwei; Li, Shuqing; Lu, Yan; Lei, Qiuxia; Han, Haixia; Zhou, Yan; Wu, Bin; Cao, Dingguo

    2013-07-01

    We have assessed the relationships between immune trait (antibody titers of Sheep red blood cell, SRBC; Avian influenza, AI; Newcastle disease, ND) and varieties of MHC B-LBHII Gene in local chicken breeds (Wenshang Barred chicken, LH; Laiwu Black chicken, LWH; and Jining Bairi chicken, BR). We selected 300 chickens randomly from the three indigenous chicken populations. The variations of MHC B-L BII gene were detected by directly DNA sequencing and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). The results indicated that there were about 19-22 nucleotide mutations in the three local breeds, which could affect 16-18 amino acid variations. Another results indicated that there was significantly relationship between seven to eight SNPs of the MHC B-LBII region and some immune traits (P chicken, with SRBC antibody titers (P chicken, and with H9 antibody titers (P chicken. Furthermore, locus T138A was significantly associated with H9 antibody titers in BR and LH chickens (P breeds.

  12. Molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer myostatin gene

    Directory of Open Access Journals (Sweden)

    Smith-Keune Carolyn

    2008-02-01

    Full Text Available Abstract Background Myostatin (MSTN is a member of the transforming growth factor-β superfamily that negatively regulates growth of skeletal muscle tissue. The gene encoding for the MSTN peptide is a consolidate candidate for the enhancement of productivity in terrestrial livestock. This gene potentially represents an important target for growth improvement of cultured finfish. Results Here we report molecular characterization, tissue expression and sequence variability of the barramundi (Lates calcarifer MSTN-1 gene. The barramundi MSTN-1 was encoded by three exons 379, 371 and 381 bp in length and translated into a 376-amino acid peptide. Intron 1 and 2 were 412 and 819 bp in length and presented typical GT...AG splicing sites. The upstream region contained cis-regulatory elements such as TATA-box and E-boxes. A first assessment of sequence variability suggested that higher mutation rates are found in the 5' flanking region with several SNP's present in this species. A putative micro RNA target site has also been observed in the 3'UTR (untranslated region and is highly conserved across teleost fish. The deduced amino acid sequence was conserved across vertebrates and exhibited characteristic conserved putative functional residues including a cleavage motif of proteolysis (RXXR, nine cysteines and two glycosilation sites. A qualitative analysis of the barramundi MSTN-1 expression pattern revealed that, in adult fish, transcripts are differentially expressed in various tissues other than skeletal muscles including gill, heart, kidney, intestine, liver, spleen, eye, gonad and brain. Conclusion Our findings provide valuable insights such as sequence variation and genomic information which will aid the further investigation of the barramundi MSTN-1 gene in association with growth. The finding for the first time in finfish MSTN of a miRNA target site in the 3'UTR provides an opportunity for the identification of regulatory mutations on the

  13. EPSPS variability, gene expression, and enzymatic activity in glyphosate-resistant biotypes of Digitaria insularis.

    Science.gov (United States)

    Galeano, E; Barroso, A A M; Vasconcelos, T S; López-Rubio, A; Albrecht, A J P; Victoria Filho, R; Carrer, H

    2016-08-12

    Weed resistance to herbicides is a natural phenomenon that exerts selection on individuals in a population. In Brazil, glyphosate resistance was recently detected in Digitaria insularis. The objective of this study was to elucidate mechanisms of weed resistance in this plant, including genetic variability, allelism, amino acid substitutions, gene expression, and enzymatic activity levels. Most of these have not previously been studied in this species. D. insularis DNA sequences were used to analyze genetic variability. cDNA from resistant and susceptible plants was used to identify mutations, alleles, and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) expression, using real-time quantitative reverse transcription-polymerase chain reaction. In addition, EPSPS activity was measured. We found a decrease in genetic variability between populations related to glyphosate application. Substitutions from proline to threonine and tyrosine to cysteine led to a decrease in EPSPS affinity for the glyphosate. In addition, the EPSPS enzymatic activity was slightly higher in resistant plants, whereas EPSPS gene expression was almost identical in both biotypes, suggesting feedback regulation at different levels. To conclude, our results suggest new molecular mechanisms used by D. insularis to increase glyphosate resistance.

  14. Plasmid-borne prokaryotic gene expression: Sources of variability and quantitative system characterization

    Science.gov (United States)

    Bagh, Sangram; Mazumder, Mostafizur; Velauthapillai, Tharsan; Sardana, Vandit; Dong, Guang Qiang; Movva, Ashok B.; Lim, Len H.; McMillen, David R.

    2008-02-01

    One aim of synthetic biology is to exert systematic control over cellular behavior, either for medical purposes or to “program” microorganisms. An engineering approach to the design of biological controllers demands a quantitative understanding of the dynamics of both the system to be controlled and the controllers themselves. Here we focus on a widely used method of exerting control in bacterial cells: plasmid vectors bearing gene-promoter pairs. We study two variants of the simplest such element, an unregulated promoter constitutively expressing its gene, against the varying genomic background of four Escherichia coli cell strains. Absolute protein numbers and rates of expression vary with both cell strain and plasmid type, as does the variability of expression across the population. Total variability is most strongly coupled to the cell division process, and after cell size is scaled away, plasmid copy number regulation emerges as a significant effect. We present simple models that capture the main features of the system behavior. Our results confirm that complex interactions between plasmids and their hosts can have significant effects on both expression and variability, even in deliberately simplified systems.

  15. Locating disease genes using Bayesian variable selection with the Haseman-Elston method

    Directory of Open Access Journals (Sweden)

    He Qimei

    2003-12-01

    Full Text Available Abstract Background We applied stochastic search variable selection (SSVS, a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13. We used SSVS with the revisited Haseman-Elston method to find the markers linked to the loci determining change in cholesterol over time. To study gene-gene interaction (epistasis and gene-environment interaction, we adopted prior structures, which incorporate the relationship among the predictors. This allows SSVS to search in the model space more efficiently and avoid the less likely models. Results In applying SSVS, instead of looking at the posterior distribution of each of the candidate models, which is sensitive to the setting of the prior, we ranked the candidate variables (markers according to their marginal posterior probability, which was shown to be more robust to the prior. Compared with traditional methods that consider one marker at a time, our method considers all markers simultaneously and obtains more favorable results. Conclusions We showed that SSVS is a powerful method for identifying linked markers using the Haseman-Elston method, even for weak effects. SSVS is very effective because it does a smart search over the entire model space.

  16. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    Science.gov (United States)

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  17. A quantitative and qualitative comparison of illumina MiSeq and 454 amplicon sequencing for genotyping the highly polymorphic major histocompatibility complex (MHC) in a non-model species

    National Research Council Canada - National Science Library

    Haslina Razali; Emily OConnor; Anna Drews; Terry Burke; Helena Westerdahl

    2017-01-01

    ...) dataset with pedigree information. House sparrows provide a good study system for this comparison as their MHC class I genes have been studied previously and, consequently, we had prior expectations concerning the number of alleles per individual...

  18. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease.

    Science.gov (United States)

    Maraganore, Demetrius M; de Andrade, Mariza; Elbaz, Alexis; Farrer, Matthew J; Ioannidis, John P; Krüger, Rejko; Rocca, Walter A; Schneider, Nicole K; Lesnick, Timothy G; Lincoln, Sarah J; Hulihan, Mary M; Aasly, Jan O; Ashizawa, Tetsuo; Chartier-Harlin, Marie-Christine; Checkoway, Harvey; Ferrarese, Carlo; Hadjigeorgiou, Georgios; Hattori, Nobutaka; Kawakami, Hideshi; Lambert, Jean-Charles; Lynch, Timothy; Mellick, George D; Papapetropoulos, Spiridon; Parsian, Abbas; Quattrone, Aldo; Riess, Olaf; Tan, Eng-King; Van Broeckhoven, Christine

    2006-08-09

    Identification and replication of susceptibility genes for Parkinson disease at the population level have been hampered by small studies with potential biases. Alpha-synuclein (SNCA) has been one of the most promising susceptibility genes, but large-scale studies have been lacking. To determine whether allele-length variability in the dinucleotide repeat sequence (REP1) of the SNCA gene promoter is associated with Parkinson disease susceptibility, whether SNCA promoter haplotypes are associated with Parkinson disease, and whether REP1 variability modifies age at onset. We performed a collaborative analysis of individual-level data on SNCA REP1 and flanking markers in patients with Parkinson disease and controls. Study site recruitment, data collection, and analyses were performed between April 5, 2004, and December 31, 2005. Eighteen participating sites of a global genetics consortium provided clinical data. Genotyping was performed for SNCA REP1, -770, and -116 markers at individual sites; however, each site also provided 20 DNA samples for regenotyping centrally. Measures included estimations of Hardy-Weinberg equilibrium in controls; a test of heterogeneity; analyses for association of single variants or haplotypes; and survival analyses for age at onset. Of the 18 sites, 11 met stringent criteria for concordance with Hardy-Weinberg equilibrium and low genotyping error rate. These 11 sites provided complete data for 2692 cases and 2652 controls. There was no heterogeneity across studies (P>.60). The SNCA REP1 alleles differed in frequency for cases and controls (PParkinson disease (odds ratio, 1.43; 95% confidence interval, 1.22-1.69; PParkinson disease only when they included REP1 as one of the loci. However, genotypes defined by REP1 alleles did not modify age at onset (P = .55). This large-scale collaborative analysis demonstrates that SNCA REP1 allele-length variability is associated with an increased risk of Parkinson disease.

  19. Common variable immune deficiency with mutated TNFSRF13B gene presenting with autoimmune hematologic manifestations

    Directory of Open Access Journals (Sweden)

    Elpis Mantadakis

    2016-10-01

    Full Text Available Patients with common variable immunodeficiency (CVID develop autoimmune hematologic manifestations. We report a 14-year-old boy with Evans syndrome, who presented at the age of 11.5 years with autoimmune hemolysis and was successfully managed with corticosteroids. Initially, the serum immunoglobulins were within the low-normal range for age, but two years after presentation he definitely fulfilled the diagnostic criteria for CVID, despite a negative history for serious infections. DNA sequencing by PCR of the TNFSRF13B gene that encodes the TACI receptor disclosed the heterozygous mutation C104R that is found in approximately 10–15% of patients with CVID. Common variable immunodeficiency should be considered in the differential diagnosis of autoimmune hematologic manifestations, since its timely diagnosis may considerably affect clinical management and patient outcome.

  20. Structural characteristics of the variable regions of immunoglobulin genes encoding a pathogenic autoantibody in murine lupus.

    Science.gov (United States)

    Tsao, B P; Ebling, F M; Roman, C; Panosian-Sahakian, N; Calame, K; Hahn, B H

    1990-02-01

    We have studied several monoclonal anti-double-stranded (ds) DNA antibodies for their ability to accelerate lupus nephritis in young NZB X NZW F1 female mice and to induce it in BALB/c mice. Two identified as pathogens in both strains have characteristics previously associated with nephritogenicity: expression of IgG2a isotype and IdGN2 idiotype. Both pathogenic antibodies used the combination of genes from the VHJ558 and VK9 subfamilies. Two weak pathogens failed to accelerate nephritis in young BW mice, but induced lupus nephritis in BALB/c mice. They both express IdGN2; one is cationic and an IgG3, the other is an IgG2a. Additional MAbs (some IgG2a, one IdGN2-positive) did not accelerate or induce nephritis. We have cloned and sequenced the variable regions of the immunoglobulin genes of one pathogenic autoantibody. No unique V, D, or J gene segments and no evidence of unusual mechanisms in generating diversity were used to construct this antibody. These data argue against use of unique abnormal Ig genes by systemic lupus erythematosus individuals to construct pathogenic autoantibody subsets. Instead, the major abnormality may be immunoregulatory.

  1. Influence of sex and genetic variability on expression of X-linked genes in human monocytes.

    Science.gov (United States)

    Castagné, Raphaële; Zeller, Tanja; Rotival, Maxime; Szymczak, Silke; Truong, Vinh; Schillert, Arne; Trégouët, David-Alexandre; Münzel, Thomas; Ziegler, Andreas; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2011-11-01

    In humans, the fraction of X-linked genes with higher expression in females has been estimated to be 5% from microarray studies, a proportion lower than the 25% of genes thought to escape X inactivation. We analyzed 715 X-linked transcripts in circulating monocytes from 1,467 subjects and found an excess of female-biased transcripts on the X compared to autosomes (9.4% vs 5.5%, pgenes not previously known to escape inactivation, the most significant one was EFHC2 whose 20% of variability was explained by sex. We also investigated cis expression quantitative trait loci (eQTLs) by analyzing 15,703 X-linked SNPs. The frequency and magnitude of X-linked cis eQTLs were quite similar in males and females. Few genes exhibited a stronger genetic effect in females than in males (ARSD, DCX, POLA1 and ITM2A). These genes would deserve further investigation since they may contribute to sex pathophysiological differences.

  2. Recommended Reference Genes for Quantitative PCR Analysis in Soybean Have Variable Stabilities during Diverse Biotic Stresses.

    Science.gov (United States)

    Bansal, Raman; Mittapelly, Priyanka; Cassone, Bryan J; Mamidala, Praveen; Redinbaugh, Margaret G; Michel, Andy

    2015-01-01

    For real-time reverse transcription-PCR (qRT-PCR) in soybean, reference genes in different tissues, developmental stages, various cultivars, and under stress conditions have been suggested but their usefulness for research on soybean under various biotic stresses occurring in North-Central U.S. is not known. Here, we investigated the expression stabilities of ten previously recommended reference genes (ABCT, CYP, EF1A, FBOX, GPDH, RPL30, TUA4, TUB4, TUA5, and UNK2) in soybean under biotic stress from Bean pod mottle virus (BPMV), powdery mildew (PMD), soybean aphid (SBA), and two-spotted spider mite (TSSM). BPMV, PMD, SBA, and TSSM are amongst the most common pest problems on soybean in North-Central U.S. and other regions. Reference gene stability was determined using three software algorithms (geNorm, NormFinder, BestKeeper) and a web-based tool (RefFinder). Reference genes showed variability in their expression as well as stability across various stressors and the best reference genes were stress-dependent. ABCT and FBOX were found to be the most stable in soybean under both BPMV and SBA stress but these genes had only minimal to moderate stability during PMD and TSSM stress. Expression of TUA4 and CYP was found to be most stable during PMD stress; TUB4 and TUA4 were stable under TSSM stress. Under various biotic stresses on soybean analyzed, GPDH expression was found to be consistently unstable. For all biotic stressors on soybean, we obtained pairwise variation (V2/3) values less than 0.15 which suggested that combined use of the two most stable reference genes would be sufficient for normalization. Further, we demonstrated the utility of normalizing the qRT-PCR data for target genes using the most stable reference genes validated in current study. Following of the recommendations from our current study will enable an accurate and reliable normalization of qRT-PCR data in soybean under biotic stress.

  3. HLA micropolymorphisms strongly affect peptide-MHC multimer-based monitoring of antigen-specific CD8+ T cell responses.

    Science.gov (United States)

    van Buuren, Marit M; Dijkgraaf, Feline E; Linnemann, Carsten; Toebes, Mireille; Chang, Cynthia X L; Mok, Juk Yee; Nguyen, Melanie; van Esch, Wim J E; Kvistborg, Pia; Grotenbreg, Gijsbert M; Schumacher, Ton N M

    2014-01-15

    Peptide-MHC (pMHC) multimers have become one of the most widely used tools to measure Ag-specific T cell responses in humans. With the aim of understanding the requirements for pMHC-based personalized immunomonitoring, in which individuals expressing subtypes of the commonly studied HLA alleles are encountered, we assessed how the ability to detect Ag-specific T cells for a given peptide is affected by micropolymorphic differences between HLA subtypes. First, analysis of a set of 10 HLA-A*02:01-restricted T cell clones demonstrated that staining with pMHC multimers of seven distinct subtypes of the HLA-A*02 allele group was highly variable and not predicted by sequence homology. Second, to analyze the effect of minor sequence variation in a clinical setting, we screened tumor-infiltrating lymphocytes of an HLA-A*02:06 melanoma patient with either subtype-matched or HLA-A*02:01 multimers loaded with 145 different melanoma-associated Ags. This revealed that of the four HLA-A*02:06-restricted melanoma-associated T cell responses observed in this patient, two responses were underestimated and one was overlooked when using subtype-mismatched pMHC multimer collections. To our knowledge, these data provide the first demonstration of the strong effect of minor sequence variation on pMHC-based personalized immunomonitoring, and they provide tools to prevent this issue for common variants within the HLA-A*02 allele group.

  4. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    Science.gov (United States)

    Tollenaere, Charlotte; Ivanova, Svilena; Duplantier, Jean-Marc; Loiseau, Anne; Rahalison, Lila; Rahelinirina, Soanandrasana; Brouat, Carine

    2012-01-01

    Plague (Yersinia pestis infection) is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus) is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar) are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC) in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2). For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21) showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  5. Contrasted patterns of selection on MHC-linked microsatellites in natural populations of the Malagasy plague reservoir.

    Directory of Open Access Journals (Sweden)

    Charlotte Tollenaere

    Full Text Available Plague (Yersinia pestis infection is a highly virulent rodent disease that persists in many natural ecosystems. The black rat (Rattus rattus is the main host involved in the plague focus of the central highlands of Madagascar. Black rat populations from this area are highly resistant to plague, whereas those from areas in which the disease is absent (low altitude zones of Madagascar are susceptible. Various lines of evidence suggest a role for the Major Histocompatibility Complex (MHC in plague resistance. We therefore used the MHC region as a candidate for detecting signatures of plague-mediated selection in Malagasy black rats, by comparing population genetic structures for five MHC-linked microsatellites and neutral markers in two sampling designs. We first compared four pairs of populations, each pair including one population from the plague focus and one from the disease-free zone. Plague-mediated selection was expected to result in greater genetic differentiation between the two zones than expected under neutrality and this was observed for one MHC-class I-linked locus (D20Img2. For this marker as well as for four other MHC-linked loci, a geographic pattern of genetic structure was found at local scale within the plague focus. This pattern would be expected if plague selection pressures were spatially variable. Finally, another MHC-class I-linked locus (D20Rat21 showed evidences of balancing selection, but it seems more likely that this selection would be related to unknown pathogens more widely distributed in Madagascar than plague.

  6. Manipulation of MHC-I/TCR Interaction for Immune Therapy

    Institute of Scientific and Technical Information of China (English)

    Qingjun Liu; Bin Gao

    2008-01-01

    Adoptive immunotherapy involving the transfer of autologous tumor or virus-reactive T lymphocytes has been demonstrated to he effective in the eradication of cancer and vitally infected cells. Identification of MHC-restricted antigens and progress in generation of adaptive immune responses have provided new direction for such treatment for severe pathologies such as cancer and autoimmune diseases. Here we review the latest development about the molecular basis of MHC-I/TCR interaction, and it's manipulation including enhanced MHC-I expression, modification of peptide and engineered TCR for clinical applications such as vaccine design, tumor therapy and autoimmune diseases. Cellular & Molecular Immunology. 2008;5(3):171-182.

  7. FCERI and Histamine Metabolism Gene Variability in Selective Responders to NSAIDS

    Science.gov (United States)

    Amo, Gemma; Cornejo-García, José A.; García-Menaya, Jesus M.; Cordobes, Concepcion; Torres, M. J.; Esguevillas, Gara; Mayorga, Cristobalina; Martinez, Carmen; Blanca-Lopez, Natalia; Canto, Gabriela; Ramos, Alfonso; Blanca, Miguel; Agúndez, José A. G.; García-Martín, Elena

    2016-01-01

    The high-affinity IgE receptor (Fcε RI) is a heterotetramer of three subunits: Fcε RIα, Fcε RIβ, and Fcε RIγ (αβγ2) encoded by three genes designated as FCER1A, FCER1B (MS4A2), and FCER1G, respectively. Recent evidence points to FCERI gene variability as a relevant factor in the risk of developing allergic diseases. Because Fcε RI plays a key role in the events downstream of the triggering factors in immunological response, we hypothesized that FCERI gene variants might be related with the risk of, or with the clinical response to, selective (IgE mediated) non-steroidal anti-inflammatory (NSAID) hypersensitivity. From a cohort of 314 patients suffering from selective hypersensitivity to metamizole, ibuprofen, diclofenac, paracetamol, acetylsalicylic acid (ASA), propifenazone, naproxen, ketoprofen, dexketoprofen, etofenamate, aceclofenac, etoricoxib, dexibuprofen, indomethacin, oxyphenylbutazone, or piroxicam, and 585 unrelated healthy controls that tolerated these NSAIDs, we analyzed the putative effects of the FCERI SNPs FCER1A rs2494262, rs2427837, and rs2251746; FCER1B rs1441586, rs569108, and rs512555; FCER1G rs11587213, rs2070901, and rs11421. Furthermore, in order to identify additional genetic markers which might be associated with the risk of developing selective NSAID hypersensitivity, or which may modify the putative association of FCERI gene variations with risk, we analyzed polymorphisms known to affect histamine synthesis or metabolism, such as rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742, and rs1049793 in the HDC, HNMT, and DAO genes. No major genetic associations with risk or with clinical presentation, and no gene-gene interactions, or gene-phenotype interactions (including age, gender, IgE concentration, antecedents of atopy, culprit drug, or clinical presentation) were identified in patients. However, logistic regression analyses indicated that the presence of antecedents of atopy and the DAO SNP rs2052129 (GG

  8. FCERI AND HISTAMINE METABOLISM GENE VARIABILITY IN SELECTIVE RESPONDERS TO NSAIDS

    Directory of Open Access Journals (Sweden)

    Gemma Amo

    2016-09-01

    Full Text Available The high-affinity IgE receptor (Fcε RI is a heterotetramer of three subunits: Fcε RIα, Fcε RIβ and Fcε RIγ (αβγ2 encoded by three genes designated as FCER1A, FCER1B (MS4A2 and FCER1G, respectively. Recent evidence points to FCERI gene variability as a relevant factor in the risk of developing allergic diseases. Because Fcε RI plays a key role in the events downstream of the triggering factors in immunological response, we hypothesized that FCERI gene variants might be related with the risk of, or with the clinical response to, selective (IgE mediated non-steroidal anti-inflammatory (NSAID hypersensitivity.From a cohort of 314 patients suffering from selective hypersensitivity to metamizole, ibuprofen, diclofenac, paracetamol, acetylsalicylic acid (ASA, propifenazone, naproxen, ketoprofen, dexketoprofen, etofenamate, aceclofenac, etoricoxib, dexibuprofen, indomethacin, oxyphenylbutazone or piroxicam, and 585 unrelated healthy controls that tolerated these NSAIDs, we analyzed the putative effects of the FCERI SNPs FCER1A rs2494262, rs2427837 and rs2251746; FCER1B rs1441586, rs569108 and rs512555; FCER1G rs11587213, rs2070901 and rs11421. Furthermore, in order to identify additional genetic markers which might be associated with the risk of developing selective NSAID hypersensitivity, or which may modify the putative association of FCERI gene variations with risk, we analyzed polymorphisms known to affect histamine synthesis or metabolism, such as rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742 and rs1049793 in the HDC, HNMT and DAO genes.No major genetic associations with risk or with clinical presentation, and no gene-gene interactions, or gene-phenotype interactions (including age, gender, IgE concentration, antecedents of atopy, culprit drug or clinical presentation were identified in patients. However, logistic regression analyses indicated that the presence of antecedents of atopy and the DAO SNP rs2052129 (GG

  9. Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset

    Directory of Open Access Journals (Sweden)

    Hauser Stephen L

    2010-11-01

    Full Text Available Abstract Background When selecting mates, many vertebrate species seek partners with major histocompatibility complex (MHC genes different from their own, presumably in response to selective pressure against inbreeding and towards MHC diversity. Attempts at replication of these genetic results in human studies, however, have reached conflicting conclusions. Results Using a multi-analytical strategy, we report validated genome-wide relationships between genetic identity and human mate choice in 930 couples of European ancestry. We found significant similarity between spouses in the MHC at class I region in chromosome 6p21, and at the odorant receptor family 13 locus in chromosome 9. Conversely, there was significant dissimilarity in the MHC class II region, near the HLA-DQA1 and -DQB1 genes. We also found that genomic regions with significant similarity between spouses show excessive homozygosity in the general population (assessed in the HapMap CEU dataset. Conversely, loci that were significantly dissimilar among spouses were more likely to show excessive heterozygosity in the general population. Conclusions This study highlights complex patterns of genomic identity among partners in unrelated couples, consistent with a multi-faceted role for genetic factors in mate choice behavior in human populations.

  10. Effect of Interaction between Chromatin Loops on Cell-to-Cell Variability in Gene Expression.

    Directory of Open Access Journals (Sweden)

    Tuoqi Liu

    2016-05-01

    Full Text Available According to recent experimental evidence, the interaction between chromatin loops, which can be characterized by three factors-connection pattern, distance between regulatory elements, and communication form, play an important role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effect that addresses the question of how changes in these factors affect variability at the expression level in a systematic rather than case-by-case fashion. Here we make such an effort, based on a mechanic model that maps three fundamental patterns for two interacting DNA loops into a 4-state model of stochastic transcription. We first show that in contrast to side-by-side loops, nested loops enhance mRNA expression and reduce expression noise whereas alternating loops have just opposite effects. Then, we compare effects of facilitated tracking and direct looping on gene expression. We find that the former performs better than the latter in controlling mean expression and in tuning expression noise, but this control or tuning is distance-dependent, remarkable for moderate loop lengths, and there is a limit loop length such that the difference in effect between two communication forms almost disappears. Our analysis and results justify the facilitated chromatin-looping hypothesis.

  11. BRAFV600E Co-opts a Conserved MHC Class I Internalization Pathway to Diminish Antigen Presentation and CD8+ T-cell Recognition of Melanoma.

    Science.gov (United States)

    Bradley, Sherille D; Chen, Zeming; Melendez, Brenda; Talukder, Amjad; Khalili, Jahan S; Rodriguez-Cruz, Tania; Liu, Shujuan; Whittington, Mayra; Deng, Wanleng; Li, Fenge; Bernatchez, Chantale; Radvanyi, Laszlo G; Davies, Michael A; Hwu, Patrick; Lizée, Gregory

    2015-06-01

    Oncogene activation in tumor cells induces broad and complex cellular changes that contribute significantly to disease initiation and progression. In melanoma, oncogenic BRAF(V600E) has been shown to drive the transcription of a specific gene signature that can promote multiple mechanisms of immune suppression within the tumor microenvironment. We show here that BRAF(V600E) also induces rapid internalization of MHC class I (MHC-I) from the melanoma cell surface and its intracellular sequestration within endolysosomal compartments. Importantly, MAPK inhibitor treatment quickly restored MHC-I surface expression in tumor cells, thereby enhancing melanoma antigen-specific T-cell recognition and effector function. MAPK pathway-driven relocalization of HLA-A*0201 required a highly conserved cytoplasmic serine phosphorylation site previously implicated in rapid MHC-I internalization and recycling by activated immune cells. Collectively, these data suggest that oncogenic activation of BRAF allows tumor cells to co-opt an evolutionarily conserved MHC-I trafficking pathway as a strategy to facilitate immune evasion. This link between MAPK pathway activation and the MHC-I cytoplasmic tail has direct implications for immunologic recognition of tumor cells and provides further evidence to support testing therapeutic strategies combining MAPK pathway inhibition with immunotherapies in the clinical setting. ©2015 American Association for Cancer Research.

  12. An in situ hybridization study of the effects of artificial insemination on the localization of cells expressing MHC class II mRNA in the chicken oviduct.

    Science.gov (United States)

    Zheng, W M; Nishibori, M; Isobe, N; Yoshimura, Y

    2001-10-01

    The aim of this study was to determine the effects of artificial insemination on the localization of antigen-presenting cells expressing MHC class II mRNA in chicken oviducts. Laying hens (35 weeks old) were inseminated with fresh semen or sham-inseminated with saline daily for 3 days. In situ hybridization was performed to detect chicken MHC class II (B-LB21 major gene) mRNA on frozen sections of oviductal infundibulum, uterovaginal junction and vagina by using digoxigenin-labelled PCR probes. Cells expressing MHC class II were observed mainly in the oviductal mucosal stroma and occasionally in the mucosal epithelium. After 24 h, the population of cells expressing MHC class II in the infundibulum was significantly higher in laying hens inseminated with fresh semen than in the control hens sham-inseminated with saline (P artificially inseminated and control hens. These results indicate that anti-sperm immune responses, including the influx of cells expressing MHC class II and enhanced MHC class II mRNA expression, probably occur in the infundibulum after artificial insemination.

  13. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available BACKGROUND: The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm. METHODOLOGY/PRINCIPAL FINDINGS: We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals. CONCLUSIONS: Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene

  14. Nucleotide variability and linkage disequilibrium patterns in the porcine MUC4 gene

    Directory of Open Access Journals (Sweden)

    Yang Ming

    2012-07-01

    Full Text Available Abstract Background MUC4 is a type of membrane anchored glycoprotein and serves as the major constituent of mucus that covers epithelial surfaces of many tissues such as trachea, colon and cervix. MUC4 plays important roles in the lubrication and protection of the surface epithelium, cell proliferation and differentiation, immune response, cell adhesion and cancer development. To gain insights into the evolution of the porcine MUC4 gene, we surveyed the nucleotide variability and linkage disequilibrium (LD within this gene in Chinese indigenous breeds and Western commercial breeds. Results A total of 53 SNPs covering the MUC4 gene were genotyped on 5 wild boars and 307 domestic pigs representing 11 Chinese breeds and 3 Western breeds. The nucleotide variability, haplotype phylogeny and LD extent of MUC4 were analyzed in these breeds. Both Chinese and Western breeds had considerable nucleotide diversity at the MUC4 locus. Western pig breeds like Duroc and Large White have comparable nucleotide diversity as many of Chinese breeds, thus artificial selection for lean pork production have not reduced the genetic variability of MUC4 in Western commercial breeds. Haplotype phylogeny analyses indicated that MUC4 had evolved divergently in Chinese and Western pigs. The dendrogram of genetic differentiation between breeds generally reflected demographic history and geographical distribution of these breeds. LD patterns were unexpectedly similar between Chinese and Western breeds, in which LD usually extended less than 20 kb. This is different from the presumed high LD extent (more than 100 kb in Western commercial breeds. The significant positive Tajima’D, and Fu and Li’s D statistics in a few Chinese and Western breeds implied that MUC4 might undergo balancing selection in domestic breeds. Nevertheless, we cautioned that the significant statistics could be upward biased by SNP ascertainment process. Conclusions Chinese and Western breeds have

  15. Regulation of MHC Class II-Peptide Complex Expression by Ubiquitination

    Directory of Open Access Journals (Sweden)

    Kyung Jin eCho

    2013-11-01

    Full Text Available MHC class II (MHC-II molecules are present on antigen presenting cells (APCs and these molecules function by binding antigenic peptides and presenting these peptides to antigen-specific CD4+ T cells. APCs continuously generate and degrade MHC-II molecules, and ubiquitination of MHC-II has recently been shown to be a key regulator of MHC-II expression in dendritic cells (DCs. In this mini-review we will examine the mechanism by which the E3 ubiquitin ligase March-I regulates MHC-II expression on APCs and will discuss the functional consequences of altering MHC-II ubiquitination.

  16. Major Histocompatibility Class I Gene Transcription in Thyrocytes: A Series of Interacting Regulatory DNA Sequence Elements Mediate Thyrotropin/Cyclic Adenosine 3′,5′-Monophosphate Repression

    National Research Council Canada - National Science Library

    Kirshner, Susan; Palmer, Lisa; Bodor, Josef; Saji, Moto; Kohn, Leonard D; Singer, Dinah S

    2000-01-01

    In response to TSH, thyroid cells decrease major histocompatibility (MHC) class I expression and transcription, providing an excellent model for studying the dynamic modulation of transcription of MHC class I genes...

  17. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants.

    Science.gov (United States)

    Surkova, Svetlana; Golubkova, Elena; Manu; Panok, Lena; Mamon, Lyudmila; Reinitz, John; Samsonova, Maria

    2013-04-01

    Here we characterize the response of the Drosophila segmentation system to mutations in two gap genes, Kr and kni, in the form of single or double homozygotes and single heterozygotes. Segmentation gene expression in these genotypes was quantitatively monitored with cellular resolution in space and 6.5 to 13min resolution in time. As is the case with wild type, we found that gene expression domains in the posterior portion of the embryo shift to the anterior over time. In certain cases, such as the gt posterior domain in Kr mutants, the shifts are significantly larger than is seen in wild type embryos. We also investigated the effects of Kr and kni on the variability of gene expression. Mutations often produce variable phenotypes, and it is well known that the cuticular phenotype of Kr mutants is variable. We sought to understand the molecular basis of this effect. We find that throughout cycle 14A the relative levels of eve and ftz expression in stripes 2 and 3 are variable among individual embryos. Moreover, in Kr and kni mutants, unlike wild type, the variability in positioning of the posterior Hb domain and eve stripe 7 is not decreased or filtered with time. The posterior Gt domain in Kr mutants is highly variable at early times, but this variability decreases when this domain shifts in the anterior direction to the position of the neighboring Kni domain. In contrast to these findings, positional variability throughout the embryo does not decrease over time in double Kr;kni mutants. In heterozygotes the early expression patterns of segmentation genes resemble patterns seen in homozygous mutants but by the onset of gastrulation they become similar to the wild type patterns. Finally, we note that gene expression levels are reduced in Kr and kni mutant embryos and have a tendency to decrease over time. This is a surprising result in view of the role that mutual repression is thought to play in the gap gene system.

  18. Analysis of biological and technical variability in gene expression assays from formalin-fixed paraffin-embedded classical Hodgkin lymphomas.

    Science.gov (United States)

    Vera-Lozada, Gabriela; Scholl, Vanesa; Barros, Mário Henrique M; Sisti, Davide; Guescini, Michele; Stocchi, Vilberto; Stefanoff, Claudio Gustavo; Hassan, Rocio

    2014-12-01

    Formalin-fixed paraffin-embedded (FFPE) tissues are invaluable sources of biological material for research and diagnostic purposes. In this study, we aimed to identify biological and technical variability in RT-qPCR TaqMan® assays performed with FFPE-RNA from lymph nodes of classical Hodgkin lymphoma samples. An ANOVA-nested 6-level design was employed to evaluate BCL2, CASP3, IRF4, LYZ and STAT1 gene expression. The most variable genes were CASP3 (low expression) and LYZ (high expression). Total variability decreased after normalization for all genes, except by LYZ. Genes with moderate and low expression were identified and suffered more the effects of the technical manipulation than high-expression genes. Pre-amplification was shown to introduce significant technical variability, which was partially alleviated by lowering to a half the amount of input RNA. Ct and Cy0 quantification methods, based on cycle-threshold and the kinetic of amplification curves, respectively, were compared. Cy0 method resulted in higher quantification values, leading to the decrease of total variability in CASP3 and LYZ genes. The mean individual noise was 0.45 (0.31 to 0.61 SD), indicating a variation of gene expression over ~1.5 folds from one case to another. We showed that total variability in RT-qPCR from FFPE-RNA is not higher than that reported for fresh complex tissues, and identified gene-, and expression level-sources of biological and technical variability, which can allow better strategies for designing RT-qPCR assays from highly degraded and inhibited samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Do motor control genes contribute to interindividual variability in decreased movement in patients with pain?

    Directory of Open Access Journals (Sweden)

    Mishra Bikash K

    2007-07-01

    Full Text Available Abstract Background Because excessive reduction in activities after back injury may impair recovery, it is important to understand and address the factors contributing to the variability in motor responses to pain. The current dominant theory is the "fear-avoidance model", in which the some patients' heightened fears of further injury cause them to avoid movement. We propose that in addition to psychological factors, neurochemical variants in the circuits controlling movement and their modification by pain may contribute to this variability. A systematic search of the motor research literature and genetic databases yielded a prioritized list of polymorphic motor control candidate genes. We demonstrate an analytic method that we applied to 14 of these genes in 290 patients with acute sciatica, whose reduction in movement was estimated by items from the Roland-Morris Disability Questionnaire. Results We genotyped a total of 121 single nucleotide polymorphisms (SNPs in 14 of these genes, which code for the dopamine D2 receptor, GTP cyclohydrolase I, glycine receptor α1 subunit, GABA-A receptor α2 subunit, GABA-A receptor β1 subunit, α-adrenergic 1C, 2A, and 2C receptors, serotonin 1A and 2A receptors, cannabinoid CB-1 receptor, M1 muscarinic receptor, and the tyrosine hydroxylase, and tachykinin precursor-1 molecules. No SNP showed a significant association with the movement score after a Bonferroni correction for the 14 genes tested. Haplotype analysis of one of the blocks in the GABA-A receptor β1 subunit showed that a haplotype of 11% frequency was associated with less limitation of movement at a nominal significance level value (p = 0.0025 almost strong enough to correct for testing 22 haplotype blocks. Conclusion If confirmed, the current results may suggest that a common haplotype in the GABA-A β1 subunit acts like an "endogenous muscle relaxant" in an individual with subacute sciatica. Similar methods might be applied a larger set of

  20. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    Science.gov (United States)

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line.

  1. Interactions within the MHC contribute to the genetic architecture of celiac disease

    Science.gov (United States)

    Abraham, Gad; Kikianty, Eder; Wang, Qiao; Rawlinson, Dave; Shi, Fan; Haviv, Izhak; Stern, Linda

    2017-01-01

    Interaction analysis of GWAS can detect signal that would be ignored by single variant analysis, yet few robust interactions in humans have been detected. Recent work has highlighted interactions in the MHC region between known HLA risk haplotypes for various autoimmune diseases. To better understand the genetic interactions underlying celiac disease (CD), we have conducted exhaustive genome-wide scans for pairwise interactions in five independent CD case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found 14 independent interaction signals within the MHC region that achieved stringent replication criteria across multiple studies and were independent of known CD risk HLA haplotypes. The strongest independent CD interaction signal corresponded to genes in the HLA class III region, in particular PRRC2A and GPANK1/C6orf47, which are known to contain variants for non-Hodgkin's lymphoma and early menopause, co-morbidities of celiac disease. Replicable evidence for statistical interaction outside the MHC was not observed. Both within and between European populations, we observed striking consistency of two-locus models and model distribution. Within the UK population, models of CD based on both interactions and additive single-SNP effects increased explained CD variance by approximately 1% over those of single SNPs. The interactions signal detected across the five cohorts indicates the presence of novel associations in the MHC region that cannot be detected using additive models. Our findings have implications for the determination of genetic architecture and, by extension, the use of human genetics for validation of therapeutic targets. PMID:28282431

  2. Variability of the coat protein gene of Citrus psorosis virus in Campania, southern Italy.

    Science.gov (United States)

    Alioto, D; Malfitano, M; Troisi, A; Peluso, A; Martin, S; Milne, R G; Guerri, J; Moreno, P

    2003-11-01

    Variability of the Coat protein (CP) gene of Citrus psorosis virus (CPsV) was assessed serologically, and by sequence analyses of two genomic regions located in the 3' (region C) and 5' (region V) halves of the gene. Analysis of 53 psorosis field sources from Campania, Italy, with 23 monoclonal antibodies revealed nine serogroups and at least ten different epitopes. Sequence analysis of 19 of these sources showed limited nucleotide diversity of the CP gene in the population. Diversity was slightly higher in region V than in region C. Phylogenetic analysis of the V and C regions of the CP showed that the Campania sources of CPsV were clearly separated from the CPsV-4 isolate from Florida. For C region, most of the CPsV sources clustered together, whereas two clusters were observed for region V. The ratio between nonsynonymous and synonymous substitutions for regions C (0.083) and V (0.345) indicated negative selective pressure for amino acid changes, more intense in the C region. No correlation was found between serogroups and specific aminoacid sequences, field location or citrus cultivar.

  3. Characterization of the Highly Variable Immune Response Gene Family, He185/333, in the Sea Urchin, Heliocidaris erythrogramma

    OpenAIRE

    Roth, Mattias O.; Wilkins, Adam G.; Cooke, Georgina M.; Raftos, David A; Nair, Sham V.

    2014-01-01

    This study characterizes the highly variable He185/333 genes, transcripts and proteins in coelomocytes of the sea urchin, Heliocidaris erythrogramma. Originally discovered in the purple sea urchin, Strongylocentrotus purpuratus, the products of this gene family participate in the anti-pathogen defenses of the host animals. Full-length He185/333 genes and transcripts are identified. Complete open reading frames of He185/333 homologues are analyzed as to their element structure, single nucleoti...

  4. Evolution of nonclassical MHC-dependent invariant T cells.

    Science.gov (United States)

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-12-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.

  5. Molecular typing for the MHC with PCR-SSP.

    Science.gov (United States)

    Welsh, K; Bunce, M

    1999-01-01

    Sequence-specific amplification (SSP) is simply a form of polymerase chain reaction (PCR) which involves designing one or both primers so that they will or will not allow amplification (the 3'-mismatch principle). Its origins are probably legion, i.e. many people probably thought of it at the same time. For example, in 1988 a group from Guy's Hospital, London, described a form of SSP for HLA-DR4 detection and in the same year a group from Upjohn described its use at the American Society of Histocompatibility and Immunogenetics (ASHI). Both are published in abstract form (British Society of Rheumatology and ASHI). The 3'-mismatch principle can be used to identify virtually any single nucleotide point mutation (SNP) within one or two PCR-SSP reactions and the first peer-reviewed statements of this came in 1989 (1, 2). Thus, although the use of SSP probably began around 1990, it was 5 years before its popularity erupted, mainly due to the work of Olerup & Zetterquist (3, 4), who defined its potential for solid organ transplantation. It is now the method of choice for high resolution HLA typing in many laboratories. In addition, over a thousand applications for genes outside the MHC are in the literature.

  6. Genetic analysis of completely sequenced disease-associated MHC haplotypes identifies shuffling of segments in recent human history.

    Directory of Open Access Journals (Sweden)

    James A Traherne

    2006-01-01

    Full Text Available The major histocompatibility complex (MHC is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2 and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2, that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs. Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations. These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of

  7. Viral immune evasion: Lessons in MHC class I antigen presentation.

    Science.gov (United States)

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  8. Specific amplification by PCR of rearranged genomic variable regions of immunoglobulin genes from mouse hybridoma cells.

    Science.gov (United States)

    Berdoz, J; Monath, T P; Kraehenbuhl, J P

    1995-04-01

    We have designed a novel strategy for the isolation of the rearranged genomic fragments encoding the L-VH-D-JH and L-V kappa/lambda-J kappa/lambda regions of mouse immunoglobulin genes. This strategy is based on the PCR amplification of genomic DNA from mouse hybridomas using multiple specific primers chosen in the 5'-untranslated region and in the intron downstream of the rearranged JH/J kappa/lambda sequences. Variable regions with intact coding sequences, including full-length leader peptides (L) can be obtained without previous DNA sequencing. Our strategy is based on a genomic template that produces fragments that do not need to be adapted for recombinant antibody expression, thus facilitating the generation of chimeric and isotype-switched immunoglobulins.

  9. Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure

    Science.gov (United States)

    Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.

  10. Mapping and characterization of non-HLA multigene assemblages in the human MHC class I region

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, C.P.; Harris, J.M.; Geraghty, D.E. [Pennsylvania State Univ. College of Medicine, Hershey, PA (United States)] [and others

    1994-07-15

    The major histocompatibility complex (MHC) class I region has been shown to be associated with a variety of immune and nonimmune disorders. In an effort to initiate steps designed to identify the idiopathic hemochromatosis disease gene (HFE), the authors have cloned and mapped two expressed messages using probes from the HLA-H subregion that lie immediately distal to the HLA-A9 breakpoint. Although the cDNA clones identify distinct multifragment families that are dispersed throughout the MHC, the gene sequences from which the two cDNA clones derive map centromeric to the HLA-B locus and are absent from the genomes of higher nonhuman primates. This suggests that a syntenic coding segment arose within a highly polymorphic region (TNF to HLA-B interval) as the result of an insertion event following the emergence of Homo sapiens. An additional syntenic cluster exists within a peak of linkage disequilibrium with the HFE gene and may define coding sequences that underlie the defect in genetic iron overload. These data generally support the concept that the class I region is potentially gene-rich and further highlight the possibility that these new coding sequences may play a role in the development of a variety of HLA-linked diseases. The observations presented suggest that interlocus exchanges have played a structural role in the genesis of the human class I region. 46 refs., 6 refs.

  11. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment

    DEFF Research Database (Denmark)

    Carrasco Pro, S.; Zimic, M.; Nielsen, Morten

    2014-01-01

    of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train...

  12. High-risk human papillomavirus E7 expression reduces cell-surface MHC class I molecules and increases susceptibility to natural killer cells

    DEFF Research Database (Denmark)

    Bottley, G; Watherston, O G; Hiew, Y-L

    2007-01-01

    a role for E7 in tumour immune evasion. We show that knockdown of E7 expression in HPV16- and HPV18-transformed cervical carcinoma cells by RNA interference increased expression of major histocompatibility complex (MHC) class I at the cell surface and reduced susceptibility of these cells to natural...... killer (NK) cells. Tetracycline-regulated induction of HPV16 E7 resulted in reduced expression of cell surface MHC class I molecules and increased NK cell killing. Our results suggest that, for HPV-associated malignancies, reduced MHC class I expression is the result of an active immune evasion strategy......High-risk human papillomavirus (HPV) is a major causative agent of cervical cancer and the E6 and E7 genes encode the major HPV oncoproteins. The E7 protein from high-risk HPV types alters cell cycle progression and represses genes encoding components of the antigen-presentation pathway, suggesting...

  13. Efficacy of Marek's disease vaccines in Mhc heterozygous chickens: Mhc congenic x inbred line F1 matings.

    Science.gov (United States)

    Bacon, L D; Witter, R L

    1995-01-01

    The goal of this study is to demonstrate that Mhc (B) heterozygous chickens differ in efficacy of response to several Marek's disease (MD) vaccines. Four types of B2 heterozygotes, in addition to B2B2 homozygotes, were developed by crossing 15.B congenic males to inbred line 7(1) (B2B2) hens. The five types of F1 chicks were intermingled in isolators and vaccinated with one of four types of MD vaccine before inoculation with the very virulent Md5 strain of MD herpesvirus. The F1 chickens differ in development of protective immunity following MD vaccination from two perspectives. First, chickens of a particular Mhc genotype were protected better by some vaccines than others. Second, individual vaccine preparations protected some Mhc genotypes more effectively. We conclude that some MD vaccines are more appropriate than others for certain B-haplotypes when chickens are heterozygous for the Mhc. The value of using Mhc-congenic x inbred line F1 animals for studies concerning the influence of the Mhc on vaccinal immunity is discussed.

  14. Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth

    Science.gov (United States)

    Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love

    2016-05-01

    According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.

  15. Hypothesis: Targeted Ikkβ deletion upregulates MIF signaling responsiveness and MHC class II expression in mouse hepatocytes

    Directory of Open Access Journals (Sweden)

    Katherine S Koch

    2010-03-01

    Full Text Available Katherine S Koch, Hyam L LeffertHepatocyte Growth Control and Stem Cell Laboratory, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USAAbstract: Macrophage migration inhibitory factor (MIF is causally related to the pathogenesis of chronic liver disease but its hepatocellular mechanisms of action are largely unknown. Scattered reports in the literature hint at functional connections between the expression of MIF and major histocompatibility complex (MHC Class II molecules. Not surprisingly, these relationships have not yet been explored in hepatocytes because MIF and MHC Class II cell surface receptors are commonly expressed by other cell types including various antigen presenting cells of the immune system. On the other hand, mounting evidence suggests that heteromeric MIF receptors share a common molecule with intracellular MHC Class II complexes, viz., CD74, which also serves as the MHC Class II chaperone; and, while it is unclear what cancer-related role(s MHC Class II receptors might play, increasing evidence suggests that MIF and CD74 are also implicated in the biology of hepatocellular carcinoma. These reports are provocative for two reasons: firstly, Ikkβ Δhep mice carrying hepatocyte-targeted deletions of Ikkβ, an IκB kinase complex subunit required for the activation of the transcription factor NF-κB (nuclear factor-κB, have been shown to display heightened susceptibilities to hepatotoxins and chemical hepatocarcinogens; secondly, microarray profiling observations indicate that Ikkβ Δhep hepatocytes constitutively and “ectopically” overexpress genes, particularly CD74, CD44 (a MIF-receptor subunit and MHC Class II I-A/E β and I-A α chains, and gene families that regulate host immune process and immune defense responses. These findings together suggest that Ikkβ Δhep mice might express functional MIF and MHC Class II receptors, leading to increased hepatocellular sensitivity to

  16. Genetic Polymorphism of Aedes albopictus Population Inferred From ND5 Gene Variabilities In Subang Jaya, Malaysia.

    Science.gov (United States)

    Adilah-Amrannudin, Nurul; Hamsidi, Mayamin; Ismail, Nurul-Ain; Ismail, Rodziah; Dom, Nazri Che; Ahmad, Abu Hassan; Mastuki, Mohd Fahmi; Basri, Tengku Shahrul Anuar Tengku Ahmad; Khalid, Adira; Muslim, Mohammad; Daud, Nurul Amalina Ahmad; Camalxaman, Siti Nazrina

    2016-12-01

    This study was performed to establish the genetic variability of Aedes albopictus within Subang Jaya, Selangor, Malaysia, by using the nicotinamide adenine dinucleotide dehydrogenase 5 subunit (ND5) mitochondrial DNA (mtDNA) marker. A total of 90 samples were collected from 9 localities within an area of the Subang Jaya Municipality. Genetic variability was determined through the amplification and sequencing of a fragment of the ND5 gene. Eight distinct mtDNA haplotypes were identified. The evolutionary relationship of the local haplotypes alongside 28 reference strains was used to construct a phylogram, the analysis of which revealed low genetic differentiation in terms of both nucleotide and haplotype diversity. Bayesian method was used to infer the phylogenetic tree, revealing a unique relationship between local isolates. The study corroborates the reliability of ND5 to identify distinct lineages for polymorphism-based studies and supplements the existing body of knowledge regarding its genetic diversity. This in turn could potentially aid existing vector control strategies to help mitigate the risk and spread of the dengue virus.

  17. Genetic variability of Echinococcus granulosus based on the mitochondrial 16S ribosomal RNA gene.

    Science.gov (United States)

    Wang, Ning; Wang, Jiahai; Hu, Dandan; Zhong, Xiuqin; Jiang, Zhongrong; Yang, Aiguo; Deng, Shijin; Guo, Li; Tsering, Dawa; Wang, Shuxian; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2015-06-01

    Echinococcus granulosus is the etiological agent of cystic echinococcosis, a major zoonotic disease of both humans and animals. In this study, we assessed genetic variability and genetic structure of E. granulosus in the Tibet plateau, using the complete mitochondrial 16 S ribosomal RNA gene for the first time. We collected and sequenced 62 isolates of E. granulosus from 3 populations in the Tibet plateau. A BLAST analysis indicated that 61 isolates belonged to E. granulosus sensu stricto (genotypes G1-G3), while one isolate belonged to E. canadensis (genotype G6). We detected 16 haplotypes with a haplotype network revealing a star-like expansion, with the most common haplotype occupying the center of the network. Haplotype diversity and nucleotide diversity were low, while negative values were observed for Tajima's D and Fu's Fs. AMOVA results and Fst values revealed that the three geographic populations were not genetically differentiated. Our results suggest that a population bottleneck or population expansion has occurred in the past, and that this explains the low genetic variability of E. granulosus in the Tibet Plateau.

  18. Oxytocin receptor gene polymorphism modulates the effects of social support on heart rate variability.

    Science.gov (United States)

    Kanthak, Magdalena K; Chen, Frances S; Kumsta, Robert; Hill, LaBarron K; Thayer, Julian F; Heinrichs, Markus

    2016-05-01

    A large body of empirical research has demonstrated stress-buffering effects of social support. However, recent studies suggest that genetic variation of the oxytocin system (specifically, a common single nucleotide polymorphism, rs53576, of the oxytocin receptor gene) modulates the efficacy of social support. The timing and neurobiological basis of this genetic modulation were investigated using a standardized, laboratory-based psychological stress procedure (Trier Social Stress Test for Groups, TSST-G). To index potential stress buffering effects of social support mediated by the oxytocin system, heart rate variability (HRV) was obtained before and during the TSST-G from 40 healthy participants. Results indicate that social support is associated with higher HRV only in G allele carriers. Specifically, social support increased heart rate variability during direct social interaction and only in individuals with at least one copy of the G allele of rs53576. These findings support the idea that the stress-attenuating effects of social support are modulated by genetic variation of the oxytocin system.

  19. Signal oscillation is another reason for variability in microarray-based gene expression quantification.

    Directory of Open Access Journals (Sweden)

    Raghvendra Singh

    Full Text Available Microarrays have been widely used for various biological applications, such as, gene expression profiling, determination of SNPs, and disease profiling. However, quantification and analysis of microarray data have been a challenge. Previously, by taking into account translational and rotational diffusion of the target DNA, we have shown that the rate of hybridization depends on its size. Here, by mathematical modeling of surface diffusion of transcript, we show that the dynamics of hybridization on DNA microarray surface is inherently oscillatory and the amplitude of oscillation depends on fluid velocity. We found that high fluid velocity enhances the signal without affecting the background, and reduces the oscillation, thereby reducing likelihood of inter- and intra-experiment variability. We further show that a strong probe reduces dependence of signal-to-noise ratio on probe strength, decreasing inter-microarray variability. On the other hand, weaker probes are required for SNP detection. Therefore, we recommend high fluid velocity and strong probes for all microarray applications except determination of SNPs. For SNP detection, we recommend high fluid velocity with weak probe on the spot. We also recommend a surface with high adsorption and desorption rates of transcripts.

  20. Dynamics of protein noise can distinguish between alternate sources of gene-expression variability.

    Science.gov (United States)

    Singh, Abhyudai; Razooky, Brandon S; Dar, Roy D; Weinberger, Leor S

    2012-01-01

    Within individual cells, two molecular processes have been implicated as sources of noise in gene expression: (i) Poisson fluctuations in mRNA abundance arising from random birth and death of individual mRNA transcripts or (ii) promoter fluctuations arising from stochastic promoter transitions between different transcriptional states. Steady-state measurements of variance in protein levels are insufficient to discriminate between these two mechanisms, and mRNA single-molecule fluorescence in situ hybridization (smFISH) is challenging when cellular mRNA concentrations are high. Here, we present a perturbation method that discriminates mRNA birth/death fluctuations from promoter fluctuations by measuring transient changes in protein variance and that can operate in the regime of high molecular numbers. Conceptually, the method exploits the fact that transcriptional blockage results in more rapid increases in protein variability when mRNA birth/death fluctuations dominate over promoter fluctuations. We experimentally demonstrate the utility of this perturbation approach in the HIV-1 model system. Our results support promoter fluctuations as the primary noise source in HIV-1 expression. This study illustrates a relatively simple method that complements mRNA smFISH hybridization and can be used with existing GFP-tagged libraries to include or exclude alternate sources of noise in gene expression.

  1. Fruit specific variability in capsaicinoid accumulation and transcription of structural and regulatory genes in Capsicum fruit.

    Science.gov (United States)

    Keyhaninejad, Neda; Curry, Jeanne; Romero, Joslynn; O'Connell, Mary A

    2014-02-01

    Accumulation of capsaicinoids in the placental tissue of ripening chile (Capsicum spp.) fruit follows the coordinated expression of multiple biosynthetic enzymes producing the substrates for capsaicin synthase. Transcription factors are likely agents to regulate expression of these biosynthetic genes. Placental RNAs from habanero fruit (Capsicum chinense) were screened for expression of candidate transcription factors; with two candidate genes identified, both in the ERF family of transcription factors. Characterization of these transcription factors, Erf and Jerf, in nine chile cultivars with distinct capsaicinoid contents demonstrated a correlation of expression with pungency. Amino acid variants were observed in both ERF and JERF from different chile cultivars; none of these changes involved the DNA binding domains. Little to no transcription of Erf was detected in non-pungent Capsium annuum or C. chinense mutants. This correlation was characterized at an individual fruit level in a set of jalapeño (C. annuum) lines again with distinct and variable capsaicinoid contents. Both Erf and Jerf are expressed early in fruit development, 16-20 days post-anthesis, at times prior to the accumulation of capsaicinoids in the placental tissues. These data support the hypothesis that these two members of the complex ERF family participate in regulation of the pungency phenotype in chile.

  2. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes

    Science.gov (United States)

    Sandhu, Devinder; Cornacchione, Monica V.; Ferreira, Jorge F. S.; Suarez, Donald L.

    2017-01-01

    Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index of the genotypes ranged from 0.39 to 1. The most salt-tolerant genotypes SISA14-1 (G03) and AZ-90ST (G10), the top performers for biomass, exhibited the least effect on shoot number and height. SISA14-1 (G03) accumulated low Na and Cl under salinity. Most genotypes exhibited a net reduction in shoot Ca, Mg, P, Fe, and Cu, while Mn and Zn increased under salinity. Salinity reduced foliar area and stomatal conductance; while net photosynthetic rate and transpiration were not affected. Interestingly, salinity increased chlorophyll and antioxidant capacity in most genotypes; however neither parameter correlated well to ST index. Salt-tolerant genotypes showed upregulation of the SOS1, SOS2, SOS3, HKT1, AKT1, NHX1, P5CS1, HSP90.7, HSP81.2, HSP71.1, HSPC025, OTS1, SGF29 and SAL1 genes. Gene expression analyses allowed us to classify genotypes based on their ability to regulate different components of the salt tolerance mechanism. Pyramiding different components of the salt tolerance mechanism may lead to superior salt-tolerant alfalfa genotypes. PMID:28225027

  3. MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus.

    Science.gov (United States)

    Radwan, J; Kawałko, A; Wójcik, J M; Babik, W

    2007-02-01

    MHC genes play a crucial role in pathogen recognition and are the most polymorphic genes in vertebrates. Loss of variation in these genes in bottlenecked species is thought to put their survival at risk. We examined variation at the MHC II DRB3 locus in the European bison, Bison bonasus, a species that has undergone an extreme bottleneck: the current population originated from only 12 founders. We also tested for the association of DRB3 genes with the incidence of posthitis, a disease affecting the reproductive organs of bulls and posing a new threat to the survival of the species. We found very limited MHC diversity, with only four alleles segregating in a sample of 172 individuals from a free-ranging Białowieza population. The alleles were highly divergent and revealed the hallmark of positive selection acting on them in the past, that is, a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen-binding sites, suggesting that selection was driven by pathogens. However, we did not observe departures from Hardy-Weinberg equilibrium, an indicator of strong ongoing selection. Neither have we found a significant association between DRB3 alleles or genotypes and susceptibility to posthitis. Alleles conferring resistance to males may have been lost during the extreme bottleneck the species had undergone.

  4. Multiple and variable NHEJ-like genes are involved in resistance to DNA damage in Streptomyces ambofaciens

    Directory of Open Access Journals (Sweden)

    Grégory Hoff

    2016-11-01

    Full Text Available Non homologous end-joining (NHEJ is a double strand break (DSB repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the core NHEJ gene set constituted of conserved loci and the variable NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC 23877, not only the deletion of core genes but also that of variable genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.

  5. Sequence variability analysis on major histocompatibility complex class Ⅱ DRB alleles in three felines

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The variation of the exon 2 of the major histo-compatibility complex (MHC) class Ⅱ gene DRB locus in three feline species were examined on clouded leopard (Neofelis nebulosa), leopard (Panthera pardus) and Amur tiger (Panthera tigris altaica). A pair of degenerated primers was used to amplify DRB locus covering almost the whole exon 2. Exon 2 encodes the β1 domain which is the most vari-able fragments of the MHC class Ⅱ molecule. Single-strand conformational polymorphism (SSCP) analysis was applied to detect different MHC class Ⅱ DRB haplotypes. Fifteen recombinant plasmids for each individual were screened out, isolated, purified and sequenced finally. Totally eight distinct haplotypes of exon 2 were obtained in four individuals. With-in 237 bp nucleotide sequences from four samples, 30 vari-able positions were found, and 21 putative peptide-binding positions were disclosed in 79 amino acid residues. The ratio of nonsynonymous substitutions (dN) was much higher than that of synonymous substitutions (dS), which indicated that balancing selection probably maintain the variation ofexon 2. MEGA neighbor joining (N J) and PAUP maximum parsimo-ny (MP) methods were used to reconstruct phylogenetic trees among species, respectively. Results displayed a more close relationship between leopard and tiger; however, clouded leopard has a comparatively distant relationship form the other two.

  6. Transcriptional Reprogramming of Mature CD4+ T helper Cells generates distinct MHC class II-restricted Cytotoxic T Lymphocytes

    Science.gov (United States)

    Mucida, Daniel; Husain, Mohammad Mushtaq; Muroi, Sawako; van Wijk, Femke; Shinnakasu, Ryo; Naoe, Yoshinori; Reis, Bernardo Sgarbi; Huang, Yujun; Lambolez, Florence; Docherty, Michael; Attinger, Antoine; Shui, Jr-Wen; Kim, Gisen; Lena, Christopher J.; Sakaguchi, Shinya; Miyamoto, Chizuko; Wang, Peng; Atarashi, Koji; Park, Yunji; Nakayama, Toshinori; Honda, Kenya; Ellmeier, Wilfried; Kronenberg, Mitchell; Taniuchi, Ichiro; Cheroutre, Hilde

    2013-01-01

    TCRαβ thymocytes differentiate to either CD8αβ cytotoxic T lymphocytes or CD4+ T helper cells. This functional dichotomy is controlled by key transcription factors, including the T helper master regulator, ThPOK, which suppresses the cytolytic program in MHC class II-restricted CD4+ thymocytes. ThPOK continues to repress CD8-lineage genes in mature CD4+ T cells, even as they differentiate to T helper effector subsets. Here we show that the T helper-fate was not fixed and that mature antigen-stimulated CD4+ T cells could terminate Thpok expression and reactivate CD8-lineage genes. This unexpected plasticity resulted in the post-thymic termination of the T helper-program and the functional differentiation of distinct MHC class II-restricted CD4+ cytotoxic T lymphocytes. PMID:23334788

  7. Ligation of MHC class I molecules on peripheral blood T lymphocytes induces new phenotypes and functions

    DEFF Research Database (Denmark)

    Bregenholt, S; Röpke, M; Skov, S;

    1996-01-01

    Microgram concentrations of immobilized anti-MHC class I (MHC-I) Ab induced proliferation of resting CD3+ T cells from peripheral blood. In contrast, soluble Ab did not activate T cells. Exposure of T cells to immobilized anti-MHC-I Ab for only 24 h was followed by proliferation and development....... These data clearly demonstrate that ligation of the MHC-I complex on T cells may induce both positive and negative signals. Since the physiologic ligands for MHC-I molecules are TCR and the CD8 molecules, our data may suggest that MHC-I molecules are instrumental in cellular interactions between T cells....

  8. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions.

    Science.gov (United States)

    Thomas, Christoph; Tampé, Robert

    2017-01-01

    The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein-protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that

  9. Proofreading of Peptide—MHC Complexes through Dynamic Multivalent Interactions

    Science.gov (United States)

    Thomas, Christoph; Tampé, Robert

    2017-01-01

    The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that

  10. IFNγ producing CD8+ T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas

    Science.gov (United States)

    Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2015-01-01

    Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8+ T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8+ T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8+ T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8+ T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8+ T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients. PMID:25949872

  11. IFNγ producing CD8(+) T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas.

    Science.gov (United States)

    Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2015-02-01

    Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8(+) T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8(+) T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8(+) T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8(+) T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8(+) T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8(+) T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients.

  12. Understanding TR binding to pMHC complexes: how does a TR scan many pMHC complexes yet preferentially bind to one.

    Directory of Open Access Journals (Sweden)

    Javed Mohammed Khan

    Full Text Available Understanding the basis of the binding of a T cell receptor (TR to the peptide-MHC (pMHC complex is essential due to the vital role it plays in adaptive immune response. We describe the use of computed binding (free energy (BE, TR paratope, pMHC epitope, molecular surface electrostatic potential (MSEP and calculated TR docking angle (θ to analyse 61 TR/pMHC crystallographic structures to comprehend TR/pMHC interaction. In doing so, we have successfully demonstrated a novel/rational approach for θ calculation, obtained a linear correlation between BE and θ without any "codon" or amino acid preference, provided an explanation for TR ability to scan many pMHC ligands yet specifically bind one, proposed a mechanism for pMHC recognition by TR leading to T cell activation and illustrated the importance of the peptide in determining TR specificity, challenging the "germline bias" theory.

  13. An analysis of sequence variability in eight genes putatively involved in drought response in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Giordani, T; Buti, M; Natali, L; Pugliesi, C; Cattonaro, F; Morgante, M; Cavallini, A

    2011-04-01

    With the aim to study variability in genes involved in ecological adaptations, we have analysed sequence polymorphisms of eight unique genes putatively involved in drought response by isolation and analysis of allelic sequences in eight inbred lines of sunflower of different origin and phenotypic characters and showing different drought response in terms of leaf relative water content (RWC). First, gene sequences were amplified by PCR on genomic DNA from a highly inbred line and their products were directly sequenced. In the absence of single nucleotide polymorphisms, the gene was considered as unique. Then, the same PCR reaction was performed on genomic DNAs of eight inbred lines to isolate allelic variants to be compared. The eight selected genes encode a dehydrin, a heat shock protein, a non-specific lipid transfer protein, a z-carotene desaturase, a drought-responsive-element-binding protein, a NAC-domain transcription regulator, an auxin-binding protein, and an ABA responsive-C5 protein. Nucleotide diversity per synonymous and non-synonymous sites was calculated for each gene sequence. The π (a)/π (s) ratio range was usually very low, indicating strong purifying selection, though with locus-to-locus differences. As far as non-coding regions, the intron showed a larger variability than the other regions only in the case of the dehydrin gene. In the other genes tested, in which one or more introns occur, variability in the introns was similar or even lower than in the other regions. On the contrary, 3'-UTRs were usually more variable than the coding regions. Linkage disequilibrium in the selected genes decayed on average within 1,000 bp, with large variation among genes. A pairwise comparison between genetic distances calculated on the eight genes and the difference in RWC showed a significant correlation in the first phases of drought stress. The results are discussed in relation to the function of analysed genes, i.e. involved in gene regulation and signal

  14. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus) from the Gulf of California.

    Science.gov (United States)

    Moreno-Santillán, Diana D; Lacey, Eileen A; Gendron, Diane; Ortega, Jorge

    2016-01-01

    The genes of the Major Histocompatibility Complex (MHC) play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus) that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω) and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.

  15. Genetic Variation at Exon 2 of the MHC Class II DQB Locus in Blue Whale (Balaenoptera musculus from the Gulf of California.

    Directory of Open Access Journals (Sweden)

    Diana D Moreno-Santillán

    Full Text Available The genes of the Major Histocompatibility Complex (MHC play an important role in the vertebrate immune response and are among the most polymorphic genes known in vertebrates. In some marine mammals, MHC genes have been shown to be characterized by low levels of polymorphism compared to terrestrial taxa; this reduction in variation is often explained as a result of lower pathogen pressures in marine habitats. To determine if this same reduction in variation applies to the migratory population of blue whales (Balaenoptera musculus that occurs in the Gulf of California, we genotyped a 172 bp fragment of exon 2 of the MHC Class II DQB locus for 80 members of this population. Twenty-two putatively functional DQB allotypes were identified, all of which were homologous with DQB sequences from other cetacean species. Up to 5 putative alleles per individual were identified, suggesting that gene duplication has occurred at this locus. Rates of non-synonymous to synonymous substitutions (ω and maximum likelihood analyses of models of nucleotide variation provided potential evidence of ongoing positive selection at this exon. Phylogenetic analyses of DQB alleles from B. musculus and 16 other species of cetaceans revealed trans-specific conservation of MHC variants, suggesting that selection has acted on this locus over prolonged periods of time. Collectively our findings reveal that immunogenic variation in blue whales is comparable to that in terrestrial mammals, thereby providing no evidence that marine taxa are subject to reduced pathogen-induced selective pressures.

  16. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    Li Jiang; Ole Lund; Jinquan Tan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITHI database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections.

  17. Selection of Proteins for Human MHC Class Ⅱ Presentation

    Institute of Scientific and Technical Information of China (English)

    LiJiang; OleLund; JinquanTan

    2005-01-01

    We investigated the predicted function of proteins eluded from human MHC class Ⅱ molecules. Peptides that are presented by MHC class Ⅱ were obtained from the SYFPEITH! database and the corresponding proteins were found in the SWISSPROT database. The functions of these proteins were predicted using the protfun server. Our analysis showed that human proteins presented by MHC class Ⅱ molecules are likely to be in the cell envelope, be a receptor or involved in immune responses. Presented proteins from bacteria and virus, on the other hand, are more likely to be involved in regulatory functions, translation, transcription as well as replication. These results can lead to better understanding the autoimmunity and the response to infections. Cellular & Molecular Immunology. 2005; 2(1):49-56.

  18. IFNγ producing CD8+ T cells modified to resist major immune checkpoints induce regression of MHC class I-deficient melanomas

    OpenAIRE

    Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie

    2015-01-01

    Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell s...

  19. The Variability of Growth Hormone Gene Associated with Ultrasound Imaging of Longissimus dorsi Muscle and Perirenal Fat in Rabbits

    Directory of Open Access Journals (Sweden)

    T. I. Amalianingsih

    2014-04-01

    Full Text Available Identification of genes in rabbits correlated to economic traits were intended to improve and develop their genetic quality. The objective of this research was to analyze the variability of growth hormone gene (GH in three rabbit breeds, i.e. Rex, Satin, and Reza (Rex and Satin crosses then was associated with ultrasound imaging of Longissimus dorsi muscle and perirenal fat thickness. Identification of the variability of growth hormone gene was analyzed using PCR RFLP technique from blood samples of 33 mature male rabbits in Indonesian Research Institute for Animal Production (IRIAP. Thickness of Longissimus dorsi muscle and perirenal fat were imaged and measured by using ultrasound unit at 2nd to 3rd lumbar vertebrae in the left body side. PCR product of GH gene fragment (231 base pair /bp was digested with restriction enzyme Bsh1236I. PCR-RFLP patterns were allele T resulted in an undigested fragment of 231 bp; allele C resulted in fragment of 169 bp and 62 bp. The result showed that Bsh1236I GH gene had three genotypes, i.e. CC, TT, and CT. There were signifficant association of Longissimus dorsi muscle thickness between rabbit breed (P<0.05. There was no significant association between GH Bsh1236I gene polymorphism and imaging ultrasound of Longissimus dorsi muscle and perirenal fat thickness. The association of characteristic genotype of GH|Bsh1236I gene with measurement phenotype was not significant, however it had potency as marker assisted selection (MAS.

  20. CD8 T cell memory recall is enhanced by novel direct interactions with CD4 T cells enabled by MHC class II transferred from APCs.

    Directory of Open Access Journals (Sweden)

    Pablo A Romagnoli

    Full Text Available Protection against many intracellular pathogens is provided by CD8 T cells, which are thought to need CD4 T cell help to develop into effective memory CD8 T cells. Because murine CD8 T cells do not transcribe MHC class II (MHC-II genes, several models have proposed antigen presenting cells (APCs as intermediaries required for CD4 T cells to deliver their help to CD8 T cells. Here, we demonstrate the presence of MHC-II molecules on activated murine CD8 T cells in vitro as well as in vivo. These MHC-II molecules are acquired via trogocytosis by CD8 T cells from their activating APCs, particularly CD11c positive dendritic cells (DCs. Transferred MHC-II molecules on activated murine CD8 T cells were functionally competent in stimulating specific indicator CD4 T cells. CD8 T cells that were "helped" in vitro and subsequently allowed to rest in vivo showed enhanced recall responses upon challenge compared to "helpless" CD8 T cells; in contrast, no differences were seen upon immediate challenge. These data indicate that direct CD8:CD4 T cell interactions may significantly contribute to help for CD8 T cells. Furthermore, this mechanism may enable CD8 T cells to communicate with different subsets of interacting CD4 T cells that could modulate immune responses.

  1. [The influence of GPIIIA gene polymorphism on the variability of standard electrocardiogram in patients with acute coronary syndrome].

    Science.gov (United States)

    Komarova, A G; Zotova, T Iu; Miandina, G I; Kasapova, E N; Zotov, A K; Tarasova, E S; Frolov, V A

    2010-01-01

    The authors analyse effect of GPIIIA gene (PI a allele) polymorphism on the frequency of complicated coronary heart disease in patients with dyslipidemia and hypertensive disease. Specific features of ventricular repolarization (T-wave variability) in patients with acute coronary syndrome are described.

  2. Lineage pattern, trans-species polymorphism, and selection pressure among the major lineages of feline MHC-DRB peptide-binding region.

    Science.gov (United States)

    Wei, Kun; Zhang, Zhihe; Wang, Xiaofang; Zhang, Wenping; Xu, Xiao; Shen, Fujun; Yue, Bisong

    2010-05-01

    The long-term evolution of major histocompatibility complex (MHC) involves the birth-and-death process and independent divergence of loci during episodes punctuated by natural selection. Here, we investigated the molecular signatures of natural selection at exon-2 of MHC class II DRB gene which includes a part of the peptide-binding region (PBR) in seven of eight putative extant Felidae lineages. The DRB alleles in felids can be mainly divided into five lineages. Signatures of trans-species polymorphism among major allelic lineages indicate that balancing selection has maintained the MHC polymorphism for a long evolutionary time. Analysis based on maximum likelihood models of codon substitution revealed overall purifying selection acting on the feline DRB. Sites that have undergone positive selection and those that are under divergent selective pressure among lineages were detected and found to fall within the putative PBR. This study increased our understanding of the nature of selective forces acting on DRB during feline radiation.

  3. Recombination events near the immunoglobulin Cmu gene join variable and constant region genes, switch heavy-chain expression, or inactivate the locus.

    Science.gov (United States)

    Cory, S; Webb, E; Gough, J; Adams, J M

    1981-04-28

    Immunoglobulin heavy-chain expression is initiated by recombination between a variable region (VH) gene and one of several joining region (JH) genes located near the mu constant region (Cmu) gene, and the active VH gene can subsequently switch to another CH gene. That the general mechanism for CH switching involves recombination between sites within the JH-Cmu intervening sequence and the 5' flanking region of another CH gene is supported here by Southern blot hybridization analysis of eight IgG- and IgA-secreting plasmacytomas. An alternative model requiring successive VH linkage to similar JH clusters near each CH gene is shown to be very unlikely since the mouse genome appears to contain only one complement of the JH locus and no JH gene was detectable within large cloned sequences flanking germline C gamma 3 and C gamma 1 genes. Thus, VH-JH joining and CH switching are mediated by separate regions of "the joining-switch" or J-S element. In each plasmacytoma examined, the J-S element had undergone recombination within both the JH locus and the switch region and was shown to be linked to the functional CH gene in an IgG3, and IgG1, and three IgA secretors. Both JH joining and CH switching occurred by deletion of DNA. Switch recombination occurred at more than one site within the J-S element in different lines, even for recombination with the same CH gene. Significantly, although heavy-chain expression is restricted to one allele ("allelic exclusion"), all rearranged in each plasmacytoma. Some rearrangements were aberrant, involving, for example, deletion of all JH genes from the allele. Hence, an error-prone recombination machinery may account for allelic exclusion in many plasmacytomas.

  4. The preferential codon usages in variable and constant regions of immunoglobulin genes are quite distinct from each other.

    Science.gov (United States)

    Miyata, T; Hayashida, H; Yasunaga, T; Hasegawa, M

    1979-12-20

    The pattern of codon utilization in the variable and constant regions of immunoglobulin genes are compared. It is shown that, in these regions, codon utilizations are quite distinct from one another: For most degenerate codons, there is a selective bias that prefers C and/or G ending codons to U and/or A ending codons in the constant region compared with the bias in the variable region. This would strongly suggest that, in immunoglobulin genes, the bias in code word usage is determined by other factors than those concerning with the translational mechanism such as tRNA availability and codon-anticodon interaction. A possibility is also suggested that this differance of code word usage between them is due to the existence of secondary structure in the constant region but not in the variable region.

  5. A Novel Therapeutic Vaccine for Metastatic Mammary Carcinoma: Focusing MHC/Peptide Complexes to Lipid Rafts

    Science.gov (United States)

    2006-11-01

    CSF and IL-4. see below c. Measure MHC class I and II transfer by flow cytometry using fluorescent antibodies to both CD11c and either donor MHC...by ELISA . Attempts to transfect and screen 4T1 cells with the model antigens ova and HA were unsuccessful. Because of this, task 6 can not be...tetramethylindodicarbocynanine DTR, diphtheria toxin receptor DTx, diphtheria toxin HEL, hen egg lysozyme pMHC, peptide-MHC Abstract Tumor cells that

  6. MHC class II antigen presentation by B cells in health and disease

    NARCIS (Netherlands)

    Souwer, Yuri

    2009-01-01

    MHC class II antigen presentation by B cells is important to activate CD4+ T cells that stimulate the B cell to produce antibodies. Besides this, disruption of MHC class II antigen presentation could play a role in immune escape by tumor cells. This thesis describes MHC class II antigen presentation

  7. Social pairing of Seychelles warblers under reduced constraints : MHC, neutral heterozygosity, and age

    NARCIS (Netherlands)

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain

  8. NetMHCpan, a method for MHC class I binding prediction beyond humans

    DEFF Research Database (Denmark)

    Hoof, Ilka; Peters, B; Sidney, J;

    2009-01-01

    .0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I...

  9. Protective influences on experimental autoimmune encephalomyelitis by MHC class I and class II alleles

    DEFF Research Database (Denmark)

    Mustafa, M; Vingsbo, C; Olsson, T;

    1994-01-01

    Experimental autoimmune encephalomyelitis (EAE) is influenced by polymorphism of the MHC. We have previously found that Lewis rats with certain MHC haplotypes are susceptible to disease induced with the myelin basic protein (MBP) peptide 63-88, whereas Lewis rats with other MHC haplotypes...

  10. Effects of an MHC-DRB genotype and allele number on the load of gut parasites in the bank vole Myodes glareolus.

    Science.gov (United States)

    Kloch, Agnieszka; Babik, Wiesław; Bajer, Anna; Siński, Edward; Radwan, Jacek

    2010-03-01

    The major histocompatibility complex (MHC) genes code for the proteins responsible for pathogen recognition. The MHC class II DRB gene is multiplicated in the bank vole, Myodes glareolus, with different numbers of loci found in different individuals. Possessing large numbers of loci should increase the probability of pathogen recognition, but according to the optimality hypothesis, there is a cost of possessing too many MHC alleles. Using 454 technology, we determined the individual DRB allelic diversity and related it to the load of intestinal parasites in voles collected from three sites separated by a distance of 12 to 27 km. The analysis of six microsatellite loci revealed significant population structure (F(ST) = 0.07). The sites differed significantly in the prevalence and abundance of nematode species as well. We found two significant associations between MHC alleles and the intensity of the infection with the most prevalent nematode, Aspiculuris tetraptera. One of these associations was population-specific. This result suggests that the directions of selection can differ between populations connected by a low level of gene flow, which may contribute to the maintenance of high DRB allele diversity. In accordance with the optimality hypothesis, individuals with an intermediate number of alleles carried the lowest number of nematode species and had the lowest prevalence of A. tetraptera. However, the intensity of infection with A. tetraptera was linearly and negatively associated with the number of alleles.

  11. Progranulin gene variability and plasma levels in bipolar disorder and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Daniela Galimberti

    Full Text Available Basing on the assumption that frontotemporal lobar degeneration (FTLD, schizophrenia and bipolar disorder (BPD might share common aetiological mechanisms, we analyzed genetic variation in the FTLD risk gene progranulin (GRN in a German population of patients with schizophrenia (n = 271 or BPD (n = 237 as compared with 574 age-, gender- and ethnicity-matched controls. Furthermore, we measured plasma progranulin levels in 26 German BPD patients as well as in 61 Italian BPD patients and 29 matched controls.A significantly decreased allelic frequency of the minor versus the wild-type allele was observed for rs2879096 (23.2 versus 34.2%, P<0.001, OR:0.63, 95%CI:0.49-0.80, rs4792938 (30.7 versus 39.7%, P = 0.005, OR: 0.70, 95%CI: 0.55-0.89 and rs5848 (30.3 versus 36.8, P = 0.007, OR: 0.71, 95%CI: 0.56-0.91. Mean±SEM progranulin plasma levels were significantly decreased in BPD patients, either Germans or Italians, as compared with controls (89.69±3.97 and 116.14±5.80 ng/ml, respectively, versus 180.81±18.39 ng/ml P<0.001 and were not correlated with age.In conclusion, GRN variability decreases the risk to develop BPD and schizophrenia, and progranulin plasma levels are significantly lower in BPD patients than in controls. Nevertheless, a larger replication analysis would be needed to confirm these preliminary results.

  12. TCR/pMHC Optimized Protein crystallization Screen

    Science.gov (United States)

    Bulek, Anna M.; Madura, Florian; Fuller, Anna; Holland, Christopher J.; Schauenburg, Andrea J.A.; Sewell, Andrew K.; Rizkallah, Pierre J.; Cole, David K.

    2012-01-01

    The interaction between the clonotypic αβ T cell receptor (TCR), expressed on the T cell surface, and peptide-major histocompatibility complex (pMHC) molecules, expressed on the target cell surface, governs T cell mediated autoimmunity and immunity against pathogens and cancer. Structural investigations of this interaction have been limited because of the challenges inherent in the production of good quality TCR/pMHC protein crystals. Here, we report the development of an ‘intelligently designed’ crystallization screen that reproducibly generates high quality TCR/pMHC complex crystals suitable for X-ray crystallographic studies, thereby reducing protein consumption. Over the last 2 years, we have implemented this screen to produce 32 T cell related protein structures at high resolution, substantially contributing to the current immune protein database. Protein crystallography, used to study this interaction, has already extended our understanding of the molecular rules that govern T cell immunity. Subsequently, these data may help to guide the intelligent design of T cell based therapies that target human diseases, underlining the importance of developing optimized approaches for crystallizing novel TCR/pMHC complexes. PMID:22705983

  13. Serological Screening for MHC (B)-Polymorphism in Indigenous Chickens

    NARCIS (Netherlands)

    Baelmans, R.; Parmentier, H.K.; Nieuwland, M.G.B.; Dorny, P.; Demey, F.

    2005-01-01

    As part of a series of studies to characterize innate and specific immune responses of indigenous chicken lines, birds from Bolivia and India were screened serologically for MHC class IV (BG) polymorphism by direct haemagglutination using haplotype-specific antisera (B2, B4, B12, B13, B14, B15, B19,

  14. Peptide Immunization Elicits Polyomavirus-Specific MHC Class Ib-Restricted CD8 T Cells in MHC Class Ia Allogeneic Mice

    Science.gov (United States)

    Hofstetter, Amelia R.; Evavold, Brian D.

    2013-01-01

    Abstract Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2b haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2s and H-2g7 strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts. PMID:23374150

  15. 16S-23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads.

    Science.gov (United States)

    Tokajian, Sima; Issa, Nahla; Salloum, Tamara; Ibrahim, Joe; Farah, Maya

    2016-01-01

    Sphingomonads comprise a physiologically versatile group many of which appear to be adapted to oligotrophic environments, but several also had features in their genomes indicative of host associations. In this study, the extent variability of the 16S-23S rDNA intergenic spacer (ITS) sequences of 14 ATCC reference sphingomonad strains and 23 isolates recovered from drinking water was investigated through PCR amplification and sequencing. Sequencing analysis of the 16S-23S rRNA gene ITS region revealed that the ITS sizes for all studied isolates varied between 415 and 849 bp, while their G+C content was 42.2-57.9 mol%. Five distinct ITS types were identified: ITS(none) (without tRNA genes), ITS(Ala(TGC)), ITS(Ala(TGC)+Ile(GAT)), ITS(Ile(GAT)+Ala(TGC)), and ITS (Ile(GAT)+Pseudo). All of the identified tRNA(Ala(TGC)) molecules consisted of 73 bases, and all of the tRNA(Ile(GAT)) molecules consisted of 74 bases. We also detected striking variability in the size of the ITS region among the various examined isolates. Highest variability was detected within the ITS-2. The importance of this study is that this is the first comparison of the 16S-23S rDNA ITS sequence similarities and tRNA genes from sphingomonads. Collectively the data obtained in this study revealed the heterogeneity and extent of variability within the ITS region compared to the 16S rRNA gene within closely related isolates. Sequence and length polymorphisms within the ITS region along with the ITS types (tRNA-containing or lacking and the type of tRNA) and ITS-2 size and sequence similarities allowed us to overcome the limitation we previously encountered in resolving closely related isolates based on the 16S rRNA gene sequence.

  16. MHC polymorphism and disease resistance to vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis

    Directory of Open Access Journals (Sweden)

    Liu Yan-hong

    2011-09-01

    Full Text Available Abstract Background Genes in the major histocompatibility complex (MHC have a critical role in both the innate and adaptive immune responses because of their involvement in presenting foreign peptides to T cells. However, the nature has remained largely unknown. Results We examined the genetic variation in MHC class IIB in half-smooth tongue sole (Cynoglossus semilaevis after challenge with vibrio anguillarum. Two thousand and four hundred fry from 12 half-smooth tongue sole families were challenged with Vibrio anguillarum. To determine any association between alleles and resistance or susceptibility to V. anguillarum, 160 individuals from four high-resistance (HR, 73.27% mortality families were selected for MHC IIB exon2 gene sequence analysis. The MHC IIB exon2 genes of tongue sole displayed a high level of polymorphism and were discovered at least four loci. Meanwhile, the dN/dS [the ratio of non-synonymous (dN substitutions to synonymous (dS substitutions] in the peptide-binding region (PBR was higher than that in the non-peptide-binding region (non-PBR. Eighty-eight alleles were discovered among 160 individuals, and 13 out of 88 alleles were used to analyze the distribution pattern between the resistant and susceptible families. Certain alleles presented in HR and LR with a different frequency, while other alleles were discovered in only the HR or LR families, not both. Five alleles, Cyse-DBB*6501, Cyse-DBB*4002, Cyse-DBB*6102, Cyse-DBB*5601 and Cyse-DBB*2801, were found to be associated with susceptibility to V. anguillarum with a frequency of 1.25%, 1.25%, 1.25%, 1.25% and 2.5% in the HR families, and 35%, 33.75%, 27.5%, 16.25%, 15% in the LR families (p Cyse-DBB*3301, Cyse-DBB*4701, Cyse-DBB*6801 and Cyse-DBB*5901, were found to be associated with resistance to V. anguillarum, with a frequency of 13.75%, 11.25%, 11.25%, 8.75% in the HR families and 1.25%, 1.25%, 1.25%, 1.25% and 1.25% in the LR families (p Conclusions Elucidation of the

  17. Associations between period 3 gene polymorphisms and sleep- /chronotype-related variables in patients with late-life insomnia.

    Science.gov (United States)

    Mansour, Hader A; Wood, Joel; Chowdari, Kodavali V; Tumuluru, Divya; Bamne, Mikhil; Monk, Timothy H; Hall, Martica H; Buysse, Daniel J; Nimgaonkar, Vishwajit L

    2017-02-27

    A variable number tandem repeat polymorphism (VNTR) in the period 3 (PER3) gene has been associated with heritable sleep and circadian variables, including self-rated chronotypes, polysomnographic (PSG) variables, insomnia and circadian sleep-wake disorders. This report describes novel molecular and clinical analyses of PER3 VNTR polymorphisms to better define their functional consequences. As the PER3 VNTR is located in the exonic (protein coding) region of PER3, we initially investigated whether both alleles (variants) are transcribed into messenger RNA in human fibroblasts. The VNTR showed bi-allelic gene expression. We next investigated genetic associations in relation to clinical variables in 274 older adult Caucasian individuals. Independent variables included genotypes for the PER3 VNTR as well as a representative set of single nucleotide polymorphisms (SNPs) that tag common variants at the PER3 locus (linkage disequilibrium (LD) between genetic variants variables analyzed individually in prior analyses, dependent measures included PSG total sleep time and sleep latency, self-rated chronotype, estimated with the Composite Scale (CS), and lifestyle regularity, estimated using the social rhythm metric (SRM). Initially, genetic polymorphisms were individually analyzed in relation to each outcome variable using analysis of variance (ANOVA). Nominally significant associations were further tested using regression analyses that incorporated individual ANOVA-associated DNA variants as potential predictors and each of the selected sleep/circadian variables as outcomes. The covariates included age, gender, body mass index and an index of medical co-morbidity. Significant genetic associations with the VNTR were not detected with the sleep or circadian variables. Nominally significant associations were detected between SNP rs1012477 and CS scores (p = 0.003) and between rs10462021 and SRM (p = 0.047); rs11579477 and average delta power (p = 0.043) (analyses uncorrected

  18. Predicting MHC class I epitopes in large datasets

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2010-02-01

    Full Text Available Abstract Background Experimental screening of large sets of peptides with respect to their MHC binding capabilities is still very demanding due to the large number of possible peptide sequences and the extensive polymorphism of the MHC proteins. Therefore, there is significant interest in the development of computational methods for predicting the binding capability of peptides to MHC molecules, as a first step towards selecting peptides for actual screening. Results We have examined the performance of four diverse MHC Class I prediction methods on comparatively large HLA-A and HLA-B allele peptide binding datasets extracted from the Immune Epitope Database and Analysis resource (IEDB. The chosen methods span a representative cross-section of available methodology for MHC binding predictions. Until the development of IEDB, such an analysis was not possible, as the available peptide sequence datasets were small and spread out over many separate efforts. We tested three datasets which differ in the IC50 cutoff criteria used to select the binders and non-binders. The best performance was achieved when predictions were performed on the dataset consisting only of strong binders (IC50 less than 10 nM and clear non-binders (IC50 greater than 10,000 nM. In addition, robustness of the predictions was only achieved for alleles that were represented with a sufficiently large (greater than 200, balanced set of binders and non-binders. Conclusions All four methods show good to excellent performance on the comprehensive datasets, with the artificial neural networks based method outperforming the other methods. However, all methods show pronounced difficulties in correctly categorizing intermediate binders.

  19. MHC class Jb-restricted cell responses to Listeria monocytogenes infection.

    Science.gov (United States)

    Kerksiek, K M; Pamer, E G

    1999-12-01

    Murine infection with Listeria monocytogenes induces CD8+ T cell responses specific for bacterial peptides that are presented on the infected cell surface by MHC class Ia and MHC class Ib molecules. We have used MHC tetramers to demonstrate that CD8+ T cells restricted by the H2-M3 MHC class Ib molecules constitute a substantial portion of the T cell response to L. monocytogenes infection. The in vivo size and kinetics of MHC class Ib-restricted T cell populations suggests that they play a prominent role in bacterial clearance following primary L. monocytogenes infection.

  20. Measurement of peptide-MHC interactions in solution using the spin column filtration assay

    DEFF Research Database (Denmark)

    Buus, Soren; Lise Lauemøller, S; Stryhn, A

    2001-01-01

    This unit describes how peptide-MHC complexes can be generated in vitro using affinity-purified MHC and synthetic peptide. The unit first describes how the interaction between peptide and MHC interaction can be measured in an accurate, quantitative biochemical assay. This procedure has been...... optimized for efficient separation of free peptide and MHC-bound peptide through a novel principle, termed "gradient centrifugation." The first two support protocols describe how to set up a biochemical fluid-phase binding reaction between peptide and MHC class I and class II, respectively. Also...

  1. Restricted use of fetal VH3 immunoglobulin genes by unselected B cells in the adult. Predominance of 56p1-like VH genes in common variable immunodeficiency.

    Science.gov (United States)

    Braun, J; Berberian, L; King, L; Sanz, I; Govan, H L

    1992-05-01

    The large VH3 family of human immunoglobulin genes is commonly used throughout B cell ontogeny. However, B cells of the fetus and certain autoantibody-producing clones are restricted to a recurrent subset of VH3 genes, and VH3 B cells are deficient in certain immunodeficiency diseases. In this study, we have sequenced a set of rearranged VH3 genes generated by genomic polymerase chain reaction (PCR) from normal adults and those with common variable immunodeficiency (CVI). In both groups, all cones were readily identifiable with the fetal VH3 subset, and were further distinguished by limited DH motifs and exclusive use of JH4. In CVI, the residual population of VH3 B cells were notable for predominant use of 56p1-like VH genes. All clones displayed sequence divergence (including somatic mutation) with evidence of strong selection against complementarity-determining region (CDR) coding change. A survey of other V gene families indicates that human V gene diversity may be restricted in general by germline mechanisms. These findings suggest that the expressed antibody repertoire in the human adult may be much smaller than anticipated, and selected by processes in part distinct from the paradigm of maximal antigen-binding diversity.

  2. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    Science.gov (United States)

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-01-01

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  3. One-pot, mix-and-read peptide-MHC tetramers

    DEFF Research Database (Denmark)

    Leisner, Christian Valdemar Vinge; Loeth, Nina; Lamberth, Kasper

    2008-01-01

    biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY...... molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation......, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA) class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at...

  4. Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty.

    Science.gov (United States)

    Grieb, Melanie; Burkovski, Andre; Sträng, J Eric; Kraus, Johann M; Groß, Alexander; Palm, Günther; Kühl, Michael; Kestler, Hans A

    2015-01-01

    Gene interactions in cells can be represented by gene regulatory networks. A Boolean network models gene interactions according to rules where gene expression is represented by binary values (on / off or {1, 0}). In reality, however, the gene's state can have multiple values due to biological properties. Furthermore, the noisy nature of the experimental design results in uncertainty about a state of the gene. Here we present a new Boolean network paradigm to allow intermediate values on the interval [0, 1]. As in the Boolean network, fixed points or attractors of such a model correspond to biological phenotypes or states. We use our new extension of the Boolean network paradigm to model gene expression in first and second heart field lineages which are cardiac progenitor cell populations involved in early vertebrate heart development. By this we are able to predict additional biological phenotypes that the Boolean model alone is not able to identify without utilizing additional biological knowledge. The additional phenotypes predicted by the model were confirmed by published biological experiments. Furthermore, the new method predicts gene expression propensities for modelled but yet to be analyzed genes.

  5. Variable penetrance of hypogonadism in a sibship with Kallmann syndrome due to a deletion of the KAL gene

    Energy Technology Data Exchange (ETDEWEB)

    Parenti, G.; Rizzolo, M.G.; Ghezzi, M. [Federico II University, Naples (Italy)] [and others

    1995-07-03

    We report on the clinical and molecular characterization of 3 sibs with X-linked ichthyosis and variable expression of Kallmann syndrome. One of the affected brothers had mild hyposmia and showed normal pubertal progression. However, we demonstrated the same partial deletion of the X-linked Kallmann gene, sparing the first exon in the mildly affected patient as well as in one of his severely affected brothers. 13 refs., 1 fig., 1 tab.

  6. Characterization of MHC class II B polymorphism in multiple populations of wild gorillas using non-invasive samples and next-generation sequencing.

    Science.gov (United States)

    Hans, Jörg B; Haubner, Anne; Arandjelovic, Mimi; Bergl, Richard A; Fünfstück, Tillmann; Gray, Maryke; Morgan, David B; Robbins, Martha M; Sanz, Crickette; Vigilant, Linda

    2015-11-01

    Genes encoded by the major histocompatibility complex (MHC) are crucial for the recognition and presentation of antigens to the immune system. In contrast to their closest relatives, chimpanzees and humans, much less is known about variation in gorillas at these loci. This study explored the exon 2 variation of -DPB1, -DQB1, and -DRB genes in 46 gorillas from four populations while simultaneously evaluating the feasibility of using fecal samples for high-throughput MHC genotyping. By applying strict similarity- and frequency-based analysis, we found, despite our modest sample size, a total of 18 alleles that have not been described previously, thereby illustrating the potential for efficient and highly accurate MHC genotyping from non-invasive DNA samples. We emphasize the importance of controlling for multiple potential sources of error when applying this massively parallel short-read sequencing technology to PCR products generated from low concentration DNA extracts. We observed pronounced differences in MHC variation between species, subspecies and populations that are consistent with both the ancient and recent demographic histories experienced by gorillas.

  7. One-pot, mix-and-read peptide-MHC tetramers.

    Directory of Open Access Journals (Sweden)

    Christian Leisner

    Full Text Available BACKGROUND: Cytotoxic T Lymphocytes (CTL recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC class I molecules presented at the surface of Antigen Presenting Cells (APC. Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC tetramers have become important reagents for detection and enumeration of specific CTL's. Conventional peptide-MHC-tetramer production involves recombinant MHC production, in vitro refolding, biotinylation and tetramerization; each step followed by various biochemical steps such as chromatographic purification, concentration etc. Such cumbersome production protocols have limited dissemination and restricted availability of peptide-MHC tetramers effectively precluding large-scale screening strategies involving many different peptide-MHC tetramers. METHODOLOGY/PRINCIPAL FINDINGS: We have developed an approach whereby any given tetramer specificity can be produced within 2 days with very limited effort and hands-on time. The strategy is based on the isolation of correctly oxidized, in vivo biotinylated recombinant MHC I heavy chain (HC. Such biotinylated MHC I HC molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation, and demonstrated specific T cell straining comparable to a commercially available MHC-tetramer. Here, seven peptide-MHC tetramers representing four different human MHC (HLA class I proteins have been generated. The technique should be readily extendable to any binding peptide and pre-biotinylated MHC (at this time we have over 40 different pre-biotinylated HLA proteins. It is simple, robust, and versatile technique with a very broad application

  8. Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Directory of Open Access Journals (Sweden)

    Burt David W

    2010-04-01

    Full Text Available Abstract Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving

  9. Variability in the sxt Gene Clusters of PSP Toxin Producing Aphanizomenon gracile Strains from Norway, Spain, Germany and North America.

    Science.gov (United States)

    Ballot, Andreas; Cerasino, Leonardo; Hostyeva, Vladyslava; Cirés, Samuel

    2016-01-01

    Paralytic shellfish poisoning (PSP) toxin production has been detected worldwide in the cyanobacterial genera Anabaena, Lyngbya, Scytonema, Cuspidothrix and Aphanizomenon. In Europe Aphanizomenon gracile and Cuspidothrix issatschenkoi are the only known producers of PSP toxins and are found in Southwest and Central European freshwater bodies. In this study the PSP toxin producing Aphanizomenon sp. strain NIVA-CYA 851 was isolated from the Norwegian Lake Hillestadvannet. In a polyphasic approach NIVA-CYA 851 was morphologically and phylogenetically classified, and investigated for toxin production. The strain NIVA-CYA 851 was identified as A. gracile using 16S rRNA gene phylogeny and was confirmed to produce neosaxitoxin, saxitoxin and gonyautoxin 5 by LC-MS. The whole sxt gene clusters (circa 27.3 kb) of four A. gracile strains: NIVA-CYA 851 (Norway); NIVA-CYA 655 & NIVA-CYA 676 (Germany); and UAM 529 (Spain), all from latitudes between 40° and 59° North were sequenced and compared with the sxt gene cluster of reference strain A. gracile NH-5 from the USA. All five sxt gene clusters are highly conserved with similarities exceeding 99.4%, but they differ slightly in the number and presence of single nucleotide polymorphisms (SNPs) and insertions/deletions (In/Dels). Altogether 178 variable sites (44 SNPs and 4 In/Dels, comprising 134 nucleotides) were found in the sxt gene clusters of the Norwegian, German and Spanish strains compared to the reference strain. Thirty-nine SNPs were located in 16 of the 27 coding regions. The sxt gene clusters of NIVA-CYA 851, NIVA-CYA 655, NIVA-CYA 676 and UAM 529, were characterized by 15, 16, 19 and 23 SNPs respectively. Only the Norwegian strain NIVA-CYA 851 possessed an insertion of 126 base pairs (bp) in the noncoding area between the sxtA and sxtE genes and a deletion of 6 nucleotides in the sxtN gene. The sxtI gene showed the highest variability and is recommended as the best genetic marker for further phylogenetic studies

  10. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    Science.gov (United States)

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2016-06-27

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms (k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene (XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  11. Major histocompatibility (MH) class II ß gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Rakus, K.L.; Wiegertjes, G.F.; Jurecka, P.M.; Walker, P.D.; Pilarczyk, A.; Irnazarow, I.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) are crucial elements of adaptive immunity. High polymorphism renders the MHC genes highly suitable for studies on association with disease resistance. In common carp (Cyprinus carpio L.), there are two paralogous groups of MH class II B genes, Cyca

  12. Differential utilization of T cell receptor TCRα/TCRδ locus variable region gene segments is mediated by accessibility

    Science.gov (United States)

    Lee, Yu Nee; Alt, Frederick W.; Reyes, Julia; Gleason, Megan; Zarrin, Ali A.; Jung, David

    2009-01-01

    T cell receptor (TCR) variable region exons are assembled from germline V, (D), and J gene segments, each of which is flanked by recombination signal (RS) sequences that are composed of a conserved heptamer, a spacer of 12 or 23 bp, and a characteristic nonamer. V(D)J recombination only occurs between V, D, and J segments flanked by RS sequences that contain, respectively, 12(12-RS)- and 23(23-RS)-bp spacers (12/23 rule). Additional mechanisms can restrict joining of 12/23 RS matched segments beyond the 12/23 rule (B12/23). The TCRδ locus is contained within the TCRα locus; TCRα variable region exons are encoded by TRAV and TRAJ segments and those of TCRδ by TRDV, TRDD, and TRDJ segments. On the basis of the 12/23 rule, both TRAV and TRDV gene segments are compatible to rearrange with TRDD gene segments; however, TRAV-to-TRDD joins are not observed in vivo. Absence of TRAV-to-TRDD rearrangement might be explained either by B12/23 restriction or by differential accessibility of the TRDV versus TRAV gene segments for rearrangement to TRDD. We used in vitro substrate analysis to reveal that both TRAV and TRDV 23-RSs mediate rearrangements to the 5′TRDD1 12-RS, demonstrating that B12/23 restriction does not explain these rearrangement biases. However, targeted replacement of TRDD1 and its 12-RSs with TRAJ38 and its 12-RS showed that TRDV gene segments rearrange with the ectopic TRAJ38, whereas TRAV segments do not. Our results demonstrate that sorting of TRAV and TRDV gene segments is determined by differential locus accessibility during T cell development. PMID:19805067

  13. Differential utilization of T cell receptor TCR alpha/TCR delta locus variable region gene segments is mediated by accessibility.

    Science.gov (United States)

    Lee, Yu Nee; Alt, Frederick W; Reyes, Julia; Gleason, Megan; Zarrin, Ali A; Jung, David

    2009-10-13

    T cell receptor (TCR) variable region exons are assembled from germline V, (D), and J gene segments, each of which is flanked by recombination signal (RS) sequences that are composed of a conserved heptamer, a spacer of 12 or 23 bp, and a characteristic nonamer. V(D)J recombination only occurs between V, D, and J segments flanked by RS sequences that contain, respectively, 12(12-RS)- and 23(23-RS)-bp spacers (12/23 rule). Additional mechanisms can restrict joining of 12/23 RS matched segments beyond the 12/23 rule (B12/23). The TCRdelta locus is contained within the TCRalpha locus; TCRalpha variable region exons are encoded by TRAV and TRAJ segments and those of TCRdelta by TRDV, TRDD, and TRDJ segments. On the basis of the 12/23 rule, both TRAV and TRDV gene segments are compatible to rearrange with TRDD gene segments; however, TRAV-to-TRDD joins are not observed in vivo. Absence of TRAV-to-TRDD rearrangement might be explained either by B12/23 restriction or by differential accessibility of the TRDV versus TRAV gene segments for rearrangement to TRDD. We used in vitro substrate analysis to reveal that both TRAV and TRDV 23-RSs mediate rearrangements to the 5'TRDD1 12-RS, demonstrating that B12/23 restriction does not explain these rearrangement biases. However, targeted replacement of TRDD1 and its 12-RSs with TRAJ38 and its 12-RS showed that TRDV gene segments rearrange with the ectopic TRAJ38, whereas TRAV segments do not. Our results demonstrate that sorting of TRAV and TRDV gene segments is determined by differential locus accessibility during T cell development.

  14. Exogenous antigen targeted to FcgammaRI on myeloid cells is presented in association with MHC class I.

    Science.gov (United States)

    Wallace, P K; Tsang, K Y; Goldstein, J; Correale, P; Jarry, T M; Schlom, J; Guyre, P M; Ernstoff, M S; Fanger, M W

    2001-02-01

    Vaccine therapy is attractive for prostate cancer patients because the tumor is slow growing (allowing time to augment host responses) and occurs in an older population less likely to tolerate more toxic treatments. We have constructed an expression vector based on a monoclonal antibody (mAb) that targets the high affinity receptor for IgG (FcgammaRI, CD64) which is exclusively expressed on myeloid cells including dendritic cells (DC). The heavy chain of mAb H22 CH2 and CH3 domains were removed and replaced with the gene for prostate specific antigen (PSA). Using that vector, we have constructed and purified FPH22.PSA, a fusion protein that targets PSA to FcgammaRI on antigen presenting cells (APC). This fusion protein has an apparent molecular mass of 80-83 kDa, binds to FcgammaRI with high affinity and expresses PSA. We demonstrate that FPH22.PSA targeted PSA was internalized and processed by the human myeloid THP-1 cell line resulting in presentation of MHC class I-associated PSA peptides and lysis of THP-1 by PSA-specific human CTL. Moreover, pretreatment of THP-1 cells with antibodies to block either FcgammaRI or MHC class I, blocked lysis indicating that targeting to FcgammaRI results in presentation of exogenous antigen on MHC class I molecules. These data demonstrate that FPH22.PSA was processed in such a manner by the myeloid cell line to allow for presentation of immunodominant peptides in MHC class I molecules and suggests that uptake of antigen via FcgammaRI results in cross-priming.

  15. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Science.gov (United States)

    2011-01-01

    Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb) that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a) unusual G+C content; b) unusual phylogenetic similarity; and/or c) a small number of the highly iterated palindrome 1 (HIP1) motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT) could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell. PMID:21226929

  16. Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942

    Directory of Open Access Journals (Sweden)

    Peretó Juli

    2011-01-01

    Full Text Available Abstract Background Simpler biological systems should be easier to understand and to engineer towards pre-defined goals. One way to achieve biological simplicity is through genome minimization. Here we looked for genomic islands in the fresh water cyanobacteria Synechococcus elongatus PCC 7942 (genome size 2.7 Mb that could be used as targets for deletion. We also looked for conserved genes that might be essential for cell survival. Results By using a combination of methods we identified 170 xenologs, 136 ORFans and 1401 core genes in the genome of S. elongatus PCC 7942. These represent 6.5%, 5.2% and 53.6% of the annotated genes respectively. We considered that genes in genomic islands could be found if they showed a combination of: a unusual G+C content; b unusual phylogenetic similarity; and/or c a small number of the highly iterated palindrome 1 (HIP1 motif plus an unusual codon usage. The origin of the largest genomic island by horizontal gene transfer (HGT could be corroborated by lack of coverage among metagenomic sequences from a fresh water microbialite. Evidence is also presented that xenologous genes tend to cluster in operons. Interestingly, most genes coding for proteins with a diguanylate cyclase domain are predicted to be xenologs, suggesting a role for horizontal gene transfer in the evolution of Synechococcus sensory systems. Conclusions Our estimates of genomic islands in PCC 7942 are larger than those predicted by other published methods like SIGI-HMM. Our results set a guide to non-essential genes in S. elongatus PCC 7942 indicating a path towards the engineering of a model photoautotrophic bacterial cell.

  17. Complementary DNA sequences encoding the multimammate rat MHC class II DQ α and β chains and cross-species sequence comparison in rodents

    DEFF Research Database (Denmark)

    Goüy de Bellocq, J; Leirs, H

    2009-01-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of c......DNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide...... of Mana-DQB, which is unique among known rodents....

  18. Preparation of Polyclonal Antibodies Against MHC Ⅱα and MHC Ⅱβ of Mangrove Red Snapper (Lutjanus argentimaculatus)%紫红笛鲷MHC Ⅱα和MHC Ⅱβ多克隆抗体的制备

    Institute of Scientific and Technical Information of China (English)

    王天燕; 常虹; 余时琛; 陈璐; 蔡中华

    2013-01-01

    目的:制备紫红笛鲷主要组织相溶性复合体MHC Ⅱα和MHC Ⅱβ多克隆抗体,为蛋白水平研究紫红笛鲷MHCⅡ分子提供理论和实践依据.方法:从已有的紫红笛鲷cDNA文库菌中分别克隆其MHC Ⅱα和MHC Ⅱ3分子的部分开放阅读框,与PQE-30构建表达载体,转入大肠杆菌E.coli M15以IPTG诱导表达;纯化得到的重组蛋白与弗氏佐剂混合乳化后注射新西兰大白兔制备多克隆抗体,再以酶联免疫吸附(ELISA)和免疫印迹(Western blot)检测所获抗血清的效价及效果.结果:①重组表达和纯化得到紫红笛鲷MHC Ⅱα和MHC Ⅱβ部分肽链.②制备的紫红笛鲷MHC Ⅱα和MHC Ⅱβ兔抗血清效价都大于1:25600,达到预期水平.③以获得的紫红笛鲷MHC Hα和MHC Ⅱβ兔抗血清分别与紫红笛鲷头肾巨噬细胞蛋白进行免疫印迹,显示两种抗血清能分别杂合出各自的目标蛋白,说明制备的多克隆抗体实际应用效果良好.结论:紫红笛鲷MHC Ⅱα和MHC Ⅱβ多克隆抗血清制备成功.%Objective: To prepare the polyclonal antibodies against MHC Ⅱα and MHC Ⅱβ of mangrove red snapper. Methods: A partial of MHC Ⅱα and MHC Up chain was cloned from the cDNA library of mangrove red snapper, respectively. The PCR products were inserted into the expression vectors pQE30 and transformed into the E. coli M15. By inducing of IPTG, the recombinant proteins of MHC Ⅱα and MHC Ⅱβ fragments were purified, respectively. The proteins were thoroughly mixed with Freund's adjuvant, and injected rabbit. The antiserums were detected by ELISA and Western blot. Results: ① The recombinant proteins of MHC Ⅱα and MHC Ⅱβ fragments were purified successfully. ② The antiserums against MHC Ⅱα and MHC Ⅱβ both had a high titer above 1:25600. ③The western blot of head kidney macrophages showed the specification of MHC Ⅱα and MHC Ⅱβ antiserums, respectively. Conclusions: The high titer and specific polyclonal

  19. Origin and plasticity of MHC I-associated self peptides.

    Science.gov (United States)

    de Verteuil, Danielle; Granados, Diana Paola; Thibault, Pierre; Perreault, Claude

    2012-07-01

    Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.

  20. MHC I Stabilizing Potential of Computer-Designed Octapeptides

    Directory of Open Access Journals (Sweden)

    Joanna M. Wisniewska

    2010-01-01

    Full Text Available Experimental results are presented for 180 in silico designed octapeptide sequences and their stabilizing effects on the major histocompatibility class I molecule H-2Kb. Peptide sequence design was accomplished by a combination of an ant colony optimization algorithm with artificial neural network classifiers. Experimental tests yielded nine H-2Kb stabilizing and 171 nonstabilizing peptides. 28 among the nonstabilizing octapeptides contain canonical motif residues known to be favorable for MHC I stabilization. For characterization of the area covered by stabilizing and non-stabilizing octapeptides in sequence space, we visualized the distribution of 100,603 octapeptides using a self-organizing map. The experimental results present evidence that the canonical sequence motives of the SYFPEITHI database on their own are insufficient for predicting MHC I protein stabilization.

  1. Assembly of MHC class I molecules within the endoplasmic reticulum.

    Science.gov (United States)

    Zhang, Yinan; Williams, David B

    2006-01-01

    MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.

  2. MHC Class I Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    BarryFlutter; BinGao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex. MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated. Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  3. MHC Class Ⅰ Antigen Presentation- Recently Trimmed and Well Presented

    Institute of Scientific and Technical Information of China (English)

    Barry Flutter; Bin Gao

    2004-01-01

    Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class Ⅰ molecules is the key to the cellular immune response. Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class Ⅰ molecules assisted by several chaperone proteins to form trimeric complex. MHC class Ⅰ complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells. The cells presenting non-self peptides are cleared by CD8 positive T cells. In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class Ⅰ expression must be carefully regulated. Many of the cellular components involved in antigen processing and class Ⅰ presentation are known and their various functions are now becoming clearer. Cellular & Molecular Immunology. 2004;1(1):22-30.

  4. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lamberth, K; Harndahl, M

    2008-01-01

    been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75–80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non...

  5. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling.

    Directory of Open Access Journals (Sweden)

    Dan Lv

    Full Text Available MHC class I (MHC-I molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.

  6. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    Science.gov (United States)

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  7. Unconventional T lymphocytes - recombinant MHC molecules pave the way

    OpenAIRE

    Walter, Steffen

    2005-01-01

    T cells are central orchestrators and effectors of the adaptive immune system. CD8+ T cells that recognize peptide antigens presented on MHC class I molecules are believed to play a central role in fighting viral infections, intracellular pathogens and cancer. The use of recombinant peptide-HLA class I complexes that mimic the natural ligands of human CD8+ T cells should greatly facilitate the manipulation and analysis of such cells, allowing further insight in their biology and opening thera...

  8. MHC associations with clinical and autoantibody manifestations in European SLE.

    Science.gov (United States)

    Morris, D L; Fernando, M M A; Taylor, K E; Chung, S A; Nititham, J; Alarcón-Riquelme, M E; Barcellos, L F; Behrens, T W; Cotsapas, C; Gaffney, P M; Graham, R R; Pons-Estel, B A; Gregersen, P K; Harley, J B; Hauser, S L; Hom, G; Langefeld, C D; Noble, J A; Rioux, J D; Seldin, M F; Vyse, T J; Criswell, L A

    2014-04-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease affecting multiple organ systems and characterized by autoantibody formation to nuclear components. Although genetic variation within the major histocompatibility complex (MHC) is associated with SLE, its role in the development of clinical manifestations and autoantibody production is not well defined. We conducted a meta-analysis of four independent European SLE case collections for associations between SLE sub-phenotypes and MHC single-nucleotide polymorphism genotypes, human leukocyte antigen (HLA) alleles and variant HLA amino acids. Of the 11 American College of Rheumatology criteria and 7 autoantibody sub-phenotypes examined, anti-Ro/SSA and anti-La/SSB antibody subsets exhibited the highest number and most statistically significant associations. HLA-DRB1*03:01 was significantly associated with both sub-phenotypes. We found evidence of associations independent of MHC class II variants in the anti-Ro subset alone. Conditional analyses showed that anti-Ro and anti-La subsets are independently associated with HLA-DRB1*0301, and that the HLA-DRB1*03:01 association with SLE is largely but not completely driven by the association of this allele with these sub-phenotypes. Our results provide strong evidence for a multilevel risk model for HLA-DRB1*03:01 in SLE, where the association with anti-Ro and anti-La antibody-positive SLE is much stronger than SLE without these autoantibodies.

  9. Strong Selection at MHC in Mexicans since Admixture.

    Directory of Open Access Journals (Sweden)

    Quan Zhou

    2016-02-01

    Full Text Available Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans.

  10. MHC Class II haplotypes of Colombian Amerindian tribes.

    Science.gov (United States)

    Yunis, Juan J; Yunis, Edmond J; Yunis, Emilio

    2013-07-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  11. MHC Class II haplotypes of Colombian Amerindian tribes

    Directory of Open Access Journals (Sweden)

    Juan J. Yunis

    2013-01-01

    Full Text Available We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family, Embera, Waunana (Choco linguistic family, Puinave and Nukak (Maku-Puinave linguistic families, Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family, Guahibo and Guayabero (Guayabero Linguistic Family, Curripaco and Piapoco (Arawak linguistic family and Yucpa (Karib linguistic family. for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1. Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  12. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  13. Quality assessment and data handling methods for Affymetrix Gene 1.0 ST arrays with variable RNA integrity

    Directory of Open Access Journals (Sweden)

    Viljoen Katie S

    2013-01-01

    Full Text Available Abstract Background RNA and microarray quality assessment form an integral part of gene expression analysis and, although methods such as the RNA integrity number (RIN algorithm reliably asses RNA integrity, the relevance of RNA integrity in gene expression analysis as well as analysis methods to accommodate the possible effects of degradation requires further investigation. We investigated the relationship between RNA integrity and array quality on the commonly used Affymetrix Gene 1.0 ST array platform using reliable within-array and between-array quality assessment measures. The possibility of a transcript specific bias in the apparent effect of RNA degradation on the measured gene expression signal was evaluated after either excluding quality-flagged arrays or compensation for RNA degradation at different steps in the analysis. Results Using probe-level and inter-array quality metrics to assess 34 Gene 1.0 ST array datasets derived from historical, paired tumour and normal primary colorectal cancer samples, 7 arrays (20.6%, with a mean sample RIN of 3.2 (SD = 0.42, were flagged during array quality assessment while 10 arrays from samples with RINs Conclusions Here, we demonstrate an effective array-quality assessment strategy, which will allow the user to recognize lower quality arrays that can be included in the analysis once appropriate measures are applied to account for known or unknown sources of variation, such as array quality- and batch- effects, by implementing ComBat or Surrogate Variable Analysis. This approach of quality control and analysis will be especially useful for clinical samples with variable and low RNA qualities, with RIN scores ≥ 2.

  14. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training

    Science.gov (United States)

    Aleksandra, Zarębska; Zbigniew, Jastrzębski; Waldemar, Moska; Agata, Leońska-Duniec; Mariusz, Kaczmarczyk; Marek, Sawczuk; Agnieszka, Maciejewska-Skrendo; Piotr, Żmijewski; Krzysztof, Ficek; Grzegorz, Trybek; Ewelina, Lulińska-Kuklik; Semenova, Ekaterina A.; Ahmetov, Ildus I.; Paweł, Cięszczyk

    2016-01-01

    The C allele of the M235T (rs699) polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ) height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ) height, p = 0.001; ACMJ power, p = 0.035). Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training. Key points Aerobic dance provides sufficient training stimuli for the improvement of explosive power. The AGT gene M235T polymorphism is associated with individual variation in the change of power-related phenotypes in response to aerobic dance training. The C allele carriers of the AGT gene M235T polymorphism show greater improvements of jump

  15. The UL41-encoded virion host shutoff (vhs) protein and vhs-independent mechanisms are responsible for down-regulation of MHC class I molecules by bovine herpesvirus 1.

    Science.gov (United States)

    Koppers-Lalic, D; Rijsewijk, F A; Verschuren, S B; van Gaans-Van den Brink, J A; Neisig, A; Ressing, M E; Neefjes, J; Wiertz, E J

    2001-09-01

    The virion host shutoff (vhs) protein of alphaherpesviruses causes a rapid shutoff of host cell protein synthesis. We constructed a bovine herpesvirus 1 (BHV1) deletion mutant in which the putative vhs gene, UL41, has been disrupted. Whereas protein synthesis is inhibited within 3 h after infection with wild-type BHV1, no inhibition was observed after infection with the BHV1(vhs-) deletion mutant. These results indicate that the BHV1 UL41 gene product is both necessary and sufficient for shutoff of host cell protein synthesis at early times post-infection. Using the vhs deletion mutant, we investigated the mechanism of BHV1-induced down-regulation of MHC class I cell surface expression. In contrast to BHV1 wild-type infection, the BHV1(vhs-) mutant allows detection of MHC class I molecules at much later time-points after infection. This illustrates the role the vhs protein plays in MHC class I down-regulation. However, even after infection with BHV1(vhs-), MHC class I cell surface expression is impaired. In BHV1(vhs-)-infected cells, MHC class I molecules are retained within the endoplasmic reticulum (ER). Moreover, the transporter associated with antigen presentation (TAP) is still blocked. Temporal control of viral protein expression using chemical inhibitors shows that viral protein(s) expressed within the early phase of BHV1 infection are responsible for ER retention of MHC class I molecules. These results indicate that multiple mechanisms are responsible for down-regulation of MHC class I molecules in BHV1-infected cells.

  16. Exposing the specific roles of the invariant chain isoforms in shaping the MHC class II peptidome

    Directory of Open Access Journals (Sweden)

    Jean-Simon eFortin

    2013-12-01

    Full Text Available The peptide repertoire (peptidome associated with MHC class II molecules (MHCIIs is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.

  17. Exposing the Specific Roles of the Invariant Chain Isoforms in Shaping the MHC Class II Peptidome.

    Science.gov (United States)

    Fortin, Jean-Simon; Cloutier, Maryse; Thibodeau, Jacques

    2013-12-13

    The peptide repertoire (peptidome) associated with MHC class II molecules (MHCIIs) is influenced by the polymorphic nature of the peptide binding groove but also by cell-intrinsic factors. The invariant chain (Ii) chaperones MHCIIs, affecting their folding and trafficking. Recent discoveries relating to Ii functions have provided insights as to how it edits the MHCII peptidome. In humans, the Ii gene encodes four different isoforms for which structure-function analyses have highlighted common properties but also some non-redundant roles. Another layer of complexity arises from the fact that Ii heterotrimerizes, a characteristic that has the potential to affect the maturation of associated MHCIIs in many different ways, depending on the isoform combinations. Here, we emphasize the peptide editing properties of Ii and discuss the impact of the various isoforms on the MHCII peptidome.

  18. 116S-23S rRNA Gene Intergenic Spacer Region Variability Helps Resolve Closely Related Sphingomonads

    Directory of Open Access Journals (Sweden)

    Sima eTokajian

    2016-02-01

    Full Text Available Sphingomonads comprise a physiologically versatile group many of which appear to be adapted to oligotrophic environments, but several also had features in their genomes indicative of host associations. In this study, the extent variability of the 16S-23S rDNA intergenic spacer (ITS sequences of 14 ATCC reference sphingomonad strains and 23 isolates recovered from drinking water was investigated through PCR amplification and sequencing. Sequencing analysis of the 16S-23S rRNA gene ITS region revealed that the ITS sizes for all studied isolates varied between 415 to 849 bp, while their G+C content was 42.2 mol% to 57.9 mol%. Five distinct ITS types were identified: ITSnone (without tRNA genes, ITSAla(TGC, ITSAla (TGC+Ile (GAT, ITSIle (GAT+Ala (TGC and ITS Ile (GAT+Pseudo. All of the identified tRNAAla (TGC molecules consisted of 73 bases, and all of the tRNAIle (GAT molecules consisted of 74 bases. We also detected striking variability in the size of the ITS region among the various examined isolates. Highest variability was detected within the ITS-2.

  19. New intronic splicing mutation in the LMNA gene causing progressive cardiac conduction defects and variable myopathy.

    Science.gov (United States)

    Rogozhina, Y; Mironovich, S; Shestak, A; Adyan, T; Polyakov, A; Podolyak, D; Bakulina, A; Dzemeshkevich, S; Zaklyazminskaya, E

    2016-12-31

    Most of mutations in the LMNA gene are unique and have been found in only a few unrelated families. The clinical interpretation of new genetic variants, especially beyond the coding area and canonical splice sites, is proving to be difficult and requires advanced investigation. This study included patients with progressive cardiac conduction defects with neuromuscular involvement. The clinical evaluation included medical history and 24-h Holter monitoring. The genetic evaluation included mutation screening in the LMNA gene by the Sanger sequence. Sanger sequencing was followed by RT-PCR of the target fragment of cDNA. In silico modeling was performed with CCBulder and Modeller software. The diagnosis of limb-girdle muscular dystrophy type 1B (LGMD1B) was established. The new intronic variant c.513+45T>G was found in the LMNA gene in the proband and affected daughter. The insertion of 45bp was confirmed in the proband's cDNA. The structural and possible functional effects of the aberrant protein were predicted. Variant c.513+45T>G in the LMNA gene likely translates into the longer lamin A/C proteins with additional 15 amino acids. This variant is thought to be pathogenic. Intronic variants in the LMNA gene located beside canonic splice sites may be responsible for some genotype-negative cases with clinical phenotype of laminopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Adriana L. Twerdochlib

    2012-06-01

    Full Text Available Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp region of the NADH dehydrogenase subunit 4 (ND4 mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556. AMOVA analysis indicated that most of the variation (67% occurred within populations and the F ST value (0.32996 was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550, indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.

  1. Unraveling the effects of selection and demography on immune gene variation in free-ranging plains zebra (Equus quagga populations.

    Directory of Open Access Journals (Sweden)

    Pauline L Kamath

    Full Text Available Demography, migration and natural selection are predominant processes affecting the distribution of genetic variation among natural populations. Many studies use neutral genetic markers to make inferences about population history. However, the investigation of functional coding loci, which directly reflect fitness, is critical to our understanding of species' ecology and evolution. Immune genes, such as those of the Major Histocompatibility Complex (MHC, play an important role in pathogen recognition and provide a potent model system for studying selection. We contrasted diversity patterns of neutral data with MHC loci, ELA-DRA and -DQA, in two southern African plains zebra (Equus quagga populations: Etosha National Park, Namibia, and Kruger National Park, South Africa. Results from neutrality tests, along with observations of elevated diversity and low differentiation across populations, supported previous genus-level evidence for balancing selection at these loci. Despite being low, MHC divergence across populations was significant and may be attributed to drift effects typical of geographically separated populations experiencing little to no gene flow, or alternatively to shifting allele frequency distributions driven by spatially variable and fluctuating pathogen communities. At the DRA, zebra exhibited geographic differentiation concordant with microsatellites and reduced levels of diversity in Etosha due to highly skewed allele frequencies that could not be explained by demography, suggestive of spatially heterogeneous selection and local adaptation. This study highlights the complexity in which selection affects immune gene diversity and warrants the need for further research on the ecological mechanisms shaping patterns of adaptive variation among natural populations.

  2. Molecular cloning and polymorphism of major histocompatibility complex class I genes from grass carp (Ctenophayngodon idellus)

    Institute of Scientific and Technical Information of China (English)

    XIA Chun; XU Guangxian; LIN Changyou; HU Tuanjun; YAN Ruoqian; George F GAO

    2004-01-01

    In order to clarify the molecular sequences,allelic polymorphism and the tertiary structure of grass carp (Ctenophayngodon idellus) MHC class I,and to further study their relationship with disease resistances,grass carp MHC class I gene (Ctid-MHC I) was cloned from a cDNA library and the allelic polymorphism in the population was investigated.The results showed that most of the variations exist in the peptide-binding domain (PBD) and high polymorphism was identified in the Ctid-MHC I allelic genes from 12 individuals.Based on the genetic distance,Ctid-MHC class I can be classified into 6 types (from Ctid-MHC I-UA to Ctid-MHC I-UF) which were subdivided into 9 lineages (from A to I).Comparison of the Ctid-MHC I among animals and humans showed that the key amino acids of the peptide binding sites are conserved.Analysis of the tertiary structure of the PBD between Grass carp and human crystallographic data of HLA-A2,the variation with insertion or deletion was found in eight regions (A~H).The phylogenetic tree of MHC class I indicates the evolution of MHC class I among grass carp,fish,amphibian,birds,higher vertebrates and humans.

  3. [Variability of the HIV-1 nef regulatory gene and its association with different HIV stages].

    Science.gov (United States)

    Ryzhov, K A; Matsevich, G R; Gol'tsov, V A; Lariukova, T A; Zverev, V V

    2004-01-01

    Biological properties of HIV-1 laboratory strains and isolates were studies and compared with research results of the nef gene fragment obtained from their proviral DNA and RNA as well as from RNA and HIV-1 DNA isolated immediately from the blood of patients at early HIV stages. The electrophoresis pattern as well as the results of determination of nucleotide sequences showed that the HVI-1 RNA nef gene of rapid/high laboratory strains of HIV isolates and RNA obtained from patients at late infection stages had a 135-nucleotide inner deletion. The phenomenon can be regarded is proof of that nef gene structure, if violated, causes an enhanced virulence of and an intensified multiplication of the virus (according to laboratory markers) observed at late HIV stages, which triggers, at least in a number of cases, the infection aggravation.

  4. The structural basis of chicken, swine and bovine CD8αα dimers provides insight into the co-evolution with MHC I in endotherm species

    Science.gov (United States)

    Liu, Yanjie; Li, Xin; Qi, Jianxun; Zhang, Nianzhi; Xia, Chun

    2016-01-01

    It is unclear how the pivotal molecules of the adaptive immune system (AIS) maintain their inherent characteristics and relationships with their co-receptors over the course of co-evolution. CD8α, a fundamental but simple AIS component with only one immunoglobulin variable (IgV) domain, is a good example with which to explore this question because it can fold correctly to form homodimers (CD8αα) and interact with peptide-MHC I (p/MHC I) with low sequence identities between different species. Hereby, we resolved the crystal structures of chicken, swine and bovine CD8αα. They are typical homodimers consisting of two symmetric IgV domains with distinct species specificities. The CD8αα structures indicated that a few highly conserved residues are important in CD8 dimerization and in interacting with p/MHC I. The dimerization of CD8αα mainly depends on the pivotal residues on the dimer interface; in particular, four aromatic residues provide many intermolecular forces and contact areas. Three residues on the surface of CD8α connecting cavities that formed most of the hydrogen bonds with p/MHC I were also completely conserved. Our data propose that a few key conserved residues are able to ensure the CD8α own structural characteristics despite the great sequence variation that occurs during evolution in endotherms. PMID:27122108

  5. CD4 and MHC class I down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates

    Science.gov (United States)

    Gray, Lachlan R.; Gabuzda, Dana; Cowley, Daniel; Ellett, Anne; Chiavaroli, Lisa; Wesselingh, Steven L.; Churchill, Melissa J.; Gorry, Paul R.

    2015-01-01

    HIV-1 nef undergoes adaptive evolution in the CNS, reflecting altered requirements for HIV-1 replication in macrophages/microglia and brain-specific immune selection pressures. The role of Nef in HIV-1 neurotropism and the pathogenesis of HIV-associated dementia (HAD) is unclear. In this study, we characterized 82 nef alleles cloned from brain, CSF, spinal cord and blood/lymphoid tissue-derived HIV-1 isolates from 7 subjects with HAD. CNS isolate-derived nef alleles were genetically compartmentalized and had reduced sequence diversity compared to those from lymphoid tissue isolates. Defective nef alleles predominated in a brain-derived isolate from one of the 7 subjects (MACS2-br). The ability of Nef to down-modulate CD4 and MHC class 1 (MHC-1) was generally conserved among nef alleles from both CNS and lymphoid tissues. However, the potency of CD4 and MHC-1 down-modulation was variable, which was associated with sequence alterations known to influence these Nef functions. These results suggest that CD4 and MHC-1 down-modulation are highly conserved functions among nef alleles from CNS- and lymphoid tissue-derived HIV-1 isolates that may contribute to viral replication and escape from immune surveillance in the CNS. PMID:21165790

  6. Cordyceps militaris Enhances MHC-restricted Antigen Presentation via the Induced Expression of MHC Molecules and Production of Cytokines

    Science.gov (United States)

    Shin, Seulmee; Park, Yoonhee; Kim, Seulah; Oh, Hee-Eun; Ko, Young-Wook; Han, Shinha; Lee, Seungjeong; Lee, Chong-Kil; Cho, Kyunghae

    2010-01-01

    Background Cordyceps militarys water extract (CME) has been reported to exert antitumor and immunomodulatory activities in vivo and in vitro. However, the therapeutic mechanism has not yet been elucidated. In this study, we examined the effects of CME on the antigen presenting function of antigen presenting cells (APCs). Methods Dendritic cells (DCs) were cultured in the presence of CME, and then allowed to phagocytose microspheres containing ovalbumin (OVA). After washing and fixing the efficacy of OVA, peptide presentation by DCs were evaluated using CD8 and CD4 T cells. Also, we confirmed the protein levels of proinflammatory cytokines through western blot analysis. Results CME enhanced both MHC class I and class II-restricted presentation of OVA in DCs. In addition, the expression of both MHC class I and II molecules was enhanced, but there was no changes in the phagocytic activity of exogenous OVA. Furthermore, CME induced the protein levels of iNOS, COX-2, proinflammatory cytokines, and nuclear p65 in a concentration-dependent manner, as determined by western blot. Conclusion These results provide an understanding of the mechanism of the immuno-enhancing activity of CME on the induction of MHC-restricted antigen presentation in relation to their actions on APCs. PMID:20844738

  7. Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes

    Science.gov (United States)

    Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index...

  8. Age Dependent Variability in Gene Expression in Fischer 344 Rat Retina.

    Science.gov (United States)

    Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response d...

  9. Variable phenotypes associated with 10q23 microdeletions involving the PTEN and BMPR1A genes.

    NARCIS (Netherlands)

    Menko, F.H.; Kneepkens, C.M.; Leeuw, N. de; Peeters, E.A.; Maldergem, L Van; Kamsteeg, E.J.; Davidson, R.; Rozendaal, L.; Lasham, C.A.; Peeters-Scholte, C.M.; Jansweijer, M.C.E.; Hilhorst-Hofstee, Y.; Gille, J.J.P.; Heins, Y.M.; Nieuwint, A.W.; Sistermans, E.A.

    2008-01-01

    Infantile juvenile polyposis is a rare disease with severe gastrointestinal symptoms and a grave clinical course. Recently, 10q23 microdeletions involving the PTEN and BMPR1A genes were found in four patients with infantile juvenile polyposis. It was hypothesized that a combined and synergistic effe

  10. High variability of TLR4 gene in different ethnic groups in Iran.

    NARCIS (Netherlands)

    Ioana, M.; Ferwerda, B.; Farjadian, S.; Ioana, L.; Ghaderi, A.; Oosting, M.; Joosten, L.A.B.; Meer, J.W.M. van der; Romeo, G.; Luiselli, D.; Dediu, D.; Netea, M.G.

    2012-01-01

    Infectious diseases exert a constant evolutionary pressure on the innate immunity genes. TLR4, an important member of the TLR family, specifically recognizes conserved structures of various infectious pathogens. Two functional TLR4 polymorphisms, Asp299Gly and Thr399Ile, modulate innate host defense

  11. Modelling effects of candidate genes on complex traits as variables over time.

    Science.gov (United States)

    Szyda, J; Komisarek, J; Antkowiak, I

    2014-06-01

    In this study, changes in gene effects for milk production traits were analysed over time. Such changes can be expected by investigating daily milk production yields, which increase during the early phase of lactation and then decrease. Moreover, additive polygenic effects on milk production traits estimated in other studies differed throughout the 305 days of lactation, clearly indicating changes in the genetic determination of milk production throughout this period. Our study focused on particular candidate genes known to affect milk production traits and on the estimation of potential changes in the magnitude of their effects over time. With two independent data sets from Holstein-Friesian and Jersey breeds, we show that the effects of the DGAT1:p.Lys232Ala polymorphism on fat and protein content in milk change during lactation. The other candidate genes considered in this study (leptin receptor, leptin and butyrophilin, subfamily 1, member A1) exhibited effects that vary across time, but these could be observed in only one of the breeds. Longitudinal modelling of SNP effects enables more precise description of the genetic background underlying the variation of complex traits. A gene that changes the magnitude or even the sign of its effect cannot be detected by a time-averaged model. This was particularly evident when analysing the effect of butyrophilin, missed by many previous studies, which considered butyrophilin's effect as constant over time.

  12. Morphometric Analysis of Larval Rostellar Hooks in Taenia multiceps of Sheep in Iran and Its Association with Mitochondrial Gene Variability.

    Directory of Open Access Journals (Sweden)

    Sima Rostami

    2013-12-01

    Full Text Available The purposes of the present study were morphometric characterization of rostellar hooks of Taenia multiceps and to investigate the association of hook length variation and the variability within two mitochondrial genes of sheep isolates of the parasite.Up to 4500 sheep brains were examined for the presence of C. cerebralis. Biometric characters based on the larval rostellar hook size were measured for each individual isolate. Representative mitochondrial CO1 and 12S rRNA gene sequences for each of the isolates were obtained from NCBI GenBank. Morphometric and genetic data were analyzed using cluster analysis, Interclass Correlation Coefficient (ICC and random effects model.One hundred and fourteen sheep (2.5% were found infected with the coenuri. The minimum and maximum number of scoleces per cyst was 40 and 550 respectively. Each scolex contained 22-27 hooks arranged in two rows of large and small hooks. The average total length of the large and small hooks was 158.9 and 112.1 μm, respectively. Using ICC, statistically significant clusters of different hook sizes were identified within the isolates. The length of the large and small hooks was significantly associated with the variability in mitochondrial 12S rRNA gene.Taenia multiceps, is a relatively important zoonotic infection in Iranian sheep with the prevalence rate of 2.5%. Hook length analysis revealed statistically significant difference among individual isolates. Associations between the rostellar hook length and variability in the mitochondrial 12S rRNA was documented.

  13. The AGT Gene M235T Polymorphism and Response of Power-Related Variables to Aerobic Training

    Directory of Open Access Journals (Sweden)

    Zarębska Aleksandra, Jastrzębski Zbigniew, Moska Waldemar, Leońska-Duniec Agata, Kaczmarczyk Mariusz, Sawczuk Marek, Maciejewska-Skrendo Agnieszka, Żmijewski Piotr, Ficek Krzysztof, Trybek Grzegorz, Lulińska-Kuklik Ewelina, Ekaterina A. Semenova, Ildus I. Ahmetov, Cięszczyk Paweł

    2016-12-01

    Full Text Available The C allele of the M235T (rs699 polymorphism of the AGT gene correlates with higher levels of angiotensin II and has been associated with power and strength sport performance. The aim of the study was to investigate whether or not selected power-related variables and their response to a 12-week program of aerobic dance training are modulated by the AGT M235T genotype in healthy participants. Two hundred and one Polish Caucasian women aged 21 ± 1 years met the inclusion criteria and were included in the study. All women completed a 12-week program of low and high impact aerobics. Wingate peak power and total work capacity, 5 m, 10 m, and 30 m running times and jump height and jump power were determined before and after the training programme. All power-related variables improved significantly in response to aerobic dance training. We found a significant association between the M235T polymorphism and jump-based variables (squat jump (SJ height, p = 0.005; SJ power, p = 0.015; countermovement jump height, p = 0.025; average of 10 countermovement jumps with arm swing (ACMJ height, p = 0.001; ACMJ power, p = 0.035. Specifically, greater improvements were observed in the C allele carriers in comparison with TT homozygotes. In conclusion, aerobic dance, one of the most commonly practiced adult fitness activities in the world, provides sufficient training stimuli for augmenting the explosive strength necessary to increase vertical jump performance. The AGT gene M235T polymorphism seems to be not only a candidate gene variant for power/strength related phenotypes, but also a genetic marker for predicting response to training.

  14. Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Rasmussen, Michael; Røder, Gustav Andreas;

    2011-01-01

    timed data needed to determine the rate of dissociation is not simple. Ideally, one should use a homogenous assay involving an inexhaustible and label-free assay principle. Here, we present a homogenous, high-throughput peptide-MHC class I dissociation assay, which by and large fulfill these ideal...... requirements. To avoid labeling of the highly variable peptide, we labeled the invariant ß2m and monitored its dissociation by a scintillation proximity assay, which has no separation steps and allows for real-time quantitative measurement of dissociation. Validating this work-around to create a virtually...

  15. A comparison of intraspecific patterns of DNA sequence variation in mitochondrial DNA, alpha-enolase, and MHC class II B loci in auklets (Charadriiformes: Alcidae).

    Science.gov (United States)

    Walsh, Hollie E; Friesen, Vicki L

    2003-12-01

    Patterns of DNA sequence variation can be used to learn about mechanisms of organismal evolution, but only if mechanisms of sequence evolution are well understood. Although theories of molecular evolution are well developed, few empirical studies have addressed patterns and mechanisms of sequence evolution in nuclear genes within species. In the present study, we compared DNA sequences among three loci with different evolutionary constraints to determine the influences of effective population size, balancing selection, and linkage on intraspecific patterns of sequence variation. Specifically, we assessed the degree and nature of polymorphism in a 307-base pair (bp) fragment of the mitochondrial cytochrome b gene, intron VIII of the gene for alpha-enolase (a presumably neutral nuclear gene), and an approximately 600-bp fragment of an MHC class II B gene, including 155 bp of the hypervariable peptide binding region (a nuclear locus thought to be under balancing selection) for least and crested auklets (Aethia pusilla and A. cristatella; Charadriifo