WorldWideScience

Sample records for gene turtle encodes

  1. Extensive diversification of IgD-, IgY-, and truncated IgY(δFc)-encoding genes in the red-eared turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Li, Lingxiao; Wang, Tao; Sun, Yi; Cheng, Gang; Yang, Hui; Wei, Zhiguo; Wang, Ping; Hu, Xiaoxiang; Ren, Liming; Meng, Qingyong; Zhang, Ran; Guo, Ying; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2012-10-15

    IgY(ΔFc), containing only CH1 and CH2 domains, is expressed in the serum of some birds and reptiles, such as ducks and turtles. The duck IgY(ΔFc) is produced by the same υ gene that expresses the intact IgY form (CH1-4) using different transcriptional termination sites. In this study, we show that intact IgY and IgY(ΔFc) are encoded by distinct genes in the red-eared turtle (Trachemys scripta elegans). At least eight IgY and five IgY(ΔFc) transcripts were found in a single turtle. Together with Southern blotting, our data suggest that multiple genes encoding both IgY forms are present in the turtle genome. Both of the IgY forms were detected in the serum using rabbit polyclonal Abs. In addition, we show that multiple copies of the turtle δ gene are present in the genome and that alternative splicing is extensively involved in the generation of both the secretory and membrane-bound forms of the IgD H chain transcripts. Although a single μ gene was identified, the α gene was not identified in this species.

  2. Sequence of a cDNA encoding turtle high mobility group 1 protein.

    Science.gov (United States)

    Zheng, Jifang; Hu, Bi; Wu, Duansheng

    2005-07-01

    In order to understand sequence information about turtle HMG1 gene, a cDNA encoding HMG1 protein of the Chinese soft-shell turtle (Pelodiscus sinensis) was amplified by RT-PCR from kidney total RNA, and was cloned, sequenced and analyzed. The results revealed that the open reading frame (ORF) of turtle HMG1 cDNA is 606 bp long. The ORF codifies 202 amino acid residues, from which two DNA-binding domains and one polyacidic region are derived. The DNA-binding domains share higher amino acid identity with homologues sequences of chicken (96.5%) and mammalian (74%) than homologues sequence of rainbow trout (67%). The polyacidic region shows 84.6% amino acid homology with the equivalent region of chicken HMG1 cDNA. Turtle HMG1 protein contains 3 Cys residues located at completely conserved positions. Conservation in sequence and structure suggests that the functions of turtle HMG1 cDNA may be highly conserved during evolution. To our knowledge, this is the first report of HMG1 cDNA sequence in any reptilian.

  3. Molecular cloning of the cDNA encoding follicle-stimulating hormone beta subunit of the Chinese soft-shell turtle Pelodiscus sinensis, and its gene expression.

    Science.gov (United States)

    Chien, Jung-Tsun; Shen, San-Tai; Lin, Yao-Sung; Yu, John Yuh-Lin

    2005-04-01

    Follicle-stimulating hormone (FSH) is a member of the pituitary glycoprotein hormone family. These hormones are composed of two dissimilar subunits, alpha and beta. Very little information is available regarding the nucleotide and amino acid sequence of FSHbeta in reptilian species. For better understanding of the phylogenetic diversity and evolution of FSH molecule, we have isolated and sequenced the complementary DNA (cDNA) encoding the Chinese soft-shell turtle (Pelodiscus sinensis, Family of Trionychidae) FSHbeta precursor molecule by reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) methods. The cloned Chinese soft-shell turtle FSHbeta cDNA consists of 602-bp nucleotides, including 34-bp nucleotides of the 5'-untranslated region (UTR), 396-bp of the open reading frame, and 3'-UTR of 206-bp nucleotides. It encodes a 131-amino acid precursor molecule of FSHbeta subunit with a signal peptide of 20 amino acids followed by a mature protein of 111 amino acids. Twelve cysteine residues, forming six disulfide bonds within beta-subunit and two putative asparagine-linked glycosylation sites, are also conserved in the Chinese soft-shell turtle FSHbeta subunit. The deduced amino acid sequence of the Chinese soft-shell turtle FSHbeta shares identities of 97% with Reeves's turtle (Family of Bataguridae), 83-89% with birds, 61-70% with mammals, 63-66% with amphibians and 40-58% with fish. By contrast, when comparing the FSHbeta with the beta-subunits of the Chinese soft-shell turtle luteinizing hormone and thyroid stimulating hormone, the homologies are as low as 38 and 39%, respectively. A phylogenetic tree including reptilian species of FSHbeta subunits, is presented for the first time. Out of various tissues examined, FSHbeta mRNA was only expressed in the pituitary gland and can be up-regulated by gonadotropin-releasing hormone in pituitary tissue culture as estimated by fluorescence real-time PCR analysis.

  4. Using genes as characters and a parsimony analysis to explore the phylogenetic position of turtles.

    Directory of Open Access Journals (Sweden)

    Bin Lu

    Full Text Available The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from different studies are likely a consequence of systematic error in the tree construction process, rather than random error from small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional concatenated data analysis and a "genes as characters" approach. Two datasets were constructed, one with seven species (human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog and 4584 orthologous genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara but only 1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur hypothesis, similar to several recent genomic data based studies using similar methods. When using genes as characters and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model selection. Finally, treating genes as

  5. Using Genes as Characters and a Parsimony Analysis to Explore the Phylogenetic Position of Turtles

    Science.gov (United States)

    Lu, Bin; Yang, Weizhao; Dai, Qiang; Fu, Jinzhong

    2013-01-01

    The phylogenetic position of turtles within the vertebrate tree of life remains controversial. Conflicting conclusions from different studies are likely a consequence of systematic error in the tree construction process, rather than random error from small amounts of data. Using genomic data, we evaluate the phylogenetic position of turtles with both conventional concatenated data analysis and a “genes as characters” approach. Two datasets were constructed, one with seven species (human, opossum, zebra finch, chicken, green anole, Chinese pond turtle, and western clawed frog) and 4584 orthologous genes, and the second with four additional species (soft-shelled turtle, Nile crocodile, royal python, and tuatara) but only 1638 genes. Our concatenated data analysis strongly supported turtle as the sister-group to archosaurs (the archosaur hypothesis), similar to several recent genomic data based studies using similar methods. When using genes as characters and gene trees as character-state trees with equal weighting for each gene, however, our parsimony analysis suggested that turtles are possibly sister-group to diapsids, archosaurs, or lepidosaurs. None of these resolutions were strongly supported by bootstraps. Furthermore, our incongruence analysis clearly demonstrated that there is a large amount of inconsistency among genes and most of the conflict relates to the placement of turtles. We conclude that the uncertain placement of turtles is a reflection of the true state of nature. Concatenated data analysis of large and heterogeneous datasets likely suffers from systematic error and over-estimates of confidence as a consequence of a large number of characters. Using genes as characters offers an alternative for phylogenomic analysis. It has potential to reduce systematic error, such as data heterogeneity and long-branch attraction, and it can also avoid problems associated with computation time and model selection. Finally, treating genes as characters

  6. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    Directory of Open Access Journals (Sweden)

    Meredith Robert W

    2013-01-01

    Full Text Available Abstract Background Secondary edentulism (toothlessness has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales, birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma, providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle], Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch], and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo] for remnants of three enamel matrix protein (EMP genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results

  7. Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution.

    Science.gov (United States)

    Kuraku, Shigehiro; Usuda, Ryo; Kuratani, Shigeru

    2005-01-01

    The turtle shell is an evolutionary novelty in which the developmental pattern of the ribs is radically modified. In contrast to those of other amniotes, turtle ribs grow laterally into the dorsal dermis to form a carapace. The lateral margin of carapacial primordium is called the carapacial ridge (CR), and is thought to play an essential role in carapace patterning. To reveal the developmental mechanisms underlying this structure, we systematically screened for genes expressed specifically in the CR of the Chinese soft-shelled turtle, Pelodiscus sinensis, using microbead-based differential cDNA analysis and real-time reverse transcription-polymerase chain reaction. We identified orthologs of Sp5, cellular retinoic acid-binding protein-I (CRABP-I), adenomatous polyposis coli down-regulated 1 (APCDD1), and lymphoid enhancer-binding factor-1 (LEF-1). Although these genes are conserved throughout the major vertebrate lineages, comparison of their expression patterns with those in chicken and mouse indicated that these genes have acquired de novo expression in the CR in the turtle lineage. In association with the expression of LEF-1, the nuclear localization of beta-catenin protein was detected in the CR ectoderm, suggesting that the canonical Wnt signaling triggers carapace development. These findings indicate that the acquisition of the turtle shell did not involve the creation of novel genes, but was based on the co-option of pre-existing genes.

  8. Comparative Genomics Identifies Epidermal Proteins Associated with the Evolution of the Turtle Shell.

    Science.gov (United States)

    Holthaus, Karin Brigit; Strasser, Bettina; Sipos, Wolfgang; Schmidt, Heiko A; Mlitz, Veronika; Sukseree, Supawadee; Weissenbacher, Anton; Tschachler, Erwin; Alibardi, Lorenzo; Eckhart, Leopold

    2016-03-01

    The evolution of reptiles, birds, and mammals was associated with the origin of unique integumentary structures. Studies on lizards, chicken, and humans have suggested that the evolution of major structural proteins of the outermost, cornified layers of the epidermis was driven by the diversification of a gene cluster called Epidermal Differentiation Complex (EDC). Turtles have evolved unique defense mechanisms that depend on mechanically resilient modifications of the epidermis. To investigate whether the evolution of the integument in these reptiles was associated with specific adaptations of the sequences and expression patterns of EDC-related genes, we utilized newly available genome sequences to determine the epidermal differentiation gene complement of turtles. The EDC of the western painted turtle (Chrysemys picta bellii) comprises more than 100 genes, including at least 48 genes that encode proteins referred to as beta-keratins or corneous beta-proteins. Several EDC proteins have evolved cysteine/proline contents beyond 50% of total amino acid residues. Comparative genomics suggests that distinct subfamilies of EDC genes have been expanded and partly translocated to loci outside of the EDC in turtles. Gene expression analysis in the European pond turtle (Emys orbicularis) showed that EDC genes are differentially expressed in the skin of the various body sites and that a subset of beta-keratin genes within the EDC as well as those located outside of the EDC are expressed predominantly in the shell. Our findings give strong support to the hypothesis that the evolutionary innovation of the turtle shell involved specific molecular adaptations of epidermal differentiation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Hepatocyte growth factor is crucial for development of the carapace in turtles.

    Science.gov (United States)

    Kawashima-Ohya, Yoshie; Narita, Yuichi; Nagashima, Hiroshi; Usuda, Ryo; Kuratani, Shigeru

    2011-01-01

    Turtles are characterized by their shell, composed of a dorsal carapace and a ventral plastron. The carapace first appears as the turtle-specific carapacial ridge (CR) on the lateral aspect of the embryonic flank. Accompanying the acquisition of the shell, unlike in other amniotes, hypaxial muscles in turtle embryos appear as thin threads of fibrous tissue. To understand carapacial evolution from the perspective of muscle development, we compared the development of the muscle plate, the anlage of hypaxial muscles, between the Chinese soft-shelled turtle, Pelodiscus sinensis, and chicken embryos. We found that the ventrolateral lip (VLL) of the thoracic dermomyotome of P. sinensis delaminates early and produces sparse muscle plate in the lateral body wall. Expression patterns of the regulatory genes for myotome differentiation, such as Myf5, myogenin, Pax3, and Pax7 have been conserved among amniotes, including turtles. However, in P. sinensis embryos, the gene hepatocyte growth factor (HGF), encoding a regulatory factor for delamination of the dermomyotomal VLL, was uniquely expressed in sclerotome and the lateral body wall at the interlimb level. Implantation of COS-7 cells expressing a HGF antagonist into the turtle embryo inhibited CR formation. We conclude that the de novo expression of HGF in the turtle mesoderm would have played an innovative role resulting in the acquisition of the turtle-specific body plan. © 2011 Wiley Periodicals, Inc.

  10. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles.

    Science.gov (United States)

    Alfaro-Núñez, Alonzo; Frost Bertelsen, Mads; Bojesen, Anders Miki; Rasmussen, Isabel; Zepeda-Mendoza, Lisandra; Tange Olsen, Morten; Gilbert, Marcus Thomas Pius

    2014-10-25

    CFPHV and its turtle-host across species. Finally, computational analysis of amino acid variants within the Turks and Caicos samples suggest potential functional importance in a substitution for marker UL18 that encodes the major capsid protein gene, which potentially could explain differences in pathogenicity. Nevertheless, such a theory remains to be validated by further research.

  11. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.

    Science.gov (United States)

    Li, Yang I; Kong, Lesheng; Ponting, Chris P; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.

  12. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan.

    Science.gov (United States)

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2013-06-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ∼267.9-248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell.

  13. Extreme expansion of NBS-encoding genes in Rosaceae.

    Science.gov (United States)

    Jia, YanXiao; Yuan, Yang; Zhang, Yanchun; Yang, Sihai; Zhang, Xiaohui

    2015-05-03

    Nucleotide binding site leucine-rich repeats (NBS-LRR) genes encode a large class of disease resistance (R) proteins in plants. Extensive studies have been carried out to identify and investigate NBS-encoding gene families in many important plant species. However, no comprehensive research into NBS-encoding genes in the Rosaceae has been performed. In this study, five whole-genome sequenced Rosaceae species, including apple, pear, peach, mei, and strawberry, were analyzed to investigate the evolutionary pattern of NBS-encoding genes and to compare them to those of three Cucurbitaceae species, cucumber, melon, and watermelon. Considerable differences in the copy number of NBS-encoding genes were observed between Cucurbitaceae and Rosaceae species. In Rosaceae species, a large number and a high proportion of NBS-encoding genes were observed in peach (437, 1.52%), mei (475, 1.51%), strawberry (346, 1.05%) and pear (617, 1.44%), and apple contained a whopping 1303 (2.05%) NBS-encoding genes, which might be the highest number of R-genes in all of these reported diploid plant. However, no more than 100 NBS-encoding genes were identified in Cucurbitaceae. Many more species-specific gene families were classified and detected with the signature of positive selection in Rosaceae species, especially in the apple genome. Taken together, our findings indicate that NBS-encoding genes in Rosaceae, especially in apple, have undergone extreme expansion and rapid adaptive evolution. Useful information was provided for further research on the evolutionary mode of disease resistance genes in Rosaceae crops.

  14. Emydid herpesvirus 1 infection in northern map turtles (Graptemys geographica) and painted turtles (Chrysemys picta).

    Science.gov (United States)

    Ossiboff, Robert J; Newton, Alisa L; Seimon, Tracie A; Moore, Robert P; McAloose, Denise

    2015-05-01

    A captive, juvenile, female northern map turtle (Graptemys geographica) was found dead following a brief period of weakness and nasal discharge. Postmortem examination identified pneumonia with necrosis and numerous epithelial, intranuclear viral inclusion bodies, consistent with herpesviral pneumonia. Similar intranuclear inclusions were also associated with foci of hepatocellular and splenic necrosis. Polymerase chain reaction (PCR) screening of fresh, frozen liver for the herpesviral DNA-dependent DNA polymerase gene yielded an amplicon with 99.2% similarity to recently described emydid herpesvirus 1 (EmyHV-1). Molecular screening of turtles housed in enclosures that shared a common circulation system with the affected map turtle identified 4 asymptomatic, EmyHV-1 PCR-positive painted turtles (Chrysemys picta) and 1 asymptomatic northern map turtle. Herpesvirus transmission between painted and map turtles has been previously suggested, and our report provides the molecular characterization of a herpesvirus in asymptomatic painted turtles that can cause fatal herpesvirus-associated disease in northern map turtles. © 2015 The Author(s).

  15. Msx genes are expressed in the carapacial ridge of turtle shell: a study of the European pond turtle, Emys orbicularis.

    Science.gov (United States)

    Vincent, Christine; Bontoux, Martine; Le Douarin, Nicole M; Pieau, Claude; Monsoro-Burq, Anne-Hélène

    2003-09-01

    The turtle shell forms by extensive ossification of dermis ventrally and dorsally. The carapacial ridge (CR) controls early dorsal shell formation and is thought to play a similar role in shell growth as the apical ectodermal ridge during limb development. However, the molecular mechanisms underlying carapace development are still unknown. Msx genes are involved in the development of limb mesenchyme and of various skeletal structures. In particular, precocious Msx expression is recorded in skeletal precursors that develop close to the ectoderm, such as vertebral spinous processes or skull. Here, we have studied the embryonic expression of Msx genes in the European pond turtle, Emys orbicularis. The overall Msx expression in head, limb, and trunk is similar to what is observed in other vertebrates. We have focused on the CR area and pre-skeletal shell condensations. The CR expresses Msx genes transiently, in a pattern similar to that of fgf10. In the future carapace domain, the dermis located dorsal to the spinal cord expresses Msx genes, as in other vertebrates, but we did not see expansion of this expression in the dermis located more laterally, on top of the dermomyotomes. In the ventral plastron, although the dermal osseous condensations form in the embryonic Msx-positive somatopleura, we did not observe enhanced Msx expression around these elements. These observations may indicate that common mechanisms participate in limb bud and CR early development, but that pre-differentiation steps differ between shell and other skeletal structures and involve other gene activities than that of Msx genes.

  16. The Long Intron 1 of Growth Hormone Gene from Reeves’ Turtle (Chinemys reevesii Correlates with Negatively Regulated GH Expression in Four Cell Lines

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Liu

    2016-04-01

    Full Text Available Turtles grow slowly and have a long lifespan. Ultrastructural studies of the pituitary gland in Reeves’ turtle (Chinemys reevesii have revealed that the species possesses a higher nucleoplasmic ratio and fewer secretory granules in growth hormone (GH cells than other animal species in summer and winter. C. reevesii GH gene was cloned and species-specific similarities and differences were investigated. The full GH gene sequence in C. reevesii contains 8517 base pairs (bp, comprising five exons and four introns. Intron 1 was found to be much longer in C. reevesii than in other species. The coding sequence (CDS of the turtle’s GH gene, with and without the inclusion of intron 1, was transfected into four cell lines, including DF-1 chicken embryo fibroblasts, Chinese hamster ovary (CHO cells, human embryonic kidney 293FT cells, and GH4C1 rat pituitary cells; the turtle growth hormone (tGH gene mRNA and protein expression levels decreased significantly in the intron-containing CDS in these cell lines, compared with that of the corresponding intronless CDS. Thus, the long intron 1 of GH gene in Reeves’ turtle might correlate with downregulated gene expression.

  17. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    Science.gov (United States)

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  18. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    Science.gov (United States)

    Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro; Pignatelli, Miguel; Herrero, Javier; Beal, Kathryn; Nozawa, Masafumi; Li, Qiye; Wang, Juan; Zhang, Hongyan; Yu, Lili; Shigenobu, Shuji; Wang, Junyi; Liu, Jiannan; Flicek, Paul; Searle, Steve; Wang, Jun; Kuratani, Shigeru; Yin, Ye; Aken, Bronwen; Zhang, Guojie; Irie, Naoki

    2014-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these turtles. Embryonic gene expression analysis identified an hourglass-like divergence of turtle and chicken embryogenesis, with maximal conservation around the vertebrate phylotypic period, rather than at later stages that show the amniote-common pattern. Wnt5a expression was found in the growth zone of the dorsal shell, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty. Our results suggest that turtle evolution was accompanied by an unexpectedly conservative vertebrate phylotypic period, followed by turtle-specific repatterning of development to yield the novel structure of the shell. PMID:23624526

  19. Marine turtle mitogenome phylogenetics and evolution

    DEFF Research Database (Denmark)

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Luis Alonso

    2012-01-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae...... distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses...... to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all...

  20. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  1. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles.

    Science.gov (United States)

    Walsh, Catherine J; Leggett, Stephanie R; Carter, Barbara J; Colle, Clarence

    2010-05-10

    Blooms of the toxic dinoflagellate, Karenia brevis, occur almost annually off the Florida coast. These blooms, commonly called "red tides", produce a group of neurotoxins collectively termed brevetoxins. Many species of sealife, including sea turtles, are severely impacted by brevetoxin exposure. Effects of brevetoxins on immune cells were investigated in rescued loggerhead sea turtles, Caretta caretta, as well as through in vitro experiments using peripheral blood leukocytes (PBL) collected from captive sea turtles. In rescued animals, plasma brevetoxin concentrations were measured using a competitive ELISA. Plasma lysozyme activity was measured using a turbidity assay. Lysozyme activity correlated positively with plasma brevetoxin concentrations. Differential expression of genes affected by brevetoxin exposure was determined using two separate suppression subtractive hybridization experiments. In one experiment, genes from PBL collected from sea turtles rescued from red tide toxin exposure were compared to genes from PBL collected from healthy captive loggerhead sea turtles. In the second experiment, PBL from healthy captive loggerhead sea turtles were exposed to brevetoxin (500 ng PbTx-2/ml) in vitro for 18 h and compared to unexposed PBL. Results from the subtraction hybridization experiment conducted with red tide rescued sea turtle PBL indicated that genes involved in oxidative stress or xenobiotic metabolism were up-regulated. Using quantitative real-time PCR, a greater than 2-fold increase in superoxide dismutase and thioredoxin and greater than 10-fold increase in expression of thiopurine S-methyltransferase were observed. Results from the in vitro subtraction hybridization experiment indicated that genes coding for cytochrome c oxidases were the major up-regulated genes. Using quantitative real-time PCR, a greater than 8-fold increase in expression of beta-tubulin and greater than 3-fold increase in expression of ubiquinol were observed. Brevetoxin

  2. The draft genomes of soft–shell turtle and green sea turtle yield insights into the development and evolution of the turtle–specific body plan

    OpenAIRE

    Wang, Zhuo; Pascual-Anaya, Juan; Zadissa, Amonida; Li, Wenqi; Niimura, Yoshihito; Huang, Zhiyong; Li, Chunyi; White, Simon; Xiong, Zhiqiang; Fang, Dongming; Wang, Bo; Ming, Yao; Chen, Yan; Zheng, Yuan; Kuraku, Shigehiro

    2013-01-01

    The unique anatomical features of turtles have raised unanswered questions about the origin of their unique body plan. We generated and analyzed draft genomes of the soft-shell turtle (Pelodiscus sinensis) and the green sea turtle (Chelonia mydas); our results indicated the close relationship of the turtles to the bird-crocodilian lineage, from which they split ~267.9–248.3 million years ago (Upper Permian to Triassic). We also found extensive expansion of olfactory receptor genes in these tu...

  3. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  4. Rapid duplication and loss of nbs-encoding genes in eurosids II

    International Nuclear Information System (INIS)

    Si, W.; Gu, L.; Yang, S.; Zhang, X.; Memon, S.

    2015-01-01

    Eurosids basically evolved from the core Eudicots Rosids. The Rosids consist of two large assemblages, Eurosids I (Fabids) and Eurosids II (Malvids), which belong to the largest group of Angiosperms, comprising of >40,000 and ∼ 15,000 species, respectively. Although the evolutionary patterns of the largest class of disease resistance genes consisting of a nucleotide binding site (NBS) and leucine-rich repeats (LRRs) have been studied in many species, systemic research of NBS-encoding genes has not been performed in different orders of Eurosids II. Here, five Eurosids II species, Gossypium raimondii, Theobroma cacao, Carica papaya, Citrus clementina, and Arabidopsis thaliana, distributing in three orders, were used to gain insights into the evolutionary patterns of the NBS-encoding genes. Our data showed that frequent copy number variations of NBS-encoding genes were found among these species. Phylogenetic tree analysis and the numbers of the NBS-encoding genes in the common ancestor of these species showed that species-specific NBS clades, including multi-copy and single copy numbers are dominant among these genes. However, not a single clade was found with only five copies, which come from all of the five species, respectively, suggesting rapid turn-over with birth and death of the NBS-encoding genes among Eurosids II species. In addition, a strong positive correlation was observed between the Toll/interleukin receptor (TIR)) type NBS-encoding genes and species-specific genes, indicating rapid gene loss and duplication. Whereas, non- TIR type NBS-encoding genes in these five species showed two distinct evolutionary patterns. (author)

  5. Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing, and unusual expression pattern.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Usuda, Ryo; Kuraku, Shigehiro; Nagashima, Hiroshi; Kuratani, Shigeru

    2006-01-01

    Turtles characteristically possess a bony shell and show an extensive reduction of the trunk muscles. To gain insight into the evolution of this animal group, we focused on the underlying mechanism of the turtle-specific developmental pattern associated with the somitic mesoderm, which differentiates into both skeleton and muscle. We isolated Myf-5, a member of the myogenic-transcription-factor-encoding gene family expressed in the myotome, from the Chinese soft-shelled turtle Pelodiscus sinensis. We detected a deletion of 12 sequential nucleotides in P. sinensis Myf-5 (PsMyf-5), which appears to be shared by the turtle group. The expression pattern of PsMyf-5 in P. sinensis embryos differed from those of its orthologs in other amniotes, especially in the hypaxial region of the flank. We also identified two isoforms of the PsMyf-5 protein, a normal form similar to those of other vertebrates, and a short form produced by a translational frameshift. The short PsMyf-5 showed weaker myogenic activity in cultured cells than that of the normal protein, although the tissue distribution of the two isoforms overlapped perfectly. We propose that the unusual features of PsMyf-5 may be related to the unique developmental patterns of this animal group, and constitute one of the molecular bases for their evolutionary origin.

  6. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.

    Science.gov (United States)

    Böhmer, Christine; Werneburg, Ingmar

    2017-08-21

    The unparalleled ability of turtle neck retraction is possible in three different modes, which characterize stem turtles, living side-necked (Pleurodira), and hidden-necked (Cryptodira) turtles, respectively. Despite the conservatism in vertebral count among turtles, there is significant functional and morphological regionalization in the cervical vertebral column. Since Hox genes play a fundamental role in determining the differentiation in vertebra morphology and based on our reconstruction of evolutionary genetics in deep time, we hypothesize genetic differences among the turtle groups and between turtles and other land vertebrates. We correlated anterior Hox gene expression and the quantifiable shape of the vertebrae to investigate the morphological modularity in the neck across living and extinct turtles. This permitted the reconstruction of the hypothetical ancestral Hox code pattern of the whole turtle clade. The scenario of the evolution of axial patterning in turtles indicates shifts in the spatial expression of HoxA-5 in relation to the reduction of cervical ribs in modern turtles and of HoxB-5 linked with a lower morphological differentiation between the anterior cervical vertebrae observed in cryptodirans. By comparison with the mammalian pattern, we illustrate how the fixed count of eight cervical vertebrae in turtles resulted from the emergence of the unique turtle shell.

  7. Hox code in embryos of Chinese soft-shelled turtle Pelodiscus sinensis correlates with the evolutionary innovation in the turtle.

    Science.gov (United States)

    Ohya, Yoshie Kawashima; Kuraku, Shigehiro; Kuratani, Shigeru

    2005-03-15

    Turtles have the most unusual body plan of the amniotes, with a dorsal shell consisting of modified ribs. Because this morphological change in the ribs can be described as an axial-level specific alteration, the evolution of the turtle carapace should depend on changes in the Hox code. To identify turtle-specific changes in developmental patterns, we cloned several Hox genes from the Chinese soft-shelled turtle, Pelodiscus sinensis, examined their expression patterns during embryogenesis, and compared them with those of chicken and mouse embryos. We detected possibly turtle-specific derived traits in Hoxc-6 expression, which is restricted to the paraxial part of the embryo; in the expression of Hoxa-5 and Hoxb-5, the transcripts of which were detected only at the cervical level; and in Hoxc-8 and Hoxa-7 expression, which is shifted anteriorly relative to that of the other two amniote groups. From the known functions of the Hox orthologs in model animals, these P. sinensis-specific changes apparently correlate with specializations in the turtle-specific body plan. Copyright 2005 Wiley-Liss, Inc.

  8. A Mycoplasma species of Emydidae turtles in the northeastern USA.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Niederriter, Holly; Zarate, Brian; Newton, Alisa L; McAloose, Denise

    2015-04-01

    Mycoplasma infections can cause significant morbidity and mortality in captive and wild chelonians. As part of a health assessment of endangered bog turtles (Glyptemys muhlenbergii) in the northeastern US, choanal and cloacal swabs from these and other sympatric species, including spotted turtles (Clemmys guttata), eastern box turtles (Terrapene carolina carolina), wood turtles (Glyptemys insculpta), and common snapping turtles (Chelydra serpentina) from 10 sampling sites in the states (US) of Delaware, New Jersey, and Pennsylvania, were tested by PCR for Mycoplasma. Of 108 turtles tested, 63 (58.3%) were PCR positive for Mycoplasma including 58 of 83 bog turtles (70%), three of three (100%) eastern box turtles, and two of 11 (18%) spotted turtles; all snapping turtles (n = 7) and wood turtles (n = 4) were negative. Sequence analysis of portions of the 16S-23S intergenic spacer region and the 16S ribosomal RNA gene revealed a single, unclassified species of Mycoplasma that has been previously reported in eastern box turtles, ornate box turtles (Terrapene ornata ornata), western pond turtles (Emys marmorata), and red-eared sliders (Trachemys scripta elegans). We document a high incidence of Mycoplasma, in the absence of clinical disease, in wild emydid turtles. These findings, along with wide distribution of the identified Mycoplasma sp. across a broad geographic region, suggest this bacterium is likely a commensal inhabitant of bog turtles, and possibly other species of emydid turtles, in the northeastern US.

  9. Potential enterotoxicity and antimicrobial resistance pattern of Aeromonas species isolated from pet turtles and their environment.

    Science.gov (United States)

    Wimalasena, S H M P; Shin, Gee-Wook; Hossain, Sabrina; Heo, Gang-Joon

    2017-05-23

    To investigate the potential enterotoxicity and antimicrobial resistance of aeromonads from pet turtles as a risk for human infection, one hundred and two Aeromonas spp. were isolated from the feces, skin and rearing environments of pet turtles and identified by biochemical and gyrB sequence analyses. Aeromonas enteropelogenes was the predominant species among the isolates (52.9%) followed by A. hydrophila (32.4%), A. dharkensis (5.9%), A. veronii (4.9%) and A. caviae (3.9%). Their potential enterotoxicities were evaluated by PCR assays for detecting genes encoding cytotoxic enterotoxin (act) and two cytotonic enterotoxins (alt and ast). 75.8% of A. hydrophila isolates exhibited the act + /alt + /ast + genotype, whereas 94.4% of A. enteropelogenes isolates were determined to be act - /alt - /ast - . In an antimicrobial susceptibility test, most isolates were susceptible to all tested antibiotics except amoxicillin, ampicillin, cephalothin, chloramphenicol and tetracycline. Non-susceptible isolates to penicillins (ampicillin and amoxicillin) and fluoroquinolones (ciprofloxacin and norfloxacin) were frequently observed among the A. enteropelogenes isolates. Few isolates were resistant to imipenem, amikacin, ceftriaxone and cefotaxime. Collectively, these results suggest that pet turtles may pose a public health risk of infection by enterotoxigenic and antimicrobial resistant Aeromonas strains.

  10. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  11. Atrazine alters expression of reproductive and stress genes in the developing hypothalamus of the snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Russart, Kathryn L G; Rhen, Turk

    2016-07-29

    Atrazine is an herbicide used to control broadleaf grasses and a suspected endocrine disrupting chemical. Snapping turtles lay eggs between late May and early June, which could lead to atrazine exposure via field runoff. Our goal was to determine whether a single exposure to 2ppb or 40ppb atrazine during embryogenesis could induce short- and long-term changes in gene expression within the hypothalamus of snapping turtles. We treated eggs with atrazine following sex determination and measured gene expression within the hypothalamus. We selected genes a priori for their role in the hypothalamus-pituitary-gonad or the hypothalamus-pituitary-adrenal axes of the endocrine system. We did not identify any changes in gene expression 24-h after treatment. However, at hatching AR, Kiss1R, and POMC expression was upregulated in both sexes, while expression of CYP19A1 and PDYN was increased in females. Six months after hatching, CYP19A1 and PRLH expression was increased in animals treated with 2ppb atrazine. Our study shows persistent changes in hypothalamic gene expression due to low-dose embryonic exposure to the herbicide atrazine with significant effects in both the HPG and HPA axes. Effects reported here appear to be conserved among vertebrates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    Science.gov (United States)

    Joyce, Walter G; Gauthier, Jacques A

    2004-01-07

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserved, Proganochelys quenstedti and Palaeochersis talampayensis, to discover that these earliest turtle outgroups were decidedly terrestrial. We then plot the observed distribution of aquatic versus terrestrial habits among living turtles onto their hypothesized phylogenies. Both lines of evidence indicate that although the common ancestor of all living turtles was aquatic, the earliest turtles clearly lived in a terrestrial environment. Additional anatomical and sedimentological evidence favours these conclusions. The freshwater aquatic habitat preference so characteristic of living turtles cannot, consequently, be taken as positive evidence for an aquatic origin of turtles, but must rather be considered a convergence relative to other aquatic amniotes, including the marine sauropterygians to which turtles have sometimes been allied.

  13. Palaeoecology of triassic stem turtles sheds new light on turtle origins.

    OpenAIRE

    Joyce, Walter G.; Gauthier, Jacques A.

    2004-01-01

    Competing hypotheses of early turtle evolution contrast sharply in implying very different ecological settings-aquatic versus terrestrial-for the origin of turtles. We investigate the palaeoecology of extinct turtles by first demonstrating that the forelimbs of extant turtles faithfully reflect habitat preferences, with short-handed turtles being terrestrial and long-handed turtles being aquatic. We apply this metric to the two successive outgroups to all living turtles with forelimbs preserv...

  14. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  15. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  16. Adaptive Patterns of Mitogenome Evolution Are Associated with the Loss of Shell Scutes in Turtles.

    Science.gov (United States)

    Escalona, Tibisay; Weadick, Cameron J; Antunes, Agostinho

    2017-10-01

    The mitochondrial genome encodes several protein components of the oxidative phosphorylation (OXPHOS) pathway and is critical for aerobic respiration. These proteins have evolved adaptively in many taxa, but linking molecular-level patterns with higher-level attributes (e.g., morphology, physiology) remains a challenge. Turtles are a promising system for exploring mitochondrial genome evolution as different species face distinct respiratory challenges and employ multiple strategies for ensuring efficient respiration. One prominent adaptation to a highly aquatic lifestyle in turtles is the secondary loss of keratenized shell scutes (i.e., soft-shells), which is associated with enhanced swimming ability and, in some species, cutaneous respiration. We used codon models to examine patterns of selection on mitochondrial protein-coding genes along the three turtle lineages that independently evolved soft-shells. We found strong evidence for positive selection along the branches leading to the pig-nosed turtle (Carettochelys insculpta) and the softshells clade (Trionychidae), but only weak evidence for the leatherback (Dermochelys coriacea) branch. Positively selected sites were found to be particularly prevalent in OXPHOS Complex I proteins, especially subunit ND2, along both positively selected lineages, consistent with convergent adaptive evolution. Structural analysis showed that many of the identified sites are within key regions or near residues involved in proton transport, indicating that positive selection may have precipitated substantial changes in mitochondrial function. Overall, our study provides evidence that physiological challenges associated with adaptation to a highly aquatic lifestyle have shaped the evolution of the turtle mitochondrial genome in a lineage-specific manner. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  18. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  19. Structural determination and histochemical localization of ghrelin in the red-eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Kaiya, Hiroyuki; Sakata, Ichiro; Kojima, Masayasu; Hosoda, Hiroshi; Sakai, Takafumi; Kangawa, Kenji

    2004-08-01

    We purified ghrelin peptide and determined the cDNA sequence encoding the precursor protein from the stomach of the red-eared slider turtle, Trachemys scripta elegans. The Trachemys ghrelin is comprised of 25-amino acids and has the sequence GSSFLSPEYQNTQQRKDPKKHTKLN. The third serine residue was modified by n-octanoic (C8:0), decanoic (C10:0) or unsaturated decanoic acid (C10:1). The carboxyl-terminal end of the peptide was not amidated, as seen in the ghrelins of other land vertebrates. Quantitative real-time PCR analysis revealed high levels of gene expression in the stomach and moderate levels in the large intestine and pancreas. Histochemical studies of turtle stomach revealed that ghrelin-immunopositive (ghrelin-ip) cells, which were small and round, were observed in the mucosal layer of the stomach but not in the myenteric plexus, and ghrelin-mRNA-expressing (ghrelin-ex) cells detected by in situ hybridization were scattered in a similar distribution as ghrelin-ip cells. These results indicate that ghrelin is present in reptiles.

  20. Bioinformatics analysis and detection of gelatinase encoded gene in Lysinibacillussphaericus

    Science.gov (United States)

    Repin, Rul Aisyah Mat; Mutalib, Sahilah Abdul; Shahimi, Safiyyah; Khalid, Rozida Mohd.; Ayob, Mohd. Khan; Bakar, Mohd. Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, we performed bioinformatics analysis toward genome sequence of Lysinibacillussphaericus (L. sphaericus) to determine gene encoded for gelatinase. L. sphaericus was isolated from soil and gelatinase species-specific bacterium to porcine and bovine gelatin. This bacterium offers the possibility of enzymes production which is specific to both species of meat, respectively. The main focus of this research is to identify the gelatinase encoded gene within the bacteria of L. Sphaericus using bioinformatics analysis of partially sequence genome. From the research study, three candidate gene were identified which was, gelatinase candidate gene 1 (P1), NODE_71_length_93919_cov_158.931839_21 which containing 1563 base pair (bp) in size with 520 amino acids sequence; Secondly, gelatinase candidate gene 2 (P2), NODE_23_length_52851_cov_190.061386_17 which containing 1776 bp in size with 591 amino acids sequence; and Thirdly, gelatinase candidate gene 3 (P3), NODE_106_length_32943_cov_169.147919_8 containing 1701 bp in size with 566 amino acids sequence. Three pairs of oligonucleotide primers were designed and namely as, F1, R1, F2, R2, F3 and R3 were targeted short sequences of cDNA by PCR. The amplicons were reliably results in 1563 bp in size for candidate gene P1 and 1701 bp in size for candidate gene P3. Therefore, the results of bioinformatics analysis of L. Sphaericus resulting in gene encoded gelatinase were identified.

  1. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  2. Body plan of turtles: an anatomical, developmental and evolutionary perspective.

    Science.gov (United States)

    Nagashima, Hiroshi; Kuraku, Shigehiro; Uchida, Katsuhisa; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2012-03-01

    The evolution of the turtle shell has long been one of the central debates in comparative anatomy. The turtle shell consists of dorsal and ventral parts: the carapace and plastron, respectively. The basic structure of the carapace comprises vertebrae and ribs. The pectoral girdle of turtles sits inside the carapace or the rib cage, in striking contrast to the body plan of other tetrapods. Due to this topological change in the arrangement of skeletal elements, the carapace has been regarded as an example of evolutionary novelty that violates the ancestral body plan of tetrapods. Comparing the spatial relationships of anatomical structures in the embryos of turtles and other amniotes, we have shown that the topology of the musculoskeletal system is largely conserved even in turtles. The positional changes seen in the ribs and pectoral girdle can be ascribed to turtle-specific folding of the lateral body wall in the late developmental stages. Whereas the ribs of other amniotes grow from the axial domain to the lateral body wall, turtle ribs remain arrested axially. Marginal growth of the axial domain in turtle embryos brings the morphologically short ribs in to cover the scapula dorsocaudally. This concentric growth appears to be induced by the margin of the carapace, which involves an ancestral gene expression cascade in a new location. These comparative developmental data allow us to hypothesize the gradual evolution of turtles, which is consistent with the recent finding of a transitional fossil animal, Odontochelys, which did not have the carapace but already possessed the plastron.

  3. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    RNAi-based silencing of genes encoding the vacuolar- ATPase subunits a and c in pink bollworm (Pectinophora gossypiella). Ahmed M. A. Mohammed. Abstract. RNA interference is a post- transcriptional gene regulation mechanism that is predominantly found in eukaryotic organisms. RNAi demonstrated a successful ...

  4. Adrenal-kidney-gonad complex measurements may not predict gonad-specific changes in gene expression patterns during temperature-dependent sex determination in the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Ramsey, Mary; Crews, David

    2007-08-01

    Many turtles, including the red-eared slider turtle (Trachemys scripta elegans) have temperature-dependent sex determination in which gonadal sex is determined by temperature during the middle third of incubation. The gonad develops as part of a heterogenous tissue complex that comprises the developing adrenal, kidney, and gonad (AKG complex). Owing to the difficulty in excising the gonad from the adjacent tissues, the AKG complex is often used as tissue source in assays examining gene expression in the developing gonad. However, the gonad is a relatively small component of the AKG, and gene expression in the adrenal-kidney (AK) compartment may interfere with the detection of gonad-specific changes in gene expression, particularly during early key phases of gonadal development and sex determination. In this study, we examine transcript levels as measured by quantitative real-time polymerase chain reaction for five genes important in slider turtle sex determination and differentiation (AR, ERalpha, ERbeta, aromatase, and Sf1) in AKG, AK, and isolated gonad tissues. In all cases, gonad-specific gene expression patterns were attenuated in AKG versus gonad tissue. All five genes were expressed in the AK in addition to the gonad at all stages/temperatures. Inclusion of the AK compartment masked important changes in gonadal gene expression. In addition, AK and gonad expression patterns are not additive, and gonadal gene expression cannot be predicted from intact AKG measurements. (c) 2007 Wiley-Liss, Inc.

  5. Molecular phylogenetics of emydine turtles: taxonomic revision and the evolution of shell kinesis.

    Science.gov (United States)

    Feldman, Chris R; Parham, James Ford

    2002-03-01

    The 10 extant species of emydine turtles represent an array of morphological and ecological forms recognizable and popular among scientists and hobbyists. Nevertheless, the phylogenetic affinities of most emydines remain contentious. Here, we examine the evolutionary relationships of emydine turtles using 2092 bp of DNA encoding the mitochondrial genes cyt b, ND4, and adjacent tRNAs. These data contain 339 parsimony informative characters that we use to erect hypotheses of relationships for the Emydinae. Both maximum parsimony and maximum likelihood methods yield a monophyletic Emydinae in which all but three nodes are well resolved. Emys orbicularis, Emydoidea blandingii, and Clemmys marmorata form a monophyletic clade, as do the species of Terrapene. Clemmys muhlenbergii and Clemmys insculpta form a third monophyletic group that may be sister to all other emydines. Clemmys guttata is problematic and probably related to Terrapene. Based on this phylogeny, and previous molecular work on the group, we suggest the following taxonomic revisions: (1) Clemmys should be restricted to a single species, C. guttata. (2) Calemys should be resurrected for C. muhlenbergii and C. insculpta. (3) Emys should be expanded to include three species: E. orbicularis, E. blandingii, and E. marmorata. Furthermore, our analyses show that neither kinetic-shelled nor akinetic-shelled emydines form monophyletic groups. Therefore, shell kinesis was either independently gained in Emys and Terrapene or secondarily lost in E. marmorata and C. guttata. Parsimony, paleontological evidence, and the multiple origins of shell kinesis in related turtle lineages (especially geoemydines) support the independent origin of plastral kinesis.

  6. Genetic variants in nuclear-encoded mitochondrial genes influence AIDS progression.

    Directory of Open Access Journals (Sweden)

    Sher L Hendrickson

    2010-09-01

    Full Text Available The human mitochondrial genome includes only 13 coding genes while nuclear-encoded genes account for 99% of proteins responsible for mitochondrial morphology, redox regulation, and energetics. Mitochondrial pathogenesis occurs in HIV patients and genetically, mitochondrial DNA haplogroups with presumed functional differences have been associated with differential AIDS progression.Here we explore whether single nucleotide polymorphisms (SNPs within 904 of the estimated 1,500 genes that specify nuclear-encoded mitochondrial proteins (NEMPs influence AIDS progression among HIV-1 infected patients. We examined NEMPs for association with the rate of AIDS progression using genotypes generated by an Affymetrix 6.0 genotyping array of 1,455 European American patients from five US AIDS cohorts. Successfully genotyped SNPs gave 50% or better haplotype coverage for 679 of known NEMP genes. With a Bonferroni adjustment for the number of genes and tests examined, multiple SNPs within two NEMP genes showed significant association with AIDS progression: acyl-CoA synthetase medium-chain family member 4 (ACSM4 on chromosome 12 and peroxisomal D3,D2-enoyl-CoA isomerase (PECI on chromosome 6.Our previous studies on mitochondrial DNA showed that European haplogroups with presumed functional differences were associated with AIDS progression and HAART mediated adverse events. The modest influences of nuclear-encoded mitochondrial genes found in the current study add support to the idea that mitochondrial function plays a role in AIDS pathogenesis.

  7. Isolation, Characterization, and Antibiotic Resistance of Vibrio spp. in Sea Turtles from Northwestern Mexico

    Directory of Open Access Journals (Sweden)

    Alan A. eZavala-Norzagaray

    2015-06-01

    Full Text Available The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL, Baja California Sur, Mexico (Pacific Ocean and the lagoon system of Navachiste (LSN and Marine Area of Influence (MAI, Guasave, Sinaloa (Gulf of California. A total of 34 black turtles (Chelonia mydas agassizii were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%, V. parahaemolyticus in 17/64 (26% and V. cholerae in 6/64 (9%,. However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI. Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4% belonged to the pathogenic strains (tdh+ gene and 2/17 (11.7% had the pandemic clone (tdh+ and toxRS/new+. Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66% the accessory cholera enterotoxin gene (ace was identified but without virulence gene zot, ctxA and ctxB. Of the isolated V. parahaemolyticus, V. cholerae and V. alginolyticus strains, 94.1%, 33.4% and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin, respectively. In conclusion, the presence of several potential (toxigenic human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  8. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico.

    Science.gov (United States)

    Zavala-Norzagaray, Alan A; Aguirre, A Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C P; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh (+) gene) and 2/17 (11.7%) had the pandemic clone (tdh (+) and toxRS/new (+)). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico.

  9. Isolation, characterization, and antibiotic resistance of Vibrio spp. in sea turtles from Northwestern Mexico

    Science.gov (United States)

    Zavala-Norzagaray, Alan A.; Aguirre, A. Alonso; Velazquez-Roman, Jorge; Flores-Villaseñor, Héctor; León-Sicairos, Nidia; Ley-Quiñonez, C. P.; Hernández-Díaz, Lucio De Jesús; Canizalez-Roman, Adrian

    2015-01-01

    The aerobic oral and cloacal bacterial microbiota and their antimicrobial resistance were characterized for 64 apparently healthy sea turtles captured at their foraging grounds in Ojo de Liebre Lagoon (OLL), Baja California Sur (BCS), Mexico (Pacific Ocean) and the lagoon system of Navachiste (LSN) and Marine Area of Influence (MAI), Guasave, Sinaloa (Gulf of California). A total of 34 black turtles (Chelonia mydas agassizii) were sampled in OLL and eight black turtles and 22 olive ridley turtles (Lepidochelys olivacea) were sampled in LSN and MAI, respectively from January to December 2012. We isolated 13 different species of Gram-negative bacteria. The most frequently isolated bacteria were Vibrio alginolyticus in 39/64 (60%), V. parahaemolyticus in 17/64 (26%), and V. cholerae in 6/64 (9%). However, V. cholerae was isolated only from turtles captured from the Gulf of California (MAI). Among V. parahaemolyticus strains, six O serogroups and eight serovars were identified from which 5/17 (29.4%) belonged to the pathogenic strains (tdh+ gene) and 2/17 (11.7%) had the pandemic clone (tdh+ and toxRS/new+). Among V. cholerae strains, all were identified as non-O1/non-O139, and in 4/6 (66%) the accessory cholera enterotoxin gene (ace) was identified but without virulence gene zot, ctxA, and ctxB. Of the isolated V. parahaemolyticus, V. cholerae, and V. alginolyticus strains, 94.1, 33.4, and 100% demonstrated resistance to at least one commonly prescribed antibiotic (primarily to ampicillin), respectively. In conclusion, the presence of several potential (toxigenic) human pathogens in sea turtles may represent transmission of environmental microbes and a high-risk of food-borne disease. Therefore, based on the fact that it is illegal and unhealthy, we discourage the consumption of sea turtle meat or eggs in northwestern Mexico. PMID:26161078

  10. An operating principle of the turtle utricle to detect wide dynamic range.

    Science.gov (United States)

    Nam, Jong-Hoon

    2018-03-01

    The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from 2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  12. A highly divergent gene cluster in honey bees encodes a novel silk family.

    Science.gov (United States)

    Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S

    2006-11-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.

  13. Expression of putative sex-determining genes during the thermosensitive period of gonad development in the snapping turtle, Chelydra serpentina.

    Science.gov (United States)

    Rhen, T; Metzger, K; Schroeder, A; Woodward, R

    2007-01-01

    Modes of sex determination are quite variable in vertebrates. The developmental decision to form a testis or an ovary can be influenced by one gene, several genes, environmental variables, or a combination of these factors. Nevertheless, certain morphogenetic aspects of sex determination appear to be conserved in amniotes. Here we clone fragments of nine candidate sex-determining genes from the snapping turtle Chelydra serpentina, a species with temperature-dependent sex determination (TSD). We then analyze expression of these genes during the thermosensitive period of gonad development. In particular, we compare gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature. Expression of Dmrt1 and Sox9 mRNA increased gradually at the male-producing temperature, but was suppressed at the female-producing temperature. This finding suggests that Dmrt1 and Sox9 play a role in testis development. In contrast, expression of aromatase, androgen receptor (Ar), and Foxl2 mRNA was constant at the male-producing temperature, but increased several-fold in embryos at the female-producing temperature. Aromatase, Ar, and Foxl2 may therefore play a role in ovary development. In addition, there was a small temperature effect on ER alpha expression with lower mRNA levels found in embryos at the female-producing temperature. Finally, Dax1, Fgf9, and SF-1 were not differentially expressed during the sex-determining period, suggesting these genes are not involved in sex determination in the snapping turtle. Comparison of gene expression profiles among amniotes indicates that Dmrt1 and Sox9 are part of a core testis-determining pathway and that Ar, aromatase, ER alpha, and Foxl2 are part of a core ovary-determining pathway. 2007 S. Karger AG, Basel

  14. A Novel Candidate Gene for Temperature-Dependent Sex Determination in the Common Snapping Turtle

    Science.gov (United States)

    Schroeder, Anthony L.; Metzger, Kelsey J.; Miller, Alexandra; Rhen, Turk

    2016-01-01

    Temperature-dependent sex determination (TSD) was described nearly 50 years ago. Researchers have since identified many genes that display differential expression at male- vs. female-producing temperatures. Yet, it is unclear whether these genes (1) are involved in sex determination per se, (2) are downstream effectors involved in differentiation of ovaries and testes, or (3) are thermo-sensitive but unrelated to gonad development. Here we present multiple lines of evidence linking CIRBP to sex determination in the snapping turtle, Chelydra serpentina. We demonstrate significant associations between a single nucleotide polymorphism (SNP) (c63A > C) in CIRBP, transcript levels in embryonic gonads during specification of gonad fate, and sex in hatchlings from a thermal regime that produces mixed sex ratios. The A allele was induced in embryos exposed to a female-producing temperature, while expression of the C allele did not differ between female- and male-producing temperatures. In accord with this pattern of temperature-dependent, allele-specific expression, AA homozygotes were more likely to develop ovaries than AC heterozygotes, which, in turn, were more likely to develop ovaries than CC homozygotes. Multiple regression using SNPs in CIRBP and adjacent loci suggests that c63A > C may be the causal variant or closely linked to it. Differences in CIRBP allele frequencies among turtles from northern Minnesota, southern Minnesota, and Texas reflect small and large-scale latitudinal differences in TSD pattern. Finally, analysis of CIRBP protein localization reveals that CIRBP is in a position to mediate temperature effects on the developing gonads. Together, these studies strongly suggest that CIRBP is involved in determining the fate of the bipotential gonad. PMID:26936926

  15. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  16. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment was seque......The rpiA gene encoding ribose phosphate isomerase A was cloned from phage 1A2(471) of the Kohara gene library. Subcloning, restriction, and complementation analyses revealed an 1,800-bp SspI-generated DNA fragment that contained the entire control and coding sequences. This DNA fragment...

  17. Effects of deoxycycline induced lentivirus encoding FasL gene on ...

    African Journals Online (AJOL)

    Abstract. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in deletion of activated T cells. This study aimed to construct the lentivirus encoding FasL gene induced by deoxycycline and evaluate its effects on apoptosis of Th1 cells. A plasmid expression system encoding FasL was constructed through utilizing the ...

  18. Homeotic shift at the dawn of the turtle evolution

    Science.gov (United States)

    Szczygielski, Tomasz

    2017-04-01

    All derived turtles are characterized by one of the strongest reductions of the dorsal elements among Amniota, and have only 10 dorsal and eight cervical vertebrae. I demonstrate that the Late Triassic turtles, which represent successive stages of the shell evolution, indicate that the shift of the boundary between the cervical and dorsal sections of the vertebral column occurred over the course of several million years after the formation of complete carapace. The more generalized reptilian formula of at most seven cervicals and at least 11 dorsals is thus plesiomorphic for Testudinata. The morphological modifications associated with an anterior homeotic change of the first dorsal vertebra towards the last cervical vertebra in the Triassic turtles are partially recapitulated by the reduction of the first dorsal vertebra in crown-group Testudines, and they resemble the morphologies observed under laboratory conditions resulting from the experimental changes of Hox gene expression patterns. This homeotic shift hypothesis is supported by the, unique to turtles, restriction of Hox-5 expression domains, somitic precursors of scapula, and brachial plexus branches to the cervical region, by the number of the marginal scute-forming placodes, which was larger in the Triassic than in modern turtles, and by phylogenetic analyses.

  19. A circuit for detection of interaural time differences in the nucleus laminaris of turtles.

    Science.gov (United States)

    Willis, Katie L; Carr, Catherine E

    2017-11-15

    The physiological hearing range of turtles is approximately 50-1000 Hz, as determined by cochlear microphonics ( Wever and Vernon, 1956a). These low frequencies can constrain sound localization, particularly in red-eared slider turtles, which are freshwater turtles with small heads and isolated middle ears. To determine if these turtles were sensitive to interaural time differences (ITDs), we investigated the connections and physiology of their auditory brainstem nuclei. Tract tracing experiments showed that cranial nerve VIII bifurcated to terminate in the first-order nucleus magnocellularis (NM) and nucleus angularis (NA), and the NM projected bilaterally to the nucleus laminaris (NL). As the NL received inputs from each side, we developed an isolated head preparation to examine responses to binaural auditory stimulation. Magnocellularis and laminaris units responded to frequencies from 100 to 600 Hz, and phase-locked reliably to the auditory stimulus. Responses from the NL were binaural, and sensitive to ITD. Measures of characteristic delay revealed best ITDs around ±200 μs, and NL neurons typically had characteristic phases close to 0, consistent with binaural excitation. Thus, turtles encode ITDs within their physiological range, and their auditory brainstem nuclei have similar connections and cell types to other reptiles. © 2017. Published by The Company of Biologists Ltd.

  20. Expression-based clustering of CAZyme-encoding genes of Aspergillus niger.

    Science.gov (United States)

    Gruben, Birgit S; Mäkelä, Miia R; Kowalczyk, Joanna E; Zhou, Miaomiao; Benoit-Gelber, Isabelle; De Vries, Ronald P

    2017-11-23

    The Aspergillus niger genome contains a large repertoire of genes encoding carbohydrate active enzymes (CAZymes) that are targeted to plant polysaccharide degradation enabling A. niger to grow on a wide range of plant biomass substrates. Which genes need to be activated in certain environmental conditions depends on the composition of the available substrate. Previous studies have demonstrated the involvement of a number of transcriptional regulators in plant biomass degradation and have identified sets of target genes for each regulator. In this study, a broad transcriptional analysis was performed of the A. niger genes encoding (putative) plant polysaccharide degrading enzymes. Microarray data focusing on the initial response of A. niger to the presence of plant biomass related carbon sources were analyzed of a wild-type strain N402 that was grown on a large range of carbon sources and of the regulatory mutant strains ΔxlnR, ΔaraR, ΔamyR, ΔrhaR and ΔgalX that were grown on their specific inducing compounds. The cluster analysis of the expression data revealed several groups of co-regulated genes, which goes beyond the traditionally described co-regulated gene sets. Additional putative target genes of the selected regulators were identified, based on their expression profile. Notably, in several cases the expression profile puts questions on the function assignment of uncharacterized genes that was based on homology searches, highlighting the need for more extensive biochemical studies into the substrate specificity of enzymes encoded by these non-characterized genes. The data also revealed sets of genes that were upregulated in the regulatory mutants, suggesting interaction between the regulatory systems and a therefore even more complex overall regulatory network than has been reported so far. Expression profiling on a large number of substrates provides better insight in the complex regulatory systems that drive the conversion of plant biomass by fungi. In

  1. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1997. Project Report

    NARCIS (Netherlands)

    Schuit, M.; Put, van A.L.L.M.; Valkering, N.P.; Eijck, van T.J.W.

    1998-01-01

    The Sea Turtle Club Bonaire (STCB) is a non-governmental, non-profit organization. Its main goal is the conservation of the sea turtles that occur on Bonaire. To reach this goal, annual projects are undertaken, such as research and the promotion of public awareness on sea turtle conservation. The

  2. Malondialdehyde suppresses cerebral function by breaking homeostasis between excitation and inhibition in turtle Trachemys scripta.

    Directory of Open Access Journals (Sweden)

    Fangxu Li

    Full Text Available The levels of malondialdehyde (MDA are high in the brain during carbonyl stress, such as following daily activities and sleep deprivation. To examine our hypothesis that MDA is one of the major substances in the brain leading to fatigue, the influences of MDA on brain functions and neuronal encodings in red-eared turtle (Trachemys scripta were studied. The intrathecal injections of MDA brought about sleep-like EEG and fatigue-like behaviors in a dose-dependent manner. These changes were found associated with the deterioration of encoding action potentials in cortical neurons. In addition, MDA increased the ratio of γ-aminobutyric acid to glutamate in turtle's brain, as well as the sensitivity of GABAergic neurons to inputs compared to excitatory neurons. Therefore, MDA, as a metabolic product in the brain, may weaken cerebral function during carbonyl stress through breaking the homeostasis between excitatory and inhibitory neurons.

  3. Turtles: Freshwater

    Science.gov (United States)

    Gibbons, J. Whitfield; Lovich, Jeffrey E.; Bowden, R.M.

    2017-01-01

    With their iconic shells, turtles are morphologically distinct in being the only extant or extinct vertebrate animals to have their shoulders and hips inside their rib cages. By the time an asteroid hit the earth 65.5 million years ago, causing the extinction of dinosaurs, turtles were already an ancient lineage that was 70% through their evolutionary history to date. The remarkable evolutionary success of turtles over 220 million years is due to a combination of both conservative and effective life history traits and an essentially unchanging morphology that withstood the test of time. However, the life history traits of many species make them particularly susceptible to overharvest and habitat destruction in the modern world, and a majority of the world’s species face serious conservation challenges with several extinctions documented in modern times. The global plight of turtles is underscored by the fact that the percentage of imperiled species exceeds that of even the critically endangered primates.Freshwater turtles, with over 260 recognized species, have become a focus on a worldwide scale for many conservation issues. This article is a synthesis of a diverse body of information on the general biology of freshwater turtles, with particular emphasis on the extensive research on ecology, life history, and behavior that has been accomplished in the last half century. Much of the research has been applicable to the aforementioned conservation challenges. The studies presented include a combination of laboratory and field experiments and observational studies on this intriguing group of animals.

  4. Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.

    Science.gov (United States)

    Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J

    1999-01-01

    Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.

  5. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production.

    Science.gov (United States)

    Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Yamakami, Suguru; Yahagi, Daiki; Chinen, Akito; Tokura, Mitsunori; Abe, Keietsu

    2017-09-01

    Under anaerobic conditions, Escherichia coli produces succinate from glucose via the reductive tricarboxylic acid cycle. To date, however, no genes encoding succinate exporters have been established in E. coli. Therefore, we attempted to identify genes encoding succinate exporters by screening an E. coli MG1655 genome library. We identified the yjjPB genes as candidates encoding a succinate transporter, which enhanced succinate production in Pantoea ananatis under aerobic conditions. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both YjjP and YjjB are required for the restoration of succinate production. Furthermore, deletion of yjjPB decreased succinate production in E. coli by 70% under anaerobic conditions. Taken together, these results suggest that YjjPB constitutes a succinate transporter in E. coli and that the products of both genes are required for succinate export.

  6. Cloning, expression and characterisation of a novel gene encoding ...

    African Journals Online (AJOL)

    微软用户

    2012-01-12

    Jan 12, 2012 ... ... characterisation of a novel gene encoding a chemosensory protein from Bemisia ... The genomic DNA sequence comparisons revealed a 1490 bp intron ... have several conserved sequence motifs, including the. N-terminal ...

  7. Turtle Watch: Community Engagement and Action

    Science.gov (United States)

    Lewis, Elaine; Baudains, Catherine

    2015-01-01

    Many threats face the freshwater turtle, Chelodina colliei, also known as the oblong turtle. A community education project, Turtle Watch, focused on this target species and enabled effective conservation action to be implemented. Turtle Watch was conducted in the Perth Metropolitan Area of Western Australia, as the oblong turtle inhabits the…

  8. Staphylococcus aureus nasal carriage in Ukraine: antibacterial resistance and virulence factor encoding genes.

    Science.gov (United States)

    Netsvyetayeva, Irina; Fraczek, Mariusz; Piskorska, Katarzyna; Golas, Marlena; Sikora, Magdalena; Mlynarczyk, Andrzej; Swoboda-Kopec, Ewa; Marusza, Wojciech; Palmieri, Beniamino; Iannitti, Tommaso

    2014-03-05

    The number of studies regarding the incidence of multidrug resistant strains and distribution of genes encoding virulence factors, which have colonized the post-Soviet states, is considerably limited. The aim of the study was (1) to assess the Staphylococcus (S.) aureus nasal carriage rate, including Methicillin Resistant S. aureus (MRSA) strains in adult Ukrainian population, (2) to determine antibiotic resistant pattern and (3) the occurrence of Panton Valentine Leukocidine (PVL)-, Fibronectin-Binding Protein A (FnBPA)- and Exfoliative Toxin (ET)-encoding genes. Nasal samples for S. aureus culture were obtained from 245 adults. The susceptibility pattern for several classes of antibiotics was determined by disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The virulence factor encoding genes, mecA, lukS-lukF, eta, etb, etd, fnbA, were detected by Polymerase Chain Reaction (PCR). The S. aureus nasal carriage rate was 40%. The prevalence of nasal MRSA carriage in adults was 3.7%. LukS-lukF genes were detected in over 58% of the strains. ET-encoding genes were detected in over 39% of the strains and the most prevalent was etd. The fnbA gene was detected in over 59% of the strains. All MRSA isolates tested were positive for the mecA gene. LukS-lukF genes and the etd gene were commonly co-present in MRSA, while lukS-lukF genes and the fnbA gene were commonly co-present in Methicillin Sensitive S. aureus (MSSA) isolates. No significant difference was detected between the occurrence of lukS-lukF genes (P > 0.05) and the etd gene (P > 0.05) when comparing MRSA and MSSA. The occurrence of the fnbA gene was significantly more frequent in MSSA strains (P aureus is a common cause of infection. The prevalence of S. aureus nasal carriage in our cohort of patients from Ukraine was 40.4%. We found that 9.1% of the strains were classified as MRSA and all MRSA isolates tested positive for the mecA gene

  9. The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera.

    Science.gov (United States)

    Grohmann, L; Brennicke, A; Schuster, W

    1992-01-01

    The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526

  10. The presence of two S-layer-protein-encoding genes is conserved among species related to Lactobacillus acidophilus

    NARCIS (Netherlands)

    Boot, H.J.; Kolen, C.P.A.M.; Pot, B.; Kersters, K.; Pouwels, P.H.

    1996-01-01

    Previously we have shown that the type strain of Lactobacillus acidophilus possesses two S-protein-encoding genes, one of which is silent, on a chromosomal segment of 6 kb. The S-protein-encoding gene in the expression site can be exchanged for the silent S-protein-encoding gene by inversion of this

  11. The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lüders; Martinussen, Jan; Hammer, Karin

    2000-01-01

    establishing the ability of the encoded protein to synthesize UDP. The pyrH gene in L. lactis is flanked downstream by frr1 encoding ribosomal recycling factor 1 and upstream by an open reading frame, orfA, of unknown function. The three genes were shown to constitute an operon transcribed in the direction orf......A-pyrH-frr1 from a promoter immediately in front of orfA. This operon belongs to an evolutionary highly conserved gene cluster, since the organization of pyrH on the chromosomal level in L. lactis shows a high resemblance to that found in Bacillus subtilis as well as in Escherichia coli and several other...

  12. TurtleCam: A “Smart” Autonomous Underwater Vehicle for Investigating Behaviors and Habitats of Sea Turtles

    Directory of Open Access Journals (Sweden)

    Kara L. Dodge

    2018-03-01

    Full Text Available Sea turtles inhabiting coastal environments routinely encounter anthropogenic hazards, including fisheries, vessel traffic, pollution, dredging, and drilling. To support mitigation of potential threats, it is important to understand fine-scale sea turtle behaviors in a variety of habitats. Recent advancements in autonomous underwater vehicles (AUVs now make it possible to directly observe and study the subsurface behaviors and habitats of marine megafauna, including sea turtles. Here, we describe a “smart” AUV capability developed to study free-swimming marine animals, and demonstrate the utility of this technology in a pilot study investigating the behaviors and habitat of leatherback turtles (Dermochelys coriacea. We used a Remote Environmental Monitoring UnitS (REMUS-100 AUV, designated “TurtleCam,” that was modified to locate, follow and film tagged turtles for up to 8 h while simultaneously collecting environmental data. The TurtleCam system consists of a 100-m depth rated vehicle outfitted with a circular Ultra-Short BaseLine receiver array for omni-directional tracking of a tagged animal via a custom transponder tag that we attached to the turtle with two suction cups. The AUV collects video with six high-definition cameras (five mounted in the vehicle nose and one mounted aft and we added a camera to the animal-borne transponder tag to record behavior from the turtle's perspective. Since behavior is likely a response to habitat factors, we collected concurrent in situ oceanographic data (bathymetry, temperature, salinity, chlorophyll-a, turbidity, currents along the turtle's track. We tested the TurtleCam system during 2016 and 2017 in a densely populated coastal region off Cape Cod, Massachusetts, USA, where foraging leatherbacks overlap with fixed fishing gear and concentrated commercial and recreational vessel traffic. Here we present example data from one leatherback turtle to demonstrate the utility of TurtleCam. The

  13. Oxidative stress induced by glyphosate-based herbicide on freshwater turtles.

    Science.gov (United States)

    Héritier, Laurent; Duval, David; Galinier, Richard; Meistertzheim, Anne-Leila; Verneau, Olivier

    2017-12-01

    Freshwater ecosystems face very strong anthropogenic pressures, among which overexploitation, habitat degradation, flow modification, species invasion, and water pollution lead to growing threats on biodiversity. Urbanization through wastewater treatment, industry through the release of inorganic and organic chemicals, and agriculture through the use of pesticides and herbicides are the main factors involved in water pollution. In France, more precisely in the Pyrénées-Orientales department, the poor quality of the watercourses is attributable overall to the use of glyphosate-based herbicides in agricultural activities. Because these chemicals can impact individuals, populations, and biodiversity, we investigated, under experimental conditions, the physiological response of animals facing abiotic contaminants. We selected as a model, juveniles of the freshwater turtle Trachemys scripta elegans. We measured the gene expression and activity of the catalase and superoxide dismutase enzymes as well as the levels of lipid peroxidation, which are all oxidative stress biomarkers, in turtles challenged with high concentrations of glyphosate-based herbicides, on the one hand, and with degraded waters collected from a local watercourse, on the other. We also measured the acetylcholinesterase activity across the same animals. We showed through variations in gene expression and enzyme activity that a glyphosate commercial formulation induced a stress in turtles. A similar outcome was obtained when turtles faced degraded waters. The results indicated that the poor quality of regional waters could be a real threat for animal health. Because turtles are globally less sensitive to contaminants than amphibians, which are lacking in the degraded waters of the Pyrénées-Orientales department, they could constitute an excellent model to follow the evolution of water quality through the study of oxidative stress biomarkers. Environ Toxicol Chem 2017;36:3343-3350. © 2017 SETAC.

  14. Turtle Photograph Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photos collected in marine turtle research programs are diverse, ranging from isolated observations of incidental encounters with turtles on the high-seas to...

  15. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Agusa, Tetsuro; Takagi, Kozue [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Kubota, Reiji [Division of Environmental Chemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Anan, Yasumi [Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Iwata, Hisato [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)], E-mail: shinsuke@agr.ehime-u.ac.jp

    2008-05-15

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic.

  16. Specific accumulation of arsenic compounds in green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Ishigaki Island, Japan

    International Nuclear Information System (INIS)

    Agusa, Tetsuro; Takagi, Kozue; Kubota, Reiji; Anan, Yasumi; Iwata, Hisato; Tanabe, Shinsuke

    2008-01-01

    Concentrations of total arsenic (As) and individual compounds were determined in green and hawksbill turtles from Ishigaki Island, Japan. In both species, total As concentrations were highest in muscle among the tissues. Arsenobetaine was a major compound in most tissues of both turtles. High concentrations of trimethylarsine oxide were detected in hawksbill turtles. A significant negative correlation between standard carapace length (SCL), an indicator of age, and total As levels in green turtles was found. In contrast, the levels increased with SCL of hawksbill turtles. Shifts in feeding habitats with growth may account for such a growth-dependent accumulation of As. Although concentrations of As in marine sponges, the major food of hawksbill turtles are not high compared to those in algae eaten by green turtles, As concentrations in hawksbill turtles were higher than those in green turtles, indicating that hawksbill turtles may have a specific accumulation mechanism for As. - Green turtles and hawksbill turtles have specific accumulation features of arsenic

  17. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  18. Turtle Girls

    Science.gov (United States)

    Nelson, Charles; Ponder, Jennifer

    2010-01-01

    The day the Turtle Girls received Montel's adoption papers, piercing screams ricocheted across the school grounds instantaneously and simultaneously--in that moment, each student felt the joy of civic stewardship. Read on to find out how a visit to The Turtle Hospital inspired a group of elementary students to create a club devoted to supporting…

  19. Identification and characterization of a gene encoding a putative ...

    Indian Academy of Sciences (India)

    2012-10-30

    Oct 30, 2012 ... Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China. 2Institute of ... Its encoding gene is an essential candidate for oil crops to .... higher level in leaves than in other organs (Kim and Huang. 2004) ...

  20. Modeling neck mobility in fossil turtles.

    Science.gov (United States)

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  1. Antibiotic Resistant Bacterial Isolates from Captive Green Turtles and In Vitro Sensitivity to Bacteriophages

    Directory of Open Access Journals (Sweden)

    Alessandro Delli Paoli Carini

    2017-01-01

    Full Text Available This study aimed to test multidrug resistant isolates from hospitalised green turtles (Chelonia mydas and their environment in North Queensland, Australia, for in vitro susceptibility to bacteriophages. Seventy-one Gram-negative bacteria were isolated from green turtle eye swabs and water samples. Broth microdilution tests were used to determine antibiotic susceptibility. All isolates were resistant to at least two antibiotics, with 24% being resistant to seven of the eight antibiotics. Highest resistance rates were detected to enrofloxacin (77% and ampicillin (69.2%. More than 50% resistance was also found to amoxicillin/clavulanic acid (62.5%, ceftiofur (53.8%, and erythromycin (53.3%. All the enriched phage filtrate mixtures resulted in the lysis of one or more of the multidrug resistant bacteria, including Vibrio harveyi and V. parahaemolyticus. These results indicate that antibiotic resistance is common in Gram-negative bacteria isolated from hospitalised sea turtles and their marine environment in North Queensland, supporting global concern over the rapid evolution of multidrug resistant genes in the environment. Using virulent bacteriophages as antibiotic alternatives would not only be beneficial to turtle health but also prevent further addition of multidrug resistant genes to coastal waters.

  2. Screening of the Enterocin-Encoding Genes and Antimicrobial Activity in Enterococcus Species.

    Science.gov (United States)

    Ogaki, Mayara Baptistucci; Rocha, Katia Real; Terra, MÁrcia Regina; Furlaneto, MÁrcia Cristina; Maia, Luciana Furlaneto

    2016-06-28

    In the current study, a total of 135 enterococci strains from different sources were screened for the presence of the enterocin-encoding genes entA, entP, entB, entL50A, and entL50B. The enterocin genes were present at different frequencies, with entA occurring the most frequently, followed by entP and entB; entL50A and L50B were not detected. The occurrence of single enterocin genes was higher than the occurrence of multiple enterocin gene combinations. The 80 isolates that harbor at least one enterocin-encoding gene (denoted "Gene(+) strains") were screened for antimicrobial activity. A total of 82.5% of the Gene(+) strains inhibited at least one of the indicator strains, and the isolates harboring multiple enterocin-encoding genes inhibited a larger number of indicator strains than isolates harboring a single gene. The indicator strains that exhibited growth inhibition included Listeria innocua strain CLIP 12612 (ATCC BAA-680), Listeria monocytogenes strain CDC 4555, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 6538, Salmonella enteritidis ATCC 13076, Salmonella typhimurium strain UK-1 (ATCC 68169), and Escherichia coli BAC 49LT ETEC. Inhibition due to either bacteriophage lysis or cytolysin activity was excluded. The growth inhibition of antilisterial Gene+ strains was further tested under different culture conditions. Among the culture media formulations, the MRS agar medium supplemented with 2% (w/v) yeast extract was the best solidified medium for enterocin production. Our findings extend the current knowledge of enterocin-producing enterococci, which may have potential applications as biopreservatives in the food industry due to their capability of controlling food spoilage pathogens.

  3. Turtle riders: remoras on marine turtles in Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Ivan Sazima

    Full Text Available An overview is presented for a poorly documented relationship between reef vertebrates in Southwest Atlantic: remoras (Echeneidae associated with marine turtles. Two remora species (Echeneis naucrates and Remora remora and four turtle species (Caretta caretta, Chelonia mydas, Eretmochelys imbricata, and Dermochelys coriacea are here recorded in symbiotic associations in the SW Atlantic. Echeneis naucrates was recorded both on the coast and on oceanic islands, whereas R. remora was recorded only at oceanic islands and in the open sea. The remora-turtle association is usually regarded as an instance of phoresis (hitchhiking, albeit feeding by the fish is also involved in this symbiosis type. This association seems to be rare in SW Atlantic.

  4. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  5. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    Science.gov (United States)

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  6. Localization and regulation of a facilitative urea transporter in the kidney of the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Uchiyama, Minoru; Kikuchi, Ryosuke; Konno, Norifumi; Wakasugi, Tatsuya; Matsuda, Kouhei

    2009-01-01

    Urea is the major excretory end product of nitrogen metabolism in most chelonian reptiles. In the present study, we report the isolation of a 1632 base pair cDNA from turtle kidney with one open reading frame putatively encoding a 403-residue protein, the turtle urea transporter (turtle UT). The first cloned reptilian UT has high homology with UTs (facilitated urea transporters) cloned from vertebrates, and most closely resembles the UT-A subfamily. Injection of turtle UT cRNA into Xenopus oocytes induced a 6-fold increase in [(14)C]urea uptake that was inhibited by phloretin. The turtle UT mRNA expression and tissue distribution were examined by RT-PCR with total RNA from various tissues. Expression of turtle UT mRNA was restricted to the kidney, and no signal was detected in the other tissues, such as brain, heart, alimentary tract and urinary bladder. An approximately 58 kDa protein band was detected in membrane fractions of the kidney by western blot using an affinity-purified antibody that recognized turtle UT expressed in Xenopus oocytes. In an immunohistochemical study using the anti-turtle UT antibody, UT-immunopositive cells were observed along the distal tubule but not in the collecting duct. In turtles under dry conditions, plasma osmolality and urea concentration increased, and using semi-quantitative RT-PCR the UT mRNA expression level in the kidney was found to increase 2-fold compared with control. The present results, taken together, suggest that the turtle UT probably contributes to urea transport in the distal tubule segments of the kidney in response to hyperosmotic stress under dry conditions.

  7. Mitochondrial haplotype distribution and phylogenetic relationship of an endangered species Reeve's turtle (Mauremys reevesii in East Asia

    Directory of Open Access Journals (Sweden)

    Hong-Shik Oh

    2017-03-01

    Full Text Available This study was examined to reveal haplotype distribution and phylogenetic relationship using mitochondrial DNA CYTB gene sequences of Reeve’s turtle (Mauremys reevesii of East Asia. CYTB sequences of Reeve’s turtles were divided into 6 haplotypes (Hap01–Hap06. Chinese turtles were found in Hap01, Hap02, Hap04, and Hap05, and Hap01 was the highest frequency of 85.0%. Korean Turtles were found in Hap01, Hap03, Hap04, and Hap05, and Hap03 was the highest frequency of 52.1%. Although there was no haplotype which includes only the CYTB sequence exclusive for Reeve’s turtles of Korea, since no CYTB sequence of China was found in Hap03, it would be possible that Hap03 turtles of Korea are separated from those of China. The haplotypes of Reeve’s turtles of East Asia were monophyletic, which indicated that they had been evolved from a single maternal lineage, but went through local evolution after geographical migration and isolation in East Asia.

  8. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef.

    Science.gov (United States)

    Ahasan, Md Shamim; Waltzek, Thomas B; Huerlimann, Roger; Ariel, Ellen

    2017-12-01

    Green turtles (Chelonia mydas) are endangered marine herbivores that break down food particles, primarily sea grasses, through microbial fermentation. However, the microbial community and its role in health and disease is still largely unexplored. In this study, we investigated and compared the fecal bacterial communities of eight wild-captured green turtles to four stranded turtles in the central Great Barrier Reef regions that include Bowen and Townsville. We used high-throughput sequencing analysis targeting the hypervariable V1-V3 regions of the bacterial 16S rRNA gene. At the phylum level, Firmicutes predominated among wild-captured green turtles, followed by Bacteroidetes and Proteobacteria. In contrast, Proteobacteria (Gammaproteobacteria) was the most significantly dominant phylum among all stranded turtles, followed by Bacteroidetes and Firmicutes. In addition, Fusobacteria was also significantly abundant in stranded turtles. No significant differences were found between the wild-captured turtles in Bowen and Townsville. At the family level, the core bacterial community consisted of 25 families that were identified in both the wild-captured and stranded green turtles, while two unique sets of 14 families each were only found in stranded or wild-captured turtles. The predominance of Bacteroides in all groups indicates the importance of these bacteria in turtle gut health. In terms of bacterial diversity and richness, wild-captured green turtles showed a higher bacterial diversity and richness compared with stranded turtles. The marked differences in the bacterial communities between wild-captured and stranded turtles suggest the possible dysbiosis in stranded turtles in addition to potential causal agents. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Helminth communities of the exotic introduced turtle, Trachemys scripta elegans in southwestern Spain: Transmission from native turtles.

    Science.gov (United States)

    Hidalgo-Vila, J; Díaz-Paniagua, C; Ribas, A; Florencio, M; Pérez-Santigosa, N; Casanova, J C

    2009-06-01

    We report the prevalence and diversity of helminth parasites found in native turtles Mauremys leprosa and Emys orbicularis from three localities in southwestern Spain and we describe the helminth communities of exotic turtles Trachemys scripta elegans coexisting in the wild with both native turtle species. Five nematodes species were identified, of which Serpinema microcephalus was the only species common between two localities, although infection parameters were different between them. This is the first report of cross transmission of S. microcephalus and Falcaustra donanaensis from native to exotic turtles and the first report of genus Physaloptera in turtles of the Palearctic Region. Continuous releasing of exotic pet turtles in wildlife ecosystems increases the risk of parasite introductions and, consequently, potential transmission to native species, and highlights the impending need for regulation of pet turtle trade in Europe.

  10. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…

  11. The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas)

    International Nuclear Information System (INIS)

    Greenblatt, Rebecca J.; Work, Thierry M.; Balazs, George H.; Sutton, Claudia A.; Casey, Rufina N.; Casey, James W.

    2004-01-01

    Fibropapillomatosis (FP) of marine turtles is a neoplastic disease of ecological concern. A fibropapilloma-associated turtle herpesvirus (FPTHV) is consistently present, usually at loads exceeding one virus copy per tumor cell. DNA from an array of parasites of green turtles (Chelonia mydas) was examined with quantitative PCR (qPCR) to determine whether any carried viral loads are sufficient to implicate them as vectors for FPTHV. Marine leeches (Ozobranchus spp.) were found to carry high viral DNA loads; some samples approached 10 million copies per leech. Isopycnic sucrose density gradient/qPCR analysis confirmed that some of these copies were associated with particles of the density of enveloped viruses. The data implicate the marine leech Ozobranchus as a mechanical vector for FPTHV. Quantitative RT-PCR analysis of FPTHV gene expression indicated that most of the FPTHV copies in a fibropapilloma have restricted DNA polymerase expression, suggestive of latent infection

  12. Turtles for tessellations

    NARCIS (Netherlands)

    Feijs, L.M.G.; Hu, J.

    2013-01-01

    We developed an approach to creating vector graphics representations of tessellations for purposes of teaching creative programming and laser cutting. The approach is based on turtle graphics. The lines of the turtle’s trail define the tiles of the tessellation. The turtle is defined in an

  13. 78 FR 44915 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... viable turtle eggs and turtles with a carapace length of less than 4 inches to stop the spread of turtle...

  14. RNAi-based silencing of genes encoding the vacuolar- ATPase ...

    African Journals Online (AJOL)

    2016-11-09

    Nov 9, 2016 ... Spodoptera exigua larval development by silencing chitin synthase gene with RNA interference. Bull. Entomol. Res. 98:613-619. Dow JAT (1999). The Multifunctional Drosophila melanogaster V-. ATPase is encoded by a multigene family. J. Bioenerg. Biomembr. 31:75-83. Fire A, Xu SQ, Montgomery MK, ...

  15. Turtle Hearing Capability Based on ABR Signal assessment

    Directory of Open Access Journals (Sweden)

    Raja Bidin Raja Hassan

    2010-08-01

    Full Text Available Sea turtles have existed for millions of years. International Union for Conservation of Nature (IUCN has reported that the Hawksbill Turtle (Eretmochelys imbricata is classified as critically endangered. Turtle excluder device (TED deployment on shrimpnet fisheries is needed for turtle conservation.TED using sound technique is challenge method in fisheries development.The knowledge on turtle hearing capability is limited. The auditory brainstem response (ABR assessment is method to determine turtle hearing capability. Turtle hearing assessment is basis to design TED. The objective of this paper is to determine turtle hearing cability by analyze its ABR spectral.The subject is Hawksbill turtle with number 2 turtles ie: 3 and 2 years. The measurement was taken at Pusat Pengurusan Penyu (Turtle Management Centre Padang Kemunting Masjid Tanah Melaka Malaysia. The results shows that turtle 3 years have peak power frequencies 50.78, 101.6, 152.3, 304.7, 355.5, 457, and 507.8Hz respectively whereas the spectral amplitude is ranging 0.03-32.44% spectral. Turtle 2 years has peak power at 457Hz in whole stimulus frequencies while the spectral amplitude is ranging 0.01-2.5% spectral.

  16. Development of the carapacial ridge: implications for the evolution of genetic networks in turtle shell development.

    Science.gov (United States)

    Moustakas, Jacqueline E

    2008-01-01

    Paleontologists and neontologists have long looked to development to understand the homologies of the dermal bones that form the "armor" of turtles, crocodiles, armadillos, and other vertebrates. This study shows molecular evidence supporting a dermomyotomal identity for the mesenchyme of the turtle carapacial ridge. The mesenchyme of the carapace primordium expresses Pax3, Twist1, Dermo1, En1, Sim1, and Gremlin at early stages and before overt ossification expresses Pax1. A hypothesis is proposed that this mesenchyme forms dermal bone in the turtle carapace. A comparison of regulatory gene expression in the primordia of the turtle carapace, the vertebrate limb, and the vertebral column implies the exaptation of key genetic networks in the development of the turtle shell. This work establishes a new role for this mesodermal compartment and highlights the importance of changes in genetic regulation in the evolution of morphology.

  17. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles

    DEFF Research Database (Denmark)

    Alfaro Nuñez, Luis Alonso; Bertelsen, Mads Frost; Bojesen, Anders Miki

    2014-01-01

    BackgroundFibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR......-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed...

  18. Identification and characterization of the genes encoding the core histones and histone variants of Neurospora crassa.

    OpenAIRE

    Hays, Shan M; Swanson, Johanna; Selker, Eric U

    2002-01-01

    We have identified and characterized the complete complement of genes encoding the core histones of Neurospora crassa. In addition to the previously identified pair of genes that encode histones H3 and H4 (hH3 and hH4-1), we identified a second histone H4 gene (hH4-2), a divergently transcribed pair of genes that encode H2A and H2B (hH2A and hH2B), a homolog of the F/Z family of H2A variants (hH2Az), a homolog of the H3 variant CSE4 from Saccharomyces cerevisiae (hH3v), and a highly diverged ...

  19. Identification of Genes Encoding the Folate- and Thiamine-Binding Membrane Proteins in Firmicutes

    NARCIS (Netherlands)

    Eudes, Aymerick; Erkens, Guus B.; Slotboom, Dirk J.; Rodionov, Dmitry A.; Naponelli, Valeria; Hanson, Andrew D.

    Genes encoding high-affinity folate- and thiamine-binding proteins (FolT, ThiT) were identified in the Lactobacillus casei genome, expressed in Lactococcus lactis, and functionally characterized. Similar genes occur in many Firmicutes, sometimes next to folate or thiamine salvage genes. Most thiT

  20. Environmental cycle of antibiotic resistance encoded genes: A systematic review

    Directory of Open Access Journals (Sweden)

    R. ghanbari

    2017-12-01

    Full Text Available Antibiotic-resistant bacteria and genes enter the environment in different ways. The release of these factors into the environment has increased concerns related to public health. The aim of the study was to evaluate the antibiotic resistance genes (ARGs in the environmental resources. In this systematic review, the data were extracted from valid sources of information including ScienceDirect, PubMed, Google Scholar and SID. Evaluation and selection of articles were conducted on the basis of the PRISMA checklist. A total of 39 articles were included in the study, which were chosen from a total of 1249 papers. The inclusion criterion was the identification of genes encoding antibiotic resistance against the eight important groups of antibiotics determined by using the PCR technique in the environmental sources including municipal and hospital wastewater treatment plants, animal and agricultural wastes, effluents from treatment plants, natural waters, sediments, and drinking waters. In this study, 113 genes encoding antibiotic resistance to eight groups of antibiotics (beta-lactams, aminoglycosides, tetracyclines, macrolides, sulfonamides, chloramphenicol, glycopeptides and quinolones were identified in various environments. Antibiotic resistance genes were found in all the investigated environments. The investigation of microorganisms carrying these genes shows that most of the bacteria especially gram-negative bacteria are effective in the acquisition and the dissemination of these pollutants in the environment. Discharging the raw wastewaters and effluents from wastewater treatments acts as major routes in the dissemination of ARGs into environment sources and can pose hazards to public health.

  1. Fungicidal activity of peptides encoded by immunoglobulin genes

    OpenAIRE

    Polonelli, Luciano; Ciociola, Tecla; Sperind?, Martina; Giovati, Laura; D?Adda, Tiziana; Galati, Serena; Travassos, Luiz R.; Magliani, Walter; Conti, Stefania

    2017-01-01

    Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activitie...

  2. Removal of nonnative slider turtles (Trachemys scripta) and effects on native Sonora mud turtles (Kinosternon sonoriense) at Montezuma Well, Yavapai County, Arizona

    Science.gov (United States)

    Drost, Charles A.; Lovich, Jeffrey E.; Madrak, Sheila V.; Monatesti, A.J.

    2011-01-01

    The National Park Service (NPS) estimates that 234 national parks contain nonnative, invasive animal species that are of management concern (National Park Service, 2004). Understanding and controlling invasive species is thus an important priority within the NPS (National Park Service, 1996). The slider turtle (Trachemys scripta) is one such invasive species. Native to the Southeastern United States (Ernst and Lovich, 2009), as well as Mexico, Central America, and portions of South America (Ernst and Barbour, 1989), the slider turtle has become established throughout the continental United States and in other locations around the world (Burke and others, 2000). Slider turtle introductions have been suspected to be a threat to native turtles (Holland 1994; da Silva and Blasco, 1995), however, there has not been serious study of their effects until recently. Cadi and Joly (2003) found that slider turtles outcompeted European pond turtles (Emys orbicularis) for preferred basking sites under controlled experimental conditions, demonstrating for the first time direct competition for resources between a native and an exotic turtle species. Similarly, Spinks and others (2003) suggested that competition for basking sites between slider turtles and Pacific pond turtles (Actinemys marmorata) was partly responsible for the decline of Pacific pond turtles observed at their study site in California. They concluded that the impact of introduced slider turtles was 'almost certainly negative' for the western pond turtle. In the most recent critical study to assess the effects of introduced slider turtles on native turtles, Cadi and Joly (2004) demonstrated that European pond turtles that were kept under experimentally controlled conditions with slider turtles lost body weight and exhibited higher rates of mortality than in control groups of turtles comprised of the same species, demonstrating potential population-level effects on native species. Slider turtles are not native to

  3. Cloning of an epoxide hydrolase encoding gene from Rhodotorula mucilaginosa and functional expresion in Yarrowia lipolytica

    CSIR Research Space (South Africa)

    Labuschagne, M

    2007-01-01

    Full Text Available , were used to amplify the genomic EH-encoding gene from Rhodotorula mucilaginosa. The 2347 bp genomic sequence revealed a 1979 bp ORF containing nine introns. The cDNA sequence revealed an 1185 bp EH-encoding gene that translates into a 394 amino acid...

  4. The origin of turtles: a paleontological perspective.

    Science.gov (United States)

    Joyce, Walter G

    2015-05-01

    The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles. © 2015 Wiley Periodicals, Inc.

  5. Reptilian prey of the sonora mud turtle (Kinosternon sonoriense) with comments on saurophagy and ophiophagy in North American Turtles

    Science.gov (United States)

    Lovich, J.; Drost, C.; Monatesti, A.J.; Casper, D.; Wood, D.A.; Girard, M.

    2010-01-01

    We detected evidence of predation by the Sonora mud turtle (Kinosternon sonoriense) on the Arizona alligator lizard (Elgaria kingii nobilis) and the ground snake (Sonora semiannulata) at Montezuma Well, Yavapai County, Arizona. Lizards have not been reported in the diet of K. sonoriense, and saurophagy is rare in turtles of the United States, having been reported previously in only two other species:, the false map turtle (Graptemys pseudogeographica) and the eastern box turtle (Terrapene carolina). While the diet of K. sonoriense includes snakes, ours is the first record of S. semiannulata as food of this turtle. Ophiophagy also is rare in turtles of the United States with records for only five other species of turtles. Given the opportunistic diets of many North American turtles, including K. sonoriense, the scarcity of published records of saurophagy and ophiophagy likely represents a shortage of observations, not rarity of occurrence.

  6. Co-expression of an Erwinia chrysanthemi pectate lyase-encoding gene (pelE) and an E. carotovora polygalacturonase-encoding gene (peh1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Laing, E; Pretorius, I S

    1993-05-01

    A pectate lyase (PL)-encoding gene (pelE) from Erwinia chrysanthemi and a polygalacturonase (PG)-encoding gene (peh1) from E. carotovora were each inserted between a novel yeast expression-secretion cassette and a yeast gene terminator, and cloned separately into a yeast-centromeric shuttle vector (YCp50), generating recombinant plasmids pAMS12 and pAMS13. Transcription initiation signals present in the expression-secretion cassette were derived from the yeast alcohol dehydrogenase gene promoter (ADC1P), whereas the transcription termination signals were derived from the yeast tryptophan synthase gene terminator (TRP5T). Secretion of PL and PG was directed by the signal sequence of the yeast mating pheromone alpha-factor (MF alpha 1s). A pectinase cassette comprising ADC1P-MF alpha 1s-pelE-TRP5T and ADC1P-MF alpha 1s-peh1-TRP5T was subcloned into YCp50, generating plasmid pAMS14. Subsequently, the dominant selectable Geneticin G418-resistance (GtR) marker, APH1, inserted between the yeast uridine diphosphoglucose 4-epimerase gene promoter (GAL10P) and yeast orotidine-5'-phosphate carboxylase gene terminator (URA3T), was cloned into pAMS14, resulting in plasmid pAMS15. Plasmids pAMS12, pAMS13 and pAMS14 were transformed into a laboratory strain of Saccharomyces cerevisiae, whereas pAMS15 was stably introduced into two commercial wine yeast strains. DNA-DNA and DNA-RNA hybridization analyses revealed the presence of these plasmids, and the pelE and peh1 transcripts in the yeast transformants, respectively. A polypectate agarose assay indicated the extracellular production of biologically active PL and PG by the S. cerevisiae transformants and confirmed that co-expression of the pelE and peh1 genes synergistically enhanced pectate degradation.

  7. Nucleotide sequence of the Agrobacterium tumefaciens octopine Ti plasmid-encoded tmr gene

    NARCIS (Netherlands)

    Heidekamp, F.; Dirkse, W.G.; Hille, J.; Ormondt, H. van

    1983-01-01

    The nucleotide sequence of the tmr gene, encoded by the octopine Ti plasmid from Agrobacterium tumefaciens (pTiAch5), was determined. The T-DNA, which encompasses this gene, is involved in tumor formation and maintenance, and probably mediates the cytokinin-independent growth of transformed plant

  8. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    Science.gov (United States)

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  9. Modeling neck mobility in fossil turtles

    OpenAIRE

    Werneburg, Ingmar; Hinz, Juliane K.; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G.

    2014-01-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the cent...

  10. Genomic organization and identification of promoter regions for the BDNF gene in the pond turtle Trachemys scripta elegans.

    Science.gov (United States)

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Keifer, Joyce

    2014-08-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and synaptic function. The BDNF gene undergoes significant activity-dependent regulation during learning. Here, we identified the BDNF promoter regions, transcription start sites, and potential regulatory sequences for BDNF exons I-III that may contribute to activity-dependent gene and protein expression in the pond turtle Trachemys scripta elegans (tBDNF). By using transfection of BDNF promoter/luciferase plasmid constructs into human neuroblastoma SHSY5Y cells and mouse embryonic fibroblast NIH3T3 cells, we identified the basal regulatory activity of promoter sequences located upstream of each tBDNF exon, designated as pBDNFI-III. Further, through chromatin immunoprecipitation (ChIP) assays, we detected CREB binding directly to exon I and exon III promoters, while BHLHB2, but not CREB, binds within the exon II promoter. Elucidation of the promoter regions and regulatory protein binding sites in the tBDNF gene is essential for understanding the regulatory mechanisms that control tBDNF gene expression.

  11. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...

  12. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Ukena, Kazuyoshi; Iwakoshi-Ukena, Eiko; Osugi, Tomohiro; Tsutsui, Kazuyoshi

    2016-02-01

    Gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as a novel hypothalamic neuropeptide that inhibited gonadotropin release in the Japanese quail. GnIH and its orthologs have a common C-terminal LPXRFamide (X=L or Q) motif, and have been identified in vertebrates from agnathans to humans, apart from reptiles. In the present study, we characterized a cDNA encoding GnIH orthologs in the brain of the red-eared slider turtle. The deduced precursor protein consisted of 205 amino-acid residues, encoding three putative peptide sequences that included the LPXRFamide motif at their C-termini. In addition, the precursor sequence was most similar to those of avian species. Immunoaffinity purification combined with mass spectrometry confirmed that three mature peptides were produced in the brain. In situ hybridization and immunohistochemistry showed that turtle GnIH-containing cells were restricted to the periventricular hypothalamic nucleus. Immunoreactive fibers were densely distributed in the median eminence. Thus, GnIH and related peptides may act on the pituitary to regulate pituitary hormone release in turtles as well as other vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Bacterial and viral pathogens detected in sea turtles stranded along the coast of Tuscany, Italy.

    Science.gov (United States)

    Fichi, G; Cardeti, G; Cersini, A; Mancusi, C; Guarducci, M; Di Guardo, G; Terracciano, G

    2016-03-15

    During 2014, six loggerhead turtles, Caretta caretta and one green turtle, Chelonia mydas, found stranded on the Tuscany coast of Italy, were examined for the presence of specific bacterial and viral agents, along with their role as carriers of fish and human pathogens. Thirteen different species of bacteria, 10 Gram negative and 3 Gram positive, were identified. Among them, two strains of Vibrio parahaemolyticus and one strain of Lactococcus garviae were recovered and confirmed by specific PCR protocols. No trh and tdh genes were detected in V. parahaemolyticus. The first isolation of L. garviae and the first detection of Betanodavirus in sea turtles indicate the possibility for sea turtles to act as carriers of fish pathogens. Furthermore, the isolation of two strains of V. parahaemolyticus highlights the possible role of these animals in human pathogens' diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cloning and Characterization of upp, a Gene Encoding Uracil Phosphoribosyltransferase from Lactococcus lactis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1994-01-01

    Uracil phosphoribosyltransferase catalyzes the key reaction in the salvage of uracil in many microorganisms. The gene encoding uracil phosphoribosyltransferase (upp) was cloned from Lactococcus lactis subsp. cremoris MG1363 by complementation of an Escherichia coli mutant. The gene was sequenced...

  15. Horse cDNA clones encoding two MHC class I genes

    Energy Technology Data Exchange (ETDEWEB)

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  16. Cellulolytic (cel) genes of Clostridium thermocellum F7 and the proteins encoded by them

    International Nuclear Information System (INIS)

    Piruzyan, E.S.; Mogutov, M.A.; Velikodvorskaya, G.A.; Pushkarskaya, T.A.

    1988-01-01

    This study is concerned with genes cell, ce12, and ce13 encoding the endoglucanase of the cellulolytic complex of the anaerobic thermophilic Clostridium thermocellum F7 bacteria, these genes having been closed by us earlier. The authors present the characteristics of proteins synthesized by the cel genes in the minicell system of the strain Escherichia coli K-12 X925. The molecular weights of the proteins encoded by genes cell, ce12, and ce13 are 30,000, 45,000, and 50,000 dalton, respectively. The study of the homology of the cloned section of the C. thermocellum DNA containing the endoglucanase genes, using Southern's blot-hybridization method, did not reveal their physical linkage in the genome. The authors detected a plasmid with a size of about 30 kb in the cells of the C. thermocellum F7 strain investigated

  17. The Classroom Animal: Box Turtles.

    Science.gov (United States)

    Kramer, David C.

    1986-01-01

    Provides basic information on the anatomy, physiology, behaviors, and distribution patterns of the box turtle. Offers suggestions for the turtle's care and maintenance in a classroom environment. (ML)

  18. Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Parris, D.S.; Cross, A.; Orr, A.; Frame, M.C.; Murphy, M.; McGeoch, D.J.; Marsden, H.S.; Haarr, L.

    1988-01-01

    Hybrid arrest of in vitro translation was used to localize the region of the herpes simplex virus type 1 genome encoding the 65-kilodalton DNA-binding protein (65K DBP ) to between genome coordinates 0.592 and 0.649. Knowledge of the DNA sequence of this region allowed us to identify three open reading frames as likely candidates for the gene encoding 65K DBP . Two independent approaches were used to determine which of these three open reading frames encoded the protein. For the first approach a monoclonal antibody, MAb 6898, which reacted specifically with 65K DBP , was isolated. This antibody was used, with the techniques of hybrid arrest of in vitro translation and in vitro translation of selected mRNA, to identify the gene encoding 65K DBP . The second approach involved preparation of antisera directed against oligopeptides corresponding to regions of the predicted amino acid sequence of this gene. These antisera reacted specifically with 65K DBP , thus confirming the gene assignment

  19. A phylogenomic approach to vertebrate phylogeny supports a turtle-archosaur affinity and a possible paraphyletic lissamphibia.

    Directory of Open Access Journals (Sweden)

    Jonathan J Fong

    Full Text Available In resolving the vertebrate tree of life, two fundamental questions remain: 1 what is the phylogenetic position of turtles within amniotes, and 2 what are the relationships between the three major lissamphibian (extant amphibian groups? These relationships have historically been difficult to resolve, with five different hypotheses proposed for turtle placement, and four proposed branching patterns within Lissamphibia. We compiled a large cDNA/EST dataset for vertebrates (75 genes for 129 taxa to address these outstanding questions. Gene-specific phylogenetic analyses revealed a great deal of variation in preferred topology, resulting in topologically ambiguous conclusions from the combined dataset. Due to consistent preferences for the same divergent topologies across genes, we suspected systematic phylogenetic error as a cause of some variation. Accordingly, we developed and tested a novel statistical method that identifies sites that have a high probability of containing biased signal for a specific phylogenetic relationship. After removing putatively biased sites, support emerged for a sister relationship between turtles and either crocodilians or archosaurs, as well as for a caecilian-salamander sister relationship within Lissamphibia, with Lissamphibia potentially paraphyletic.

  20. Status of marine turtle rehabilitation in Queensland

    Directory of Open Access Journals (Sweden)

    Jaylene Flint

    2017-03-01

    Full Text Available Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59% of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39% turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental

  1. Status of marine turtle rehabilitation in Queensland.

    Science.gov (United States)

    Flint, Jaylene; Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  2. Status of marine turtle rehabilitation in Queensland

    Science.gov (United States)

    Flint, Mark; Limpus, Colin James; Mills, Paul

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-year period, 5,022 of these turtles were stranded alive with the remainder verified as dead or of unknown condition. A total of 2,970 (59%) of these live strandings were transported to a rehabilitation facility. Overall, 1,173/2,970 (39%) turtles were released over 18 years, 101 of which were recaptured: 77 reported as restrandings (20 dead, 13 alive subsequently died, 11 alive subsequently euthanized, 33 alive) and 24 recaptured during normal marine turtle population monitoring or fishing activities. Of the turtles admitted to rehabilitation exhibiting signs of disease, 88% of them died, either unassisted or by euthanasia and 66% of turtles admitted for unknown causes of stranding died either unassisted or by euthanasia. All turtles recorded as having a buoyancy disorder with no other presenting problem or disorder recorded, were released alive. In Queensland, rehabilitation costs approximately $1,000 per animal per year admitted to a center, $2,583 per animal per year released, and $123,750 per animal per year for marine turtles which are presumably successfully returned to the functional population. This practice may not be economically viable in its present configuration, but may be more cost effective as a mobile response unit. Further there is certainly benefit giving individual turtles a chance at survival and educating the public in the perils facing marine turtles. As well, rehabilitation can provide insight into the diseases and environmental stressors causing

  3. Seeing red to being red: conserved genetic mechanism for red cone oil droplets and co-option for red coloration in birds and turtles.

    Science.gov (United States)

    Twyman, Hanlu; Valenzuela, Nicole; Literman, Robert; Andersson, Staffan; Mundy, Nicholas I

    2016-08-17

    Avian ketocarotenoid pigments occur in both the red retinal oil droplets that contribute to colour vision and bright red coloration used in signalling. Turtles are the only other tetrapods with red retinal oil droplets, and some also display red carotenoid-based coloration. Recently, the CYP2J19 gene was strongly implicated in ketocarotenoid synthesis in birds. Here, we investigate CYP2J19 evolution in relation to colour vision and red coloration in reptiles using genomic and expression data. We show that turtles, but not crocodiles or lepidosaurs, possess a CYP2J19 orthologue, which arose via gene duplication before turtles and archosaurs split, and which is strongly and specifically expressed in the ketocarotenoid-containing retina and red integument. We infer that CYP2J19 initially functioned in colour vision in archelosaurs and conclude that red ketocarotenoid-based coloration evolved independently in birds and turtles via gene regulatory changes of CYP2J19 Our results suggest that red oil droplets contributed to colour vision in dinosaurs and pterosaurs. © 2016 The Author(s).

  4. The Expression of Genes Encoding Secreted Proteins in Medicago truncatula A17 Inoculated Roots

    Directory of Open Access Journals (Sweden)

    LUCIA KUSUMAWATI

    2013-09-01

    Full Text Available Subtilisin-like serine protease (MtSBT, serine carboxypeptidase (MtSCP, MtN5, non-specific lipid transfer protein (MtnsLTP, early nodulin2-like protein (MtENOD2-like, FAD-binding domain containing protein (MtFAD-BP1, and rhicadhesin receptor protein (MtRHRE1 were among 34 proteins found in the supernatant of M. truncatula 2HA and sickle cell suspension cultures. This study investigated the expression of genes encoding those proteins in roots and developing nodules. Two methods were used: quantitative real time RT-PCR and gene expression analysis (with promoter:GUS fusion in roots. Those proteins are predicted as secreted proteins which is indirectly supported by the findings that promoter:GUS fusions of six of the seven genes encoding secreted proteins were strongly expressed in the vascular bundle of transgenic hairy roots. All six genes have expressed in 14-day old nodule. The expression levels of the selected seven genes were quantified in Sinorhizobium-inoculated and control plants using quantitative real time RT-PCR. In conclusion, among seven genes encoding secreted proteins analyzed, the expression level of only one gene, MtN5, was up-regulated significantly in inoculated root segments compared to controls. The expression of MtSBT1, MtSCP1, MtnsLTP, MtFAD-BP1, MtRHRE1 and MtN5 were higher in root tip than in other tissues examined.

  5. Checklist of sea turtles endohelminth in Neotropical region

    Directory of Open Access Journals (Sweden)

    Werneck M. R.

    2016-09-01

    Full Text Available This paper presents a list of parasites described in sea turtles from the Neotropical region. Through the review of literature the occurrence of 79 taxa of helminthes parasites were observed, mostly consisting of the Phylum Platyhelminthes with 76 species distributed in 14 families and 2 families of the Phylum Nematoda within 3 species. Regarding the parasite records, the most studied host was the green turtle (Chelonia mydas followed by the hawksbill turtle (Eretmochelys imbricata, olive ridley turtle (Lepidochelys olivacea, loggerhead turtle (Caretta caretta and leatherback turtle (Dermochelys coriacea. Overall helminths were reported in 12 countries and in the Caribbean Sea region. This checklist is the largest compilation of data on helminths found in sea turtles in the Neotropical region.

  6. Evolutionary origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2015-09-10

    Transitional fossils informing the origin of turtles are among the most sought-after discoveries in palaeontology. Despite strong genomic evidence indicating that turtles evolved from within the diapsid radiation (which includes all other living reptiles), evidence of the inferred transformation between an ancestral turtle with an open, diapsid skull to the closed, anapsid condition of modern turtles remains elusive. Here we use high-resolution computed tomography and a novel character/taxon matrix to study the skull of Eunotosaurus africanus, a 260-million-year-old fossil reptile from the Karoo Basin of South Africa, whose distinctive postcranial skeleton shares many unique features with the shelled body plan of turtles. Scepticism regarding the status of Eunotosaurus as the earliest stem turtle arises from the possibility that these shell-related features are the products of evolutionary convergence. Our phylogenetic analyses indicate strong cranial support for Eunotosaurus as a critical transitional form in turtle evolution, thus fortifying a 40-million-year extension to the turtle stem and moving the ecological context of its origin back onto land. Furthermore, we find unexpected evidence that Eunotosaurus is a diapsid reptile in the process of becoming secondarily anapsid. This is important because categorizing the skull based on the number of openings in the complex of dermal bone covering the adductor chamber has long held sway in amniote systematics, and still represents a common organizational scheme for teaching the evolutionary history of the group. These discoveries allow us to articulate a detailed and testable hypothesis of fenestral closure along the turtle stem. Our results suggest that Eunotosaurus represents a crucially important link in a chain that will eventually lead to consilience in reptile systematics, paving the way for synthetic studies of amniote evolution and development.

  7. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles.

    Science.gov (United States)

    Joyce, Walter G; Rabi, Márton; Clark, James M; Xu, Xing

    2016-10-28

    Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given

  8. Genome analysis and identification of gelatinase encoded gene in Enterobacter aerogenes

    Science.gov (United States)

    Shahimi, Safiyyah; Mutalib, Sahilah Abdul; Khalid, Rozida Abdul; Repin, Rul Aisyah Mat; Lamri, Mohd Fadly; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    In this study, bioinformatic analysis towards genome sequence of E. aerogenes was done to determine gene encoded for gelatinase. Enterobacter aerogenes was isolated from hot spring water and gelatinase species-specific bacterium to porcine and fish gelatin. This bacterium offers the possibility of enzymes production which is specific to both species gelatine, respectively. Enterobacter aerogenes was partially genome sequenced resulting in 5.0 mega basepair (Mbp) total size of sequence. From pre-process pipeline, 87.6 Mbp of total reads, 68.8 Mbp of total high quality reads and 78.58 percent of high quality percentage was determined. Genome assembly produced 120 contigs with 67.5% of contigs over 1 kilo base pair (kbp), 124856 bp of N50 contig length and 55.17 % of GC base content percentage. About 4705 protein gene was identified from protein prediction analysis. Two candidate genes selected have highest similarity identity percentage against gelatinase enzyme available in Swiss-Prot and NCBI online database. They were NODE_9_length_26866_cov_148.013245_12 containing 1029 base pair (bp) sequence with 342 amino acid sequence and NODE_24_length_155103_cov_177.082458_62 which containing 717 bp sequence with 238 amino acid sequence, respectively. Thus, two paired of primers (forward and reverse) were designed, based on the open reading frame (ORF) of selected genes. Genome analysis of E. aerogenes resulting genes encoded gelatinase were identified.

  9. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    Science.gov (United States)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  10. Relating genes to function: identifying enriched transcription factors using the ENCODE ChIP-Seq significance tool.

    Science.gov (United States)

    Auerbach, Raymond K; Chen, Bin; Butte, Atul J

    2013-08-01

    Biological analysis has shifted from identifying genes and transcripts to mapping these genes and transcripts to biological functions. The ENCODE Project has generated hundreds of ChIP-Seq experiments spanning multiple transcription factors and cell lines for public use, but tools for a biomedical scientist to analyze these data are either non-existent or tailored to narrow biological questions. We present the ENCODE ChIP-Seq Significance Tool, a flexible web application leveraging public ENCODE data to identify enriched transcription factors in a gene or transcript list for comparative analyses. The ENCODE ChIP-Seq Significance Tool is written in JavaScript on the client side and has been tested on Google Chrome, Apple Safari and Mozilla Firefox browsers. Server-side scripts are written in PHP and leverage R and a MySQL database. The tool is available at http://encodeqt.stanford.edu. abutte@stanford.edu Supplementary material is available at Bioinformatics online.

  11. 50 CFR 223.205 - Sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...

  12. Cloning and characterization of the gsk gene encoding guanosine kinase of Escherichia coli

    DEFF Research Database (Denmark)

    Harlow, Kenneth W.; Nygaard, Per; Hove-Jensen, Bjarne

    1995-01-01

    The Escherichia coli gsk gene encoding guanosine kinase was cloned from the Kohara gene library by complementation of the E. coli gsk-1 mutant allele. The cloned DNA fragment was sequenced and shown to encode a putative polypeptide of 433 amino acids with a molecular mass of 48,113 Da. Minicell...

  13. 42 CFR 71.52 - Turtles, tortoises, and terrapins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Turtles, tortoises, and terrapins. 71.52 Section 71..., INSPECTION, LICENSING FOREIGN QUARANTINE Importations § 71.52 Turtles, tortoises, and terrapins. (a) Definitions. As used in this section the term: Turtles includes all animals commonly known as turtles...

  14. The Classroom Animal: Snapping Turtles.

    Science.gov (United States)

    Kramer, David C.

    1987-01-01

    Describes the distinctive features of the common snapping turtle. Discusses facts and misconceptions held about the turtle. Provides guidelines for proper care and treatment of a young snapper in a classroom environment. (ML)

  15. Isolation of Clostridium difficile and Detection of A and B Toxins Encoding Genes

    Directory of Open Access Journals (Sweden)

    Abbas Ali Imani Fooladi

    2014-02-01

    Full Text Available Background: Clostridium difficile is the most important anaerobic, gram positive, spore forming bacillus which is known as a prevalent factor leading to antibiotic associated diarrheas and is the causative agent of pseudomembrane colitis. The role of this bacterium along with the over use of antibiotics have been proved to result in colitis. The major virulence factors of these bacteria are the A and B toxins. Objectives: The purpose of this study was to isolate C. difficile from stool samples and detect A and B toxins encoding genes, in order toserve as a routine method for clinical diagnosis. Materials and Methods: Recognition of A and B toxins encoding genes by uniplex and multiplex PCR using two pairs of primers from 136 accumulated stool samples. Results: Results of the present study showed that out of 136 stool samples, three C. difficile were isolated and these strains contained A and B toxins encoding genes. Conclusions: It was concluded that although detection of C. difficile from stool samples based on PCR (polymerase chain reaction is expensive, yet this method is more sensitive and less time-consuming than culture methods and can be used as a clinical laboratory test.

  16. Genetic studies of freshwater turtle and tortoises: a review of the past 70 years

    Science.gov (United States)

    FitzSimmons, Nancy N.; Hart, Kristen M.

    2007-01-01

    Powerful molecular techniques have been developed over many decades for resolving genetic relationships, population genetic structure, patterns of gene flow, mating systems, and the amount of genetic diversity in animals. Genetic studies of turtles were among the earliest and the rapid application of new genetic tools and analytical techniques is still apparent in the literature on turtles. At present, of the 198 freshwater turtles and tortoises that are listed as not extinct by the IUCN Red List, 69 species worldwide are listed as endangered or critically endangered, and an additional 56 species are listed as vulnerable. Of the ca. 300 species of the freshwater turtles and tortoises in the world, ca. 42% are considered to be facing a high risk extinction, and there is a need to focus intense conservation attention on these species. This includes a need to (i) assess our current state of knowledge regarding the application of genetics to studies of freshwater turtles and tortoises and (ii) determine future research directions. Here, we review all available published studies for the past 70 years that were written in English and used genetic markers (e.g. karyotypes, allozymes, DNA loci) to better understand the biology of freshwater turtles and tortoises. We review the types of studies conducted in relation to the species studied and quantify the countries where the studies were performed. We rack the changing use of different genetic markers through time and report on studies focused on aspects of molecular evolution within turtle genomes. We address the usefulness of particular genetic markers to answer phylogenetic questions and present data comparing population genetic structure and mating systems across species. We draw specific attention to whether authors have considered issues to turtle conservation in their research or provided new insights that have been translated into recommendations for conservation management.

  17. Identification and Characterization of an Autolysin-Encoding Gene of Streptococcus mutans

    OpenAIRE

    Shibata, Yukie; Kawada, Miki; Nakano, Yoshio; Toyoshima, Kuniaki; Yamashita, Yoshihisa

    2005-01-01

    We identified a gene (atlA) encoding autolytic activity from Streptococcus mutans Xc. The AtlA protein predicted to be encoded by atlA is composed of 979 amino acids with a molecular weight of 107,279 and has a conserved β-1,4-N-acetylmuramidase (lysozyme) domain in the C-terminal portion. Sodium dodecyl sulfate extracts of strain Xc showed two major bacteriolytic bands with molecular masses of 107 and 79 kDa, both of which were absent from a mutant with inactivated atlA. Western blot analysi...

  18. Recombinant vectors construction for cellobiohydrolase encoding gene constitutive expression

    Directory of Open Access Journals (Sweden)

    Leontina GURGU

    2012-12-01

    Full Text Available Cellobiohydrolases (EC 3.2.1.91 are important exo enzymes involved in cellulose hydrolysis alongside endoglucanases (EC 3.2.1.4 and β-glucosidases (EC 3.2.1.21. Heterologous cellobiohydrolase gene expression under constitutive promoter control using Saccharomyces cerevisiae as host system is of great importance for a successful SSF process. From this point of view, the main objective of the work was to use Yeplac181 expression vector as a recipient for cellobiohdrolase - cbhB encoding gene expression under the control of the actin promoter, in Saccharomyces cerevisiae. Two hybridvectors, YEplac-Actp and YEplac-Actp-CbhB, were generated usingEscherichia coli XLI Blue for the cloning experiments. Constitutive cbhB gene expression was checked by proteine gel electrophoresis (SDS-PAGE after insertion of these constructs into Saccharomyces cerevisiae.

  19. Captive sea turtle rearing inventory, feeding, and water chemistry in sea turtle rearing tanks at NOAA Galveston 1995-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The database contains daily records of sea turtle inventories by species feeding rates type of food fed sick sea turtles sea turtles that have died log of tanks...

  20. Analysis of the structural genes encoding M-factor in the fission yeast Schizosaccharomyces pombe: identification of a third gene, mfm3

    DEFF Research Database (Denmark)

    Kjaerulff, S; Davey, William John; Nielsen, O

    1994-01-01

    We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M-factor. ......We previously identified two genes, mfm1 and mfm2, with the potential to encode the M-factor mating pheromone of the fission yeast Schizosaccharomyces pombe (J. Davey, EMBO J. 11:951-960, 1992), but further analysis revealed that a mutant strain lacking both genes still produced active M...... that is not rescued by addition of exogenous M-factor. A mutational analysis reveals that all three mfm genes contribute to the production of M-factor. Their transcription is limited to M cells and requires the mat1-Mc and ste11 gene products. Each gene is induced when the cells are starved of nitrogen and further...

  1. Sea Turtle Radio Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radio transmitters attached to sea turtles captured in various fishing gear enabled us to track and measure surfacing time of each turtle. Determining location of...

  2. Sea Turtle Stranding Network Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Turtle Stranding and Salvage Network (STSSN) was formally established in 1980 to collect information on and document the stranding of marine turtles along...

  3. The Biophysical Characteristics Of Hatching Habitat Of Lekang Turtle (Lepidhochelys olivacea) Eggs In Turtle Conservation And Education Center, Bali

    Science.gov (United States)

    Suryono; Ario, R.; Wibowo, E.; Handoyo, G.

    2018-02-01

    Lekang turtle (Lepidhochelys olivacea) is one of the fauna that is protected as an endangered population. This marine reptile was able to migrate in great distance along the Indian Ocean, the Pacific Ocean, and South East Asia. Its existence has long been threatened, either by nature or human activities that endangered the population directly or indirectly. The decreasing number of sea turtle population that nest in Bali area is one indication of the reducing number of Lekang turtle in Indonesia. If left unchecked, it will result in the loss of Lekang turtle. This study aims to determine the successful percentage of conservation techniques and Lekang turtle hatching eggs (olive ridley sea turtle) in TCEC, Bali. The method used in this research is the method of observation or direct observation done in the field. Data collection is done by direct observation in the field. The results showed that the turtle breeding site is located in an area that is less strategic because too far from the sea, so that the temperature and humidity cannot be stable. Water content is most an important factor in the growth of embryo and egg hatching. This will lead to the decrease of hatching percentage of turtle eggs.

  4. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations.

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Morcillo, Patricia; Guardiola, Francisco A; Espinosa, Cristobal; Esteban, María A; Cuesta, Alberto; Girondot, Marc; Romero, Diego

    2018-02-01

    Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H 2 O 2 may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Detailed analysis of putative genes encoding small proteins in legume genomes

    Directory of Open Access Journals (Sweden)

    Gabriel eGuillén

    2013-06-01

    Full Text Available Diverse plant genome sequencing projects coupled with powerful bioinformatics tools have facilitated massive data analysis to construct specialized databases classified according to cellular function. However, there are still a considerable number of genes encoding proteins whose function has not yet been characterized. Included in this category are small proteins (SPs, 30-150 amino acids encoded by short open reading frames (sORFs. SPs play important roles in plant physiology, growth, and development. Unfortunately, protocols focused on the genome-wide identification and characterization of sORFs are scarce or remain poorly implemented. As a result, these genes are underrepresented in many genome annotations. In this work, we exploited publicly available genome sequences of Phaseolus vulgaris, Medicago truncatula, Glycine max and Lotus japonicus to analyze the abundance of annotated SPs in plant legumes. Our strategy to uncover bona fide sORFs at the genome level was centered in bioinformatics analysis of characteristics such as evidence of expression (transcription, presence of known protein regions or domains, and identification of orthologous genes in the genomes explored. We collected 6170, 10461, 30521, and 23599 putative sORFs from P. vulgaris, G. max, M. truncatula, and L. japonicus genomes, respectively. Expressed sequence tags (ESTs available in the DFCI Gene Index database provided evidence that ~one-third of the predicted legume sORFs are expressed. Most potential SPs have a counterpart in a different plant species and counterpart regions or domains in larger proteins. Potential functional sORFs were also classified according to a reduced set of GO categories, and the expression of 13 of them during P. vulgaris nodule ontogeny was confirmed by qPCR. This analysis provides a collection of sORFs that potentially encode for meaningful SPs, and offers the possibility of their further functional evaluation.

  6. 78 FR 44878 - Turtles Intrastate and Interstate Requirements

    Science.gov (United States)

    2013-07-25

    .... FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements AGENCY: Food and Drug Administration... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for... 21 CFR 1240.62 on May 23, 1975 (40 FR 22543), that ban the sale and distribution of viable turtle...

  7. Do roads reduce painted turtle (Chrysemys picta populations?

    Directory of Open Access Journals (Sweden)

    Alexandra Dorland

    Full Text Available Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites and 10 as far as possible from any major roads (No Road sites. There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  8. Do roads reduce painted turtle (Chrysemys picta) populations?

    Science.gov (United States)

    Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore

    2014-01-01

    Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.

  9. Sea turtle photo-identification database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ability to correctly and consistently identify sea turtles over time was evaluated using digital imagery of the turtles dorsal and side views of their heads and...

  10. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    Science.gov (United States)

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  11. Detection of β-lactamase encoding genes in feces, soil and water from a Brazilian pig farm.

    Science.gov (United States)

    Furlan, João Pedro Rueda; Stehling, Eliana Guedes

    2018-01-10

    β-lactam antibiotics are widely used for the treatment of different types of infections worldwide and the resistance to these antibiotics has grown sharply, which is of great concern. Resistance to β-lactams in gram-negative bacteria is mainly due to the production of β-lactamases, which are classified according to their functional activities. The aim of this study was to verify the presence of β-lactamases encoding genes in feces, soil, and water from a Brazilian pig farm. Different β-lactamases encoding genes were found, including bla CTX-M-Gp1 , bla CTX-M-Gp9 , bla SHV , bla OXA-1-like , bla GES , and bla VEB . The bla SHV and bla CTX-M-Gp1 genes have been detected in all types of samples, indicating the spread of β-lactam resistant bacteria among farm pigs and the environment around them. These results indicate that β-lactamase encoding genes belonging to the cloxacillinase, ESBL, and carbapenemase and they have high potential to spread in different sources, due to the fact that genes are closely related to mobile genetic elements, especially plasmids.

  12. A sinemydid turtle from the Jehol Biota provides insights into the basal divergence of crown turtles.

    Science.gov (United States)

    Zhou, Chang-Fu; Rabi, Márton

    2015-11-10

    Morphological phylogenies stand in a major conflict with molecular hypotheses regarding the phylogeny of Cryptodira, the most diverse and widely distributed clade of extant turtles. However, molecular hypotheses are often considered a better estimate of phylogeny given that it is more consistent with the stratigraphic and geographic distribution of extinct taxa. That morphology fails to reproduce the molecular topology partly originates from problematic character polarization due to yet another contradiction around the composition of the cryptodiran stem lineage. Extinct sinemydids are one of these problematic clades: they have been either placed among stem-cryptodires, stem-chelonioid sea turtles, or even stem-turtles. A new sinemydid from the Early Cretaceous Jehol Biota (Yixian Formation, Barremian-Early Aptian) of China, Xiaochelys ningchengensis gen. et sp. nov., allows for a reassessment of the phylogenetic position of Sinemydidae. Our analysis indicates that sinemydids mostly share symplesiomorphies with sea turtles and their purported placement outside the crown-group of turtles is an artefact of previous datasets. The best current phylogenetic estimate is therefore that sinemydids are part of the stem lineage of Cryptodira together with an array of other Jurassic to Cretaceous taxa. Our study further emphasises the importance of using molecular scaffolds in global turtle analyses.

  13. The western pond turtle: Habitat and history. Final report

    International Nuclear Information System (INIS)

    Holland, D.C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effect of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy

  14. Bioinformatics Analysis of NBS-LRR Encoding Resistance Genes in Setaria italica.

    Science.gov (United States)

    Zhao, Yan; Weng, Qiaoyun; Song, Jinhui; Ma, Hailian; Yuan, Jincheng; Dong, Zhiping; Liu, Yinghui

    2016-06-01

    In plants, resistance (R) genes are involved in pathogen recognition and subsequent activation of innate immune responses. The nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes family forms the largest R-gene family among plant genomes and play an important role in plant disease resistance. In this paper, comprehensive analysis of NBS-encoding genes is performed in the whole Setaria italica genome. A total of 96 NBS-LRR genes are identified, and comprehensive overview of the NBS-LRR genes is undertaken, including phylogenetic analysis, chromosome locations, conserved motifs of proteins, and gene expression. Based on the domain, these genes are divided into two groups and distributed in all Setaria italica chromosomes. Most NBS-LRR genes are located at the distal tip of the long arms of the chromosomes. Setaria italica NBS-LRR proteins share at least one nucleotide-biding domain and one leucine-rich repeat domain. Our results also show the duplication of NBS-LRR genes in Setaria italica is related to their gene structure.

  15. Transitional fossils and the origin of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Bhullar, Bhart-Anjan S; Joyce, Walter G; Gauthier, Jacques A

    2010-12-23

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile-bird clade, (ii) the lizard-tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard-tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the 'parareptile' Eunotosaurus africanus results in a single overriding morphological signal, with turtles outside Diapsida. This result reflects the importance of transitional fossils when long branches separate crown clades, and highlights unexplored issues such as the role of topological congruence when using fossils to calibrate molecular clocks.

  16. Identification of chitinolytic bacteria isolated from shrimp pond sediment and characterization of their chitinase encoding gene

    Science.gov (United States)

    Triwijayani, A. U.; Puspita, I. D.; Murwantoko; Ustadi

    2018-03-01

    Chitinolytic bacteria are a group of bacteria owning enzymes that able to hydrolyze chitin. Previously, we isolated chitinolytic bacteria from shrimp pond sediment in Bantul, Yogyakarta, and obtained five isolates showing high chitinolytic index named as isolate PT1, PT2, PT5, PT6 and PB2. The aims of this study were to identify chitinolytic bacteria isolated from shrimp pond sediment and to characterize the chitinase encoding gene from each isolate. The molecular technique was performed by amplification of 16S rDNA, amplification of chitinase encoding gene and sequence analysis. Two chitinolytic bacteria of PT1 and PT2 were similar to Aeromonas bivalvium strain D15, PT5 to Pseudomonas stutzeri strain BD-2.2.1, PT6 to Serratia marcescens strain FZSF02 and PB2 to Streptomyces misionensis strain OsiRt-1. The comparison of chitinase encoding gene between three isolates with those in Gen Bank shows that PT1 had similar sequences with the chi1 gene in Aeromonas sp. 17m, PT2 with chi1 gene in A. caviae (CB101) and PT6 with chiB gene in S. Marcescens (BJL200).

  17. Transitional fossils and the origin of turtles

    OpenAIRE

    Lyson, Tyler R.; Bever, Gabe S.; Bhullar, Bhart-Anjan S.; Joyce, Walter G.; Gauthier, Jacques A.

    2010-01-01

    The origin of turtles is one of the most contentious issues in systematics with three currently viable hypotheses: turtles as the extant sister to (i) the crocodile–bird clade, (ii) the lizard–tuatara clade, or (iii) Diapsida (a clade composed of (i) and (ii)). We reanalysed a recent dataset that allied turtles with the lizard–tuatara clade and found that the inclusion of the stem turtle Proganochelys quenstedti and the ‘parareptile’ Eunotosaurus africanus results in a single overriding morph...

  18. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Directory of Open Access Journals (Sweden)

    Seabra Ana R

    2010-08-01

    Full Text Available Abstract Background Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS, occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. Results This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2 in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. Conclusions This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate

  19. The endoskeletal origin of the turtle carapace

    Science.gov (United States)

    Hirasawa, Tatsuya; Nagashima, Hiroshi; Kuratani, Shigeru

    2013-01-01

    The turtle body plan, with its solid shell, deviates radically from those of other tetrapods. The dorsal part of the turtle shell, or the carapace, consists mainly of costal and neural bony plates, which are continuous with the underlying thoracic ribs and vertebrae, respectively. Because of their superficial position, the evolutionary origins of these costo-neural elements have long remained elusive. Here we show, through comparative morphological and embryological analyses, that the major part of the carapace is derived purely from endoskeletal ribs. We examine turtle embryos and find that the costal and neural plates develop not within the dermis, but within deeper connective tissue where the rib and intercostal muscle anlagen develop. We also examine the fossils of an outgroup of turtles to confirm that the structure equivalent to the turtle carapace developed independently of the true osteoderm. Our results highlight the hitherto unravelled evolutionary course of the turtle shell. PMID:23836118

  20. The porcine lymphotropic herpesvirus 1 encodes functional regulators of gene expression

    International Nuclear Information System (INIS)

    Lindner, I.; Ehlers, B.; Noack, S.; Dural, G.; Yasmum, N.; Bauer, C.; Goltz, M.

    2007-01-01

    The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1 h , ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1 of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1 h and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation

  1. Coastal leatherback turtles reveal conservation hotspot

    Science.gov (United States)

    Robinson, Nathan J.; Morreale, Stephen J.; Nel, Ronel; Paladino, Frank V.

    2016-01-01

    Previous studies have shown that the world’s largest reptile – the leatherback turtle Dermochelys coriacea – conducts flexible foraging migrations that can cover thousands of kilometres between nesting sites and distant foraging areas. The vast distances that may be travelled by migrating leatherback turtles have greatly complicated conservation efforts for this species worldwide. However, we demonstrate, using a combination of satellite telemetry and stable isotope analysis, that approximately half of the nesting leatherbacks from an important rookery in South Africa do not migrate to distant foraging areas, but rather, forage in the coastal waters of the nearby Mozambique Channel. Moreover, this coastal cohort appears to remain resident year-round in shallow waters (turtles Caretta caretta. The rare presence of a resident coastal aggregation of leatherback turtles not only presents a unique opportunity for conservation, but alongside the presence of loggerhead turtles and other endangered marine megafauna in the Mozambique Channel, highlights the importance of this area as a marine biodiversity hotspot. PMID:27886262

  2. Modern turtle origins: the oldest known cryptodire.

    Science.gov (United States)

    Gaffney, E S; Hutchison, J H; Jenkins, F A; Meeker, L J

    1987-07-17

    The discovery of a turtle in the Early Jurassic(185 million years before present) Kayenta Formation of northeastern Arizona provides significant evidence about the origin of modern turtles. This new taxon possesses many of the primitive features expected in the hypothetical common ancestor of pleurodires and cryptodires, the two groups of modern turtles. It is identified as the oldest known cryptodire because of the presence of a distinctive cryptodiran jaw mechanism consisting of a trochlea over the otic chamber that redirects the line of action of the adductor muscle. Aquatic habits appear to have developed very early in turtle evolution. Kayentachelys extends the known record of cryptodires back at least 45 million years and documents a very early stage in the evolution of modern turtles.

  3. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown

    OpenAIRE

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-01-01

    Background: Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position.Results: The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtle...

  4. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  5. First record of hybridization between green Chelonia mydas and hawksbill Eretmochelys imbricata sea turtles in the Southeast Pacific

    Directory of Open Access Journals (Sweden)

    Shaleyla Kelez

    2016-02-01

    Full Text Available Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13′S; 81°10′W on the 5th of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world’s most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.

  6. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    Science.gov (United States)

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  7. Hierarchical, quantitative biogeographic provinces for all North American turtles and their contribution to the biogeography of turtles and the continent

    Science.gov (United States)

    Ennen, Joshua R.; Matamoros, Wilfredo A.; Agha, Mickey; Lovich, Jeffrey E.; Sweat, Sarah C.; Hoagstrom, Christopher W.

    2017-01-01

    Our study represents the first attempt to describe biogeographic provinces for North American (México, United States, and Canada) turtles. We analyzed three nested data sets separately: (1) all turtles, (2) freshwater turtles, and (3) aquatic turtles. We georeferenced North American turtle distributions, then we created presence–absence matrices for each of the three data sets. We used watershed unit as biogeographic units. We conducted an unweighted pair-group method with arithmetic mean clustering analysis on each Jaccard index distance matrix from our watershed species matrices to delineate biogeographic provinces. Provinces were then tested for significant differences in species compositions in a global model with the use of a one-way analysis of similarity. We conducted a best subset of environmental variables with maximum (rank) correlation with community dissimilarities that determined the best model of abiotic variables explaining province delineation (i.e., climate, topography, and stream channel). To identify which species contributed the most to province delineations, we conducted an indicator species analysis and a similarity-percentage analysis. There were 16 all-turtle provinces, 15 freshwater provinces, and 13 aquatic provinces. Species compositions delineating the provinces were explained by abiotic variables, including mean annual precipitation, mean precipitation seasonality, and diversity of streams. Province delineations correspond closely with geographical boundaries, many of which have Pleistocene origins. For example, rivers with a history of carrying glacial runoff (e.g., Arkansas, Mississippi) sometimes dissect upland provinces, especially for aquatic and semiaquatic turtles. Compared with freshwater fishes, turtles show greater sensitivity to decreased temperature with restriction of most taxa south of the last permafrost maximum. Turtles also exhibit higher sensitivity to climatic, geomorphic, and tectonic instability, with richness

  8. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria)

    Science.gov (United States)

    2012-01-01

    Background The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes), to archosaurs (birds and crocodiles), or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. Results In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites) for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation. Conclusions These results

  9. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria

    Directory of Open Access Journals (Sweden)

    Chiari Ylenia

    2012-07-01

    Full Text Available Abstract Background The morphological peculiarities of turtles have, for a long time, impeded their accurate placement in the phylogeny of amniotes. Molecular data used to address this major evolutionary question have so far been limited to a handful of markers and/or taxa. These studies have supported conflicting topologies, positioning turtles as either the sister group to all other reptiles, to lepidosaurs (tuatara, lizards and snakes, to archosaurs (birds and crocodiles, or to crocodilians. Genome-scale data have been shown to be useful in resolving other debated phylogenies, but no such adequate dataset is yet available for amniotes. Results In this study, we used next-generation sequencing to obtain seven new transcriptomes from the blood, liver, or jaws of four turtles, a caiman, a lizard, and a lungfish. We used a phylogenomic dataset based on 248 nuclear genes (187,026 nucleotide sites for 16 vertebrate taxa to resolve the origins of turtles. Maximum likelihood and Bayesian concatenation analyses and species tree approaches performed under the most realistic models of the nucleotide and amino acid substitution processes unambiguously support turtles as a sister group to birds and crocodiles. The use of more simplistic models of nucleotide substitution for both concatenation and species tree reconstruction methods leads to the artefactual grouping of turtles and crocodiles, most likely because of substitution saturation at third codon positions. Relaxed molecular clock methods estimate the divergence between turtles and archosaurs around 255 million years ago. The most recent common ancestor of living turtles, corresponding to the split between Pleurodira and Cryptodira, is estimated to have occurred around 157 million years ago, in the Upper Jurassic period. This is a more recent estimate than previously reported, and questions the interpretation of controversial Lower Jurassic fossils as being part of the extant turtles radiation

  10. Identification of the Gene Encoding Isoprimeverose-producing Oligoxyloglucan Hydrolase in Aspergillus oryzae*

    Science.gov (United States)

    Matsuzawa, Tomohiko; Mitsuishi, Yasushi; Kameyama, Akihiko

    2016-01-01

    Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes. PMID:26755723

  11. Cloning of gene-encoded stem bromelain on system coming from Pichia pastoris as therapeutic protein candidate

    Science.gov (United States)

    Yusuf, Y.; Hidayati, W.

    2018-01-01

    The process of identifying bacterial recombination using PCR, and restriction, and then sequencing process was done after identifying the bacteria. This research aimed to get a yeast cell of Pichia pastoris which has an encoder gene of stem bromelain enzyme. The production of recombinant stem bromelain enzymes using yeast cells of P. pastoris can produce pure bromelain rod enzymes and have the same conformation with the enzyme’s conformation in pineapple plants. This recombinant stem bromelain enzyme can be used as a therapeutic protein in inflammatory, cancer and degenerative diseases. This study was an early stage of a step series to obtain bromelain rod protein derived from pineapple made with genetic engineering techniques. This research was started by isolating the RNA of pineapple stem which was continued with constructing cDNA using reserve transcriptase-PCR technique (RT-PCR), doing the amplification of bromelain enzyme encoder gene with PCR technique using a specific premiere couple which was designed. The process was continued by cloning into bacterium cells of Escherichia coli. A vector which brought the encoder gene of stem bromelain enzyme was inserted into the yeast cell of P. pastoris and was continued by identifying the yeast cell of P. pastoris which brought the encoder gene of stem bromelain enzyme. The research has not found enzyme gene of stem bromelain in yeast cell of P. pastoris yet. The next step is repeating the process by buying new reagent; RNase inhibitor, and buying liquid nitrogen.

  12. Diversity of beetle genes encoding novel plant cell wall degrading enzymes.

    Directory of Open Access Journals (Sweden)

    Yannick Pauchet

    Full Text Available Plant cell walls are a heterogeneous mixture of polysaccharides and proteins that require a range of different enzymes to degrade them. Plant cell walls are also the primary source of cellulose, the most abundant and useful biopolymer on the planet. Plant cell wall degrading enzymes (PCWDEs are therefore important in a wide range of biotechnological processes from the production of biofuels and food to waste processing. However, despite the fact that the last common ancestor of all deuterostomes was inferred to be able to digest, or even synthesize, cellulose using endogenous genes, all model insects whose complete genomes have been sequenced lack genes encoding such enzymes. To establish if the apparent "disappearance" of PCWDEs from insects is simply a sampling problem, we used 454 mediated pyrosequencing to scan the gut transcriptomes of beetles that feed on a variety of plant derived diets. By sequencing the transcriptome of five beetles, and surveying publicly available ESTs, we describe 167 new beetle PCWDEs belonging to eight different enzyme families. This survey proves that these enzymes are not only present in non-model insects but that the multigene families that encode them are apparently undergoing complex birth-death dynamics. This reinforces the observation that insects themselves, and not just their microbial symbionts, are a rich source of PCWDEs. Further it emphasises that the apparent absence of genes encoding PCWDEs from model organisms is indeed simply a sampling artefact. Given the huge diversity of beetles alive today, and the diversity of their lifestyles and diets, we predict that beetle guts will emerge as an important new source of enzymes for use in biotechnology.

  13. Effects of TCDD on the expression of nuclear encoded mitochondrial genes

    International Nuclear Information System (INIS)

    Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy

    2010-01-01

    Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 nuclear genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 μg/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 h) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change| > 1.5 and P-value < 0.1). Of these, 8 exhibited a sigmoidal or exponential dose-response profile (0.03 to 300 μg/kg TCDD) at 4, 24 or 72 h. Dose-responsive genes encoded proteins associated with electron transport chain (ETC) complexes I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of all 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity.

  14. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    Science.gov (United States)

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  15. The promoter of the glucoamylase-encoding gene of Aspergillus niger functions in Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.L. (Dept. of Agriculture, Madison, WI (United States) Univ. of Wisconsin, Madison (United States)); Gaskell, J.; Cullen, D. (Dept. of Agriculture, Madison, WI (United States)); Berka, R.M.; Yang, M.; Henner, D.J. (Genentech Inc., San Francisco, CA (United States))

    1990-01-01

    Promoter sequences from the Aspergillus niger glucoamylase-encoding gene (glaA) were linked to the bacterial hygromycin (Hy) phosphotransferase-encoding gene (hph) and this chimeric marker was used to select Hy-resistant (Hy[sup R]) Ustilago maydis transformants. This is an example of an Ascomycete promoter functioning in a Basidiomycete. Hy[sup R] transformants varied with respect to copy number of integrated vector, mitotic stability, and tolerance to Hy. Only 216 bp of glaA promoter sequence is required for expression in U. maydis but this promoter is not induced by starch as it is in Aspergillus spp. The transcription start points are the same in U. maydis and A. niger.

  16. Tracking sea turtles in the Everglades

    Science.gov (United States)

    Hart, Kristin M.

    2008-01-01

    The U.S. Geological Survey (USGS) has a long history of conducting research on threatened, endangered, and at-risk species inhabiting both terrestrial and marine environments, particularly those found within national parks and protected areas. In the coastal Gulf of Mexico region, for example, USGS scientist Donna Shaver at Padre Island National Seashore in Texas has focused on “headstarting” hatchlings of the rare Kemp’s ridley sea turtle (Lepidochelys kempii). She is also analyzing trends in sea turtle strandings onshore and interactions with Gulf shrimp fisheries. Along south Florida’s Gulf coast, the USGS has focused on research and monitoring for managing the greater Everglades ecosystem. One novel project involves the endangered green sea turtle (Chelonia mydas). The ecology and movements of adult green turtles are reasonably well understood, largely due to decades of nesting beach monitoring by a network of researchers and volunteers. In contrast, relatively little is known about the habitat requirements and movements of juvenile and subadult sea turtles of any species in their aquatic environment.

  17. Sea Turtle Research Program Summary Report

    National Research Council Canada - National Science Library

    1997-01-01

    The USACE Sea Turtle Research Program (STRP) was conducted to minimize the risk to sea turtle populations in channels along the southeast Atlantic region of the United States from hopper-dredging activities...

  18. AIB1 gene amplification and the instability of polyQ encoding sequence in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Clarke Robert

    2006-05-01

    Full Text Available Abstract Background The poly Q polymorphism in AIB1 (amplified in breast cancer gene is usually assessed by fragment length analysis which does not reveal the actual sequence variation. The purpose of this study is to investigate the sequence variation of poly Q encoding region in breast cancer cell lines at single molecule level, and to determine if the sequence variation is related to AIB1 gene amplification. Methods The polymorphic poly Q encoding region of AIB1 gene was investigated at the single molecule level by PCR cloning/sequencing. The amplification of AIB1 gene in various breast cancer cell lines were studied by real-time quantitative PCR. Results Significant amplifications (5–23 folds of AIB1 gene were found in 2 out of 9 (22% ER positive cell lines (in BT-474 and MCF-7 but not in BT-20, ZR-75-1, T47D, BT483, MDA-MB-361, MDA-MB-468 and MDA-MB-330. The AIB1 gene was not amplified in any of the ER negative cell lines. Different passages of MCF-7 cell lines and their derivatives maintained the feature of AIB1 amplification. When the cells were selected for hormone independence (LCC1 and resistance to 4-hydroxy tamoxifen (4-OH TAM (LCC2 and R27, ICI 182,780 (LCC9 or 4-OH TAM, KEO and LY 117018 (LY-2, AIB1 copy number decreased but still remained highly amplified. Sequencing analysis of poly Q encoding region of AIB1 gene did not reveal specific patterns that could be correlated with AIB1 gene amplification. However, about 72% of the breast cancer cell lines had at least one under represented (3CAA(CAG9(CAACAG3(CAACAGCAG2CAA of the original cell line, a number of altered poly Q encoding sequences were found in the derivatives of MCF-7 cell lines. Conclusion These data suggest that poly Q encoding region of AIB1 gene is somatic unstable in breast cancer cell lines. The instability and the sequence characteristics, however, do not appear to be associated with the level of the gene amplification.

  19. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period.

    Science.gov (United States)

    Li, Boqiang; Xia, Yongxiu; Wang, Yuying; Qin, Guozheng; Tian, Shiping

    2017-01-01

    'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2 , and UGFT2 . Moreover, the transcript abundance of MYBA1-1 and MYB5-1 , the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.

  20. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells.

    Science.gov (United States)

    Wang, Longqiong; Jing, Jinzhong; Yan, Hui; Tang, Jiayong; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Tian, Gang; Cai, Jingyi; Shang, Haiying; Zhao, Hua

    2018-04-18

    This study was conducted to profile selenoprotein encoding genes in mouse RAW264.7 cells upon lipopolysaccharide (LPS) challenge and integrate their roles into immunological regulation in response to selenium (Se) pretreatment. LPS was used to develop immunological stress in macrophages. Cells were pretreated with different levels of Se (0, 0.5, 1.0, 1.5, 2.0 μmol Se/L) for 2 h, followed by LPS (100 ng/mL) stimulation for another 3 h. The mRNA expression of 24 selenoprotein encoding genes and 9 inflammation-related genes were investigated. The results showed that LPS (100 ng/mL) effectively induced immunological stress in RAW264.7 cells with induced inflammation cytokines, IL-6 and TNF-α, mRNA expression, and cellular secretion. LPS increased (P immunological stress in RAW264.7 cells accompanied with the global downregulation of selenoprotein encoding genes and Se pretreatment alleviated immunological stress via upregulation of a subset of selenoprotein encoding genes.

  1. Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes

    NARCIS (Netherlands)

    Punt, P.J.; Schuren, F.H.J.; Lehmbeck, J.; Christensen, T.; Hjort, C.; Hondel, C.A.M.J.J. van den

    2008-01-01

    Expression of several Aspergillus niger genes encoding major secreted, but not vacuolar, protease genes including the major acid protease gene pepA, was shown to be affected in the previously isolated A. niger protease mutant, AB1.13 [Mattern, I.E., van Noort, J.M., van den Berg, P., Archer, D.A.,

  2. Assessment of MEGA BORG impacts on sea turtles

    International Nuclear Information System (INIS)

    Gitschlag, G.

    1993-01-01

    Studies were conducted to assess the impacts of the MEGA BORG oil spill on sea turtles in the path of the oil plume. Aerial surveys were performed to determine the presence of turtles and provide a gross visual assessment of potential impacts. Although extensive efforts were made to capture sea turtles around oil and gas platforms only one loggerhead sea turtle, Caretta caretta, was captured. Neither external visual inspection nor laboratory fecal analysis showed evidence of petroleum contamination

  3. Sea turtles sightings in North Carolina

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles sightings are reported to the NMFS Beaufort Laboratory sea turtle program by the general public as they are fishing, boating, etc. These sightings...

  4. Molecular cloning and expression of the gene encoding the kinetoplast-associated type II DNA topoisomerase of Crithidia fasciculata.

    Science.gov (United States)

    Pasion, S G; Hines, J C; Aebersold, R; Ray, D S

    1992-01-01

    A type II DNA topoisomerase, topoIImt, was shown previously to be associated with the kinetoplast DNA of the trypanosomatid Crithidia fasciculata. The gene encoding this kinetoplast-associated topoisomerase has been cloned by immunological screening of a Crithidia genomic expression library with monoclonal antibodies raised against the purified enzyme. The gene CfaTOP2 is a single copy gene and is expressed as a 4.8-kb polyadenylated transcript. The nucleotide sequence of CfaTOP2 has been determined and encodes a predicted polypeptide of 1239 amino acids with a molecular mass of 138,445. The identification of the cloned gene is supported by immunoblot analysis of the beta-galactosidase-CfaTOP2 fusion protein expressed in Escherichia coli and by analysis of tryptic peptide sequences derived from purified topoIImt. CfaTOP2 shares significant homology with nuclear type II DNA topoisomerases of other eukaryotes suggesting that in Crithidia both nuclear and mitochondrial forms of topoisomerase II are encoded by the same gene.

  5. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    DEFF Research Database (Denmark)

    Kovacs, J A; Powell, F; Edman, J C

    1993-01-01

    hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development......The major surface antigen of Pneumocystis carinii, a life-threatening opportunistic pathogen in human immunodeficiency virus-infected patients, is an abundant glycoprotein that functions in host-organism interactions. A monoclonal antibody to this antigen is protective in animals, and thus...... blot studies using chromosomal or restricted DNA, the major surface glycoproteins are the products of a multicopy family of genes. The predicted protein has an M(r) of approximately 123,000, is relatively rich in cysteine residues (5.5%) that are very strongly conserved, and contains a well conserved...

  6. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  7. Global sea turtle conservation successes.

    Science.gov (United States)

    Mazaris, Antonios D; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C

    2017-09-01

    We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story.

  8. North American box turtles: A natural history

    Science.gov (United States)

    Dodd, C. Kenneth

    2002-01-01

    Once a familiar backyard visitor in many parts of the United States and Mexico, the box turtle is losing the battle against extinction. In North American Box Turtles, C. Kenneth Dodd, Jr., has written the first book-length natural history of the twelve species and subspecies of this endangered animal. This volume includes comprehensive information on the species’ evolution, behavior, courtship and reproduction, habitat use, diet, population structure, systematics, and disease. Special features include color photos of all species, subspecies, and their habitats; a simple identification guide to both living and fossil species; and a summary of information on fossil Terrapene and Native uses of box turtles. End-of-chapter sections highlight future research directions, including the need for long-term monitoring and observation of box turtles within their natural habitat and conservation applications. A glossary and a bibliography of literature on box turtles accompany the text.

  9. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    Science.gov (United States)

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    Science.gov (United States)

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  11. Origin of the unique ventilatory apparatus of turtles.

    Science.gov (United States)

    Lyson, Tyler R; Schachner, Emma R; Botha-Brink, Jennifer; Scheyer, Torsten M; Lambertz, Markus; Bever, G S; Rubidge, Bruce S; de Queiroz, Kevin

    2014-11-07

    The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.

  12. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp.

    Science.gov (United States)

    Mitura, Agata; Niemczuk, Krzysztof; Zaręba, Kinga; Zając, Magdalena; Laroucau, Karine; Szymańska-Czerwińska, Monika

    2017-01-01

    A variety of Chlamydia species belonging to the Chlamydiaceae family have been reported in reptilian hosts but scarce data about their occurrence in turtles and tortoises are available. In this study, research was conducted to acquire information on invasive alien species (IAS) of turtles and indigenous turtles and tortoises, living both free and in captivity, as possible reservoirs of Chlamydiaceae. Analysis of specimens (pharyngeal and cloacal swabs and tissues) from 204 turtles and tortoises revealed an overall Chlamydiaceae prevalence of 18.3% and 28.6% among free-living and captive animals respectively, with variable levels of shedding. Further testing conducted with a species-specific real-time PCR and microarray test was unsuccessful. Subsequently sequencing was applied to genotype the Chlamydiaceae-positive samples. Almost the full lengths of the 16S rRNA and ompA genes as well as the 16S-23S intergenic spacer (IGS) and 23S rRNA domain I were obtained for 14, 20 and 8 specimens respectively. Phylogenetic analysis of 16S rRNA amplicons revealed two distinct branches. Group 1 (10 specimens), specific to freshwater turtles and reported here for the first time, was most closely related to Chlamydia (C.) pneumoniae strains and the newly described Candidatus C. sanzinia. Group 2 (four specimens), detected in Testudo spp. samples, showed highest homology to C. pecorum strains but formed a separate sub-branch. Finally, molecular analysis conducted on positive samples together with their geographical distribution in places distant from each other strongly suggest that Group 1 specimens correspond to a new species in the Chlamydiaceae family. In-depth studies of Chlamydia spp. from turtles and tortoises are needed to further characterise these atypical strains and address arising questions about their pathogenicity and zoonotic potential.

  13. Free-living and captive turtles and tortoises as carriers of new Chlamydia spp.

    Directory of Open Access Journals (Sweden)

    Agata Mitura

    Full Text Available A variety of Chlamydia species belonging to the Chlamydiaceae family have been reported in reptilian hosts but scarce data about their occurrence in turtles and tortoises are available. In this study, research was conducted to acquire information on invasive alien species (IAS of turtles and indigenous turtles and tortoises, living both free and in captivity, as possible reservoirs of Chlamydiaceae. Analysis of specimens (pharyngeal and cloacal swabs and tissues from 204 turtles and tortoises revealed an overall Chlamydiaceae prevalence of 18.3% and 28.6% among free-living and captive animals respectively, with variable levels of shedding. Further testing conducted with a species-specific real-time PCR and microarray test was unsuccessful. Subsequently sequencing was applied to genotype the Chlamydiaceae-positive samples. Almost the full lengths of the 16S rRNA and ompA genes as well as the 16S-23S intergenic spacer (IGS and 23S rRNA domain I were obtained for 14, 20 and 8 specimens respectively. Phylogenetic analysis of 16S rRNA amplicons revealed two distinct branches. Group 1 (10 specimens, specific to freshwater turtles and reported here for the first time, was most closely related to Chlamydia (C. pneumoniae strains and the newly described Candidatus C. sanzinia. Group 2 (four specimens, detected in Testudo spp. samples, showed highest homology to C. pecorum strains but formed a separate sub-branch. Finally, molecular analysis conducted on positive samples together with their geographical distribution in places distant from each other strongly suggest that Group 1 specimens correspond to a new species in the Chlamydiaceae family. In-depth studies of Chlamydia spp. from turtles and tortoises are needed to further characterise these atypical strains and address arising questions about their pathogenicity and zoonotic potential.

  14. Genes regulation encoding ADP/ATP carrier in yeasts Saccharomyces cerevisiae and Candida parapsilosis

    International Nuclear Information System (INIS)

    Nebohacova, M.

    2000-01-01

    Genes encoding a mitochondrial ADP/ATP carrier (AAC) in yeast Saccharomyces cerevisiae and Candida parapsilosis were investigated. AAC2 is coding for the major AAC isoform in S. cerevisiae. We suggest that AAC2 is a member of a syn-expression group of genes encoding oxidative phosphorylation proteins. Within our previous studies on the regulation of the AAC2 transcription an UAS (-393/-268) was identified that is essential for the expression of this gene. Two functional regulatory cis-elements are located within this UAS -binding sites for an ABFl factor and for HAP2/3/4/5 heteromeric complex. We examined relative contributions and mutual interactions of the ABFl and HAP2/3/4/5 factors in the activation of transcription from the UAS of the AAC2 gene. The whole UAS was dissected into smaller sub-fragments and tested for (i) the ability to form DNA-protein complexes with cellular proteins in vitro, (ii) the ability to confer heterologous expression using AAC3 gene lacking its own promoter, and (iii) the expression of AAC3-lacZ fusion instead of intact AAC3 gene. The obtained results demonstrated that: a) The whole UAS as well as sub-fragment containing only ABF1-binding site are able to form DNA-protein complexes with cellular proteins in oxygen- and heme- dependent manner. The experiments with antibody against the ABF1 showed that the ABF1 factor is one of the proteins binding to AAC2 promoter. We have been unsuccessful to prove the binding of cellular proteins to the HAP2/3/4/5-binding site. However, the presence of HAP2/3/4/5-binding site is necessary to drive a binding of cellular proteins to the ABF1-binding site in carbon source-dependent manner. b) The presence of both ABF1- and HAP2/3/4/5-binding sites and original spacing between them is necessary to confer the growth of Aaac2 mutant strain on non- fermentable carbon source when put in front of AAC3 gene introduced on centromeric vector to Aaac2 mutant strain. c) For the activation of AAC3-lacZ expression on

  15. Determining sex ratios of turtle hatchlings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Previous status assessments of marine turtles have assumed that the natural sex ratio of a marine turtle population is 1:1 (e.g. Conant et al. 2009). However, this...

  16. Turtles as hopeful monsters.

    Science.gov (United States)

    Rieppel, O

    2001-11-01

    A recently published study on the development of the turtle shell highlights the important role that development plays in the origin of evolutionary novelties. The evolution of the highly derived adult anatomy of turtles is a prime example of a macroevolutionary event triggered by changes in early embryonic development. Early ontogenetic deviation may cause patterns of morphological change that are not compatible with scenarios of gradualistic, stepwise transformation. Copyright 2001 John Wiley & Sons, Inc.

  17. Patterning of the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cebra-Thomas, Judith; Gilbert, Scott F

    2017-08-01

    Interest in the origin and evolution of the turtle shell has resulted in a most unlikely clade becoming an important research group for investigating morphological diversity in developmental biology. Many turtles generate a two-component shell that nearly surrounds the body in a bony exoskeleton. The ectoderm covering the shell produces epidermal scutes that form a phylogenetically stable pattern. In some lineages, the bones of the shell and their ectodermal covering become reduced or lost, and this is generally associated with different ecological habits. The similarity and diversity of turtles allows research into how changes in development create evolutionary novelty, interacting modules, and adaptive physiology and anatomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  19. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  20. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.

    2012-06-29

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  1. The role of turtles as coral reef macroherbivores

    KAUST Repository

    Goatley, Christopher H. R.; Hoey, Andrew; Bellwood, David R.

    2012-01-01

    Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood. © 2012 Goatley et al.

  2. The role of turtles as coral reef macroherbivores.

    Directory of Open Access Journals (Sweden)

    Christopher H R Goatley

    Full Text Available Herbivory is widely accepted as a vital function on coral reefs. To date, the majority of studies examining herbivory in coral reef environments have focused on the roles of fishes and/or urchins, with relatively few studies considering the potential role of macroherbivores in reef processes. Here, we introduce evidence that highlights the potential role of marine turtles as herbivores on coral reefs. While conducting experimental habitat manipulations to assess the roles of herbivorous reef fishes we observed green turtles (Chelonia mydas and hawksbill turtles (Eretmochelys imbricata showing responses that were remarkably similar to those of herbivorous fishes. Reducing the sediment load of the epilithic algal matrix on a coral reef resulted in a forty-fold increase in grazing by green turtles. Hawksbill turtles were also observed to browse transplanted thalli of the macroalga Sargassum swartzii in a coral reef environment. These responses not only show strong parallels to herbivorous reef fishes, but also highlight that marine turtles actively, and intentionally, remove algae from coral reefs. When considering the size and potential historical abundance of marine turtles we suggest that these potentially valuable herbivores may have been lost from many coral reefs before their true importance was understood.

  3. Decline of the Sea Turtles: Causes and Prevention.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.

    A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…

  4. On the homology of the shoulder girdle in turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Sato, Noboru; Kuratani, Shigeru

    2015-05-01

    The shoulder girdle in turtles is encapsulated in the shell and has a triradiate morphology. Due to its unique configuration among amniotes, many theories have been proposed about the skeletal identities of the projections for the past two centuries. Although the dorsal ramus represents the scapular blade, the ventral two rami remain uncertain. In particular, the ventrorostral process has been compared to a clavicle, an acromion, and a procoracoid based on its morphology, its connectivity to the rest of the skeleton and to muscles, as well as with its ossification center, cell lineage, and gene expression. In making these comparisons, the shoulder girdle skeleton of anurans has often been used as a reference. This review traces the history of the debate on the homology of the shoulder girdle in turtles. And based on the integrative aspects of developmental biology, comparative morphology, and paleontology, we suggest acromion and procoracoid identities for the two ventral processes. © 2014 Wiley Periodicals, Inc.

  5. Status of marine turtle rehabilitation in Queensland

    OpenAIRE

    Jaylene Flint; Mark Flint; Colin James Limpus; Paul Mills

    2017-01-01

    Rehabilitation of marine turtles in Queensland has multifaceted objectives. It treats individual animals, serves to educate the public, and contributes to conservation. We examined the outcome from rehabilitation, time in rehabilitation, and subsequent recapture and restranding rates of stranded marine turtles between 1996 and 2013 to determine if the benefits associated with this practice are cost-effective as a conservation tool. Of 13,854 marine turtles reported as stranded during this 18-...

  6. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation.

    Science.gov (United States)

    Henry, Romain; Bruneau, Emmanuelle; Gardan, Rozenn; Bertin, Stéphane; Fleuchot, Betty; Decaris, Bernard; Leblond-Bourget, Nathalie

    2011-10-07

    Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  7. The rgg0182 gene encodes a transcriptional regulator required for the full Streptococcus thermophilus LMG18311 thermal adaptation

    Directory of Open Access Journals (Sweden)

    Bertin Stéphane

    2011-10-01

    Full Text Available Abstract Background Streptococcus thermophilus is an important starter strain for the production of yogurt and cheeses. The analysis of sequenced genomes of four strains of S. thermophilus indicates that they contain several genes of the rgg familly potentially encoding transcriptional regulators. Some of the Rgg proteins are known to be involved in bacterial stress adaptation. Results In this study, we demonstrated that Streptococcus thermophilus thermal stress adaptation required the rgg0182 gene which transcription depends on the culture medium and the growth temperature. This gene encoded a protein showing similarity with members of the Rgg family transcriptional regulator. Our data confirmed that Rgg0182 is a transcriptional regulator controlling the expression of its neighboring genes as well as chaperones and proteases encoding genes. Therefore, analysis of a Δrgg0182 mutant revealed that this protein played a role in the heat shock adaptation of Streptococcus thermophilus LMG18311. Conclusions These data showed the importance of the Rgg0182 transcriptional regulator on the survival of S. thermophilus during dairy processes and more specifically during changes in temperature.

  8. Phylogenetic relationships among extinct and extant turtles: the position of Pleurodira and the effects of the fossils on rooting crown-group turtles

    NARCIS (Netherlands)

    Sterli, J.

    2010-01-01

    The origin and evolution of the crown-group of turtles (Cryptodira + Pleurodira) is one of the most interesting topics in turtle evolution, second perhaps only to the phylogenetic position of turtles among amniotes. The present contribution focuses on the former problem, exploring the phylogenetic

  9. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines).

    Science.gov (United States)

    Shaffer, H Bradley; McCartney-Melstad, Evan; Near, Thomas J; Mount, Genevieve G; Spinks, Phillip Q

    2017-10-01

    Accurate time-calibrated phylogenies are the centerpiece of many macroevolutionary studies, and the relationship between the size and scale of molecular data sets and the density and accuracy of fossil calibrations is a key element of time tree studies. Here, we develop a target capture array specifically for living turtles, compare its efficiency to an ultraconserved element (UCE) dataset, and present a time-calibrated molecular phylogeny based on 539 nuclear loci sequenced from 26 species representing the breadth of living turtle diversity plus outgroups. Our gene array, based on three fully sequenced turtle genomes, is 2.4 times more variable across turtles than a recently published UCE data set for an identical subset of 13 species, confirming that taxon-specific arrays return more informative data per sequencing effort than UCEs. We used our genomic data to estimate the ages of living turtle clades including a mid-late Triassic origin for crown turtles and a mid-Carboniferous split of turtles from their sister group, Archosauria. By specifically excluding several of the earliest potential crown turtle fossils and limiting the age of fossil calibration points to the unambiguous crown lineage Caribemys oxfordiensis from the Late Jurassic (Oxfordian, 163.5-157.3Ma) we corroborate a relatively ancient age for living turtles. We also provide novel age estimates for five of the ten testudine families containing more than a single species, as well as several intrafamilial clades. Most of the diversity of crown turtles appears to date to the Paleogene, well after the Cretaceous-Paleogene mass extinction 66mya. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    Science.gov (United States)

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  11. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    OpenAIRE

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  12. Sea Turtle Conservation on Bonaire. Sea Turtle Club Bonaire 1995 Project Report and Long Term Proposal

    NARCIS (Netherlands)

    Valkering, N.P.; Nugteren, Van P.; Eijck, Van T.J.W.

    1996-01-01

    Bonaire (12°12’N, 68°77’W), Netherlands Antilles, is famous for its unspoiled coral reefs. Reefs and lush sea grass provide forage and refuge for two species of endangered sea turtle, the green turtle ( Chelonia mydas) and the hawksbill (Eretmochelys imbricata). Loggerhead ( Caretta caretta ) and

  13. OVER-EXPRESSION OF GENE ENCODING FATTY ACID METABOLIC ENZYMES IN FISH

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2008-12-01

    Full Text Available Eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 have important nutritional benefits in humans. EPA and DHA are mainly derived from fish, but the decline in the stocks of major marine capture fishes could result in these fatty acids being consumed less. Farmed fish could serve as promising sources of EPA and DHA, but they need these fatty acids in their diets. Generation of fish strains that are capable of synthesizing enough amounts of EPA/DHA from the conversion of α-linolenic acid (LNA, 18:3n-3 rich oils can supply a new EPA/DHA source. This may be achieved by over-expression of genes encoding enzymes involved in HUFA biosynthesis. In aquaculture, the successful of this technique would open the possibility to reduce the enrichment of live food with fish oils for marine fish larvae, and to completely substitute fish oils with plant oils without reducing the quality of flesh in terms of EPA and DHA contents. Here, three genes, i.e. Δ6-desaturase-like (OmΔ6FAD, Δ5-desaturase-like (OmΔ5FAD and elongase-like (MELO encoding EPA/DHA metabolic enzymes derived from masu salmon (Oncorhynchus masou were individually transferred into zebrafish (Danio rerio as a model to increase its ability for synthesizing EPA and DHA. Fatty acid analysis showed that EPA content in whole body of the second transgenic fish generation over-expressing OmΔ6FAD gene was 1.4 fold and that of DHA was 2.1 fold higher (P<0.05 than those in non-transgenic fish. The EPA content in whole body of transgenic fish over-expressing OmΔ5FAD gene was 1.21-fold, and that of DHA was 1.24-fold higher (P<0.05 than those in nontransgenic fish. The same patterns were obtained in transgenic fish over-expressing MELO gene. EPA content was increased by 1.30-fold and DHA content by 1.33-fold higher (P<0.05 than those in non-transgenic fish. The results of studies demonstrated that fatty acid content of fish can be enhanced by over

  14. Geometry and self-righting of turtles.

    Science.gov (United States)

    Domokos, Gábor; Várkonyi, Péter L

    2008-01-07

    Terrestrial animals with rigid shells face imminent danger when turned upside down. A rich variety of righting strategies of beetle and turtle species have been described, but the exact role of the shell's geometry in righting is so far unknown. These strategies are often based on active mechanisms, e.g. most beetles self-right via motion of their legs or wings; flat, aquatic turtles use their muscular neck to flip back. On the other hand, highly domed, terrestrial turtles with short limbs and necks have virtually no active control: here shape itself may serve as a fundamental tool. Based on field data gathered on a broad spectrum of aquatic and terrestrial turtle species we develop a geometric model of the shell. Inspired by recent mathematical results, we demonstrate that a simple mechanical classification of the model is closely linked to the animals' righting strategy. Specifically, we show that the exact geometry of highly domed terrestrial species is close to optimal for self-righting, and the shell's shape is the predominant factor of their ability to flip back. Our study illustrates how evolution solved a far-from-trivial geometrical problem and equipped some turtles with monostatic shells: beautiful forms, which rarely appear in nature otherwise.

  15. Evolutionary origin of the turtle shell.

    Science.gov (United States)

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cloning, characterization, expression analysis and inhibition studies of a novel gene encoding Bowman-Birk type protease inhibitor from rice bean

    Science.gov (United States)

    This paper presents the first study describing the isolation, cloning and characterization of a full length gene encoding Bowman-Birk protease inhibitor (RbTI) from rice bean (Vigna umbellata). A full-length protease inhibitor gene with complete open reading frame of 327bp encoding 109 amino acids w...

  17. Observations of sea turtles nesting on Misali islan, Pemba | Pharoah ...

    African Journals Online (AJOL)

    A nest-recording programme has collected data over five years from turtles nesting on Misali Island, off the West coast of Pemba, Tanzania. Five species of sea turtle are known to occur in Zanzibar waters, two of these species nested regularly on the island, with green turtle nests outnumbering hawksbill turtle nests by a ...

  18. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor

    DEFF Research Database (Denmark)

    Christensen, P U; Davey, William John; Nielsen, O

    1997-01-01

    In the fission yeast Schizosaccharomyces pombe, cells of opposite mating type communicate via diffusible peptide pheromones prior to mating. We have cloned the S. pombe mam1 gene, which encodes a 1336-amino acid protein belonging to the ATP-binding cassette (ABC) superfamily. The mam1 gene is onl...

  19. An ancestral turtle from the Late Triassic of southwestern China.

    Science.gov (United States)

    Li, Chun; Wu, Xiao-Chun; Rieppel, Olivier; Wang, Li-Ting; Zhao, Li-Jun

    2008-11-27

    The origin of the turtle body plan remains one of the great mysteries of reptile evolution. The anatomy of turtles is highly derived, which renders it difficult to establish the relationships of turtles with other groups of reptiles. The oldest known turtle, Proganochelys from the Late Triassic period of Germany, has a fully formed shell and offers no clue as to its origin. Here we describe a new 220-million-year-old turtle from China, somewhat older than Proganochelys, that documents an intermediate step in the evolution of the shell and associated structures. A ventral plastron is fully developed, but the dorsal carapace consists of neural plates only. The dorsal ribs are expanded, and osteoderms are absent. The new species shows that the plastron evolved before the carapace and that the first step of carapace formation is the ossification of the neural plates coupled with a broadening of the ribs. This corresponds to early embryonic stages of carapace formation in extant turtles, and shows that the turtle shell is not derived from a fusion of osteoderms. Phylogenetic analysis places the new species basal to all known turtles, fossil and extant. The marine deposits that yielded the fossils indicate that this primitive turtle inhabited marginal areas of the sea or river deltas.

  20. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Science.gov (United States)

    Ossiboff, Robert J; Raphael, Bonnie L; Ammazzalorso, Alyssa D; Seimon, Tracie A; Newton, Alisa L; Chang, Tylis Y; Zarate, Brian; Whitlock, Alison L; McAloose, Denise

    2015-01-01

    The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  1. Three Novel Herpesviruses of Endangered Clemmys and Glyptemys Turtles

    Science.gov (United States)

    Ossiboff, Robert J.; Raphael, Bonnie L.; Ammazzalorso, Alyssa D.; Seimon, Tracie A.; Newton, Alisa L.; Chang, Tylis Y.; Zarate, Brian; Whitlock, Alison L.; McAloose, Denise

    2015-01-01

    The rich diversity of the world’s reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts. PMID

  2. Three novel herpesviruses of endangered Clemmys and Glyptemys turtles.

    Directory of Open Access Journals (Sweden)

    Robert J Ossiboff

    Full Text Available The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii as well sympatric endangered wood (G. insculpta and endangered spotted (Clemmys guttata turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204 and smaller numbers of positive wood (5 and spotted (1 turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.

  3. [Cloning, mutagenesis and symbiotic phenotype of three lipid transfer protein encoding genes from Mesorhizobium huakuii 7653R].

    Science.gov (United States)

    Li, Yanan; Zeng, Xiaobo; Zhou, Xuejuan; Li, Youguo

    2016-12-04

    Lipid transfer protein superfamily is involved in lipid transport and metabolism. This study aimed to construct mutants of three lipid transfer protein encoding genes in Mesorhizobium huakuii 7653R, and to study the phenotypes and function of mutations during symbiosis with Astragalus sinicus. We used bioinformatics to predict structure characteristics and biological functions of lipid transfer proteins, and conducted semi-quantitative and fluorescent quantitative real-time PCR to analyze the expression levels of target genes in free-living and symbiotic conditions. Using pK19mob insertion mutagenesis to construct mutants, we carried out pot plant experiments to observe symbiotic phenotypes. MCHK-5577, MCHK-2172 and MCHK-2779 genes encoding proteins belonged to START/RHO alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) superfamily, involved in lipid transport or metabolism, and were identical to M. loti at 95% level. Gene relative transcription level of the three genes all increased compared to free-living condition. We obtained three mutants. Compared with wild-type 7653R, above-ground biomass of plants and nodulenitrogenase activity induced by the three mutants significantly decreased. Results indicated that lipid transfer protein encoding genes of Mesorhizobium huakuii 7653R may play important roles in symbiotic nitrogen fixation, and the mutations significantly affected the symbiotic phenotypes. The present work provided a basis to study further symbiotic function mechanism associated with lipid transfer proteins from rhizobia.

  4. TURTLE 24.0 diffusion depletion code

    International Nuclear Information System (INIS)

    Altomare, S.; Barry, R.F.

    1971-09-01

    TURTLE is a two-group, two-dimensional (x-y, x-z, r-z) neutron diffusion code featuring a direct treatment of the nonlinear effects of xenon, enthalpy, and Doppler. Fuel depletion is allowed. TURTLE was written for the study of azimuthal xenon oscillations, but the code is useful for general analysis. The input is simple, fuel management is handled directly, and a boron criticality search is allowed. Ten thousand space points are allowed (over 20,000 with diagonal symmetry). TURTLE is written in FORTRAN IV and is tailored for the present CDC-6600. The program is core-contained. Provision is made to save data on tape for future reference. (auth)

  5. 77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-12-26

    ... to implement programs to conserve marine life listed as endangered or threatened. All sea turtles... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... turtles endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs...

  6. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity.

    Science.gov (United States)

    Zhang, Jin; Ruhlman, Tracey A; Sabir, Jamal S M; Blazier, John Chris; Weng, Mao-Lun; Park, Seongjun; Jansen, Robert K

    2016-02-17

    Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. 21 CFR 1240.62 - Turtles intrastate and interstate requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Turtles intrastate and interstate requirements....62 Turtles intrastate and interstate requirements. (a) Definition. As used in this section the term “turtles” includes all animals commonly known as turtles, tortoises, terrapins, and all other animals of...

  8. 77 FR 27411 - Sea Turtle Conservation; Shrimp Trawling Requirements

    Science.gov (United States)

    2012-05-10

    ... imbricata) turtles are listed as endangered. The loggerhead (Caretta caretta; Northwest Atlantic distinct... populations of green turtles in Florida and on the Pacific coast of Mexico, which are listed as endangered... regulations (50 CFR 223.206) are followed. The same conservation measures also apply to endangered sea turtles...

  9. 77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2012-01-05

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... (Dermochelys coriacea), and hawksbill (Eretmochelys imbricata) sea turtles are listed as endangered. Loggerhead... ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever they occur...

  10. 78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2013-12-23

    ... listed as endangered or threatened. All sea turtles found in U.S. waters are listed as either endangered... imbricata) sea turtles are listed as endangered. Loggerhead (Caretta caretta; Northwest Atlantic distinct... and olive ridley turtles away from the nesting beach, NMFS considers these turtles endangered wherever...

  11. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    Science.gov (United States)

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  12. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amitochondriate protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Rosenthal, B; Mai, Z; Caplivski, D; Ghosh, S; de la Vega, H; Graf, T; Samuelson, J

    1997-06-01

    Entamoeba histolytica is an amitochondriate protozoan parasite with numerous bacterium-like fermentation enzymes including the pyruvate:ferredoxin oxidoreductase (POR), ferredoxin (FD), and alcohol dehydrogenase E (ADHE). The goal of this study was to determine whether the genes encoding these cytosolic E. histolytica fermentation enzymes might derive from a bacterium by horizontal transfer, as has previously been suggested for E. histolytica genes encoding heat shock protein 60, nicotinamide nucleotide transhydrogenase, and superoxide dismutase. In this study, the E. histolytica por gene and the adhE gene of a second amitochondriate protozoan parasite, Giardia lamblia, were sequenced, and their phylogenetic positions were estimated in relation to POR, ADHE, and FD cloned from eukaryotic and eubacterial organisms. The E. histolytica por gene encodes a 1,620-amino-acid peptide that contained conserved iron-sulfur- and thiamine pyrophosphate-binding sites. The predicted E. histolytica POR showed fewer positional identities to the POR of G. lamblia (34%) than to the POR of the enterobacterium Klebsiella pneumoniae (49%), the cyanobacterium Anabaena sp. (44%), and the protozoan Trichomonas vaginalis (46%), which targets its POR to anaerobic organelles called hydrogenosomes. Maximum-likelihood, neighbor-joining, and parsimony analyses also suggested as less likely E. histolytica POR sharing more recent common ancestry with G. lamblia POR than with POR of bacteria and the T. vaginalis hydrogenosome. The G. lamblia adhE encodes an 888-amino-acid fusion peptide with an aldehyde dehydrogenase at its amino half and an iron-dependent (class 3) ADH at its carboxy half. The predicted G. lamblia ADHE showed extensive positional identities to ADHE of Escherichia coli (49%), Clostridium acetobutylicum (44%), and E. histolytica (43%) and lesser identities to the class 3 ADH of eubacteria and yeast (19 to 36%). Phylogenetic analyses inferred a closer relationship of the E

  13. The girdles of the oldest fossil turtle, Proterochersis robusta, and the age of the turtle crown.

    Science.gov (United States)

    Joyce, Walter G; Schoch, Rainer R; Lyson, Tyler R

    2013-12-06

    Proterochersis robusta from the Late Triassic (Middle Norian) of Germany is the oldest known fossil turtle (i.e. amniote with a fully formed turtle shell), but little is known about its anatomy. A newly prepared, historic specimen provides novel insights into the morphology of the girdles and vertebral column of this taxon and the opportunity to reassess its phylogenetic position. The anatomy of the pectoral girdle of P. robusta is similar to that of other primitive turtles, including the Late Triassic (Carnian) Proganochelys quenstedti, in having a vertically oriented scapula, a large coracoid foramen, a short acromion process, and bony ridges that connect the acromion process with the dorsal process, glenoid, and coracoid, and by being able to rotate along a vertical axis. The pelvic elements are expanded distally and suturally attached to the shell, but in contrast to modern pleurodiran turtles the pelvis is associated with the sacral ribs. The primary homology of the character "sutured pelvis" is unproblematic between P. robusta and extant pleurodires. However, integration of all new observations into the most complete phylogenetic analysis that support the pleurodiran nature of P. robusta reveals that this taxon is more parsimoniously placed along the phylogenetic stem of crown Testudines. All current phylogenetic hypotheses therefore support the basal placement of this taxon, imply that the sutured pelvis of this taxon developed independently from that of pleurodires, and conclude that the age of the turtle crown is Middle Jurassic.

  14. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pienaar, 1962

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, N.; Čepička, I.; Qablan, M. A.; Gibson, W.; Blažek, Radim; Široký, P.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 599-608 ISSN 1434-4610 Institutional support: RVO:68081766 Keywords : Trypanosoma * turtle * Pelusios * polymorphism * phylogeny * SSU rRNA gene Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  15. Cloning and characterization of an epoxide hydrolase-encoding gene from Rhodotorula glutinis

    NARCIS (Netherlands)

    Visser, H.; Vreugdenhil, S.; Bont, de J.A.M.; Verdoes, J.C.

    2000-01-01

    We cloned and characterized the epoxide hydrolase gene, EPH1, from Rhodotorula glutinis. The EPH1 open reading frame of 1230 bp was interrupted by nine introns and encoded a polypeptide of 409 amino acids with a calculated molecular mass of 46.3 kDa. The amino acid sequence was similar to that of

  16. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  17. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  18. The status of marine turtles in Montserrat (Eastern Caribbean

    Directory of Open Access Journals (Sweden)

    Martin, C. S.

    2005-12-01

    Full Text Available The status of marine turtles in Montserrat (Eastern Caribbean is reviewed following five years of monitoring (1999-2003. The mean number of nests recorded during the annual nesting season (June-October was 53 (± 24.9 SD; range: 13-43. In accordance with earlier reports, the nesting of hawksbill (Eretmochelys imbricata and green (Chelonia mydas turtles was confirmed on several beaches around the island. Only non-nesting emergences were documented for loggerhead turtles (Caretta caretta and there was no evidence of nesting by leatherback turtles (Dermochelys coriacea; however, it is possible that additional survey effort would reveal low density nesting by these species. Officially reported turtle capture data for 1993-2003 suggest that a mean of 0.9 turtle per year (±1.2 SD; range: 0-4 were landed island-wide, with all harvest having occurred during the annual open season (1 October to 31 May. Informed observers believe that the harvest is significantly under-reported and that fishermen avoid declaring their catch by butchering turtles at sea (both during and outside the open season. Of concern is the fact that breeding adults are potentially included in the harvest, and that the open season partially coincides with the breeding season. The present study has shown that although Montserrat is not a major nesting site for sea turtles, it remains important on a regional basis for the Eastern Caribbean.

  19. A Novel Complementation Assay for Quick and Specific Screen of Genes Encoding Glycerol-3-Phosphate Acyltransferases

    Directory of Open Access Journals (Sweden)

    Jie Lei

    2018-03-01

    Full Text Available The initial step in glycerolipid biosynthesis, especially in diverse allopolyploid crop species, is poorly understood, mainly due to the lack of an effective and convenient method for functional characterization of genes encoding glycerol-3-phosphate acyltransferases (GPATs catalyzing this reaction. Here we present a novel complementation assay for quick and specific characterization of GPAT-encoding genes. Its key design involves rational construction of yeast conditional lethal gat1Δgat2Δ double mutant bearing the heterologous Arabidopsis AtGPAT1 gene whose leaky expression under repressed conditions does not support any non-specific growth, thereby circumventing the false positive problem encountered with the system based on the gat1Δgat2Δ mutant harboring the native episomal GAT1 gene whose leaky expression appears to be sufficient for generating enough GPAT activities for the non-specific restoration of the mutant growth. A complementation assay developed based on this novel mutant enables quick phenotypic screen of GPAT sequences. A high degree of specificity of our assay was exemplified by its ability to differentiate effectively GPAT-encoding genes from those of other fatty acyltransferases and lipid-related sequences. Using this assay, we show that Arabidopsis AtGPAT1, AtGPAT5, and AtGPAT7 can complement the phosphatidate biosynthetic defect in the double mutants. Collectively, our assay provides a powerful tool for rapid screening, validation and optimization of GPAT sequences, aiding future engineering of the initial step of the triacylglycerol biosynthesis in oilseeds.

  20. Turtle cleaners: reef fishes foraging on epibionts of sea turtles in the tropical Southwestern Atlantic, with a summary of this association type

    Directory of Open Access Journals (Sweden)

    Cristina Sazima

    Full Text Available In the present study we record several instances of reef fish species foraging on epibionts of sea turtles (cleaning symbiosis at the oceanic islands of Fernando de Noronha Archipelago and near a shipwreck, both off the coast of Pernambuco State, northeast Brazil. Nine reef fish species and three turtle species involved in cleaning are herein recorded. Besides our records, a summary of the literature on this association type is presented. Postures adopted by turtles during the interaction are related to the habits of associated fishes. Feeding associations between fishes and turtles seem a localized, albeit common, phenomenon.

  1. The feeding habit of sea turtles influences their reaction to artificial marine debris

    Science.gov (United States)

    Fukuoka, Takuya; Yamane, Misaki; Kinoshita, Chihiro; Narazaki, Tomoko; Marshall, Greg J.; Abernathy, Kyler J.; Miyazaki, Nobuyuki; Sato, Katsufumi

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris. PMID:27305858

  2. Marine turtles use geomagnetic cues during open-sea homing.

    Science.gov (United States)

    Luschi, Paolo; Benhamou, Simon; Girard, Charlotte; Ciccione, Stephane; Roos, David; Sudre, Joël; Benvenuti, Silvano

    2007-01-23

    Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.

  3. Survival and behavior of freshwater turtles after rehabilitation from an oil spill

    International Nuclear Information System (INIS)

    Saba, V.S.; Spotila, J.R.

    2003-01-01

    An oil spill in February 2000 at the John Heinz National Wildlife Refuge in southeastern Pennsylvania affected four species of freshwater turtles including painted turtles (Chrysemys picta), snapping turtles (Chelydra serpentina), red-eared slider turtles (Trachemys scripta), and red-bellied turtles (Pseudemys rubriventris). In the summer and fall of 2000, there were no differences in survival, home range, and temperature preference of 16 oil exposed/rehabilitated (OER) turtles, 18 possibly exposed (PE) turtles, and 32 non-exposed (NE) turtles as measured with temperature sensitive radio transmitters. Post-release mortality or transmitter loss was not correlated to oil exposure (OER=25%, PE=22%, NE=31%). There were no statistically significant differences in home range minimum convex polygon area, (0.28 o C±6.9 (female C. serpentina) to 22.3 o C±8.5 (female C. picta). Rehabilitation of oil exposed freshwater turtles is effective in restoring these animals to normal behavior in nature.(author)

  4. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities.

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans . We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved "regeneration genes" and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.

  5. Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley

    DEFF Research Database (Denmark)

    Kristensen, Michael; Lok, Finn; Planchot, Véronique

    1999-01-01

    with a value of 105 kDa estimated by SDS;;PAGE, The coding sequence is interrupted by 26 introns varying in length from 93 bp to 825 bp. The 27 exons vary in length from 53 bp to 197 bp. Southern blot analysis shows that the limit dextrinase gene is present as a single copy in the barley genome. Gene......The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement...... expression is high during germination and the steady state transcription level reaches a maximum at day 5 of germination. The deduced amino acid sequence corresponds to the protein sequence of limit dextrinase purified from germinating malt, as determined by automated N-terminal sequencing of tryptic...

  6. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    Science.gov (United States)

    Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972

  7. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species

    OpenAIRE

    Robinson, Nathan J.; Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora

    2016-01-01

    The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtl...

  8. Tourists and turtles: Searching for a balance in Tortuguero, Costa Rica

    Directory of Open Access Journals (Sweden)

    Meletis Zoe

    2010-01-01

    Full Text Available Tourism is seen as an important part of the turtle conservation ′toolbox′ that can be used to (1 raise awareness about sea turtles, (2 provide funding for conservation and management, and (3 create ′alternative livelihoods′ and revenues for communities who engage(d in direct consumption or sale of sea turtle products. With some exceptions, however, few studies of sea turtle tourism dedicate adequate attention to the wants, needs, and perceptions of tourists (exceptions include Wilson & Tisdell 2001; Smith 2002; Gray 2003; Meletis 2007; Ballantyne et al. 2009. In this paper, we focus on tourist perceptions of turtle tours in Tortuguero, Costa Rica, home to Tortuguero National Park (TNP; est. 1975 and among the oldest turtle tour systems in the world. In 2004, the tour system was changed to mitigate potential negative impacts of tourist activity on nesting turtles. Whereas tourists and their guides once walked the beach ′looking′ for nesting turtles, they now wait behind the beach and are radioed by TNP-affiliated ′turtle spotters′ when turtles are ′ready′ to be viewed. Impact mitigation was the primary motivation for this alteration to the tour system; resulting changes in the nature of the tour were not central considerations. Are the tourists enjoying the new tour format? Do they like/dislike the more passive waiting? Do the tourists know about, and understand the new tour system? In this paper, we address questions such as these, using a sample of 147 tourist surveys collected in 2008. We designed our survey to (1 add to the existing data on tourism in Tortuguero, (2 collect data on tourist perceptions of the (new tour system, and (3 gauge tourist awareness of the Turtle Spotter Program (TSP and the reasons for the new turtle tour system. The main purpose of this study was to collect data requested by interested stakeholders, and to consider the results with respect to implications for the future of turtle tour management

  9. AMAPPS turtle data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Satellite tags were deployed on 60 loggerhead turtles to assess dive behavior to improve estimates of abundance in aerial surveys

  10. Efferent innervation of turtle semicircular canal cristae: comparisons with bird and mouse

    Science.gov (United States)

    Jordan, Paivi M.; Fettis, Margaret; Holt, Joseph C.

    2014-01-01

    In the vestibular periphery of nearly every vertebrate, cholinergic vestibular efferent neurons give rise to numerous presynaptic varicosities that target hair cells and afferent processes in the sensory neuroepithelium. Although pharmacological studies have described the postsynaptic actions of vestibular efferent stimulation in several species, characterization of efferent innervation patterns and the relative distribution of efferent varicosities among hair cells and afferents are also integral to understanding how efferent synapses operate. Vestibular efferent markers, however, have not been well characterized in the turtle, one of the animal models utilized by our laboratory. Here, we sought to identify reliable efferent neuronal markers in the vestibular periphery of turtle, to utilize these markers to understand how efferent synapses are organized, and to compare efferent neuronal labeling patterns in turtle with two other amniotes using some of the same markers. Efferent fibers and varicosities were visualized in the semicircular canal of Red-Eared Turtles (Trachemys scripta elegans), Zebra Finches (Taeniopygia guttata), and mice (Mus musculus) utilizing fluorescent immunohistochemistry with antibodies against choline acetyltransferase (ChAT). Vestibular hair cells and afferents were counterstained using antibodies to myosin VIIa and calretinin. In all species, ChAT labeled a population of small diameter fibers giving rise to numerous spherical varicosities abutting type II hair cells and afferent processes. That these ChAT-positive varicosities represent presynaptic release sites were demonstrated by colabeling with antibodies against the synaptic vesicle proteins synapsin I, SV2, or syntaxin and the neuropeptide calcitonin gene-related peptide (CGRP). Comparisons of efferent innervation patterns among the three species are discussed. PMID:25560461

  11. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  12. Typing of Panton-Valentine Leukocidin-Encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China.

    Science.gov (United States)

    Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong

    2016-01-01

    Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  13. Typing of Panton-Valentine Leukocidin-encoding Phages and lukSF-PV Gene Sequence Variation in Staphylococcus aureus from China

    Directory of Open Access Journals (Sweden)

    Huanqiang Zhao

    2016-08-01

    Full Text Available Panton-Valentine leucocidin (PVL, encoded by lukSF-PV genes, a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus (S. aureus have been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec typing, staphylococcal protein A (spa gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE typing, accessory gene regulator (agr locus typing and multilocus sequence typing (MLST. Seventy eight (78/1175, 6.6% isolates possessed the lukSF-PV genes and 59.0% (46/78 of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n=13 and ΦPVL (n=12 were the most prevalent among them. While 25 (25/78, 32.1% isolates, belonging to ST30 and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.

  14. Genes Encoding Aluminum-Activated Malate Transporter II and their Association with Fruit Acidity in Apple

    Directory of Open Access Journals (Sweden)

    Baiquan Ma

    2015-11-01

    Full Text Available A gene encoding aluminum-activated malate transporter (ALMT was previously reported as a candidate for the locus controlling acidity in apple ( × Borkh.. In this study, we found that apple genes can be divided into three families and the gene belongs to the family. Duplication of genes in apple is related to the polyploid origin of the apple genome. Divergence in expression has occurred between the gene and its homologs in the family and only the gene is significantly associated with malic acid content. The locus consists of two alleles, and . resides in the tonoplast and its ectopic expression in yeast was found to increase the influx of malic acid into yeast cells significantly, suggesting it may function as a vacuolar malate channel. In contrast, encodes a truncated protein because of a single nucleotide substitution of G with A in the last exon. As this truncated protein resides within the cell membrane, it is deemed to be nonfunctional as a vacuolar malate channel. The frequency of the genotype is very low in apple cultivars but is high in wild relatives, which suggests that apple domestication may be accompanied by selection for the gene. In addition, variations in the malic acid content of mature fruits were also observed between accessions with the same genotype in the locus. This suggests that the gene is not the only genetic determinant of fruit acidity in apple.

  15. Induction of oviposition by the administration of oxytocin in hawksbill turtles.

    Science.gov (United States)

    Kawazu, Isao; Kino, Masakatsu; Maeda, Konomi; Yamaguchi, Yasuhiro; Sawamukai, Yutaka

    2014-12-01

    We set out to develop an oviposition induction technique for captive female hawksbill turtles Eretmochelys imbricata. The infertile eggs of nine females were induced to develop by the administration of follicle-stimulating hormone, after which we investigated the effects of administering oxytocin on oviposition. Seven of the turtles were held in a stationary horizontal position on a retention stand, and then oxytocin was administrated (0.6-0.8 units/kg of body weight; 5 mL). The seven turtles were retained for a mandatory 2 h period after oxytocin administration, and were then returned to the holding tanks. As the control, normal saline (5 mL) was administered to the other two turtles, followed by the administration of oxytocin after 24 h. The eggs in oviducts of all nine turtles were observed by ultrasonography at 24 h after oxytocin administration. The control experiment validated that stationary retention and normal saline administration had no effect on egg oviposition. Eight of the turtles began ovipositing eggs at 17-43 min after oxytocin administration, while one began ovipositing in the holding tank immediately after retention. All turtles finished ovipositing eggs within 24 h of oxytocin administration. This report is the first to demonstrate successful induced oviposition in sea turtles. We suggest that the muscles in the oviducts of hawksbill turtles may respond to relatively lower doses of oxytocin (inducing contractions) compared to land and freshwater turtles (4-40 units/kg) based on existing studies.

  16. Silencing of the major family of NBS-LRR-encoding genes in lettuce results in the loss of multiple resistance specificities.

    Science.gov (United States)

    Wroblewski, Tadeusz; Piskurewicz, Urszula; Tomczak, Anna; Ochoa, Oswaldo; Michelmore, Richard W

    2007-09-01

    The RGC2 gene cluster in lettuce (Lactuca sativa) is one of the largest known families of genes encoding nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins. One of its members, RGC2B, encodes Dm3 which determines resistance to downy mildew caused by the oomycete Bremia lactucae carrying the cognate avirulence gene, Avr3. We developed an efficient strategy for analysis of this large family of low expressed genes using post-transcriptional gene silencing (PTGS). We transformed lettuce cv. Diana (carrying Dm3) using chimeric gene constructs designed to simultaneously silence RGC2B and the GUS reporter gene via the production of interfering hairpin RNA (ihpRNA). Transient assays of GUS expression in leaves accurately predicted silencing of both genes and were subsequently used to assay silencing in transgenic T(1) plants and their offspring. Levels of mRNA were reduced not only for RGC2B but also for all seven diverse RGC2 family members tested. We then used the same strategy to show that the resistance specificity encoded by the genetically defined Dm18 locus in lettuce cv. Mariska is the result of two resistance specificities, only one of which was silenced by ihpRNA derived from RGC2B. Analysis of progeny from crosses between transgenic, silenced tester stocks and lettuce accessions carrying other resistance genes previously mapped to the RGC2 locus indicated that two additional resistance specificities to B. lactucae, Dm14 and Dm16, as well as resistance to lettuce root aphid (Pemphigus bursarius L.), Ra, are encoded by RGC2 family members.

  17. NWHI Basking Green Turtle Data (Turtle Sightings from Seal Surveys)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains records of green turtle sightings in the Northwestern Hawaiian Islands (NWHI) since 1982 at Lisianski Island, and since 1983 for most other...

  18. Predaceous ants, beach replenishment, and nest placement by sea turtles.

    Science.gov (United States)

    Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie

    2007-10-01

    Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.

  19. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Epibiotic Diatoms Are Universally Present on All Sea Turtle Species.

    Directory of Open Access Journals (Sweden)

    Nathan J Robinson

    Full Text Available The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.

  1. One extinct turtle species less: Pelusios seychellensis is not extinct, it never existed.

    Directory of Open Access Journals (Sweden)

    Heiko Stuckas

    Full Text Available Pelusios seychellensis is thought to be a freshwater turtle species endemic to the island of Mahé, Seychelles. There are only three museum specimens from the late 19(th century known. The species has been never found again, despite intensive searches on Mahé. Therefore, P. seychellensis has been declared as "Extinct" by the IUCN and is the sole putatively extinct freshwater turtle species. Using DNA sequences of three mitochondrial genes of the historical type specimen and phylogenetic analyses including all other species of the genus, we provide evidence that the description of P. seychellensis was erroneously based on a widely distributed West African species, P. castaneus. Consequently, we synonymize the two species and delete P. seychellensis from the list of extinct chelonian species and from the faunal list of the Seychelles.

  2. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.

    Directory of Open Access Journals (Sweden)

    Nadja Knoll

    Full Text Available There are hints of an altered mitochondrial function in obesity. Nuclear-encoded genes are relevant for mitochondrial function (3 gene sets of known relevant pathways: (1 16 nuclear regulators of mitochondrial genes, (2 91 genes for oxidative phosphorylation and (3 966 nuclear-encoded mitochondrial genes. Gene set enrichment analysis (GSEA showed no association with type 2 diabetes mellitus in these gene sets. Here we performed a GSEA for the same gene sets for obesity. Genome wide association study (GWAS data from a case-control approach on 453 extremely obese children and adolescents and 435 lean adult controls were used for GSEA. For independent confirmation, we analyzed 705 obesity GWAS trios (extremely obese child and both biological parents and a population-based GWAS sample (KORA F4, n = 1,743. A meta-analysis was performed on all three samples. In each sample, the distribution of significance levels between the respective gene set and those of all genes was compared using the leading-edge-fraction-comparison test (cut-offs between the 50(th and 95(th percentile of the set of all gene-wise corrected p-values as implemented in the MAGENTA software. In the case-control sample, significant enrichment of associations with obesity was observed above the 50(th percentile for the set of the 16 nuclear regulators of mitochondrial genes (p(GSEA,50 = 0.0103. This finding was not confirmed in the trios (p(GSEA,50 = 0.5991, but in KORA (p(GSEA,50 = 0.0398. The meta-analysis again indicated a trend for enrichment (p(MAGENTA,50 = 0.1052, p(MAGENTA,75 = 0.0251. The GSEA revealed that weak association signals for obesity might be enriched in the gene set of 16 nuclear regulators of mitochondrial genes.

  3. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B.; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E.; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. PMID:28223917

  4. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82.

    OpenAIRE

    Takizawa, N; Kaida, N; Torigoe, S; Moritani, T; Sawada, T; Satoh, S; Kiyohara, H

    1994-01-01

    Naphthalene and phenanthrene are transformed by enzymes encoded by the pah gene cluster of Pseudomonas putida OUS82. The pahA and pahB genes, which encode the first and second enzymes, dioxygenase and cis-dihydrodiol dehydrogenase, respectively, were identified and sequenced. The DNA sequences showed that pahA and pahB were clustered and that pahA consisted of four cistrons, pahAa, pahAb, pahAc, and pahAd, which encode ferredoxin reductase, ferredoxin, and two subunits of the iron-sulfur prot...

  5. Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry

    Science.gov (United States)

    Halsey, Lewis G.; Jones, T. Todd; Jones, David R.; Liebsch, Nikolai; Booth, David T.

    2011-01-01

    Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake ( o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o 2. A o 2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets. PMID:21829613

  6. Sea Turtle Bycatch Mitigation in U.S. Longline Fisheries

    Directory of Open Access Journals (Sweden)

    Yonat Swimmer

    2017-08-01

    Full Text Available Capture of sea turtles in longline fisheries has been implicated in population declines of loggerhead (Caretta caretta and leatherback (Dermochelys coriacea turtles. Since 2004, United States (U.S. longline vessels targeting swordfish and tunas in the Pacific and regions in the Atlantic Ocean have operated under extensive fisheries regulations to reduce the capture and mortality of endangered and threatened sea turtles. We analyzed 20+ years of longline observer data from both ocean basins during periods before and after the regulations to assess the effectiveness of the regulations. Using generalized additive mixed models (GAMMs, we investigated relationships between the probability of expected turtle interactions and operational components such as fishing location, hook type, bait type, sea surface temperature, and use of light sticks. GAMMs identified a two to three-fold lower probability of expected capture of loggerhead and leatherback turtle bycatch in the Atlantic and Pacific when circle hooks are used (vs. J hook. Use of fish bait (vs. squid was also found to significantly reduce the capture probability of loggerheads in both ocean basins, and for leatherbacks in the Atlantic only. Capture probabilities are lowest when using a combination of circle hook and fish bait. Influences of light sticks, hook depth, geographic location, and sea surface temperature are discussed specific to species and regions. Results confirmed that in two U.S.-managed longline fisheries, rates of sea turtle bycatch significantly declined after the regulations. In the Atlantic (all regions, rates declined by 40 and 61% for leatherback and loggerhead turtles, respectively, after the regulations. Within the NED area alone, where additional restrictions include a large circle hook (18/0 and limited use of squid bait, rates declined by 64 and 55% for leatherback and loggerhead turtles, respectively. Gains were even more pronounced for the Pacific shallow set fishery

  7. European Atlantic Turtles

    NARCIS (Netherlands)

    Brongersma, L.D.

    1972-01-01

    CONTENTS Preface ................... 3 Introduction .................. 5 Identification.................. 13 The records................... 25 I. Dermochelys coriacea (L.), Leathery Turtle......... 30 IA. List of records of Dermochelys coriacea (L.)......... 31 IB. List of records of unidentified

  8. Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Muscariello Lidia

    2006-05-01

    Full Text Available Abstract Background Genomes of gram-positive bacteria encode many putative cell-surface proteins, of which the majority has no known function. From the rapidly increasing number of available genome sequences it has become apparent that many cell-surface proteins are conserved, and frequently encoded in gene clusters or operons, suggesting common functions, and interactions of multiple components. Results A novel gene cluster encoding exclusively cell-surface proteins was identified, which is conserved in a subgroup of gram-positive bacteria. Each gene cluster generally has one copy of four new gene families called cscA, cscB, cscC and cscD. Clusters encoding these cell-surface proteins were found only in complete genomes of Lactobacillus plantarum, Lactobacillus sakei, Enterococcus faecalis, Listeria innocua, Listeria monocytogenes, Lactococcus lactis ssp lactis and Bacillus cereus and in incomplete genomes of L. lactis ssp cremoris, Lactobacillus casei, Enterococcus faecium, Pediococcus pentosaceus, Lactobacillius brevis, Oenococcus oeni, Leuconostoc mesenteroides, and Bacillus thuringiensis. These genes are neither present in the genomes of streptococci, staphylococci and clostridia, nor in the Lactobacillus acidophilus group, suggesting a niche-specific distribution, possibly relating to association with plants. All encoded proteins have a signal peptide for secretion by the Sec-dependent pathway, while some have cell-surface anchors, novel WxL domains, and putative domains for sugar binding and degradation. Transcriptome analysis in L. plantarum shows that the cscA-D genes are co-expressed, supporting their operon organization. Many gene clusters are significantly up-regulated in a glucose-grown, ccpA-mutant derivative of L. plantarum, suggesting catabolite control. This is supported by the presence of predicted CRE-sites upstream or inside the up-regulated cscA-D gene clusters. Conclusion We propose that the CscA, CscB, CscC and Csc

  9. Helminth fauna of a turtle species introduced in Japan, the red-eared slider turtle (Trachemys scripta elegans).

    Science.gov (United States)

    Oi, M; Araki, J; Matsumoto, J; Nogami, S

    2012-10-01

    The red-eared slider turtle (Trachemys scripta elegans) was intentionally introduced from the United States to Japan as a pet in the 1950s and has become established throughout much of the country. We examined red-eared slider turtles from two localities in Japan for foreign parasitic helminths. Consequently, a total of seven species of helminths were found: two monogeneans (Neopolystoma exhamatum and Polystomoides japonicum), three digeneans (Spirorchisartericola, Spi.elegans and Telorchis clemmydis) and two nematodes (Serpinema microcephalum and Falcaustra wardi). Of these, three helminths are alien to Japan-Spi.artericola, Spi. elegans and F. wardi-which represent the first report of their presence in the red-eared slider turtle from Japan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Populations and home range relationships of the box turtle, Terrapene carolina (Linnaeus)

    Science.gov (United States)

    Stickel, L.F.

    1949-01-01

    A population study of Terrapene carolina (Linnaeus) was made at the Patuxent Research Refuge, Maryland, from 1944 to 1947. A thirty acre area in bottomland forest was selected for intensive study. Turtles were marked by filing notches in marginal scutes according to a code. Turtles make extensive use of brushy shelter during the day as well.as at night. Gully banks and woods openings are used for sunning. Nights are usually spent in a 'form,' constructed by the turtle in leaves, debris, or earth. A form may be used once or it may be used repeatedly by the same or different turtles. Weather conditions most favorable to turtle activity are high humidity, warm sunny days, and frequent rains. Periods of activity are alternated with periods of quiet, even in favorable weather. There is no evidence for territorialism. Ranges of turtles of all ages and both sexes overlap grossly. Turtles are frequently found near each other but no antagonistic behavior has been observed. Adult turtles occupy specific home ranges which they maintain from year to year. Turtles retained their ranges even though a flood that completely covered the study area. Maximum home range diameters were determined by measurements of the mapped ranges of individual turtles. There was no significant difference between sizes of male and female ranges: males 33O+ 26 feet, females 37O+29 feet. A trail-laying device was used in following travel routes for 456 turtle days. Normal movements within the home range are characterized by (1) turns, doublings, detours, and criss-crossing paths, (2) interspersion of fairly direct traverses of the home range, (3) frequently repeated travels over certain routes. Maximum limits of the home range are ordinarily reached within a few days or weeks, although some turtles cover only one portion of the range at a time. Some turtles have two home ranges. One of these turtles was followed with a trailer for 161 days in 1946 and 1947. Trips outside the home range are made by

  11. The role of geomagnetic cues in green turtle open sea navigation.

    Directory of Open Access Journals (Sweden)

    Simon Benhamou

    Full Text Available BACKGROUND: Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km post-nesting migrations no differently from controls. METHODOLOGY/PRINCIPAL FINDINGS: In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS, which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. CONCLUSIONS/SIGNIFICANCE: While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.

  12. Dispersion of radioactively contamination turtles on the SRP: research and reconnaissance

    International Nuclear Information System (INIS)

    Lamb, T.; Taylor, B.; Gibbons, J.W.

    1986-01-01

    Although SREL continued long-term studies on turtles during 1986, much research effort centered on contaminated turtle dispersion. The problem of radionuclide contamination in turtles and their dispersal through aquatic sites on and off the Savannah River Plant (SRP) was approached along three fronts. The first involved site reconnaissance, where aquatic habitats, adjacent to contaminated areas on the SRP were identified and surveyed for contaminated turtles. The second approach involved the development of a dispersal model. Third, mitochondrial DNA analysis was conducted to assess genetic differentiation between turtle populations inhabiting either side of the Savannah River near SRP. 1 figures, 2 tables

  13. Factors influencing survivorship of rehabilitating green sea turtles (Chelonia mydas) with fibropapillomatosis.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L

    2014-09-01

    Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.

  14. Impacts of plastic ingestion on post-hatchling loggerhead turtles off South Africa.

    Science.gov (United States)

    Ryan, Peter G; Cole, Georgina; Spiby, Kevin; Nel, Ronel; Osborne, Alexis; Perold, Vonica

    2016-06-15

    Twenty-four of 40 (60%) loggerhead turtle Caretta caretta post-hatchlings (carapaceTurtles selected for white (38%) and blue (19%) items, but translucent items (23%) were under-represented compared to beach mesodebris. Ingested loads did not decrease up to 52days in captivity, indicating long retention times. Plastic killed 11 turtles by blocking their digestive tracts or bladders, and contributed to the deaths of five other turtles. Our results indicate that the amount and diversity of plastic ingested by post-hatchling loggerhead turtles off South Africa have increased over the last four decades, and now kill some turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Replication and persistence of VHSV IVb in freshwater turtles.

    Science.gov (United States)

    Goodwin, Andrew E; Merry, Gwenn E

    2011-05-09

    With the emergence of viral hemorrhagic septicemia virus (VHSV) strain IVb in the Great Lakes of North America, hatchery managers have become concerned that this important pathogen could be transmitted by animals other than fish. Turtles are likely candidates because they are poikilotherms that feed on dead fish, but there are very few reports of rhabdovirus infections in reptiles and no reports of the fish rhabdoviruses in animals other than teleosts. We injected common snapping turtles Chelydra serpentine and red-eared sliders Trachemys scripta elegans intraperitoneally with 10(4) median tissue culture infectious dose (TCID50) of VHSV-IVb and 21 d later were able to detect the virus by quantitative real-time reverse transcriptase PCR (qrt-RTPCR) in pools of kidney, liver, and spleen. In a second experiment, snapping turtles, red-eared sliders, yellow-bellied sliders T. scripta scripta, and northern map turtles Grapetemys geographica at 14 degrees C were allowed to feed on tissues from bluegill dying of VHSV IVb disease. Turtle kidney, spleen, and brain pools were not positive by qrt-RTPCR on Day 3 post feeding, but were positive on Days 10 and 20. Map turtles on Day 20 post-feeding were positive by both qrt-RTPCR and by cell culture. Our work shows that turtles that consume infected fish are a possible vector for VHSV IVb, and that the fish rhabdoviruses may have a broader host range than previously suspected.

  16. The Riemerella anatipestifer AS87_01735 Gene Encodes Nicotinamidase PncA, an Important Virulence Factor.

    Science.gov (United States)

    Wang, Xiaolan; Liu, Beibei; Dou, Yafeng; Fan, Hongjie; Wang, Shaohui; Li, Tao; Ding, Chan; Yu, Shengqing

    2016-10-01

    Riemerella anatipestifer is a major bacterial pathogen that causes septicemic and exudative diseases in domestic ducks. In our previous study, we found that deletion of the AS87_01735 gene significantly decreased the bacterial virulence of R. anatipestifer strain Yb2 (mutant RA625). The AS87_01735 gene was predicted to encode a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, the AS87_01735 gene was expressed and identified as the PncA-encoding gene, using an enzymatic assay. Western blot analysis demonstrated that R. anatipestifer PncA was localized to the cytoplasm. The mutant strain RA625 (named Yb2ΔpncA in this study) showed a similar growth rate but decreased NAD(+) quantities in both the exponential and stationary phases in tryptic soy broth culture, compared with the wild-type strain Yb2. In addition, Yb2ΔpncA-infected ducks showed much lower bacterial loads in their blood, and no visible histological changes were observed in the heart, liver, and spleen. Furthermore, Yb2ΔpncA immunization of ducks conferred effective protection against challenge with the virulent wild-type strain Yb2. Our results suggest that the R. anatipestifer AS87_01735 gene encodes PncA, which is an important virulence factor, and that the Yb2ΔpncA mutant can be used as a novel live vaccine candidate. Riemerella anatipestifer is reported worldwide as a cause of septicemic and exudative diseases of domestic ducks. The pncA gene encodes a nicotinamidase (PncA), a key enzyme that catalyzes the conversion of nicotinamide to nicotinic acid, which is an important reaction in the NAD(+) salvage pathway. In this study, we identified and characterized the pncA-homologous gene AS87_01735 in R. anatipestifer strain Yb2. R. anatipestifer PncA is a cytoplasmic protein that possesses similar PncA activity, compared with other organisms. Generation of the pncA mutant Yb

  17. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea.

    Directory of Open Access Journals (Sweden)

    Bingzhi Chen

    Full Text Available Volvariella volvacea is one of a few commercial cultivated mushrooms mainly using straw as carbon source. In this study, the genome of V. volcacea was sequenced and assembled. A total of 285 genes encoding carbohydrate-active enzymes (CAZymes in V. volvacea were identified and annotated. Among 15 fungi with sequenced genomes, V. volvacea ranks seventh in the number of genes encoding CAZymes. In addition, the composition of glycoside hydrolases in V. volcacea is dramatically different from other basidiomycetes: it is particularly rich in members of the glycoside hydrolase families GH10 (hemicellulose degradation and GH43 (hemicellulose and pectin degradation, and the lyase families PL1, PL3 and PL4 (pectin degradation but lacks families GH5b, GH11, GH26, GH62, GH93, GH115, GH105, GH9, GH53, GH32, GH74 and CE12. Analysis of genome-wide gene expression profiles of 3 strains using 3'-tag digital gene expression (DGE reveals that 239 CAZyme genes were expressed even in potato destrose broth medium. Our data also showed that the formation of a heterokaryotic strain could dramatically increase the expression of a number of genes which were poorly expressed in its parental homokaryotic strains.

  18. The aquatic turtle assemblage inhabiting a highly altered landscape in southeast Missouri

    Science.gov (United States)

    Glorioso, Brad M.; Vaughn, Allison J.; Waddle, J. Hardin

    2010-01-01

    Turtles are linked to energetic food webs as both consumers of plants and animals and prey for many species. Turtle biomass in freshwater systems can be an order of magnitude greater than that of endotherms. Therefore, declines in freshwater turtle populations can change energy transfer in freshwater systems. Here we report on a mark–recapture study at a lake and adjacent borrow pit in a relict tract of bottomland hardwood forest in the Mississippi River floodplain in southeast Missouri, which was designed to gather baseline data, including sex ratio, size structure, and population size, density, and biomass, for the freshwater turtle population. Using a variety of capture methods, we captured seven species of freshwater turtles (snapping turtle Chelydra serpentina; red-eared slider Trachemys scripta; southern painted turtle Chrysemys dorsalis; river cooter Pseudemys concinna; false map turtle Graptemys pseudogeographica; eastern musk turtle Sternotherus odoratus; spiny softshell Apalone spinifera) comprising four families (Chelydridae, Emydidae, Kinosternidae, Trinoychidae). With the exception of red-eared sliders, nearly all individuals captured were adults. Most turtles were captured by baited hoop-nets, and this was the only capture method that caught all seven species. The unbaited fyke net was very successful in the borrow pit, but only captured four of the seven species. Basking traps and deep-water crawfish nets had minimal success. Red-eared sliders had the greatest population estimate (2,675), density (205/ha), and biomass (178 kg/ha). Two species exhibited a sex-ratio bias: snapping turtles C. serpentina in favor of males, and spiny softshells A. spinifera in favor of females.

  19. Morphological study of the plastron of the African sideneck turtle ...

    African Journals Online (AJOL)

    The morphological analysis of the plastron of the African sideneck turtle (Pelusios castaneus) was carried out using fifty adult turtles comprising twenty female and thirty male turtles picked up at different times from various river banks in Ibadan, Nigeria. The aim of the study was to provide baseline information that could be ...

  20. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  1. Health implications associated with exposure to farmed and wild sea turtles.

    Science.gov (United States)

    Warwick, Clifford; Arena, Phillip C; Steedman, Catrina

    2013-01-01

    Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.

  2. The frequency of genes encoding three putative group B streptococcal virulence factors among invasive and colonizing isolates

    Directory of Open Access Journals (Sweden)

    Borchardt Stephanie M

    2006-07-01

    Full Text Available Abstract Background Group B Streptococcus (GBS causes severe infections in very young infants and invasive disease in pregnant women and adults with underlying medical conditions. GBS pathogenicity varies between and within serotypes, with considerable variation in genetic content between strains. Three proteins, Rib encoded by rib, and alpha and beta C proteins encoded by bca and bac, respectively, have been suggested as potential vaccine candidates for GBS. It is not known, however, whether these genes occur more frequently in invasive versus colonizing GBS strains. Methods We screened 162 invasive and 338 colonizing GBS strains from different collections using dot blot hybridization to assess the frequency of bca, bac and rib. All strains were defined by serotyping for capsular type, and frequency differences were tested using the Chi square test. Results Genes encoding the beta C protein (bac and Rib (rib occurred at similar frequencies among invasive and colonizing isolates, bac (20% vs. 23%, and rib (28% vs. 20%, while the alpha (bca C protein was more frequently found in colonizing strains (46% vs, invasive (29%. Invasive strains were associated with specific serotype/gene combinations. Conclusion Novel virulence factors must be identified to better understand GBS disease.

  3. Emerging from the rib: resolving the turtle controversies.

    Science.gov (United States)

    Rice, Ritva; Riccio, Paul; Gilbert, Scott F; Cebra-Thomas, Judith

    2015-05-01

    Two of the major controversies in the present study of turtle shell development involve the mechanism by which the carapacial ridge initiates shell formation and the mechanism by which each rib forms the costal bones adjacent to it. This paper claims that both sides of each debate might be correct-but within the species examined. Mechanism is more properly "mechanisms," and there is more than one single way to initiate carapace formation and to form the costal bones. In the initiation of the shell, the rib precursors may be kept dorsal by either "axial displacement" (in the hard-shell turtles) or "axial arrest" (in the soft-shell turtle Pelodiscus), or by a combination of these. The former process would deflect the rib into the dorsal dermis and allow it to continue its growth there, while the latter process would truncate rib growth. In both instances, though, the result is to keep the ribs from extending into the ventral body wall. Our recent work has shown that the properties of the carapacial ridge, a key evolutionary innovation of turtles, differ greatly between these two groups. Similarly, the mechanism of costal bone formation may differ between soft-shell and hard-shell turtles, in that the hard-shell species may have both periosteal flattening as well as dermal bone induction, while the soft-shelled turtles may have only the first of these processes. © 2015 Wiley Periodicals, Inc.

  4. SdiA, an N-acylhomoserine lactone receptor, becomes active during the transit of Salmonella enterica through the gastrointestinal tract of turtles.

    Directory of Open Access Journals (Sweden)

    Jenee N Smith

    2008-07-01

    Full Text Available LuxR-type transcription factors are typically used by bacteria to determine the population density of their own species by detecting N-acylhomoserine lactones (AHLs. However, while Escherichia and Salmonella encode a LuxR-type AHL receptor, SdiA, they cannot synthesize AHLs. In vitro, it is known that SdiA can detect AHLs produced by other bacterial species.In this report, we tested the hypothesis that SdiA detects the AHL-production of other bacterial species within the animal host. SdiA did not detect AHLs during the transit of Salmonella through the gastrointestinal tract of a guinea pig, a rabbit, a cow, 5 mice, 6 pigs, or 12 chickens. However, SdiA was activated during the transit of Salmonella through turtles. All turtles examined were colonized by the AHL-producing species Aeromonas hydrophila.We conclude that the normal gastrointestinal microbiota of most animal species do not produce AHLs of the correct type, in an appropriate location, or in sufficient quantities to activate SdiA. However, the results obtained with turtles represent the first demonstration of SdiA activity in animals.

  5. Potential adverse health effects of persistent organic pollutants on sea turtles: evidences from a cross-sectional study on Cape Verde loggerhead sea turtles.

    Science.gov (United States)

    Camacho, María; Luzardo, Octavio P; Boada, Luis D; López Jurado, Luis F; Medina, María; Zumbado, Manuel; Orós, Jorge

    2013-08-01

    The Cape Verde nesting population of loggerhead sea turtles (Caretta caretta) is the third largest population of this species in the world. For conservation purposes, it is essential to determine how these reptiles respond to different types of anthropogenic contaminants. We evaluated the presence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in the plasma of adult nesting loggerheads from Boa Vista Island, Cape Verde, and studied the effects of the contaminants on the health status of the turtles using hematological and biochemical parameters. All turtles had detectable levels of non-dioxin like PCBs, whereas dioxin-like congeners (DL-PCBs) were detected in only 30% of the turtles. Packed cell volume decreased with higher concentrations of PCBs, which suggests that PCB exposure could result in anemia in sea turtles. In addition, a negative association between some OCPs and white blood cells (WBC) and thrombocyte estimate was noted. The DDT-metabolite, p,p'-DDE was negatively correlated with the Na/K ratio and, additionally, a number of correlations between certain PAHs and electrolyte balances were found, which suggest that exposure to these environmental contaminants could affect the kidneys and salt glands in sea turtles. Additionally, several correlations were observed between these environmental pollutants (OCPs and PAHs) and enzyme activity (GGT, ALT, ALP and amylase) and serum protein levels, pointing to the possibility that these contaminants could induce adverse metabolic effects in sea turtles. Our results indicate that anthropogenic pollutants are present in the Cape Verde loggerhead turtle nesting population and could exert negative effects on several health parameters. Because of the importance of this loggerhead nesting population, protective regulations at national and international levels as well as international action are necessary for assuring the conservation of this population

  6. Isolation of Bacillus cereus Group from the Fecal Material of Endangered Wood Turtles.

    Science.gov (United States)

    Nfor, Nancy Ngvumbo; Lapin, Carly N; McLaughlin, Richard William

    2015-10-01

    Members of the Bacillus cereus group are opportunistic human pathogens. They can be found in a broad range of foods. Diarrheal food poisoning and/or emetic type syndromes can result from eating contaminated food. In this study, seven B. cereus group members were isolated from the fecal material of Wood Turtles (Glyptemys insculpta). The isolates were then assessed for the presence of enterotoxin genes (nheA, entFM, hblC, and cytK) using PCR. The most prevalent is the nonhemolytic enterotoxin gene which was found in all seven isolates.

  7. Species boundaries and phylogenetic relationships in the critically endangered Asian box turtle genus Cuora.

    Science.gov (United States)

    Spinks, Phillip Q; Thomson, Robert C; Zhang, YaPing; Che, Jing; Wu, Yonghua; Shaffer, H Bradley

    2012-06-01

    Turtles are currently the most endangered major clade of vertebrates on earth, and Asian box turtles (Cuora) are in catastrophic decline. Effective management of this diverse turtle clade has been hampered by human-mediated, and perhaps natural hybridization, resulting in discordance between mitochondrial and nuclear markers and confusion regarding species boundaries and phylogenetic relationships among hypothesized species of Cuora. Here, we present analyses of mitochondrial and nuclear DNA data for all 12 currently hypothesized species to resolve both species boundaries and phylogenetic relationships. Our 15-gene, 40-individual nuclear data set was frequently in conflict with our mitochondrial data set; based on its general concordance with published morphological analyses and the strength of 15 independent estimates of evolutionary history, we interpret the nuclear data as representing the most reliable estimate of species boundaries and phylogeny of Cuora. Our results strongly reiterate the necessity of using multiple nuclear markers for phylogeny and species delimitation in these animals, including any form of DNA "barcoding", and point to Cuora as an important case study where reliance on mitochondrial DNA can lead to incorrect species identification. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Survival and behavior of freshwater turtles after rehabilitation from an oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Saba, V S; Spotila, J R [Drexel Univ., Philadelphia, PA (United States). School of Environmental Science, Engineering and Policy

    2003-11-01

    An oil spill in February 2000 at the John Heinz National Wildlife Refuge in southeastern Pennsylvania affected four species of freshwater turtles including painted turtles (Chrysemys picta), snapping turtles (Chelydra serpentina), red-eared slider turtles (Trachemys scripta), and red-bellied turtles (Pseudemys rubriventris). In the summer and fall of 2000, there were no differences in survival, home range, and temperature preference of 16 oil exposed/rehabilitated (OER) turtles, 18 possibly exposed (PE) turtles, and 32 non-exposed (NE) turtles as measured with temperature sensitive radio transmitters. Post-release mortality or transmitter loss was not correlated to oil exposure (OER=25%, PE=22%, NE=31%). There were no statistically significant differences in home range minimum convex polygon area, (0.28turtles is effective in restoring these animals to normal behavior in nature.(author)

  9. Turtle bycatch in the pelagic longline fishery off southern Africa ...

    African Journals Online (AJOL)

    Capture by pelagic longline fisheries has been identified as a key threat to turtle populations. This study is the first assessment of turtle bycatch in the South African pelagic longline fishery for tunas Thunnus spp. and swordfish Xiphias gladius. A total of 181 turtles was caught on observed sets between 1998 and 2005, at a ...

  10. Endangered species: where leatherback turtles meet fisheries.

    Science.gov (United States)

    Ferraroli, Sandra; Georges, Jean-Yves; Gaspar, Philippe; Le Maho, Yvon

    2004-06-03

    The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that there is no equivalent of these corridors in the North Atlantic Ocean, because the turtles disperse actively over the whole area. But we are able to identify a few 'hot spots' where leatherbacks meet fisheries and where conservation efforts should be focused.

  11. Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or γ-rays

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, Chin-Mei

    1994-01-01

    Previous work has shown that exposure of cells to ionizing radiations causes modulation of a variety of genes, including those encoding c-fos, interleukin-1, tumor necrosis factor, cytoskeletal elements, and many more. The experiments reported herein were designed to examine the effects of either JANUS neutron or γ-ray exposure on expression of genes encoding nucleus-associated proteins (H4-histone, c-jun, c-myc, Rb, and p53). Cycling Syrian hamster embryo cells were irradiated with varying doses and dose rates of either JANUS fission-spectrum neutrons or γ-rays; after incubation of the cell cultures for 1 h following radiation exposure, mRNA was harvested and analyzed by Northern blot. Results revealed induction of transcripts for c-jun, H4-histone, and Rb following γ-ray but not following neutron exposure. Interestingly, expression of c-myc was repressed following γ-ray but not following neutron exposure. Radiations at different doses and dose rates were compared for each of the genes studied

  12. CHARACTERIZATION OF 0.58 kb DNA STILBENE SYNTHASE ENCODING GENE FRAGMENT FROM MELINJO PLANT (Gnetum gnemon

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2011-12-01

    Full Text Available Resveratrol is a potent anticancer agent resulted as the main product of enzymatic reaction between common precursor in plants and Stilbene Synthase enzyme, which is expressed by sts gene. Characterization of internal fragment of Stilbene Synthase (STS encoding gene from melinjo plant (Gnetum gnemon L. has been carried out as part of a larger work to obtain a full length of Stilbene Synthase encoding gene of the plant. RT-PCR (Reverse Transcriptase Polymerase Chain Reaction was performed using two degenerated primers to amplify the gene fragment. Ten published STS conserved amino acid sequences from various plant species from genebank were utilized to construct a pair of GGF2 (5' GTTCCACCTGCGAAGCAGCC 3' and GGR2 (5' CTGGATCGCACATCC TGGTG 3' primers. Both designed primers were predicted to be in the position of 334-354 and 897-916 kb of the gene respectively. Total RNA isolated from melinjo leaves was used as template for the RT-PCR amplification process using two-step technique. A collection of 0.58 DNA fragments was generated from RT-PCR amplification and met the expected results. The obtained DNA fragments were subsequently isolated, refined and sequenced. A nucleotide sequence analysis was accomplished by comparing it to the existed sts genes available in genebank. Homology analysis of the DNA fragments with Arachis hypogaea L00952 sts gene showed high similarity level. Taken together, the results are evidence that the amplified fragment obtained in this study is part of melinjo sts gene

  13. Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales.

    Science.gov (United States)

    Wallace, Bryan P; DiMatteo, Andrew D; Hurley, Brendan J; Finkbeiner, Elena M; Bolten, Alan B; Chaloupka, Milani Y; Hutchinson, Brian J; Abreu-Grobois, F Alberto; Amorocho, Diego; Bjorndal, Karen A; Bourjea, Jerome; Bowen, Brian W; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B C; Costa, Alice; Dutton, Peter H; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A; Musick, John A; Nel, Ronel; Pilcher, Nicolas J; Seminoff, Jeffrey A; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B

    2010-12-17

    Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework--including maps and supporting metadata--will be an

  14. Regional Management Units for Marine Turtles: A Novel Framework for Prioritizing Conservation and Research across Multiple Scales

    Science.gov (United States)

    Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.

    2010-01-01

    Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition

  15. Effects of environmental contaminants on snapping turtles of a tidal wetland

    Energy Technology Data Exchange (ETDEWEB)

    Albers, P H; Sileo, L; Mulhern, B M

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the freshwater areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolatility, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicated physiological impairment related to contaminants.

  16. Effects of environmental contaminants on snapping turtles of a tidal wetland

    Science.gov (United States)

    Albers, P.H.; Sileo, L.; Mulhern, B.M.

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in the Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the fresh-water areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolality, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicate physiological impairment related to contaminants.

  17. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles.

    Science.gov (United States)

    Young, Vanessa K Hilliard; Vest, Kaitlyn G; Rivera, Angela R V; Espinoza, Nora R; Blob, Richard W

    2017-01-01

    Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions. © 2017 The Author(s).

  18. High incidence of deformity in aquatic turtles in the John Heinz National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Barbara [Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Spotila, James R [Department of Bioscience and Biotechnology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Congdon, Justin [Savannah River Ecology Laboratory, University of Georgia, Drawer E., Aiken, SC (United States)

    2006-08-15

    The John Heinz National Wildlife Refuge is subject to pollution from multiple sources. We studied development of snapping turtle (Chelydra serpentina) and painted turtle (Chrysemys picta) embryos from the refuge from 2000 through 2003. Mean annual deformity rate of pooled painted turtle clutches over four years ranged from 45 to 71%, while that of snapping turtle clutches ranged from 13 to 19%. Lethal deformities were more common than minor or moderate deformities in embryos of both species. Adult painted turtles had a higher deformity rate than adult snapping turtles. Snapping turtles at JHNWR had high levels of PAH contamination in their fat. This suggests that PAHs are involved in the high level of deformities. Other contaminants may also play a role. Although the refuge offers many advantages to resident turtle populations, pollution appears to place a developmental burden on the life history of these turtles. - This paper presents findings on the prevalence of developmental abnormalities in turtles at a national wildlife refuge that have direct relevance to studies on the effects of contamination on development and morphology of vertebrates.

  19. High incidence of deformity in aquatic turtles in the John Heinz National Wildlife Refuge

    International Nuclear Information System (INIS)

    Bell, Barbara; Spotila, James R.; Congdon, Justin

    2006-01-01

    The John Heinz National Wildlife Refuge is subject to pollution from multiple sources. We studied development of snapping turtle (Chelydra serpentina) and painted turtle (Chrysemys picta) embryos from the refuge from 2000 through 2003. Mean annual deformity rate of pooled painted turtle clutches over four years ranged from 45 to 71%, while that of snapping turtle clutches ranged from 13 to 19%. Lethal deformities were more common than minor or moderate deformities in embryos of both species. Adult painted turtles had a higher deformity rate than adult snapping turtles. Snapping turtles at JHNWR had high levels of PAH contamination in their fat. This suggests that PAHs are involved in the high level of deformities. Other contaminants may also play a role. Although the refuge offers many advantages to resident turtle populations, pollution appears to place a developmental burden on the life history of these turtles. - This paper presents findings on the prevalence of developmental abnormalities in turtles at a national wildlife refuge that have direct relevance to studies on the effects of contamination on development and morphology of vertebrates

  20. Octylphenol (OP) alters the expression of members of the amyloid protein family in the hypothalamus of the snapping turtle, Chelydra serpentina serpentina.

    Science.gov (United States)

    Trudeau, Vance L; Chiu, Suzanne; Kennedy, Sean W; Brooks, Ronald J

    2002-03-01

    The gonadal estrogen estradiol-17beta (E(2)) is important for developing and regulating hypothalamic function and many aspects of reproduction in vertebrates. Pollutants such as octylphenol (OP) that mimic the actions of estrogens are therefore candidate endocrine-disrupting chemicals. We used a differential display strategy (RNA-arbitrarily primed polymerase chain reaction) to isolate partial cDNA sequences of neurotransmitter, developmental, and disease-related genes that may be regulated by OP or E(2) in the snapping turtle Chelydra serpentina serpentina hypothalamus. Hatchling and year-old male snapping turtles were exposed to a 10 ng/mL nominal concentration of waterborne OP or E(2) for 17 days. One transcript [421 base pairs (bp)] regulated by OP and E(2) was 93% identical to human APLP-2. APLP-2 and the amyloid precursor protein (APP) regulate neuronal differentiation and are also implicated in the genesis of Alzheimer disease in humans. Northern blot analysis determined that the turtle hypothalamus contains a single APLP-2 transcript of 3.75 kb in length. Exposure to OP upregulated hypothalamic APLP-2 mRNA levels 2-fold (p < 0.05) in month-old and yearling turtles. E(2) did not affect APLP-2 mRNA levels in hatchlings but stimulated a 2-fold increase (p < 0.05) in APLP-2 mRNA levels in yearling males. The protein beta-amyloid, a selectively processed peptide derived from APP, is also involved in neuronal differentiation, and accumulation of this neurotoxic peptide causes neuronal degeneration in the brains of patients with Alzheimer disease. Therefore, we also sought to determine the effects of estrogens on the expression of beta-amyloid. Using homology cloning based on known sequences, we isolated a cDNA fragment (474 bp) from turtle brain with 88% identity to human APP. Northern blot analysis determined that a single 3.5-kb transcript was expressed in the turtle hypothalamus. Waterborne OP also increased the expression of hypothalamic APP after 35 days of

  1. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  2. 50 CFR 648.126 - Protection of threatened and endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered Species Act under 50 CFR parts 222 and 223. In addition to the...

  3. Human coronavirus 229E encodes a single ORF4 protein between the spike and the envelope genes

    Directory of Open Access Journals (Sweden)

    Berkhout Ben

    2006-12-01

    Full Text Available Abstract Background The genome of coronaviruses contains structural and non-structural genes, including several so-called accessory genes. All group 1b coronaviruses encode a single accessory protein between the spike and envelope genes, except for human coronavirus (HCoV 229E. The prototype virus has a split gene, encoding the putative ORF4a and ORF4b proteins. To determine whether primary HCoV-229E isolates exhibit this unusual genome organization, we analyzed the ORF4a/b region of five current clinical isolates from The Netherlands and three early isolates collected at the Common Cold Unit (CCU in Salisbury, UK. Results All Dutch isolates were identical in the ORF4a/b region at amino acid level. All CCU isolates are only 98% identical to the Dutch isolates at the nucleotide level, but more closely related to the prototype HCoV-229E (>98%. Remarkably, our analyses revealed that the laboratory adapted, prototype HCoV-229E has a 2-nucleotide deletion in the ORF4a/b region, whereas all clinical isolates carry a single ORF, 660 nt in size, encoding a single protein of 219 amino acids, which is a homologue of the ORF3 proteins encoded by HCoV-NL63 and PEDV. Conclusion Thus, the genome organization of the group 1b coronaviruses HCoV-NL63, PEDV and HCoV-229E is identical. It is possible that extensive culturing of the HCoV-229E laboratory strain resulted in truncation of ORF4. This may indicate that the protein is not essential in cell culture, but the highly conserved amino acid sequence of the ORF4 protein among clinical isolates suggests that the protein plays an important role in vivo.

  4. Visual Stimuli Induce Waves of Electrical Activity in Turtle Cortex

    Science.gov (United States)

    Prechtl, J. C.; Cohen, L. B.; Pesaran, B.; Mitra, P. P.; Kleinfeld, D.

    1997-07-01

    The computations involved in the processing of a visual scene invariably involve the interactions among neurons throughout all of visual cortex. One hypothesis is that the timing of neuronal activity, as well as the amplitude of activity, provides a means to encode features of objects. The experimental data from studies on cat [Gray, C. M., Konig, P., Engel, A. K. & Singer, W. (1989) Nature (London) 338, 334-337] support a view in which only synchronous (no phase lags) activity carries information about the visual scene. In contrast, theoretical studies suggest, on the one hand, the utility of multiple phases within a population of neurons as a means to encode independent visual features and, on the other hand, the likely existence of timing differences solely on the basis of network dynamics. Here we use widefield imaging in conjunction with voltage-sensitive dyes to record electrical activity from the virtually intact, unanesthetized turtle brain. Our data consist of single-trial measurements. We analyze our data in the frequency domain to isolate coherent events that lie in different frequency bands. Low frequency oscillations (scale differences in neuronal timing are present and persistent during visual processing.

  5. Conservation genomics of the endangered Burmese roofed turtle.

    Science.gov (United States)

    Çilingir, F Gözde; Rheindt, Frank E; Garg, Kritika M; Platt, Kalyar; Platt, Steven G; Bickford, David P

    2017-12-01

    The Burmese roofed turtle (Batagur trivittata) is one of the world's most endangered turtles. Only one wild population remains in Myanmar. There are thought to be 12 breeding turtles in the wild. Conservation efforts for the species have raised >700 captive turtles since 2002, predominantly from eggs collected in the wild. We collected tissue samples from 445 individuals (approximately 40% of the turtles' remaining global population), applied double-digest restriction-site associated DNA sequencing (ddRAD-Seq), and obtained approximately 1500 unlinked genome-wide single nucleotide polymorphisms. Individuals fell into 5 distinct genetic clusters, 4 of which represented full-sib families. We inferred a low effective population size (≤10 individuals) but did not detect signs of severe inbreeding, possibly because the population bottleneck occurred recently. Two groups of 30 individuals from the captive pool that were the most genetically diverse were reintroduced to the wild, leading to an increase in the number of fertile eggs (n = 27) in the wild. Another 25 individuals, selected based on the same criteria, were transferred to the Singapore Zoo as an assurance colony. Our study demonstrates that the research-to-application gap in conservation can be bridged through application of cutting-edge genomic methods. © 2017 Society for Conservation Biology.

  6. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    Science.gov (United States)

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  7. Hydrodynamic role of longitudinal ridges in a leatherback turtle swimming

    Science.gov (United States)

    Bang, Kyeongtae; Kim, Jooha; Lee, Sang-Im; Choi, Haecheon

    2015-11-01

    The leatherback sea turtle (Dermochelys coriacea), the fastest swimmer and the deepest diver among marine turtles, has five longitudinal ridges on its carapace. These ridges are the most remarkable morphological features distinguished from other marine turtles. To investigate the hydrodynamic role of these ridges in the leatherback turtle swimming, we model a carapace with and without ridges by using three dimensional surface data of a stuffed leatherback turtle in the National Science Museum, Korea. The experiment is conducted in a wind tunnel in the ranges of the real leatherback turtle's Reynolds number (Re) and angle of attack (α). The longitudinal ridges function differently according to the flow condition (i.e. Re and α). At low Re and negative α that represent the swimming condition of hatchlings and juveniles, the ridges significantly decrease the drag by generating streamwise vortices and delaying the main separation. On the other hand, at high Re and positive α that represent the swimming condition of adults, the ridges suppress the laminar separation bubble near the front part by generating streamwise vortices and enhance the lift and lift-to-drag ratio. Supported by the NRF program (2011-0028032).

  8. Sequence variation in the alpha-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens

    DEFF Research Database (Denmark)

    Abildgaard, L; Engberg, RM; Pedersen, Karl

    2009-01-01

    The aim of the present study was to analyse the genetic diversity of the alpha-toxin encoding plc gene and the variation in a-toxin production of Clostridium perfringens type A strains isolated from presumably healthy chickens and chickens suffering from either necrotic enteritis (NE) or cholangio......-hepatitis. The a-toxin encoding plc genes from 60 different pulsed-field gel electrophoresis (PFGE) types (strains) of C perfringens were sequenced and translated in silico to amino acid sequences and the a-toxin production was investigated in batch cultures of 45 of the strains using an enzyme...

  9. The Use of Green Turtles in Bali, When Conservation Meets Culture

    OpenAIRE

    Westerlaken, Rodney

    2016-01-01

    The use of green turtles in ceremonies, as delicacy or for the use of the shell has been a vast problem in history and recent years on Bali. The number of turtles living in the waters surrounding Bali is decreasing and the illegal trade is vivid.   Several projects are fighting for conservation of turtles and the Parisada Hindu Dharma Indonesia (the highest Hindu council) issued a decree against the use of turtles in ceremonies, but illegal trade remains. On April 7, 2016 40 green ...

  10. Genome-Wide Identification and Analysis of Genes Encoding PHD-Finger Protein in Tomato

    International Nuclear Information System (INIS)

    Hayat, S.; Cheng, Z.; Chen, X.

    2016-01-01

    The PHD-finger proteins are conserved in eukaryotic organisms and are involved in a variety of important functions in different biological processes in plants. However, the function of PHD fingers are poorly known in tomato (Solanum lycopersicum L.). In current study, we identified 45 putative genes coding Phd finger protein in tomato distributed on 11 chromosomes except for chromosome 8. Some of the genes encode other conserved key domains besides Phd-finger. Phylogenetic analysis of these 45 proteins resulted in seven clusters. Most Phd finger proteins were predicted to PML body location. These PHD-finger genes displayed differential expression either in various organs, at different development stages and under stresses in tomato. Our study provides the first systematic analysis of PHD-finger genes and proteins in tomato. This preliminary study provides a very useful reference information for Phd-finger proteins in tomato. They will be helpful for cloning and functional study of tomato PHD-finger genes. (author)

  11. To Eat or Not to Eat? Debris Selectivity by Marine Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894

  12. An Immunohistochemical Approach to Identify the Sex of Young Marine Turtles.

    Science.gov (United States)

    Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette

    2017-08-01

    Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures, nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries overexpressed a particular cold-induced RNA-binding protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H&E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. Anat Rec, 300:1512-1518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Asymmetry of righting reflexes in sea turtles and its behavioral correlates.

    Science.gov (United States)

    Malashichev, Yegor

    2016-04-01

    The righting responses, when the animal rights itself over one side of the body after been overturned on the back, are one of the simplest ways to test for laterality, especially in lower vertebrates. In anuran amphibians unilateral preferences in righting responses correlated to the degree of the use of alternating-limb (asynchronous) movements during locomotion. Turtles is one of the underrepresented vertebrate groups in the studies of laterality, while possess also different types of locomotion (with synchronous or asynchronous use of the contralateral limbs), which allows testing the hypothesis on functional relationship between the mode of locomotion and the strength of laterality. We studied two species of sea turtles, Green turtle (Chelonia mydas) and Olive Ridley turtle (Lepidochelys olivacea), which differ from the majority of other representatives of the order in that they mostly utilize synchronous locomotion, when all four limbs move simultaneously in strokes (scratching). In righting response tests turtles demonstrated individual and weak population level laterality, which differed in strength. The Green turtle was less lateralized with the majority of individuals being ambipreferent. The Olive Ridley turtle had a greater number of lateralized individuals and a greater average strength of laterality. Interspecies comparison to land tortoises, which use only asynchronous (alternating-limb) walking (crawling), confirmed the rule found in amphibians: the more asynchronous locomotion is used, the greater is the strength of laterality in righting. Hence, data from turtles and amphibians may represent a phenomenon common for all quadruped vertebrates. We also discuss possible biomechanical and neurological correlates of this evolutionary change in locomotory patterns and lateralization in sea turtles when adapting to sea life. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Populations and home range relationships of the box turtle, Terrapene c. carolina (Linnaeus)

    Science.gov (United States)

    Stickel, L.F.

    1950-01-01

    SUMMARY: A population study of the box turtle (Terrapene c. carolina Linnaeus) was made during the years 1944 to 1947 at the Patuxent Research Refuge, Maryland. A thirty acre area in well drained bottomland forest on the flood plain of the Patuxent River was selected for intensive study. Similarly forested land extended in all directions from the study plot. Markers were established at eighty-three foot intervals over the study plot for reference in recording locality data. Individuals were marked by filing notches in the marginal scutes according to a code system. There were 2109 collections of study area turtles. Records of collecting sites and turtle behavior showed that in the bottomlands habitat cover is utilized extensively during the day as well as at night. Turtles not actively moving about are almost always found in or around brush piles, heaps of debris, and tangles of vines and briars. Gully banks and woods openings are used for sunning. Turtles are occasionally found in the mud or water of the gullies. The commonest type of night retreat is a cavity constructed by the turtle in leaves, debris, or earth. These cavities, termed 'forms,' may be used only once, but are sometimes used repeatedly, often at intervals of several days or more. Different turtles sometimes use the same form on successive nights. Weather conditions most favorable to turtle activity are high humidity, warm sunny days, and frequent rains. The most unfavorable influences are low temperatures and drought. On most summer days there are some active turtles but individual turtles are not active every day. Periods of activity are alternated with periods of quiet even in favorable weather. This behavior is most pronounced in early spring and late fall when inactive days are often more numerous than active ones. Adult turtles occupy specific home ranges which they maintain from year to year. The turtles living in the study plot retained their ranges even through a flood that completely

  15. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  16. Expression analysis of the Theileria parva subtelomere-encoded variable secreted protein gene family.

    Directory of Open Access Journals (Sweden)

    Jacqueline Schmuckli-Maurer

    Full Text Available The intracellular protozoan parasite Theileria parva transforms bovine lymphocytes inducing uncontrolled proliferation. Proteins released from the parasite are assumed to contribute to phenotypic changes of the host cell and parasite persistence. With 85 members, genes encoding subtelomeric variable secreted proteins (SVSPs form the largest gene family in T. parva. The majority of SVSPs contain predicted signal peptides, suggesting secretion into the host cell cytoplasm.We analysed SVSP expression in T. parva-transformed cell lines established in vitro by infection of T or B lymphocytes with cloned T. parva parasites. Microarray and quantitative real-time PCR analysis revealed mRNA expression for a wide range of SVSP genes. The pattern of mRNA expression was largely defined by the parasite genotype and not by host background or cell type, and found to be relatively stable in vitro over a period of two months. Interestingly, immunofluorescence analysis carried out on cell lines established from a cloned parasite showed that expression of a single SVSP encoded by TP03_0882 is limited to only a small percentage of parasites. Epitope-tagged TP03_0882 expressed in mammalian cells was found to translocate into the nucleus, a process that could be attributed to two different nuclear localisation signals.Our analysis reveals a complex pattern of Theileria SVSP mRNA expression, which depends on the parasite genotype. Whereas in cell lines established from a cloned parasite transcripts can be found corresponding to a wide range of SVSP genes, only a minority of parasites appear to express a particular SVSP protein. The fact that a number of SVSPs contain functional nuclear localisation signals suggests that proteins released from the parasite could contribute to phenotypic changes of the host cell. This initial characterisation will facilitate future studies on the regulation of SVSP gene expression and the potential biological role of these enigmatic

  17. Global conservation priorities for marine turtles.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs, and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58. We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority

  18. Estimates of the non-market value of sea turtles in Tobago using stated preference techniques.

    Science.gov (United States)

    Cazabon-Mannette, Michelle; Schuhmann, Peter W; Hailey, Adrian; Horrocks, Julia

    2017-05-01

    Economic benefits are derived from sea turtle tourism all over the world. Sea turtles also add value to underwater recreation and convey non-use values. This study examines the non-market value of sea turtles in Tobago. We use a choice experiment to estimate the value of sea turtle encounters to recreational SCUBA divers and the contingent valuation method to estimate the value of sea turtles to international tourists. Results indicate that turtle encounters were the most important dive attribute among those examined. Divers are willing to pay over US$62 per two tank dive for the first turtle encounter. The mean WTP for turtle conservation among international visitors to Tobago was US$31.13 which reflects a significant non-use value associated with actions targeted at keeping sea turtles from going extinct. These results illustrate significant non-use and non-consumptive use value of sea turtles, and highlight the importance of sea turtle conservation efforts in Tobago and throughout the Caribbean region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    Science.gov (United States)

    Scheyer, Torsten M.

    2008-09-01

    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles.

  20. Neuroanatomy of the marine Jurassic turtle Plesiochelys etalloni (Testudinata, Plesiochelyidae).

    Science.gov (United States)

    Carabajal, Ariana Paulina; Sterli, Juliana; Müller, Johannes; Hilger, André

    2013-01-01

    Turtles are one of the least explored clades regarding endocranial anatomy with few available descriptions of the brain and inner ear of extant representatives. In addition, the paleoneurology of extinct turtles is poorly known and based on only a few natural cranial endocasts. The main goal of this study is to provide for the first time a detailed description of the neuroanatomy of an extinct turtle, the Late Jurassic Plesiochelysetalloni, including internal carotid circulation, cranial endocast and inner ear, based on the first digital 3D reconstruction using micro CT scans. The general shape of the cranial endocast of P. etalloni is tubular, with poorly marked cephalic and pontine flexures. Anteriorly, the olfactory bulbs are clearly differentiated suggesting larger bulbs than in any other described extinct or extant turtle, and indicating a higher capacity of olfaction in this taxon. The morphology of the inner ear of P. etalloni is comparable to that of extant turtles and resembles those of slow-moving terrestrial vertebrates, with markedly low, short and robust semicircular canals, and a reduced lagena. In P. etalloni the arterial pattern is similar to that found in extant cryptodires, where all the internal carotid branches are protected by bone. As the knowledge of paleoneurology in turtles is scarce and the application of modern techniques such as 3D reconstructions based on CT scans is almost unexplored in this clade, we hope this paper will trigger similar investigations of this type in other turtle taxa.

  1. Carboxylesterase 1A2 encoding gene with increased transcription and potential rapid drug metabolism in Asian populations

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Madsen, Majbritt Busk; Lyauk, Yassine Kamal

    2017-01-01

    The carboxylesterase 1 gene (CES1) encodes a hydrolase implicated in the metabolism of commonly used drugs. CES1A2, a hybrid of CES1 and a CES1-like pseudogene, has a promoter that is weak in most individuals. However, some individuals harbor a promoter haplotype of this gene with two overlapping...

  2. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  3. An evolutionarily conserved gene family encodes proton-selective ion channels.

    Science.gov (United States)

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. The Role of Taboos in the Protection and Recovery of Sea Turtles

    Directory of Open Access Journals (Sweden)

    LoriKim Alexander

    2017-08-01

    Full Text Available Despite increased efforts from government agencies, scientists, and non-government organizations over the past few decades, anthropogenic sources of sea turtle mortality continue to threaten the survivorship of sea turtle species around the globe. More recent efforts to engage local people with community-based sea turtle conservation programs have been based primarily on economic incentives and less on cultural and social traditions. But there is growing evidence that informal institutions such as, taboos can be extremely effective at promoting wildlife conservation. Ghana is a culturally diverse country where local traditions have shown to improve protection for primates, crocodiles, and many bird species. This study explores the presence of a sea turtle taboo in fishing communities to demonstrate that traditional practices make residents more receptive to sea turtle conservation and more willing to follow government regulations. Fishers in the communities that are aware of the taboo are also more willing to adjust fishing methods to better protect sea turtles. The traditional taboo and national laws appear to be working synergistically to enhance sea turtle conservation in some regions of Ghana. This paper extends the argument that sea turtle conservation strategies succeed when the cultural and social traditions of local communities are integrated with management activities.

  5. The origin of the turtle body plan: bridging a famous morphological gap.

    Science.gov (United States)

    Lee, M S

    1993-09-24

    A restudy of pareiasaurs reveals that these primitive reptiles are the nearest relatives of turtles. The two groups share numerous derived characters, such as a reduced presacral count, an acromion process, and a trochanter major, which are absent in other basal amniotes. Many traits long thought specific to chelonians also occur in pareiasaurs and must have evolved before the distinctive turtle shell appeared. Evidence uniting captorhinid or procolophonoids with turtles is shown to be weak. The phylogeny proposed here also suggests that certain features of the earliest turtle (Proganochelys) that have been interpreted as specializations, such as the large supratemporal and robust metacarpals, are primitive for turtles. In pareiasaurs, the osteoderms represent the precursors of the chelonian shell and the morphology of the anterior region is consistent with the idea that the shoulder girdle in turtles has migrated posteriorly into the rib cage.

  6. Skeletal remodelling suggests the turtle's shell is not an evolutionary straitjacket.

    Science.gov (United States)

    Cordero, Gerardo Antonio; Quinteros, Kevin

    2015-04-01

    Recent efforts to decipher the enigma of the turtle's shell revealed that distantly related turtle species deploy diverse processes during shell development. Even so, extant species share in common a shoulder blade (scapula) that is encapsulated within the shell. Thus, evolutionary change in the correlated development of the shell and scapula probably underpins the evolution of highly derived shell morphologies. To address this expectation, we conducted one of the most phylogenetically comprehensive surveys of turtle development, focusing on scapula growth and differentiation in embryos, hatchlings and adults of 13 species. We report, to our knowledge, the first description of secondary differentiation owing to skeletal remodelling of the tetrapod scapula in turtles with the most structurally derived shell phenotypes. Remodelling and secondary differentiation late in embryogenesis of box turtles (Emys and Terrapene) yielded a novel skeletal segment (i.e. the suprascapula) of high functional value to their complex shell-closing system. Remarkably, our analyses suggest that, in soft-shelled turtles (Trionychidae) with extremely flattened shells, a similar transformation is linked to truncated scapula growth. Skeletal remodelling, as a form of developmental plasticity, might enable the seemingly constrained turtle body plan to diversify, suggesting the shell is not an evolutionary straitjacket. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. The origin and loss of periodic patterning in the turtle shell.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Zimm, Roland; Cebra-Thomas, Judith; Lempiäinen, Netta K; Kallonen, Aki; Mitchell, Katherine L; Hämäläinen, Keijo; Salazar-Ciudad, Isaac; Jernvall, Jukka; Gilbert, Scott F

    2014-08-01

    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell. © 2014. Published by The Company of Biologists Ltd.

  8. 75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement

    Science.gov (United States)

    2010-12-27

    ... implement programs to conserve marine life listed as endangered or threatened. All sea turtles found in U.S... endangered wherever they occur in U.S. waters. While some sea turtle populations have shown signs of recovery... attempting to engage in any such conduct), including incidental take, of endangered sea turtles. Pursuant to...

  9. Cloning and sequencing of a gene encoding a 21-kilodalton outer membrane protein from Bordetella avium and expression of the gene in Salmonella typhimurium.

    Science.gov (United States)

    Gentry-Weeks, C R; Hultsch, A L; Kelly, S M; Keith, J M; Curtiss, R

    1992-01-01

    Three gene libraries of Bordetella avium 197 DNA were prepared in Escherichia coli LE392 by using the cosmid vectors pCP13 and pYA2329, a derivative of pCP13 specifying spectinomycin resistance. The cosmid libraries were screened with convalescent-phase anti-B. avium turkey sera and polyclonal rabbit antisera against B. avium 197 outer membrane proteins. One E. coli recombinant clone produced a 56-kDa protein which reacted with convalescent-phase serum from a turkey infected with B. avium 197. In addition, five E. coli recombinant clones were identified which produced B. avium outer membrane proteins with molecular masses of 21, 38, 40, 43, and 48 kDa. At least one of these E. coli clones, which encoded the 21-kDa protein, reacted with both convalescent-phase turkey sera and antibody against B. avium 197 outer membrane proteins. The gene for the 21-kDa outer membrane protein was localized by Tn5seq1 mutagenesis, and the nucleotide sequence was determined by dideoxy sequencing. DNA sequence analysis of the 21-kDa protein revealed an open reading frame of 582 bases that resulted in a predicted protein of 194 amino acids. Comparison of the predicted amino acid sequence of the gene encoding the 21-kDa outer membrane protein with protein sequences in the National Biomedical Research Foundation protein sequence data base indicated significant homology to the OmpA proteins of Shigella dysenteriae, Enterobacter aerogenes, E. coli, and Salmonella typhimurium and to Neisseria gonorrhoeae outer membrane protein III, Haemophilus influenzae protein P6, and Pseudomonas aeruginosa porin protein F. The gene (ompA) encoding the B. avium 21-kDa protein hybridized with 4.1-kb DNA fragments from EcoRI-digested, chromosomal DNA of Bordetella pertussis and Bordetella bronchiseptica and with 6.0- and 3.2-kb DNA fragments from EcoRI-digested, chromosomal DNA of B. avium and B. avium-like DNA, respectively. A 6.75-kb DNA fragment encoding the B. avium 21-kDa protein was subcloned into the

  10. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  11. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles

    Science.gov (United States)

    Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  12. A model for simulating the active dispersal of juvenile sea turtles with a case study on western Pacific leatherback turtles.

    Science.gov (United States)

    Gaspar, Philippe; Lalire, Maxime

    2017-01-01

    Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the

  13. Three synonymous genes encode calmodulin in a reptile, the Japanese tortoise, Clemmys japonica

    Directory of Open Access Journals (Sweden)

    Kouji Shimoda

    2002-01-01

    Full Text Available Three distinct calmodulin (CaM-encoding cDNAs were isolated from a reptile, the Japanese tortoise (Clemmys japonica, based on degenerative primer PCR. Because of synonymous codon usages, the deduced amino acid (aa sequences were exactly the same in all three genes and identical to the aa sequence of vertebrate CaM. The three cDNAs, referred to as CaM-A, -B, and -C, seemed to belong to the same type as CaMI, CaMII, and CaMIII, respectively, based on their sequence identity with those of the mammalian cDNAs and the glutamate codon biases. Northern blot analysis detected CaM-A and -B as bands corresponding to 1.8 kb, with the most abundant levels in the brain and testis, while CaM-C was detected most abundantly in the brain as bands of 1.4 and 2.0 kb. Our results indicate that, in the tortoise, CaM protein is encoded by at least three non-allelic genes, and that the ‘multigene-one protein' principle of CaM synthesis is applicable to all classes of vertebrates, from fishes to mammals.

  14. Investigation of the role of genes encoding zinc exporters zntA, zitB, and fieF during Salmonella typhimurium infection

    DEFF Research Database (Denmark)

    Huang, Kaisong; Wang, Dan; Frederiksen, Rikki F.

    2018-01-01

    The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed...... deletion mutants for genes encoding zinc exporters (zntA, zitB, and fieF) in the wild-type (WT) strain Salmonella enterica serovar Typhimurium (S. Typhimurium) 4/74. The mutants 4/74ΔzntA and 4/74ΔzntA/zitB exhibited a dramatic growth delay and abrogated growth ability, respectively, in Luria Bertani...... medium supplemented with 0.25 mM ZnCl2 or 1.5 mM CuSO4 compared to the WT strain. In order to investigate the role of genes encoding zinc exporters on survival of S. Typhimurium inside cells, amoeba and macrophage infection models were used. No significant differences in uptake or survival were detected...

  15. Saving turtles: Talisman, Elf and BHP make room for reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A.

    1999-05-03

    Cooperation between Australia`s BHP Petroleum, Canada`s Talisman Energy and France`s El Aquitaine to help the Trinidadian government and conservation groups to save the nesting grounds of the Carribean sea turtle is described. The nesting ground is located near one of the projects the three companies are working on. The giant turtle, also called the leatherback, can weigh as much as a tonne and have a 2.4 metre flipper span, have their nesting places on Trinidad`s northeastern shore. The three companies are working in 36 metres of water opposite two of the turtles` last nesting places. Had the companies proceeded as planned, the project could have destroyed their nesting place. Instead, the companies put up $90,000 for a three-month research project to monitor the movement of the turtles with satellite telemetry. In order to assess the turtles` hearing, tiny wires were inserted in the the turtles` brain to measure brain wave patterns - a method similar to that used on human neo-natals. When it was discovered that the turtles did not adapt well to captivity, they were fitted with earphones and transmitter during 10-minute period when they were in the quiescent state of egg-laying. The companies proceeded with a seismic program that used cables on the sea floor. Rather than use a large and noisy survey vessel to lay long streamers on a wide area, they laid shorter strips on a grid with smaller, quieter boats. That was sufficient for the turtles to continue normal activity as females arrived on the beach in the usual numbers to nest and to lay eggs. The documentation provided to the Trinidadian government was well received and plans are afoot to use it as a benchmark in assessing future exploratory applications within Trinidadian jurisdiction.

  16. Demographic evidence of illegal harvesting of an endangered asian turtle.

    Science.gov (United States)

    Sung, Yik-Hei; Karraker, Nancy E; Hau, Billy C H

    2013-12-01

    Harvesting pressure on Asian freshwater turtles is severe, and dramatic population declines of these turtles are being driven by unsustainable collection for food markets, pet trade, and traditional Chinese medicine. Populations of big-headed turtle (Platysternon megacephalum) have declined substantially across its distribution, particularly in China, because of overcollection. To understand the effects of chronic harvesting pressure on big-headed turtle populations, we examined the effects of illegal harvesting on the demography of populations in Hong Kong, where some populations still exist. We used mark-recapture methods to compare demographic characteristics between sites with harvesting histories and one site in a fully protected area. Sites with a history of illegal turtle harvesting were characterized by the absence of large adults and skewed ratios of juveniles to adults, which may have negative implications for the long-term viability of populations. These sites also had lower densities of adults and smaller adult body sizes than the protected site. Given that populations throughout most of the species' range are heavily harvested and individuals are increasingly difficult to find in mainland China, the illegal collection of turtles from populations in Hong Kong may increase over time. Long-term monitoring of populations is essential to track effects of illegal collection, and increased patrolling is needed to help control illegal harvesting of populations, particularly in national parks. Because few, if any, other completely protected populations remain in the region, our data on an unharvested population of big-headed turtles serve as an important reference for assessing the negative consequences of harvesting on populations of stream turtles. Evidencia Demográfica de la Captura Ilegal de una Tortuga Asiática en Peligro. © 2013 Society for Conservation Biology.

  17. Effect of long-term actual spaceflight on the expression of key genes encoding serotonin and dopamine system

    Science.gov (United States)

    Popova, Nina; Shenkman, Boris; Naumenko, Vladimir; Kulikov, Alexander; Kondaurova, Elena; Tsybko, Anton; Kulikova, Elisabeth; Krasnov, I. B.; Bazhenova, Ekaterina; Sinyakova, Nadezhda

    The effect of long-term spaceflight on the central nervous system represents important but yet undeveloped problem. The aim of our work was to study the effect of 30-days spaceflight of mice on Russian biosatellite BION-M1 on the expression in the brain regions of key genes of a) serotonin (5-HT) system (main enzymes in 5-HT metabolism - tryptophan hydroxylase-2 (TPH-2), monoamine oxydase A (MAO A), 5-HT1A, 5-HT2A and 5-HT3 receptors); b) pivotal enzymes in DA metabolism (tyrosine hydroxylase, COMT, MAO A, MAO B) and D1, D2 receptors. Decreased expression of genes encoding the 5-HT catabolism (MAO A) and 5-HT2A receptor in some brain regions was shown. There were no differences between “spaceflight” and control mice in the expression of TPH-2 and 5-HT1A, 5-HT3 receptor genes. Significant changes were found in genetic control of DA system. Long-term spaceflight decreased the expression of genes encoding the enzyme in DA synthesis (tyrosine hydroxylase in s.nigra), DA metabolism (MAO B in the midbrain and COMT in the striatum), and D1 receptor in hypothalamus. These data suggested that 1) microgravity affected genetic control of 5-HT and especially the nigrostriatal DA system implicated in the central regulation of muscular tonus and movement, 2) the decrease in the expression of genes encoding key enzyme in DA synthesis, DA degradation and D1 receptor contributes to the movement impairment and dyskinesia produced by the spaceflight. The study was supported by Russian Foundation for Basic Research grant No. 14-04-00173.

  18. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  19. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    International Nuclear Information System (INIS)

    Wise, Sandra S.; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W.

    2014-01-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm 2 lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health

  20. Data of first de-novo transcriptome assembly of a non-model species, hawksbill sea turtle, Eretmochelys imbricate, nesting of the Colombian Caribean

    Directory of Open Access Journals (Sweden)

    Javier Hernández-Fernández

    2017-12-01

    Full Text Available The hawksbill sea turtle, Eretmochelys imbricata, is an endangered species of the Caribbean Colombian coast due to anthropic and natural factors that have decreased their population levels. Little is known about the genes that are involved in their immune system, sex determination, aging and others important functions. The data generated represents RNA sequencing and the first de-novo assembly of transcripts expressed in the blood of the hawksbill sea turtle. The raw FASTQ files were deposited in the NCBI SRA database with accession number SRX2653641. A total of 5.7 Gb raw sequence data were obtained, corresponding to 47,555,108 raw reads. Trinity was used to perform a first de-novo assembly, and we were able to identify 47,586 transcripts of the female hawksbill turtle transcriptome with an N50 of 1100 bp. The obtained transcriptome data will be useful for further studies of the physiology, biochemistry and evolution in this species. Keywords: Hawksbill turtle, Trinity, RNAseq, illumina, N50

  1. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles

    Science.gov (United States)

    2013-01-01

    Background Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. PMID:24053145

  2. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles.

    Science.gov (United States)

    Rabi, Márton; Zhou, Chang-Fu; Wings, Oliver; Ge, Sun; Joyce, Walter G

    2013-09-22

    Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.

  3. Replacement of the folC gene, encoding folylpolyglutamate synthetase-dihydrofolate synthetase in Escherichia coli, with genes mutagenized in vitro.

    Science.gov (United States)

    Pyne, C; Bognar, A L

    1992-03-01

    The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.

  4. Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.

    Science.gov (United States)

    Houghton, J D; Hays, G C

    2001-03-01

    For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised

  5. Genes encoding novel lipid transporters and their use to increase oil production in vegetative tissues of plants

    Science.gov (United States)

    Xu, Changcheng; Fan, Jilian; Yan, Chengshi; Shanklin, John

    2017-12-26

    The present invention discloses a novel gene encoding a transporter protein trigalactosyldiacylglycerol-5 (TGD5), mutations thereof and their use to enhance TAG production and retention in plant vegetative tissue.

  6. Application of topography survey on the green sea turtle (Chelonia mydas) conservation

    Science.gov (United States)

    Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh

    2017-04-01

    Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle

  7. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Science.gov (United States)

    Savage, Linda J; Imre, Kathleen M; Hall, David A; Last, Robert L

    2013-01-01

    The Chloroplast 2010 Project (http://www.plastid.msu.edu/) identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/). Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles were identified.

  8. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  9. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women

    NARCIS (Netherlands)

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E.; Thwai, Kyaw L.; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P.; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O.

    2015-01-01

    Background. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased

  10. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.

  11. PIR Marine Turtle Nesting

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  12. PIR Marine Turtle Strandings

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Effective management of marine turtle data is essential to maximize their research value and enable timely population assessments and recovery monitoring. To provide...

  13. Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14

    NARCIS (Netherlands)

    Meijer, Wilhelmus; Enequist, H.G.; Terpstra, Peter; Dijkhuizen, L.

    The genes encoding fructosebisphosphatase and phosphoribulokinase present on a 2.5 kb SalI fragment from Xanthobacter flavus H4-14 were sequenced. Two large open reading frames (ORFs) were identified, preceded by plausible ribosome-binding sites. The ORFs were transcribed in the same direction and

  14. Unusual behaviour of an immature loggerhead turtle released in the Alboran Sea

    Directory of Open Access Journals (Sweden)

    Bellido, J. J.

    2010-06-01

    Full Text Available A juvenile loggerhead turtle with buoyancy problems was captured in the Alboran Sea (Mediterranean Sea, south of Spain and released 14 months later after healing. Six days after the release, the turtle was seen swimming 42 km from the point of release, displaying unusual behaviour. We re-captured and released it again, 95 nautical miles offshore, near the Alboran Island. Ten days later the turtle arrived at the beach close to where it had been maintained in captivity. We discuss these findings in the context of behavioural alteration and habituation in released sea turtles. Capture-mark-recapture studies of sea turtles should be approached with caution as manipulated animals may modify their usual behaviour.

  15. Movements and diving behavior of internesting green turtles along Pacific Costa Rica.

    Science.gov (United States)

    Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R

    2013-09-01

    Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  16. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  17. Detection, Characterization, and In Vitro and In Vivo Expression of Genes Encoding S-Proteins in Lactobacillus gallinarum Strains Isolated from Chicken Crops

    Science.gov (United States)

    Hagen, Karen E.; Guan, Le Luo; Tannock, Gerald W.; Korver, Doug R.; Allison, Gwen E.

    2005-01-01

    Thirty-eight isolates of Lactobacillus gallinarum cultured from the crops of broiler chickens were screened for the presence of genes encoding S-layer proteins. All of the isolates had two S-protein genes, which were designated Lactobacillus gallinarum S-protein (lgs) genes. One gene in each isolate was either lgsA or lgsB. The Lactobacillus isolates were further characterized by pulsed-field gel electrophoresis of DNA digests, which grouped the isolates into 17 genotypes (strains). The second gene in each of eight representative strains was sequenced and shown to differ among strains (lgsC, lgsD, lgsE, lgsF, lgsG, lgsH, and lgsI). The genome of each strain thus encoded a common S-protein (encoded by either lgsA or lgsB) and a strain-specific S-protein. The extraction of cell surface proteins from cultures of the eight strains showed that each strain produced a single S-protein that was always encoded by the strain-specific lgs gene. Two of the strains were used to inoculate chickens maintained in a protected environment which were Lactobacillus-free prior to inoculation. DNAs and RNAs extracted from the digesta of the chickens were used for PCR and reverse transcription-PCR, respectively, to demonstrate the presence and transcription of lgs genes in vivo. In both cases, only the strain-specific gene was transcribed. Both of the strains adhered to the crop epithelium, consistent with published data predicting that S-proteins of lactobacilli are adhesins. The results of this study provide a basis for the investigation of gene duplication and sequence variation as mechanisms by which bacterial strains of the same species can share the same habitat. PMID:16269691

  18. Cloning and expression of clt genes encoding milk-clotting proteases from Myxococcus xanthus 422.

    Science.gov (United States)

    Poza, M; Prieto-Alcedo, M; Sieiro, C; Villa, T G

    2004-10-01

    The screening of a gene library of the milk-clotting strain Myxococcus xanthus 422 constructed in Escherichia coli allowed the description of eight positive clones containing 26 open reading frames. Only three of them (cltA, cltB, and cltC) encoded proteins that exhibited intracellular milk-clotting ability in E. coli, Saccharomyces cerevisiae, and Pichia pastoris expression systems.

  19. Immunological evaluation of captive green sea turtle (Chelonia mydas) with ulcerative dermatitis

    Science.gov (United States)

    Muñoz, Fernando Alberto; Estrada-Parra, Sergio; Romero-Rojas, Andrés; Gonzalez-Ballesteros, Erik; Work, Thierry M.; Villaseñor-Gaona, Hector; Estrada-Garcia, Iris

    2013-01-01

    Ulcerative dermatitis (UD) is common in captive sea turtles and manifests as skin erosions and ulcers associated with gram-negative bacteria. This study compared clinically healthy and UD-affected captive turtles by evaluating hematology, histopathology, immunoglobulin levels, and delayed-type hypersensitivity assay. Turtles with UD had significantly lower weight, reduced delayed-type hypersensitivity (DTH) responses, and higher heterophil:lymphocyte ratios. This study is the first to assay DTH in green turtles (Chelonia mydas) and suggests that UD is associated with immunosuppression.

  20. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Directory of Open Access Journals (Sweden)

    Ivana Mali

    Full Text Available Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans (i.e., traditional farming for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming. Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  1. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E.; Feldman, Mark; Forstner, Michael R. J.

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions. PMID:26407157

  2. Modeling Commercial Freshwater Turtle Production on US Farms for Pet and Meat Markets.

    Science.gov (United States)

    Mali, Ivana; Wang, Hsiao-Hsuan; Grant, William E; Feldman, Mark; Forstner, Michael R J

    2015-01-01

    Freshwater turtles are being exploited for meat, eggs, traditional medicine, and pet trade. As a response, turtle farming became a booming aquaculture industry in the past two decades, specifically in the southeastern states of the United States of America (US) and across Southeast Asia. However, US turtle farms are currently producing turtles only for the pet trade while commercial trappers remain focused on catching the largest individuals from the wild. In our analyses we have created a biological and economic model that describes farming operations on a representative turtle farm in Louisiana. We first modeled current production of hatchling and yearling red-eared slider turtles (Trachemys scripta elegans) (i.e., traditional farming) for foreign and domestic pet markets, respectively. We tested the possibility of harvesting adult turtles from the breeding stock for sale to meat markets to enable alternative markets for the farmers, while decreasing the continued pressures on wild populations (i.e., non-traditional farming). Our economic model required current profit requirements of ~$13/turtle or ~$20.31/kg of meat from non-traditional farming in order to acquire the same profit as traditional farming, a value which currently exceeds market values of red-eared sliders. However, increasing competition with Asian turtle farms and decreasing hatchling prices may force the shift in the US toward producing turtles for meat markets. In addition, our model can be modified and applied to more desirable species on the meat market once more knowledge is acquired about species life histories and space requirements under farmed conditions.

  3. A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass

    DEFF Research Database (Denmark)

    Manzanares, Chloe; Barth, Susanne; Thorogood, Daniel

    2016-01-01

    genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium...

  4. Blood oxygen transport in common map turtles during simulated hibernation.

    Science.gov (United States)

    Maginniss, Leigh A; Ekelund, Summer A; Ultsch, Gordon R

    2004-01-01

    We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.

  5. Endogenous and exogenous ice-nucleating agents constrain supercooling in the hatchling painted turtle.

    Science.gov (United States)

    Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E

    2003-02-01

    Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in

  6. Assessing Trophic Position and Mercury Accumulation in Sanpping Turtles

    Science.gov (United States)

    This study determined the trophic position and the total mercury concentrations of snapping turtles (Chelydra serpentina) captured from 26 freshwater sites in Rhode Island. Turtles were captured in baited wire cages, and a non-lethal sampling technique was used in which tips of ...

  7. Green Turtle Trophic Ecology

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC is currently conducting a study of green sea turtle (Chelonia mydas) trophic ecology in the eastern Pacific. Tissue samples and stable carbon and stable...

  8. Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles

    OpenAIRE

    Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are i...

  9. A study of Staphylococcus aureusnasal carriage, antibacterial resistance and virulence factor encoding genes in a tertiary care hospital, Kayseri, Turkey.

    Science.gov (United States)

    Oguzkaya-Artan, M; Artan, C; Baykan, Z; Sakalar, C; Turan, A; Aksu, H

    2015-01-01

    This study was to determine the virulence encoding genes, and the antibiotic resistance patterns of the Staphylococcus aureus isolates, which were isolated from the nasal samples of chest clinic patients. The nasal samples of the in-patients (431) and out-patients (1857) in Kayseri Training and Research Hospital's Chest Clinic, Kayseri, Turkey, were cultured on CHROMagar (Biolife, Italiana) S. aureus, and subcultured on sheep blood agar for the isolation of S. aureus. Disc diffusion method was used for antimicrobial susceptibility testing. The occurrence of the staphylococcal virulence encoding genes (enterotoksins [sea, seb, sec, see, seg, seh, sei, sej], fibronectin-binding proteins A, B [fnbA, fnbB], toxic shock syndrome toxin-1 [tst]) were detected by polymerase chain reaction. Forty-five of the 55 (81.8%) S. aureus isolates from inpatients, and 319 (90.6%) isolates from tested 352 out-patient's isolates were suspected to all the antibiotics tested. methicillin-resistant S. aureus (MRSA) was detected in 1.2% of S. aureus isolates. Rifampin, trimethoprim-sulfamethoxazole, clindamycin, erythromycin, gentamicin resistance rates were 1.2%, 1.7%, 2.0%, 8.8%, and 1.2%, respectively. The isolates were susceptible to teicoplanin and vancomycin. The genes most frequently found were tst (92.7%), seg (85.8%), sea (83.6%), fnbA (70.9%). There was no statistical significance detected between MRSA and mecA-negative S. aureus isolates in encoding genes distribution (P > 0.05). Our results show that virulence factor encoding genes were prevalent in patients with S. aureus carriage, whereas antibiotic resistance was low. These virulence determinants may increase the risk for subsequent invasive infections in carriers.

  10. Subsistence hunting for turtles in Northwestern Ecuador

    International Nuclear Information System (INIS)

    Carr, John L; Almendariz, Ana; Simmons, John E; Nielsen, Mark T

    2014-01-01

    We describe the subsistence exploitation of an entire turtle fauna in Esmerald's Province, Ecuador. We collected first hand accounts and witnessed a number of capture techniques used by rural afroecuadorian and chachi inhabitants of the Cayapas Santiago River basin. The diversity of techniques indicated a practical knowledge of the ecology of the species. Chelydra acutirostris, Kinosternon leucostomum, Rhinoclemmys annulata, Melanosterna, and R. nasuta were captured and eaten. Poziando involved cleaning pools in a stream bed during the relatively dry season by removing live plants, organic detritus, and then seining with baskets; we observed R. melanosterna and K. leucostomum captured in this way. Pitfall traps baited with fruit were used to catch R. melanosterna during forays on land. Basket traps (Canasto tortuguero) with a wooden slat funnel across the opening are floated with balsa lashed to the sides. Banana or Xanthosoma leaf bait in the basket traps caught R. melanosterna, R. nasuta, and K. leucostomum. Marshy areas were probed for R. melanosterna and K. leucostomum. Direct capture by hand was also common. Turtles were relished as food items; all turtles captured were consumed, usually in soup or stew. Use of turtles for food in the region was pervasive, perhaps because fish and game populations were depleted.

  11. Characterization and expression of genes encoding three small heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-12-12

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  12. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Meng Sun

    2014-12-01

    Full Text Available The pink stem borer, Sesamia inferens (Walker, is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino acids with calculated molecular weights of 21.4, 20.6 and 19.6 kDa, respectively. The deduced amino acid sequences of the three genes showed strong similarity to sHSPs identified in other lepidopteran insects. Sihsp21.4 contained an intron, but Sihsp20.6 and Sihsp19.6 lacked introns. Real-time quantitative PCR analyses revealed that Sihsp21.4 was most strongly expressed in S. inferens heads; Whereas expression of Sihsp20.6 and Sihsp19.6 was highest in eggs. The three S. inferens sHSP genes were up-regulated during low temperature stress. In summary, our results show that S. inferens sHSP genes have distinct regulatory roles in the physiology of S. inferens.

  13. Western Pond Turtle Head-starting and Reintroduction, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Van Leuven, Susan; Allen, Harriet; Slavens, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

    2006-11-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2005-September 2006. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon zoos in 2005 and 2006 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Twenty-six turtles were placed at the Woodland Park Zoo and 62 at the Oregon Zoo in fall 2005. These turtles joined two that were held back from release in summer 2005 due to their small size. All 90 juvenile turtles were released at three sites in the Columbia Gorge in 2006. Twenty-eight juvenile turtles were released at the Klickitat ponds, 22 at the Klickitat lake, 21 at the Skamania site, and 19 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 944; 285 for the Klickitat ponds, 158 for the Klickitat lake, 227 for the Skamania pond complex, and 274 at Pierce NWR. In 2006, 20 females from the Klickitat population were equipped with transmitters and monitored for nesting activity. Fifteen nests were located and protected; these produced 55 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. One wild hatchling captured in spring 2006 was placed in the head-start program to attain more growth in captivity. During the 2006 field season trapping effort, 414 western pond turtles were captured in the Columbia Gorge, including 374 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations

  14. 78 FR 66841 - Turtles Intrastate and Interstate Requirements; Confirmation of Effective Date

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 1240 [Docket No. FDA-2013-N-0639] Turtles Intrastate and Interstate Requirements; Confirmation of Effective Date AGENCY... turtle eggs and live turtles with a carapace length of less than 4 inches to remove procedures for...

  15. Characterization and Expression of Genes Encoding Three Small Heat Shock Proteins in Sesamia inferens (Lepidoptera: Noctuidae)

    OpenAIRE

    Sun, Meng; Lu, Ming-Xing; Tang, Xiao-Tian; Du, Yu-Zhou

    2014-01-01

    The pink stem borer, Sesamia inferens (Walker), is a major pest of rice and is endemic in China and other parts of Asia. Small heat shock proteins (sHSPs) encompass a diverse, widespread class of stress proteins that have not been characterized in S. inferens. In the present study, we isolated and characterized three S. inferens genes that encode members of the α-crystallin/sHSP family, namely, Sihsp21.4, Sihsp20.6, and Sihsp19.6. The three cDNAs encoded proteins of 187, 183 and 174 amino a...

  16. The integumental appendages of the turtle shell: an evo-devo perspective.

    Science.gov (United States)

    Moustakas-Verho, Jacqueline E; Cherepanov, Gennadii O

    2015-05-01

    The turtle shell is composed of dorsal armor (carapace) and ventral armor (plastron) covered by a keratinized epithelium. There are two epithelial appendages of the turtle shell: scutes (large epidermal shields separated by furrows and forming a unique mosaic) and tubercles (numerous small epidermal bumps located on the carapaces of some species). In our perspective, we take a synthetic, comparative approach to consider the homology and evolution of these integumental appendages. Scutes have been more intensively studied, as they are autapomorphic for turtles and can be diagnostic taxonomically. Their pattern of tessellation is stable phylogenetically, but labile in the individual. We discuss the history of developmental investigations of these structures and hypotheses of evolutionary and anomalous variation. In our estimation, the scutes of the turtle shell are an evolutionary novelty, whereas the tubercles found on the shells of some turtles are homologous to reptilian scales. © 2015 Wiley Periodicals, Inc.

  17. Endangered species: where leatherback turtles meet fisheries.

    OpenAIRE

    Ferraroli , S.; Georges , J.-Y.; Gaspar , P.; Le Maho , Y.

    2004-01-01

    International audience; The dramatic worldwide decline in populations of the leatherback turtle (Dermochelys coriacea) is largely due to the high mortality associated with their interaction with fisheries, so a reduction of this overlap is critical to their survival. The discovery of narrow migration corridors used by the leatherbacks in the Pacific Ocean raised the possibility of protecting the turtles by restricting fishing in these key areas. Here we use satellite tracking to show that the...

  18. Physiological ramifications for loggerhead turtles captured in pelagic longlines.

    Science.gov (United States)

    Williard, Amanda; Parga, Mariluz; Sagarminaga, Ricardo; Swimmer, Yonat

    2015-10-01

    Bycatch of endangered loggerhead turtles in longline fisheries results in high rates of post-release mortality that may negatively impact populations. The factors contributing to post-release mortality have not been well studied, but traumatic injuries and physiological disturbances experienced as a result of capture are thought to play a role. The goal of our study was to gauge the physiological status of loggerhead turtles immediately upon removal from longline gear in order to refine our understanding of the impacts of capture and the potential for post-release mortality. We analysed blood samples collected from longline- and hand-captured loggerhead turtles, and discovered that capture in longline gear results in blood loss, induction of the systemic stress response, and a moderate increase in lactate. The method by which turtles are landed and released, particularly if released with the hook or line still attached, may exacerbate stress and lead to chronic injuries, sublethal effects or delayed mortality. Our study is the first, to the best of our knowledge, to document the physiological impacts of capture in longline gear, and our findings underscore the importance of best practices gear removal to promote post-release survival in longline-captured turtles. © 2015 The Author(s).

  19. A single Danio rerio hars gene encodes both cytoplasmic and mitochondrial histidyl-tRNA synthetases.

    Directory of Open Access Journals (Sweden)

    Ashley L Waldron

    Full Text Available Histidyl tRNA Synthetase (HARS is a member of the aminoacyl tRNA synthetase (ARS family of enzymes. This family of 20 enzymes is responsible for attaching specific amino acids to their cognate tRNA molecules, a critical step in protein synthesis. However, recent work highlighting a growing number of associations between ARS genes and diverse human diseases raises the possibility of new and unexpected functions in this ancient enzyme family. For example, mutations in HARS have been linked to two different neurological disorders, Usher Syndrome Type IIIB and Charcot Marie Tooth peripheral neuropathy. These connections raise the possibility of previously undiscovered roles for HARS in metazoan development, with alterations in these functions leading to complex diseases. In an attempt to establish Danio rerio as a model for studying HARS functions in human disease, we characterized the Danio rerio hars gene and compared it to that of human HARS. Using a combination of bioinformatics, molecular biology, and cellular approaches, we found that while the human genome encodes separate genes for cytoplasmic and mitochondrial HARS protein, the Danio rerio genome encodes a single hars gene which undergoes alternative splicing to produce the respective cytoplasmic and mitochondrial versions of Hars. Nevertheless, while the HARS genes of humans and Danio differ significantly at the genomic level, we found that they are still highly conserved at the amino acid level, underscoring the potential utility of Danio rerio as a model organism for investigating HARS function and its link to human diseases in vivo.

  20. The complete mitochondrial genome of the critically endangered Vietnamese three-striped box turtle (Testudines: Geoemydidae).

    Science.gov (United States)

    Li, Wei; Zhao, Jian; Shi, Yan; Xiao, Feng-Fang; Zhang, Xin-Cheng; Zhu, Xin-Ping

    2015-01-01

    The complete mitochondrial genome of the Vietnamese three-striped box turtle (Cuora cyclornata) was first determined in this study. It was a circular molecule of 16,594 bp in length, consisting of 37 genes typically found in other vertebrates. The AT content of the overall base composition of the whole mitogenome was 60.39%, while the control region was 70.23%. Two ETAS and 4 CSBs were identified, while a remarkable feature was found in the control region: a large number of (TTATTATA)10 direct tandem repeats followed by (TTATA)n (n=10, 8 and 1), which were spaced into three domains by (TA)n (n=1, 1 and 2). The sequence information could play an important role in the study of phylogenetic relationships in turtles and preservation of genetic resources for helping conservation of the endangered species.

  1. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  2. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  3. Anoxia-responsive regulation of the FoxO transcription factors in freshwater turtles, Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-11-01

    The forkhead class O (FoxO) transcription factors are important regulators of multiple aspects of cellular metabolism. We hypothesized that activation of these transcription factors could play crucial roles in low oxygen survival in the anoxia-tolerant turtle, Trachemys scripta elegans. Two FoxOs, FoxO1 and FoxO3, were examined in turtle tissues in response to 5 and 20h of anoxic submergence using techniques of RT-PCR, western immunoblotting and DNA-binding assays to assess activation. Transcript levels of FoxO-responsive genes were also quantified using RT-PCR. FoxO1 was anoxia-responsive in the liver, with increases in transcript levels, protein levels, nuclear levels and DNA-binding of 1.7-4.8fold in response to anoxia. Levels of phosphorylated FoxO1 also decreased to 57% of control values in response to 5h of anoxia, indicating activation. FoxO3 was activated in the heart, kidney and liver in response to anoxia, with nuclear levels increasing by 1.5-3.7fold and DNA-binding activity increasing by 1.3-2.9fold. Transcript levels of two FoxO-target genes, p27kip1 and catalase, also rose by 2.4-2.5fold in the turtle liver under anoxia. The results suggest that the FoxO transcription factors are activated in response to anoxia in T. scripta elegans, potentially contributing to the regulation of stress resistance and metabolic depression. This study provides the first demonstration of activation of FoxOs in a natural model for vertebrate anoxia tolerance, further improving understanding of how tissues can survive without oxygen. © 2013.

  4. Development of a Summarized Health Index (SHI) for Use in Predicting Survival in Sea Turtles

    Science.gov (United States)

    Li, Tsung-Hsien; Chang, Chao-Chin; Cheng, I-Jiunn; Lin, Suen-Chuain

    2015-01-01

    Veterinary care plays an influential role in sea turtle rehabilitation, especially in endangered species. Physiological characteristics, hematological and plasma biochemistry profiles, are useful references for clinical management in animals, especially when animals are during the convalescence period. In this study, these factors associated with sea turtle surviving were analyzed. The blood samples were collected when sea turtles remained alive, and then animals were followed up for surviving status. The results indicated that significantly negative correlation was found between buoyancy disorders (BD) and sea turtle surviving (p turtles had significantly higher levels of aspartate aminotranspherase (AST), creatinine kinase (CK), creatinine and uric acid (UA) than surviving sea turtles (all p turtles and to improve veterinary care at rehabilitation facilities. PMID:25803431

  5. Case descriptions of fibropapillomatosis in rehabilitating loggerhead sea turtles Caretta caretta in the southeastern USA.

    Science.gov (United States)

    Page-Karjian, Annie; Norton, Terry M; Harms, Craig; Mader, Doug; Herbst, Larry H; Stedman, Nancy; Gottdenker, Nicole L

    2015-08-20

    Fibropapillomatosis (FP) is a debilitating neoplastic disease that affects all species of hard-shelled sea turtles, including loggerhead turtles Caretta caretta. FP can represent an important clinical concern in rehabilitating turtles, since managing these infectious lesions often requires special husbandry provisions including quarantine, and FP may affect clinical progression, extend rehabilitation duration, and complicate prognoses. Here we describe cases of rehabilitating loggerhead turtles with FP (designated FP+). Medical records of FP+ loggerhead cases from 3 sea turtle rehabilitation facilities in the southeastern USA were reviewed. Between 2001 and 2014, FP was observed in 8 of 818 rehabilitating loggerhead turtles (0.98% overall prevalence in admitted patients). FP+ loggerhead size classes represented were large juvenile (straight carapace length, SCL: 58.1-80 cm; n=7) and adult (SCL>87 cm; n=1). Three turtles presented with FP, and 5 developed tumors during rehabilitation within a range of 45 to 319 d. Sites of new tumor growth included the eyes, sites of trauma, neck, and glottis. FP+ turtles were scored as mildly (3/8), moderately (4/8), or heavily (1/8) afflicted. The mean total time in rehabilitation was 476±355 d (SD) (range: 52-1159 d). Six turtles were released without visible evidence of FP, 1 turtle was released with mild FP, and 1 turtle with internal FP was euthanized. Clinical decision-making for FP+ loggerhead patients can be aided by such information as time to tumor development, anatomic locations to monitor for new tumor growth, husbandry considerations, diagnostic and treatment options, and comparisons to FP in rehabilitating green turtles Chelonia mydas.

  6. Body size distribution demonstrates flexible habitat shift of green turtle (Chelonia mydas

    Directory of Open Access Journals (Sweden)

    Ryota Hayashi

    2015-01-01

    Full Text Available Green turtles (Chelonia mydas, listed as Endangered on the IUCN redlist, have a broad migration area and undergo a habitat shift from the pelagic (hatchling to neritic (growth zones. We studied habitat utilisation of the coastal feeding grounds around Okinawajima Island, Japan, in 103 green turtles. The western and eastern turtle aggregations off Okinawa had homogeneous genetic compositions, but different body size distributions. The western coastal feeding ground supported larger individuals than the eastern coastal feeding ground. Thus, green turtles appear to prefer different feeding grounds during their growth, and have a flexible habitat shift including a secondary habitat shift from east to west around Okinawajima Island after they are recruited to the coastal habitats. This study suggests maintaining coastal habitat diversity is important for green turtle conservation.

  7. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  8. Vasoactivity of hydrogen sulfide in normoxic and anoxic turtles (Trachemys scripta)

    DEFF Research Database (Denmark)

    Stecyk, Jonathan A.W.; Jensen, Nini Skovgaard; Nilsson, Göran E.

    2010-01-01

    Systemic vascular resistance (Rsys) of freshwater turtles increases substantially during anoxia, but the underlying mechanisms are not fully understood. We investigated whether hydrogen sulfide (H2S), an endogenously produced metabolite believed to be an O2 sensor/transducer of vasomotor tone......, contributes to the increased Rsys of anoxic red-eared slider turtles (Trachemys scripta). Vascular infusion of the H2S donor NaHS in anesthetized turtles at 21°C and fully recovered normoxic turtles at 5°C and 21°C revealed H2S to be a potent vasoconstrictor of the systemic circulation. Likewise, wire...... myography of isolated turtle mesenteric and pulmonary arteries demonstrated H2S to mediate an anoxia-induced constriction. Intriguingly, however, NaHS did not exert vasoconstrictory effects during anoxia (6 h at 21°C; 14 days at 5°C) when plasma H2S concentration, estimated from the colorimetric measurement...

  9. A new diverse turtle fauna in the late Kimmeridgian of Switzerland

    OpenAIRE

    Anquetin, Jérémy

    2014-01-01

    Talk given at the 12th Swiss Geoscience Meeting in Fribourg, Switzerland, November 22nd, 2014.   Abstract: During the Kimmeridgian and the Tithonian (Late Jurassic), Europe was the theater of the diversification of numerous coastal eucryptodiran turtles (Plesiochelyidae, Thalassemydidae, and Eurysternidae). Most turtle assemblages were discovered during the 19th century. The best localities and horizons include the Kimmeridge Clay of England, the Turtle Limestone of Solothurn, Switze...

  10. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  11. Loss of functional K+ channels encoded by ether-à-go-go-related genes in mouse myometrium prior to labour onset

    Science.gov (United States)

    Greenwood, I A; Yeung, S Y; Tribe, R M; Ohya, S

    2009-01-01

    There is a growing appreciation that ion channels encoded by the ether-à-go-go-related gene family have a functional impact in smooth muscle in addition to their accepted role in cardiac myocytes and neurones. This study aimed to assess the expression of ERG1–3 (KCNH1–3) genes in the murine myometrium (smooth muscle layer of the uterus) and determine the functional impact of the ion channels encoded by these genes in pregnant and non-pregnant animals. Quantitative RT-PCR did not detect message for ERG2 and 3 in whole myometrial tissue extracts. In contrast, message for two isoforms of mERG1 were readily detected with mERG1a more abundant than mERG1b. In isometric tension studies of non-pregnant myometrium, the ERG channel blockers dofetilide (1 μm), E4031 (1 μm) and Be-KM1 (100 nm) increased spontaneous contractility and ERG activators (PD118057 and NS1643) inhibited spontaneous contractility. In contrast, neither ERG blockade nor activation had any effect on the inherent contractility in myometrium from late pregnant (19 days gestation) animals. Moreover, dofetilide-sensitive K+ currents with distinctive ‘hooked’ kinetics were considerably smaller in uterine myocytes from late pregnant compared to non-pregnant animals. Expression of mERG1 isoforms did not alter throughout gestation or upon delivery, but the expression of genes encoding auxillary subunits (KCNE) were up-regulated considerably. This study provides the first evidence for a regulation of ERG-encoded K+ channels as a precursor to late pregnancy physiological activity. PMID:19332483

  12. Marine tourism and the locations of protected turtles on Sukamade Beach, Meru Betiri National Park, East Java

    Science.gov (United States)

    Prihadi, D. J.; Shofiyullah, A.; Dhahiyat, Y.

    2018-04-01

    The research was conducted in Sukamade Beach, Meru Betiri National Park, East Java. The purpose of this research was to identify marine tourism activity and to determine the differences in the characteristics of turtle-nesting beaches towards the number and species of turtles that came to the beach. Data collection conducted in August-September 2014. The method used in this research was a survey method at 7 reseach stations to collect primary data (biophysical characteristics) and secondary data. The Primary data was collected by monitoring turtles, width and slope of the beach, temperature, pH, moisture, sand texture, and beach vegetation conditions at each station. The results of the research shows that marine tourisms always involve tourists who attend to see turtle nesting, when turtles arrive at the beach, and turtles return to the sea, how large the turtles and how they lay eggs on the beach, and the release of little turtles (tukik). The number of turtles that landed from station 1 to station 7 is as many as 311 individuals of three species. The most dominant species of turtles that arrived at the beach is green turtle (Chelonia mydas), followed by olive ridley turtles (Lepidochelys olivaceae) and leatherbacks turtles (Dermochelys coriacea).

  13. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  14. MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle

    Science.gov (United States)

    Zheng, Zhaoqing; Ambigapathy, Ganesh; Keifer, Joyce

    2017-01-01

    MECP2 mutations underlying Rett syndrome cause widespread misregulation of gene expression. Functions for MeCP2 other than transcriptional are not well understood. In an ex vivo brain preparation from the pond turtle Trachemys scripta elegans, an intraexonic splicing event in the brain-derived neurotrophic factor (BDNF) gene generates a truncated mRNA transcript in naïve brain that is suppressed upon classical conditioning. MeCP2 and its partners, splicing factor Y-box binding protein 1 (YB-1) and methylcytosine dioxygenase 1 (Tet1), bind to BDNF chromatin in naïve but dissociate during conditioning; the dissociation correlating with decreased DNA methylation. Surprisingly, conditioning results in new occupancy of BDNF chromatin by DNA insulator protein CCCTC-binding factor (CTCF), which is associated with suppression of splicing in conditioning. Knockdown of MeCP2 shows it is instrumental for splicing and inhibits Tet1 and CTCF binding thereby negatively impacting DNA methylation and conditioning-dependent splicing regulation. Thus, mutations in MECP2 can have secondary effects on DNA methylation and alternative splicing. DOI: http://dx.doi.org/10.7554/eLife.25384.001 PMID:28594324

  15. The feeding habit of sea turtles influences their reaction to artificial marine debris

    OpenAIRE

    Takuya Fukuoka; Misaki Yamane; Chihiro Kinoshita; Tomoko Narazaki; Greg J. Marshall; Kyler J. Abernathy; Nobuyuki Miyazaki; Katsufumi Sato

    2016-01-01

    Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris...

  16. RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates

    International Nuclear Information System (INIS)

    Reynolds, P.; Weber, S.; Prakash, L.

    1985-01-01

    The RAD6 gene of Saccharomyces cerevisiae is required for postreplication repair of UV-damaged DNA, for induced mutagenesis, and for sporulation. The authors have mapped the transcripts and determined the nucleotide sequence of the cloned RAD6 gene. The RAD6 gene encodes two transcripts of 0.98 and 0.86 kilobases which differ only in their 3' termini. The transcribed region contains an open reading frame of 516 nucleotides. The rad6-1 and rad6-3 mutant alleles, which the authors have cloned and sequenced, introduce amber and ochre nonsense mutations, respectively into the open reading frame, proving that it encodes the RAD6 protein. The RAD6 protein predicted by the nucleotide sequence is 172 amino acids long, has a molecular weight of 19,704, and contains 23.3% acidic and 11.6% basic residues. Its most striking feature is the highly acidic carboxyl terminus: 20 of the 23 terminal amino acids are acidic, including 13 consecutive aspartates. RAD6 protein thus resembles high mobility group proteins HMG-1 and HMG-2, which each contain a carboxyl-proximal tract of acidic amino acids. 48 references, 6 figures

  17. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  18. A mammalian melanopsin in the retina of a fresh water turtle, the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Dearworth, James R; Selvarajah, Brian P; Kalman, Ross A; Lanzone, Andrew J; Goch, Abraham M; Boyd, Alison B; Goldberg, Laura A; Cooper, Lori J

    2011-01-28

    A mammalian-like melanopsin (Opn4m) has been found in all major vertebrate classes except reptile. Since the pupillary light reflex (PLR) of the fresh water turtle takes between 5 and 10 min to achieve maximum constriction, and since photosensitive retinal ganglion cells (ipRGCs) in mammals use Opn4m to control their slow sustained pupil responses, we hypothesized that a Opn4m homolog exists in the retina of the turtle. To identify its presence, retinal tissue was dissected from seven turtles, and total RNA extracted. Reverse transcriptase-polymerase chain reactions (RT-PCRs) were carried out to amplify gene sequences using primers targeting the highly conserved core region of Opn4m, and PCR products were analyzed by gel electrophoresis and sequenced. Sequences derived from a 1004-bp PCR product were compared to those stored in GenBank by the basic local alignment search tool (BLAST) algorithm and returned significant matches to several Opn4ms from other vertebrates including chicken. Quantitative real-time PCR (qPCR) was also carried out to compare expression levels of Opn4m in different tissues. The normalized expression level of Opn4m in the retina was higher in comparison to other tissue types: iris, liver, lung, and skeletal muscle. The results suggest that Opn4m exists in the retina of the turtle and provides a possible explanation for the presence of a slow PLR. The turtle is likely to be a useful model for further understanding the photoreceptive mechanisms in the retina which control the dynamics of the PLR. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The amino acid sequence of snapping turtle (Chelydra serpentina) ribonuclease

    NARCIS (Netherlands)

    Beintema, Jacob; Broos, Jaap; Meulenberg, Janneke; Schüller, Cornelis

    1985-01-01

    Snapping turtle (Chelydra serpentina) ribonuclease was isolated from pancreatic tissue. Turtle ribonuclease binds much more weakly to the affinity chromatography matrix used than mammalian ribonucleases. The amino acid sequence was determined from overlapping peptides obtained from three different

  20. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Science.gov (United States)

    Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier

    2014-01-01

    Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  1. Global distribution of two fungal pathogens threatening endangered sea turtles.

    Directory of Open Access Journals (Sweden)

    Jullie M Sarmiento-Ramírez

    Full Text Available Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.

  2. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages.

    Directory of Open Access Journals (Sweden)

    Shelly C Wu

    Full Text Available Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.. Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups-the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas than on northern turtles (where mean abundance/state was > 10%. L. cf. mutica was the most abundant species (40% on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts.

  3. Diatoms on the carapace of common snapping turtles: Luticola spp. dominate despite spatial variation in assemblages

    Science.gov (United States)

    Wu, Shelly C.; Bergey, Elizabeth A.

    2017-01-01

    Filamentous algae are often visible on the carapaces of freshwater turtles and these algae are dominated by a few species with varying geographic distributions. Compared to filamentous algae, little is known about the much more speciose microalgae on turtles. Our objectives were to compare the diatom flora on a single turtle species (the common snapping turtle, Chelydra serpentina) across part of its range to examine spatial patterns and determine whether specific diatom taxa were consistently associated with turtles (as occurs in the filamentous alga Basicladia spp.). Using preserved turtle specimens from museums, we systematically sampled diatoms on the carapaces of 25 snapping turtles across five states. The diverse diatom assemblages formed two groups–the southern Oklahoma group and the northern Illinois/Wisconsin/New York group, with Arkansas not differing from either group. Of the six diatom species found in all five states, four species are widespread, whereas Luticola cf. goeppertiana and L. cf. mutica are undescribed species, known only from turtles in our study. L. cf. goeppertiana comprised 83% of the diatom abundance on Oklahoma turtles and was relatively more abundant on southern turtles (Oklahoma and Arkansas) than on northern turtles (where mean abundance/state was > 10%). L. cf. mutica was the most abundant species (40%) on New York turtles. Some Luticola species are apparently turtle associates and results support a pattern of spatial variation in Luticola species, similar to that in Basicladia. Using museum specimens is an efficient and effective method to study the distribution of micro-epibionts. PMID:28192469

  4. AtMRP1 gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene.

    Science.gov (United States)

    Lu, Y P; Li, Z S; Rea, P A

    1997-07-22

    Because plants produce cytotoxic compounds to which they, themselves, are susceptible and are exposed to exogenous toxins (microbial products, allelochemicals, and agrochemicals), cell survival is contingent on mechanisms for detoxifying these agents. One detoxification mechanism is the glutathione S-transferase-catalyzed glutathionation of the toxin, or an activated derivative, and transport of the conjugate out of the cytosol. We show here that a transporter responsible for the removal of glutathione S-conjugates from the cytosol, a specific Mg2+-ATPase, is encoded by the AtMRP1 gene of Arabidopsis thaliana. The sequence of AtMRP1 and the transport capabilities of membranes prepared from yeast cells transformed with plasmid-borne AtMRP1 demonstrate that this gene encodes an ATP-binding cassette transporter competent in the transport of glutathione S-conjugates of xenobiotics and endogenous substances, including herbicides and anthocyanins.

  5. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    Science.gov (United States)

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  6. EFFECTS OF "SWIM WITH THE TURTLES" TOURIST ATTRACTIONS ON GREEN SEA TURTLE (CHELONIA MYDAS) HEALTH IN BARBADOS, WEST INDIES.

    Science.gov (United States)

    Stewart, Kimberly; Norton, Terry; Mohammed, Hamish; Browne, Darren; Clements, Kathleen; Thomas, Kirsten; Yaw, Taylor; Horrocks, Julia

    2016-04-01

    Along the West Coast of Barbados a unique relationship has developed between endangered green sea turtles (Chelonia mydas) and humans. Fishermen began inadvertently provisioning these foraging turtles with fish offal discarded from their boats. Although initially an indirect supplementation, this activity became a popular attraction for visitors. Subsequently, demand for this activity increased, and direct supplementation or provisioning with food began. Food items offered included raw whole fish (typically a mixture of false herring [Harengula clupeola] and pilchard [Harengula humeralis]), filleted fish, and lesser amounts of processed food such as hot dogs, chicken, bread, or various other leftovers. Alterations in behavior and growth rates as a result of the provisioning have been documented in this population. The purpose of this study was to determine how tourism-based human interactions are affecting the overall health of this foraging population and to determine what potential health risks these interactions may create for sea turtles. Juvenile green sea turtles (n=29) were captured from four sites off the coast of Barbados, West Indies, and categorized into a group that received supplemental feeding as part of a tour (n=11) or an unsupplemented group (n=18) that consisted of individuals that were captured at sites that did not provide supplemental feeding. Following capture, a general health assessment of each animal was conducted. This included weight and morphometric measurements, a systematic physical examination, determination of body condition score and body condition index, epibiota assessment and quantification, and clinical pathology including hematologic and biochemical testing and nutritional assessments. The supplemented group was found to have changes to body condition, vitamin, mineral, hematologic, and biochemical values. Based on these results, recommendations were made to decrease negative behaviors and health impacts for turtles as a result

  7. The Sporothrix schenckii Gene Encoding for the Ribosomal Protein L6 Has Constitutive and Stable Expression and Works as an Endogenous Control in Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Elías Trujillo-Esquivel

    2017-09-01

    Full Text Available Sporothrix schenckii is one of the causative agents of sporotrichosis, a worldwide-distributed mycosis that affects humans and other mammals. The interest in basic and clinical features of this organism has significantly increased in the last years, yet little progress in molecular aspects has been reported. Gene expression analysis is a set of powerful tools that helps to assess the cell response to changes in the extracellular environment, the genetic networks controlling metabolic pathways, and the adaptation to different growth conditions. Most of the quantitative methodologies used nowadays require data normalization, and this is achieved measuring the expression of endogenous control genes. Reference genes, whose expression is assumed to suffer minimal changes regardless the cell morphology, the stage of the cell cycle or the presence of harsh extracellular conditions are commonly used as controls in Northern blotting assays, microarrays, and semi-quantitative or quantitative RT-PCR. Since the biology of the organisms is usually species specific, it is difficult to find a reliable group of universal genes that can be used as controls for data normalization in experiments addressing the gene expression, regardless the taxonomic classification of the organism under study. Here, we compared the transcriptional stability of the genes encoding for elongation factor 1A, Tfc1, a protein involved in transcription initiation on Pol III promoters, ribosomal protein L6, histone H2A, β-actin, β-tubulin, glyceraldehyde 3-phosphate dehydrogenase, UAF30, the upstream activating factor 30, and the transcription initiation factor TFIID subunit 10, during the fungal growth in different culture media and cell morphologies. Our results indicated that only the gene encoding for the ribosomal protein L6 showed a stable and constant expression. Furthermore, it displayed not transcriptional changes when S. schenckii infected larvae of Galleria mellonella or

  8. Salmonella from Baby Turtles

    Centers for Disease Control (CDC) Podcasts

    2017-01-09

    Dr. Stacey Bosch, a veterinarian with CDC, discusses her article on Salmonella infections associated with baby turtles.  Created: 1/9/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/9/2017.

  9. EWS and FUS bind a subset of transcribed genes encoding proteins enriched in RNA regulatory functions

    DEFF Research Database (Denmark)

    Luo, Yonglun; Friis, Jenny Blechingberg; Fernandes, Ana Miguel

    2015-01-01

    at different levels. Gene Ontology analyses showed that FUS and EWS target genes preferentially encode proteins involved in regulatory processes at the RNA level. Conclusions The presented results yield new insights into gene interactions of EWS and FUS and have identified a set of FUS and EWS target genes...... involved in pathways at the RNA regulatory level with potential to mediate normal and disease-associated functions of the FUS and EWS proteins.......Background FUS (TLS) and EWS (EWSR1) belong to the FET-protein family of RNA and DNA binding proteins. FUS and EWS are structurally and functionally related and participate in transcriptional regulation and RNA processing. FUS and EWS are identified in translocation generated cancer fusion proteins...

  10. Here, There and Everywhere - On the Recurring Use of Turtle Graphics in CS1

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Caspersen, Michael Edelgaard

    2000-01-01

    The Logo programming language implements a virtual drawing machine—the turtle machine. The turtle machine is well-known for giving students an intuitive understanding of fundamental procedural programming principles. In this paper we present our experiences with resurrecting the Logo turtle...... in a new object-oriented way and using it in an introductory object-oriented programming course. While, at the outset, we wanted to achieve the same qualities as the original turtle (understanding of state, control flow, instructions) we realized that the concept of turtles is well suited for teaching...... a whole range of fundamental principles. We have successfully used turtles to give students an intuitive understanding of central object-oriented concepts and principles such as object, class, message passing, behaviour, object identification, subclasses and inheritance; an intuitive understanding...

  11. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    Science.gov (United States)

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  12. 50 CFR 660.720 - Interim protection for sea turtles.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Interim protection for sea turtles. 660.720 Section 660.720 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707...

  13. Overexpression of Genes Encoding Glycolytic Enzymes in Corynebacterium glutamicum Enhances Glucose Metabolism and Alanine Production under Oxygen Deprivation Conditions

    Science.gov (United States)

    Yamamoto, Shogo; Gunji, Wataru; Suzuki, Hiroaki; Toda, Hiroshi; Suda, Masako; Jojima, Toru; Inui, Masayuki

    2012-01-01

    We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159–165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD+ ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses. PMID

  14. Invasion of the turtles? : exotic turtles in the Netherland: a risk assessment

    NARCIS (Netherlands)

    Bugter, R.J.F.; Ottburg, F.G.W.A.; Roessink, I.; Jansman, H.A.H.; Grift, van der E.A.; Griffioen, A.J.

    2011-01-01

    The authors of this report assessed the risk of exotic turtles becoming invasive in the Netherlands. Main components of the risk are the large scale of introduction of discarded pets to Dutch nature and possible suitability of species to survive and reproduce successfully under present or future

  15. Willingness to Pay for Marine Turtle Conservation in Asia: A Cross-Country Perspective

    OpenAIRE

    Jin Jiangjun; Rodelio Subade; Orapan Nabangchang; Truong Dang Thuy; Anabeth L. Indab

    2009-01-01

    Marine turtles are important, not only for their economic and intrinsic value, but because an adequate population of marine turtles is often an indicator of healthy marine ecosystem. Of the seven species of marine turtles, four are critically endangered, while two are in the next-highest risk category.

  16. [Effect of melafen on expression of Elip1 and Elip2 genes encoding chloroplast light-induced stress proteins in barley].

    Science.gov (United States)

    Osipenkova, O V; Ermokhina, O V; Belkina, G G; Oleskina, Iu P; Fattakhov, S G; Iurina, N P

    2008-01-01

    The effect of melafen, a plant growth regulator of a new generation, on the growth, pigment composition, and expression of nuclear genes Elip1 and Elip2 encoding chloroplast light-stress proteins in barley (Hordeum vulgare L) seedlings was studied. It is shown that the height of seedlings treated with melafen at concentrations of 0.5 x 10(-10) and 0.5 x 10(-8) M increased by approximately 10 and 20%, respectively, as compared to the control. At high concentrations (10(-5) and 10(-3) M), melafen had no effect on the growth of seedlings. The content of chlorophylls and carotenoids in chloroplasts barely differed from the control at all melafen concentrations tested. Reverse transcription-polymerase chain reaction (RT-PCR) showed that melafen did not influence the expression of the nuclear gene encoding the low-molecular-weight plastid stress protein ELIP1. At the same time, the expression of the nuclear gene encoding the high-molecular-weight light-inducible stress protein ELIP2 in the plants treated with melafen at a concentration of 0.5 x 10(-8) M, increased by approximately 70 %. At higher concentrations, melafen suppressed the Elip2 gene expression. Thus, melafen affects the expression of the Elip2 gene, which is involved in the regulation of chlorophyll synthesis and chloroplast biogenesis, which, in turn, may lead to changes in the resistance of plants to light-induced stress.

  17. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina).

    Science.gov (United States)

    Wearing, Oliver H; Conner, Justin; Nelson, Derek; Crossley, Janna; Crossley, Dane A

    2017-07-15

    Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles ( Chelydra serpentina ). Turtles exposed to hypoxia as embryos [10% O 2 (H10)] exhibited an earlier and increased peak postprandial oxygen consumption rate, compared with control turtles [21% O 2 (N21)]. In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic ([Formula: see text]) and pulmonary ([Formula: see text]) blood flows and heart rate ( f H ) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, f H was increased significantly by feeding. Although total stroke volume ( V S,tot ) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output ([Formula: see text]). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher [Formula: see text] due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia. © 2017. Published by The Company of Biologists Ltd.

  18. Seasonal residency of loggerhead turtles Caretta caretta tracked from the Gulf of Manfredonia, south Adriatic

    Directory of Open Access Journals (Sweden)

    P. CASALE

    2017-02-01

    Full Text Available A detailed knowledge of sea turtle distribution in relation to anthropogenic threats is key to inform conservation measures. We satellite tracked five loggerhead turtles incidentally caught in the Gulf of Manfredonia, where a high turtle occurrence and high bycatch levels have been recently reported. Turtles were tracked for a period ranging from 27 to 367 days, with a minimum travel distance ranging from 151 to 4,300 km. With the caution due to the small sample size, results suggest that: (i the area may host residential loggerhead turtles at least in summer, while they probably move elsewhere in winter due to the low temperatures occurring in shallow waters, (ii turtles may have very small home ranges in the area, (iii turtle occurrence may be higher in shallow waters along the coast. Moreover (iv one turtle showed remarkable fidelity to the same spot after seasonal migration and constant migration paths. If confirmed and further detailed, such movement patterns may guide effective conservation strategies to reduce the impact of bycatch in the area.

  19. Activation of the unfolded protein response during anoxia exposure in the turtle Trachemys scripta elegans.

    Science.gov (United States)

    Krivoruchko, Anastasia; Storey, Kenneth B

    2013-02-01

    Red-eared slider turtles, Trachemys scripta elegans, can survive for several weeks without oxygen when submerged in cold water. We hypothesized that anaerobiosis is aided by adaptive up-regulation of the unfolded protein response (UPR), a stress-responsive pathway that is activated by accumulation of unfolded proteins in the endoplasmic reticulum (ER) and functions to restore ER homeostasis. RT-PCR, western immunoblotting and DNA-binding assays were used to quantify the responses and/or activation status of UPR-responsive genes and proteins in turtle tissues after animal exposure to 5 or 20 h of anoxic submergence at 4 °C. The phosphorylation state of protein kinase-like ER kinase (PERK) (a UPR-regulated kinase) and eukaryotic initiation factor 2 (eIF2α) increased by 1.43-2.50 fold in response to anoxia in turtle heart, kidney, and liver. Activation of the PERK-regulated transcription factor, activating transcription factor 4 (ATF4), during anoxia was documented by elevated atf4 transcripts and total ATF4 protein (1.60-2.43 fold), increased nuclear ATF4 content, and increased DNA-binding activity (1.44-2.32 fold). ATF3 and GADD34 (downstream targets of ATF4) also increased by 1.38-3.32 fold in heart and liver under anoxia, and atf3 transcripts were also elevated in heart. Two characteristic chaperones of the UPR, GRP78, and GRP94, also responded positively to anoxia with strong increases in both the transcript and protein levels. The data demonstrate that the UPR is activated in turtle heart, kidney, and liver in response to anoxia, suggesting that this pathway mediates an integrated stress response to protect tissues during oxygen deprivation.

  20. Evolution of the turtle body plan by the folding and creation of new muscle connections.

    Science.gov (United States)

    Nagashima, Hiroshi; Sugahara, Fumiaki; Takechi, Masaki; Ericsson, Rolf; Kawashima-Ohya, Yoshie; Narita, Yuichi; Kuratani, Shigeru

    2009-07-10

    The turtle shell offers a fascinating case study of vertebrate evolution, based on the modification of a common body plan. The carapace is formed from ribs, which encapsulate the scapula; this stands in contrast to the typical amniote body plan and serves as a key to understanding turtle evolution. Comparative analyses of musculoskeletal development between the Chinese soft-shelled turtle and other amniotes revealed that initial turtle development conforms to the amniote pattern; however, during embryogenesis, lateral rib growth results in a shift of elements. In addition, some limb muscles establish new turtle-specific attachments associated with carapace formation. We propose that the evolutionary origin of the turtle body plan results from heterotopy based on folding and novel connectivities.

  1. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    NARCIS (Netherlands)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  2. Analysis of viral protein-2 encoding gene of avian encephalomyelitis virus from field specimens in Central Java region, Indonesia

    Directory of Open Access Journals (Sweden)

    Aris Haryanto

    2016-01-01

    Full Text Available Aim: Avian encephalomyelitis (AE is a viral disease which can infect various types of poultry, especially chicken. In Indonesia, the incidence of AE infection in chicken has been reported since 2009, the AE incidence tends to increase from year to year. The objective of this study was to analyze viral protein 2 (VP-2 encoding gene of AE virus (AEV from various species of birds in field specimen by reverse transcription polymerase chain reaction (RT-PCR amplification using specific nucleotides primer for confirmation of AE diagnosis. Materials and Methods: A total of 13 AEV samples are isolated from various species of poultry which are serologically diagnosed infected by AEV from some areas in central Java, Indonesia. Research stage consists of virus samples collection from field specimens, extraction of AEV RNA, amplification of VP-2 protein encoding gene by RT-PCR, separation of RT-PCR product by agarose gel electrophoresis, DNA sequencing and data analysis. Results: Amplification products of the VP-2 encoding gene of AEV by RT-PCR methods of various types of poultry from field specimens showed a positive results on sample code 499/4/12 which generated DNA fragment in the size of 619 bp. Sensitivity test of RT-PCR amplification showed that the minimum concentration of RNA template is 127.75 ng/μl. The multiple alignments of DNA sequencing product indicated that positive sample with code 499/4/12 has 92% nucleotide homology compared with AEV with accession number AV1775/07 and 85% nucleotide homology with accession number ZCHP2/0912695 from Genbank database. Analysis of VP-2 gene sequence showed that it found 46 nucleotides difference between isolate 499/4/12 compared with accession number AV1775/07 and 93 nucleotides different with accession number ZCHP2/0912695. Conclusions: Analyses of the VP-2 encoding gene of AEV with RT-PCR method from 13 samples from field specimen generated the DNA fragment in the size of 619 bp from one sample with

  3. Sensory Evolution and Ecology of Early Turtles Revealed by Digital Endocranial Reconstructions

    Directory of Open Access Journals (Sweden)

    Stephan Lautenschlager

    2018-02-01

    Full Text Available In the past few years, new fossil finds and novel methodological approaches have prompted intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation, proposed for the earliest stem-turtles. While research has focused largely on the origin of the anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of turtles. Here, we provide 3D digital reconstructions and comparative descriptions of the brain, nasal cavity, neurovascular structures and endosseous labyrinth of Proganochelys quenstedti, one of the earliest stem-turtles, as well as other turtle taxa. Our results demonstrate that P. quenstedti retained a simple tube-like brain morphology with poorly differentiated regions and mediocre hearing and vision, but a well-developed olfactory sense. Endocast shape analysis indicates that an increase in size and regionalization of the brain took place in the course of turtle evolution, achieving an endocast diversity comparable to other amniote groups. Based on the new evidence presented herein, we further conclude that P. quenstedti was a highly terrestrial, but most likely not fossorial, taxon.

  4. Marine debris and human impacts on sea turtles in southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Bugoni, Leandro; Krause, Ligia [Universidade Federal do Rio Grande do Sul, Dept. de Zoologia, Porto Alegre, RS (Brazil); Petry, Maria Virginia [Universidade do Rio dos Sinos, Museu de Zoologia, Sao Leopoldo, RS (Brazil)

    2001-07-01

    Dead stranded sea turtles were recovered and examined to determine the impact of anthropogenic debris and fishery activities on sea turtles on the coast of Rio Grande do Sul State, Brazil. Esophagus/stomach contents of 38 juvenile green Chelonia mydas, 10 adults and sub-adults loggerhead Caretta caretta, and two leatherback Dermochelys coriacea turtle (adult or sub-adult) included plastic bags as the main debris ingested, predominated by white and colorless pieces. The ingestion of anthropogenic debris accounted for the death of 13.2% of the green turtles examined. Signs of damage over the body and carapace indicated that fishing activities caused the death of 13.6% (3/22) of loggerheads and 1.5% (1/56) of green turtles. Therefore, it appears that direct and indirect effects of fishing activities may pose a threat to these species in Brazilian waters. Other sources of plastic debris should be investigated as well a the direct impact of fisheries, especially bottom trawl and gill nets, in order to establish effective conservation action. (Author)

  5. Establishment risk from pet-trade freshwater turtles in the European Union

    Directory of Open Access Journals (Sweden)

    Kopecký O.

    2013-08-01

    Full Text Available The pet-turtle market has grown in recent years and become an important pathway for the introduction of alien species in Europe. The import of Trachemys scripta elegans has been banned by European Commission Regulation due to its species’ expanding territory and negative impact on native species. Since the demand from hobby breeders persists, however, blocking imports of this popular subspecies opens up the possibility for the introduction of other potentially invasive turtles. We determined those turtle species most common in the pet trade within the Czech Republic, which is the most important producer, importer and exporter of ornamental aquatic animals in the EU. The determination of establishment risk for the EU as a whole was then individually evaluated for turtle species based on known establishment models. Chelydra serpentina, Apalone spinifera, Apalone mutica, and Sternotherus odoratus were considered most problematic, because these species have serious establishment risk and are imported to the EU in substantial numbers. Also localities in the EU were identified where probability is highest for establishment of non-native turtles.

  6. The amniote temporal roof and the diapsid origin of the turtle skull.

    Science.gov (United States)

    Bever, G S; Lyson, Tyler R; Field, Daniel J; Bhullar, Bhart-Anjan S

    2016-12-01

    Fossils provide a glimpse into the architecturally complex origins of modern vertebrate body plans. One such origin that has been long debated is that of turtles. Although much attention has been directed toward the origin of the shell, the enigmatic evolution of the turtle skull and its anapsid temporal region has long clouded our understanding of reptile phylogeny. Two taxa, Eunotosaurus africanus and Pappochelys rosinae, were recently and independently described as long-anticipated stem turtles whose diapsid skulls would cement the evolutionary link between turtles and other modern reptile lineages. Detailed μCT analysis of the stratigraphically older and phylogenetically stemward of the two, Eunotosaurus, provides empirical insight into changing developmental trajectories that may have produced the anapsid cranial form of modern turtles and sets the stage for more comprehensive studies of early amniote cranial evolution. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Spatial Dynamics of Sea Turtle Abundance and Shrimping Intensity in the U.S. Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Carrie J. McDaniel

    2000-07-01

    Full Text Available In order to examine the scientific feasibility of area closures for sea turtle protection, we determined the spatial dynamics of sea turtles for the U.S. Gulf of Mexico by analyzing National Marine Fisheries Service (NMFS aerial survey data in September, October, and November of 1992, 1993, and 1994. Turtle sightings were grouped into depth zones and NMFS fishery statistical zones, and strip transect methods were used to estimate the relative abundance of sea turtles in each subzone. Average shrimping intensity was calculated for each subzone for all months of 1992, 1993, and 1994, as well as for the months and locations of the aerial survey. The spatial overlap of sea turtle abundance and shrimping intensity suggested regions where interactions are likely to occur. Sea turtles were observed at much higher rates along the coast of Florida than in the Western Gulf; the highest density of sea turtles was observed in the Florida Keys region (0.525 turtles/km2. Shrimping intensity was highest in the Western Gulf along the coast of Texas and Louisiana, for both annual and fall estimates. Among alternative management scenarios, area closures in conjunction with continued Turtle Excluder Device (TED requirements would probably best prevent sea turtles from future extinction. By implementing shrimping closures off of South Padre Island, Texas, a potential second nesting population of Kemp's ridleys (Lepidochelys kempi could be protected. Closing waters where shrimping intensity is low and sea turtle abundance is high (e.g., South Florida waters would protect sea turtles without economically impacting a large number of shrimpers.

  8. The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP Which Is Overexpressed in Highly Proliferating Tissues.

    Directory of Open Access Journals (Sweden)

    Lukasz Michal Szafron

    Full Text Available CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

  9. Seasonal change in the capacity for supercooling by neonatal painted turtles.

    Science.gov (United States)

    Packard, G C; Packard, M J; McDaniel, L L

    2001-05-01

    Hatchlings of the North American painted turtle (Chrysemys picta) typically spend their first winter of life inside the shallow, subterranean nest where they completed incubation the preceding summer. This facet of their natural history commonly causes neonates in northerly populations to be exposed in mid-winter to ice and cold, which many animals survive by remaining unfrozen and supercooled. We measured the limit of supercooling in samples of turtles taken shortly after hatching and in other samples after 2 months of acclimation (or acclimatization) to a reduced temperature in the laboratory or field. Animals initially had only a limited capacity for supercooling, but they acquired an ability to undergo deeper supercooling during the course of acclimation. The gut of most turtles was packed with particles of soil and eggshell shortly after hatching, but not after acclimation. Thus, the relatively high limit of supercooling for turtles in the days immediately after hatching may have resulted from the ingestion of soil (and associated nucleating agents) by the animals as they were freeing themselves from their eggshell, whereas the relatively low limit of supercooling attained by acclimated turtles may have resulted from their purging their gut of its contents. Parallels may, therefore, exist between the natural-history strategy expressed by hatchling painted turtles and that expressed by numerous terrestrial arthropods that withstand the cold of winter by sustaining a state of supercooling.

  10. Snapping turtles, a biological screen for PCB's

    Energy Technology Data Exchange (ETDEWEB)

    Olafsson, P.G.; Bryan, A.M.; Bush, B.; Stone, W.

    1983-01-01

    Snapping turtles are capable of storing extremely high concentration of organochlorine compounds in their fat without any apparent detrimental effect. This tolerance, to high bioconcentration, permits a wide gradation between the extremes in pollution levels and facilitates the detection of extremely toxic substances present in trace amounts. Consequently snapping turtles provide an excellent biological screen for these compounds.

  11. LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA

    Science.gov (United States)

    T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...

  12. Cutaneous fibroma in a captive common snapping turtle (Chelydra serpentina).

    Science.gov (United States)

    Gonzales-Viera, O; Bauer, G; Bauer, A; Aguiar, L S; Brito, L T; Catão-Dias, J L

    2012-11-01

    An adult female common snapping turtle (Chelydra serpentina) had a mass on the plantar surface of the right forelimb that was removed surgically. Microscopical examination revealed many spindle cells with mild anisocytosis and anisokaryosis and a surrounding collagenous stroma. There were no mitoses. Immunohistochemistry showed that the spindle cells expressed vimentin, but not desmin. A diagnosis of cutaneous fibroma was made. Tumours are reported uncommonly in chelonian species. Cutaneous fibroma has been diagnosed in an alligator snapping turtle (Macrochelys temminckii), but not previously in a common snapping turtle. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  13. Assessment of ground transportation stress in juvenile Kemp's ridley sea turtles (Lepidochelys kempii).

    Science.gov (United States)

    Hunt, Kathleen E; Innis, Charles J; Kennedy, Adam E; McNally, Kerry L; Davis, Deborah G; Burgess, Elizabeth A; Merigo, Constance

    2016-01-01

    Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress ('transport stress') on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp's ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp's ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on 'control days' 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four 'stress-associated' parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp's ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These results are likely

  14. Persistent leatherback turtle migrations present opportunities for conservation.

    Directory of Open Access Journals (Sweden)

    George L Shillinger

    2008-07-01

    Full Text Available Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007 satellite tracking dataset (12,095 cumulative satellite tracking days collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.

  15. Persistent Leatherback Turtle Migrations Present Opportunities for Conservation

    Science.gov (United States)

    Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A

    2008-01-01

    Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987

  16. Relationships between protein-encoding gene abundance and corresponding process are commonly assumed yet rarely observed

    Science.gov (United States)

    Rocca, Jennifer D.; Hall, Edward K.; Lennon, Jay T.; Evans, Sarah E.; Waldrop, Mark P.; Cotner, James B.; Nemergut, Diana R.; Graham, Emily B.; Wallenstein, Matthew D.

    2015-01-01

    For any enzyme-catalyzed reaction to occur, the corresponding protein-encoding genes and transcripts are necessary prerequisites. Thus, a positive relationship between the abundance of gene or transcripts and corresponding process rates is often assumed. To test this assumption, we conducted a meta-analysis of the relationships between gene and/or transcript abundances and corresponding process rates. We identified 415 studies that quantified the abundance of genes or transcripts for enzymes involved in carbon or nitrogen cycling. However, in only 59 of these manuscripts did the authors report both gene or transcript abundance and rates of the appropriate process. We found that within studies there was a significant but weak positive relationship between gene abundance and the corresponding process. Correlations were not strengthened by accounting for habitat type, differences among genes or reaction products versus reactants, suggesting that other ecological and methodological factors may affect the strength of this relationship. Our findings highlight the need for fundamental research on the factors that control transcription, translation and enzyme function in natural systems to better link genomic and transcriptomic data to ecosystem processes.

  17. Latitudinal diversity gradients in Mesozoic non-marine turtles

    Science.gov (United States)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  18. Adaptive evolution of plastron shape in emydine turtles.

    Science.gov (United States)

    Angielczyk, Kenneth D; Feldman, Chris R; Miller, Gretchen R

    2011-02-01

    Morphology reflects ecological pressures, phylogeny, and genetic and biophysical constraints. Disentangling their influence is fundamental to understanding selection and trait evolution. Here, we assess the contributions of function, phylogeny, and habitat to patterns of plastron (ventral shell) shape variation in emydine turtles. We quantify shape variation using geometric morphometrics, and determine the influence of several variables on shape using path analysis. Factors influencing plastron shape variation are similar between emydine turtles and the more inclusive Testudinoidea. We evaluate the fit of various evolutionary models to the shape data to investigate the selective landscape responsible for the observed morphological patterns. The presence of a hinge on the plastron accounts for most morphological variance, but phylogeny and habitat also correlate with shape. The distribution of shape variance across emydine phylogeny is most consistent with an evolutionary model containing two adaptive zones--one for turtles with kinetic plastra, and one for turtles with rigid plastra. Models with more complex adaptive landscapes often fit the data only as well as the null model (purely stochastic evolution). The adaptive landscape of plastron shape in Emydinae may be relatively simple because plastral kinesis imposes overriding mechanical constraints on the evolution of form. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  19. Effectiveness of Chain Link Turtle Fence and Culverts in Reducing Turtle Mortality and Providing Connectivity along U.S. Hwy 83, Valentine National Wildlife Refuge, Nebraska, USA

    Science.gov (United States)

    2017-12-01

    We evaluated the effectiveness of existing turtle fences through collecting and analyzing turtle mortality data along U.S. Hwy 83, in and around Valentine National Wildlife Refuge, Nebraska, USA. We also investigated the level of connectivity for tur...

  20. Data of first de-novo transcriptome assembly of a non-model species, hawksbill sea turtle, Eretmochelys imbricate, nesting of the Colombian Caribean.

    Science.gov (United States)

    Hernández-Fernández, Javier

    2017-12-01

    The hawksbill sea turtle, Eretmochelys imbricata, is an endangered species of the Caribbean Colombian coast due to anthropic and natural factors that have decreased their population levels. Little is known about the genes that are involved in their immune system, sex determination, aging and others important functions. The data generated represents RNA sequencing and the first de-novo assembly of transcripts expressed in the blood of the hawksbill sea turtle. The raw FASTQ files were deposited in the NCBI SRA database with accession number SRX2653641. A total of 5.7 Gb raw sequence data were obtained, corresponding to 47,555,108 raw reads. Trinity was used to perform a first de-novo assembly, and we were able to identify 47,586 transcripts of the female hawksbill turtle transcriptome with an N50 of 1100 bp. The obtained transcriptome data will be useful for further studies of the physiology, biochemistry and evolution in this species.

  1. Protecting the Sacred Water Bundle: Education about Fracking at Turtle Mountain Community College

    Science.gov (United States)

    Blue, Stacie

    2017-01-01

    Leaving the plains of North Dakota and entering the hills known as the Turtle Mountains, the Turtle Mountain Band of Chippewa Indians (TMBCI) reservation is found. Located on the TMBCI reservation, Turtle mountain Community College (TMCC) has provided opportunities for all interested parties to learn about fracking and why the tribe banned it.…

  2. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    Directory of Open Access Journals (Sweden)

    Hui-Yeng Y Yap

    Full Text Available Lignosus rhinocerotis (Cooke Ryvarden (tiger milk mushroom has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.

  3. Leatherback Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for leatherback turtle as designated by Federal Register Vol. 44, No. 17711, March 23, 1979, Rules and Regulations....

  4. Hawksbill Sea Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for hawksbill turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations....

  5. Sea Turtle Satellite Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea turtles captured in various fishing gear (pound nets, long haul seines, gill nets) were outfitted with satellite transmitters so that their movements, migratory...

  6. The IRC7 gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source.

    Science.gov (United States)

    Santiago, Margarita; Gardner, Richard C

    2015-07-01

    Although cysteine desulphydrase activity has been purified and characterized from Saccharomyces cerevisiae, the gene encoding this activity in vivo has never been defined. We show that the full-length IRC7 gene, encoded by the YFR055W open reading frame, encodes a protein with cysteine desulphydrase activity. Irc7p purified to homogeneity is able to utilize l-cysteine as a substrate, producing pyruvate and hydrogen sulphide as products of the reaction. Purified Irc7p also utilized l-cystine and some other cysteine conjugates, but not l-cystathionine or l-methionine, as substrates. We further show that, in vivo, the IRC7 gene is both necessary and sufficient for yeast to grow on l-cysteine as a nitrogen source, and that overexpression of the gene results in increased H2 S production. Strains overexpressing IRC7 are also hypersensitive to a toxic analogue, S-ethyl-l-cysteine. While IRC7 has been identified as playing a critical role in converting cysteine conjugates to volatile thiols that are important in wine aroma, its biological role in yeast cells is likely to involve regulation of cysteine and redox homeostasis. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Evaluation of rebound tonometry in red-eared slider turtles (Trachemys scripta elegans).

    Science.gov (United States)

    Delgado, Cherlene; Mans, Christoph; McLellan, Gillian J; Bentley, Ellison; Sladky, Kurt K; Miller, Paul E

    2014-07-01

    To evaluate feasibility and accuracy of intraocular pressure (IOP) measurement by rebound tonometry in adult red-eared slider turtles and determine the effects of manual and chemical restraint on IOP. Seventeen adult red-eared slider turtles. Intraocular pressure was measured with TonoLab® and TonoVet® tonometers in conscious, unrestrained turtles. To evaluate the effects of manual restraint, turtles were restrained by digital pressure on the rostral head or proximal neck. The effect of two chemical restraint protocols (dexmedetomidine, ketamine, midazolam [DKM] and dexmedetomidine, ketamine [DK] subcutaneously) on IOP was evaluated. Triplicate TonoLab® and TonoVet® readings were compared with direct manometry in three ex vivo turtle eyes. TonoLab® correlated better with manometry at IOPs < 45 mmHg than TonoVet® (linear regression slopes of 0.89 and 0.30, respectively). Mean (±SD) IOP in unrestrained conscious turtles was significantly lower (P < 0.01) with TonoLab® (10.02 ± 0.66 mmHg) than with TonoVet® (11.32 ± 1.57 mmHg). Manual neck restraint caused a significant increase in IOP (+6.31 ± 5.59 mmHg), while manual rostral head restraint did not. Both chemical restraint protocols significantly reduced IOP (DKM: −1.0 ± 0.76 mmHg; DK: −1.79 ± 1.17) compared with measurements in conscious unrestrained turtles. Chemical and manual neck restraint affected IOP. Rostral head restraint had no significant effect on IOP and is, therefore, recommended as the appropriate restraint technique in red-eared slider turtles. TonoLab® measurements estimated actual IOP more accurately, within physiologic range, than measurements obtained using the TonoVet®. © 2013 American College of Veterinary Ophthalmologists.

  8. Conservation of freshwater turtles in Amazonia: retrospective and future prospects

    Directory of Open Access Journals (Sweden)

    Aderson de Souza Alcântara

    2014-08-01

    Full Text Available This paper aims to discuss the current status of conservation of freshwater turtles of the Amazon and the absence of the genus Podocnemis the Official List of Species of Brazilian Fauna Threatened with Extinction. Amazonian turtles are used as food by indigenous people and fisherman communities. However, fishing of adult females, uncontrolled egg collecting, habitat degradation and trafficking in wildlife have caused the decline of these populations. Nevertheless, Podocnemis expansa and Podocnemis unifilis were not included in the Brazil’s official list of animals threatened. Therefore, the turtles remain at great risk, due to the intense pressure that they are suffering. It is recommended that the criteria and the conservation status are reviewed including those animals in the category of vulnerable and to ensure a thorough review and modification in the current Brazilian law to be covered studies and management of turtles for subsistence, respecting and adding value to way of life of Amazonian peoples.

  9. Mass mortality of eastern box turtles with upper respiratory disease following atypical cold weather.

    Science.gov (United States)

    Agha, Mickey; Price, Steven J; Nowakowski, A Justin; Augustine, Ben; Todd, Brian D

    2017-04-20

    Emerging infectious diseases cause population declines in many ectotherms, with outbreaks frequently punctuated by periods of mass mortality. It remains unclear, however, whether thermoregulation by ectotherms and variation in environmental temperature is associated with mortality risk and disease progression, especially in wild populations. Here, we examined environmental and body temperatures of free-ranging eastern box turtles Terrapene carolina during a mass die-off coincident with upper respiratory disease. We recorded deaths of 17 turtles that showed clinical signs of upper respiratory disease among 76 adult turtles encountered in Berea, Kentucky (USA), in 2014. Of the 17 mortalities, 11 occurred approximately 14 d after mean environmental temperature dropped 2.5 SD below the 3 mo mean. Partial genomic sequencing of the major capsid protein from 1 sick turtle identified a ranavirus isolate similar to frog virus 3. Turtles that lacked clinical signs of disease had significantly higher body temperatures (23°C) than sick turtles (21°C) during the mass mortality, but sick turtles that survived and recovered eventually warmed (measured by temperature loggers). Finally, there was a significant negative effect of daily environmental temperature deviation from the 3 mo mean on survival, suggesting that rapid decreases in environmental temperature were correlated with mortality. Our results point to a potential role for environmental temperature variation and body temperature in disease progression and mortality risk of eastern box turtles affected by upper respiratory disease. Given our findings, it is possible that colder or more variable environmental temperatures and an inability to effectively thermoregulate are associated with poorer disease outcomes in eastern box turtles.

  10. Mass poisoning after consumption of a hawksbill turtle, Federated States of Micronesia, 2010

    Directory of Open Access Journals (Sweden)

    Boris Pavlin

    2015-01-01

    Full Text Available Background: Marine turtles of all species are capable of being toxic. On 17 October 2010, health authorities in the Federated States of Micronesia were notified of the sudden death of three children and the sickening of approximately 20 other people on Murilo Atoll in Chuuk State. The illnesses were suspected to be the result of mass consumption of a hawksbill turtle (Eretmochelys imbricata. An investigation team was assembled to confirm the cause of the outbreak, describe the epidemiology of cases and provide recommendations for control. Methods: We conducted chart reviews, interviewed key informants, collected samples for laboratory analysis, performed environmental investigations and conducted a cohort study. Results: Four children and two adults died in the outbreak and 95 others were sickened; 84% of those who ate the turtle became ill (n = 101. The relative risk for developing illness after consuming the turtle was 11.1 (95% confidence inteval: 4.8–25.9; there was a dose-dependent relationship between amount of turtle meat consumed and risk of illness. Environmental and epidemiological investigations revealed no alternative explanation for the mass illness. Laboratory testing failed to identify a causative agent. Conclusion: We concluded that turtle poisoning (also called chelonitoxism was the cause of the outbreak on Murilo. The range of illness described in this investigation is consistent with previously reported cases of chelonitoxism. This devastating incident highlights the dangers, particularly to children, of consuming turtle meat. Future incidents are certain to occur unless action is taken to alter turtle-eating behaviour in coastal communities throughout the world.

  11. Sea Turtle Acoustic Telemetry Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Acoustic transmitters attached to sea turtles captured in various fishing gear enable the animals to be passively tracked. Acoustic receivers set up in an array...

  12. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    Science.gov (United States)

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  13. Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida

    Science.gov (United States)

    Fujisaki, Ikuko; Hart, Kristen M.; Sartain-Iverson, Autumn R.

    2016-01-01

    We examined habitat selection by green turtles Chelonia mydas at Dry Tortugas National Park, Florida, USA. We tracked 15 turtles (6 females and 9 males) using platform transmitter terminals (PTTs); 13 of these turtles were equipped with additional acoustic transmitters. Location data by PTTs comprised periods of 40 to 226 d in varying months from 2009 to 2012. Core areas were concentrated in shallow water (mean bathymetry depth of 7.7 m) with a comparably dense coverage of seagrass; however, the utilization distribution overlap index indicated a low degree of habitat sharing. The probability of detecting a turtle on an acoustic receiver was inversely associated with the distance from the receiver to turtle capture sites and was lower in shallower water. The estimated daily detection probability of a single turtle at a given acoustic station throughout the acoustic array was small (turtle detections was even smaller. However, the conditional probability of multiple turtle detections, given at least one turtle detection at a receiver, was much higher despite the small number of tagged turtles in each year (n = 1 to 5). Also, multiple detections of different turtles at a receiver frequently occurred within a few minutes (40%, or 164 of 415, occurred within 1 min). Our numerical estimates of core area overlap, co-occupancy probabilities, and habitat characterization for green turtles could be used to guide conservation of the area to sustain the population of this species.

  14. The shell vasculature of Trachemys turtles investigated by modern 3D imaging techniques

    DEFF Research Database (Denmark)

    Hansen, Kasper; Thygesen, Jesper; Nielsen, Tobias Wang

    Many freshwater turtles are extremely tolerant to the lack of oxygen and can survive the winter submerged in anoxic mud in ice-covered lakes. The pronounced anoxia-tolerance resides with a considerable depression of cellular metabolism and the ability to use the shell to buffer the acidosis arising...... from anaerobic metabolism (1). Infusion of microspheres has shown that the shell receives almost half of the cardiac output in turtles made anoxic at low temperatures (2). However, the vasculature of the turtle shell remains to be described. To visualise the vasculature within the carapace and plastron...... of the turtle Trachemys scripta, we perfused terminally anaesthetised turtles with different contrast enhancing agents (Microfil [lead n/a]), barium sulphate [250 mg/kg], and iodine [15-250 mg/kg]), and the animals were then scanned by both single source as well as dual energy Computed Tomographic systems...

  15. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    Science.gov (United States)

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  16. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    You Wanhui

    2012-04-01

    Full Text Available Abstract Background In plants, transposons and non-protein-coding repeats are epigenetically silenced by CG and non-CG methylation. This pattern of methylation is mediated in part by small RNAs and two specialized RNA polymerases, termed Pol IV and Pol V, in a process called RNA-directed DNA methylation. By contrast, many protein-coding genes transcribed by Pol II contain in their gene bodies exclusively CG methylation that is independent of small RNAs and Pol IV/Pol V activities. It is unclear how the different methylation machineries distinguish between transposons and genes. Here we report on a group of atypical genes that display in their coding region a transposon-like methylation pattern, which is associated with gene silencing in sporophytic tissues. Results We performed a methylation-sensitive amplification polymorphism analysis to search for targets of RNA-directed DNA methylation in Arabidopsis thaliana and identified several members of a gene family encoding cysteine-rich peptides (CRPs. In leaves, the CRP genes are silent and their coding regions contain dense, transposon-like methylation in CG, CHG and CHH contexts, which depends partly on the Pol IV/Pol V pathway and small RNAs. Methylation in the coding region is reduced, however, in the synergid cells of the female gametophyte, where the CRP genes are specifically expressed. Further demonstrating that expressed CRP genes lack gene body methylation, a CRP4-GFP fusion gene under the control of the constitutive 35 S promoter remains unmethylated in leaves and is transcribed to produce a translatable mRNA. By contrast, a CRP4-GFP fusion gene under the control of a CRP4 promoter fragment acquires CG and non-CG methylation in the CRP coding region in leaves similar to the silent endogenous CRP4 gene. Conclusions Unlike CG methylation in gene bodies, which does not dramatically affect Pol II transcription, combined CG and non-CG methylation in CRP coding regions is likely to

  17. Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase.

    OpenAIRE

    Hahn, F M; Baker, J A; Poulter, C D

    1996-01-01

    Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic...

  18. Ophthalmic variables in rehabilitated juvenile Kemp's ridley sea turtles (Lepidochelys kempii).

    Science.gov (United States)

    Gornik, Kara R; Pirie, Christopher G; Marrion, Ruth M; Wocial, Julika N; Innis, Charles J

    2016-03-15

    To determine central corneal thickness (total corneal thickness [TCT], epithelial thickness [ET], and stromal thickness [ST]), anterior chamber depth (ACD), and intraocular pressure (IOP) in Kemp's ridley sea turtles (Lepidochelys kempii). Prospective cross-sectional study. 25 healthy rehabilitated juvenile Kemp's ridley sea turtles. PROCEDURES; Body weight and straight-line standard carapace length (SCL) were recorded. All turtles underwent a complete anterior segment ophthalmic examination. Central TCT, ET, ST, and ACD were determined by use of a spectral-domain optical coherence tomography device. Intraocular pressure was determined with a rebound tonometer; the horse setting was used to measure IOP in all 25 turtles, and the undefined setting was also used to measure IOP in 20 turtles. For each variable, 3 measurements were obtained bilaterally. The mean was calculated for each eye and used for analysis purposes. The mean ± SD body weight and SCL were 3.85 ± 1.05 kg (8.47 ± 2.31 lb) and 29 ± 3 cm, respectively. The mean ± SD TCT, ET, ST, and ACD were 288 ± 23 μm, 100 ± 6 μm, 190 ± 19 μm, and 581 ± 128 μm, respectively. Mean ± SD IOP was 6.5 ± 1.0 mm Hg when measured with the horse setting and 3.8 ± 1.1 mm Hg when measured with the undefined setting. Results provided preliminary reference ranges for objective assessment of ophthalmic variables in healthy juvenile Kemp's ridley sea turtles.

  19. Discharge regularity in the turtle posterior crista: comparisons between experiment and theory.

    Science.gov (United States)

    Goldberg, Jay M; Holt, Joseph C

    2013-12-01

    Intra-axonal recordings were made from bouton fibers near their termination in the turtle posterior crista. Spike discharge, miniature excitatory postsynaptic potentials (mEPSPs), and afterhyperpolarizations (AHPs) were monitored during resting activity in both regularly and irregularly discharging units. Quantal size (qsize) and quantal rate (qrate) were estimated by shot-noise theory. Theoretically, the ratio, σV/(dμV/dt), between synaptic noise (σV) and the slope of the mean voltage trajectory (dμV/dt) near threshold crossing should determine discharge regularity. AHPs are deeper and more prolonged in regular units; as a result, dμV/dt is larger, the more regular the discharge. The qsize is larger and qrate smaller in irregular units; these oppositely directed trends lead to little variation in σV with discharge regularity. Of the two variables, dμV/dt is much more influential than the nearly constant σV in determining regularity. Sinusoidal canal-duct indentations at 0.3 Hz led to modulations in spike discharge and synaptic voltage. Gain, the ratio between the amplitudes of the two modulations, and phase leads re indentation of both modulations are larger in irregular units. Gain variations parallel the sensitivity of the postsynaptic spike encoder, the set of conductances that converts synaptic input into spike discharge. Phase variations reflect both synaptic inputs to the encoder and postsynaptic processes. Experimental data were interpreted using a stochastic integrate-and-fire model. Advantages of an irregular discharge include an enhanced encoder gain and the prevention of nonlinear phase locking. Regular and irregular units are more efficient, respectively, in the encoding of low- and high-frequency head rotations, respectively.

  20. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    Science.gov (United States)

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  1. Sensory Evolution and Ecology of Early Turtles Revealed by Digital Endocranial Reconstructions

    OpenAIRE

    Stephan Lautenschlager; Gabriel S. Ferreira; Gabriel S. Ferreira; Gabriel S. Ferreira; Ingmar Werneburg; Ingmar Werneburg; Ingmar Werneburg

    2018-01-01

    In the past few years, new fossil finds and novel methodological approaches have prompted intensive discussions about the phylogenetic affinities of turtles and rekindled the debate on their ecological origin, with very distinct scenarios, such as fossoriality and aquatic habitat occupation, proposed for the earliest stem-turtles. While research has focused largely on the origin of the anapsid skull and unique postcranial anatomy, little is known about the endocranial anatomy of turtles. Here...

  2. Brevetoxin exposure in sea turtles in south Texas (USA) during Karenia brevis red tide.

    Science.gov (United States)

    Walker, Jennifer Shelby; Shaver, Donna J; Stacy, Brian A; Flewelling, Leanne J; Broadwater, Margaret H; Wang, Zhihong

    2018-01-31

    Five green (Chelonia mydas) and 11 Kemp's ridley (Lepidochelys kempii) sea turtles found dead, or that died soon after stranding, on the southern Texas (USA) coast during 2 Karenia brevis blooms (October 2015, September-October 2016) were tested for exposure to brevetoxins (PbTx). Tissues (liver, kidney) and digesta (stomach and intestinal contents) were analyzed by ELISA. Three green turtles found alive during the 2015 event and 2 Kemp's ridley turtles found alive during the 2016 event exhibited signs of PbTx exposure, including lethargy and/or convulsions of the head and neck. PbTx were detected in 1 or more tissues or digesta in all 16 stranded turtles. Detected PbTx concentrations ranged from 2 to >2000 ng g-1. Necropsy examination and results of PbTx analysis indicated that 10 of the Kemp's ridleys and 2 of the green turtles died from brevetoxicosis via ingestion. This is the first documentation of sea turtle mortality in Texas attributed to brevetoxicosis.

  3. First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche

    Science.gov (United States)

    Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang

    2014-01-01

    Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420

  4. Toxicological effects of polychlorinated biphenyls (PCBs) on freshwater turtles in the United States.

    Science.gov (United States)

    Ming-Ch'eng Adams, Clare Isabel; Baker, Joel E; Kjellerup, Birthe V

    2016-07-01

    Prediction of vertebrate health effects originating from persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) has remained a challenge for decades thus making the identification of bioindicators difficult. POPs are predominantly present in soil and sediment, where they adhere to particles due to their hydrophobic characteristics. Animals inhabiting soil and sediment can be exposed to PCBs via dermal exposure while others may obtain PCBs through contaminated trophic interaction. Freshwater turtles can serve as bioindicators due to their strong site fidelity, longevity and varied diet. Previous research observed the health effects of PCBs on turtles such as decreased bone mass, changed sexual development and decreased immune responses through studying both contaminated sites along with laboratory experimentation. Higher deformity rates in juveniles, increased mortality and slower growth have also been observed. Toxicological effects of PCBs vary between species of freshwater turtles and depend on the concertation and configuration of PCB congeners. Evaluation of ecotoxicological effects of PCBs in non-endangered turtles could provide important knowledge about the health effects of endangered turtle species thus inform the design of remediation strategies. In this review, the PCB presence in freshwater turtle habitats and the ecotoxicological effects were investigated with the aim of utilizing the health status to identify areas of focus for freshwater turtle conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic

    Science.gov (United States)

    Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.

    2008-01-01

    Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.

  6. Promoter for the late gene encoding Vp5 of herpes simplex virus type 1 is recognized by cell extracts derived from uninfected cells

    International Nuclear Information System (INIS)

    Chisholm, G.E.; Summers, W.C.

    1986-01-01

    The ability of whole-cell extracts from unidentified HeLa cells to recognize the promoter for the herpes simplex virus type 1 late gene encoding the major capsid protein Vp5 was investigated by using both in vitro transcriptional and S1 nuclease protection analysis. This gene promoter was recognized by the cell extracts and produced abundant amounts of transcript in the absence of any other virus-encoded factors. This transcript was shown to arise, in vitro, from specific initiation at or very near the physiological mRNA start site. Thus, it appears that cell extracts from uninfected HeLa cells can efficiently recognize both early- and late-gene promoters

  7. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds

    NARCIS (Netherlands)

    Vries, de R.P.; vanKuyk, P.A.; Kester, H.C.M.; Visser, J.

    2002-01-01

    The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase.

  8. The advantages of going large: genome-wide SNPs clarify the complex population history and systematics of the threatened western pond turtle.

    Science.gov (United States)

    Spinks, Phillip Q; Thomson, Robert C; Shaffer, H Bradley

    2014-05-01

    As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well-studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller-scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management. © 2014 John Wiley & Sons Ltd.

  9. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  10. Chronic granulomatous disease caused by mutations other than the common GT deletion in NCF1, the gene encoding the p47phox component of the phagocyte NADPH oxidase

    NARCIS (Netherlands)

    Roos, Dirk; de Boer, Martin; Köker, M. Yavuz; Dekker, Jan; Singh-Gupta, Vinita; Ahlin, Anders; Palmblad, Jan; Sanal, Ozden; Kurenko-Deptuch, Magdalena; Jolles, Stephen; Wolach, Baruch

    2006-01-01

    Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by defects in any of four genes encoding components of the leukocyte nicotinamide dinucleotide phosphate, reduced (NADPH) oxidase. One of these is the autosomal neutrophil cytosolic factor 1 (NCF1) gene encoding the p47phox

  11. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression

    Directory of Open Access Journals (Sweden)

    Řičicová Markéta

    2010-04-01

    Full Text Available Abstract Background Candida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein and of genes belonging to the ALS (agglutinin-like sequence, SAP (secreted aspartyl protease, PLB (phospholipase B and LIP (lipase gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP or in the Centres for Disease Control (CDC reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR model, and on mucosal surfaces in the reconstituted human epithelium (RHE model. Results HWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model. Conclusions Our findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression

  12. Conserved and divergent expression patterns of markers of axial development in reptilian embryos: Chinese soft-shell turtle and Madagascar ground gecko.

    Science.gov (United States)

    Yoshida, Michio; Kajikawa, Eriko; Kurokawa, Daisuke; Noro, Miyuki; Iwai, Tatsuhiro; Yonemura, Shigenobu; Kobayashi, Kensaku; Kiyonari, Hiroshi; Aizawa, Shinichi

    2016-07-01

    The processes of development leading up to gastrulation have been markedly altered during the evolution of amniotes, and it is uncertain how the mechanisms of axis formation are conserved and diverged between mouse and chick embryos. To assess the conservation and divergence of these mechanisms, this study examined gene expression patterns during the axis formation process in Chinese soft-shell turtle and Madagascar ground gecko preovipositional embryos. The data suggest that NODAL signaling, similarly to avian embryos but in contrast to eutherian embryos, does not have a role in epiblast and hypoblast development in reptilian embryos. The posterior marginal epiblast (PME) is the initial molecular landmark of axis formation in reptilian embryos prior to primitive plate development. Ontogenetically, PME may be the precursor of the primitive plate, and phylogenetically, Koller's sickle and posterior marginal zone in avian development may have been derived from the PME. Most of the genes expressed in the mouse anterior visceral endoderm (AVE genes), especially signaling antagonist genes, are not expressed in the hypoblast of turtle and gecko embryos, though they are expressed in the avian hypoblast. This study proposes that AVE gene expression in the hypoblast and the visceral endoderm could have been independently established in avian and eutherian lineages, similar to the primitive streak that has been independently acquired in these lineages. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The KL24 gene cluster and a genomic island encoding a Wzy polymerase contribute genes needed for synthesis of the K24 capsular polysaccharide by the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51.

    Science.gov (United States)

    Kenyon, Johanna J; Kasimova, Anastasiya A; Shneider, Mikhail M; Shashkov, Alexander S; Arbatsky, Nikolay P; Popova, Anastasiya V; Miroshnikov, Konstantin A; Hall, Ruth M; Knirel, Yuriy A

    2017-03-01

    The whole-genome sequence of the multiply antibiotic resistant Acinetobacter baumannii isolate RCH51 belonging to sequence type ST103 (Institut Pasteur scheme) revealed that the set of genes at the capsule locus, KL24, includes four genes predicted to direct the synthesis of 3-acetamido-3,6-dideoxy-d-galactose (d-Fuc3NAc), and this sugar was found in the capsular polysaccharide (CPS). One of these genes, fdtE, encodes a novel bifunctional protein with an N-terminal FdtA 3,4-ketoisomerase domain and a C-terminal acetyltransferase domain. KL24 lacks a gene encoding a Wzy polymerase to link the oligosaccharide K units to form the CPS found associated with isolate RCH51, and a wzy gene was found in a small genomic island (GI) near the cpn60 gene. This GI is in precisely the same location as another GI carrying wzy and atr genes recently found in several A. baumannii isolates, but it does not otherwise resemble it. The CPS isolated from RCH51, studied by sugar analysis and 1D and 2D 1H and 13C NMR spectroscopy, revealed that the K unit has a branched pentasaccharide structure made up of Gal, GalNAc and GlcNAc residues with d-Fuc3NAc as a side branch, and the K units are linked via a β-d-GlcpNAc-(1→3)-β-d-Galp linkage formed by the Wzy encoded by the GI. The functions of the glycosyltransferases encoded by KL24 were assigned to formation of specific bonds. A correspondence between the order of the genes in KL24 and other KL and the order of the linkages they form was noted, and this may be useful in future predictions of glycosyltransferase specificities.

  14. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  15. Myxidium scripta n. sp. identified in urinary and biliary tract of Louisiana-farmed red-eared slider turtles Trachemys scripta elegans.

    Science.gov (United States)

    Roberts, John F; Whipps, Christopher M; Bartholomew, Jerri L; Schneider, Lynda; Jacobson, Elliott R

    2008-08-07

    During a necropsy investigation of a mortality event occurring at a turtle farm in Assumption Parish, Louisiana, spores of a myxozoan were identified in the renal tubules in 3 of 6, the gall bladder lumen in 2 of 6, and the bile ductule in 1 of 6 red eared slider turtles Trachemys scripta elegans. In total, myxozoa were identified in 4 of 6 turtles. In 1 turtle, renal tubules contained numerous mature spores, had epithelial hyperplasia, granulomatous transformation, compression of adjacent tubules and interstitial lymphocytic nephritis. The genus of myxozoan was Myxidium, based on spore morphology in cytological preparations, in histologic section, and by electron microscopy. In cytological preparation the spores had mean dimensions of 18.8 x 5.1 microm and a mean polar capsule dimension of 6.6 x 3.5 microm. Electron microscopy showed renal tubules contained plasmodia with disporoblasts with spores in various stages of maturation. Ultrastructure of mature spores demonstrated a capsule containing 2 asymmetrical overlapping valves and polar capsules containing a polar filament coiled 6 to 8 times and surrounded by a membrane composed of a double layer wall. The small subunit rDNA gene sequence was distinct from all other Myxidium species for which sequences are available. Additionally, this is the first Myxidium species recovered from a North American chelonian to receive genetic analysis. Although T. s. elegans is listed as a host for Myxidium chelonarum, this newly described species of Myxidium possessed larger spores with tapered ends; thus, we described it as a new species, Myxidium scripta n. sp. This report documents a clinically significant nephropathy and genetic sequence from a Myxidium parasite affecting a freshwater turtle species in North America.

  16. Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression.

    Science.gov (United States)

    Combes, Didier; Fedon, Yann; Toutant, Jean-Pierre; Arpagaus, Martine

    2003-08-01

    ace-1 and ace-2 genes encoding acetylcholinesterase in the nematode Caenorhabditis elegans present 35% identity in coding sequences but no homology in noncoding regions (introns, 5'- and 3'-untranslated regions). A 5'-region of ace-2 was defined by rescue of ace-1;ace-2 mutants. When green fluorescent protein (GFP) expression was driven by this regulatory region, the resulting pattern was distinct from that of ace-1. This latter gene is expressed in all body-wall and vulval muscle cells (Culetto et al., 1999), whereas ace-2 is expressed almost exclusively in neurons. ace-3 and ace-4 genes are located in close proximity on chromosome II (Combes et al., 2000). These two genes were first transcribed in vivo as a bicistronic messenger and thus constitute an ace-3;ace-4 operon. However, there was a very low level of monocistronic mRNA of ace-4 (the upstream gene) in vivo, and no ACE-4 enzymatic activity was ever detected. GFP expression driven by a 5' upstream region of the ace-3;ace-4 operon was detected in several muscle cells of the pharynx (pm3, pm4, pm5 and pm7) and in the two canal associated neurons (CAN cells). A dorsal row of body-wall muscle cells was intensively labelled in larval stages but no longer detected in adults. The distinct tissue-specific expression of ace-1, ace-2 and ace-3 (coexpressed only in pm5 cells) indicates that ace genes are not redundant.

  17. Background matching and camouflage efficiency predict population density in four-eyed turtle (Sacalia quadriocellata).

    Science.gov (United States)

    Xiao, Fanrong; Yang, Canchao; Shi, Haitao; Wang, Jichao; Sun, Liang; Lin, Liu

    2016-10-01

    Background matching is an important way to camouflage and is widespread among animals. In the field, however, few studies have addressed background matching, and there has been no reported camouflage efficiency in freshwater turtles. Background matching and camouflage efficiency of the four-eyed turtle, Sacalia quadriocellata, among three microhabitat sections of Hezonggou stream were investigated by measuring carapace components of CIE L*a*b* (International Commission on Illumination; lightness, red/green and yellow/blue) color space, and scoring camouflage efficiency through the use of humans as predators. The results showed that the color difference (ΔE), lightness difference (ΔL(*)), and chroma difference (Δa(*)b(*)) between carapace and the substrate background in midstream were significantly lower than that upstream and downstream, indicating that the four-eyed turtle carapace color most closely matched the substrate of midstream. In line with these findings, the camouflage efficiency was the best for the turtles that inhabit midstream. These results suggest that the four-eyed turtles may enhance camouflage efficiency by selecting microhabitat that best match their carapace color. This finding may explain the high population density of the four-eyed turtle in the midstream section of Hezonggou stream. To the best of our knowledge, this study is among the first to quantify camouflage of freshwater turtles in the wild, laying the groundwork to further study the function and mechanisms of turtle camouflage. Copyright © 2016. Published by Elsevier B.V.

  18. First records in Guinea Bissau of Adamawa Turtle Dove Streptopelia ...

    African Journals Online (AJOL)

    There are no confirmed records of the Adamawa Turtle Dove Streptopelia hypopyrrha in north-eastern Guinea Bissau and there is very little information available on the biology of the species. Eight individuals of the Adamawa Turtle Dove were identified from the game bags of sport hunters in north-eastern Guinea Bissau, ...

  19. Purification and properties of glutathione reductase from liver of the anoxia-tolerant turtle, Trachemys scripta elegans.

    Science.gov (United States)

    Willmore, William G; Storey, Kenneth B

    2007-03-01

    Glutathione reductase (GR) is a homodimeric flavoprotein that catalyzes the reduction of oxidized glutathione (GSSG) using NADPH as a cofactor. The enzyme is a major component of cellular defense mechanisms against oxidative injury. In this study, GR was purified from the liver of the anoxia-tolerant turtle, Trachemys scripta elegans. The overall fold purifications were 13.3- and 12.1-fold with final specific activities of 5.5 and 1.44 U/mg of protein for control and anoxic turtle GR, respectively. SDS-PAGE of purified turtle liver GR showed a single protein band at approximately 55 kDa. Reverse phase HPLC of turtle GR revealed a single peak that had the same retention time as yeast GR. No new isoform of GR was detected in liver of T. s. elegans during anoxia. The K (m) values of turtle GR for GSSG and NADPH was 44.6 and 6.82 microM, respectively, suggesting a substantially higher affinity of turtle GR toward GSSG than most other vertebrates. Unlike other human GR, NADP(+ )did not inhibit turtle GR activity. The activation energy of turtle GR, calculated from the slope of the Arrhenius plot, was 32.2 +/- 2.64 kJ/mol. Turtle GR had high activity under a broad pH range (having activity between pHs 4 and 10; optimal activity at pH 6.5) and the enzyme maintains activity under the pH drop that occurs under anoxic conditions. The high affinity of turtle GR suggests that turtles have high redox buffering capacity of tissues to protect against oxidative stress encountered during anoxia/reoxygenation.

  20. Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies.

    Science.gov (United States)

    Vinck, Arman; de Bekker, Charissa; Ossin, Adam; Ohm, Robin A; de Vries, Ronald P; Wösten, Han A B

    2011-01-01

    Colonization of a substrate by fungi starts with the invasion of exploring hyphae. These hyphae secrete enzymes that degrade the organic material into small molecules that can be taken up by the fungus to serve as nutrients. We previously showed that only part of the exploring hyphae of Aspergillus niger highly express the glucoamylase gene glaA. This was an unexpected finding since all exploring hyphae are exposed to the same environmental conditions. Using GFP as a reporter, we here demonstrate that the acid amylase gene aamA, the α-glucuronidase gene aguA, and the feruloyl esterase gene faeA of A. niger are also subject to heterogenic expression within the exploring mycelium. Coexpression studies using GFP and dTomato as reporters showed that hyphae that highly express one of these genes also highly express the other genes encoding secreted proteins. Moreover, these hyphae also highly express the amylolytic regulatory gene amyR, and the glyceraldehyde-3-phosphate dehydrogenase gene gpdA. In situ hybridization demonstrated that the high expressers are characterized by a high 18S rRNA content. Taken together, it is concluded that two subpopulations of hyphae can be distinguished within the exploring mycelium of A. niger. The experimental data indicate that these subpopulations differ in their transcriptional and translational activity. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Western Pond Turtle Head-starting and Reintroduction; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Van Leuven, Susan; Allen, Harriet; Slavin, Kate (Washington Department of Fish and Wildlife, Wildlife Management Program, Olympia, WA)

    2005-09-01

    This report covers the results of the western pond turtle head-starting and reintroduction project for the period of October 2004-September 2005. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2004 and 2005 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. Thirty-five turtles were placed at the Woodland Park Zoo and 53 at the Oregon Zoo. Of these, 77 head-started juvenile turtles were released at three sites in the Columbia Gorge in 2005. Four were held back to attain more growth in captivity. Eleven were released at the Klickitat ponds, 22 at the Klickitat lake, 39 at the Skamania site, and 5 at Pierce National Wildlife Refuge (NWR). This brought the total number of head-start turtles released since 1991 to 257 for the Klickitat ponds, 136 for the Klickitat lake, 206 for the Skamania pond complex, and 255 at Pierce NWR. In 2005, 34 females from the two Columbia Gorge populations were equipped with transmitters and monitored for nesting activity. Twenty-four nests were located and protected; these produced 90 hatchlings. The hatchlings were collected in September and transported to the Oregon and Woodland Park zoos for rearing in the head-start program. During the 2005 field season trapping effort, 486 western pond turtles were captured in the Columbia Gorge, including 430 previously head-started turtles. These recaptures, together with confirmed nesting by head-start females and visual resightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 216 individual painted turtles captured in 2005 during trapping efforts at Pierce NWR, to gather baseline information on this native

  2. Inorganic elements in green sea turtles (Chelonia mydas): relationships among external and internal tissues

    Science.gov (United States)

    Faust, Derek R.; Hooper, Michael J.; Cobb, George P.; Barnes, Melanie; Shaver, Donna; Ertolacci, Shauna; Smith, Philip N.

    2014-01-01

    Inorganic elements from anthropogenic sources have entered marine environments worldwide and are detectable in marine organisms, including sea turtles. Threatened and endangered classifications of sea turtles have heretofore made assessments of contaminant concentrations difficult because of regulatory restrictions on obtaining samples using nonlethal techniques. In the present study, claw and skin biopsy samples were examined as potential indicators of internal tissue burdens in green sea turtles (Chelonia mydas). Significant relationships were observed between claw and liver, and claw and muscle concentrations of mercury, nickel, arsenic, and selenium (p turtles.

  3. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses

    Science.gov (United States)

    Shukla, Avi; Chatterjee, Anirvan

    2018-01-01

    Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption. PMID:29308275

  4. 50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.

    Science.gov (United States)

    2010-10-01

    ... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be subject...

  5. Analysis of epibiont data in relation with the Debilitated Turtle Syndrome of sea turtles in Chelonia mydas and Lepidochelys olivacea from Concepción coast, Chile

    Directory of Open Access Journals (Sweden)

    Italo Fernández

    2015-11-01

    Full Text Available Epibionts on the surface of the skin and shell of a specimen of Chelonia mydas and three Lepidochelys olivacea found floating on the coast of Concepción, Chile, between June 2010 and December 2012, were analyzed. These epibionts were analyzed during the clinical inspection and the tissue changes related to its settlement, with filamentous algae around, were observed. Subsequently, the epibionts were identified by morphological observation. The knowledge about theses epibionts in Chile is reviewed and the potential occurrence of Debilitated Turtle Syndrome (DTS in these turtles is discussed. The presence of sea turtles in the Chilean coast is considered a casual event, so there is little information on this issue. We propose it is necessary to carry out more studies on the association between turtles and epibionts because their identification, colonizing reptiles’ surface may give relevant information to a better understanding of different diseases, including DTS, that affect these marine reptiles and facilitates the development of strategies intended to recover their populations.

  6. Assessment of ground transportation stress in juvenile Kemp’s ridley sea turtles (Lepidochelys kempii)

    Science.gov (United States)

    Hunt, Kathleen E.; Innis, Charles J.; Kennedy, Adam E.; McNally, Kerry L.; Davis, Deborah G.; Burgess, Elizabeth A.; Merigo, Constance

    2016-01-01

    Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress (‘transport stress’) on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp’s ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp’s ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on ‘control days’ 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four ‘stress-associated’ parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp’s ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These

  7. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornata.

    Science.gov (United States)

    Zani, Peter A; Kram, Rodger

    2008-12-01

    Evolution has produced a wide range of body plans, but for a given body mass, the energetic cost of transport (COT) of terrestrial animals falls in a relatively narrow range. Previous research indicates that the COT depends on the proficiency of minimizing mechanical work performed, efficiency of performing that work, and cost of generating force to support weight. Turtles are unique in that their protective shell and shoulder-girdle articulation may eliminate the need for the ;muscular sling'. In addition, turtles have slower, more efficient muscles than other vertebrates. However, slow locomotion may raise the COT by confounding mechanical-energy conservation via the inverted-pendulum mechanism. Our goal was to determine the metabolic COT and efficiency of a terrestrial turtle species during locomotion. We studied 18 ornate box turtles, Terrapene ornata. Walking speed was extremely slow (0.07+/-0.005 m s(-1)). The average minimum COT was 8.0+/-0.70 J kg(-1) m(-1) attained at approximately 0.1 m s(-1). Ornate box turtles consume only half the energy predicted by the allometric relationship for all terrestrial animals (15.9+/-0.35 J kg(-1) m(-1)), and, thus, appear to be very economical walkers. When walking up a 24 deg. incline turtles moved significantly slower (0.04+/-0.004 m s(-1)), but performed the extra work required to walk uphill with very high efficiencies (>49%). It appears that the co-evolution of a protective shell, the associated shoulder morphology, and very slow, efficient muscles produce both economical level walking and efficient uphill walking.

  8. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  9. Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes.

    Directory of Open Access Journals (Sweden)

    Mignon A Keaton

    2011-03-01

    Full Text Available The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure.

  10. Experimental transmission and induction of ranaviral disease in Western Ornate box turtles (Terrapene ornata ornata) and red-eared sliders (Trachemys scripta elegans).

    Science.gov (United States)

    Johnson, A J; Pessier, A P; Jacobson, E R

    2007-05-01

    An experimental transmission study was designed to determine whether a causal relationship exists between a Ranavirus (BSTRV) isolated from a Burmese star tortoise that died and the lesions observed in that tortoise. A pilot study was performed with 3 box turtles (Terrapene ornata ornata) and 3 red-eared sliders (RESs; Trachemys scripta elegans) to assess their suitability in a larger study. Based on the outcome of this study, RESs were selected, and 2 groups of 4 RESs received either an oral (PO) or intramuscular (IM) inoculum containing10(5) 50% Tissue Culture Infecting Dose (TCID(50)) of a BSTRV-infected cell lysate. One turtle each was mock inoculated PO or IM with the same volume of uninfected cell lysate. Three of four IM-inoculated RESs developed clinical signs (nasal and ocular discharge [3 of 3], oral plaques [1 of 3], conjunctivitis and hyphema [1 of 3] and extreme lethargy [3 of 3]). A Ranavirus was isolated from kidney homogenates of 3 euthanatized turtles; DNA sequences of a portion of the major capsid protein gene were amplified by polymerase chain reaction. Consistent histologic lesions were observed only in IM-inoculated turtles and included fibrinoid vasculitis centered on splenic ellipsoids, multifocal hepatic necrosis, and multicentric fibrin thrombi in a variety of locations, including hepatic sinusoids, glomerular capillary loops, and pulmonary capillaries. Virions compatible with Ranavirus were observed within necrotic cells of the spleen of 1 IM-inoculated turtle using transmission electron microscopy. This study fulfills Koch's postulates, confirming a causal relationship between BSTRV and the clinical and histologic changes in chelonians infected with this virus.

  11. Unusual behaviour of an immature loggerhead turtle released in the Alboran Sea

    OpenAIRE

    Bellido, J. J.; Báez, J. C.; Castillo, J. J.; Martín, J. J.; Mons, J. L.; Real, R.

    2010-01-01

    A juvenile loggerhead turtle with buoyancy problems was captured in the Alboran Sea (Mediterranean Sea, south of Spain) and released 14 months later after healing. Six days after the release, the turtle was seen swimming 42 km from the point of release, displaying unusual behaviour. We re-captured and released it again, 95 nautical miles offshore, near the Alboran Island. Ten days later the turtle arrived at the beach close to where it had been maintained in captivity. We discuss these findin...

  12. Plastic ingestion by sea turtles in Paraíba State, Northeast Brazil

    OpenAIRE

    Camila Poli; Daniel Oliveira Mesquita; Cinthia Saska; Rita Mascarenhas

    2015-01-01

    ABSTRACT Currently, plastics are recognized as a major pollutant of the marine environment, representing a serious threat to ocean wildlife. Here, we examined the occurrence and effects of plastic ingestion by sea turtles found stranded along the coast of Paraíba State, Brazil from August 2009 to July 2010. Ninety-eight digestive tracts were examined, with plastic found in 20 (20.4%). Sixty five percent (n = 13) of turtles with plastic in the digestive tract were green turtles (Chelonia mydas...

  13. Corticosterone and thyroxine in cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii).

    Science.gov (United States)

    Hunt, Kathleen E; Innis, Charles; Rolland, Rosalind M

    2012-09-01

    Kemp's ridley sea turtles (Lepidochelys kempii), a critically endangered species, frequently strand on the shores of Cape Cod (Massachusetts, USA) in late autumn in a state of "cold-stunning" exhibiting low body temperature and related clinical issues. Stranded turtles are transported to the New England Aquarium (Boston, Massachusetts, USA) for treatment and rehabilitation. This study tested the hypothesis that cold-stunned sea turtles might exhibit high corticosterone ("stress hormone") or low thyroxine (which is often affected by temperature), or both, and that monitoring of both hormones may be useful for assessing recovery. In a retrospective analysis, 87 archived plasma samples were assayed from 56 cold-stunned juvenile Kemp's ridley sea turtles for corticosterone and free thyroxine (fT4). Upon admission, mean corticosterone was the highest yet reported for a population of sea turtles (39.3 +/- 2.5 ng/ml; mean +/- standard error of the mean [SEM]) and fT4 was usually undetectable. On admission, corticosterone was negatively correlated with white blood cell count but was not correlated with blood glucose. There were no differences in either hormone between survivors and nonsurvivors on admission. After 18+ days in recovery, surviving turtles' corticosterone dropped significantly to levels typical of baseline in other species (0.9 +/- 1.0 ng/ml) while fT4 increased significantly (1.3 +/- 1.5 pg/ml). During recovery, corticosterone was positively correlated with blood glucose and was not correlated with white blood cell count. Turtles that showed persistent deficits in feeding, activity, or both during recovery had significantly lower fT4 than did turtles with no such deficits. The "high corticosterone, low fT4" endocrine profile seen on admission may be a useful marker of cold-stunning in this and other species. Further studies are necessary to determine whether low thyroid hormones play a causal role in deficits in feeding and activity during recovery

  14. Hypothermic stunning of green sea turtles in a western Gulf of Mexico foraging habitat.

    Directory of Open Access Journals (Sweden)

    Donna J Shaver

    Full Text Available Texas waters provide one of the most important developmental and foraging habitats for juvenile green turtles (Chelonia mydas in the western Gulf of Mexico, but hypothermic stunning is a significant threat and was the largest cause of green turtle strandings in Texas from 1980 through 2015; of the 8,107 green turtles found stranded, 4,529 (55.9% were victims of hypothermic stunning. Additionally, during this time, 203 hypothermic stunned green turtles were found incidentally captured due to power plant water intake entrapment. Overall, 63.9% of 4,529 hypothermic stunned turtles were found alive, and 92.0% of those survived rehabilitation and were released. Numbers of green turtles recorded as stranded and as affected by hypothermic stunning increased over time, and were most numerous from 2007 through 2015. Large hypothermic stunning events (with more than 450 turtles documented occurred during the winters of 2009-2010, 2010-2011, 2013-2014, and 2014-2015. Hypothermic stunning was documented between November and March, but peaked at various times depending on passage of severe weather systems. Hypothermic stunning occurred state-wide, but was most prevalent in South Texas, particularly the Laguna Madre. In the Laguna Madre, hypothermic stunning was associated with an abrupt drop in water temperatures strong northerly winds, and a threshold mean water temperature of 8.0°C predicted large turtle hypothermic stunning events. Knowledge of environmental parameters contributing to hypothermic stunning and the temporal and spatial distribution of turtles affected in the past, can aid with formulation of proactive, targeted search and rescue efforts that can ultimately save the lives of many affected individuals, and aid with recovery efforts for this bi-national stock. Such rescue efforts are required under the U.S. Endangered Species Act and respond to humanitarian concerns of the public.

  15. The ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase (ADI) pathway gene cluster of Lactococcus lactis

    NARCIS (Netherlands)

    Noens, Elke E E; Kaczmarek, Michał B; Żygo, Monika; Lolkema, Juke S

    2015-01-01

    The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of

  16. A plasmid-encoded UmuD homologue regulates expression of Pseudomonas aeruginosa SOS genes.

    Science.gov (United States)

    Díaz-Magaña, Amada; Alva-Murillo, Nayeli; Chávez-Moctezuma, Martha P; López-Meza, Joel E; Ramírez-Díaz, Martha I; Cervantes, Carlos

    2015-07-01

    The Pseudomonas aeruginosa plasmid pUM505 contains the umuDC operon that encodes proteins similar to error-prone repair DNA polymerase V. The umuC gene appears to be truncated and its product is probably not functional. The umuD gene, renamed umuDpR, possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the umuDpR gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the Ps. aeruginosa SOS-response LexA repressor. The umuDpR gene caused increased MMC sensitivity when transferred to the Ps. aeruginosa PAO1 strain. As expected, PAO1-derived knockout lexA-  mutant PW6037 showed resistance to MMC; however, when the umuDpR gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the lexA-  mutant with or without the pUC_umuD recombinant plasmid. Expression of lexA, imuA and recA genes increased 3.4-5.3 times in the lexA-  mutant, relative to transcription of the corresponding genes in the lexA+ strain, but decreased significantly in the lexA- /umuDpR transformant. These results confirmed that the UmuDpR protein is a repressor of Ps. aeruginosa SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5' regions of SOS genes, suggesting an indirect mechanism of regulation.

  17. Terrestrial Turtle Habitats Potentially Impacted

    National Research Council Canada - National Science Library

    Dickerson, Dena

    1999-01-01

    .... This group includes the tortoises and box turtles with two species Federally threatened and three species having protection in at least one state. Three of these protected species are associated with environmental issues at 21 USACE projects from 5 USACE Districts.

  18. Survey of ophthalmic anterior segment findings and intraocular pressure in 95 North American box turtles (Terrapene spp.).

    Science.gov (United States)

    Espinheira Gomes, Filipe; Brandão, João; Sumner, Julia; Kearney, Michael; Freitas, Inês; Johnson, James; Cutler, Daniel; Nevarez, Javier

    2016-03-01

    To describe the ophthalmic biomicroscopy findings and intraocular pressures (IOP) in a captive population of box turtles and to determine whether a relationship exists between body morphometrics or health status and IOP. Hundred and three box turtles (69 Gulf coast, 24 three-toed, one ornate, one eastern, and eight unidentified) were triaged into three different color-coded groups: green (healthy), yellow (abnormal physical examination with no need for immediate care), and red (immediate care required). Both eyes were evaluated by rebound tonometry and slit-lamp biomicroscopy. Body weight and morphometric data were recorded. Intraocular pressures measurements were available for 190 eyes, slit-lamp biomicroscopy was available for 170 eyes, and morphometric data were available for 81 turtles. IOP in Gulf coast turtles (138 eyes) was 6.7 ± 1.4 mmHg OU. IOP in three-toed turtles (48 eyes) was 8.3 ± 1.5 mmHg OU, which was significantly higher than in Gulf coast turtles (P turtles only. There was a mild negative correlation between morphometrics and IOP in Gulf coast and three-toed turtles. Fifteen of 87 turtles had unilateral corneal or lenticular opacities; 3/87 had bilateral corneal or lenticular disease; and 3/87 had adnexal abnormalities. Different subspecies of box turtles have different normal intraocular pressures as measured by rebound tonometry, which was influenced by the animals' health status in one subspecies. Some morphometric parameters were found to be associated with IOP. Box turtles are often affected with ophthalmic abnormalities of unknown clinical significance. © 2015 American College of Veterinary Ophthalmologists.

  19. Metal accumulation and evaluation of effects in a freshwater turtle.

    Science.gov (United States)

    Yu, Shuangying; Halbrook, Richard S; Sparling, Donald W; Colombo, Robert

    2011-11-01

    A variety of contaminants have been detected in aquatic and terrestrial environments around the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. The presence of these contaminants at the PGDP may pose a risk to biota, yet little is known about the bioaccumulation of contaminants and associated effects in wildlife, especially in aquatic turtles. The current study was initiated to evaluate: (1) the accumulation of heavy metals (Cd, Cr, Cu, Pb, and Hg) in aquatic ecosystems associated with the PGDP using red-eared slider turtle (Trachemys scripta elegans) as biomonitors; (2) maternal transfer of heavy metals; and (3) potential hematological and immunological effects resulting from metal accumulation. A total of 26 turtles were collected from 7 ponds located south, adjacent, and north of the PGDP. Liver Cu concentrations were significantly different among ponds and Cu concentrations in eggs were positively correlated with female Cu concentrations in kidney. The concentrations of heavy metals measured in turtle tissues and eggs were low and, based on previous studies of reptiles and established avian threshold levels of heavy metals, did not appear to have adverse effects on aquatic turtles inhabiting ponds near the PGDP. However, total white blood cell counts, heterophil to lymphocyte ratio, and phytohemagglutinin stimulation index were correlated with metal concentrations. Because other factors may affect the hematological and immunological indices, further investigation is needed to determine if these effects are associated with metal exposure, other contaminants, or disease.

  20. Use of Dry Tortugas National Park by threatened and endangered marine turtles: Chapter 5

    Science.gov (United States)

    Hart, Kristin M.; Fujisaki, Ikuko; Sartain-Iverson, Autumn R.

    2012-01-01

    Satellite and acoustic tracking results for green turtles, hawksbills, and loggerheads have revealed patterns in the proportion of time that tagged turtles spend within various zones of the park, including the RNA. Green turtles primarily utilize the shallow areas in the northern portion of the park. Hawksbills were mostly observed near Garden Key and loggerheads were observed throughout DRTO. Our record of turtle captures, recaptures, and sightings over the last 4 years serves as a baseline database for understanding the size classes of each species present in the park, as well as species-specific habitats in DRTO waters.