WorldWideScience

Sample records for gene transfer technique

  1. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  2. Lateral gene transfer, rearrangement, reconciliation

    NARCIS (Netherlands)

    Patterson, M.D.; Szollosi, G.; Daubin, V.; Tannier, E.

    2013-01-01

    Background. Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer,

  3. Simple gene transfer technique based on I-SceI meganuclease and cytoplasmic injection in IVF bovine embryos.

    Science.gov (United States)

    Bevacqua, R J; Canel, N G; Hiriart, M I; Sipowicz, P; Rozenblum, G T; Vitullo, A; Radrizzani, M; Fernandez Martin, R; Salamone, D F

    2013-07-15

    Although transgenic methods in mammals are inefficient, an easy and highly efficient transgenesis system using I-SceI meganuclease (intron-encoded endonuclease from S. cerevisiae) was recently described in Xenopus. The method consisted of injection into fertilized eggs of an I-SceI reaction mixture with a plasmid DNA carrying the transgene, flanked by the meganuclease recognition sites (pIS). In the present study, the effects of I-SceI on gene transfer were tested apparently for the first time in mammals, in particular, in cattle. Various conditions were evaluated, including three concentrations of the plasmid pIS Pax6egfp, carrying I-SceI recognition sites flanking egfp under Pax6 promoter and two injection times (before IVM and after IVF) of pIS CAGegfp, carrying I-SceI sites fanking egfp under CAG promoter. In addition, the quantity of transgene was measured using quantitative polymerase chain reaction, and presence of transgene signals was evaluated using fluorescence in situ hybridization analysis. Transgene expression rates were higher (P < 0.05) for groups treated after IVF (79.1%, 91/115 and 63.0%, 75/119) than before IVM (32.6%, 31/95 and 34.7%, 33/95), with and without I-SceI, respectively. Interestingly, injection with pIS plus I-SceI after IVF increased frequency (P < 0.05) of nonmosaic transgene-expressing embryos (58.3%, 42/72 vs. 29.7%, 25/84) for pIS plus I-SceI and pIS alone. Based on fluorescence in situ hybridization analysis, injection with I-SceI increased (P < 0.05) the proportion of embryos with transgene signals in all blastomeres compared with pIS alone (44.0%, 11/25 vs. 6.9%, 2/29) for pIS plus I-SceI and pIS alone. In addition, transgene copy number was numerically higher for the group treated with pIS plus I-SceI compared with pIS alone. In conclusion, I-SceI gene transfer increased transgene signals in bovine embryos.

  4. Progress in gene transfer by germ cells in mammals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells.

  5. Panspermia and horizontal gene transfer

    Science.gov (United States)

    Klyce, Brig

    2009-08-01

    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  6. Leveraging Experiential Learning Techniques for Transfer

    Science.gov (United States)

    Furman, Nate; Sibthorp, Jim

    2013-01-01

    Experiential learning techniques can be helpful in fostering learning transfer. Techniques such as project-based learning, reflective learning, and cooperative learning provide authentic platforms for developing rich learning experiences. In contrast to more didactic forms of instruction, experiential learning techniques foster a depth of learning…

  7. Analysing CMS transfers using Machine Learning techniques

    CERN Document Server

    Diotalevi, Tommaso

    2016-01-01

    LHC experiments transfer more than 10 PB/week between all grid sites using the FTS transfer service. In particular, CMS manages almost 5 PB/week of FTS transfers with PhEDEx (Physics Experiment Data Export). FTS sends metrics about each transfer (e.g. transfer rate, duration, size) to a central HDFS storage at CERN. The work done during these three months, here as a Summer Student, involved the usage of ML techniques, using a CMS framework called DCAFPilot, to process this new data and generate predictions of transfer latencies on all links between Grid sites. This analysis will provide, as a future service, the necessary information in order to proactively identify and maybe fix latency issued transfer over the WLCG.

  8. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  9. Nonviral gene transfer strategies to promote bone regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2013-10-01

    Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.

  10. Transfer of engineered genes from crop to wild plants

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.;

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier...

  11. Horizontal gene transfer in the phytosphere

    NARCIS (Netherlands)

    Elsas, van J.D.; Turner, S.; Bailey, M.J.

    2003-01-01

    Here, the ecological aspects of gene transfer processes between bacteria in the phytosphere are examined in the context of emerging evidence for the dominant role that horizontal gene transfer (HGT) has played in the evolutionary shaping of bacterial communities. Moreover, the impact of the putative

  12. Gene transfer strategies for augmenting cardiac function.

    Science.gov (United States)

    Peppel, K; Koch, W J; Lefkowitz, R J

    1997-07-01

    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  13. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  14. In vivo particle-mediated gene transfer for cancer therapy.

    Science.gov (United States)

    Rakhmilevich, A L; Yang, N S

    2000-01-01

    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  15. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  16. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Karen E.

    2005-10-14

    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  17. Gene transfer to promote cardiac regeneration.

    Science.gov (United States)

    Collesi, Chiara; Giacca, Mauro

    2016-12-01

    There is an impelling need to develop new therapeutic strategies for patients with myocardial infarction and heart failure. Leading from the large quantity of new information gathered over the last few years on the mechanisms controlling cardiomyocyte proliferation during embryonic and fetal life, it is now possible to devise innovative therapies based on cardiac gene transfer. Different protein-coding genes controlling cell cycle progression or cardiomyocyte specification and differentiation, along with microRNA mimics and inhibitors regulating pre-natal and early post-natal cell proliferation, are amenable to transformation in potential therapeutics for cardiac regeneration. These gene therapy approaches are conceptually revolutionary, since they are aimed at stimulating the intrinsic potential of differentiated cardiac cells to proliferate, rather than relying on the implantation of exogenously expanded cells to achieve tissue regeneration. For efficient and prolonged cardiac gene transfer, vectors based on the Adeno-Associated Virus stand as safe, efficient and reliable tools for cardiac gene therapy applications.

  18. Viral Vectors for in Vivo Gene Transfer

    Science.gov (United States)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  19. Lateral transfer of the lux gene cluster.

    Science.gov (United States)

    Kasai, Sabu; Okada, Kazuhisa; Hoshino, Akinori; Iida, Tetsuya; Honda, Takeshi

    2007-02-01

    The lux operon is an uncommon gene cluster. To find the pathway through which the operon has been transferred, we sequenced the operon and both flanking regions in four typical luminous species. In Vibrio cholerae NCIMB 41, a five-gene cluster, most genes of which were highly similar to orthologues present in Gram-positive bacteria, along with the lux operon, is inserted between VC1560 and VC1563, on chromosome 1. Because this entire five-gene cluster is present in Photorhabdus luminescens TT01, about 1.5 Mbp upstream of the operon, we deduced that the operon and the gene cluster were transferred from V. cholerae to an ancestor of Pr. luminescens. Because in both V. fischeri and Shewanella hanedai, luxR and luxI were found just upstream of the operon, we concluded that the operon was transferred from either species to the other. Because most of the genes flanking the operon were highly similar to orthologues present on chromosome 2 of vibrios, we speculated that the operon of most species is located on this chromosome. The undigested genomic DNAs of five luminous species were analysed by pulsed-field gel electrophoresis and Southern hybridization. In all the species except V. cholerae, the operons are located on chromosome 2.

  20. Important aspects of placental-specific gene transfer.

    Science.gov (United States)

    Kaufman, Melissa R; Albers, Renee E; Keoni, Chanel; Kulkarni-Datar, Kashmira; Natale, David R; Brown, Thomas L

    2014-10-15

    The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth.

  1. Horizontal gene transfer in silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Li Bin

    2011-05-01

    Full Text Available Abstract Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  2. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  3. Viral vectors for gene transfer: current status of gene therapeutics.

    Science.gov (United States)

    Heilbronn, Regine; Weger, Stefan

    2010-01-01

    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  4. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  5. Gene transfer approaches in cancer immunotherapy.

    Science.gov (United States)

    Larin, S S; Georgiev, G P; Kiselev, S L

    2004-10-01

    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  6. Methods for particle-mediated gene transfer into skin.

    Science.gov (United States)

    Yang, N S; McCabe, D E; Swain, W F

    1997-01-01

    During the past 5 yr, particle-mediated delivery techniques have been developed as a physical means for gene transfer into various eukaryotic systems, including plants, insects, fish, and mammals (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective in transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4); brain, mammary, and leukocyte pnmary cultures or explants ex vivo (2,5-7); and a wide range of different mammalian cell lines in vitro (3,6,7).

  7. Heat Transfer and Cooling Techniques at Low Temperature

    CERN Document Server

    Baudouy, B

    2014-07-17

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  8. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Directory of Open Access Journals (Sweden)

    R. Thane Papke

    2015-05-01

    Full Text Available The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.

  9. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Science.gov (United States)

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  10. Stable oncogenic transformation induced by microcell-mediated gene transfer

    Institute of Scientific and Technical Information of China (English)

    吕有勇; Donald G.Blair

    1995-01-01

    Oncogenes have been identified using DNA-mediated transfection, but the size of the transferable and unrearranged DNA, gene rearrangement and amplification which occur during the transfection process limit the use of the techniques. We have evaluated microcell-mediated gene transfer techniques for the transfer and analysis of dominant oncogenes. MNNG-HOS, a transformed human cell line which contained the met oncogene mapping to human chromosome 7 was infected with retroviruses carrying drug resistance markers and used to optimize microcell preparation and transfer. Stable and drug-resistant hybrids containing single human chromosomes as well as the foci of the transformed cells containing the activated met oncogene and intact hitman chromosomes were obtained. Hybridization analysis with probes (i.e. collA2, pJ3.11) mapping up to 1 Mb away from met shows that the cells from the individual focr contain different amounts of apparently unrearranged human DNA associated with the oncogene, and the microcell-g

  11. Agrobacterium-mediated gene transfer to Chrysanthemum.

    NARCIS (Netherlands)

    Wordragen, van M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is

  12. Kidney-specific transposon-mediated gene transfer in vivo

    Science.gov (United States)

    Woodard, Lauren E.; Cheng, Jizhong; Welch, Richard C.; Williams, Felisha M.; Luo, Wentian; Gewin, Leslie S.; Wilson, Matthew H.

    2017-01-01

    Methods enabling kidney-specific gene transfer in adult mice are needed to develop new therapies for kidney disease. We attempted kidney-specific gene transfer following hydrodynamic tail vein injection using the kidney-specific podocin and gamma-glutamyl transferase promoters, but found expression primarily in the liver. In order to achieve kidney-specific transgene expression, we tested direct hydrodynamic injection of a DNA solution into the renal pelvis and found that luciferase expression was strong in the kidney and absent from extra-renal tissues. We observed heterogeneous, low-level transfection of the collecting duct, proximal tubule, distal tubule, interstitial cells, and rarely glomerular cells following injection. To assess renal injury, we performed the renal pelvis injections on uninephrectomised mice and found that their blood urea nitrogen was elevated at two days post-transfer but resolved within two weeks. Although luciferase expression quickly decreased following renal pelvis injection, the use of the piggyBac transposon system improved long-term expression. Immunosuppression with cyclophosphamide stabilised luciferase expression, suggesting immune clearance of the transfected cells occurs in immunocompetent animals. Injection of a transposon expressing erythropoietin raised the haematocrit, indicating that the developed injection technique can elicit a biologic effect in vivo. Hydrodynamic renal pelvis injection enables transposon mediated-kidney specific gene transfer in adult mice. PMID:28317878

  13. Ultrasound and Microbubbles: Their Functions in Gene Transfer In Vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunchao; HUANG Daozhong; LI Kaiyan; WANG Zhihui; HONG Kai; WANG Fen; ZANG Qingping

    2007-01-01

    To examine the role of ultrasound in gene delivery in vitro, three cells lines were exposed to the low-frequency ultrasound of varying intensities and for different durations to evaluate their effect on gene transfection and cell viability of the cells. Microbubble (MB), Optison (10%), was also used to observe the role of the microbubbles in gene transfection. The results demonstrated that as the ultrasound intensity and the exposure time increased, the gene transfer rate increased and the cell viability decreased, but at high energy intensities, the cell viability decreased dramatically, which caused the transfer rate to decrease. The most efficient ultrasound intensity for inducing gene transfer was 1 W/cm2 with duration being 20 s. At the same energy intensity, higher ultrasound intensity could achieve maximal gene transfer rate earlier. Microbubbles could increase ultrasound-induced cell gene transfer rate by about 2 to 3 times mainly at lower energy intensities. Moreover, microbubbles could raise the maximum gene transfer rate mediated by ultrasound. It is concluded that the low-frequency ultrasound can induce cell gene transfer and the cell gene transfer rate and viability are correlated with not only the ultrasound energy intensity but also the ultrasound intensity, the higher ultrasound intensity achieves its maximal transfer rate more quickly and the ultrasound intensity that can induce optimal gene transfer is 1 W/cm2 with duration being 20 s, and microbubbles can significantly increase the maximal gene transfer rate in vitro.

  14. Research Progress on Technique of Frozen Embryo Transfer in Sheep

    Institute of Scientific and Technical Information of China (English)

    SHE Qiu-sheng; HU Jian-ye; LOU Peng-yan; TAO Jing; XIE Zhao-hui

    2011-01-01

    The paper introduced the research progress on the technique of frozen embryo transfer in sheep, illustrated selection of donors and receptors, superovulation, synchronization of estrus, embryo cryopreservation and embryo transplantation. Frozen embryo transfer in sheep is another breakthrough in the high-quality sheep raising, and this technique in China is in its infancy recommendation stage, but it will be comprehensively popularized in the future.

  15. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  16. Horizontal gene transfer from Agrobacterium to plants

    Directory of Open Access Journals (Sweden)

    Tatiana V. Matveeva

    2014-08-01

    Full Text Available Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A.rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named cellular T-DNA (cT-DNA. It represents an imperfect inverted repeat and contains homologues of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14 and an opine synthesis gene (Ngmis. A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologues of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

  17. Multidirectional Tibial Tubercle Transfer Technique: Rationale and Biomechanical Investigation.

    Science.gov (United States)

    Sarin, Vineet K; Camisa, William; Leasure, Jeremi M; Merchant, Alan C

    This study describes a new surgical technique to transfer the tibial tubercle, explains the rationale for its development, and reports the results of initial biomechanical testing. The design goals were to create a tibial tubercle osteotomy that would provide equivalent or better initial fixation compared with traditional techniques, yet would be more flexible, reproducible, accurate, less invasive, and safer. The results of the biomechanical analysis suggest that initial fixation with this novel tubercle transfer technique is as strong as traditional Elmslie-Trillat and anteromedialization procedures.

  18. Aphids acquired symbiotic genes via lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Nakabachi Atsushi

    2009-03-01

    Full Text Available Abstract Background Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist Buchnera aphidicola (γ-Proteobacteria. Buchnera has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid Acyrthosiphon pisum, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR. Results Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes ldcA (product, LD-carboxypeptidase and rlpA (product, rare lipoprotein A, respectively. Buchnera lacks these genes, whereas many other bacteria, including Escherichia coli, a close relative of Buchnera, possess both ldcA and rlpA. Molecular phylogenetic analysis clearly demonstrated that the aphid ldcA was derived from a rickettsial bacterium closely related to the extant Wolbachia spp. (α-Proteobacteria, Rickettsiales, which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of rlpA was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that ldcA and rlpA are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan, which is a component of the bacterial cell wall. As Buchnera possesses a cell wall composed of murein but lacks ldcA, a high level of expression of the aphid ldcA in the

  19. Gene transfer in Nocotiana rustica using irradiated pollen

    Energy Technology Data Exchange (ETDEWEB)

    Jinks, J.L.; Caligari, P.D.S.; Ingram, N.R. (Birmingham Univ. (UK))

    1981-06-18

    The results of a selection study of major gene controlled characters, using 10 - 20 krad ..gamma.. irradiated pollen of Nicotiana rustica, are reported. By selecting within the progenies it has been shown that lines can be isolated with the characteristics of the pure-breeding maternal variety but with the exception of a specific characteristic transferred from the paternal variety. The advantages of the irradiation technique as against the conventional system requiring a combination of many generations of recurrent backcrossing and selection are stressed.

  20. Linear circuit transfer functions an introduction to fast analytical techniques

    CERN Document Server

    Basso, Christophe P

    2016-01-01

    Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...

  1. Plant genetics: gene transfer from parasitic to host plants.

    Science.gov (United States)

    Mower, Jeffrey P; Stefanović, Sasa; Young, Gregory J; Palmer, Jeffrey D

    2004-11-11

    Plant mitochondrial genes are transmitted horizontally across mating barriers with surprising frequency, but the mechanism of transfer is unclear. Here we describe two new cases of horizontal gene transfer, from parasitic flowering plants to their host flowering plants, and present phylogenetic and biogeographic evidence that this occurred as a result of direct physical contact between the two. Our findings complement the discovery that genes can be transferred in the opposite direction, from host to parasite plant.

  2. Computational and phylogenetic validation of nematode horizontal gene transfer

    OpenAIRE

    Bird David; Scholl Elizabeth H

    2011-01-01

    Abstract Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family...

  3. Simultaneous identification of duplications and lateral gene transfers.

    Science.gov (United States)

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens

    2011-01-01

    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  4. Identification and Categorization of Horizontally Transferred Genes in Prokaryotic Genomes

    Institute of Scientific and Technical Information of China (English)

    Shuo-Yong SHI; Xiao-Hui CAI; Da-fu DING

    2005-01-01

    Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.

  5. Gene transfer for congestive heart failure: update 2013.

    Science.gov (United States)

    Tang, Tong; Hammond, H Kirk

    2013-04-01

    Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.

  6. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  7. Problems associated with gene transfer and opportunities for microgravity environments

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, D.J. [Floriculture and Ornamental Horticulture Cornell University, Ithaca, New York14853 (United States)

    1997-01-01

    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of {ital Agrobacterium} mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed. {copyright} {ital 1997 American Institute of Physics.}

  8. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  9. RNA interference as a gene knockdown technique.

    Science.gov (United States)

    Shan, Ge

    2010-08-01

    Not many scientific breakthroughs bring significant advances simultaneously in both basic research and translational applications like the discovery of RNA interference. Along with the elucidation of the RNA interference pathway and the discovery of its participation in crucial biological events, a branch of science has grown to utilize the RNA interference pathway as a biotechnology for both basic and applied research. Small interference RNA, plasmid-, and virus-encoded short-hairpin RNA are now regular reagents in the tool box of biologists to knockdown the expression of specific genes posttranscriptionally. Efforts have also been made to develop RNA interference based therapeutics into reality. Many concerns about the RNA interference technique have now been answered through research and development, although hurdles are still present. In this review, the RNA interference/microRNA pathway is briefly introduced followed with a detailed summary about the design and application of the RNA interference experiments, along with examples of the utilization of the RNA interference technology in animal cells and model organisms. Recent progresses and current concerns are also highlighted. Two techniques, namely morpholino and external guide sequence, are discussed as complementary gene knockdown technology. RNA interference technology, along with several other alternative gene knockdown techniques, is now indispensable to modern biological and medical research.

  10. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul S

    2017-06-01

    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  11. Transfer print techniques for heterogeneous integration of photonic components

    Science.gov (United States)

    Corbett, Brian; Loi, Ruggero; Zhou, Weidong; Liu, Dong; Ma, Zhenqiang

    2017-03-01

    The essential functionality of photonic and electronic devices is contained in thin surface layers leaving the substrate often to play primarily a mechanical role. Layer transfer of optimised devices or materials and their heterogeneous integration is thus a very attractive strategy to realise high performance, low-cost circuits for a wide variety of new applications. Additionally, new device configurations can be achieved that could not otherwise be realised. A range of layer transfer methods have been developed over the years including epitaxial lift-off and wafer bonding with substrate removal. Recently, a new technique called transfer printing has been introduced which allows manipulation of small and thin materials along with devices on a massively parallel scale with micron scale placement accuracies to a wide choice of substrates such as silicon, glass, ceramic, metal and polymer. Thus, the co-integration of electronics with photonic devices made from compound semiconductors, silicon, polymer and new 2D materials is now achievable in a practical and scalable method. This is leading to exciting possibilities in microassembly. We review some of the recent developments in layer transfer and particularly the use of the transfer print technology for enabling active photonic devices on rigid and flexible foreign substrates.

  12. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  13. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  14. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    , dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment......BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism...

  15. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul

    2015-12-23

    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  16. Analysis of diagnostic calorimeter data by the transfer function technique

    Science.gov (United States)

    Delogu, R. S.; Poggi, C.; Pimazzoni, A.; Rossi, G.; Serianni, G.

    2016-02-01

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.

  17. Analysis of diagnostic calorimeter data by the transfer function technique

    Energy Technology Data Exchange (ETDEWEB)

    Delogu, R. S., E-mail: rita.delogu@igi.cnr.it; Pimazzoni, A.; Serianni, G. [Consorzio RFX, Corso Stati Uniti, 35127 Padova (Italy); Poggi, C.; Rossi, G. [Università degli Studi di Padova, Via 8 Febbraio 1848, 35122 Padova (Italy)

    2016-02-15

    This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.

  18. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    Science.gov (United States)

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  19. Regulation of mammalian horizontal gene transfer by apoptotic DNA fragmentation

    Science.gov (United States)

    Yan, B; Wang, H; Li, F; Li, C-Y

    2006-01-01

    Previously it was shown that horizontal DNA transfer between mammalian cells can occur through the uptake of apoptotic bodies, where genes from the apoptotic cells were transferred to neighbouring cells phagocytosing the apoptotic bodies. The regulation of this process is poorly understood. It was shown that the ability of cells as recipient of horizontally transferred DNA was enhanced by deficiency of p53 or p21. However, little is known with regard to the regulation of DNA from donor apoptotic cells. Here we report that the DNA fragmentation factor/caspase-activated DNase (DFF/CAD), which is the endonuclease responsible for DNA fragmentation during apoptosis, plays a significant role in regulation of horizontal DNA transfer. Cells with inhibited DFF/CAD function are poor donors for horizontal gene transfer (HGT) while their ability of being recipients of HGT is not affected. PMID:17146478

  20. Efficient Roll-on Transfer Technique for Well-Aligned Organic Nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Rubahn, Horst-Günter

    2011-01-01

    A transfer technique enabling efficient device integration of fragile organic nanostructures is presented. The technique is capable of transferring organic nanofibers to arbitrary substrates, the preservation of nanofiber morphology is demonstrated, and the optical properties are unaffected or ev...

  1. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  2. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    Science.gov (United States)

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  3. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes

    Directory of Open Access Journals (Sweden)

    Yiwei Chen

    2013-01-01

    Full Text Available We developed a single vector recombinant adeno-associated viral (rAAV expression system for spatial and reversible control of polycistronic gene expression. Our approach (i integrates the advantages of the tetracycline (Tet-controlled transcriptional silencer tTSKid and the self-cleaving 2A peptide bridge, (ii combines essential regulatory components as an autoregulatory loop, (iii simplifies the gene delivery scheme, and (iv regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE, both the ubiquitous chicken β-actin promoter (CAG and the neuron-specific synapsin-1 promoter (Syn could regulate expression of tTSKid together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox. Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI visualized reversible “ON/OFF” gene switches over repeated “Doxy-Cycling” in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.

  4. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes.

    Science.gov (United States)

    Chen, Yiwei; Cao, Liji; Luo, Chonglin; Ditzel, Désirée Aw; Peter, Jörg; Sprengel, Rolf

    2013-04-09

    We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTS(Kid) and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTS(Kid) together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible "ON/OFF" gene switches over repeated "Doxy-Cycling" in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e85; doi:10.1038/mtna.2013.15; published online 9 April 2013.

  5. Transferring Gus gene into intact rice cells by low energy ion beam

    Science.gov (United States)

    Zengliang, Yu; Jianbo, Yang; Yuejin, Wu; Beijiu, Cheng; Jianjun, He; Yuping, Huo

    1993-06-01

    A new technique of transferring genes by low energy ion beam has been reported in this paper. The Gus and CAT (chloramphenicol acetyltransferase) genes, as "foreign" genetic materials, were introduced into the suspension cells and ripe embryos or rice by implantation of 20-30 keV Ar + at doses ranging from 1 × 10 15 to 4 × 10 15 ions/cm 2. The activities of CAT and Gus were detected in the cells and embryos after several weeks. The results indicate that the transfer was a success.

  6. Horizontal functional gene transfer from bacteria to fishes.

    Science.gov (United States)

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei

    2015-12-22

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  7. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer.

    Science.gov (United States)

    Yin, Mingru; Jiang, Weihua; Fang, Zhenfu; Kong, Pengcheng; Xing, Fengying; Li, Yao; Chen, Xuejin; Li, Shangang

    2015-11-02

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT. Gene trap strategies were employed to enhance the gene targeting rates. The male and female gene knockout fibroblast cell lines were derived by different strategies. When male HPRT knockout cells were used for SCNT, no live rabbits were obtained. However, when female HPRT(+/-) cells were used for SCNT, live, healthy rabbits were generated. The cloned HPRT(+/-) rabbits were fertile at maturity. We demonstrate a new technique to produce gene-targeted rabbits. This approach may also be used in the genetic manipulation of different genes or in other species.

  8. [Gene transfer as treatment for metabolic inherited liver diseases

    Science.gov (United States)

    Godoy, J L

    2000-01-01

    OBJECTIVE: To study gene transfer looking for its future clinical application in the treatment of metabolic inherited liver diseases. METHODS: Bibliographic review about the subject. RESULTS AND CONCLUSIONS: Gene transfer into the liver would be an alternative to liver transplantation to treat some inherited metabolic diseases. Various vectors have been employed for gene transfer, including retrovirus vectors, whose integration into the chromosomal DNA would allow stable long term expression of the transgene. The integration of retrovirus vectors into the genoma of the target cell is only possible during mitosis. Therefore, these vectors must be delivered during hepatic regeneration induced by partial hepatectomy, for example. Another obstacle to be overcome is the extra hepatic dissemination of retrovirus, in particular to the germinals cells, due to the risk of changing the genetical heritage of the progeniture.

  9. The interconnection between biofilm formation and horizontal gene transfer.

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2012-07-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.

  10. A gene in the process of endosymbiotic transfer.

    Directory of Open Access Journals (Sweden)

    Kateřina Jiroutová

    Full Text Available BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28 through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.

  11. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  12. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  13. Limiting current technique in the research of mass/heat transfer in nanofluid

    Science.gov (United States)

    Wilk, J.; Grosicki, S.

    2016-09-01

    In the paper the authors focused on the application of the electrochemical limiting diffusion current technique to the study of mass transfer in nanofluid flow. As mass and heat transfer are analogical phenomena, analysing mass transfer helps understand heat transfer processes in nanofluids. The paper begins with a short review of the available literature on the subject followed by the authors' results of mass transfer coefficient measurements and the conclusions concerning mass/heat transfer enhancement in nanofluids.

  14. Gene transfer from a parasitic flowering plant to a fern

    OpenAIRE

    Davis, Charles C.; Anderson, William R.; Wurdack, Kenneth J

    2005-01-01

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps fro...

  15. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Huddleston JR

    2014-06-01

    Full Text Available Jennifer R HuddlestonBiology Department, Abilene Christian University, Abilene, TX, USAAbstract: Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.Keywords: gut microbiome, conjugation, natural transformation, transduction

  16. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    Science.gov (United States)

    Jacobs, William R

    2014-04-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  17. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  18. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; Meer, van der T.H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nan

  19. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    Directory of Open Access Journals (Sweden)

    Naruo Nikoh

    2010-02-01

    Full Text Available Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria, which have highly reduced genomes (420-650 kb, raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA, five rare lipoprotein As (RlpA1-5, N-acetylmuramoyl-L-alanine amidase (AmiD, 1,4-beta-N-acetylmuramidase (bLys, DNA polymerase III alpha chain (psiDnaE, and ATP synthase delta chain (psiAtpH. Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH. Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria. At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5 are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the

  20. Engineering T cell immunity by TCR gene transfer

    NARCIS (Netherlands)

    Linnemann, Carsten

    2013-01-01

    T cell responses against tumor-antigens are frequently observed for some human malignancies, in particular melanoma. However, the spontaneous development of T cell responses of a sufficient strength to eradicate human malignancies is rare. The transfer of T cell receptor (TCR) αβ genes into autologo

  1. Quasispecies theory for horizontal gene transfer and recombination

    Science.gov (United States)

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.

    2008-12-01

    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  2. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2013-03-01

    Full Text Available Gene transfer of drug resistance (CTX-R genes can be used to protect the hematopoietic system from the toxicity of anticancer chemotherapy and this concept recently has been proven by overexpression of a mutant O6-methylguaninemethyltransferase in the hematopoietic system of glioblastoma patients treated with temozolomide. Given its protection capacity against such relevant drugs as cytosine arabinoside (ara-C, gemcitabine, decitabine, or azacytidine and the highly hematopoiesis-specific toxicity profile of several of these agents, cytidine deaminase (CDD represents another interesting candidate CTX-R gene and our group recently has established the myeloprotective capacity of CDD gene transfer in a number of murine transplant studies. Clinically, CDD overexpression appears particularly suited to optimize treatment strategies for acute leukemias and myelodysplasias given the efficacy of ara-C (and to a lesser degree decitabine and azacytidine in these disease entities. This article will review the current state of the art with regard to CDD gene transfer and point out potential scenarios for a clinical application of this strategy. In addition, risks and potential side effects associated with this approach as well as strategies to overcome these problems will be highlighted.

  3. Magnetisation transfer contrast: principles, techniques and applications; Magnetisierungs-Transfer-Kontrast (MTC): Grundlagen, Techniken und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Vahlensieck, M.; Traeber, F.; Schild, H. [Radiologische Universitaetsklinik Bonn (Germany)

    1998-07-01

    Using magnetisation transfer (MTC), a new contrast could be achieved on magnetic resonance images (MRI). Two different techniques are available to produce MTC: on- and off-resonance technique. Basic physics of MTC and the two techniques are extensively described in this review article. Potential advantages in using MTC are imaging of cartilage, multiple sclerosis and MR angiography. Particularly the detection of contrast media enhancing brain lesions were improved using MTC. Early cartilage degeneration could be visualised with improved contrast on MTC images. This article gives an overview of potential and accepted applications. (orig.) [Deutsch] Basierend auf dem Phaenomen Magnetisierungstransfer (MTC) laesst sich ein neuartiger Kontrast auf Magnetresonanzbildern erzeugen. Zwei unterschiedliche Techniken kommen dazu zur Anwendung: resonanzfrequenzzentrierte (on-resonance) und resonanzfrequenzferne (off-resonance) Technik. Die physikalischen Grundlagen von MTC sowie die verschiedenen Techniken werden in diesem Uebersichtsartikel umfassend eroertert. Erkennbare Vorteile bietet die Methode bisher in der Knorpelbildgebung, der MR-Angiographie und in der Untersuchung der multiplen Sklerose. Dabei liess sich insbesondere die Nachweisbarkeit von kontrastmittelaufnehmenden Herdlaesionen durch MTC-Anwendung steigern. Auch die Nachweisbarkeit von Knorpellaesionen liess sich durch MTC verbessern. Hier wird eine Uebersicht ueber bisherige Anwendungen dieser Technik gegeben. (orig.)

  4. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  5. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  6. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes.

    Science.gov (United States)

    Nikoh, Naruo; Tanaka, Kohjiro; Shibata, Fukashi; Kondo, Natsuko; Hizume, Masahiro; Shimada, Masakazu; Fukatsu, Takema

    2008-02-01

    Recent accumulation of microbial genome data has demonstrated that lateral gene transfers constitute an important and universal evolutionary process in prokaryotes, while those in multicellular eukaryotes are still regarded as unusual, except for endosymbiotic gene transfers from mitochondria and plastids. Here we thoroughly investigated the bacterial genes derived from a Wolbachia endosymbiont on the nuclear genome of the beetle Callosobruchus chinensis. Exhaustive PCR detection and Southern blot analysis suggested that approximately 30% of Wolbachia genes, in terms of the gene repertoire of wMel, are present on the insect nuclear genome. Fluorescent in situ hybridization located the transferred genes on the proximal region of the basal short arm of the X chromosome. Molecular evolutionary and other lines of evidence indicated that the transferred genes are probably derived from a single lateral transfer event. The transferred genes were, for the length examined, structurally disrupted, freed from functional constraints, and transcriptionally inactive. Hence, most, if not all, of the transferred genes have been pseudogenized. Notwithstanding this, the transferred genes were ubiquitously detected from Japanese and Taiwanese populations of C. chinensis, while the number of the transferred genes detected differed between the populations. The transferred genes were not detected from congenic beetle species, indicating that the transfer event occurred after speciation of C. chinensis, which was estimated to be one or several million years ago. These features of the laterally transferred endosymbiont genes are compared with the evolutionary patterns of mitochondrial and plastid genome fragments acquired by nuclear genomes through recent endosymbiotic gene transfers.

  7. Immunotherapy of Malignancy by in vivo Gene Transfer into Tumors

    Science.gov (United States)

    Plautz, Gregory E.; Yang, Zhi-Yong; Wu, Bei-Yue; Gao, Xiang; Huang, Leaf; Nabel, Gary J.

    1993-05-01

    The immune system confers protection against a variety of pathogens and contributes to the surveillance and destruction of neoplastic cells. Several cell types participate in the recognition and lysis of tumors, and appropriate immune stimulation provides therapeutic effects in malignancy. Foreign major histocompatibility complex (MHC) proteins also serve as a potent stimulus to the immune system. In this report, a foreign MHC gene was introduced directly into malignant tumors in vivo in an effort to stimulate tumor rejection. In contrast to previous attempts to induce tumor immunity by cell-mediated gene transfer, the recombinant gene was introduced directly into tumors in vivo. Expression of the murine class I H-2K^s gene within the CT26 mouse colon adenocarcinoma (H-2K^d) or the MCA 106 fibrosarcoma (H-2K^b) induced a cytotoxic T-cell response to H-2K^s and, more importantly, to other antigens present on unmodified tumor cells. This immune response attenuated tumor growth and caused complete tumor regression in many cases. Direct gene transfer in vivo can therefore induce cell-mediated immunity against specific gene products, which provides an immunotherapeutic effect for malignancy, and potentially can be applied to the treatment of cancer and infectious diseases in man.

  8. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Science.gov (United States)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne

    2015-03-01

    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  9. Adenovirus-mediated nitric oxide synthase gene transfer.

    Science.gov (United States)

    Raman, Kathleen G; Shapiro, Richard A; Tzeng, Edith; Kibbe, Melina R

    2004-01-01

    The varied biological effects of nitric oxide (NO) have led to intense research into its diverse physiologic and pathophysiologic roles in multiple disease processes. It has been implicated in the development of altered vasomotor tone, intimal hyperplasia, atherosclerosis, impotence, host defense, and wound healing. Using the modern technologies of recombinant DNA and gene transfer using adenoviral vectors, the effects of NO derived from various NO synthase (NOS) enzymes can be studied in a variety of tissues and the therapeutic applications of NOS is possible. Such uses of NOS gene transfer have been investigated extensively in the vasculature where NO is critical to regulating vascular homeostasis. NOS gene therapy has the theoretical advantage of allowing NO delivery to be localized, thereby limiting potential adverse effects of NO. The benefits of adenoviral vectors in gene transfer include relatively high transduction efficiencies, both replicating and nonreplicating cells may be infected, and the high titers of adenovirus that can be produced. The methods described in this chapter include the cloning of the iNOS cDNA into a recombinant adenoviral vector, large-scale production of that vector AdiNOS preparation, and the use of the vector to transduce tissue in vitro and in vivo.

  10. Improving Adenovirus Based Gene Transfer: Strategies to Accomplish Immune Evasion

    Directory of Open Access Journals (Sweden)

    Andrea Amalfitano

    2010-09-01

    Full Text Available Adenovirus (Ad based gene transfer vectors continue to be the platform of choice for an increasing number of clinical trials worldwide. In fact, within the last five years, the number of clinical trials that utilize Ad based vectors has doubled, indicating growing enthusiasm for the numerous positive characteristics of this gene transfer platform. For example, Ad vectors can be easily and relatively inexpensively produced to high titers in a cGMP compliant manner, can be stably stored and transported, and have a broad applicability for a wide range of clinical conditions, including both gene therapy and vaccine applications. Ad vector based gene transfer will become more useful as strategies to counteract innate and/or pre-existing adaptive immune responses to Ads are developed and confirmed to be efficacious. The approaches attempting to overcome these limitations can be divided into two broad categories: pre-emptive immune modulation of the host, and selective modification of the Ad vector itself. The first category of methods includes the use of immunosuppressive drugs or specific compounds to block important immune pathways, which are known to be induced by Ads. The second category comprises several innovative strategies inclusive of: (1 Ad-capsid-display of specific inhibitors or ligands; (2 covalent modifications of the entire Ad vector capsid moiety; (3 the use of tissue specific promoters and local administration routes; (4 the use of genome modified Ads; and (5 the development of chimeric or alternative serotype Ads. This review article will focus on both the promise and the limitations of each of these immune evasion strategies, and in the process delineate future directions in developing safer and more efficacious Ad-based gene transfer strategies.

  11. Direct Gene Transfer into Rabbit Peripheral Nerve in vivo

    Institute of Scientific and Technical Information of China (English)

    张世强; 张经歧; 张英泽; 刘玲

    2001-01-01

    Exogenous gene suture was used to achieve peripheral nerve anastomoses to probe into the feasibility that the sites of anastomoses of nerves directly transfer gene and thus enable gene to be expressed at the sites of anastomoses under the condition that perfect nerve anastomoses are ensured. PCMVβ plasmid containing cytomegalovirus promoter (CMV promoter) and Escherichia coli (E.coli) β-Galactosidase (β-Gal) structural gene (lacZ gene) was conducted. A soaked medical 8-0nylon suture was used to perform epineurial repair of rabbit sciatic nerve. In the control group a suture soaked in sucrose PBS was used, while in the experimental group a suture soaked in PCMVβ plasmid solution was applied. The sites of anastomoses of nerves by stages were taken out, and β-Gal histochemical staining was performed and β-Gal enzyme activity was assayed with 5-bromo-4-chloro-3-indolyl-β-D-galactoside. Results showed that the sites of anastomoses of nerves were taken out 2 days, 7 days, 14 days and 30 days respectively after the operation. The β-Gal histochemical stains at the sites of anastomoses showed no indigo positive cells at different stages in the control group, whereas displayed indigo positive cells in the experimental group. In the control group, no β-Gal enzyme activity was detected at different stages after operation, but in the experimental group, β-Gal enzyme activity could be detected from the 3rd day to the 30th day after operation. It was concluded that by using exogenous gene suture, exogenous gene could be transferred to the sites of peripheral nerve and expressed the exogenous gene expression products with bioactivity, which provided the feasibility of using gene therapy to accelerate the recovery of nerve function.

  12. Examining Ancient Inter-domain Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Francisca C. Almeida

    2008-01-01

    Full Text Available Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test, to examine the robustness of these inferences and to corroborate the phylogenetically identifi ed cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS, fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.

  13. Can Viruses be Modified to Achieve Sustained Gene Transfer?

    Directory of Open Access Journals (Sweden)

    Hildegund CJ Ertl

    2011-07-01

    Full Text Available It is very easy to replace a faulty gene in an immunocompromised mouse. First, one takes a well-characterized virus, such as an adenovirus or an adeno-associated virus, and incorporates the correct version of the faulty gene together with some regulatory sequences into the genome. Then, one transduces the recombinant genome into helper cells, which will add the viral capsid. At last, one injects the resulting viral vector into the sick mouse, and the mouse is cured. It is not that easy in an immunocompetent mouse, let alone in a human, as over the eons the immune system evolved to eliminate viruses regardless if they penetrate as dangerous pathogens or are injected by a well-meaning gene therapist. Here we offer our perspective on the potential of how viral vectors achieve sustained gene transfer in the face of a hostile immune system.

  14. Electroporation-mediated gene transfer directly to the swine heart.

    Science.gov (United States)

    Hargrave, B; Downey, H; Strange, R; Murray, L; Cinnamond, C; Lundberg, C; Israel, A; Chen, Y-J; Marshall, W; Heller, R

    2013-02-01

    In vivo gene transfer to the ischemic heart via electroporation holds promise as a potential therapeutic approach for the treatment of heart disease. In the current study, we investigated the use of in vivo electroporation for gene transfer using three different penetrating electrodes and one non-penetrating electrode. The hearts of adult male swine were exposed through a sternotomy. Eight electric pulses synchronized to the rising phase of the R wave of the electrocardiogram were administered at varying pulse widths and field strengths following an injection of either a plasmid encoding luciferase or one encoding green fluorescent protein. Four sites on the anterior wall of the left ventricle were treated. Animals were killed 48 h after injection and electroporation and gene expression was determined. Results were compared with sites in the heart that received plasmid injection but no electric pulses or were not treated. Gene expression was higher in all electroporated sites when compared with injection only sites demonstrating the robustness of this approach. Our results provide evidence that in vivo electroporation can be a safe and effective non-viral method for delivering genes to the heart, in vivo.

  15. Characterization of an ancient lepidopteran lateral gene transfer.

    Directory of Open Access Journals (Sweden)

    David Wheeler

    Full Text Available Bacteria to eukaryote lateral gene transfers (LGT are an important potential source of material for the evolution of novel genetic traits. The explosion in the number of newly sequenced genomes provides opportunities to identify and characterize examples of these lateral gene transfer events, and to assess their role in the evolution of new genes. In this paper, we describe an ancient lepidopteran LGT of a glycosyl hydrolase family 31 gene (GH31 from an Enterococcus bacteria. PCR amplification between the LGT and a flanking insect gene confirmed that the GH31 was integrated into the Bombyx mori genome and was not a result of an assembly error. Database searches in combination with degenerate PCR on a panel of 7 lepidopteran families confirmed that the GH31 LGT event occurred deep within the Order approximately 65-145 million years ago. The most basal species in which the LGT was found is Plutella xylostella (superfamily: Yponomeutoidea. Array data from Bombyx mori shows that GH31 is expressed, and low dN/dS ratios indicates the LGT coding sequence is under strong stabilizing selection. These findings provide further support for the proposition that bacterial LGTs are relatively common in insects and likely to be an underappreciated source of adaptive genetic material.

  16. Endosymbiotic gene transfer in tertiary plastid-containing dinoflagellates.

    Science.gov (United States)

    Burki, Fabien; Imanian, Behzad; Hehenberger, Elisabeth; Hirakawa, Yoshihisa; Maruyama, Shinichiro; Keeling, Patrick J

    2014-02-01

    Plastid establishment involves the transfer of endosymbiotic genes to the host nucleus, a process known as endosymbiotic gene transfer (EGT). Large amounts of EGT have been shown in several photosynthetic lineages but also in present-day plastid-lacking organisms, supporting the notion that endosymbiotic genes leave a substantial genetic footprint in the host nucleus. Yet the extent of this genetic relocation remains debated, largely because the long period that has passed since most plastids originated has erased many of the clues to how this process unfolded. Among the dinoflagellates, however, the ancestral peridinin-containing plastid has been replaced by tertiary plastids on several more recent occasions, giving us a less ancient window to examine plastid origins. In this study, we evaluated the endosymbiotic contribution to the host genome in two dinoflagellate lineages with tertiary plastids. We generated the first nuclear transcriptome data sets for the "dinotoms," which harbor diatom-derived plastids, and analyzed these data in combination with the available transcriptomes for kareniaceans, which harbor haptophyte-derived plastids. We found low level of detectable EGT in both dinoflagellate lineages, with only 9 genes and 90 genes of possible tertiary endosymbiotic origin in dinotoms and kareniaceans, respectively, suggesting that tertiary endosymbioses did not heavily impact the host dinoflagellate genomes.

  17. Gene transfer from a parasitic flowering plant to a fern.

    Science.gov (United States)

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J

    2005-11-07

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts.

  18. Monitoring of bystander effect of herpes simplex virus thymidine kinase/acyclovir system using fluorescence resonance energy transfer technique.

    Science.gov (United States)

    Xiong, Tao; Li, Yongjun; Ni, Fenge; Zhang, Feng

    2012-02-01

    Cytotoxic gene therapy mediated by gene transfer of the herpes simplex virus thymidine kinase (HSV-tk) gene followed by acyclovir (ACV) treatment has been reported to inhibit malignant tumor growth in a variety of studies. The magnitude of "bystander effect" is an essential factor for this anti-tumor approach in vivo. However, the mechanism by which HSV-tk/ACV brings "bystander effect" is poorly understood. In this report, the plasmid CD3 (ECFP-CRS-DsRed) and TK-GFP were transferred to the human adenoid cystic carcinoma line ACC-M cell line. The CD3-expressing cells apoptosis was monitored using fluorescence resonance energy transfer (FRET) technique. First, CD3 and TK-GFP co-expressing ACC-M cells apoptosis was monitored using FRET technique. The apoptosis was induced by ACV and initiated by caspase3. The FRET efficient was remarkably decreased and then disappeared during cellular apoptosis, which indicated that the TK-GFP expressing ACC-M cells apoptosis, induced by ACV, was via a caspase3-dependent pathway. Secondly, CD3 and TK-GFP mixed expressing ACC-M cells apoptosis, induced by ACV, were monitored using FRET technique. The apoptotic phenomena appeared in the CD3-expressing ACC-M cells. The results show that HSV-tk/ACV system killed ACC-M cells using its bystander effect. These results confirm that HSV-tk/ACV system is potential for cancer gene therapy.

  19. Selective Gene Transfer to the Retina Using Intravitreal Ultrasound Irradiation

    Directory of Open Access Journals (Sweden)

    Shozo Sonoda

    2012-01-01

    Full Text Available This paper aims to evaluate the efficacy of intravitreal ultrasound (US irradiation for green fluorescent protein (GFP plasmid transfer into the rabbit retina using a miniature US transducer. Intravitreal US irradiation was performed by a slight modification of the transconjunctival sutureless vitrectomy system utilizing a small probe. After vitrectomy, the US probe was inserted through a scleral incision. A mixture of GFP plasmid (50 μL and bubble liposomes (BLs; 50 μL was injected into the vitreous cavity, and US was generated to the retina using a SonoPore 4000. The control group was not exposed to US. After 72 h, the gene-transfer efficiency was quantified by counting the number of GFP-positive cells. The retinas that received plasmid, BL, and US showed a significant increase in the number (average ± SEM of GFP-positive cells (32±4.9; n=7; P<0.01 . No GFP-positive cells were observed in the control eyes (n=7. Intravitreal retinal US irradiation can transfer the GFP plasmid into the retina without causing any apparent damage. This procedure could be used to transfer genes and drugs directly to the retina and therefore has potential therapeutic value.

  20. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their beli......Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...

  1. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Science.gov (United States)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  2. Risks from GMOs due to horizontal gene transfer.

    Science.gov (United States)

    Keese, Paul

    2008-01-01

    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  3. A rice Stowaway MITE for gene transfer in yeast.

    Directory of Open Access Journals (Sweden)

    Isam Fattash

    Full Text Available Miniature inverted repeat transposable elements (MITEs lack protein coding capacity and often share very limited sequence similarity with potential autonomous elements. Their capability of efficient transposition and dramatic amplification led to the proposition that MITEs are an untapped rich source of materials for transposable element (TE based genetic tools. To test the concept of using MITE sequence in gene transfer, a rice Stowaway MITE previously shown to excise efficiently in yeast was engineered to carry cargo genes (neo and gfp for delivery into the budding yeast genome. Efficient excision of the cargo gene cassettes was observed even though the excision frequency generally decreases with the increase of the cargo sizes. Excised elements insert into new genomic loci efficiently, with about 65% of the obtained insertion sites located in genes. Elements at the primary insertion sites can be remobilized, frequently resulting in copy number increase of the element. Surprisingly, the orientation of a cargo gene (neo on a construct bearing dual reporter genes (gfp and neo was found to have a dramatic effect on transposition frequency. These results demonstrated the concept that MITE sequences can be useful in engineering genetic tools to deliver cargo genes into eukaryotic genomes.

  4. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Directory of Open Access Journals (Sweden)

    Grill Andrea

    2006-07-01

    Full Text Available Abstract Background We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA and two mitochondrial (cytb, COI genes. Results Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. Conclusion The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination

  5. Dynamic monitoring of horizontal gene transfer in soil

    Science.gov (United States)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  6. Efficient Reproduction of Cynomolgus Monkey Using Pronuclear Embryo Transfer Technique

    National Research Council Canada - National Science Library

    Qiang Sun; Juan Dong; Wenting Yang; Yujuan Jin; Mingying Yang; Yan Wang; Philip L. Wang; Yinghe Hu; Joe Z. Tsien

    2008-01-01

    ..., often result in poor embryo quality and subsequently lead to low birth rates. We investigated whether pronuclear embryo transfer can be used as an effective means for improving pregnancy and live birth rates of nonhuman primates...

  7. Chromosomal nif Genes Transfer by Conjugation in Nitrogen Fixing Azotobacter chroococcum to Lactobacillus plantarium

    Directory of Open Access Journals (Sweden)

    Adel Kamal Khider

    2011-03-01

    Full Text Available To determine the possibility of transferring chromosomal nitrogen fixation genes (nif genes from Azotobacter chroococcum to Lactobacillus planetarium, a total of 72 Azotobacter chroococcum isolated from Erbil governorate, Iraq were culturally, morphologically and biochemically characterized. Genes for atmospheric nitrogen fixation, located on the chromosome of Azotobacter chroococcum isolates were transferred by conjugation process to a recipient Lactobacillus plantarium isolated from Erbil city soils. The chromosomal genes transferred were verified by analysis of the genomes of donor, recipient and putative transconjugants, by polymorphism of DNA bands obtained through amplification of nifH1, nifH2, nifH3, nifU and nifV genes by PCR technique. The transconjugant cells promote an efficient fixation of nitrogen in liquid cultures fixed 0.2% nitrogen, and in the soil as inoculums of wheat plants, fixed 0.31% nitrogen and solublized 11.71 ppm phosphorus, beside all advantages of Lactic acid bacteria, and probably to be used as inoculums for both nitrogen fixation and solublizing insoluble phosphorus components, and used as biofertilizers

  8. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    Science.gov (United States)

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  9. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss.

    Science.gov (United States)

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G

    2016-07-01

    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques

    OpenAIRE

    Cappellaro, Paola

    2014-01-01

    Nuclear spin systems and magnetic resonance techniques have provided a fertile platform for experimental investigation of quantum state transfer in spin chains. From the first observation of polarization transfer, predating the formal definition of quantum state transfer, to the realization of state transfer simulations in small molecules and in larger solid-state spin systems, the experiments have drawn on the strengths of nuclear magnetic resonance (NMR), in particular on its long history o...

  11. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Martinez, Asuncion; Mincer, Tracy J

    2006-01-01

    Planktonic Bacteria, Archaea and Eukarya reside and compete in the ocean's photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light......-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the ocean......'s upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent...

  12. Lateral Gene Transfer Dynamics in the Ancient Bacterial Genus Streptomyces.

    Science.gov (United States)

    McDonald, Bradon R; Currie, Cameron R

    2017-06-06

    Lateral gene transfer (LGT) profoundly shapes the evolution of bacterial lineages. LGT across disparate phylogenetic groups and genome content diversity between related organisms suggest a model of bacterial evolution that views LGT as rampant and promiscuous. It has even driven the argument that species concepts and tree-based phylogenetics cannot be applied to bacteria. Here, we show that acquisition and retention of genes through LGT are surprisingly rare in the ubiquitous and biomedically important bacterial genus Streptomyces Using a molecular clock, we estimate that the Streptomyces bacteria are ~380 million years old, indicating that this bacterial genus is as ancient as land vertebrates. Calibrating LGT rate to this geologic time span, we find that on average only 10 genes per million years were acquired and subsequently maintained. Over that same time span, Streptomyces accumulated thousands of point mutations. By explicitly incorporating evolutionary timescale into our analyses, we provide a dramatically different view on the dynamics of LGT and its impact on bacterial evolution.IMPORTANCE Tree-based phylogenetics and the use of species as units of diversity lie at the foundation of modern biology. In bacteria, these pillars of evolutionary theory have been called into question due to the observation of thousands of lateral gene transfer (LGT) events within and between lineages. Here, we show that acquisition and retention of genes through LGT are exceedingly rare in the bacterial genus Streptomyces, with merely one gene acquired in Streptomyces lineages every 100,000 years. These findings stand in contrast to the current assumption of rampant genetic exchange, which has become the dominant hypothesis used to explain bacterial diversity. Our results support a more nuanced understanding of genetic exchange, with LGT impacting evolution over short timescales but playing a significant role over long timescales. Deeper understanding of LGT provides new

  13. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  14. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.

    Science.gov (United States)

    Kellmann, Ralf; Mihali, Troco Kaan; Michali, Troco Kaan; Neilan, Brett Anthony; Neilan, Brett Adam

    2008-11-01

    The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral alpha-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.

  15. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  16. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    Science.gov (United States)

    Taha, T. J.; Thakur, D. B.; Van der Meer, T. H.

    2012-11-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon nano structures is achieved using thermal catalytic chemical vapor deposition process (TCCVD) on a 50 μm pure nickel (Ni270) wire. The micro wire samples covered with CNF layers were subjected to a uniform flow from a nozzle. Heat transfer measurement was achieved by a controlled heat dissipation through the micro wire to attain a constant temperature during the flow. This measurement technique is adopted from hot wire anemometry calibration method. Synthesis of carbon nano structures, heat transfer surface characterization and measurement technique are evaluated. Preliminary results indicate that an average enhancement in Nusselt Number of 17% is achieved.

  17. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer ability

    Directory of Open Access Journals (Sweden)

    Satoko eNonaka

    2014-12-01

    Full Text Available Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant–Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.

  18. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets.

    Science.gov (United States)

    Liu, Ying; Li, Juan; Løvendahl, Peter; Schmidt, Mette; Larsen, Knud; Callesen, Henrik

    2015-03-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets. The techniques of nuclear transfer have been developed markedly through the increasing number of studies performed, and the results have become more stable. Prolonged in vitro culture period did not lead to any negative effect on nuclear transfer embryos after their transfer and it resulted in a similar or even higher litter size. More complete information is needed in future scientific articles about these in vitro manipulation techniques to establish a more solid basis for the evaluation of their status and to reveal and further investigate any eventual problems.

  19. Differences in lateral gene transfer in hypersaline versus thermal environments

    Directory of Open Access Journals (Sweden)

    House Christopher H

    2011-07-01

    Full Text Available Abstract Background The role of lateral gene transfer (LGT in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles. Results We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei and a halophilic class of Archaea (Halobacteria. We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles. Conclusions Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.

  20. Horizontal gene transfer in osmotrophs: playing with public goods.

    Science.gov (United States)

    Richards, Thomas A; Talbot, Nicholas J

    2013-10-01

    Osmotrophic microorganisms, such as fungi and oomycetes, feed by secreting depolymerizing enzymes to process complex food sources in the extracellular environment, and taking up the resulting simple sugars, micronutrients and amino acids. As a consequence of this lifestyle, osmotrophs engage in the acquisition and protection of public goods. In this Opinion article, we propose that horizontal gene transfer (HGT) has played a key part in shaping both the repertoire of proteins required for osmotrophy and the nature of public goods interactions in which eukaryotic microorganisms engage.

  1. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Directory of Open Access Journals (Sweden)

    Zhenxiang Xi

    Full Text Available Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT, especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae, whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria and a species interaction (i.e., parasitism where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  2. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Science.gov (United States)

    Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K; Sugumaran, M; Marx, Christopher J; Rest, Joshua S; Davis, Charles C

    2013-01-01

    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  3. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    National Research Council Canada - National Science Library

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    ...) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early...

  4. Discrete Data Transfer Technique for Fluid-Structure Interaction

    Science.gov (United States)

    Samareh, Jamshid A.

    2007-01-01

    This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.

  5. Orbital Transfer Techniques for Round-Trip Mars Missions

    Science.gov (United States)

    Landau, Damon

    2013-01-01

    The human exploration of Phobos and Deimos or the retrieval of a surface sample launched to low-Mars orbit presents a highly constrained orbital transfer problem. In general, the plane of the target orbit will not be accessible from the arrival or departure interplanetary trajectories with an (energetically optimal) tangential burn at periapsis. The orbital design is further complicated by the addition of a high-energy parking orbit for the relatively massive Deep Space Vehicle to reduce propellant expenditure, while the crew transfers to and from the target orbit in a smaller Space Exploration Vehicle. The proposed strategy shifts the arrival and departure maneuvers away from periapsis so that the apsidal line of the parking orbit lies in the plane of the target orbit, permitting highly efficient plane change maneuvers at apoapsis of the elliptical parking orbit. An apsidal shift during the arrival or departure maneuver is approximately five times as efficient as maneuvering while in Mars orbit, thus significantly reducing the propellant necessary to transfer between the arrival, target, and departure orbits.

  6. Orbital Transfer Techniques for Round-Trip Mars Missions

    Science.gov (United States)

    Landau, Damon

    2013-01-01

    The human exploration of Phobos and Deimos or the retrieval of a surface sample launched to low-Mars orbit presents a highly constrained orbital transfer problem. In general, the plane of the target orbit will not be accessible from the arrival or departure interplanetary trajectories with an (energetically optimal) tangential burn at periapsis. The orbital design is further complicated by the addition of a high-energy parking orbit for the relatively massive Deep Space Vehicle to reduce propellant expenditure, while the crew transfers to and from the target orbit in a smaller Space Exploration Vehicle. The proposed strategy shifts the arrival and departure maneuvers away from periapsis so that the apsidal line of the parking orbit lies in the plane of the target orbit, permitting highly efficient plane change maneuvers at apoapsis of the elliptical parking orbit. An apsidal shift during the arrival or departure maneuver is approximately five times as efficient as maneuvering while in Mars orbit, thus significantly reducing the propellant necessary to transfer between the arrival, target, and departure orbits.

  7. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  8. Interleukin-10 Gene Transfer in Rat Limbal Transplantation.

    Science.gov (United States)

    Kaufmann, Claude; Mortimer, Lauren A; Brereton, Helen M; Irani, Yazad D; Parker, Douglas Ga; Anson, Donald S; Bachmann, Lucas M; Williams, Keryn A

    2017-09-19

    To evaluate the gene transfer of the interleukin (IL)-10 cytokine as a treatment modality for prolonging limbal allograft survival in a rat model. Adenoviral (AV) and lentiviral (LV) vectors were produced for ex vivo gene transfer into limbal graft tissue prior to orthotopic transplantation. Experimental groups comprised unmodified isografts, unmodified allografts, allografts transfected with a reporter gene, and allografts transfected with IL-10. The functional effects of the transgenes were determined by clinical assessment and by following donor cell survival in the recipient animal. Group comparisons were made using survival analysis and tested with the log-rank test. Differences in mean rejection times between groups were tested using the Wilcoxon rank-sum test. Isografts survived during the entire observation period of 56 days. Allografts underwent clinical rejection at a mean of 6.7 days (standard deviation 2.0) postoperatively, irrespective of the presence of transgenes (p < 0.001 for difference in rejection times). For both the AV and LV vector systems, Kaplan-Meier analysis showed a statistically significant difference with respect to time-to-graft failure when comparing allografts transfected with IL-10 with allografts transfected with reporter gene alone (p = 0.011 and p < 0.001, respectively). In the isografts, donor cells could be detected during the complete observation period. In all the allograft groups, however, donor cell detection declined after 1 week and was lost after 4 weeks. Under the conditions tested in the present model, both the AV and the LV vector systems were able to transfect limbal graft tissue ex vivo with biologically active IL-10, leading to delayed rejection compared to the controls.

  9. Study on magnetic gene transfer using HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Kota, E-mail: nakagawa@qb.see.eng.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Ohaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Osako, Mariana Kiomy; Nakagami, Hironori [Graduate School of Medicine, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Nishijima, Shigehiro [Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)

    2013-11-15

    Highlights: •DNA–magnetite complexes were prepared as ferromagnetic DNA carrier. •The condition of magnetic field to suppress the diffusion was found by calculation. •The result of model experiment showed the validity of the calculated value. •The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field. -- Abstract: This study aimed to realize local and high-efficient gene expression by suppressing the diffusion of ferromagnetic DNA carriers in a strong magnetic field generated by HTS bulk magnet. DNA–magnetite complexes were prepared as ferromagnetic DNA carrier and the magnetic gene transfer using the DNA carriers was examined. From the results of the simulation and the model experiment, it was shown that the particle diffusion was suppressed within 10 mm in diameter by the magnetic field at 20 mm above the HTS bulk magnet. The results of in vivo experiments showed that the amount of gene expression was significantly increased by magnetic field.

  10. Genome-wide experimental determination of barriers to horizontal gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  11. Clinical and ethical implications of mitochondrial gene transfer.

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don P

    2014-01-01

    Inherited diseases caused by mitochondrial gene (mtDNA) mutations affect at least 1 in 5000-10,000 children and are associated with severe clinical symptoms. Novel reproductive techniques designed to replace mutated mtDNA in oocytes or early embryos have been proposed to prevent transmission of disease from parents to their children. Here we review the efficacy and safety of these approaches and their associated ethical and regulatory issues.

  12. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages.

    Science.gov (United States)

    Chen, John; Carpena, Nuria; Quiles-Puchalt, Nuria; Ram, Geeta; Novick, Richard P; Penadés, José R

    2015-05-01

    Bacteriophage-mediated horizontal gene transfer is one of the primary driving forces of bacterial evolution. The pac-type phages are generally thought to facilitate most of the phage-mediated gene transfer between closely related bacteria, including that of mobile genetic elements-encoded virulence genes. In this study, we report that staphylococcal cos-type phages transferred the Staphylococcus aureus pathogenicity island SaPIbov5 to non-aureus staphylococcal species and also to different genera. Our results describe the first intra- and intergeneric transfer of a pathogenicity island by a cos phage, and highlight a gene transfer mechanism that may have important implications for pathogen evolution.

  13. Retrovirus-Mediated Gene Transfer in Immortalization of Progenitor Hair Cell Lines in Newborn Rat

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan; ZHAI Suo-qiang; SONG Wei; GUO Wei; ZHENG Gui-liang; HU Yin-yan

    2008-01-01

    Objective To present an experimental method that allows isolation of greater epithelial ridge (GER) and lesser epithelial ridge(LER) cells from postnatal rat cochleae using a combinatorial approach of enzymatic digestion and mechanical separation and to investigate a retrovirus-mediated gene transfer technique for its possibl utility in immortalization of the GER and LER cell lines, in an effort to establish an in vitro model system of hair cell differentiation. Methods GER and LER cells were dissected from postnatal rat cochleae and immortalized by transferring the SV40 large T antigen using a retrovirus. The established cell lines were confirmed through morphology observation, immunnocytochemical staining and RT-PCR analysis. The Hathl gene was transferred into the cell lines using adenovirus-mediated techniques to explore their potential to differentiate into hair cells. Results The established cell lines were stably maintained for more than 20 passages and displayed many features similar to primary GER and LER cells. They grew in patches and assumed a polygonal morphology. Immunostaining showed labeling by SV40 large T antigen and Islet1 (a specific marker for GER and LER). All passages of the cell lines expressed SV40 large T antigen on RT-PCR analysis. The cells also showed the capability to differenti-ate into hair cell-like cells when forced to express Hathl. Conclusion Retrovirus-mediated gene transfer can be used in establishing immortalized progenitor hair cell lines in newborn rat, which may provide an invaluable system for studying hair cell differentiation and regeneration for new treatment of sensory hearing loss caused by hair cell loss.

  14. Foreign gene transfer into Chinese shrimps (Penaeus chinensis) with gene gun

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Plasmids pG DNA-RZ1 with a GFP (green fluorescent protein) reporter gene and a ribozyme gene incising penaeid white spot baculovirus (WSBV) were first introduced into the fertilized eggs of Chinese shrimps by gene gun. The treated and control samples of different development stages were observed with a fluorescent microscope. The transient expression of GFP gene was high in nauplius and zoea larvae. Results from RT-PCR and PCR for adults showed that the foreign genes had been transferred into the shrimps and had expressed the corresponding proteins. This work has established a transgenic method for penaeid shrimps, which will set base for the application of genetic engineering breeding into industry.

  15. GENE TRANSFER IN TOBACCO MITOCHONDRIA IN VITRO AND IN VIVO

    Directory of Open Access Journals (Sweden)

    Katyshev A.I.

    2012-08-01

    Full Text Available Earlier, we had showed that isolated mitochondria from different organisms can import DNA. Exploiting this mechanism, we assessed the possibility of genes transfer in tobacco mitochondria in vitro and in vivo. Whereas homologous recombination is a rare occasion in higher plant nuclei, recombination between the large direct repeats in plant mitochondrial genome generates its multipartite structure. Following transfection of isolated organelles with constructs composed of a partial gfp gene flanked by mitochondrial DNA fragments, we showed the homologous recombination of imported DNA with the resident DNA and the integration of the reporter gene. The recombination yielded an insertion of a continuous exogenous DNA fragment including the gfp sequence and at least the 0.5 kb of the flanking sequence on each side. Using of transfection constructs carrying multiple sequences homologous to mitochondrial DNA could be suitable for insertion of a target gene into any region of the mitochondrial genome, which turns this approach to be of a general and methodical importance. Usually mitochondrial reactive oxygen species (ROS level is under strict control of the antioxidant system including the Mn-containing superoxide dismutase (MnSOD. MnSOD is presented in multiple forms encoded by several genes in plants. Possibly, this enzyme, beside its catalytic function, fulfills as well some unknown biochemical functions. Thus, one of maize SOD enzymes (SOD3.4 could bind with mitochondrial DNA. Another SOD form (SOD3.1 is located in close proximity to mitochondrial respiratory complexes, where ROS are generated. To study possible physiological functions of this enzyme, we cloned the maize SOD3.1 gene. Compared to the SOD3.4, this enzyme didn't demonstrate DNA-binding activity. At the same time, SOD3.1 didn't show non-specific DNA-hydrolyzing activity as Cu/ZnSOD does. It means that this enzyme might have some DNA protective function. We made NtPcob-sod3.1-IGR

  16. Tracking genes from seed to supermarket: techniques and trends.

    Science.gov (United States)

    Auer, Carol A

    2003-12-01

    Analytical techniques to track plant genes in the environment and the food chain are essential for environmental risk assessment, government regulation and production and trade of genetically modified (GM) crops. Here, I review laboratory techniques to track plant genes during pre-commercialization research on gene flow and post-commercialization detection, identification and quantification of GM crops from seed to supermarket. At present, DNA- and protein-based assays support both activities but the demand for fast, inexpensive, sensitive methods is increasing. Part of the demand has been generated by stringent food labeling and traceability regulations for GM crops. The increase in GM crops, changes in GM crop design, evolution of government regulations and adoption of risk-assessment frameworks will continue to drive development of analytical techniques.

  17. Integration of organic nanofibers by soft transfer techniques and nanostenciling

    DEFF Research Database (Denmark)

    Tavares, Luciana

    nanowires due their excellent and well-behaved electrical properties combined with a decent mechanical strength that enables easy manipulation of these materials without damage. Organic semiconductors based on small molecules have several advantages over inorganic materials including lower cost, flexibility......, and tunability of their properties through chemical synthesis of appropriate molecular building blocks that can self-assemble into crystalline nanostructures. However, such organic nanoaggregates are van der Waals bonded crystals and are therefore more fragile than the covalently bonded inorganic nanowires....... This makes the manipulation and thus integration of such organic materials a significant challenge. In this thesis, it is shown how organic crystalline nanofibers with extraordinary optoelectronic properties can be transferred in a controlled fashion from their growth substrate to a receiver substrate...

  18. Partial-Transfer Absorption Imaging: A versatile technique for optimal imaging of ultracold gases

    CERN Document Server

    Ramanathan, Anand; Wright, Kevin C; Anderson, Russell P; Phillips, William D; Helmerson, Kristian; Campbell, Gretchen K

    2012-01-01

    Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally-destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally-destructive technique to that of phase-contrast imaging.

  19. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall.

    Science.gov (United States)

    Ye, Y W; Landau, C; Willard, J E; Rajasubramanian, G; Moskowitz, A; Aziz, S; Meidell, R S; Eberhart, R C

    1998-01-01

    The use of intravascular stents as an adjunct for percutaneous transluminal revascularization is limited by two principal factors, acute thrombosis and neointimal proliferation, resulting in restenosis. To overcome these limitations, we have investigated the potential of microporous bioresorbable polymer stents formed from poly(L-lactic acid) (PLLA)/poly(epsilon-caprolactone) (PCL) blends to function both to provide mechanical support and as reservoirs for local delivery of therapeutic molecules and particles to the vessel wall. Tubular PLLA/PCL stents were fabricated by the flotation-precipitation method, and helical stents were produced by a casting/winding technique. Hybrid structures in which a tubular sheath is deposited on a helical skeleton were also generated. Using a two-stage solvent swelling technique, polyethylene oxide has been incorporated into these stents to improve hydrophilicity and water uptake, and to facilitate the ability of these devices to function as drug carriers. Stents modified in this manner retain axial and radial mechanical strength sufficient to stabilize the vessel wall against elastic recoil caused by vasoconstrictive and mechanical forces. Because of the potential of direct gene transfer into the vessel wall to ameliorate thrombosis and neointimal proliferation, we have investigated the capacity of these polymer stents to function in the delivery of recombinant adenovirus vectors to the vessel wall. In vitro, virus stock was observed to readily absorb into, and elute from these devices in an infectious form, with suitable kinetics. Successful gene transfer and expression has been demonstrated following implantation of polymer stents impregnated with a recombinant adenovirus carrying a nuclear-localizing betaGal reporter gene into rabbit carotid arteries. These studies suggest that surface-modified polymer stents may ultimately be useful adjunctive devices for both mechanical support and gene transfer during percutaneous

  20. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype.

    Science.gov (United States)

    Burnight, E R; Wiley, L A; Drack, A V; Braun, T A; Anfinson, K R; Kaalberg, E E; Halder, J A; Affatigato, L M; Mullins, R F; Stone, E M; Tucker, B A

    2014-07-01

    Mutations in CEP290 are the most common cause of Leber congenital amaurosis (LCA), a severe inherited retinal degenerative disease for which there is currently no cure. Autosomal recessive CEP290-associated LCA is a good candidate for gene replacement therapy, and cells derived from affected individuals give researchers the ability to study human disease and therapeutic gene correction in vitro. Here we report the development of lentiviral vectors carrying full-length CEP290 for the purpose of correcting the CEP290 disease-specific phenotype in human cells. A lentiviral vector containing CMV-driven human full-length CEP290 was constructed. Following transduction of patient-specific, iPSC-derived, photoreceptor precursor cells, reverse transcriptase-PCR analysis and western blotting revealed vector-derived expression. As CEP290 is important in ciliogenesis, the ability of fibroblast cultures from CEP290-associated LCA patients to form cilia was investigated. In cultures derived from these patients, fewer cells formed cilia compared with unaffected controls. Cilia that were formed were shorter in patient-derived cells than in cells from unaffected individuals. Importantly, lentiviral delivery of CEP290 rescued the ciliogenesis defect. The successful construction and viral transfer of full-length CEP290 brings us closer to the goal of providing gene- and cell-based therapies for patients affected with this common form of LCA.

  1. Adenovirus gene transfer to amelogenesis imperfecta ameloblast-like cells.

    Directory of Open Access Journals (Sweden)

    Anton V Borovjagin

    Full Text Available To explore gene therapy strategies for amelogenesis imperfecta (AI, a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5 vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3 fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(vβ3/α(vβ5 integrins and heparan sulfate proteoglycans (HSPGs highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.

  2. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  3. NANOPARTICLE AS A NEW GENE TRANSFERRING VECTOR IN SPECIFIC EXPRESSION GENE

    Institute of Scientific and Technical Information of China (English)

    管珩; 李拥军; 郑曰宏; 刘昌伟; 杨菁; 宋存先; 王彭延; 赵三妹; 王宗立; 佘铭鹏

    2002-01-01

    Objective. To evaluate the possibility and efficiency of nanoparticle as a new vector in specific gene transference.Methods. Nanoparticle-DNA complex was prepared with Poly- dl-lactic-co-glycolic acid (PLGA) beating antisense monocyte chemotactic protein-1 (A-MCP-1), a specific expression gene, and the package efficiency, release progress in vitro, and the size of the complex were determined. The possibility of the new vector was evaluated with genomic DNA PCR by transferring gene into cultured smooth muscle cells (SMC), cationic lipids as a control. For study in vivo, jugular vein-to-artery bypass grafting procedures were performed on 20 New Zealand white rabbits, of which 6 grafts were transferred with nanoparticle-A-MCP-1 (200 μg), 6 with A - MCP - 1(200 μ g) by cationic liposome, 4 with LNCX plasmid, and 4 as control. Fourteen days after the grafts were harvested, the expression of A-MCP-1 and its effect on MCP-1 in vein grafts were detected by dot blot, and the morphologic evaluation of grafts was performed.Results. The package efficiency of the nanoparticle-DNA complex was 0. 9%, release progress in vitro lasted 2 weeks, and the size ranged from 150 to 300nm. SMC genomic DNA PCR showed that A-MCP-1 gene could be successfully transfected into cells by nanoparticle. The study in vivo indicated that A-MCP-1 mRNA was expressed in both local gene delivery groups, nanoparticle and liposome, meanwhile, MCP-1 expression in vein grafts was significantly inhibited and neointimal hyperplasia was notably reduced.Conclusion. Nanoparticle can act as a vector to transfect specific gene.

  4. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  5. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Reipurth, R

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods...... embryo (after activation), and 33.6 +/- 3.7% blastocysts per attempted reconstructed embryo. Mean day 7 total blastocyst cell numbers from 5 clone families was 128.1 +/- 15.3. The ongoing pregnancy rate of recipients each receiving two nuclear transfer blastocysts is 3/13 (23.1 recipients pregnant at 5.......8% of cultured oocytes). Subsequent application of the optimized technique for nuclear transfer using nine different granulosa cell primary cultures (cultured in 0.5% serum for 5-12 days) generated 37.6 +/- 3.9% (11 replicates; range, 16.4-58.1 blastocysts per successfully fused and surviving reconstructed...

  6. Simplification of bovine somatic cell nuclear transfer by application of a zona-free manipulation technique

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Reipurth, R

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods.......8% of cultured oocytes). Subsequent application of the optimized technique for nuclear transfer using nine different granulosa cell primary cultures (cultured in 0.5% serum for 5-12 days) generated 37.6 +/- 3.9% (11 replicates; range, 16.4-58.1 blastocysts per successfully fused and surviving reconstructed...... embryo (after activation), and 33.6 +/- 3.7% blastocysts per attempted reconstructed embryo. Mean day 7 total blastocyst cell numbers from 5 clone families was 128.1 +/- 15.3. The ongoing pregnancy rate of recipients each receiving two nuclear transfer blastocysts is 3/13 (23.1 recipients pregnant at 5...

  7. Isolated limb perfusion for local gene delivery: efficient and targeted adenovirus-mediated gene transfer into soft tissue sarcomas

    NARCIS (Netherlands)

    W.K. de Roos; J.H.W. de Wilt (Johannes); M.E. van der Kaaden; E.R. Manusama (Eric); M.W. de Vries; A. Bout; T.L.M. ten Hagen (Timo); D. Valerio (Dinko); A.M.M. Eggermont (Alexander)

    2000-01-01

    textabstractOBJECTIVE: To evaluate the potential of isolated limb perfusion (ILP) for efficient and tumor-specific adenovirus-mediated gene transfer in sarcoma-bearing rats. SUMMARY BACKGROUND DATA: A major concern in adenovirus-mediated gene therapy in cancer is the transfer of ge

  8. Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene.

    Directory of Open Access Journals (Sweden)

    Marco A Coelho

    2013-06-01

    Full Text Available Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1 with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.

  9. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

    Science.gov (United States)

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-03-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.

  10. Integration of organic nanofibers by soft transfer techniques and nanostenciling

    DEFF Research Database (Denmark)

    Tavares, Luciana

    by a roll printing technique that maintains the nanofibers’ integrity and thereby enables their integration onto device platforms. The roll printing method is used to integrate the organic nanofibers in different field-effect transistor platform configurations. Electrical characterization reveals...... nanowires due their excellent and well-behaved electrical properties combined with a decent mechanical strength that enables easy manipulation of these materials without damage. Organic semiconductors based on small molecules have several advantages over inorganic materials including lower cost, flexibility......, and tunability of their properties through chemical synthesis of appropriate molecular building blocks that can self-assemble into crystalline nanostructures. However, such organic nanoaggregates are van der Waals bonded crystals and are therefore more fragile than the covalently bonded inorganic nanowires...

  11. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells

    OpenAIRE

    Holkers, M.; Maggio, I.; Liu, J.; Janssen, J.M.; Miselli, F; Mussolino, C.; Recchia, A; Cathomen, T.; Goncalves, M. A. F. V.

    2012-01-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehi...

  12. Heterodyne technique for measuring the amplitude and phase transfer functions of an optical modulator

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2002-01-01

    In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...

  13. Measurement of the amplitude and phase transfer functions of an optical modulator using a heterodyne technique

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper

    2001-01-01

    We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....

  14. Passive Immunization against HIV/AIDS by Antibody Gene Transfer

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2014-01-01

    Full Text Available Despite tremendous efforts over the course of many years, the quest for an effective HIV vaccine by the classical method of active immunization remains largely elusive. However, two recent studies in mice and macaques have now demonstrated a new strategy designated as Vectored ImmunoProphylaxis (VIP, which involves passive immunization by viral vector-mediated delivery of genes encoding broadly neutralizing antibodies (bnAbs for in vivo expression. Robust protection against virus infection was observed in preclinical settings when animals were given VIP to express monoclonal neutralizing antibodies. This unorthodox approach raises new promise for combating the ongoing global HIV pandemic. In this article, we survey the status of antibody gene transfer, review the revolutionary progress on isolation of extremely bnAbs, detail VIP experiments against HIV and its related virus conduced in humanized mice and macaque monkeys, and discuss the pros and cons of VIP and its opportunities and challenges towards clinical applications to control HIV/AIDS endemics.

  15. The recent transfer of a homing endonuclease gene

    Science.gov (United States)

    Haugen, Peik; Wikmark, Odd-Gunnar; Vader, Anna; Coucheron, Dag H.; Sjøttem, Eva; Johansen, Steinar D.

    2005-01-01

    The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation. PMID:15891115

  16. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Directory of Open Access Journals (Sweden)

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  17. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community.

    Science.gov (United States)

    Tarantal, Alice F; Skarlatos, Sonia I

    2012-11-01

    The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.

  18. Ocular gene transfer in the spotlight: implications of newspaper content for clinical communications.

    Science.gov (United States)

    Benjaminy, Shelly; Bubela, Tania

    2014-07-16

    Ocular gene transfer clinical trials are raising hopes for blindness treatments and attracting media attention. News media provide an accessible health information source for patients and the public, but are often criticized for overemphasizing benefits and underplaying risks of novel biomedical interventions. Overly optimistic portrayals of unproven interventions may influence public and patient expectations; the latter may cause patients to downplay risks and over-emphasize benefits, with implications for informed consent for clinical trials. We analyze the news media communications landscape about ocular gene transfer and make recommendations for improving communications between clinicians and potential trial participants in light of media coverage. We analyzed leading newspaper articles about ocular gene transfer (1990-2012) from United States (n = 55), Canada (n = 26), and United Kingdom (n = 77) from Factiva and Canadian Newsstand databases using pre-defined coding categories. We evaluated the content of newspaper articles about ocular gene transfer for hereditary retinopathies, exploring representations of framing techniques, research design, risks/benefits, and translational timelines. The dominant frame in 61% of stories was a celebration of progress, followed by human-interest in 30% of stories. Missing from the positive frames were explanations of research design; articles conflated clinical research with treatment. Conflicts-of-interest and funding sources were similarly omitted. Attention was directed to the benefits of gene transfer, while risks were only reported in 43% of articles. A range of visual outcomes was described from slowing vision loss to cure, but the latter was the most frequently represented even though it is clinically infeasible. Despite the prominence of visual benefit portrayals, 87% of the articles failed to provide timelines for the commencement of clinical trials or for clinical implementation. Our analysis confirms

  19. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events

    OpenAIRE

    Zhaxybayeva, Olga; Gogarten, J. Peter; Charlebois, Robert L.; Doolittle, W Ford; Papke, R Thane

    2006-01-01

    Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of “embedded quartets” allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of c...

  20. Elements of style: consent form language and the therapeutic misconception in phase 1 gene transfer trials.

    Science.gov (United States)

    Kimmelman, Jonathan; Levenstadt, Aaron

    2005-04-01

    The therapeutic misconception arises wherever human subjects misinterpret the primary purpose of a clinical trial as therapeutic. Such misconceptions are particularly prevalent in trials involving severely ill subjects or novel and well-publicized investigational agents. In order to identify possible sources of the therapeutic misconception in gene transfer trials, 286 phase 1 human gene transfer consent documents were analyzed for their description of purpose, alternatives, and their use of the term gene transfer. We report that 20% of trials fail to explain their purpose as safety and dosage, only 41% of oncology trials identify comfort care as an alternative to participation, and that the term gene therapy is used with twice the frequency of the term gene transfer. Trends and coherence in consent form language were analyzed as well. Our results indicate that consent forms used in gene transfer phase 1 trials often contain language that promotes, or does little to deter, therapeutic misconceptions.

  1. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Science.gov (United States)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  2. [Post-translational ligation and function of dual-vector transferred split CFTR gene].

    Science.gov (United States)

    Zhu, Fu-Xiang; Liu, Ze-Long; Qu, Hui-Ge; Chi, Xiao-Yan

    2010-01-01

    The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

  3. Residual strain evaluation of curved surface by grating-transferring technique and GPA

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the...

  4. The Use of Viral Vectors in Gene Transfer Therapy

    OpenAIRE

    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová

    2016-01-01

    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  5. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    Science.gov (United States)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  6. Persistent gene expression in mouse nasal epithelia following feline immunodeficiency virus-based vector gene transfer.

    Science.gov (United States)

    Sinn, Patrick L; Burnight, Erin R; Hickey, Melissa A; Blissard, Gary W; McCray, Paul B

    2005-10-01

    Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 10(6) transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 10(7) to 10(9) TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (approximately 10(9) TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for approximately 1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity.

  7. An Efficient Low Cost Method for Gene Transfer to T Lymphocytes

    OpenAIRE

    Leonardo Chicaybam; Andressa Laino Sodre; Bianca Azevedo Curzio; Martin Hernan Bonamino

    2013-01-01

    UNLABELLED: Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS: We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucle...

  8. Gene recruitment--a common mechanism in the evolution of transfer RNA gene families.

    Science.gov (United States)

    Wang, Xiujuan; Lavrov, Dennis V

    2011-04-01

    The evolution of alloacceptor transfer RNAs (tRNAs) has been traditionally thought to occur vertically and reflect the evolution of the genetic code. Yet there have been several indications that a tRNA gene could evolve horizontally, from a copy of an alloacceptor tRNA gene in the same genome. Earlier, we provided the first unambiguous evidence for the occurrence of such "tRNA gene recruitment" in nature--in the mitochondrial (mt) genome of the demosponge Axinella corrugata. Yet the extent and the pattern of this process in the evolution of tRNA gene families remained unclear. Here we analyzed tRNA genes from 21 mt genomes of demosponges as well as nuclear genomes of rhesus macaque, chimpanzee and human. We found four new cases of alloacceptor tRNA gene recruitment in mt genomes and eleven cases in the nuclear genomes. In most of these cases we observed a single nucleotide substitution at the middle position of the anticodon, which resulted in the change of not only the tRNA's amino-acid identity but also the class of the amino-acyl tRNA synthetases (aaRSs) involved in amino-acylation. We hypothesize that the switch to a different class of aaRSs may have prevented the conflict between anticodon and amino-acid identities of recruited tRNAs. Overall our results suggest that gene recruitment is a common phenomenon in tRNA multigene family evolution and should be taken into consideration when tRNA evolutionary history is reconstructed.

  9. Asialoglycoprotein receptor and liposome synergistically mediate the gene transfer into primary rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    李崇辉; 温守明; 翟海峰; 孙曼霁

    1999-01-01

    Gene transfer into primary rat hepatocytes was performed by employing cationic liposome as DNA carrier and the specific ligand of hepatic asialoglycoprotein receptor (ASGPR), asialofetuin, as liver-targeting ligand. The resuits showed that asialofetuin, when added to the gene transfer complexes, could significantly increase the hepatocyte transfeetion efficiency, and alleviate the cellular toxicity of Lipofectin. Several synthetic ligands of ASGPR (galactosyl albumin) could also increase the transfection efficiency of hepatocyte like asialofetuin. It was proved that ASGPR and cationic liposome could synergistically mediate the gene transfer into primary rat hepatoeytes. This novel gene delivery system provided a safer, more simple and efficient gene transfer method for primary hepatocytes, and showed prospecting application in hepatic gene therapy.

  10. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina

    2006-01-01

    -old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month...... were evaluated by realtime quantitative RT-PCR and histochemical detection of alkaline phosphatase activity, respectively. RESULTS: Non-viral gene delivery methods resulted in transient eGFP expression by less than 2% of the cells. Using high titer rAAV-based vector up to 90% of the cells were...

  11. Evaluation of the accuracy of different transfer impression techniques for multiple implants

    OpenAIRE

    Júlio César Brigolini de Faria; Laís Regiane Silva-Concílio; Ana Christina Claro Neves; Milton Edson Miranda; Marcelo Lucchesi Teixeira

    2011-01-01

    The aim of this study was to evaluate the accuracy of three implant transfer impression techniques. Four groups (n = 5) were defined, according to the technique: TC - tapered copings without splint; SC - square copings without splint; SCS - square copings splinted with dental floss and acrylic resin, and CG (control group) - master model with four external hexagonal implants and a superstructure. Individual trays and polyether were used for the impression. All casts were checked for their fit...

  12. Estimating the extent of horizontal gene transfer in metagenomic sequences

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2008-03-01

    Full Text Available Abstract Background Although the extent of horizontal gene transfer (HGT in complete genomes has been widely studied, its influence in the evolution of natural communities of prokaryotes remains unknown. The availability of metagenomic sequences allows us to address the study of global patterns of prokaryotic evolution in samples from natural communities. However, the methods that have been commonly used for the study of HGT are not suitable for metagenomic samples. Therefore it is important to develop new methods or to adapt existing ones to be used with metagenomic sequences. Results We have created two different methods that are suitable for the study of HGT in metagenomic samples. The methods are based on phylogenetic and DNA compositional approaches, and have allowed us to assess the extent of possible HGT events in metagenomes for the first time. The methods are shown to be compatible and quite precise, although they probably underestimate the number of possible events. Our results show that the phylogenetic method detects HGT in between 0.8% and 1.5% of the sequences, while DNA compositional methods identify putative HGT in between 2% and 8% of the sequences. These ranges are very similar to these found in complete genomes by related approaches. Both methods act with a different sensitivity since they probably target HGT events of different ages: the compositional method mostly identifies recent transfers, while the phylogenetic is more suitable for the detections of older events. Nevertheless, the study of the number of HGT events in metagenomic sequences from different communities shows a consistent trend for both methods: the lower amount is found for the sequences of the Sargasso Sea metagenome, while the higher quantity is found in the whale fall metagenome from the bottom of the ocean. The significance of these observations is discussed. Conclusion The computational approaches that are used to find possible HGT events in complete

  13. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    OpenAIRE

    Boothby, Thomas C; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Messina, David N.; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Despite fascinating scientists for over 200 years, little at the molecular level is known about tardigrades, microscopic animals resistant to extreme stresses. We present the genome of a tardigrade. Approximately one-sixth of the genes in the tardigrade genome were found to have been acquired through horizontal transfer, a proportion nearly double the proportion of previous known cases of extreme horizontal gene transfer (HGT) in animals. Foreign genes have impacted the composition of the tar...

  14. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene.

    Science.gov (United States)

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-07-27

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese's complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes.

  15. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Directory of Open Access Journals (Sweden)

    Izhal Abdul Halin

    2009-11-01

    Full Text Available The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region.

  16. Non-Linearity in Wide Dynamic Range CMOS Image Sensors Utilizing a Partial Charge Transfer Technique

    Science.gov (United States)

    Shafie, Suhaidi; Kawahito, Shoji; Halin, Izhal Abdul; Hasan, Wan Zuha Wan

    2009-01-01

    The partial charge transfer technique can expand the dynamic range of a CMOS image sensor by synthesizing two types of signal, namely the long and short accumulation time signals. However the short accumulation time signal obtained from partial transfer operation suffers of non-linearity with respect to the incident light. In this paper, an analysis of the non-linearity in partial charge transfer technique has been carried, and the relationship between dynamic range and the non-linearity is studied. The results show that the non-linearity is caused by two factors, namely the current diffusion, which has an exponential relation with the potential barrier, and the initial condition of photodiodes in which it shows that the error in the high illumination region increases as the ratio of the long to the short accumulation time raises. Moreover, the increment of the saturation level of photodiodes also increases the error in the high illumination region. PMID:22303133

  17. Electroless-plating technique for fabricating thin-wall convective heat-transfer models

    Science.gov (United States)

    Avery, D. E.; Ballard, G. K.; Wilson, M. L.

    1984-01-01

    A technique for fabricating uniform thin-wall metallic heat-transfer models and which simulates a Shuttle thermal protection system tile is described. Two 6- by 6- by 2.5-in. tiles were fabricated to obtain local heat transfer rates. The fabrication process is not limited to any particular geometry and results in a seamless thin-wall heat-transfer model which uses a one-wire thermocouple to obtain local cold-wall heat-transfer rates. The tile is relatively fragile because of the brittle nature of the material and the structural weakness of the flat-sided configuration; however, a method was developed and used for repairing a cracked tile.

  18. Energy Transfer in Isolated LHC Ⅱ Studied by Femtosecond Pump-Probe Technique

    Institute of Scientific and Technical Information of China (English)

    杨毅; 郭立俊; 刘源; 刘伟民; 朱荣毅; 钱士雄; 徐春和

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem Ⅱ (LHC Ⅱ) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638 nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC Ⅱ is in the time scale of 230 fs. While with the excitation of Chl-a at 678 nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC Ⅱ or in different subunits, or due to change of molecular conformation.

  19. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  20. Embryo quality and transcervical technique are not the limiting factors in donkey embryo transfer outcome.

    Science.gov (United States)

    Panzani, D; Rota, A; Crisci, A; Kindahl, H; Govoni, N; Camillo, F

    2012-02-01

    Embryo transfer (ET) in the donkey resulted in a very low recipient pregnancy rates. The aim of these studies was to investigate if nonsurgical transfer techniques or donkey embryo quality affect donkey recipient pregnancy failure. In Study 1, the impact of transfer technique was investigated by evaluating if cervical catheterization is associated with prostaglandin release and suppression of luteal function and if donkey recipients would become pregnant after nonsurgical transfer of horse embryos. Four jennies, from 5 to 8 d after ovulation, were submitted to a sham transcervical ET and to evaluation of PGFM and progesterone plasma concentrations. Five 8 d horse embryos were nonsurgically transferred into synchronized donkey recipients (HD). Cervical stimulation caused a transient PGF(2α) release in two of four jennies in the absence of a significant decrease in progesterone plasma concentration. All transferred horse embryos resulted in pregnancies in the jenny recipients. In Study 2, donkey embryo viability was investigated by 1.2 meters, 6-diamidino-2-phenylindole (DAPI) staining of 10 embryos and by the transfer of 6 and 12 donkey embryos in synchronized mare (DH) and donkey (DD) recipients, respectively, of known fertility. The estimated proportion of dead cells in DAPI stained embryos was 0.9% (range 0-3.9%) and below what is considered normal (20%) for horse embryos. Three of six and six of 12 of the DH and DD ETs, respectively resulted in pregnancies at 14 and 25 d (50%), a higher pregnancy rate than previously reported after DD ET. The overall results of this study suggest that the transcervical technique for ET and donkey embryo viability are not the reasons for the low pregnancy rates that have previously been described in donkey recipients, and that nonsurgical ET in donkeys can result in acceptable results.

  1. Sublimation-assisted graphene transfer technique based on small polyaromatic hydrocarbons

    Science.gov (United States)

    Chen, Mingguang; Stekovic, Dejan; Li, Wangxiang; Arkook, Bassim; Haddon, Robert C.; Bekyarova, Elena

    2017-06-01

    Advances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates. An ultraclean graphene transfer method under mild conditions is highly desired. In this article, we report a naphthalene-assisted graphene transfer technique which provides a reliable route to residue-free transfer of graphene to both hard and flexible substrates. The quality of the transferred graphene was characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. Field effect transistors, based on the naphthalene-transfered graphene, were fabricated and characterized. This work has the potential to broaden the applications of CVD graphene in fields where ultraclean graphene and mild graphene transfer conditions are required.

  2. Ultrasound-enhanced gene transfer: Comparison of contrast agents and ultrasound modalities in vitro and in vivo

    Science.gov (United States)

    Pislaru, Sorin V.; Rajiv, Gulati; Pislaru, Cristina; Kinnick, Randall R.; Singh, Ripudamanjit; Greenleaf, James F.; Simari, Robert D.

    2002-11-01

    Ultrasound (US) enhancement of plasmid-based gene transfer is an emerging technique. Our hypothesis was that two contrast agents (Optison and PESDA), and two US exposure modalities (dedicated continuous wave system and diagnostic scanner) may have different effects. Luciferase plasmid with or without contrast agent was added to vascular smooth muscle cells and endothelial cells, followed by US exposure. Luciferase activity was measured 24 h later. US exposure consistently induced higher transfection rates than all controls. PESDA was superior to Optison in both cell lines. In vitro, continuous wave and diagnostic US were not significantly different. In vivo, Lux and PESDA were injected into skeletal muscles of rats (IM or intra-arterial) followed or not by US exposure. In separate animals, adenovirus encoding for luciferase was injected IM and was not followed by US exposure. Gene transfer efficacy was 8-10 fold higher with US and PESDA than with plasmid alone, but 2 fold lower than with adenovirus. However, as opposed to adenovirus, US-enhanced plasmid gene transfer was highly localized to the injected muscle, with no expression at distal sites. Our results support the hypothesis that contrast agents and exposure modalities are not equivalent with regard to gene transfer efficacy.

  3. The Use of Viral Vectors in Gene Transfer Therapy

    Directory of Open Access Journals (Sweden)

    A. Dziaková

    2016-05-01

    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  4. Direct gene transfer into rat articular cartilage by in vivo electroporation.

    Science.gov (United States)

    Grossin, Laurent; Cournil-Henrionnet, Christel; Mir, Lluis M; Liagre, Bertrand; Dumas, Dominique; Etienne, Stéphanie; Guingamp, Corinne; Netter, Patrick; Gillet, Pierre

    2003-05-01

    To establish a system for efficient direct in vivo gene targeting into rat joint, we have evaluated a strategy of gene transfer by means of the delivery of external electric pulses (EP) to the knee after intra-articular injection of a reporter gene (GFP). Rats were killed at various times after the electro gene-therapy to analyze GFP gene expression by immunohistochemistry. GFP staining was detected in the superficial, middle, and deep zones of the patellar cartilage at days 2 and 9, and thereafter only in the deep zone (months 1 and 2). The average percentage of GFP-positive cells was estimated at 30% both one and 2 months after the gene transfer. Moreover, no pathologic change caused by the EP was detected in the cartilage. The level and stability of the long-term GFP expression found in this study demonstrate the feasibility of a treatment of joint disorders (inflammatory or degenerative, focal or diffuse) using electric gene transfer.

  5. Gene Transfer to Dendritic Cells Induced a Protective Immunity against Melanoma

    Institute of Scientific and Technical Information of China (English)

    Pat Metharom; Kay A.O. Ellem; Ming Q. Wei

    2005-01-01

    Lentiviral vectors have shown promises for efficient gene transfer to dividing as well as nondividing cells. In this study, we explored lentiviral vector-mediated, the entire mTRP-2 gene transfer and expression in dendritic cells (DCs). Adoptive transfer of DCs-expressing mTRP-2 (DC-HR'CmT2) into C57BL/6 mouse was also assessed.Dendritic cells were harvested from bone marrow and functional DCs were proved by allogeneic mixed lymphocyte reaction. Lentiviral vectors were produced by transient transfection of 293T cells. Transduction of DCs was proved by marker gene expression and PCR and RT-PCR amplification. Implantation of the transduced DCs, depletion of immune cells as well as the survival of the mice after tumour challenge were investigated. High efficiency of gene transfer into mature DCs was achieved. The high level expression of the functional antigen (TRP-2) and induction of protective immunity by adoptive transfer of TRP-2 gene modified DCs were demonstrated. In vivo study showed a complete protection of mice from further melanoma cell challenge. In comparison, only 83% of mice survived when mTRP-2 peptide-pulsed DCs were administered, suggesting the generation of specific protection. Together, these results demonstrated the usefulness of this gene transfer to DC approach for immunotherapy of cancer and indicated that using tumour associated antigens (TAAs) for gene transfer may be potentially beneficial for the therapy of melanoma.

  6. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.

    Science.gov (United States)

    Leikoski, Niina; Fewer, David P; Sivonen, Kaarina

    2009-02-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  7. Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria ▿ †

    OpenAIRE

    Leikoski, Niina; Fewer, David P.; Sivonen, Kaarina

    2008-01-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  8. Assessment and Improvement of Gene Transfer into Human Hematopoietic Stem Cells

    NARCIS (Netherlands)

    D.A. Breems (Dimitri)

    1997-01-01

    textabstractThe application of somatic gene transfer as a potential treatment in human disease has progressed from speculation to reality in a short time [4,20,21,84,85,87,105,117,174]. In May 1989 the first clinical marker gene protocol took place [145], followed by the first gene therapy protocol

  9. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Institute of Scientific and Technical Information of China (English)

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  10. Leu452His mutation in lipoprotein lipase gene transfer associated with hypertriglyceridemia in mice in vivo.

    Directory of Open Access Journals (Sweden)

    Kaiyue Sun

    Full Text Available Mutated mouse lipoprotein lipase (LPL containing a leucine (L to histidine (H substitution at position 452 was transferred into mouse liver by hydrodynamics-based gene delivery (HD. Mutated-LPL (MLPL gene transfer significantly increased the concentrations of plasma MLPL and triglyceride (TG but significantly decreased the activity of plasma LPL. Moreover, the gene transfer caused adiposis hepatica and significantly increased TG content in mouse liver. To understand the effects of MLPL gene transfer on energy metabolism, we investigated the expression of key functional genes related to energy metabolism in the liver, epididymal fat, and leg muscles. The mRNA contents of hormone-sensitive lipase (HSL, adipose triglyceride lipase (ATGL, fatty acid-binding protein (FABP, and uncoupling protein (UCP were found to be significantly reduced. Furthermore, we investigated the mechanism by which MLPL gene transfer affected fat deposition in the liver, fat tissue, and muscle. The gene expression and protein levels of forkhead Box O3 (FOXO3, AMP-activated protein kinase (AMPK, and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α were found to be remarkably decreased in the liver, fat and muscle. These results suggest that the Leu452His mutation caused LPL dysfunction and gene transfer of MLPL in vivo produced resistance to the AMPK/PGC-1α signaling pathway in mice.

  11. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  12. Conjugal gene transfer between bacteria in soil and rhizosphere.

    NARCIS (Netherlands)

    Smit, E.

    1994-01-01

    The extent of possible conjugal transfer of recombinant DNA present in genetically engineered microorganisms (GEMs) was studied. Occurrence of transfer of recombinant DNA is only one of the concerns regarding the use of GEMs (Chapter 2). Other potential hazards preventing the application of GEMs for

  13. Feline immunodeficiency virus and retrovirus-mediated adventitial ex vivo gene transfer to rabbit carotid artery using autologous vascular smooth muscle cells.

    Science.gov (United States)

    Kankkonen, Hanna M; Turunen, Mikko P; Hiltunen, Mikko O; Lehtolainen, Pauliina; Koponen, Jonna; Leppänen, Pia; Turunen, Anna-Mari; Ylä-Herttuala, Seppo

    2004-03-01

    We have developed an ex vivo gene transfer technique to rabbit arterial wall using autologous smooth muscle cells (SMCs). SMCs were harvested from rabbit ear artery, transduced in vitro with vesicular stomatitis virus G-glycoprotein pseudotyped retrovirus or feline immunodeficiency virus (FIV) and returned to the adventitial surface of the carotid artery using a periadventitial silicone collar or collagen sheet placed around the artery. Beta-galactosidase (lacZ) and human apolipoprotein E3 (apoE3) cDNAs were used as transgenes. After retrovirus-mediated gene transfer of lacZ the selected cells implanted with high efficiency and expressed lacZ marker gene at a very high level 7 and 14 days after the operation. The level of lacZ expression decreased thereafter but was still detectable 12 weeks after the gene transfer, and was exclusively localized to the site of cell implantation inside the collar. Utilizing FIV vector expressing apoE3, low levels of apoE were measured from serum collected from a low-density lipoprotein receptor deficient Watanabe heritable hyperlipidemic rabbits 1 month after the gene transfer. The physiological effect of apoE expression was detected as transiently elevated serum cholesterol levels. The results indicate that the model can be used for high efficiency local gene transfer in arteries, e.g. during vascular surgery. The model is also valuable for studying expression, stability and safety of new gene transfer vectors and their expression products in vivo.

  14. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates

    Directory of Open Access Journals (Sweden)

    Marrero Luis

    2003-09-01

    Full Text Available Abstract Background Gene transfer into the amniotic fluid using recombinant adenovirus vectors was shown previously to result in high efficiency transfer of transgenes into the lungs and intestines. Adenovirus mediated in utero gene therapy, however, resulted in expression of the transgene for less than 30 days. Recombinant adenovirus associated viruses (rAAV have the advantage of maintaining the viral genome in daughter cells thus providing for long-term expression of transgenes. Methods Recombinant AAV2 carrying green fluorescent protein (GFP was introduced into the amniotic sac of fetal rodents and nonhuman primates. Transgene maintenance and expression was monitor. Results Gene transfer resulted in rapid uptake and long-term gene expression in mice, rats, and non-human primates. Expression and secretion of the reporter gene, GFP, was readily demonstrated within 72 hours post-therapy. In long-term studies in rats and nonhuman primates, maintenance of GFP DNA, protein expression, and reporter gene secretion was documented for over one year. Conclusions Because only multipotential stem cells are present at the time of therapy, these data demonstrated that in utero gene transfer with AAV2 into stem cells resulted in long-term systemic expression of active transgene roducts. Thus, in utero gene transfer via the amniotic fluid may be useful in treatment of gene disorders.

  15. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    OpenAIRE

    Marzieh Alikhasi; Hakimeh Siadat; Elaheh Beyabanaki; Mohammad Javad Kharazifard

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials.Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray ...

  16. A new computational method for the detection of horizontal gene transfer events.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at http://cbcsrv.watson.ibm.com/HGT/.

  17. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Directory of Open Access Journals (Sweden)

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  18. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    Science.gov (United States)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  19. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    Science.gov (United States)

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.

    2016-01-01

    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  20. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques.

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-26

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND's size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  1. Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques

    Science.gov (United States)

    Bolker, Asaf; Saguy, Cecile; Kalish, Rafi

    2014-09-01

    The transfer doping of diamond surfaces has been applied in various novel two-dimensional electronic devices. Its extension to nanodiamonds (ND) is essential for ND-based applications in many fields. In particular, understanding the influence of the crystallite size on transfer doping is desirable. Here, we report the results of a detailed study of the electronic energetic band structure of single, isolated transfer-doped nanodiamonds with nanometric resolution using a combination of scanning tunneling spectroscopy and Kelvin force microscopy measurements. The results show how the band gap, the valence band maximum, the electron affinity and the work function all depend on the ND’s size and nanoparticle surface properties. The present analysis, which combines information from both scanning tunneling spectroscopy and Kelvin force microscopy, should be applicable to any nanoparticle or surface that can be measured with scanning probe techniques.

  2. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials.Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE and 10 regular-body polyvinyl siloxane (PVS impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM. Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM. These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05.Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (P<0.001. Also, the open tray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05(.Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction.Keywords: Dental Implants; Dental Impression Materials, Dental Impression Technique

  3. Intrapleural 'outside-in' gene therapy: therapeutics for organs of the chest via gene transfer to the pleura.

    Science.gov (United States)

    Heguy, Adriana; Crystal, Ronald G

    2005-10-01

    The pleural space is an attractive site for using viral vectors to deliver gene products to the lung parenchyma, other thoracic structures and the systemic circulation. The advantages of intrapleural gene transfer using viral vectors include: (i) easy accessibility; (ii) large surface area; (iii) ability to provide high concentrations of secreted gene products to chest structures; (iv) low risk of detrimental effects of possible vector-induced inflammation compared with intravascular delivery; and (v) because it is local, lower vector doses can be used to deliver therapeutic genes to thoracic structures than less efficient systemic routes. Examples of pleural gene transfer include the use of adenovirus vectors to treat mesothelioma by transiently expressing genes that encode toxic proteins, immunomodulatory molecules or anti-angiogenesis factors. Intrapleural delivery of adeno-associated viral vectors represents an efficient strategy to treat alpha1-antitrypsin (alpha1AT) deficiency, achieving high lung and systemic therapeutic levels of alpha1AT. Intrapleural delivery of gene transfer vectors holds promise for the treatment of diseases requiring transient, localized gene expression, as well as sustained expression of genes to correct hereditary disorders requiring localized or systemic expression of the therapeutic protein.

  4. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer

    Indian Academy of Sciences (India)

    Luis Boto

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  5. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon

    2015-12-22

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method made it possible to avoid the solvent compatibility problem that was typically encountered in successive coating of polymeric multilayer by solution processing. F8BT and MEH-PPV were used for electron transporting layer (ETL) and for emissive layer, respectively. Current-voltage-luminance characteristics and luminescence efficiency results showed that the insertion of ETL by floating-off film-transfer technique followed by proper heat treatment resulted in a significant improvement in PLED operation due to its electron-transporting and hole-blocking abilities.

  6. Application of the zona-free manipulation technique to porcine somatic nuclear transfer

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Holm, P

    2001-01-01

    The recent demonstration of a successful zona-free manipulation technique for bovine somatic nuclear transfer (NT) that is both simpler and less labor intensive is of considerable benefit to advance the applications of this technology. Here, we describe that this method is also applicable...... that could conceivably contribute to halted development in a high proportion of embryos. The results indicate that the zona-free manipulation technique can be successfully applied to pig somatic NT. Although such zona-free early cleavage stage embryos cannot be transferred to recipients at present...... to porcine somatic NT. Porcine cumulus oocyte complexes were matured in TCM-199 medium before sequential removal of the cumulus and zonae. Zona-free oocytes were bisected using a microknife, and the halves containing the metaphase plate (as determined by Hoechst 33342 staining) were discarded. Each half...

  7. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    Science.gov (United States)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  8. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.

    Science.gov (United States)

    Carlson, Andrew; Bowen, Audrey M; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2012-10-09

    Transfer printing represents a set of techniques for deterministic assembly of micro-and nanomaterials into spatially organized, functional arrangements with two and three-dimensional layouts. Such processes provide versatile routes not only to test structures and vehicles for scientific studies but also to high-performance, heterogeneously integrated functional systems, including those in flexible electronics, three-dimensional and/or curvilinear optoelectronics, and bio-integrated sensing and therapeutic devices. This article summarizes recent advances in a variety of transfer printing techniques, ranging from the mechanics and materials aspects that govern their operation to engineering features of their use in systems with varying levels of complexity. A concluding section presents perspectives on opportunities for basic and applied research, and on emerging use of these methods in high throughput, industrial-scale manufacturing. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA-mediated gene transfer in plant protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    U, Zang Kual; Riu, Key Zung; So, In Sup; Hong, Kyung Ae [Cheju National University, Cheju (Korea, Republic of)

    1994-12-31

    The neomycin phosphotransferase II gene(NPT-II) was introduced into geranium (Pelargonium zonale hybrids) protoplasts by using PEG or electroporation method. The presence of the introduced DNA in the protoplasts and the expressions of the gene in the transformed cells were examined. The presence of the NPT-II DNA in the protoplasts were detected by polymerase chain reaction. The expressions of NPT-II gene in the transformed cells were confirmed by the NPT-II assay. (author)

  10. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  11. Heat transfer monitoring by means of the hot wire technique and finite element analysis software.

    Science.gov (United States)

    Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E

    2014-01-01

    It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.

  12. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  13. In silico Analysis of the Potential Infection Mechanisms of Magnaporthe grisea from Horizontal Gene Transfer Hypothesis

    Institute of Scientific and Technical Information of China (English)

    Chunyang Li; Ying Wang; Hao Peng; Hejiao Bian; Mingwei Min; Longfei Chen; Qian Liu; Jinku Bao

    2009-01-01

    Horizontal gene transfer(HGT)has long been considered as a principal force for an organism to gain novel genes in genome evolution. Homology search, phylogenetic analysis and nucleotide composition analysis are three major objective approaches to arguably determine the occurrence and directionality of HGT. Here, 21 genes that possess the potential to horizontal transfer were acquired from the whole genome of Magnaporthe grisea according to annotation, among which three can-didate genes(corresponding protein accession numbers are EAA55123, EAA47200 and EAA52136)were selected for further analysis. According to BLAST homology results, we subsequently conducted phylogenetic analysis of the three candidate HGT genes. Moreover, nucleotide composition analysis was conducted to further validate these HGTs. In addition, the functions of the three candidate genes were searched in COG database. Consequently, we conclude that the gene encoding protein EAA55123 is transferred from Clostridium perfringens. Another HGT event is between EAA52136 and a certain metazoan's corresponding gene, but the direction remains uncertain. Yet, EAA47200 is not a transferred gene.

  14. Accuracy of Implant Position Transfer and Surface Detail Reproduction with Different Impression Materials and Techniques

    Science.gov (United States)

    Alikhasi, Marzieh; Siadat, Hakimeh; Kharazifard, Mohammad Javad

    2015-01-01

    Objectives: The purpose of this study was to compare the accuracy of implant position transfer and surface detail reproduction using two impression techniques and materials. Materials and Methods: A metal model with two implants and three grooves of 0.25, 0.50 and 0.75 mm in depth on the flat superior surface of a die was fabricated. Ten regular-body polyether (PE) and 10 regular-body polyvinyl siloxane (PVS) impressions with square and conical transfer copings using open tray and closed tray techniques were made for each group. Impressions were poured with type IV stone, and linear and angular displacements of the replica heads were evaluated using a coordinate measuring machine (CMM). Also, accurate reproduction of the grooves was evaluated by a video measuring machine (VMM). These measurements were compared with the measurements calculated on the reference model that served as control, and the data were analyzed with two-way ANOVA and t-test at P= 0.05. Results: There was less linear displacement for PVS and less angular displacement for PE in closed-tray technique, and less linear displacement for PE in open tray technique (Ptray technique showed less angular displacement with the use of PVS impression material. Detail reproduction accuracy was the same in all the groups (P>0.05). Conclusion: The open tray technique was more accurate using PE, and also both closed tray and open tray techniques had acceptable results with the use of PVS. The choice of impression material and technique made no significant difference in surface detail reproduction. PMID:27252761

  15. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.; Kaleko, M.; Gelinas, R.E.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitates an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.

  16. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    Science.gov (United States)

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.

  17. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane.

    Directory of Open Access Journals (Sweden)

    Gideon Hen

    Full Text Available The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV, into the chorioallantoic membrane (CAM of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP or recombinant alpha-melanocyte-stimulating hormone (α-MSH genes, driven by the cytomegalovirus (CMV promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP nick end labeling (TUNEL assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA, and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.

  18. Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae.

    Science.gov (United States)

    Urbanczyk, Henryk; Ast, Jennifer C; Kaeding, Allison J; Oliver, James D; Dunlap, Paul V

    2008-05-01

    Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2

  19. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression.

    Science.gov (United States)

    Katz, Michael G; Swain, JaBaris D; Fargnoli, Anthony S; Bridges, Charles R

    2010-12-01

    Effective gene therapy for heart failure has not yet been achieved clinically. The aim of this study is to quantitatively assess the cardiac isolation efficiency of the molecular cardiac surgery with recirculating delivery (MCARD™) and to evaluate its efficacy as a means to limit collateral organ gene expression. 10(14) genome copies (GC) of recombinant adeno-associated viral vector 6 encoding green fluorescent protein under control of the cytomegalovirus promoter was delivered to the nine arrested sheep hearts. Blood samples were assessed using real-time quantitative polymerase chain reaction (RT QPCR). Collateral organ gene expression was assessed at four-weeks using immunohistochemical staining. The blood vector GC concentration in the cardiac circuit during complete isolation trended from 9.59±0.73 to 9.05±0.65 (log GC/cm(3)), and no GC were detectable in the systemic circuit (P800-fold (P99% isolation efficiency. Conversely, incomplete isolation resulted in equalization of vector GC concentration in the circuits, leading to robust collateral organ gene expression. MCARD™ is an efficient, clinically translatable myocardial delivery platform for cardiac specific gene therapy. The cardiac surgical techniques utilized are critically important to limit collateral organ gene expression.

  20. Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    Lambertsen, L.M.; Molin, Søren; Kroer, N.;

    2004-01-01

    The conjugative IncP-9 plasmid pWW0 (TOL) carries transfer genes, many of whose functions can be predicted from sequence similarities to the well-studied IncW and IncP-1 plasmids, and that are clustered with the replication and maintenance genes of the plasmid core. In this study we show that the...

  1. Lateral transfer of eukaryotic ribosomal RNA genes: an emerging concern for molecular ecology of microbial eukaryotes.

    Science.gov (United States)

    Yabuki, Akinori; Toyofuku, Takashi; Takishita, Kiyotaka

    2014-07-01

    Ribosomal RNA (rRNA) genes are widely utilized in depicting organismal diversity and distribution in a wide range of environments. Although a few cases of lateral transfer of rRNA genes between closely related prokaryotes have been reported, it remains to be reported from eukaryotes. Here, we report the first case of lateral transfer of eukaryotic rRNA genes. Two distinct sequences of the 18S rRNA gene were detected from a clonal culture of the stramenopile, Ciliophrys infusionum. One was clearly derived from Ciliophrys, but the other gene originated from a perkinsid alveolate. Genome-walking analyses revealed that this alveolate-type rRNA gene is immediately adjacent to two protein-coding genes (ubc12 and usp39), and the origin of both genes was shown to be a stramenopile (that is, Ciliophrys) in our phylogenetic analyses. These findings indicate that the alveolate-type rRNA gene is encoded on the Ciliophrys genome and that eukaryotic rRNA genes can be transferred laterally.

  2. Car transfer and wheelchair loading techniques in independent drivers with paraplegia

    Directory of Open Access Journals (Sweden)

    Lisa Lighthall Haubert

    2015-09-01

    Full Text Available Car transfers and wheelchair (WC loading are crucial for independent community participation in persons with complete paraplegia from spinal cord injury, but are complex, physically demanding, and known to provoke shoulder pain. This study aimed to describe techniques and factors influencing car transfer and WC loading for individuals with paraplegia driving their own vehicles and using their personal WCs. Sedans were the most common vehicle driven (59%. Just over half (52% of drivers place their right leg only into the vehicle prior to transfer. Overall, the leading hand was most frequently placed on the driver’s seat (66% prior to transfer and the trailing hand was most often place on the WC seat (48%. Vehicle height influenced leading hand placement but not leg placement such that driver’s of higher profile vehicles were more likely to place their hand on the driver’s seat than those who drove sedans. Body lift time was negatively correlated with level of injury and age and positively correlated with vehicle height and shoulder abduction strength. Drivers who transferred with their leading hand on the steering wheel had significantly higher levels of shoulder pain than those who placed their hand on the driver’s seat or overhead. The majority of participants used both hands (62% to load their WC frame and, overall, most loaded their fame into the back (62% vs. the front seat. Sedan drivers were more likely to load their frame into the front seat than drivers of higher profile vehicles (53% vs. 17%. Average time to load the WC frame (10.7 seconds was 20% of the total WC loading time and was not related to shoulder strength, frame weight or demographic characteristics. Those who loaded their WC frame into the back seat had significantly weaker right shoulder internal rotators. Understanding car transfers and WC loading in independent drivers is crucial to prevent shoulder pain and injury and preserve community participation.

  3. Gene Transfer from Targeted Liposomes to Specific Lymphoid Cells by Electroporation

    Science.gov (United States)

    Machy, Patrick; Lewis, Florence; McMillan, Lynette; Jonak, Zdenka L.

    1988-11-01

    Large unilamellar liposomes, coated with protein A and encapsulating the gene that confers resistance to mycophenolic acid, were used as a model system to demonstrate gene transfer into specific lymphoid cells. Protein A, which selectively recognizes mouse IgG2a antibodies, was coupled to liposomes to target them specifically to defined cell types coated with IgG2a antibody. Protein A-coated liposomes bound human B lymphoblastoid cells preincubated with a mouse IgG2a anti-HLA monoclonal antibody but failed to adhere to cells challenged with an irrelevant (anti-H-2) antibody of the same isotype or to cells incubated in the absence of antibody. Transfection of target cells bound to protein A-coated liposomes was achieved by electroporation. This step was essential since only electroporated cells survived in a selective medium containing mycophenolic acid. Transfection efficiency with electroporation and targeted liposomes was as efficient as conventional procedures that used unencapsulated plasmids free in solution but, in the latter case, cell selectivity is not possible. This technique provides a methodology for introducing defined biological macromolecules into specific cell types.

  4. Optimization of ectopic gene expression in skeletal muscle through DNA transfer by electroporation

    Directory of Open Access Journals (Sweden)

    Latour Mickey

    2004-05-01

    Full Text Available Abstract Background Electroporation (EP is a widely used non-viral gene transfer method. We have attempted to develop an exact protocol to maximize DNA expression while minimizing tissue damage following EP of skeletal muscle in vivo. Specifically, we investigated the effects of varying injection techniques, electrode surface geometry, and plasmid mediums. Results We found that as the amount of damage increased in skeletal muscle in response to EP, the level of β-galactosidase (β-gal expression drastically decreased and that there was no evidence of β-gal expression in damaged fibers. Two specific types of electrodes yielded the greatest amount of expression. We also discovered that DNA uptake in skeletal muscle following intra-arterial injection of DNA was significantly enhanced by EP. Finally, we found that DMSO and LipoFECTAMINE™, common enhancers of DNA electroporation in vitro, had no positive effect on DNA electroporation in vivo. Conclusions When injecting DNA intramuscularly, a flat plate electrode without any plasmid enhancers is the best method to achieve high levels of gene expression.

  5. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    Science.gov (United States)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  6. ENHANCED ANTITUMOR EFFECTS OF SUICIDE GENE THERAPY BY SIMULTANEOUS TRANSFER OF GMCSF GENE IN LEUKEMIA-BEARING MICE

    Institute of Scientific and Technical Information of China (English)

    Ju Dianwen; Cao Xuetao; Yu Yizhi; Tao Qun; Wang Baomei; Wan Tao

    1998-01-01

    In the present report, antitumor effect of combined transfer of suicide gene and cytokine gene was studied.Adenovirus engineered to express E. Coli. Cytosine deaminase (AdCD) and/or adenovirus engineered toexpress murine granulocyte-macrophage colonystimulating factor (AdGMCSF) were used for the treatment of leukemia-bearing mice. The mice were inoculated s.c. With FBL-3 erythroleukemia cells and 3days later received intratumoral injection of AdCD in the presence or absence of AdGMCSF followed by intraperitoneal 5-fluorocytosine (5FC) treatment. The results demonstrated that mice received combined therapy of AdCD/5FC and AdGMCSF developed tumors most slowly and survived much longer when compared with mice treated with AdCD/5FC alone, AdGMCSF alone, AdlacZ/5FC or PBS. Combined transfer of CD gene and GM-CSF gene achieved higher specific CTL activity than control therapies. Pathological examination illustrated that the tumor mass showed obvious necrosis and inflammatory cell infiltration in mice after combined therapy. The results demonstrated that combined transfer of suicide gene and cytokine gene could synergistically inhibit the growth of leukemia in mice and induce antitumor immunity of the host. The combination therapy might be a potential approach for cancer gene therapy.

  7. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2014-05-01

    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  8. [Advances in research on radioiodine therapy of carcinoma mediated by gene transfer technology].

    Science.gov (United States)

    Mu, Da; Kuang, Anren

    2010-10-01

    Radioiodine therapy of carcinoma could be mediated by transferring the genes which participate in the process of iodine metabolism in thyroid. The correlative genes are sodium/iodine symporter gene, thyroid peroxidase gene and the specific thyroid transcription factors, and others. The objective gene can specifically express in carcinoma by inserting the tissue-specific promoter/enhancer upstream of them, so radioiodine could be used to treat varied carcinomas. The radioiodine uptake in carcinoma cells was obviously increased and the radioiodine therapy of carcinoma was effective after those genes had expressed in carcinoma cells. The main problem was that the effective half-time of radioiodine in cells was too short to produce the ideal effect of radioiodine therapy. Moreover, 211At and 188Re could be transferred by sodium/iodine symporter and they could be used to treat the carcinoma that is capable of radioiodine uptake.

  9. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis.

    Science.gov (United States)

    Nakajima, Keisuke; Yaoita, Yoshio

    2015-01-16

    Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs) and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3'UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3'UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf). In contrast, TALEN mRNAs without this 3'UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT) stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  10. Application of PEI-Modified Magnetic Nanoparticles as Gene Transfer Vector for the Genetic Modification of Animals

    Directory of Open Access Journals (Sweden)

    Jinhui Cui

    2012-01-01

    Full Text Available To evaluate the performance of the magnetic nanoparticles as gene transfer vector for breeding transgenic animals, we investigated a new approach to deliver green fluorescent protein (GFP gene to porcine kidney 15 (PK-15 and porcine embryonic fibroblast (PEF cells using PEI-modified magnetic nanoparticles as gene vector. The morphology of the nanoparticles and nanoparticle/DNA complexes was characterized using scanning electron microscopy. It was found that the surface of the particles becomes coarse and rough with increased average diameter, which implied the effective conjugating between nanoparticles with DNA. The zeta potential of nanoparticle/DNA complexes drops down from +29.4 mV to +23.1 mV comparing with pure nanoparticles. Agarose gel electrophoresis experiments show that DNA plasmids can be protected effectively against degradation of exonuclease and endonuclease. The efficiency of gene delivery was affected by the mass ratio of nanoparticle/DNA and the amount of nanoparticle/DNA complexes. We confirm that the most optimal mass ratio of nanoparticle/DNA is 1  :  1 by conducting a series of experiments. This work provides important experimental basis for the application of the magnetic nanoparticles on gene delivery to porcine somatic cells, which is significant for the achieving of breeding new transgenic cloned pigs by using somatic cell nuclear transfer technique.

  11. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  12. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer

    Science.gov (United States)

    Shaw, Vince; Fatuzzo, Marco

    Increases in the performance demands of turbo machinery has stimulated the development many new technologies over the last half century. With applications that spread beyond marine, aviation, and power generation, improvements in gas turbine technologies provide a vast impact. High temperatures within the combustion chamber of the gas turbine engine are known to cause an increase in thermal efficiency and power produced by the engine. However, since operating temperatures of these engines reach above 1000 K within the turbine section, the need for advances in material science and cooling techniques to produce functioning engines under these high thermal and dynamic stresses is crucial. As with all research and development, costs related to the production of prototypes can be reduced through the use of computational simulations. By making use of Ansys Simulation Software, the effects of turbine cooling techniques were analyzed. Simulation of the Effects of Cooling Techniques on Turbine Blade Heat Transfer.

  13. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  14. Fundamental study on gene transfer utilizing magnetic force and jet injector

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Nakagami, H.; Akiyama, Y.; Nishjima, S. [Osaka University, Osaka (Japan)

    2017-03-15

    Recently, DNA vaccination is attracting attentions as a new therapeutic method for lifestyle diseases and autoimmune diseases. However, its clinical applications are limited because a safe and efficient gene transfer method has not been established yet. In this study, a new method of gene transfer was proposed which utilizes the jet injection and the magnetic transfection. The jet injection is a method to inject medical liquid by momentary high pressure without needle. The injected liquid diffuses in the bio tissue and the endocytosis is considered to be improved by the diffusion. The magnetic transfection is a method to deliver the conjugates of plasmid DNA and magnetic particles to the desired site by external magnetic field. It is expected that jet injection of the conjugates causes slight membrane disruptions and the traction of the conjugates by magnetic field induces the efficient gene transfer. In conclusion, the possibility of improvement of the gene expression by the combination of jet injection and magnetic transfection was confirmed.

  15. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  16. Simple sample transfer technique by internally expanded desorptive flow for needle trap devices.

    Science.gov (United States)

    Eom, In-Yong; Pawliszyn, Janusz

    2008-07-01

    Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having 'side holes', GC carrier gas enters a 'side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a 'side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n-alkane mixture (C6-C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n-alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of approximately 1 Torr at 20 degrees C showed approximately 1% carryover at the moderate thermal desorption condition (0.5 min at 250 degrees C).

  17. Evidence for Horizontal Gene Transfer as Origin of Putrescine Production in Oenococcus oeni RM83▿

    Science.gov (United States)

    Marcobal, Ángela; de las Rivas, Blanca; Moreno-Arribas, M. Victoria; Muñoz, Rosario

    2006-01-01

    The nucleotide sequence of a 17.2-kb chromosomal DNA fragment containing the odc gene encoding ornithine decarboxylase has been determined in the putrescine producer Oenococcus oeni RM83. This DNA fragment contains 13 open reading frames, including genes coding for five transposases and two phage proteins. This description might represent the first evidence of a horizontal gene transfer event as the origin of a biogenic amine biosynthetic locus. PMID:17056681

  18. Fluid dynamics and convective heat transfer in impinging jets through implementation of a high resolution liquid crystal technique

    Science.gov (United States)

    Kim, K.; Wiedner, B.; Camci, C.

    1993-01-01

    A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.

  19. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Directory of Open Access Journals (Sweden)

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  20. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.

    Science.gov (United States)

    Cobbs, Cassidy; Heath, Jeremy; Stireman, John O; Abbot, Patrick

    2013-08-01

    Carotenoids are conjugated isoprenoid molecules with many important physiological functions in organisms, including roles in photosynthesis, oxidative stress reduction, vision, diapause, photoperiodism, and immunity. Until recently, it was believed that only plants, microorganisms, and fungi were capable of synthesizing carotenoids and that animals acquired them from their diet, but recent studies have demonstrated that two arthropods (pea aphid and spider mite) possess a pair of genes homologous to those required for the first step of carotenoid biosynthesis. Absent in all other known animal genomes, these genes appear to have been acquired by aphids and spider mites in one or several lateral gene transfer events from a fungal donor. We report the third case of fungal carotenoid biosynthesis gene homologs in an arthropod: flies from the family Cecidomyiidae, commonly known as gall midges. Using phylogenetic analyses we show that it is unlikely that lycopene cyclase/phytoene synthase and phytoene desaturase homologs were transferred singly to an ancient arthropod ancestor; instead we propose that genes were transferred independently from related fungal donors after divergence of the major arthropod lineages. We also examine variation in intron placement and copy number of the carotenoid genes that may underlie function in the midges. This trans-kingdom transfer of carotenoid genes may represent a key innovation, underlying the evolution of phytophagy and plant-galling in gall midges and facilitating their extensive diversification across plant lineages.

  1. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Science.gov (United States)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  2. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    Science.gov (United States)

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  3. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  4. Color fusion of SAR and FLIR images using a natural color transfer technique

    Institute of Scientific and Technical Information of China (English)

    Shaoyuan Sun; Zhongliang Jing; Zhenhua Li; Gang Liu

    2005-01-01

    Fusion of synthetic aperture radar (SAR) and forward looking infrared (FLIR) images is an important subject for aerospace and sensor surveillance. This paper presents a scheme to achieve a natural color image based on the contours feature of SAR and the target region feature of FLIR so that the overall scene recognition and situational awareness can be improved. The SAR and FLIR images are first decomposed into steerable pyramids, and the contour maps in the SAR image and the region maps in the FLIR image are calculated. The contour and region features are fused at each level of the steerable pyramids. A color image is then formed by transferring daytime color to the monochromic image by using the natural color transfer technique. Experimental results show that the proposed method is effective in providing a color fusion of SAR and FLIR images.

  5. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets

    DEFF Research Database (Denmark)

    Liu, Ying; Li, Juan; Løvendahl, Peter

    2015-01-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial ins...

  6. Gene transfer during surgical procedures with molecular surgical suture

    Directory of Open Access Journals (Sweden)

    Dan Huang

    2009-06-01

    Full Text Available Over the last decades, there has been an explosion of interest in plasmid DNA for gene therapy with reports of their efficacy in the fight against cancer, vascular diseases, and inherited diseases caused by specific gene defects (Srivastava, 2003. DNA plasmids present several advantages over the use of recombinant viruses concerning their production and safety issues. Plasmid DNA vectors can be constructed easily and economically, and they are free of size constraints imposed by viral packaging, obviating the need for an infectious vector and lessening the likelihood of toxicity and immunogenicity (Davis, 1993. Plasmids have a relative low cost, long shelf life and allow repetitive administration of the therapeutic gene without generating an immune response against the delivery vector (Donnelly, 2003. Finally, plasmids can be injected directly into tissues, such as heart (Sarkar, 2002, muscle (Neumeister, 2001, Dan, 2000 and tumors (De Marco, 2003, Sasaki, 2002.

  7. Fabrication of deterministic nanostructure assemblies with sub-nanometer spacing using a nanoimprinting transfer technique.

    Science.gov (United States)

    Barcelo, Steven J; Kim, Ansoon; Wu, Wei; Li, Zhiyong

    2012-07-24

    Deterministic patterning or assembly of nanoparticles often requires complex processes that are not easily incorporated into system architectures of arbitrary design. We have developed a technique to fabricate deterministic nanoparticle assemblies using simple and inexpensive nanoimprinting equipment and procedures. First, a metal film is evaporated onto flexible polymer pillars made by nanoimprinting. The resulting metal caps on top of the pillars can be pulled into assemblies of arbitrary design by collapsing the pillars in a well-controlled manner. The nanoparticle assemblies are then transferred from the pillars onto a new substrate via nanoimprinting with the aid of either cold welding or chemical bonding. Using this technique, a variety of patterned nanoparticle assemblies of Au and Ag with a critical dimension less than 2 nm were fabricated and transferred to silicon-, glass-, and metal-coated substrates. Separating the nanostructure assembly from the final architecture removes significant design constraints from devices incorporating nanoparticle assemblies. The application of this process as a technique for generating surface-enhanced Raman spectroscopy substrates is presented.

  8. Multi-center transferability of a breath-hold T2 technique for myocardial iron assessment

    Directory of Open Access Journals (Sweden)

    Chan Godfrey CF

    2008-02-01

    Full Text Available Abstract Background Cardiac iron overload is the leading cause of death in thalassemia major and is usually assessed using myocardial T2* measurements. Recently a cardiovascular magnetic resonance (CMR breath-hold T2 sequence has been developed as a possible alternative. This cardiac T2 technique has good interstudy reproducibility, but its transferability to different centres has not yet been investigated. Methods and Results The breath-hold black blood spin echo T2 sequence was installed and validated on 1.5T Siemens MR scanners at 4 different centres across the world. Using this sequence, 5–10 thalassemia patients from each centre were scanned twice locally within a week for local interstudy reproducibility (n = 34 and all were rescanned within one month at the standardization centre in London (intersite reproducibility. The local interstudy reproducibility (coefficient of variance and mean difference were 4.4% and -0.06 ms. The intersite reproducibility and mean difference between scanners were 5.2% and -0.07 ms. Conclusion The breath-hold myocardial T2 technique is transferable between Siemens scanners with good intersite and local interstudy reproducibility. This technique may have value in the diagnosis and management of patients with iron overload conditions such as thalassemia.

  9. Transfer of tetracycline resistance genes with aggregation substance in food-borne Enterococcus faecalis.

    Science.gov (United States)

    Choi, Jong-Mi; Woo, Gun-Jo

    2015-04-01

    Enterococcus faecalis has the ability to conjugate with the aid of aggregation substance (AS) and inducible sex pheromones to exchange genetic elements in food matrix. To evaluate the food safety condition and the transferable factor, 250 tetracycline-resistant food-borne E. faecalis were collected in Korea. Among the isolates, a majority of tetracycline-resistant isolates (49.6 %) harbored both the tet(M) and tet(L) genes together, followed by tet(M) (19.6 %), and tet(L) (6.8 %) alone. Also, we found the combination of tet(L)/tet(M)/tet(O) or tet(M)/tet(O). We identified two tet(S) genes including the isolate carrying tet(M) + tet(S) genes. Additionally, most E. faecalis were positive for cpd and ccf (both 96.8 %) followed by cob (57.2 %). Through mating experiments, we confirmed E. faecalis possessing the Int-Tn gene and/or any AS gene successfully transferred tet genes to JH2-2 E. faecalis, whereas neither E. faecalis carrying AS genes nor the Int-Tn gene showed the conjugation. Pulsed-field gel electrophoresis results supported a distinct pattern, implying transfer of genetic information. Our study revealed a high occurrence of tetracycline resistance genes in E. faecalis from various foods. The widespread dissemination of tetracycline resistance genes would be promoted to transfer tetracycline resistance genes by pheromone-mediated conjugation systems.

  10. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    Science.gov (United States)

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  11. Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas.

    Science.gov (United States)

    Zhang, Chi; Hampp, Rüdiger; Nehls, Uwe

    2005-01-01

    Fine roots of forest trees form together with certain soil fungi symbiotic structures (ectomycorrhizas), where fungal hyphae are in intimate contact with plant cells. Due to root cell degeneration, plant DNA is released and could be taken up by the fungus. The possibility that horizontal gene transfer might result in a risk for the environment should be evaluated before a massive release of genetically engineered trees into nature occurs, even though only a few convincing examples of horizontal gene transfer are known. Transgenic poplars containing a construct of the Streptomyces hygroscopicus bar gene under the control of the Cochliobolus heterostrophus GPD (glyceraldehyde-3-phosphate dehydrogenase) promoter were generated by Agrobacterium-mediated transformation. The functionality of this construct in the ectomycorrhizal model fungus Amanita muscaria was previously verified by protoplast-based fungal transformation. 35,000 ectomycorrhizas, formed between transgenic poplars and non-transgenic A. muscaria hyphae, were isolated and transferred to selective agar plates. Putative herbicide-resistant fungal colonies were obtained after the first round of selection. However, none of these colonies survived a transfer onto fresh selection medium, nor did they contain the bar gene, indicating that no horizontal gene transfer from poplar to A. muscaria occurred during symbiosis under axenic conditions. However, since ectomycorrhizas are associated under natural conditions with viruses, bacteria and other fungi, these additional associations should be evaluated in future.

  12. Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus.

    Directory of Open Access Journals (Sweden)

    Carmen Unzu

    Full Text Available The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.

  13. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer

    NARCIS (Netherlands)

    van Beusechem, VW; van Rijswijk, ALCT; van Es, HHG; Haisma, HJ; Pinedo, HM; Gerritsen, WR

    2000-01-01

    Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be fulfil

  14. Smelt was the likely beneficiary of an antifreeze gene laterally transferred between fishes

    Directory of Open Access Journals (Sweden)

    Graham Laurie A

    2012-09-01

    Full Text Available Abstract Background Type II antifreeze protein (AFP from the rainbow smelt, Osmerus mordax, is a calcium-dependent C-type lectin homolog, similar to the AFPs from herring and sea raven. While C-type lectins are ubiquitous, type II AFPs are only found in a few species in three widely separated branches of teleost fishes. Furthermore, several other non-homologous AFPs are found in intervening species. We have previously postulated that this sporadic distribution has resulted from lateral gene transfer. The alternative hypothesis, that the AFP evolved from a lectin present in a shared ancestor and that this gene was lost in most species, is not favored because both the exon and intron sequences are highly conserved. Results Here we have sequenced and annotated a 160 kb smelt BAC clone containing a centrally-located AFP gene along with 14 other genes. Quantitative PCR indicates that there is but a single copy of this gene within the smelt genome, which is atypical for fish AFP genes. The corresponding syntenic region has been identified and searched in a number of other species and found to be devoid of lectin or AFP sequences. Unlike the introns of the AFP gene, the intronic sequences of the flanking genes are not conserved between species. As well, the rate and pattern of mutation in the AFP gene are radically different from those seen in other smelt and herring genes. Conclusions These results provide stand-alone support for an example of lateral gene transfer between vertebrate species. They should further inform the debate about genetically modified organisms by showing that gene transfer between ‘higher’ eukaryotes can occur naturally. Analysis of the syntenic regions from several fishes strongly suggests that the smelt acquired the AFP gene from the herring.

  15. Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium.

    Science.gov (United States)

    Ferrari, S; Kitson, C; Farley, R; Steel, R; Marriott, C; Parkins, D A; Scarpa, M; Wainwright, B; Evans, M J; Colledge, W H; Geddes, D M; Alton, E W

    2001-09-01

    Nonviral vectors have been shown to be a safe and valid alternative to recombinant viruses for gene therapy of cystic fibrosis (CF). Nevertheless, gene transfer efficiency needs to be increased before clinical efficacy is likely in man. One barrier to increased efficacy is normal airway mucus. Using an ex vivo model of sheep tracheal epithelium, we show that this barrier can, in part, be overcome by treatment with the mucolytic agents, Nacystelyn or N-acetylcysteine using either a cationic lipid or a cationic polymer as the gene transfer agent. Further, in vivo application of either Nacystelyn or the anticholinergic glycopyrrolate, both clinically used agents, resulted in increased reporter gene expression in the mouse lung, but no significant correction of the bioelectric defect in CF null mice. These results, whilst unlikely to be sufficient in themselves to achieve clinically relevant gene therapy, may be a further useful step in the attainment of this goal.

  16. Scale-model charge-transfer technique for measuring enhancement factors

    Science.gov (United States)

    Kositsky, J.; Nanevicz, J. E.

    1991-01-01

    Determination of aircraft electric field enhancement factors is crucial when using airborne field mill (ABFM) systems to accurately measure electric fields aloft. SRI used the scale model charge transfer technique to determine enhancement factors of several canonical shapes and a scale model Learjet 36A. The measured values for the canonical shapes agreed with known analytic solutions within about 6 percent. The laboratory determined enhancement factors for the aircraft were compared with those derived from in-flight data gathered by a Learjet 36A outfitted with eight field mills. The values agreed to within experimental error (approx. 15 percent).

  17. Application of the zona-free manipulation technique to porcine somatic nuclear transfer

    DEFF Research Database (Denmark)

    Booth, P J; Tan, S J; Holm, P

    2001-01-01

    The recent demonstration of a successful zona-free manipulation technique for bovine somatic nuclear transfer (NT) that is both simpler and less labor intensive is of considerable benefit to advance the applications of this technology. Here, we describe that this method is also applicable...... 53.5 +/- 6.6% of the blastomeres in such embryos. In conclusion, blastocyst yield was independent of activation efficiency and was likely reduced by insufficient nuclear remodeling, reprogramming, imprinting, or other effects. The data also suggest that fragmentation was a considerable problem...

  18. Combined targeting of adenoviruses to integrins and epidermal growth factor receptors increases gene transfer into primary glioma cells and spheroids

    NARCIS (Netherlands)

    Grill, J; Van Beusechem, VW; Van de Valk, P; Dirven, CMF; Leonhart, A; Pherai, DS; Haisma, HJ; Pinedo, HM; Curiel, DT; Gerritsen, WR

    Adenoviral-mediated gene transfer is suboptimal in human glioma and limits in vivo gene therapy approaches. There is a need for targeted vectors able to enhance gene transfer into the tumor as well as to lower the viral load in the surrounding normal tissues. We evaluated primary human tumor samples

  19. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  20. Direct phylogenetic evidence for lateral transfer of elongation factor-like gene.

    Science.gov (United States)

    Kamikawa, Ryoma; Inagaki, Yuji; Sako, Yoshihiko

    2008-05-13

    Genes encoding elongation factor-like (EFL) proteins, which show high similarity to elongation factor-1alpha (EF-1alpha), have been found in phylogenetically distantly related eukaryotes. The sporadic distribution of "EFL-containing" lineages within "EF-1alpha-containing" lineages indirectly, but strongly, suggests lateral gene transfer as the principal driving force in EFL evolution. However, one of the most critical aspects in the above hypothesis, the donor lineages in any putative cases of lateral EFL gene transfer, remained unclear. In this study, we provide direct evidence for lateral transfer of an EFL gene through the analyses of 10 diatom EFL genes. All diatom EFL homologues tightly clustered in phylogenetic analyses, suggesting acquisition of the exogenous EFL gene early in diatom evolution. Our survey additionally identified Thalassiosira pseudonana as a eukaryote bearing EF-1alpha and EFL genes and secondary EFL gene loss in Phaeodactylum tricornutum, the complete genome of which encodes only the EF-1alpha gene. Most importantly, the EFL phylogeny recovered a robust grouping of homologues from diatoms, the cercozoan Bigelowiella natans, and the foraminifer Planoglabratella opecularis, with the diatoms nested within the Bigelowiella plus Planoglabratella (Rhizaria) grouping. The particular relationships recovered are further consistent with two characteristic sequence motifs. The best explanation of our data analyses is an EFL gene transfer from a foraminifer to a diatom, the first case in which the donor-recipient relationship was clarified. Finally, based on a reverse transcriptase quantitative PCR assay and the genome information of Thalassiosira and Phaeodactylum, we propose the loss of elongation factor function in Thalassiosira EF-1alpha.

  1. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  2. Adenovirus-mediated gene transfer to tumor cells.

    Science.gov (United States)

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  3. Rational promoter selection for gene transfer into cardiac cells

    NARCIS (Netherlands)

    Maass, A; Langer, SJ; Oberdorf-Maass, S; Bauer, S; Neyses, L; Leinwand, LA

    2003-01-01

    Cardiomyocytes (CMCs) are extremely difficult to transfect with non-viral techniques, but they are efficiently infected by adenoviruses. The most commonly used promoters to drive protein expression in cardiac myocytes are of viral origin, since they are believed to be constitutively active and minim

  4. Optimizing viral and non-viral gene transfer methods for genetic modification of porcine mesenchymal stem cells

    DEFF Research Database (Denmark)

    Stiehler, Maik; Duch, Mogens R.; Mygind, Tina

    2006-01-01

    INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors and cytoki......INTRODUCTION: Mesenchymal stem cells (MSCs) provide an excellent source of pluripotent progenitor cells for tissue-engineering applications due to their proliferation capacity and differentiation potential. Genetic modification of MSCs with genes encoding tissue-specific growth factors...... viral and non-viral ex vivo gene delivery systems with respect to gene transfer efficiency, maintenance of transgene expression, and safety issues using primary porcine MSCs as target cells. MATERIALS AND METHODS: MSCs were purified from bone marrow aspirates from the proximal tibiae of four 3-month......-old Danish landrace pigs by Ficoll step gradient separation and polystyrene adherence technique. Vectors expressing enhanced green fluorescent protein (eGFP) and human bone morphogenetic protein-2 (BMP-2) were transferred to the cells by different non-viral methods and by use of recombinant adeno...

  5. An interative solution of an integral equation for radiative transfer by using variational technique

    Science.gov (United States)

    Yoshikawa, K. K.

    1973-01-01

    An effective iterative technique is introduced to solve a nonlinear integral equation frequently associated with radiative transfer problems. The problem is formulated in such a way that each step of an iterative sequence requires the solution of a linear integral equation. The advantage of a previously introduced variational technique which utilizes a stepwise constant trial function is exploited to cope with the nonlinear problem. The method is simple and straightforward. Rapid convergence is obtained by employing a linear interpolation of the iterative solutions. Using absorption coefficients of the Milne-Eddington type, which are applicable to some planetary atmospheric radiation problems. Solutions are found in terms of temperature and radiative flux. These solutions are presented numerically and show excellent agreement with other numerical solutions.

  6. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    Science.gov (United States)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  7. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    Science.gov (United States)

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  8. Efficient transfer of a VA-SWNT film by a flip-over technique.

    Science.gov (United States)

    Kim, Myung Jong; Nicholas, Nolan; Kittrell, Carter; Haroz, Erik; Shan, Hongwei; Wainerdi, T J; Lee, Sungbae; Schmidt, Howard K; Smalley, Richard E; Hauge, Robert H

    2006-07-26

    A transfer of a VA-SWNT film onto a conductive surface has been achieved using a novel "flip-over" technique. The top surface of a VA-SWNT film was covered by entangled bundles in an as-grown sample. When a VA-SWNT film was flipped over, an optically flat surface consisting of the tips of very well aligned, clean bundles from the bottom of the film are exposed while the top of the film is well contacted to the substrate. Thus, we expect this technique to provide us with means to prepare carbon nanotube electrodes for device applications such as super capacitors, thermo-electric devices, fuel cells, and field emission filaments.

  9. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells.

    Science.gov (United States)

    Palella, T D; Silverman, L J; Schroll, C T; Homa, F L; Levine, M; Kelley, W N

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  10. Herpes simplex virus-mediated human hypoxanthine-guanine phosphoribosyltransferase gene transfer into neuronal cells

    Energy Technology Data Exchange (ETDEWEB)

    Palella, T.D.; Silverman, L.J.; Schroll, C.T.; Homa, F.L.; Levine, M.; Kelley, W.N.

    1988-01-01

    The virtually complete deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) results in a devastating neurological disease, Lesch-Nyhan syndrome. Transfer of the HPRT gene into fibroblasts and lymphoblasts in vitro and into hematopoietic cells in vivo has been accomplished by other groups with retroviral-derived vectors. It appears to be necessary, however, to transfer the HPRT gene into neuronal cells to correct the neurological dysfunction of this disorder. The neurotropic virus herpes simplex virus type 1 has features that make it suitable for use as a vector to transfer the HPRT gene into neuronal tissue. This report describes the isolation of an HPRT-deficient rat neuroma cell line, designated B103-4C, and the construction of a recombinant herpes simplex virus type 1 that contained human HPRT cDNA. These recombinant viruses were used to infect B103-4C cells. Infected cells expressed HPRT activity which was human in origin.

  11. Adenovirus-mediated heme oxygenase-1 gene transfer into rabbit ocular tissues.

    Science.gov (United States)

    Abraham, N G; da Silva, J L; Lavrovsky, Y; Stoltz, R A; Kappas, A; Dunn, M W; Schwartzman, M L

    1995-10-01

    Heme oxygenase-1 (HO-1) is a stress protein induced up to 100-fold within a few hours after exposure to oxidative stress, and it has been shown to counteract oxidative injury induced by ultraviolet light or free radicals. The current study was undertaken to determine whether the HO-1 gene can be introduced into adult rabbit ocular tissues by microinjection of a recombinant replication-deficient adenovirus human HO-1 cDNA (Adv-HHO). Human HO-1 gene was used for transfection studies to differentiate endogenous from transfected HO. The purified Adv-HHO construct (10(8) pfu/ml) was mixed with lipofectamine and microinjected into the anterior chamber, vitreous cavity, and subretinal space of New Zealand rabbit eyes. After 2 weeks, total RNA was extracted from different ocular tissues, reverse transcription-polymerase chain reaction was performed using specific human HO-1 primers, and amplification products were subjected to Southern hybridization. Transfection with the Adv-HHO construct into rabbit corneal epithelial cells in culture resulted in a functional expression of the human HO-1 gene; the human HO-1 mRNA was detected, and enzyme activity increased threefold. Human HO-1 mRNA was detected in the retina after microinjection of the Adv-HHO construct into the subretinal space. Microinjection into the vitreous resulted in HO-1 mRNA expression in the corneal endothelium, iris, lens, and retina; after intracameral injection of the Adv-HHO construct, human HO-1 mRNA was detected in corneal epithelium and endothelium, ciliary body, lens, and iris. Regardless of the injection site, transfected human HO-1 mRNA was undetectable in tissues outside the eye, that is, brain, liver, and kidney. These results demonstrated a tissue-selective functional transfer of the human HO-1 gene into rabbit ocular tissues in vivo. This technique may be a promising means for delivering HO-1 gene in vivo as a protective mechanism against oxidative stress that contributes to the pathogenesis of

  12. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  13. Gene transfer for inherited metabolic disorders of the liver: immunological challenges.

    Science.gov (United States)

    Gordts, Stephanie C; Van Craeyveld, Eline; Jacobs, Frank; De Geest, Bart

    2011-01-01

    Hepatocytes are a key target for gene transfer directed at correction of inborn errors of metabolism. The theoretical potential of hepatocyte-directed gene transfer contrasts with the hurdles for clinical translation of this technology. Innate immune responses following gene transfer are initiated by recognition of pathogen-associated molecular patterns by pattern recognition receptors like Toll-like receptors. Adaptive immune responses may constitute the most significant hurdle for efficient gene transfer. Besides the challenge imposed by adaptive immune responses against the vector and the potential problem of pre-existing immunity, immune responses against the transgene product may also constitute an obstacle. The liver is a tolerogenic organ. Naive T cells encounter liver antigens initially in the liver, rather than in lymphoid tissue. Lymph nodes and the spleen are anatomical compartments that provide a particular microarchitecture and microenvironment for the induction of immunity. In contrast, antigen presentation in the liver takes place in a completely different microarchitecture and microenvironment. This is a key aspect of the hepatic adaptive immune tolerance induction. Consistent with the tolerogenic nature of the liver microenvironment, the risk of antibody formation against the transgene product may be limited in the setting of hepatocyte-directed gene transfer and specifically by restricting transgene expression to hepatocytes by use of hepatocyte-specific expression cassettes. However, it is unclear to which extent animal experimental data following gene transfer predict immune responses in humans. Extrapolations from animals to humans are required but should be performed with sufficient insight into the dramatic species differences of the immune system.

  14. An Efficient Low Cost Method for Gene Transfer to T Lymphocytes

    Science.gov (United States)

    Chicaybam, Leonardo; Sodre, Andressa Laino; Curzio, Bianca Azevedo; Bonamino, Martin Hernan

    2013-01-01

    Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. Aims We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. Results This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41–59%), the hard to transfect murine T cells (mean 38%, 36–42% for C57/BL6 strain) and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR) mediated gain of function for target cell lysis. Conclusions We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs. PMID:23555950

  15. An efficient low cost method for gene transfer to T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Leonardo Chicaybam

    Full Text Available UNLABELLED: Gene transfer to T lymphocytes has historically relied on retro and lentivirus, but recently transposon-based gene transfer is rising as a simpler and straight forward approach to achieve stable transgene expression. Transfer of expression cassettes to T lymphocytes remains challenging, being based mainly on commercial kits. AIMS: We herein report a convenient and affordable method based on in house made buffers, generic cuvettes and utilization of the widely available Lonza nucleofector II device to promote efficient gene transfer to T lymphocytes. RESULTS: This approach renders high transgene expression levels in primary human T lymphocytes (mean 45%, 41-59%, the hard to transfect murine T cells (mean 38%, 36-42% for C57/BL6 strain and human Jurkat T cell line. Cell viability levels after electroporation allowed further manipulations such as in vitro expansion and Chimeric Antigen Receptor (CAR mediated gain of function for target cell lysis. CONCLUSIONS: We describe here an efficient general protocol for electroporation based modification of T lymphocytes. By opening access to this protocol, we expect that efficient gene transfer to T lymphocytes, for transient or stable expression, may be achieved by an increased number of laboratories at lower and affordable costs.

  16. Enhancement of heat transfer in Czochralski growth of silicon crystals with a chemical cooling technique

    Science.gov (United States)

    Ding, Junling; Liu, Lijun; Zhao, Wenhan

    2017-06-01

    The cost of producing single-crystalline silicon with the Czochralski method can be reduced by promoting the crystal size and/or crystal pulling rate. However, more latent heat of solidification needs to be released from the melt-crystal (m-c) interface during the crystal growth process. In this study, the C-CO2 chemical endothermic reaction is proposed as a novel and efficient cooling technique to solve this problem. Compared with the conventional gas cooling method, C-CO2 endothermic reaction method can significantly enhance the heat transfer in the crystal at the m-c interface. It was found that the heat transfer is more enhanced with a chemical reaction of smaller activation energy, and the m-c interface becomes flatter. The influence of the carbon concentration in the chemical reactive gas flow on the heat removal in the crystal at the m-c interface is also investigated. The cooling effect is significantly increased with the increase in the carbon concentration when it is small. However, when the carbon concentration in the reactive gas is high, the cooling effect just increases slightly. The research demonstrates that the proposed chemical endothermic reaction is a promising cooling technique to be applied in CZ-Si crystal growth with large size/high pulling rate.

  17. Evaluation of the accuracy of different transfer impression techniques for multiple implants.

    Science.gov (United States)

    Faria, Júlio César Brigolini de; Silva-Concílio, Laís Regiane; Neves, Ana Christina Claro; Miranda, Milton Edson; Teixeira, Marcelo Lucchesi

    2011-01-01

    The aim of this study was to evaluate the accuracy of three implant transfer impression techniques. Four groups (n = 5) were defined, according to the technique: TC - tapered copings without splint; SC - square copings without splint; SCS - square copings splinted with dental floss and acrylic resin, and CG (control group) - master model with four external hexagonal implants and a superstructure. Individual trays and polyether were used for the impression. All casts were checked for their fit into the master superstructure; for this, all four screws were placed in the implants. Digital photos were taken and images were analyzed using UTHSCSA ImageTool software. Statistical analyses were performed using one-way analysis of variance and Student's t test (p < 0.05). The means and standard deviation were (µm): CG = 2.03 ± 0.00, TC = 14.74 ± 3.41, SC = 12.08 ± 2.56, and SCS = 6.51 ± 0.09. The control group was found to be statistically different from the TC and SC groups. Within the limitations of this study, all groups presented clinically acceptable standard gap values, and the SCS group showed no statistical difference in relation to the CG (control group), demonstrating more accuracy and fidelity to transfer implants.

  18. Visualization of Available Power Transfer Capability in a Transmission System Using Morphological Techniques

    Directory of Open Access Journals (Sweden)

    S. U. Prabha

    2009-01-01

    Full Text Available A morphological decimation technique has been proposed and implemented to analyze the available power transfer capability in a transmission power network. The method creates a graphical image of the power network with thickness of the lines proportional to their respective rated megavolt ampere (MVA capacity. Based on ac load flow solution, another image was created to represent the power flow in Megawatt (MW between the buses. Proper scaling procedure has been discussed for the construction of graphical images. The novelty of this research lies in the application of mathematical morphological techniques for decimating the created images. The image created for the MW capacities of the power lines were decimated into categories and grouped into different colors for better visualization. The multi-color image is superimposed on the input image which is created for the MVA capacity of the network. The proposed method has been tested on an IEEE test system. The results from the present approach can help the planner and operator in a power station, to get a better visualization of the power network. This is the first time this kind of multi-color visualization is presented and it can be used to find the optimal path for power transfer from one bus to another.

  19. Evaluation of the accuracy of different transfer impression techniques for multiple implants

    Directory of Open Access Journals (Sweden)

    Júlio César Brigolini de Faria

    2011-04-01

    Full Text Available The aim of this study was to evaluate the accuracy of three implant transfer impression techniques. Four groups (n = 5 were defined, according to the technique: TC - tapered copings without splint; SC - square copings without splint; SCS - square copings splinted with dental floss and acrylic resin, and CG (control group - master model with four external hexagonal implants and a superstructure. Individual trays and polyether were used for the impression. All casts were checked for their fit into the master superstructure; for this, all four screws were placed in the implants. Digital photos were taken and images were analyzed using UTHSCSA ImageTool software. Statistical analyses were performed using one-way analysis of variance and Student’s t test (p < 0.05. The means and standard deviation were (µm: CG = 2.03 ± 0.00, TC = 14.74 ± 3.41, SC = 12.08 ± 2.56, and SCS = 6.51 ± 0.09. The control group was found to be statistically different from the TC and SC groups. Within the limitations of this study, all groups presented clinically acceptable standard gap values, and the SCS group showed no statistical difference in relation to the CG (control group, demonstrating more accuracy and fidelity to transfer implants.

  20. RETROVIRAL MEDIATED EFFICIENT TRANSFER ANDEXPRESSION OF MULTIPLE DRUG RESISTANCE GENE TO HUMAN LEUKEMIC CELLS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate retroviral-mediated transfer and expression of human multidrug resistance (MDR) gene MDR1 in leukemic cells. Methods: Human myeloid cells, K562 and NB4, were infected by MDR retrovirus from the producer PA317/HaMDR, and the resistant cells were selected with cytotoxic drug. The transfer and expression of MDR1 gene was analyzed by using polymerase chain reaction (PCR), flow cytometry (FCM) and semisolid colonies cultivation. Results: The resistant cells, K562/MDR and NB4/MDR, in which integration of the exogenous MDR1 gene was confirmed by PCR analysis, displayed a typical MDR phenotype. The expression of MDR1 transgene was detected on truncated as well as full-length transcripts. Moreover, the resistant cells were P-glycoprotein postiive at 78.0% to 98.7% analyzed with FCM. The transduction efficieny in K562 cells was studied on suspension cultures and single-cell colonies. The transduction was more efficient in coculture system (67.9%~ 72.5%) than in supernatant system (33.1%~ 46.8%), while growth factors may improve the efficiency. Conclusion: Retrovirus could allow a functional transfer and expression of MDR1 gene in human leukemia cells, and MDR1 might act as a dominant selectable gene for coexpression with the genes of interest in gene therapy.

  1. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences.

    Science.gov (United States)

    Wagner, Andreas; de la Chaux, Nicole

    2008-11-01

    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.

  2. Hyperactive piggyBac Gene Transfer in Human Cells and In Vivo

    OpenAIRE

    Doherty, Joseph E.; Huye, Leslie E; Yusa, Kosuke; Zhou, Liqin; Craig, Nancy L; Wilson, Matthew H.

    2011-01-01

    We characterized a recently developed hyperactive piggyBac (pB) transposase enzyme [containing seven mutations (7pB)] for gene transfer in human cells in vitro and to somatic cells in mice in vivo. Despite a protein level expression similar to that of native pB, 7pB significantly increased the gene transfer efficiency of a neomycin resistance cassette transposon in both HEK293 and HeLa cultured human cells. Native pB and SB100X, the most active transposase of the Sleeping Beauty transposon sy...

  3. The effect of mucolytic agents on gene transfer across a CF sputum barrier in vitro.

    Science.gov (United States)

    Stern, M; Caplen, N J; Browning, J E; Griesenbach, U; Sorgi, F; Huang, L; Gruenert, D C; Marriot, C; Crystal, R G; Geddes, D M; Alton, E W

    1998-01-01

    Trials of gene transfer for cystic fibrosis (CF) are currently underway. However, direct application to the airways may be impeded by the presence of airway secretions. We have therefore assessed the effect of CF sputum on the expression of the reporter gene beta-galactosidase complexed with the cationic liposome DC-Chol/DOPE in a number of cell lines in vitro. Transfection was markedly inhibited in the presence of sputum; the effect was concentration dependent and was only partially ameliorated by removal of sputum with phosphate-buffered saline (PBS) washing before gene transfer. However, treatment of the sputum-covered cells with recombinant human DNase (rhDNase, 50 micrograms/ml) but not with N-acetylcysteine, Nacystelyn, lysine (all 20 mM) or recombinant alginase (0.5 U/ml) significantly (P < 0.005) improved gene transfer. Adenovirus-mediated gene transfer efficiency in the presence of sputum was similarly inhibited, and again, treatment with rhDNase before transfection significantly improved gene transfer (P < 0.005). Transfection of Cos 7 cells in the presence of exogenous genomic DNA alone demonstrated similar inhibition to that observed with sputum and was also ameliorated by pre-treatment of DNA-covered cells with rhDNase. In a separate series of experiments performed in the absence of added sputum or genomic DNA, increasing concentrations of rhDNase resulted in a concentration-related decline in transfection efficiency. However, even at the highest concentration (500 micrograms/ml of rhDNase), transfection efficiency remained more than 50% of control. Thus, pre-treatment of CF airways with rhDNase may be appropriate before liposome or adenovirus-mediated gene therapy.

  4. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  5. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents

    Directory of Open Access Journals (Sweden)

    Amanda Donnelly

    2015-12-01

    Full Text Available The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i provides enhanced phage-mediated gene transfer; (ii is applicable for laboratory transfection processes and (iii shows promise within industry for large-scale gene transfer applications.

  6. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE(Ac)) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE(Ac)-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  7. Use of HIV as a gene transfer vector.

    Science.gov (United States)

    Pluta, Krzysztof; Kacprzak, Magdalena Marta

    2009-01-01

    Despite the extensive research efforts over the past 25 years that have focused on HIV, there is still no cure for AIDS. However, tremendous progress in the understanding of the structure and biology of the HIV virus led to the development of safe and potent HIV-based transgene delivery vectors. These genetic vehicles are referred to as lentiviral vectors. They appear to be better suited for particular applications, such as transgene delivery into stem cells, compared to other viral- and non-viral vectors. This is because Lentivirus-based vectors can efficiently infect nondividing and slowly dividing cells. In the present review article, the current state of understanding of HIV-1 is discussed and the main characteristics that had an impact on vector design are outlined. A historical view on the vector concept is presented to facilitate discussion of recent results in vector engineering in a broader context. Subsequently, a state of the art overview concerning vector construction and vector production is given. This review also touches upon the subject of lentiviral vector safety and related topics that can be helpful in addressing this issue are discussed. Finally, examples of Lentivirus-based gene delivery systems and their applications are presented, with emphasis on animal transgenesis and human gene therapy.

  8. Safety and efficacy of gene transfer for Leber's congenital amaurosis.

    Science.gov (United States)

    Maguire, Albert M; Simonelli, Francesca; Pierce, Eric A; Pugh, Edward N; Mingozzi, Federico; Bennicelli, Jeannette; Banfi, Sandro; Marshall, Kathleen A; Testa, Francesco; Surace, Enrico M; Rossi, Settimio; Lyubarsky, Arkady; Arruda, Valder R; Konkle, Barbara; Stone, Edwin; Sun, Junwei; Jacobs, Jonathan; Dell'Osso, Lou; Hertle, Richard; Ma, Jian-xing; Redmond, T Michael; Zhu, Xiaosong; Hauck, Bernd; Zelenaia, Olga; Shindler, Kenneth S; Maguire, Maureen G; Wright, J Fraser; Volpe, Nicholas J; McDonnell, Jennifer Wellman; Auricchio, Alberto; High, Katherine A; Bennett, Jean

    2008-05-22

    Leber's congenital amaurosis (LCA) is a group of inherited blinding diseases with onset during childhood. One form of the disease, LCA2, is caused by mutations in the retinal pigment epithelium-specific 65-kDa protein gene (RPE65). We investigated the safety of subretinal delivery of a recombinant adeno-associated virus (AAV) carrying RPE65 complementary DNA (cDNA) (ClinicalTrials.gov number, NCT00516477 [ClinicalTrials.gov]). Three patients with LCA2 had an acceptable local and systemic adverse-event profile after delivery of AAV2.hRPE65v2. Each patient had a modest improvement in measures of retinal function on subjective tests of visual acuity. In one patient, an asymptomatic macular hole developed, and although the occurrence was considered to be an adverse event, the patient had some return of retinal function. Although the follow-up was very short and normal vision was not achieved, this study provides the basis for further gene therapy studies in patients with LCA. Copyright 2008 Massachusetts Medical Society.

  9. Extensive inter-domain lateral gene transfer in the evolution of the human commensal Methanosphaera stadtmanae

    Directory of Open Access Journals (Sweden)

    Mor Nadia Lurie-Weinberger

    2012-09-01

    Full Text Available Methanosphaera stadtmanae is a commensal methanogenic archaeon found in the human gut. As most of its niche-neighbors are bacteria, it is expected that lateral gene transfer (LGT from bacteria might have contributed to the evolutionary history of this organism. We performed a phylogenomic survey of putative lateral gene transfer events in M. stadtmanae, using a phylogenetic pipeline. Our analysis indicates that a substantial fraction of the proteins of M. stadtmanae are inferred to have been involved in inter-domain LGT. Laterally acquired genes have had a large contribution to surface functions, by providing novel glycosyltransferase functions. In addition, several ABC transporters seem to be of bacterial origin, including the molybdate transporter. Thus, bacterial genes contributed to the adaptation of M. stadtmanae to a host dependent lifestyle by allowing a larger variation in surface structures and increasing transport efficiency in the gut niche which is diverse and competitive

  10. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    Science.gov (United States)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  11. Adenoviral transfer of human interleukin-10 gene in lethal pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Zi-Qian Chen; Yao-Qing Tang; Yi Zhang; Zhi-Hong Jiang; En-Qiang Mao; Wei-Guo Zou; Ruo-Qing Lei; Tian-Quan Han; Sheng-Dao Zhang

    2004-01-01

    AIM: To evaluate the therapeutic effect of adenoviral-vectordelivered human interleukin-10 (hIL-10) gene on severe acute pancreatitis (SAP) rats.METHODS: Healthy Sprague-Dawley (SD) rats were intraperitoneally injected with adenoviral IL-10 gene (AdvhIL-10), empty vector (Adv0) or PBS solution. Blood,liver, pancreas and lung were harvested on the second day to examine hIL-10 level by ELISA and serum amylase by enzymatic assay. A SAP model was induced by retrograde injection of sodium taurocholate through pancreatic duct.SAP rats were then administered with AdvhIL-10, Adv0 and PBS solution by a single intraperitoneal injection 20 min after SAP induction. In addition to serum amylase assay,levels of hIL-10 and tumor necrosis factor-α (TNF-α) were detected by RT-PCR, ELISA and histological study. The mortality rate was studied and analyzed by Kaplan-Meier and log rank analysis.RESULTS: The levels of hIL-10 in the pancreas, liver and lung of healthy rats increased significantly after AdvhIL-10injection (1.42 ng/g in liver, 0.91 ng/g in pancreas); while there was no significant change of hIL-10 in the other two control groups. The concentration of hIL-10 was increased significantly in the SAP rats after AdvhIL-10 injection (1.68 ng/g in liver, 1.12 ng/g in pancreas) compared to the other two SAP groups with blank vector or PBS treatment (P<0.05). The serum amylase levels remained normal in the AdvhIL-10 transfected healthy rats. However,the serum amylase level was significantly elevated in the other two control SAP rats. In contrast, serum amylase was down-regulated in the AdvhIL-10 treated SAP groups.The TNF-α expression in the AdvhIL-10 treated SAP rats was significantly lower compared to the other two control SAP groups. The pathohistological changes in the AdvhIL-10 treated group were better than those in the other two control groups. Furthermore, the mortality of the AdvhIL-10 treated group was significantly reduced compared to the other two control groups (P

  12. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Maguin Emmanuelle

    2007-08-01

    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  13. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event.

    Science.gov (United States)

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong

    2016-01-01

    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.

  14. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini

    OpenAIRE

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R.; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A.; Blaxter, Mark

    2016-01-01

    Tardigrades, also known as moss piglets or water bears, are renowned for their ability to withstand extreme environmental challenges. A recently published analysis of the genome of the tardigrade Hypsibius dujardini by Boothby et al. concluded that horizontal acquisition of genes from bacterial and other sources might be key to cryptobiosis in tardigrades. We independently sequenced the genome of H. dujardini and detected a low level of horizontal gene transfer. We show that the extensive hor...

  15. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  16. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  17. Development of gene transfer for induction of antigen-specific tolerance

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    2014-01-01

    Full Text Available Gene replacement therapies, like organ and cell transplantation, are likely to introduce neoantigens that elicit rejection via humoral and/or effector T-cell immune responses. Nonetheless, thanks to an ever-growing body of preclinical studies; it is now well accepted that gene transfer protocols can be specifically designed and optimized for induction of antigen-specific immune tolerance. One approach is to specifically express a gene in a tissue with a tolerogenic microenvironment such as the liver or thymus. Another strategy is to transfer a particular gene into hematopoietic stem cells or immunological precursor cells thus educating the immune system to recognize the therapeutic protein as “self.” In addition, expression of the therapeutic protein in protolerogenic antigen-presenting cells such as immature dendritic cells and B cells has proven to be promising. All three approaches have successfully prevented unwanted immune responses in preclinical studies aimed at the treatment of inherited protein deficiencies, e.g., lysosomal storage disorders and hemophilia, and of type 1 diabetes and multiple sclerosis. In this review, we focus on current gene transfer protocols that induce tolerance, including gene delivery vehicles and target tissues, and discuss successes and obstacles in different disease models.

  18. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  19. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  20. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Science.gov (United States)

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. Published by Elsevier B.V.

  1. An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques

    DEFF Research Database (Denmark)

    Zhang, Ji; Diao, Yanhua; Zhao, Yaohua;

    2017-01-01

    This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels and is w......This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels...... with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with three volume concentrations (φ = 0.005%, 0.01% and 0.1%) were used as test sections and working fluids respectively. Secondly, the experiments using two combined enhancement technique were performed. By using conjunctively two...

  2. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Directory of Open Access Journals (Sweden)

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  3. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  4. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer.

    Science.gov (United States)

    Provasi, Elena; Genovese, Pietro; Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D; Holmes, Michael C; Gregory, Philip D; Naldini, Luigi; Bonini, Chiara

    2012-05-01

    The transfer of high-avidity T cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted antigen specificities of the resultant TCRs. We designed zinc-finger nucleases (ZFNs) that promoted the disruption of endogenous TCR β- and α-chain genes. Lymphocytes treated with ZFNs lacked surface expression of CD3-TCR and expanded with the addition of interleukin-7 (IL-7) and IL-15. After lentiviral transfer of a TCR specific for the Wilms tumor 1 (WT1) antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near purity and were superior at specific antigen recognition compared to donor-matched, unedited TCR-transferred cells. In contrast to unedited TCR-transferred cells, the TCR-edited lymphocytes did not mediate off-target reactivity while maintaining their anti-tumor activity in vivo, thus showing that complete editing of T cell specificity generates tumor-specific lymphocytes with improved biosafety profiles.

  5. Editing T cell specificity towards leukemia by zinc-finger nucleases and lentiviral gene transfer

    Science.gov (United States)

    Lombardo, Angelo; Magnani, Zulma; Liu, Pei-Qi; Reik, Andreas; Chu, Victoria; Paschon, David E.; Zhang, Lei; Kuball, Jurgen; Camisa, Barbara; Bondanza, Attilio; Casorati, Giulia; Ponzoni, Maurilio; Ciceri, Fabio; Bordignon, Claudio; Greenberg, Philip D.; Holmes, Michael C.; Gregory, Philip D.; Naldini, Luigi; Bonini, Chiara

    2016-01-01

    The transfer of high-avidity T-cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted specificities. We designed zinc-finger nucleases (ZFNs) promoting the disruption of endogenous TCR β and α chain genes. ZFN-treated lymphocytes lacked CD3/TCR surface expression and expanded with IL-7 and IL-15. Upon lentiviral transfer of a TCR for the WT1 tumor antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near-purity, and proved superior in specific antigen recognition to matched TCR-transferred cells. In contrast to TCR-transferred cells, TCR edited lymphocytes did not mediate off-target reactivity while maintaining anti-tumor activity in vivo, thus demonstrating that complete editing of T-cell specificity generate tumor-specific lymphocytes with improved biosafety profile. PMID:22466705

  6. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  7. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  8. Generation of antigen-specific T cell immunity through T cell receptor gene transfer

    NARCIS (Netherlands)

    Coccoris, Miriam

    2009-01-01

    Cancer cells often escape the attack of immune cells because they originate from self-tissue. Through T cell receptor gene transfer it is possible to equip peripheral T cells with a desired specificity, and this strategy may be useful to generate tumor-specific T cells for the treatment of cancer in

  9. Role of Vibrio cholerae exochitinase ChiA2 in horizontal gene transfer.

    Science.gov (United States)

    Mondal, Moumita; Chatterjee, Nabendu Sekhar

    2016-03-01

    Vibrio cholerae exochitinase ChiA2 plays a key role in acquisition of nutrients by chitin hydrolysis in the natural environment as well as in pathogenesis in the intestinal milieu. In this study we demonstrate the importance of ChiA2 in horizontal gene transfer in the natural environment. We found that the expression of ChiA2 and TfoX, the central regulator of V. cholerae horizontal gene transfer, varied with changes in environmental conditions. The activity of ChiA2 was also dependent on these conditions. In 3 different environmental conditions tested here, we observed that the supporting environmental condition for maximum expression and activity of ChiA2 was 20 °C, pH 5.5, and 100 mmol/L salinity in the presence of chitin. The same condition also induced TfoX expression and was favorable for horizontal gene transfer in V. cholerae. High-performance liquid chromatography analysis showed that ChiA2 released a significant amount of (GlcNAc)2 from chitin hydrolysis under the favorable condition. We hypothesized that under the favorable environmental condition, ChiA2 was upregulated and maximally active to produce a significant amount of (GlcNAc)2 from chitin. The same environmental condition also induced tfoX expression, followed by its translational activation by the (GlcNAc)2 produced, leading to efficient horizontal gene transfer.

  10. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    NARCIS (Netherlands)

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.

    2011-01-01

    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and prematu

  11. Direct transfer of A20 gene into pancreas protected mice from streptozotocin-induced diabetes

    Institute of Scientific and Technical Information of China (English)

    Lu-yang YU; Bo LIN; Zhen-lin ZHANG; Li-he GUO

    2004-01-01

    AIM: To investigate the efficiency of transfer of A20 gene into pancreas against STZ-induced diabetes. METHODS:PVP-plasmid mixture was directly transferred into the pancreatic parenchyma 2 d before STZ injection. The uptake of plasmid pcDNA3-LacZ or pcDNA3-A20 was detected by PCR and the expression of LacZ was confirmed by histological analysis with X-gal. A20 expression in the pancreas of pcDNA3-A20 transgenic mice was measured by RT-PCR and Westem blots. Urine amylase, NO generation, and histological examination were examined. RESULTS:Injection of PVP-plasmid mixture directly into the pancreatic parenchyma increased urine amylase concentration 16 h after operation and reversed it to nearly normal 36 h later. On d 33 LacZ expression could be found in spleen,duodenum, and islets. The development of diabetes was prevented by direct A20 gene transferring into the pancreas and A20-mediated protection was correlated with suppression of NO production. The insulitis was ameliorated in A20-treated mice. CONCLUSION: Injection of PVP-plasmid mixture directly into the pancreatic parenchyma led to target gene expression in islets. Direct transfer of A20 gene into the pancreas protected mice from STZ-induced diabetes.

  12. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    Science.gov (United States)

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana

    2011-10-01

    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  13. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms

    Directory of Open Access Journals (Sweden)

    Tauch Andreas

    2009-01-01

    Full Text Available Abstract Background Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1 the transcription factor, (2 the adjusted binding site, and (3 the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for ~40% of the common transcription factors, compared to ~5% for which knowledge was available before. Conclusion Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation.

  14. Optimization of the uidA Gene Transfer of Rosa hybrida via Agrobacterium tumefaciens:an Assessment of Factors Influencing the Efficiency of Gene Transfer

    Institute of Scientific and Technical Information of China (English)

    Gao Liping; Bao Manzhu

    2004-01-01

    To develop a transformation protocol of Rosa hybrida 'Samantha' via Agrobacterium tumefaciens, the authors examined the effect of different factors on T-DNA transfer by measuring transient expression levels of an intron-containing β-glucuronidase gene. The results indicate that explant, light condition, salt concentration and acetosyringone (AS) concentration in co-culture medium are the most important factors, and factors like co-culture temperature, co-culture period and bacteria density have a strong effect on the growth of bacteria and then T-DNA transfer. Optimized co-cultivation was performed by inoculation of embryogenic callus with bacteria at a density of OD600= 0.5-0.8 for 20 min and co-culture in darkness under 23 °C on medium with 1/2 MS salts and 300 μmol·L-1 AS for 3 d.

  15. Formation and Characterization of Alaminum Thin Films Produced by Laser Induced Forward Transfer Technique

    Directory of Open Access Journals (Sweden)

    Nafie A. ALMUSLET

    2012-12-01

    Full Text Available Picoseconds Nd – YAG laser was used in this work to irradiate pure samples of Aluminum (Al and produce plasma. The plasma plume was deposited as thin films, using Laser Induced Forward Transfer (LIFT technique, on two different types of substrate; the first one from copper and the second one from agate (SiO2. The thin films were characterized using scanning electron microscope (SEM and Energy Dispersive Analysis of X-rays (EDAX, in addition to scratch and scotch-tape for adhesion test. The effects of laser power density, the target thickness and the type of substrate on the homogeneity and adhesion of the films were investigated. The best conditions were: 2∙1013 W/cm2 laser power density, 2 µm target thickness and agate substrate. Al thin films with high quality were deduced using these conditions.

  16. Acromioclavicular joint reconstruction with coracoacromial ligament transfer using the docking technique

    Directory of Open Access Journals (Sweden)

    Gobezie Reuben

    2009-01-01

    Full Text Available Abstract Background Symptomatic Acromioclavicular (AC dislocations have historically been surgically treated with Coracoclavicular (CC ligament reconstruction with transfer of the Coracoacromial (CA ligament. Tensioning the CA ligament is the key to success. Methods Seventeen patients with chronic, symptomatic Type III AC joint or acute Type IV and V injuries were treated surgically. The distal clavicle was resected and stabilized with CC ligament reconstruction using the CA ligament. The CA ligament was passed into the medullary canal and tensioned, using a modified 'docking' technique. Average follow-up was 29 months (range 12–57. Results Postoperative ASES and pain significantly improved in all patients (p = 0.001. Radiographically, 16 (94% maintained reduction, and only 1 (6% had a recurrent dislocation when he returned to karate 3 months postoperatively. His ultimate clinical outcome was excellent. Conclusion The docking procedure allows for tensioning of the transferred CA ligament and healing of the ligament in an intramedullary bone tunnel. Excellent clinical results were achieved, decreasing the risk of recurrent distal clavicle instability.

  17. Monte Carlo techniques for time-dependent radiative transfer in 3-D supernovae

    CERN Document Server

    Lucy, L B

    2004-01-01

    Monte Carlo techniques based on indivisible energy packets are described for computing light curves and spectra for 3-D supernovae. The radiative transfer is time-dependent and includes all effects of O(v/c). Monte Carlo quantization is achieved by discretizing the initial distribution of 56Ni into radioactive pellets. Each pellet decays with the emission of a single energy packet comprising gamma-ray photons representing one line from either the 56Ni or the 56Co decay spectrum. Subsequently, these energy packets propagate through the homologously-expanding ejecta with appropriate changes in the nature of their contained energy as they undergo Compton scatterings and pure absorptions. The 3-D code is tested by applying it to a spherically-symmetric SN in which the transfer of optical radiation is treated with a grey absorption coefficient. This 1-D problem is separately solved using Castor's co-moving frame moment equations. Satisfactory agreement is obtained. The Monte Carlo code is a platform onto which mor...

  18. The impact of gene duplication, insertion, deletion, lateral gene transfer and sequencing error on orthology inference: a simulation study.

    Science.gov (United States)

    Dalquen, Daniel A; Altenhoff, Adrian M; Gonnet, Gaston H; Dessimoz, Christophe

    2013-01-01

    The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another.Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP) as well as two generic approaches (bidirectional best hit and reciprocal smallest distance). We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer) and technological artefacts (ambiguous sequences) on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall), lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

  19. The impact of gene duplication, insertion, deletion, lateral gene transfer and sequencing error on orthology inference: a simulation study.

    Directory of Open Access Journals (Sweden)

    Daniel A Dalquen

    Full Text Available The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another.Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP as well as two generic approaches (bidirectional best hit and reciprocal smallest distance. We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer and technological artefacts (ambiguous sequences on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall, lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

  20. Resistance gene identification from Larimichthys crocea with machine learning techniques

    Science.gov (United States)

    Cai, Yinyin; Liao, Zhijun; Ju, Ying; Liu, Juan; Mao, Yong; Liu, Xiangrong

    2016-12-01

    The research on resistance genes (R-gene) plays a vital role in bioinformatics as it has the capability of coping with adverse changes in the external environment, which can form the corresponding resistance protein by transcription and translation. It is meaningful to identify and predict R-gene of Larimichthys crocea (L.Crocea). It is friendly for breeding and the marine environment as well. Large amounts of L.Crocea’s immune mechanisms have been explored by biological methods. However, much about them is still unclear. In order to break the limited understanding of the L.Crocea’s immune mechanisms and to detect new R-gene and R-gene-like genes, this paper came up with a more useful combination prediction method, which is to extract and classify the feature of available genomic data by machine learning. The effectiveness of feature extraction and classification methods to identify potential novel R-gene was evaluated, and different statistical analyzes were utilized to explore the reliability of prediction method, which can help us further understand the immune mechanisms of L.Crocea against pathogens. In this paper, a webserver called LCRG-Pred is available at http://server.malab.cn/rg_lc/.

  1. Targeting a newly established spontaneous feline fibrosarcoma cell line by gene transfer.

    Directory of Open Access Journals (Sweden)

    Rounak Nande

    Full Text Available Fibrosarcoma is a deadly disease in cats and is significantly more often located at classical vaccine injections sites. More rare forms of spontaneous non-vaccination site (NSV fibrosarcomas have been described and have been found associated to genetic alterations. Purpose of this study was to compare the efficacy of adenoviral gene transfer in NVS fibrosarcoma. We isolated and characterized a NVS fibrosarcoma cell line (Cocca-6A from a spontaneous fibrosarcoma that occurred in a domestic calico cat. The feline cells were karyotyped and their chromosome number was counted using a Giemsa staining. Adenoviral gene transfer was verified by western blot analysis. Flow cytometry assay and Annexin-V were used to study cell-cycle changes and cell death of transduced cells. Cocca-6A fibrosarcoma cells were morphologically and cytogenetically characterized. Giemsa block staining of metaphase spreads of the Cocca-6A cells showed deletion of one of the E1 chromosomes, where feline p53 maps. Semi-quantitative PCR demonstrated reduction of p53 genomic DNA in the Cocca-6A cells. Adenoviral gene transfer determined a remarkable effect on the viability and growth of the Cocca-6A cells following single transduction with adenoviruses carrying Mda-7/IL-24 or IFN-γ or various combination of RB/p105, Ras-DN, IFN-γ, and Mda-7 gene transfer. Therapy for feline fibrosarcomas is often insufficient for long lasting tumor eradication. More gene transfer studies should be conducted in order to understand if these viral vectors could be applicable regardless the origin (spontaneous vs. vaccine induced of feline fibrosarcomas.

  2. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer

    OpenAIRE

    Mingru Yin; Weihua Jiang; Zhenfu Fang; Pengcheng Kong; Fengying Xing; Yao Li; Xuejin Chen; Shangang Li

    2015-01-01

    The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene knockout rabbits using recombinant adeno-associated virus-mediated homologous recombination and SCNT....

  3. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins.

    Science.gov (United States)

    Wickham, T J; Tzeng, E; Shears, L L; Roelvink, P W; Li, Y; Lee, G M; Brough, D E; Lizonova, A; Kovesdi, I

    1997-11-01

    Alteration of the natural tropism of adenovirus (Ad) will permit gene transfer into specific cell types and thereby greatly broaden the scope of target diseases that can be treated by using Ad. We have constructed two Ad vectors which contain modifications to the Ad fiber coat protein that redirect virus binding to either alpha(v) integrin [AdZ.F(RGD)] or heparan sulfate [AdZ.F(pK7)] cellular receptors. These vectors were constructed by a novel method involving E4 rescue of an E4-deficient Ad with a transfer vector containing both the E4 region and the modified fiber gene. AdZ.F(RGD) increased gene delivery to endothelial and smooth muscle cells expressing alpha(v) integrins. Likewise, AdZ.F(pK7) increased transduction 5- to 500-fold in multiple cell types lacking high levels of Ad fiber receptor, including macrophage, endothelial, smooth muscle, fibroblast, and T cells. In addition, AdZ.F(pK7) significantly increased gene transfer in vivo to vascular smooth muscle cells of the porcine iliac artery following balloon angioplasty. These vectors may therefore be useful in gene therapy for vascular restenosis or for targeting endothelial cells in tumors. Although binding to the fiber receptor still occurs with these vectors, they demonstrate the feasibility of tissue-specific receptor targeting in cells which express low levels of Ad fiber receptor.

  4. Tissue-engineering strategies to repair joint tissue in osteoarthritis: nonviral gene-transfer approaches.

    Science.gov (United States)

    Madry, Henning; Cucchiarini, Magali

    2014-10-01

    Loss of articular cartilage is a common clinical consequence of osteoarthritis (OA). In the past decade, substantial progress in tissue engineering, nonviral gene transfer, and cell transplantation have provided the scientific foundation for generating cartilaginous constructs from genetically modified cells. Combining tissue engineering with overexpression of therapeutic genes enables immediate filling of a cartilage defect with an engineered construct that actively supports chondrogenesis. Several pioneering studies have proved that spatially defined nonviral overexpression of growth-factor genes in constructs of solid biomaterials or hydrogels is advantageous compared with gene transfer or scaffold alone, both in vitro and in vivo. Notably, these investigations were performed in models of focal cartilage defects, because advanced cartilage-repair strategies based on the principles of tissue engineering have not advanced sufficiently to enable resurfacing of extensively degraded cartilage as therapy for OA. These studies serve as prototypes for future technological developments, because they raise the possibility that cartilage constructs engineered from genetically modified chondrocytes providing autocrine and paracrine stimuli could similarly compensate for the loss of articular cartilage in OA. Because cartilage-tissue-engineering strategies are already used in the clinic, combining tissue engineering and nonviral gene transfer could prove a powerful approach to treat OA.

  5. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Jones, Meredith D M; Vasieva, Olga; Leonard, Guy; Paszkiewicz, Konrad; Foster, Peter G; Hall, Neil; Talbot, Nicholas J

    2011-09-13

    Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.

  6. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements.

    Directory of Open Access Journals (Sweden)

    Erik Kristiansson

    Full Text Available The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

  7. Phylogenetic evidence for lateral gene transfer in the intestine of marine iguanas.

    Directory of Open Access Journals (Sweden)

    David M Nelson

    Full Text Available BACKGROUND: Lateral gene transfer (LGT appears to promote genotypic and phenotypic variation in microbial communities in a range of environments, including the mammalian intestine. However, the extent and mechanisms of LGT in intestinal microbial communities of non-mammalian hosts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced two fosmid inserts obtained from a genomic DNA library derived from an agar-degrading enrichment culture of marine iguana fecal material. The inserts harbored 16S rRNA genes that place the organism from which they originated within Clostridium cluster IV, a well documented group that habitats the mammalian intestinal tract. However, sequence analysis indicates that 52% of the protein-coding genes on the fosmids have top BLASTX hits to bacterial species that are not members of Clostridium cluster IV, and phylogenetic analysis suggests that at least 10 of 44 coding genes on the fosmids may have been transferred from Clostridium cluster XIVa to cluster IV. The fosmids encoded four transposase-encoding genes and an integrase-encoding gene, suggesting their involvement in LGT. In addition, several coding genes likely involved in sugar transport were probably acquired through LGT. CONCLUSION: Our phylogenetic evidence suggests that LGT may be common among phylogenetically distinct members of the phylum Firmicutes inhabiting the intestinal tract of marine iguanas.

  8. The influence of gene transfer on the lactic acid bacteria evolution

    Directory of Open Access Journals (Sweden)

    Višnja Bačun-Družina

    2009-09-01

    Full Text Available In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the Lactobacillales evolution. Knowledge about the exchange of lactobacillus genetic information through horizontal gene transfer, mobile genetic elements, and its evolution is very important due to characterizations and stability maintenance of autochthonous as well as industrial lactic acid bacteria strains in dairy products that benefit human health.

  9. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Directory of Open Access Journals (Sweden)

    Alejandra Moreno-Letelier

    2011-01-01

    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  10. Networks of lexical borrowing and lateral gene transfer in language and genome evolution.

    Science.gov (United States)

    List, Johann-Mattis; Nelson-Sathi, Shijulal; Geisler, Hans; Martin, William

    2014-02-01

    Like biological species, languages change over time. As noted by Darwin, there are many parallels between language evolution and biological evolution. Insights into these parallels have also undergone change in the past 150 years. Just like genes, words change over time, and language evolution can be likened to genome evolution accordingly, but what kind of evolution? There are fundamental differences between eukaryotic and prokaryotic evolution. In the former, natural variation entails the gradual accumulation of minor mutations in alleles. In the latter, lateral gene transfer is an integral mechanism of natural variation. The study of language evolution using biological methods has attracted much interest of late, most approaches focusing on language tree construction. These approaches may underestimate the important role that borrowing plays in language evolution. Network approaches that were originally designed to study lateral gene transfer may provide more realistic insights into the complexities of language evolution.

  11. Adenovirus-mediated transfer of RA538 gene and its antitumor effect

    Institute of Scientific and Technical Information of China (English)

    程金科; 林晨; 隗玥; 张雪艳; 邢嵘; 牟巨伟; 王秀琴; 吴旻

    1999-01-01

    The RA538 cDNA was transferred into human ovarian cancer cell line SK-OV-3 and human melanoma cell line WM-983A by its recombinant adenoviral vector constructed through homologous recombination. It was demonstrated that the recombinant adenovirus could transfer RA538 gene with high efficiency, and could obviously inhibit tumor growth, with the inhibiting rates of 85% and 73% respectively, at the same time greatly repress the colony forming ability of the cells. The therapeutic experiments on transplanted subcutaneous tumor model in nude mice demonstrated that RA538 could significantly inhibit tumor growth. Flow cytometry and DNA fragmentation analysis indicated that RA538 could induce the cell cycle G1 arrest/apoptosis of the tumor cells. The expression of cmyc gene was found pronouncedly reduced by Western blot analysis. These results suggest that the RA538 recombinant adenovirus could be a promising drug in cancer gene therapy.

  12. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Michael J Bryan

    Full Text Available BACKGROUND: S-PM2 is a phage capable of infecting strains of unicellular cyanobacteria belonging to the genus Synechococcus. S-PM2, like other myoviruses infecting marine cyanobacteria, encodes a number of bacterial-like genes. Amongst these genes is one encoding a MazG homologue that is hypothesized to be involved in the adaption of the infected host for production of progeny phage. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on establishing the occurrence of mazG homologues in other cyanophages isolated from different oceanic locations. Degenerate PCR primers were designed using the mazG gene of S-PM2. The mazG gene was found to be widely distributed and highly conserved among Synechococcus myoviruses and podoviruses from diverse oceanic provinces. CONCLUSIONS/SIGNIFICANCE: This study provides evidence of a globally connected cyanophage gene pool, the cyanophage mazG gene having a small effective population size indicative of rapid lateral gene transfer despite being present in a substantial fraction of cyanophage. The Prochlorococcus and Synechococcus phage mazG genes do not cluster with the host mazG gene, suggesting that their primary hosts are not the source of the mazG gene.

  13. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Directory of Open Access Journals (Sweden)

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  14. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure.

    Science.gov (United States)

    Tilemann, Lisa; Lee, Ahyoung; Ishikawa, Kiyotake; Aguero, Jaume; Rapti, Kleopatra; Santos-Gallego, Carlos; Kohlbrenner, Erik; Fish, Kenneth M; Kho, Changwon; Hajjar, Roger J

    2013-11-13

    Recently, the impact of small ubiquitin-related modifier 1 (SUMO-1) on the regulation and preservation of sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2a) function was discovered. The amount of myocardial SUMO-1 is decreased in failing hearts, and its knockdown results in severe heart failure (HF) in mice. In a previous study, we showed that SUMO-1 gene transfer substantially improved cardiac function in a murine model of pressure overload-induced HF. Toward clinical translation, we evaluated in this study the effects of SUMO-1 gene transfer in a swine model of ischemic HF. One month after balloon occlusion of the proximal left anterior descending artery followed by reperfusion, the animals were randomized to receive either SUMO-1 at two doses, SERCA2a, or both by adeno-associated vector type 1 (AAV1) gene transfer via antegrade coronary infusion. Control animals received saline infusions. After gene delivery, there was a significant increase in the maximum rate of pressure rise [dP/dt(max)] that was most pronounced in the group that received both SUMO-1 and SERCA2a. The left ventricular ejection fraction (LVEF) improved after high-dose SUMO-1 with or without SERCA2a gene delivery, whereas there was a decline in LVEF in the animals receiving saline. Furthermore, the dilatation of LV volumes was prevented in the treatment groups. SUMO-1 gene transfer therefore improved cardiac function and stabilized LV volumes in a large-animal model of HF. These results support the critical role of SUMO-1 in SERCA2a function and underline the therapeutic potential of SUMO-1 for HF patients.

  15. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  16. Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses

    Science.gov (United States)

    Ambrose, Karen V.; Koppenhöfer, Albrecht M.; Belanger, Faith C.

    2014-01-01

    Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë fungi, which are intercellular symbionts of grasses. Infection by Epichloë spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichloë genome sequences currently available but in no other fungal genomes. This suggests the Epichloë genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichloë typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichloë mcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichloë-infected grasses. PMID:24990771

  17. Molecular evidence of lateral gene transfer in rpoB gene of Mycobacterium yongonense strains via multilocus sequence analysis.

    Directory of Open Access Journals (Sweden)

    Byoung-Jun Kim

    Full Text Available Recently, a novel species, Mycobacterium yongonense (DSM 45126(T, was introduced and while it is phylogenetically related to Mycobacterium intracellulare, it has a distinct RNA polymerase β-subunit gene (rpoB sequence that is identical to that of Mycobacterium parascrofulaceum, which is a distantly related scotochromogen, which suggests the acquisition of the rpoB gene via a potential lateral gene transfer (LGT event. The aims of this study are to prove the presence of the LGT event in the rpoB gene of the M. yongonense strains via multilocus sequence analysis (MLSA. In order to determine the potential of an LGT event in the rpoB gene of the M. yongonense, the MLSA based on full rpoB sequences (3447 or 3450 bp and on partial sequences of five other targets [16S rRNA (1383 or 1395 bp, hsp65 (603 bp, dnaJ (192 bp, recA (1053 bp, and sodA (501 bp] were conducted. Incongruences between the phylogenetic analysis of the full rpoB and the five other genes in a total of three M. yongonense strains [two clinical strains (MOTT-12 and MOTT-27 and one type strain (DSM 45126(T] were observed, suggesting that rpoB gene of three M. yongonense strains may have been acquired very recently via an LGT event from M. parascrofulaceum, which is a distantly related scotochromogen.

  18. Randomization techniques for assessing the significance of gene periodicity results

    Directory of Open Access Journals (Sweden)

    Vuokko Niko

    2011-08-01

    Full Text Available Abstract Background Modern high-throughput measurement technologies such as DNA microarrays and next generation sequencers produce extensive datasets. With large datasets the emphasis has been moving from traditional statistical tests to new data mining methods that are capable of detecting complex patterns, such as clusters, regulatory networks, or time series periodicity. Study of periodic gene expression is an interesting research question that also is a good example of challenges involved in the analysis of high-throughput data in general. Unlike for classical statistical tests, the distribution of test statistic for data mining methods cannot be derived analytically. Results We describe the randomization based approach to significance testing, and show how it can be applied to detect periodically expressed genes. We present four randomization methods, three of which have previously been used for gene cycle data. We propose a new method for testing significance of periodicity in gene expression short time series data, such as from gene cycle and circadian clock studies. We argue that the underlying assumptions behind existing significance testing approaches are problematic and some of them unrealistic. We analyze the theoretical properties of the existing and proposed methods, showing how our method can be robustly used to detect genes with exceptionally high periodicity. We also demonstrate the large differences in the number of significant results depending on the chosen randomization methods and parameters of the testing framework. By reanalyzing gene cycle data from various sources, we show how previous estimates on the number of gene cycle controlled genes are not supported by the data. Our randomization approach combined with widely adopted Benjamini-Hochberg multiple testing method yields better predictive power and produces more accurate null distributions than previous methods. Conclusions Existing methods for testing significance

  19. A code-independent technique for computational verification of fluid mechanics and heat transfer problems

    Institute of Scientific and Technical Information of China (English)

    M. Garbey; C. Picard

    2008-01-01

    The goal of this paper is to present a versatile framework for solution verification of PDE's.We first generalize the Richardson Extrapolation technique to an optimized extrapolation solution procedure that constructs the best consistent solution from a set of two or three coarse grid solution in the discrete norm of choice. This technique generalizes the Least Square Extrapolation method introduced by one of the author and W. Shyy. We second establish the conditioning number of the problem in a reduced space that approximates the main feature of the numerical solution thanks to a sensitivity analysis. Overall our method produces an a posteriori error estimation in this reduced space of approximation. The key feature of our method is that our construction does not require an internal knowledge of the software neither the source code that produces the solution to be verified. It can be applied in principle as a postprocessing procedure to off the shelf commercial code. We demonstrate the robustness of our method with two steady problems that are separately an incompressible back step flow test case and a heat transfer problem for a battery. Our error estimate might be ultimately verified with a near by manufactured solution. While our procedure is systematic and requires numerous computation of residuals, one can take advantage of distributed computing to get quickly the error estimate.

  20. Lateral Transfer of the Denitrification Pathway Genes among Thermus thermophilus Strains▿

    Science.gov (United States)

    Alvarez, Laura; Bricio, Carlos; José Gómez, Manuel; Berenguer, José

    2011-01-01

    Nitrate respiration is a common and strain-specific property in Thermus thermophilus encoded by the nitrate respiration conjugative element (NCE) that can be laterally transferred by conjugation. In contrast, nitrite respiration and further denitrification steps are restricted to a few isolates of this species. These later steps of the denitrification pathway are under the regulatory control of an NCE-encoded transcription factor, but nothing is known about their coding sequences or its putative genetic linkage to the NCE. In this study we examine the genetic linkage between nitrate and nitrite respiration through lateral gene transfer (LGT) assays and describe a cluster of genes encoding the nitrite-nitric oxide respiration in T. thermophilus PRQ25. We show that the whole denitrification pathway can be transferred from the denitrificant strain PRQ25 to an aerobic strain, HB27, and that the genes coding for nitrite and nitric oxide respiration are encoded near the NCE. Sequence data from the draft genome of PRQ25 confirmed these results and allowed us to describe the most compact nor-nir cluster known thus far and to demonstrate the expression and activities of the encoded enzymes in the HB27 denitrificant derivatives obtained by LGT. We conclude that this NCE nor-nir supercluster constitutes a whole denitrification island that can be spread by lateral transfer among Thermus thermophilus strains. PMID:21169443

  1. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    Science.gov (United States)

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  2. An adenovirus vector incorporating carbohydrate binding domains utilizes glycans for gene transfer.

    Directory of Open Access Journals (Sweden)

    Julius W Kim

    Full Text Available BACKGROUND: Vectors based on human adenovirus serotype 5 (HAdV-5 continue to show promise as delivery vehicles for cancer gene therapy. Nevertheless, it has become clear that therapeutic benefit is directly linked to tumor-specific vector localization, highlighting the need for tumor-targeted gene delivery. Aberrant glycosylation of cell surface glycoproteins and glycolipids is a central feature of malignant transformation, and tumor-associated glycoforms are recognized as cancer biomarkers. On this basis, we hypothesized that cancer-specific cell-surface glycans could be the basis of a novel paradigm in HAdV-5-based vector targeting. METHODOLOGY/PRINCIPAL FINDINGS: As a first step toward this goal, we constructed a novel HAdV-5 vector encoding a unique chimeric fiber protein that contains the tandem carbohydrate binding domains of the fiber protein of the NADC-1 strain of porcine adenovirus type 4 (PAdV-4. This glycan-targeted vector displays augmented CAR-independent gene transfer in cells with low CAR expression. Further, we show that gene transfer is markedly decreased in cells with genetic glycosylation defects and by inhibitors of glycosylation in normal cells. CONCLUSIONS/SIGNIFICANCE: These data provide the initial proof-of-concept for HAdV-5 vector-mediated gene delivery based on the presence of cell-surface carbohydrates. Further development of this new targeting paradigm could provide targeted gene delivery based on vector recognition of disease-specific glycan biomarkers.

  3. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    Science.gov (United States)

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Nishimura, Erin Osborne; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob

    2015-12-29

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.

  4. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  5. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    Science.gov (United States)

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  6. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  7. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  8. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Saliou Fall

    Full Text Available Horizontal gene transfer (HGT is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3% of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment

  9. [Advances in molecular mechanisms of bacterial resistance caused by stress-induced transfer of resistance genes--a review].

    Science.gov (United States)

    Sun, Dongchang; Wang, Bing; Zhu, Lihong

    2013-07-04

    The transfer of resistance gene is one of the most important causes of bacterial resistance. Recent studies reveal that stresses induce the transfer of antibiotic resistance gene through multiple mechanisms. DNA damage stresses trigger bacterial SOS response and induce the transfer of resistance gene mediated by conjugative DNA. Antibiotic stresses induce natural bacterial competence for transformation in some bacteria which lack the SOS system. In addition, our latest studies show that the general stress response regulator RpoS regulates a novel type of resistance gene transfer which is mediated by double-stranded plasmid DNA and occurs exclusively on the solid surface. In this review, we summarized recent advances in SOS dependent and independent stress-induced DNA transfer which is mediated by conjugation and transformation respectively, and the transfer of double-stranded plasmid DNA on the solid surface which is regulated by RpoS. We propose that future work should address how stresses activate the key regulators and how these regulators control the expression of gene transfer related genes. Answers to the above questions would pave the way for searching for candidate targets for controlling bacterial resistance resulted from the transfer of antibiotic genes.

  10. Evaluation of engineered AAV capsids for hepatic factor IX gene transfer in murine and canine models.

    Science.gov (United States)

    Markusic, David M; Nichols, Timothy C; Merricks, Elizabeth P; Palaschak, Brett; Zolotukhin, Irene; Marsic, Damien; Zolotukhin, Sergei; Srivastava, Arun; Herzog, Roland W

    2017-05-01

    Adeno-associated virus (AAV) gene therapy vectors have shown the best outcomes in human clinical studies for the treatment of genetic diseases such as hemophilia. However, these pivotal investigations have also identified several challenges. For example, high vector doses are often used for hepatic gene transfer, and cytotoxic T lymphocyte responses against viral capsid may occur. Therefore, achieving therapy at reduced vector doses and other strategies to reduce capsid antigen presentation are desirable. We tested several engineered AAV capsids for factor IX (FIX) expression for the treatment of hemophilia B by hepatic gene transfer. These capsids lack potential phosphorylation or ubiquitination sites, or had been generated through molecular evolution. AAV2 capsids lacking either a single lysine residue or 3 tyrosine residues directed substantially higher coagulation FIX expression in mice compared to wild-type sequence or other mutations. In hemophilia B dogs, however, expression from the tyrosine-mutant vector was merely comparable to historical data on AAV2. Evolved AAV2-LiC capsid was highly efficient in hemophilia B mice but lacked efficacy in a hemophilia B dog. Several alternative strategies for capsid modification improve the in vivo performance of AAV vectors in hepatic gene transfer for correction of hemophilia. However, capsid optimization solely in mouse liver may not predict efficacy in other species and thus is of limited translational utility.

  11. Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques.

    Science.gov (United States)

    Jimenez, Mélanie; Dietrich, Nicolas; Grace, John R; Hébrard, Gilles

    2014-07-01

    Powerful techniques, based on the Planar Laser Induced Fluorescence (PLIF) technique, are deployed to locally visualize and quantify the impact of surfactants in wastewaters on hydrodynamics and oxygen mass transfer. Bubble diameter, aspect ratio, rise velocity, contamination angle, as well as flux, flux density, liquid side mass transfer and diffusion coefficients of transferred oxygen are determined based on these techniques applied in the wake of rising bubbles of diameter 1 mm and through planar gas/liquid interfaces. The initial experiments were performed in demineralized water containing small amounts of surfactant. Different concentrations of surfactant were added to finally reach the Critical Micelle Concentration (CMC). Bubbles have classically been found to be more spherical with a reduced rise velocity in the presence of surfactants up to the CMC. Above the CMC, these hydrodynamic characteristics were found to be almost constant, although the oxygen mass transfer decreased due to the presence of surfactants. Experimental results were markedly lower than predicted by the well-known Frössling equation with rigid surfaces. This is believed to be caused by a barrier of surfactants hindering the oxygen mass transfer at the interface. Similar hindrance of oxygen mass transfer applies to waters from sewage plants (filtered raw water and treated water), making accurate design of aeration tanks difficult.

  12. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis

    Directory of Open Access Journals (Sweden)

    Butler Geraldine

    2008-06-01

    Full Text Available Abstract Background To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. Results Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR. Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. Conclusion Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.

  13. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  14. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Kevin Dougherty

    Full Text Available Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  15. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available The spread and propagation of antibiotic resistance genes (ARGs is a worldwide public health concern. Ionic liquids (ILs, considered as "environmentally friendly" replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6] (0.001-5.0 g/L was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups by the IL [BMIm][PF6] (1.0 g/L. Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM. This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.

  16. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Science.gov (United States)

    Dougherty, Kevin; Smith, Brian A; Moore, Autumn F; Maitland, Shannon; Fanger, Chris; Murillo, Rachel; Baltrus, David A

    2014-01-01

    Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  17. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    Science.gov (United States)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  18. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Kaul Rajinder

    2009-11-01

    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  19. DNA-water interactions distinguish messenger RNA genes from transfer RNA genes.

    Science.gov (United States)

    Khandelwal, Garima; Jayaram, B

    2012-05-30

    Physicochemical properties of DNA sequences as a guide to developing insights into genome organization has received little attention. Here, we utilize the energetics of DNA to further advance the knowledge on its language at a molecular level. Specifically, we ask the question whether physicochemical properties of different functional units on genomes differ. We extract intramolecular and solvation energies of different DNA base pair steps from a comprehensive set of molecular dynamics simulations. We then investigate the solvation behavior of DNA sequences coding for mRNAs and tRNAs. Distinguishing mRNA genes from tRNA genes is a tricky problem in genome annotation without assumptions on length of DNA and secondary structure of the product of transcription. We find that solvation energetics of DNA behaves as an extremely efficient property in discriminating 2,063,537 genes coding for mRNAs from 56,251 genes coding for tRNAs in all (~1500) completely sequenced prokaryotic genomes.

  20. Improvement of Hydrodynamics-Based Gene Transfer of Nonviral DNA Targeted to Murine Hepatocytes

    Directory of Open Access Journals (Sweden)

    Shingo Nakamura

    2013-01-01

    Full Text Available The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI- based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct and pTR/NCre (a liver-specific Cre expression vector resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.

  1. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Directory of Open Access Journals (Sweden)

    Hyeonsoo Jeong

    2017-08-01

    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  2. An adeno-associated virus vector-mediated multiple gene transfer for dopamine synthetic enzymes

    Institute of Scientific and Technical Information of China (English)

    樊东升; 沈扬

    2000-01-01

    Objective: To explore a multiple gene transfer approach with separate adeno-associated virus vectors. Methods: The genes of dopamine synthetic enzymes, tyrosine hydroxylasc (TH), GTP cyclohydrolase I (GCH, an enzyme critical for tetrahydrobioptcrin synthesis), and aromatic L-amino acid decarboxylase (AADC), were cotransduced into 293 cells with separate AAV vectors. Expressions of TH, GCH, and AADC were detected by Western blot analysis. L-dopa and dopamine levels in the ceils were assayed by HPLC. Results: TH, GCH, and AADC proteins were effectively cocxpressed in the transduced cells with three separate AAV vectors, AAV-TH, AAV-GCH, and AAV-AADC. Furthermore, the coexpression of these three proteins resulted in an effectively spontaneous dopainc production in the cotransduced cells. Conclusion: The triple transduction of TH, GCH, and AADC genes with separate AAV vectors is effective, which might be important to gene therapy for Parkinson's disease.

  3. Selective gene transfer to endometrial cancer cells by a polymer against matrix metalloproteinase 2 (MMP-2).

    Science.gov (United States)

    Han, Joo Youn; Choi, Dong Soon; Kim, Changhoon; Joo, Hyun; Min, Churl K

    2008-04-01

    A novel cancer-cell-specific gene delivery vector with high transfection efficiency was designed and tested with an in vitro coculture consisting of the human endometrial adenocarcinoma cell line, HEC-1A cells, and normal endometrial stromal cells. For the cancer-cell targeting, polyethylenimine (PEI), a cationic polymer that can be easily combined with anionic DNA to form a particulate complex, polyplex, being capable of transferring a gene into a variety of cells, was covalently conjugated with antibodies against matrix metalloproteinase 2 (MMP-2), a typical surface-marker protein on cancer cells known for its close correlation with angiogenesis and invasion in many types of cancer, using the heterofunctional cross-linker, n-succinimidyl 3-(2-pyridyldithio)-propionamide. Biophysical properties and transfection efficiencies of anti-MMP-2-conjugated PEI were analyzed by means of dynamic light scattering, laser Doppler anemometry, and flow cytometry. Our results reveal that (1) the PEI-anti-MMP-2 antibody conjugate maintains physical parameters, including sizes and surface charges, which appear to be favorable for gene transfer and (2) when the pEGFP-N3 plasmid complexes of the PEI-anti-MMP-2 antibody conjugate are applied to the coculture consisting of HEC-1A cells and human stromal cells, a high level of green fluorescent protein expression occurs in HEC-1A cells over stromal cells, suggesting a specific gene transfer targeting cancer cells. Therefore, targeting invading cancer cells with the PEI-anti-MMP-2 antibody conjugate could be promising in endometrial cancer treatment, and this gene delivery system deserves further optimization in the context of targeted therapeutic gene delivery.

  4. Correction of Fanconi Anemia Group C Hematopoietic Stem Cells Following Intrafemoral Gene Transfer

    Directory of Open Access Journals (Sweden)

    Ouassila Habi

    2010-01-01

    Full Text Available The main cause of morbidity and mortality in Fanconi anemia patients is the development of bone marrow (BM failure; thus correction of hematopoietic stem cells (HSCs through gene transfer approaches would benefit FA patients. However, gene therapy trials for FA patients using ex vivo transduction protocols have failed to provide long-term correction. In addition, ex vivo cultures have been found to be hazardous for FA cells. To circumvent negative effects of ex vivo culture in FA stem cells, we tested the corrective ability of direct injection of recombinant lentiviral particles encoding FancC-EGFP into femurs of FancC−/− mice. Using this approach, we show that FancC−/− HSCs were efficiently corrected. Intrafemoral gene transfer of the FancC gene prevented the mitomycin C-induced BM failure. Moreover, we show that intrafemoral gene delivery into aplastic marrow restored the bone marrow cellularity and corrected the remaining HSCs. These results provide evidence that targeting FA-deficient HSCs directly in their environment enables efficient and long-term correction of BM defects in FA.

  5. Sleeping Beauty-Mediated Drug Resistance Gene Transfer in Human Hematopoietic Progenitor Cells

    Science.gov (United States)

    Hyland, Kendra A.; Olson, Erik R.; McIvor, R. Scott

    2015-01-01

    The Sleeping Beauty (SB) transposon system can insert sequences into mammalian chromosomes, supporting long-term expression of both reporter and therapeutic genes. Hematopoietic progenitor cells (HPCs) are an ideal therapeutic gene transfer target as they are used in therapy for a variety of hematologic and metabolic conditions. As successful SB-mediated gene transfer into human CD34+ HPCs has been reported by several laboratories, we sought to extend these studies to the introduction of a therapeutic gene conferring resistance to methotrexate (MTX), potentially providing a chemoprotective effect after engraftment. SB-mediated transposition of hematopoietic progenitors, using a transposon encoding an L22Y variant dihydrofolate reductase fused to green fluorescent protein, conferred resistance to methotrexate and dipyridamole, a nucleoside transport inhibitor that tightens MTX selection conditions, as assessed by in vitro hematopoietic colony formation. Transposition of individual transgenes was confirmed by sequence analysis of transposon–chromosome junctions recovered by linear amplification-mediated PCR. These studies demonstrate the potential of SB-mediated transposition of HPCs for expression of drug resistance genes for selective and chemoprotective applications. PMID:26176276

  6. Gene transfer into hematopoietic stem cells as treatment for primary immunodeficiency diseases.

    Science.gov (United States)

    Candotti, Fabio

    2014-04-01

    Gene transfer into the hematopoietic stem cell has shown curative potential for a variety of hematological disorders. Primary immunodeficiency diseases have led to the way in this field of gene therapy as an example and a model. Clinical results from the past 15 years have shown that significant improvement and even cure can be achieved for diseases such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease and Wiskott-Aldrich syndrome. Unfortunately, with the initial clear clinical benefits, the first serious complications of gene therapy have also occurred. In a significant number of patients treated using vectors based on murine gamma-retroviruses and carrying powerful viral enhancer elements, insertional oncogenesis events have resulted in acute leukemias that, in some cases, have had fatal outcomes. These serious adverse events have sparked a revision of the assessment of risks and benefits of integrating gene transfer for hematological diseases and prompted the development and application of new generations of viral vectors with recognized superior safety characteristics. This review summarizes the clinical experience of gene therapy for primary immunodeficiencies and discusses the likely avenues of progress in the future development of this expanding field of clinical investigations.

  7. Site-specific integration and tailoring of cassette design for sustainable gene transfer.

    Science.gov (United States)

    Lombardo, Angelo; Cesana, Daniela; Genovese, Pietro; Di Stefano, Bruno; Provasi, Elena; Colombo, Daniele F; Neri, Margherita; Magnani, Zulma; Cantore, Alessio; Lo Riso, Pietro; Damo, Martina; Pello, Oscar M; Holmes, Michael C; Gregory, Philip D; Gritti, Angela; Broccoli, Vania; Bonini, Chiara; Naldini, Luigi

    2011-08-21

    Integrative gene transfer methods are limited by variable transgene expression and by the consequences of random insertional mutagenesis that confound interpretation in gene-function studies and may cause adverse events in gene therapy. Site-specific integration may overcome these hurdles. Toward this goal, we studied the transcriptional and epigenetic impact of different transgene expression cassettes, targeted by engineered zinc-finger nucleases to the CCR5 and AAVS1 genomic loci of human cells. Analyses performed before and after integration defined features of the locus and cassette design that together allow robust transgene expression without detectable transcriptional perturbation of the targeted locus and its flanking genes in many cell types, including primary human lymphocytes. We thus provide a framework for sustainable gene transfer in AAVS1 that can be used for dependable genetic manipulation, neutral marking of the cell and improved safety of therapeutic applications, and demonstrate its feasibility by rapidly generating human lymphocytes and stem cells carrying targeted and benign transgene insertions.

  8. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    Science.gov (United States)

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.

    1998-01-01

    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  9. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Sergio López-Madrigal

    2017-09-01

    Full Text Available Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.

  10. Localized gene transfer into organotypic hippocampal slice cultures and acute hippocampal slices

    DEFF Research Database (Denmark)

    Casaccia-Bonnefil, P; Benedikz, Eirikur; Shen, H;

    1993-01-01

    Viral vectors derived from herpes simplex virus, type-1 (HSV), can transfer and express genes into fully differentiated, post-mitotic neurons. These vectors also transduce cells effectively in organotypic hippocampal slice cultures. Nanoliter quantities of a virus stock of HSVlac, an HSV vector...... or hippocampal slices. The rapid expression of beta-gal by HSVlac allowed efficient transduction of acute hippocampal slices. Many genes have been transduced and expressed using HSV vectors; therefore, this microapplication method can be applied to many neurobiological questions....

  11. Baculovirus vector-mediated transfer of NIS gene into colon tumor cells for radionuclide therapy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the feasibility of radionuclide therapy of colon tumor cells by baculovirus vector-mediated transfer of the sodium/iodide symporter(NIS) gene.METHODS:A recombinant baculovirus plasmid carrying the NIS gene was constructed,and the viruses(BacNIS) were prepared using the Bac-to-Bac system.The infection efficiency in the colon cancer cell line SW1116 of a green fluorescent protein(GFP) expressing baculovirus(Bac-GFP) at different multiplicities of infection(MOI) with various concentrations o...

  12. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  13. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima

    DEFF Research Database (Denmark)

    Worning, Peder; Jensen, Lars Juhl; Nelson, K. E.

    2000-01-01

    The recently published complete DNA sequence of the bacterium Thermotoga maritima provides evidence, based on protein sequence conservation, for lateral gene transfer between Archaea and Bacteria. We introduce a new method of periodicity analysis of DNA sequences, based on structural parameters......, which brings independent evidence for the lateral gene transfer in the genome of T.maritima, The structural analysis relates the Archaea-like DNA sequences to the genome of Pyrococcus horikoshii. Analysis of 24 complete genomic DNA sequences shows different periodicity patterns for organisms...... of different origin, The typical genomic periodicity for Bacteria is 11 bp whilst it is 10 bp for Archaea, Eukaryotes have more complex spectra but the dominant period in the yeast Saccharomyces cerevisiae is 10.2 bp. These periodicities are most likely reflective of differences in chromatin structure....

  14. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    2012-12-01

    Full Text Available The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  15. Inhibitory effect of Ca2+ on in vivo gene transfer by electroporation

    Institute of Scientific and Technical Information of China (English)

    Yong-gang ZHAO; Hui-li LU; Jin-liang PENG; Yu-hong XU

    2006-01-01

    Aim:To investigate the specific effects of Ca2+ on transgene expression during electroporation-mediated gene transfer in mice.Methods:Skeletal muscle and skin were subjected to in vivo electroporation with a luciferase reporter plasmid,with or Without Ca2+ and various other ions.Resuits:For in vivo electroporation,the presence of just 10 mmol/L Ca2+ in the DNA solution drastically reduced the resulting transgene expression,to less than 5% of control values.Only Ca2+,not other ions,caused inhibition,and the effect was not tissue specific.More surprisingly.even when Ca2+ ions were delivered by electroporation before or after DNA administration,similar effects were still observed.Conelusion:The inhibitory effect of Ca2+ on in vivo gene transfer by electroporation is specific,ie,the inhibitory effect may be related to the cell membrane properties after electroporation and the subsequent resealing event.

  16. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  17. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    Science.gov (United States)

    Garbian, Yael; Maori, Eyal; Kalev, Haim; Shafir, Sharoni; Sela, Ilan

    2012-12-01

    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  18. Transfer of antibiotic-resistance genes via phage-related mobile elements.

    Science.gov (United States)

    Brown-Jaque, Maryury; Calero-Cáceres, William; Muniesa, Maite

    2015-05-01

    Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them.

  19. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  20. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  1. Security Transition Program Office (STPO), technology transfer of the STPO process, tools, and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, J.T.; Forslund, C.R.J.; Underwood, J.A.

    1994-09-01

    In 1990, with the transition from a defense mission to environmental restoration, the U.S. Department of Energy`s (DOE`s) Hanford Site began a significant effort to diagnose, redesign, and implement new safeguards and security (SAS) processes. In 1992 the Security Transition Program Office (STPO) was formed to address the sweeping changes that were being identified. Comprised of SAS and other contractor staff with extensive experience and supported by staff experienced in organizational analysis and work process redesign, STPO undertook a series of tasks designed to make fundamental changes to SAS processes throughout the Hanford Site. The goal of STPO is to align the SAS work and organization with the new Site mission. This report describes the key strategy, tools, methods, and techniques used by STPO to change SAS processes at Hanford. A particular focus of this review is transferring STPO`s experience to other DOE sites and federal agency efforts: that is, to extract, analyze, and provide a critical review of the approach, tools, and techniques used by STPO that will be useful to other DOE sites and national laboratories in transitioning from a defense production mode to environmental restoration and other missions. In particular, what lessons does STPO provide as a pilot study or model for implementing change in other transition activities throughout the DOE complex? More broadly, what theoretical and practical contributions do DOE transition efforts, such as STPO, provide to federal agency streamlining efforts and attempts to {open_quotes}reinvent{close_quotes} government enterprises in the public sector? The approach used by STPO should provide valuable information to those examining their own processes in light of new mission requirements.

  2. Conductive silver ink printing through the laser-induced forward transfer technique

    Energy Technology Data Exchange (ETDEWEB)

    Florian, C.; Caballero-Lucas, F.; Fernández-Pradas, J.M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Artigas, R. [Sensofar-Tech S.L., Parc Audiovisual de Catalunya, Crta. BV1274 Km1, E-08225 Terrassa (Spain); Ogier, S. [Center for Process Innovation Ltd, The Wilton Centre, TS10 4RF Cleveland (United Kingdom); Karnakis, D. [Oxford Lasers Ltd, Unit 8 Moorbrook Park, OX11 7HP Didcot (United Kingdom); Serra, P., E-mail: pserra@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain)

    2015-05-01

    Highlights: • We have devised a strategy which allows eliminating the bulging problem during the LIFT of conductive lines. • The strategy consists of the alternate deposition of two sets of non-overlapping droplets with an intermediate drying step. • The process allows mitigating capillary flows along the printed line which are responsible for bulging and line breakup. • Conductivity measurements of laser cured lines prove the feasibility of the technique for the fabrication of interconnects. - Abstract: Laser induced forward transfer (LIFT) is a technique which allows printing a wide variety of materials. It presents several advantages over inkjet printing, such as a potentially higher resolution, being free from clogging issues, and the possibility to work with a much broader range of viscosities. LIFT appears, therefore, as an interesting alternative in all those fields where miniaturization is a major requirement, as in the microelectronics industry. The fabrication of electronic devices requires the printing of small, narrow and thin conductive lines, and in this work we investigate the printing of continuous lines of conductive silver ink on glass substrates through LIFT. Lines are initially formed through sequentially printing adjacent droplets with different overlaps. We show that above a certain overlap continuous lines can be obtained, but unfortunately they show bulging, a problem which compromises the functionality of the lines. In order to solve the problem, other printing strategies are tested; they consist in printing adjacent droplets in alternate sequences. It is found that the alternate printing of two overlapping sets of droplets with an intermediate drying step allows obtaining functional continuous lines without bulging.

  3. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species

    Science.gov (United States)

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy

    2017-01-01

    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  4. Retroviral Vector-Mediated Gene Transfer into the Chick Optic Vesicle by In Ovo Electroporation

    Science.gov (United States)

    Sakuta, Hiraki; Suzuki, Ryoko; Noda, Masaharu

    The chick embryo offers many advantages for developmental studies over other vertebrate embryos as it allows easy access for in ovo surgical manipulations, such as tissue transplantation and the implantation of cultured cells or chemically treated beads for the local release of humoral factors. In particular, owing to its external position in the embryo, the chick eye is a popular model for studying the patterning mechanism of the central nervous system (CNS). This patterning has a crucial role in shaping functional organization because it is the basis of the specific wiring in the CNS. Genetic analysis is not easy in the chick, as compared with the mouse for which transgene introduction or gene targeting techniques have been well established. However, because methods for the expression of exogenous genes and for gene silencing in the chick embryo have been recently developed, the functional analysis of genes has become possible in combination with classical techniques of developmental biology and neurobiology.

  5. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  6. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  7. Genetic analysis of transgenome structure and size of chromosome—mediated gene transfer lines

    Institute of Scientific and Technical Information of China (English)

    XUWeIMING

    1992-01-01

    The TK-selected chromosome-mediate gene transfer lines were analysed using DNA dot blot method G-11 banding and in situ hybridization.The results showed that CMGT can provide a wide variety of intermediate size of the transgenome from greater than 80,000kb to less than 2,000kb,Some of transfectants are intergrated into mouse chromosome which can be detected by G-11 banding and in situ hybridization.

  8. Targeted gene transfer of hepatocyte growth factor to alveolar type II epithelial cells reduces lung fibrosis in rats.

    Science.gov (United States)

    Gazdhar, Amiq; Temuri, Almas; Knudsen, Lars; Gugger, Mathias; Schmid, Ralph A; Ochs, Matthias; Geiser, Thomas

    2013-01-01

    Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

  9. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  10. Diamond Field Emission Source using Transfer Mold Technique Prepared by Diamond Powder Seeding

    Science.gov (United States)

    Tezuka, Sachiaki; Matsuba, Yohei; Takahashi, Kohro

    Diamond thin films fabricated by MPCVD (microwave plasma chemical vapor deposition) are available for use as a field emitter material, because of its high mechanical quality, thermal conductivity, chemical stability, environmental tolerance, and NEA (negative electron affinity). Diode and triode emitter arrays using P-doped polycrystalline diamond were manufactured on a SiO2/Si(100) substrate with reverse pyramids formed by the transfer mold technique. As the diamond nucleation process, spin-coat seeding with pure diamond powder dispersed in isoamyl acetate has been introduced in place of the bias method. SEM (scanning electron microscopy) images and Raman spectroscopy indicate that the crystal quality of the diamond thin film fabricated by spin-coat seeding is superior to that fabricated by the bias method. The diamond crystal completely grew on top of the diode emitter by the US (ultrasonic) treatment in a diamond powder solution before spin-coat seeding. The tip radius was smaller than 50 nm. The beginning voltage of the emission of the diode emitter is 3 V after the DC glow discharge treatment in H2, which is lower than that of an emitter array fabricated by the bias method, 40 V. On the other hand, the emission of the diamond triode emitter starts at a gate voltage of only 0.5 V, and the emission current of 50∼60 mA is obtained at a gate voltage of 2 V.

  11. Heat and mass transfer in combustion - Fundamental concepts and analytical techniques

    Science.gov (United States)

    Law, C. K.

    1984-01-01

    Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.

  12. Monitoring of resin transfer in CFRP molding using 3D-DIC technique

    Science.gov (United States)

    Chen, Dingding; Arakawa, Kazuo; Uchino, Masakazu

    2014-06-01

    Vacuum-assisted resin transfer molding (VARTM) is a manufacturing process that is used to make large and complex composite structures. While promising, VARTM still suffers from relatively low fiber volume fractions and high void content in the final products. The infusion step of VARTM is very important, because the quality of the final product is usually decided by this process. Consequently, a comprehensive understanding of the infusion process is essential. In this study, a three-dimensional digital image correlation (3D-DIC) testing system was set up to research the entire infusion process through the monitor of the thickness change of the laminates in this process. Two distinct VARTM processes, with and without a rigid cover mold, were designed to be studied. The 3D-DIC technique proved to be a valid method that not only can monitor the thickness evolution of isolated points but also can give a full-field distribution of the thickness change of the laminate. The results showed that, without the use of a rigid cover mold, the stack of reinforcements initially shrank and then expanded as the resin filled the cavities before closing the inlet, while when using a rigid cover mold there was an additional expansion period before the shrinkage occurred. Such an expansion stage could promote the flow of the resin, shortening the infusion time.

  13. Gene Transfer into Vascular Smooth Muscle Cells (VSMCs) by Ultrasound with Microbubbles

    Institute of Scientific and Technical Information of China (English)

    Akio; SAKANISHI

    2005-01-01

    1 Introduction Ultrasound is best known for its imaging capability in diagnostic medicine. However, there have been considerable efforts recently to develop therapeutic uses of ultrasound. Gene therapy will be increasingly important for the treatment of inherited or acquired diseases, such as atherosclerosis and cancer~([1]). However, its clinical application is hampered by concerns over the safety of viral vectors and the inefficiency of transfection techniques for local gene delivery to a specific tissue ...

  14. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers.

    Science.gov (United States)

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-06-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome 'flux'. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.

  15. THE RISK OF GENE TRANSFERRING IN THE INSURANCE PROTECTION OF AGRICULTERE

    Directory of Open Access Journals (Sweden)

    M. Malik

    2016-03-01

    Full Text Available The paper justified essence of genetic engineering as the object of insurance services. Defines the concept of risk gene transferring. The character features of this specific risk. The influence and consequences for agricultural producers. The description of the possible creation of the concept of insurance services that cover risk of gene transferring. The study reveals of the use of GMOs in agriculture, due to issues of economic security of a particular region or country as a whole. To determined the impact of risks and control for developing and developed countries that are important aspects of farming. Changes in weather, climate, productivity, price values, public policy, the situation on global markets can cause large fluctuations in agricultural production, and consequently affecting the income of agricultural producers. Risk management includes a range of strategies that reduce the social and financial implications of possible changes affecting the production and income of farmers. There is a need for an in-depth study of the theoretical and practical aspects of the impact of the risk of gene transferring in the context of insurance protection.

  16. Hepatocyte gene transfer mediated by stable polyplexes based on MPP-containing DNA complexes

    Institute of Scientific and Technical Information of China (English)

    Bao-Feng Yu; Wan-I Li; Xiao-Nian Hu; Yue-Hong Zhang; Bo Niu; Jun Xie

    2009-01-01

    BACKGROUND: In the field of gene therapy, viral vectors as delivery tools have a number of disadvantages for medical application. This study aimed to explore a novel nonviral vector as a vehicle for gene therapy. METHODS: Transvector-rpE-MPP and EGFP (enhanced green fluorescent protein) were used as the gene transfer carrier and the reporter gene, respectively. Polyplexes which integrate transvector-rpE-MPP, the object gene, and EGFP were formed. The optimal charge ratio, stability, and transduction capacity of the polyplexes in mouse hepatocytes in vitro and in mouse liver in vivo were investigated. The polyplexes of transvector-rpE-MPP and pcDNA3-EGFP, with charge ratios of 0, 0.25, 0.5, 0.75, 1 and 1.5 were compared to determine the optimal charge ratio. RESULTS:  Polyplexes with charge ratios of 1∶1 were most stable; pcDNA3-EGFP in these complexes resisted digestion by DNase Ⅰ and blood plasma. On the other hand, pcDNA3-EGFP alone was digested. Fluorescence analysis indicated that transvector-rpE-MPP successfully delivered the reporter gene EGFP into hepatocytes and that EGFP expression was detected in hepatocyte cultures and in liver tissue. CONCLUSION: These results have laid a foundation for further study of a novel nonviral gene delivery system.

  17. Efficient Gene Transfer Mediated by HIV-1-based Defective Lentivector and Inhibition of HIV-1 Replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lentiviral vectors have drawn considerable attention recently and show great promise to become important delivery vehicles for future gene transfer manipulation. In the present study we have optimized a protocol for preparation of human immunodeficiency virus type-1 (HIV-1)-based defective lentiviral vectors (DLV) and characterized these vectors in terms of their transduction of different cells. Transient co-transfection of 293T packaging cells with DNA plasmids encoding lentiviral vector constituents resulted in production of high-titer DLV (0.5-1.2 × 107IU/mL), which can be further concentrated over 100-fold through a single step ultracentrifugation. These vectors were capable of transducing a variety of cells from both primate and non-primate sources and high transduction efficiency was achieved using concentrated vectors. Assessment of potential generation of RCV revealed no detection of infection by infectious particles in DLV-transduced CEM, SupT-1 and MT-2 cells. Long-term culture of transduced cells showed a stable expression of transgenes without apparent alteration in cellular morphology and growth kinetics. Vector mobilization to untransduced cells mediated by wild-type HIV-1 infection was confirmed in this test. Challenge of transduced human T-lymphocytes with wild-type HIV-1 showed these cells are totally resistant to the viral infection. Considering the effective gene transfer and stable gene expression, safety and anti-HIV activity, these DLV vectors warrant further exploration for their potential use as a gene transfer vehicle in the development of gene therapy protocols.

  18. Investigating rate-limiting barriers to nanoscale nonviral gene transfer with nanobiophotonics

    Science.gov (United States)

    Chen, Hunter H.

    Nucleic acids are a novel class of therapeutics poised to address many unmet clinical needs. Safe and efficient delivery remains a significant challenge that has delayed the realization of the full therapeutic potential of nucleic acids. Nanoscale nonviral vectors offer an attractive alternative to viral vectors as natural and synthetic polymers or polypeptides may be rationally designed to meet the unique demands of individual applications. A mechanistic understanding of cellular barriers is necessary to develop guidelines for designing custom gene carriers which are expected to greatly impact this delivery challenge. The work herein focused on the relationships among nanocomplex stability, intracellular trafficking and unpacking kinetics, and DNA degradation. Ultrasensitive nanosensors based on QD-FRET were developed to characterize the biophysical properties of nanocomplexes and study these rate-limiting steps. Quantitative image analysis enabled the distributions of the subpopulation of condensed or released DNA to be determined within the major cellular compartments encountered during gene transfer. The steady state stability and unpacking kinetics within these compartments were found to impact transgene expression, elucidating multiple design strategies to achieve efficient gene transfer. To address enzymatic barriers, a novel two-step QD-FRET nanosensor was developed to analyze unpacking and DNA degradation simultaneously, which has not been accomplished previously. Bioresponsive strategies such as disulfide crosslinking and thermosensitivity were evaluated by QD-FRET and quantitative compartmental analysis as case studies to determine appropriate design specifications for thiolated polymers and thermoresponsive polypeptides. Relevant nanobiophotonic tools were developed as a platform to study major rate-limiting barriers to nanomedicine and demonstrated the feasibility of using mechanistic information gained from these tools to guide the rational design of

  19. In vivo gene transfer strategies to achieve partial correction of von Willebrand disease.

    Science.gov (United States)

    Wang, Lan; Rosenberg, Jonathan B; De, Bishnu P; Ferris, Barbara; Wang, Rui; Rivella, Stefano; Kaminsky, Stephen M; Crystal, Ronald G

    2012-06-01

    von Willebrand disease (VWD), the most common hereditary coagulation disorder, results from mutations in the 52-exon gene for von Willebrand factor (VWF), which encodes an 8.4-kB cDNA. Studies with VWF cDNA plasmids have demonstrated that in vivo gene transfer to the liver will correct the coagulation dysfunction in VWF(-/-) mice, but the correction is transient. To develop gene therapy for VWF that would mediate long-term expression of the VWF cDNA in liver, we first evaluated segmental pre-mRNA trans-splicing (SPTS) with two adeno-associated virus (AAV) serotype 8 vectors, each delivering one-half of the VWF cDNA. However, although the two vectors functioned well to generate VWF multimers after infection of cells in vitro, the efficiency of SPTS was insufficient to correct the VWF(-/-) mouse in vivo. As an alternative, we assessed the ability of a lentiviral vector to transfer the intact murine VWF cDNA in vivo directly to the neonatal liver of VWF(-/-) mice, using generation of VWF multimers, bleeding time, and bleeding volume as efficacy parameters. The VWF lentivirus generated VWF multimers and partially or completely corrected the coagulation defect on a persistent basis in 33% of the treated VWF-deficient mice. On the basis of the concept that partial persistent correction with gene transfer could be beneficial in VWD patients, these observations suggest that lentiviral delivery of VWF cDNA should be explored as a candidate for gene therapy in patients with a severe form of VWD.

  20. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Maria Virginia Sanchez-Puerta

    2014-12-01

    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  1. Bayesian analysis of congruence of core genes in Prochlorococcus and Synechococcus and implications on horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Nicholas J Matzke

    Full Text Available It is often suggested that horizontal gene transfer is so ubiquitous in microbes that the concept of a phylogenetic tree representing the pattern of vertical inheritance is oversimplified or even positively misleading. "Universal proteins" have been used to infer the organismal phylogeny, but have been criticized as being only the "tree of one percent." Currently, few options exist for those wishing to rigorously assess how well a universal protein phylogeny, based on a relative handful of well-conserved genes, represents the phylogenetic histories of hundreds of genes. Here, we address this problem by proposing a visualization method and a statistical test within a Bayesian framework. We use the genomes of marine cyanobacteria, a group thought to exhibit substantial amounts of HGT, as a test case. We take 379 orthologous gene families from 28 cyanobacteria genomes and estimate the Bayesian posterior distributions of trees - a "treecloud" - for each, as well as for a concatenated dataset based on putative "universal proteins." We then calculate the average distance between trees within and between all treeclouds on various metrics and visualize this high-dimensional space with non-metric multidimensional scaling (NMMDS. We show that the tree space is strongly clustered and that the universal protein treecloud is statistically significantly closer to the center of this tree space than any individual gene treecloud. We apply several commonly-used tests for incongruence/HGT and show that they agree HGT is rare in this dataset, but make different choices about which genes were subject to HGT. Our results show that the question of the representativeness of the "tree of one percent" is a quantitative empirical question, and that the phylogenetic central tendency is a meaningful observation even if many individual genes disagree due to the various sources of incongruence.

  2. A direct comparison between two independently calibrated time transfer techniques: T2L2 and GPS Common-Views

    Science.gov (United States)

    Rovera, G. D.; Abgrall, M.; Courde, C.; Exertier, P.; Fridelance, P.; Guillemot, Ph; Laas-Bourez, M.; Martin, N.; Samain, E.; Sherwood, R.; Torre, J.-M.; Uhrich, P.

    2016-06-01

    We present a direct comparison between two satellite time transfer techniques on independently calibrated links: Time Transfer by Laser Link (T2L2) and Common-Views (CV) of satellites from the Global Positioning System (GPS) constellation. The GPS CV and T2L2 links between three European laboratories where independently calibrated against the same reference point of the local timescales. For all the links the mean values of the differences between GPS CV and T2L2 are equal or below 240 ps, with standard deviations below 500 ps, mostly due to GPS CV. Almost all deviations from 0 ns are within the combined uncertainty estimates. Despite the weak number of common points obtained, due to the fact that T2L2 is weather dependent, these results are providing an unprecedented sub-ns consistency between two independently calibrated microwave and optical satellite time transfer techniques.

  3. TRANSFER

    African Journals Online (AJOL)

    “Chemistry Department, Kenyatta University, P. 0. Box 43844 ... harvester (X) [L 2] in a manner consistent with the following Forster equation for long range energy transfer [3-7]. .... sensitive foods, chemical reactors and essences. Recently we ...

  4. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Gabriela Jorge Da Silva

    2016-08-01

    Full Text Available Horizontal gene transfer (HGT is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.

  5. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field.

    Science.gov (United States)

    Kim, Sung Eun; Moon, Jae Sun; Kim, Jung Kyu; Choi, Won Sik; Lee, Sang Han; Kim, Sung Uk

    2010-01-01

    In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in paddy rice field, the gene flow from bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected every month from the paddy rice field during June, 2004 to March, 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomics DNAs was not detected by PCR. Soil genomic DNAs were not shown its homologies on the Southern blotting data, indicating that gene-transfer did not occur during the last two years in paddy rice field. In addition, the AFLP band patterns produced by both soil genomic DNAs extracted from transgenic and non-transgenic rice field appeared similar to each other when analyzed by NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms although long-term observation may be needed.

  6. Retroviral endostatin gene transfer inhibits human colon cancer cell growth in vivo

    Institute of Scientific and Technical Information of China (English)

    陈卫昌; 傅建新; 刘强; 阮长耿; 萧树东

    2003-01-01

    Objective To investigate the therapeutic effect of retroviral endostatin gene transfer on the human colon cancer cell line, LoVo.Methods A retroviral vector pLESSN expressing secretable endostatin was constructed and packaged with a titer of 8.2×105 CFU/ml. A LoVo cell line was subjected to retrovirus-mediated endostatin gene transfer. The proviral integration of endostatin was analyzed with PCR. The function of endostatin was tested by MTT assay in vitro and a mouse xenograft model in vivo.Results After transfection and superinfection, amphotropic retrovirus was collected, and transduction with amphotropic retroviruses resulted in endostatin proviral integration. The endostatin secreted by transduced LoVo cells markedly inhibited endothelial cell growth up to 67% (P<0.001), compared with the control cells. The gene expression of endostatin in LoVo colon tumor cells significantly inhibited tumor growth in vivo. There was an 86% reduction in tumor size in the endostatin-transduced group, accompanied by a reduction in vessels, compared with the control group (P<0.01). Conclusion Retroviruses can allow functional expression of the endostatin gene in human colon tumors, showing promise for an antitumor strategy using antiangiogenesis.

  7. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    Science.gov (United States)

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-06-07

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses.

  8. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia

    Energy Technology Data Exchange (ETDEWEB)

    Narcisi, T.M.E.; Shoulders, C.C.; Chester, S.A. [Hammersmith Hospital, London (United Kingdom)] [and others

    1995-12-01

    Elevated plasma levels of apolipoprotein B (apoB)-containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity. 49 refs., 4 figs., 5 tabs.

  9. DNA bar coding and pyrosequencing to analyze adverse events in therapeutic gene transfer.

    Science.gov (United States)

    Wang, Gary P; Garrigue, Alexandrine; Ciuffi, Angela; Ronen, Keshet; Leipzig, Jeremy; Berry, Charles; Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana-Calvo, Marina; Bushman, Frederic D

    2008-05-01

    Gene transfer has been used to correct inherited immunodeficiencies, but in several patients integration of therapeutic retroviral vectors activated proto-oncogenes and caused leukemia. Here, we describe improved methods for characterizing integration site populations from gene transfer studies using DNA bar coding and pyrosequencing. We characterized 160,232 integration site sequences in 28 tissue samples from eight mice, where Rag1 or Artemis deficiencies were corrected by introducing the missing gene with gamma-retroviral or lentiviral vectors. The integration sites were characterized for their genomic distributions, including proximity to proto-oncogenes. Several mice harbored abnormal lymphoproliferations following therapy--in these cases, comparison of the location and frequency of isolation of integration sites across multiple tissues helped clarify the contribution of specific proviruses to the adverse events. We also took advantage of the large number of pyrosequencing reads to show that recovery of integration sites can be highly biased by the use of restriction enzyme cleavage of genomic DNA, which is a limitation in all widely used methods, but describe improved approaches that take advantage of the power of pyrosequencing to overcome this problem. The methods described here should allow integration site populations from human gene therapy to be deeply characterized with spatial and temporal resolution.

  10. Clinical and molecular cytogenetics and gene mapping: principles and techniques.

    Science.gov (United States)

    Francke, U

    1995-01-01

    This article reviews the history of human cytogenetics with respect to technical advances from chromosome banding to molecular cytogenetics. Technologies such as in situ hybridization, chromosome painting, comparative genomic hybridization and interphase cytogenetics and their applications are discussed. The assignments of genes to chromosome regions by somatic cell genetics is illustrated by molecular analyses of somatic cell hybrid panels. The generation of complete physical maps of human chromosomes, by radiation hybrid mapping of sequence-tagged sites and establishment of chromosome-specific yeast artificial chromosome (YAC) banks and clone overlaps (contigs), is exemplified by studies of chromosome 18. The last section outlines the recent and future advances in clinical cytogenetics made possible by progress in molecular genetics.

  11. The give-and-take of DNA: horizontal gene transfer in plants.

    Science.gov (United States)

    Bock, Ralph

    2010-01-01

    Horizontal gene transfer (HGT) is increasingly being recognized as a significant force in the evolution of eukaryotic genomes. Plants have been both donors and recipients of horizontally mobilized genes and their genetic barter partners include prokaryotes and eukaryotes from all kingdoms. By expanding the gene pool beyond species boundaries, HGT events can drive genomic and phenotypic changes that increase fitness substantially. Accumulating evidence suggests that HGT is particularly prevalent between organisms that are either intimately associated or establish at least occasionally cell-cell contacts (e.g. in mutualistic or parasitic relationships). Here, I summarize current knowledge about HGT in plants, discuss possible molecular mechanisms and adaptive values of HGT events and highlight recent progress made in reconstructing HGT processes in laboratory experiments.

  12. Detecting horizontally transferred and essential genes based on dinucleotide relative abundance.

    Science.gov (United States)

    Baran, Robert H; Ko, Hanseok

    2008-10-01

    Various methods have been developed to detect horizontal gene transfer in bacteria, based on anomalous nucleotide composition, assuming that compositional features undergo amelioration in the host genome. Evolutionary theory predicts the inevitability of false positives when essential sequences are strongly conserved. Foreign genes could become more detectable on the basis of their higher order compositions if such features ameliorate more rapidly and uniformly than lower order features. This possibility is tested by comparing the heterogeneities of bacterial genomes with respect to strand-independent first- and second-order features, (i) G + C content and (ii) dinucleotide relative abundance, in 1 kb segments. Although statistical analysis confirms that (ii) is less inhomogeneous than (i) in all 12 species examined, extreme anomalies with respect to (ii) in the Escherichia coli K12 genome are typically co-located with essential genes.

  13. Retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Zhang Yingang; Guo Xiong; Liu Zheng; Wang Shijie

    2007-01-01

    Objective To develop retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2 in mesenchymal stem cells. Methods Mesenchymal stem cells from New Zealand white rabbits were transduced with retroviral pLEGFP-BMP2 vector by the optimized retroviral transduction protocol. Fluorescent microscopy's examination was to evaluate the results of the transduction, flow cytometer's analysis was to evaluate the transduction efficiency and the Fluorescence-activated cell sorting method was to sort the transduced cells. Bioactivity test from C2C12K4 cells was to show the expression and bio-activity of the fusion gene. Results Fluorescent microscopy showed the success of the transduction. By flow cytometer's analysis, the mean efficiency of the transduction with EGFP was (42.8±6.1)% SD. Transduced cells were sorted efficiently by the fluorescence-activated cell sorting method and after sorting, almost of those showed the expression of BMP2. Fluorescently and strongly bioactivity test for C2C12K4 cells demonstrated that fluorescent materials were located the surface of cells and the activity of luciferase increased compared with the control. Analysis of long-term expression showed there was no difference between 2 week-time point and 3 month-time point of culture post-sorting. Conclusion Mesenchymal stem cells can be transduced efficiently by retrovirus-mediated transfer of the fusion gene encoding EGFP-BMP2, the highly pure transduced cells are obtained by the fluorescence-activated cell sorting technique, the expressed chimeric protein embraced the double bioactivity of EGFP and BMP2, and moreover, the expression had not attenuated over time.

  14. A low-computational-cost inverse heat transfer technique for convective heat transfer measurements in hypersonic flows

    Science.gov (United States)

    Avallone, F.; Greco, C. S.; Schrijer, F. F. J.; Cardone, G.

    2015-04-01

    The measurement of the convective wall heat flux in hypersonic flows may be particularly challenging in the presence of high-temperature gradients and when using high-thermal-conductivity materials. In this case, the solution of multidimensional problems is necessary, but it considerably increases the computational cost. In this paper, a low-computational-cost inverse data reduction technique is presented. It uses a recursive least-squares approach in combination with the trust-region-reflective algorithm as optimization procedure. The computational cost is reduced by performing the discrete Fourier transform on the discrete convective heat flux function and by identifying the most relevant coefficients as objects of the optimization algorithm. In the paper, the technique is validated by means of both synthetic data, built in order to reproduce physical conditions, and experimental data, carried out in the Hypersonic Test Facility Delft at Mach 7.5 on two wind tunnel models having different thermal properties.

  15. Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†

    OpenAIRE

    2006-01-01

    Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These ...

  16. Mapping of metastasis suppressor genes for prostate cancer by microcell-mediated chromosome transfer

    Institute of Scientific and Technical Information of China (English)

    TomohikoICHIKAWA; ShigeruHOSOKI; HiroyoshiSUZUKI; KoichiroAKAKURA; TatsuoIGARASHI; YuzoFURUYA; MitsuoOSHIMURA; CarrieW.RINKER-SCHAEFFER; NaokiNIHEI; JohnT.ISAACS; HaruoITO

    2000-01-01

    Aim: To identify the metastasis suppressor genes for prostate cancer. Methods: A copy of human chromosomes was introduced into the highly metastatic Dunning R-3327 rat prostate cancer cells by the use of microcell-mediated chromosome transfer. Relationships between the size of human chromosomes introduced into microcell hybrid clones and the number of lung metastases produced by the clones were analyzed to determine which part of human chromosomes contained the metastasis suppressor gene (s) for prostate cancer. To determine portions of human chromosomes introduced, G-banding chromosomal analysis, fluorescence in situ hybridization analysis, and polymerase chain reaction analysis were performed. Results: Each of microcell hybrid clones containing human chromosomes 7, 8, 10, 11, 12, or 17 showed decreased ability to metastasize to the lung without any loss of ttmaorigenicity. This demonstrates that these human chromosomes contain metastasis suppressor genes for prostate cancer. Spontaneous deletion of portions of human chromosomes was observed in the human chromosome 7, 10, 11, 12, and 17 studies. In the human chromosome 8 study, irradiated microcell-mediated chromosome transfer was performed to enrich chromosomal ann deletions of human chromosome 8. Molecular and cytogenetic analyses of microcell hybrid clones demonstrated that metastasis suppressor genes on human chromosomes were located on 7q21-22, 7q31.2-32, 8p21-12, 10q11-22, 11p13-11.2, 12p11-q13, 12q24-ter, and 17pter-q23. KAI1 and MKK4/SEKI were identified as metastasis suppressor genes from 11p11.2 and 17p12, respectively. Conclusion: This assay system is useful to identify metastasis suppressor gene (s) for prostate cancer.

  17. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species

    Directory of Open Access Journals (Sweden)

    Higgs Paul G

    2011-01-01

    Full Text Available Abstract Background Horizontal Gene Transfer (HGT is beneficial to a cell if the acquired gene confers a useful function, but is detrimental if the gene has no function, if it is incompatible with existing genes, or if it is a selfishly replicating mobile element. If the balance of these effects is beneficial on average, we would expect cells to evolve high rates of acceptance of horizontally transferred genes, whereas if it is detrimental, cells should reduce the rate of HGT as far as possible. It has been proposed that the rate of HGT was very high in the early stages of prokaryotic evolution, and hence there were no separate lineages of organisms. Only when the HGT rate began to fall, would lineages begin to emerge with their own distinct sets of genes. Evolution would then become more tree-like. This phenomenon has been called the Darwinian Threshold. Results We study a model for genome evolution that incorporates both beneficial and detrimental effects of HGT. We show that if rate of gene loss during genome replication is high, as was probably the case in the earliest genomes before the time of the last universal common ancestor, then a high rate of HGT is favourable. HGT leads to the rapid spread of new genes and allows the build-up of larger, fitter genomes than could be achieved by purely vertical inheritance. In contrast, if the gene loss rate is lower, as in modern prokaryotes, then HGT is, on average, unfavourable. Conclusions Modern cells should therefore evolve to reduce HGT if they can, although the prevalence of independently replicating mobile elements and viruses may mean that cells cannot avoid HGT in practice. In the model, natural selection leads to gradual improvement of the replication accuracy and gradual decrease in the optimal rate of HGT. By clustering genomes based on gene content, we show that there are no separate lineages of organisms when the rate of HGT is high; however, as the rate of HGT decreases, a tree

  18. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?

    Science.gov (United States)

    Tormo, M Angeles; Knecht, Erwin; Götz, Friedrich; Lasa, Iñigo; Penadés, José R

    2005-07-01

    The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.

  19. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, Uwe; Altmann, Annette [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Hoffend, Johannes [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); Schmidt, Kerstin [University of Heidelberg, INF 400, Department of Nuclear Medicine, Heidelberg (Germany); DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); University of Heidelberg, Anatomy and Developmental Biology, Medical Faculty Mannheim, Mannheim (Germany); Bonaterra, Gabriel A.; Kinscherf, Ralf [University of Heidelberg, Anatomy and Developmental Biology, Medical Faculty Mannheim, Mannheim (Germany); Dimitrakopoulou-Strauss, Antonia; Strauss, Ludwig G. [DKFZ and University of Heidelberg, INF 280, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Eisenhut, Michael [DKFZ, INF 280, Department of Radiopharmaceutical Chemistry, Heidelberg (Germany)

    2007-12-15

    Human troponin I (TROP), the soluble receptor for vascular endothelial growth factor (sFLT) and angiostatin (ASTAT) are potent inhibitors of endothelial cell proliferation, angiogenesis and tumour growth in vivo. Transfer of these genes into tumours may induce changes not only in perfusion, but also more general ones such as changes in metabolism. The aim of this study was to assess these reactions using FDG-PET and high-throughput methods such as gene profiling. We established Morris hepatoma (MH3924A) cell lines expressing TROP, sFLT or ASTAT and quantified {sup 18}F-fluorodeoxyglucose ({sup 18}FDG) uptake by dynamic positron emission tomography (PET) after tumour inoculation in ACI rats. Furthermore, expression of glucose transporter-1 and -3 (GLUT-1 and GLUT-3) as well as hexokinase-1 and -2 were investigated by RT-PCR and immunohistomorphometry. In addition, gene array analyses were performed. {sup 18}FDG uptake, vascular fraction and distribution volume were significantly higher in all genetically modified tumours. Immunohistomorphometry showed an increased percentage of hexokinase-1 and -2 as well as GLUT-1 and -3 immunoreactive (ir) cells. Using gene arrays and comparing all three groups of genetically modified tumours, we found upregulated expression of 36 genes related to apoptosis, signal transduction, stress or metabolism. TROP-, sFLT- or ASTAT-expressing MH3924A tumours show enhanced influx of {sup 18}FDG, which seems to be caused by several factors: enhanced exchange of nutrients between blood and tumour, increased amounts of glucose transporters and hexokinases, and increased expression of genes related to apoptosis, matrix and stress, which induce an increased demand for glucose. (orig.)

  20. Tangential breast irradiation; Influence of technique of set-up on transfer errors and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Mitine, C.; Dutreix, A.; Van der Schueren, E. (University Hospital St. Rafael, Leuven (Belgium). Department of Radiotherapy)

    1991-12-01

    Using conventional portal films, the influence of the technique of set-up on the transfer error from simulator to treatment couch and on the subsequent reproducibility was made for the irradiated volume in the treatment of breast cancer. A total number of 376 portal films have been performed on 14 patients. All patients were treated on a 6MV Linac supplied with an automatic verification system excluding, however, the couch parameters. Overall precision of treatment delivery is evaluated by the global analysis of discrepancies between the simulator films and different portal films. For the patient group lying on a inclined plane with (group 2) or without (group 1) fixed arm support, narrow gaussian distribution is obtained in the anteroposterior (AP) direction with a SD of 4 mm. In the craniocaudal (CC) direction, distribution frequency of the patients treated without fixed arm support is mich larger than in the other group: SD is respectively 15.5mm for the first and 5.5mm for the second one. Reproducibility of the series of set-ups of the 2 groups estimated by reference to the mean value are similar in the AP direction. SD within the series of portal films in CC direction is 5.8 mm for the 1st group and 3.7 for the second. Their comparison with the discrepancies of 15.5 and 5.5mm when assessing the deviation between the stimulated and portal films shows the importance of systematic errors. Localisation of the irradiation port can be improved by using support systems with fixed arm indicators. (author). 6 refs.; 1 tab.

  1. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    Science.gov (United States)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  2. Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy

    OpenAIRE

    Keyhani Nemat O; Song Jian; Bonner Carol A; Xie Gary; Jensen Roy A

    2004-01-01

    Abstract Background The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertica...

  3. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  4. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  5. Heavy chain transfer by tumor necrosis factor-stimulated gene 6 to the bikunin proteoglycan.

    Science.gov (United States)

    Lamkin, Elliott; Cheng, Georgiana; Calabro, Anthony; Hascall, Vincent C; Joo, Eun Ji; Li, Lingyun; Linhardt, Robert J; Lauer, Mark E

    2015-02-20

    We present data that hyaluronan (HA) polysaccharides, about 14-86 monosaccharides in length, are capable of accepting only a single heavy chain (HC) from inter-α-inhibitor via transfer by tumor necrosis factor-stimulated gene 6 (TSG-6) and that this transfer is irreversible. We propose that either the sulfate groups (or the sulfation pattern) at the reducing end of the chondroitin sulfate (CS) chain of bikunin, or the core protein itself, enables the bikunin proteoglycan (PG) to accept more than a single HC and permits TSG-6 to transfer these HCs from its relatively small CS chain to HA. To test these hypotheses, we investigated HC transfer to the intact CS chain of the bikunin PG, and to the free chain of bikunin. We observed that both the free CS chain and the intact bikunin PG were only able to accept a single HC from inter-α-inhibitor via transfer by TSG-6 and that HCs could be swapped from the bikunin PG and its free CS chain to HA. Furthermore, a significant portion of the bikunin PG was unable to accept a single heavy chain. We discuss explanations for these observations, including the intracellular assembly of inter-α-inhibitor. In summary, these data demonstrate that the sulfation of the CS chain of bikunin and/or its core protein promote HC transfer by TSG-6 to its relatively short CS chain, although they are insufficient to enable the CS chain of bikunin to accept more than one HC in the absence of other cofactors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Fat-to-glucose interconversion by hydrodynamic transfer of two glyoxylate cycle enzyme genes

    Directory of Open Access Journals (Sweden)

    Marzo F

    2008-12-01

    Full Text Available Abstract The glyoxylate cycle, which is well characterized in higher plants and some microorganisms but not in vertebrates, is able to bypass the citric acid cycle to achieve fat-to-carbohydrate interconversion. In this context, the hydrodynamic transfer of two glyoxylate cycle enzymes, such as isocytrate lyase (ICL and malate synthase (MS, could accomplish the shift of using fat for the synthesis of glucose. Therefore, 20 mice weighing 23.37 ± 0.96 g were hydrodinamically gene transferred by administering into the tail vein a bolus with ICL and MS. After 36 hours, body weight, plasma glucose, respiratory quotient and energy expenditure were measured. The respiratory quotient was increased by gene transfer, which suggests that a higher carbohydrate/lipid ratio is oxidized in such animals. This application could help, if adequate protocols are designed, to induce fat utilization for glucose synthesis, which might be eventually useful to reduce body fat depots in situations of obesity and diabetes.

  7. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao

    2002-04-01

    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  8. Broad-Host Range Vector-Particle: Gene Transfer Particles From Thermal Vents

    Science.gov (United States)

    Chiura, H. X.; Nakamura, K.; Fukazawa, Y.; Nakata, D.; Tomaru, A.; Okita, N.; Hoaki, T.

    2002-12-01

    Viruses or virus-like particles (VLPs) are common in aquatic ecosystems, however, VLP-host interactions and its commitments to gene transfer in the environment is yet unclear. We have proposed that at least some of the widely distributed VLPs could be general gene transfer agents among a wide range of microbial host cells, and might function as a universal vector (1-4). To elucidate such a broad host range gene transfer mediated by "VLP", the sampling site was extended to the hyper hydrothermal vent, and boring cores. VLP (v) and cell (b) abundances per ml water samples from drilling holes of Suiyo seamount were: APSK04 (28°34.303'N, 140°38.618'E, 1385 m deep, 21°C, b = 8.26 *E^{6}, v = 6.03 x 10^{6}); APSK07 (28°34.299'N, 140°38.690'E, 1386 m deep, 250.5°C, b = 5.33 \\times 104, v = 2.52 \\times 104); a natural vent near APSK05 (28°34.322'N, 140°38.594'E, 1382 m deep, 304.7°C, b = 3.23 x 10^{4}, v = 1.85 x 10^{4}). A boring core sample was obtained from APSK06 (28°34.313'N, 140°38.617', 1386 m deep), from which a hyper thermophilic Archaean, Thermococcus kodakaraensis was successfully cultivated in sulphur supplemented medium between 70 and 90°C. VLP production was observed from T. kodakaraensis, whose VLP (v) and cell (b) abundances per ml at 480 h culture at 70°C were: b = 3.61 *E^{9}, v = 3.46 *E^{9}. Transduction experiment at multiplicity of infection of ca 0.2 using particles from APSK07 and T. kodakaraensis showed a plate efficiency on recipient Escherichia coli AB1157 by ca 72 % and ca 89 % regardless of UV treatment of the particle. Gene transfer frequency of APSK07 particle was (x 10^{-5} cfu/particle) between 2.4 and 0.92, and that of T. kodakaraensis particle was between x 10^{-4} and x 10^{-5}$ cfu/particle. These findings suggest the non-specific gene transfer by such particles may be a ubiquitous event in the natural environment. Such gene transfer particles may have mediated gene flux among phylogenetically diverse microbial

  9. A Comparison of Collection Techniques for Gene Expression Analysis of Human Oral Taste Tissue.

    Science.gov (United States)

    Archer, Nicholas Steven; Liu, Dongli; Shaw, Jan; Hannan, Garry; Duesing, Konsta; Keast, Russell

    2016-01-01

    Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy), we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36) and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2). Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit). These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.

  10. A Comparison of Collection Techniques for Gene Expression Analysis of Human Oral Taste Tissue.

    Directory of Open Access Journals (Sweden)

    Nicholas Steven Archer

    Full Text Available Variability in human taste perception is associated with both genetic and environmental factors. The influence of taste receptor expression on this variability is unknown, in part, due to the difficulty in obtaining human oral tissue that enables quantitative expression measures of taste genes. In a comparison of six current techniques (Oragene RNeasy Kit, Isohelix swab, Livibrush cytobrush, tongue saliva, cheek saliva collection, and fungiform papillae biopsy, we identify the fungiform papillae biopsy is the optimal sampling technique to analyse human taste gene expression. The fungiform papillae biopsy resulted in the highest RNA integrity, enabling amplification of all the assessed taste receptor genes (TAS1R1, TAS1R2, TAS1R3, SCNN1A and CD36 and taste tissue marker genes (NCAM1, GNAT3 and PLCβ2. Furthermore, quantitative expression was observed in a subset of taste genes assessed from the saliva collection techniques (cheek saliva, tongue saliva and Oragene RNA kit. These saliva collection techniques may be useful as a non-invasive alternative sampling technique to the fungiform papillae biopsy. Identification of the fungiform papillae biopsy as the optimal collection method will facilitate further research into understanding the effect of gene expression on variability in human taste perception.

  11. Lateral Gene Transfer in a Heavy Metal-Contaminated-Groundwater Microbial Community.

    Science.gov (United States)

    Hemme, Christopher L; Green, Stefan J; Rishishwar, Lavanya; Prakash, Om; Pettenato, Angelica; Chakraborty, Romy; Deutschbauer, Adam M; Van Nostrand, Joy D; Wu, Liyou; He, Zhili; Jordan, I King; Hazen, Terry C; Arkin, Adam P; Kostka, Joel E; Zhou, Jizhong

    2016-04-05

    Unraveling the drivers controlling the response and adaptation of biological communities to environmental change, especially anthropogenic activities, is a central but poorly understood issue in ecology and evolution. Comparative genomics studies suggest that lateral gene transfer (LGT) is a major force driving microbial genome evolution, but its role in the evolution of microbial communities remains elusive. To delineate the importance of LGT in mediating the response of a groundwater microbial community to heavy metal contamination, representative Rhodanobacter reference genomes were sequenced and compared to shotgun metagenome sequences. 16S rRNA gene-based amplicon sequence analysis indicated that Rhodanobacter populations were highly abundant in contaminated wells with low pHs and high levels of nitrate and heavy metals but remained rare in the uncontaminated wells. Sequence comparisons revealed that multiple geochemically important genes, including genes encoding Fe(2+)/Pb(2+) permeases, most denitrification enzymes, and cytochrome c553, were native to Rhodanobacter and not subjected to LGT. In contrast, the Rhodanobacter pangenome contained a recombinational hot spot in which numerous metal resistance genes were subjected to LGT and/or duplication. In particular, Co(2+)/Zn(2+)/Cd(2+) efflux and mercuric resistance operon genes appeared to be highly mobile within Rhodanobacter populations. Evidence of multiple duplications of a mercuric resistance operon common to most Rhodanobacter strains was also observed. Collectively, our analyses indicated the importance of LGT during the evolution of groundwater microbial communities in response to heavy metal contamination, and a conceptual model was developed to display such adaptive evolutionary processes for explaining the extreme dominance of Rhodanobacter populations in the contaminated groundwater microbiome. Lateral gene transfer (LGT), along with positive selection and gene duplication, are the three main

  12. FUMET: A fuzzy network module extraction technique for gene expression data

    Indian Academy of Sciences (India)

    Priyakshi Mahanta; Hasin Afzal Ahmed; Dhruba Kumar Bhattacharyya; Ashish Ghosh

    2014-06-01

    Construction of co-expression network and extraction of network modules have been an appealing area of bioinformatics research. This article presents a co-expression network construction and a biologically relevant network module extraction technique based on fuzzy set theoretic approach. The technique is able to handle both positive and negative correlations among genes. The constructed network for some benchmark gene expression datasets have been validated using topological internal and external measures. The effectiveness of network module extraction technique has been established in terms of well-known p-value, Q-value and topological statistics.

  13. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  14. Tailoring liquid/solid interfacial energy transfer: fabrication and application of multiscale metallic surfaces with engineered heat transfer and electrolysis properties via femtosecond laser surface processing techniques

    Science.gov (United States)

    Anderson, Troy P.; Wilson, Chris; Zuhlke, Craig A.; Kruse, Corey; Hassebrook, Anton; Somanas, Isra; Ndao, Sidy; Gogos, George; Alexander, Dennis

    2014-03-01

    Femtosecond Laser Surface Processing (FLSP) is a powerful technique for the fabrication of self-organized multiscale surface structures on metals that are critical for advanced control over energy transfer at a liquid/solid interface in applications such as electrolysis. The efficiency of the hydrogen evolution reaction on stainless steel 316 electrodes in a 1 molar potassium hydroxide solution is used to analyze the role of surface geometry to facilitate the phase conversion of the liquid to a gaseous state in the vicinity of the interface. It is found that the efficiency of the electrolysis process is directly related to the separation of micro-scale features on an electrode surface. The enhancement is attributed to the size of the valleys between microstructures controlling the contact between an evolving vapor bubble and the electrode surface. The results suggest an alternative pathway for the tailoring of interfacial energy transfer on structured surfaces separate from traditional benchmarks such as surface area and contact angle.

  15. Globin gene transfer for treatment of the beta-thalassemias and sickle cell disease.

    Science.gov (United States)

    Sadelain, Michel; Rivella, Stefano; Lisowski, Leszek; Samakoglu, Selda; Rivière, Isabelle

    2004-09-01

    The beta-thalassemias and sickle cell disease are severe congenital anemias that are caused by mutations that alter the production of the beta chain of hemoglobin. Allogeneic hematopoietic stem cell (HSC) transplantation is curative, but this therapeutic option is not available to the majority of patients. The transfer of a functional globin gene in autologous HCSs thus represents a highly attractive alternative treatment. This strategy, simple in principle, raises major challenges in terms of controlling the expression of the globin transgene, which ideally should be erythroid specific, differentiation-stage restricted, elevated, position independent, and sustained over time. Using lentiviral vectors, we have demonstrated that an optimised combination of proximal and distal transcriptional control elements permits lineage-specific, elevated expression of the beta-globin gene, resulting in therapeutic hemoglobin production and correction of anemia in beta-thalassemic mice. Several groups have now confirmed and extended these findings in various mouse models of severe hemoglobinopathies, thus generating enthusiasm for a genetic treatment based on globin gene transfer. Furthermore, globin vectors represent a general paradigm for the regulation of transgene function and the improvement of vector safety by restricting transgene expression to the differentiated progeny within a single lineage, thereby reducing the risk of activating oncogenes in hematopoietic progenitors. Here we review the principles underlying the genesis of regulated vectors for stem cell therapy.

  16. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Science.gov (United States)

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  17. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Directory of Open Access Journals (Sweden)

    Oksana V Arkhipova

    Full Text Available The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd and tetraheme cytochrome с (Mcc in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  18. A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and in vivo: Polyethylenimine

    Science.gov (United States)

    Boussif, Otmane; Lezoualc'h, Frank; Zanta, Maria Antonietta; Djavaheri Mergny, Mojgan; Scherman, Daniel; Demeneix, Barbara; Behr, Jean-Paul

    1995-08-01

    Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se-i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its genedelivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

  19. Insulin mediated hemodynamic responses in spontaneous hypertensive rats (SHRs): effect of chromosome 4 gene transfer.

    Science.gov (United States)

    Rao, Sumangala P; McRae, Crystal; Lapanowski, Karen; Churchill, Monique; Kurtz, Theodore W; Dunbar, Joseph C

    2003-02-01

    The spontaneous hypertensive rat (SHR) is a widely studied model of essential hypertension and has been reported to exhibit alterations in carbohydrate and lipid metabolism. Genetic linkage studies implicated that SHR carries deletion variant of Cd36 gene of chromosome 4, the gene that encodes fatty acid transporter. Thus it could be possible that primary genetic defect in SHR is compromised tissue utilization of fatty acid that would form the basis for the pathogenesis of hyperinsulinemia, insulin resistance and insulin-mediated responses. We measured both the hemodynamic and metabolic responses to insulin in SHR in comparison with the chromosome congenic spontaneous hypertensive rats (cSHRs) (rats in which piece of chromosome 4 containing wild type Cd36 was integrated into the SHR genome). A bolus infusion of insulin increased iliac conductance and decreased blood pressure in Wistar Kyoto (WKY) rats. However, in SHR insulin did not reduce blood pressure as in WKY but after about 15 min it significantly enhanced blood pressure and reduced iliac conductance. Whereas in cSHR insulin did not reduce blood pressure as in WKY rats. However, pressor responses to insulin were eliminated by chromosome 4 gene transfer. Glucose clearance was significantly slower in both SHR and cSHR. Glucose tolerance test revealed that SHR are hyperinsulinemic and insulin resistant. These findings indicate that transfer of segment of chromosome 4 from Brown Norway rats onto spontaneous hypertensive background eliminates hyperinsulinemia and pressor effects of insulin.

  20. Efficient lentiviral gene transfer to canine repopulating cells using an overnight transduction protocol.

    Science.gov (United States)

    Horn, Peter A; Keyser, Kirsten A; Peterson, Laura J; Neff, Tobias; Thomasson, Bobbie M; Thompson, Jesse; Kiem, Hans-Peter

    2004-05-15

    The use of lentiviral vectors for the transduction of hematopoietic stem cells has evoked much interest owing to their ability to stably integrate into the genome of nondividing cells. However, published large animal studies have reported highly variable gene transfer rates of typically less than 1%. Here we report the use of lentiviral vectors for the transduction of canine CD34(+) hematopoietic repopulating cells using a very short, 18-hour transduction protocol. We compared lentiviral transduction of hematopoietic repopulating cells from either stem cell factor (SCF)- and granulocyte-colony stimulating factor (G-CSF)-primed marrow or mobilized peripheral blood in a competitive repopulation assay in 3 dogs. All dogs engrafted rapidly within 9 days. Transgene expression was detected in all lineages (B cells, T cells, granulocytes, and red blood cells as well as platelets) indicating multilineage engraftment of transduced cells, with overall long-term marking levels of up to 12%. Gene transfer levels in mobilized peripheral blood cells were slightly higher than in primed marrow cells. In conclusion, we show efficient lentiviral transduction of canine repopulating cells using an overnight transduction protocol. These results have important implications for the design of stem cell gene therapy protocols, especially for those diseases in which the maintenance of stem cells in culture is a major limitation.

  1. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  2. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Huan eQiu

    2013-09-01

    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  3. Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial Cooperation and Virulence

    Science.gov (United States)

    Nogueira, Teresa; Rankin, Daniel J.; Touchon, Marie; Taddei, François; Brown, Sam P.; Rocha, Eduardo P.C.

    2009-01-01

    Summary Background Microbes engage in a remarkable array of cooperative behaviors, secreting shared proteins that are essential for foraging, shelter, microbial warfare, and virulence. These proteins are costly, rendering populations of cooperators vulnerable to exploitation by nonproducing cheaters arising by gene loss or migration. In such conditions, how can cooperation persist? Results Our model predicts that differential gene mobility drives intragenomic variation in investment in cooperative traits. More mobile loci generate stronger among-individual genetic correlations at these loci (higher relatedness) and thereby allow the maintenance of more cooperative traits via kin selection. By analyzing 21 Escherichia genomes, we confirm that genes coding for secreted proteins—the secretome—are very frequently lost and gained and are associated with mobile elements. We show that homologs of the secretome are overrepresented among human gut metagenomics samples, consistent with increased relatedness at secretome loci across multiple species. The biosynthetic cost of secreted proteins is shown to be under intense selective pressure, even more than for highly expressed proteins, consistent with a cost of cooperation driving social dilemmas. Finally, we demonstrate that mobile elements are in conflict with their chromosomal hosts over the chimeric ensemble's social strategy, with mobile elements enforcing cooperation on their otherwise selfish hosts via the cotransfer of secretome genes with “mafia strategy” addictive systems (toxin-antitoxin and restriction-modification). Conclusion Our analysis matches the predictions of our model suggesting that horizontal transfer promotes cooperation, as transmission increases local genetic relatedness at mobile loci and enforces cooperation on the resident genes. As a consequence, horizontal transfer promoted by agents such as plasmids, phages, or integrons drives microbial cooperation. PMID:19800234

  4. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome.

    Directory of Open Access Journals (Sweden)

    Adam Paul Roberts

    2014-09-01

    Full Text Available The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonise and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.

  5. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transcriptional onset of hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blas-tula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  6. The onset of foreign gene transcription in nuclear-transferred embryos of fish

    Institute of Scientific and Technical Information of China (English)

    孙永华; 陈尚萍; 汪亚平; 朱作言

    2000-01-01

    The transcriptional onset ot hGH-transgene in fish was studied in the following three cases: the first is in MThGH-transgenic F4 common carp (Cyprinus carpio) embryos, the second is in nuclear-transferred embryos supported by the transgenic F4 embryonic nuclei, and the third is in nuclear-transferred embryos supported by the transgenic F4 tail-fin nuclei. RT-PCR results show that the hGH-transgene initiates its transcriptional activity from early-gastrula stage, the early blastula stage and even 16-cell stage in the first, second and third cases, respectively. It looks like that fish egg cytoplasm could just offer a very restricted reprogramming on transcriptional activity of specific gene in differentiated cell nuclei by nuclear transplantation.

  7. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer.

    Science.gov (United States)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Non-viral transfer approaches for the gene therapy of mucopolysaccharidosis type II (Hunter syndrome).

    Science.gov (United States)

    Tomanin, R; Friso, A; Alba, S; Piller Puicher, E; Mennuni, C; La Monica, N; Hortelano, G; Zacchello, F; Scarpa, M

    2002-01-01

    Hunter syndrome is a rare X-linked lysosomal storage disorder caused by the deficiency of the housekeeping enzyme iduronate-2-sulphatase (IDS). Deficiency of IDS causes accumulation of undegraded dermatan and heparan-sulphate in various tissues and organs. Approaches have been proposed for the symptomatic therapy of the disease, including bone marrow transplantation and, very recently, enzyme replacement. To date, gene therapy strategies have considered mainly retroviral and adenoviral transduction of the correct cDNA. In this paper, two non-viral somatic gene therapy approaches are proposed: encapsulated heterologous cells and muscle electro-gene transfer (EGT). Hunter primary fibroblasts were co-cultured with either cell clones over-expressing the lacking enzyme or with the same incorporated in alginate microcapsules. For EGT, plasmid vector was injected into mouse quadriceps muscle, which was then immediately electro-stimulated. Co-culturing Hunter primary fibroblasts with cells over-expressing IDS resulted in a three- to fourfold increase in fibroblast enzyme activity with respect to control cells. Fibroblast IDS activity was also increased after co-culture with encapsulated cells. EGT was able to transduce genes in mouse muscle, resulting in at least a tenfold increase in IDS activity 1-5 weeks after treatment. Although preliminary, results from encapsulated heterologous cell clones and muscle EGT encourage further evaluations for possible application to gene therapy for Hunter syndrome.

  9. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2011-08-01

    Full Text Available Abstract Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica, we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.

  10. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    Science.gov (United States)

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-03

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.

  11. Transfer of Lysozyme Gene into indica Parents of Hybrid Rice by Backcrossing

    Institute of Scientific and Technical Information of China (English)

    YI Zi-li; WANG Zi-xuan; QIN Jing-ping; JIANG Jian-xiong; TAN Yan-ning; ZHOU Qing-ming

    2006-01-01

    Alysozyme gene resistant to rice blast was transferred from the donor transgenic japonica rice Zhonghua 9 (D2-1-2) into a sterile line Pei'ai 64S(PA 64S) and restorer line 9311 of the two-line hybrid rice Liangyoupeijiu, and the restorer line Minghui 63 (MH63) of three-line hybrid rice Shanyou 63 by successive backcrossing. The PCR analysis confirmed that foreign lysozyme gene was B2F2 9311, B2F2 MH63 and B1F2 PA64S, indicating that the foreign gene was stably inherited over successive generations as a dominant single copy gene. The resistance against rice blast in backcross or selfed generations and corresponding testcross combinations were investigated in 2003 and 2004. The results showed that the resistance of the transgenic rice to blast had a greater improvement than that of the corresponding recurrent parents or the corresponding check hybrid combinations. The resistance of the advanced backcross and selfed generations to rice blast is much stronger than that of the early generations. The study confirmed thattransferring the lysozyme gene into hybrid parents by backcrossing was a simple and effective approach to develop new hybrid rice resistant to rice blast.

  12. [Differentiation of functional cells from iPS cells by efficient gene transfer].

    Science.gov (United States)

    Kawabata, Kenji; Tashiro, Katsuhisa; Mizuguchi, Hiroyuki

    2010-11-01

    Induced pluripotent stem (iPS) cells, which are generated from somatic cells by transducing four genes, are expected to have broad application to regenerative medicine. Although establishment of an efficient gene transfer system for iPS cells is considered to be essential for differentiating them into functional cells, the detailed transduction characteristics of iPS cells have not been examined. By using an adenovirus (Ad) vector containing the cytomegalovirus enhancer/beta-actin (CA) promoters, we have developed an efficient transduction system for mouse mesenchymal stem cells and embryonic stem (ES) cells. Also, we applied our transduction system to mouse iPS cells and investigated whether efficient differentiation could be achieved by Ad vector-mediated transduction of a functional gene. As in the case of ES cells, the Ad vector could efficiently transduce transgenes into mouse iPS cells. We found that the CA promoter had potent transduction ability in iPS cells. Moreover, exogenous expression of a PPARγ gene or a Runx2 gene into mouse iPS cells by an optimized Ad vector enhanced adipocyte or osteoblast differentiation, respectively. These results suggest that Ad vector-mediated transient transduction is sufficient to promote cellular differentiation and that our transduction methods would be useful for therapeutic applications based on iPS cells.

  13. IMPROVEMENT OF HUMAN ISLET FUNCTION BY ADENOVIRUS MEDIATED HO-1 GENE TRANSFER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate in vitro heme oxygenase-1 gene (HO-1) delivery to human pancreatic islets by adenovirus vectors. Methods Recombinant adenovirus containing HO-1 or enhanced green fluorescent protein gene(EGFP) was generated by using the AdEasy System. The purified human pancreatic islets were infected with recombinant adenovirus vectors at various multiplicity of infection (MOI). Transduction was confirmed by fluorescence photographs and Western blot. Glucose-stimulated insulin secretion was detected by using Human insulin radioimmunoassay kits and was used to assess the function of human islets infected by recombinant adenovirus.Results Viral titers of Ad-hHO-1 and Ad-EGFP were 1.96×109 and 1.99×109 pfu/mL, respectively. Human pancreatic islets were efficiently infected by recombinant adenovirus vectors in vitro. Transfection of human islets at an MOI of 20 did not inhibit islet function. Recombinant adenovirus mediated HO-1gene transfer significantly improved the islet function of insulin release when simulated by high level glucose. Conclusion Recombinant adenovirus is efficient to deliver exogenous gene into human pancreatic islets in vitro. HO-1 gene transfection can improve human islet function.

  14. Gene transfer to hemophilia A mice via oral delivery of FVIII-chitosan nanoparticles.

    Science.gov (United States)

    Bowman, Katherine; Sarkar, Rita; Raut, Sanj; Leong, Kam W

    2008-12-18

    Effective oral delivery of a non-viral gene carrier would represent a novel and attractive strategy for therapeutic gene transfer. To evaluate the potential of this approach, we studied the oral gene delivery efficacy of DNA polyplexes composed of chitosan and Factor VIII DNA. Transgene DNA was detected in both local and systemic tissues following oral administration of the chitosan nanoparticles to hemophilia A mice. Functional factor VIII protein was detected in plasma by chromogenic and thrombin generation assays, reaching a peak level of 2-4% FVIII at day 22 after delivery. In addition, a bleeding challenge one month after DNA administration resulted in phenotypic correction in 13/20 mice given 250-600 microg of FVIII DNA in chitosan nanoparticles, compared to 1/13 mice given naked FVIII DNA and 0/6 untreated mice. While further optimization would be required to render this type of delivery system practical for hemophilia A gene therapy, the findings suggest the feasibility of oral, non-viral delivery for gene medicine applications.

  15. Gene Transfer into the Lung by Nanoparticle Dextran-Spermine/Plasmid DNA Complexes

    Directory of Open Access Journals (Sweden)

    Syahril Abdullah

    2010-01-01

    Full Text Available A novel cationic polymer, dextran-spermine (D-SPM, has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.

  16. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

    Science.gov (United States)

    Siegel, R.

    1974-01-01

    Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

  17. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria.

    Science.gov (United States)

    Jung, C M; Crocker, F H; Eberly, J O; Indest, K J

    2011-06-01

    Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many high-explosive formulations and has been found as a contaminant of soil and groundwater. The RDX-degrading gene locus xplAB, located on pGKT2 in Gordonia sp. KTR9, is highly conserved among isolates from disparate geographical locations suggesting a horizontal gene transfer (HGT) event. It was our goal to determine whether Gordonia sp. KTR9 is capable of transferring pGKT2 and the associated RDX degradation ability to other bacteria. We demonstrate the successful conjugal transfer of pGKT2 from Gordonia sp. KTR9 to Gordonia polyisoprenivorans, Rhodococcus jostii RHA1 and Nocardia sp. TW2. Through growth and RDX degradation studies, it was demonstrated that pGKT2 conferred to transconjugants the ability to degrade and utilize RDX as a nitrogen source. The inhibitory effect of exogenous inorganic nitrogen sources on RDX degradation in transconjugant strains was found to be strain specific. Plasmid pGKT2 can be transferred by conjugation, along with the ability to degrade RDX, to related bacteria, providing evidence of at least one mechanism for the dissemination and persistence of xplAB in the environment. These results provide evidence of one mechanism for the environmental dissemination of xplAB and provide a framework for future field relevant bioremediation practices. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  18. Ultrasound-mediated gene transfer (sonoporation) in fibrin-based matrices: potential for use in tissue regeneration.

    Science.gov (United States)

    Nomikou, Nikolitsa; Feichtinger, Georg A; Redl, Heinz; McHale, Anthony P

    2016-01-01

    It has been suggested that gene transfer into donor cells is an efficient and practical means of locally supplying requisite growth factors for applications in tissue regeneration. Here we describe, for the first time, an ultrasound-mediated system that can non-invasively facilitate gene transfer into cells entrapped within fibrin-based matrices. Since ultrasound-mediated gene transfer is enhanced using microbubbles, we compared the efficacy of neutral and cationic forms of these reagents on the ultrasound-stimulated gene transfer process in gel matrices. In doing so we demonstrated the beneficial effects associated with the use of cationic microbubble preparations that interact directly with cells and nucleic acid within matrices. In some cases, gene expression was increased two-fold in gel matrices when cationic microbubbles were compared with neutral microbubbles. In addition, incorporating collagen into fibrin gels yielded a 25-fold increase in gene expression after application of ultrasound to microbubble-containing matrices. We suggest that this novel system may facilitate non-invasive temporal and spatial control of gene transfer in gel-based matrices for the purposes of tissue regeneration.

  19. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Philippe Remigi

    2014-09-01

    Full Text Available Horizontal gene transfer (HGT is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.

  20. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Pcatalase transfection significantly attenuated AngII‑induced ROS generation, macrophage infiltration, collagen deposition and adventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  1. Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii.

    Directory of Open Access Journals (Sweden)

    Eva C Berglund

    2009-07-01

    Full Text Available The genus Bartonella comprises facultative intracellular bacteria adapted to mammals, including previously recognized and emerging human pathogens. We report the 2,341,328 bp genome sequence of Bartonella grahamii, one of the most prevalent Bartonella species in wild rodents. Comparative genomics revealed that rodent-associated Bartonella species have higher copy numbers of genes for putative host-adaptability factors than the related human-specific pathogens. Many of these gene clusters are located in a highly dynamic region of 461 kb. Using hybridization to a microarray designed for the B. grahamii genome, we observed a massive, putatively phage-derived run-off replication of this region. We also identified a novel gene transfer agent, which packages the bacterial genome, with an over-representation of the amplified DNA, in 14 kb pieces. This is the first observation associating the products of run-off replication with a gene transfer agent. Because of the high concentration of gene clusters for host-adaptation proteins in the amplified region, and since the genes encoding the gene transfer agent and the phage origin are well conserved in Bartonella, we hypothesize that these systems are driven by selection. We propose that the coupling of run-off replication with gene transfer agents promotes diversification and rapid spread of host-adaptability factors, facilitating host shifts in Bartonella.

  2. Adenovirus-mediated Gene Transfer of MMP-2 into Cultured Porcine Trabecular Meshwork Cells

    OpenAIRE

    2012-01-01

    This study aimed to use adenoviral gene transfer to express matrix metalloproteinase (MMP)-2 in cultured porcine trabecular meshwork cells and to evaluate the duration of adenovirus-mediated MMP-2 expression and its enzymatic activity. MMP-2 cDNA was synthesized by ligating three segments of MMP-2 cDNA obtained by reverse transcription-polymerase chain reaction (RT-PCR) with mRNA extracted from mouse lungs. MMP-2 cDNA was inserted into replication-deficient adenoviral vectors. Western blottin...

  3. Direct gene transfer in the Gottingen minipig CNS using stereotaxic lentiviral microinjections

    DEFF Research Database (Denmark)

    GLUD, AN; Hedegaard, Claus; nielsen, MS;

    2010-01-01

    We aim to induce direct viral mediated gene transfer in the substantia nigra (SN) of the Gottingen minipig using MRI guided stereotaxic injections of lentiviral vectors encoding enhanced green fluorescent protein (EGFP). Nine female Gottingen minipigs were injected unilaterally into the SN with 6...... per 2.5 microliters lentivirus capable of transducing cells and mediating expression of recombinant EGFP. The animals were euthanized after four (n=3) or twenty weeks (n=6). Fresh brain tissue from three animals was used for PCR. The remaining six brains were cryo- or paraffin...

  4. Resolution and reconciliation of non-binary gene trees with transfers, duplications and losses.

    Science.gov (United States)

    Jacox, Edwin; Weller, Mathias; Tannier, Eric; Scornavacca, Celine

    2017-04-01

    Gene trees reconstructed from sequence alignments contain poorly supported branches when the phylogenetic signal in the sequences is insufficient to determine them all. When a species tree is available, the signal of gains and losses of genes can be used to correctly resolve the unsupported parts of the gene history. However finding a most parsimonious binary resolution of a non-binary tree obtained by contracting the unsupported branches is NP-hard if transfer events are considered as possible gene scale events, in addition to gene origination, duplication and loss. We propose an exact, parameterized algorithm to solve this problem in single-exponential time, where the parameter is the number of connected branches of the gene tree that show low support from the sequence alignment or, equivalently, the maximum number of children of any node of the gene tree once the low-support branches have been collapsed. This improves on the best known algorithm by an exponential factor. We propose a way to choose among optimal solutions based on the available information. We show the usability of this principle on several simulated and biological datasets. The results are comparable in quality to several other tested methods having similar goals, but our approach provides a lower running time and a guarantee that the produced solution is optimal. Our algorithm has been integrated into the ecceTERA phylogeny package, available at http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and which can be run online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera . celine.scornavacca@umontpellier.fr. Supplementary data are available at Bioinformatics online.

  5. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo.

    Directory of Open Access Journals (Sweden)

    Ashish Tandon

    Full Text Available This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA, F-actin and fibronectin], immune reaction (CD11b and F4/80, keratocyte apoptosis (TUNEL, calcification (alizarin red, vonKossa and osteocalcin, and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF and in vitro experiments were used to characterize the molecular mechanism mediating BMP7's anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×10(4 gene copies/ug DNA. Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p88%; p<0.0001, and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001 and Smad6 (53%, p<0.001, and decreased αSMA (78%; p<0.001 protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.

  6. Type 2 diabetes mellitus--genes or intrauterine environment? An embryo transfer paradigm in rats.

    Science.gov (United States)

    Gill-Randall, R; Adams, D; Ollerton, R L; Lewis, M; Alcolado, J C

    2004-08-01

    The familial predisposition to Type 2 diabetes mellitus is mediated by both genetic and intrauterine environmental factors. In the normal course of events, maternal genes always develop in the same uterus, thus restricting studies aimed at investigating the relative contribution of these factors. We have developed an embryo transfer paradigm in rats to overcome this difficulty. Euglycaemic female Wistar rats were superovulated and mated with male Wistar rats. The following day, fertilised eggs were transferred into pseudo-pregnant female Wistar rats or hyperglycaemic Goto Kakizaki (GK) rats. Pregnancies were allowed to go to term. Offspring were weighed at 6 weeks, 3 months and 6 months of age and an intravenous glucose tolerance test was carried out at 6 months of age. Offspring from Wistar into Wistar embryo transfers (n=20) were not significantly hyperglycaemic compared to the non-manipulated Wistar stock colony (n=26). However, offspring from Wistar gametes reared in hyperglycaemic GK mothers (n=51) were significantly lighter at 6 weeks of age (156+/-4.1 g vs 180+/-6.1 g [mean +/- SEM], p<0.01) and significantly more hyperglycaemic at 6 months of age (fasting glucose 6.6+/-0.18 mmol/l vs 4.8+/-0.21 mmol/l, mean blood glucose during glucose tolerance test 14.3+/-0.31 mmol/l vs 11.1+/-0.28 mmol/l, p<0.01) than Wistar gametes transferred back into euglycaemic Wistar mothers. When GK rats were superovulated and mated together, transfer of 1-day-old embryos into pseudo-pregnant Wistar dams did not alleviate hyperglycaemia in adult offspring. In GK rats, a euglycaemic intrauterine environment cannot overcome the strong genetic predisposition to diabetes. However, in Wistar rats with a low genetic risk of diabetes, exposure to hyperglycaemia in utero significantly increases the risk of diabetes in adult life.

  7. Transfer of energy pathway genes in microbial enhanced biological phosphorus removal communities.

    Science.gov (United States)

    Wong, Dennis H-J; Beiko, Robert G

    2015-07-16

    Lateral gene transfer (LGT) is an important evolutionary process in microbial evolution. In sewage treatment plants, LGT of antibiotic resistance and xenobiotic degradation-related proteins has been suggested, but the role of LGT outside these processes is unknown. Microbial communities involved in Enhanced Biological Phosphorus Removal (EBPR) have been used to treat wastewater in the last 50 years and may provide insights into adaptation to an engineered environment. We introduce two different types of analysis to identify LGT in EBPR sewage communities, based on identifying assembled sequences with more than one strong taxonomic match, and on unusual phylogenetic patterns. We applied these methods to investigate the role of LGT in six energy-related metabolic pathways. The analyses identified overlapping but non-identical sets of transferred enzymes. All of these were homologous with sequences from known mobile genetic elements, and many were also in close proximity to transposases and integrases in the EBPR data set. The taxonomic method had higher sensitivity than the phylogenetic method, identifying more potential LGTs. Both analyses identified the putative transfer of five enzymes within an Australian community, two in a Danish community, and none in a US-derived culture. Our methods were able to identify sequences with unusual phylogenetic or compositional properties as candidate LGT events. The association of these candidates with known mobile elements supports the hypothesis of transfer. The results of our analysis strongly suggest that LGT has influenced the development of functionally important energy-related pathways in EBPR systems, but transfers may be unique to each community due to different operating conditions or taxonomic composition.

  8. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    Science.gov (United States)

    Hollstein, André; Fischer, Jürgen

    2012-05-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  9. Heat Transfer Analysis of Flat Plate Subjected to Multi-Jet Air Impingement using Principal Component Analysis and Computational Technique

    Directory of Open Access Journals (Sweden)

    Palaniappan Chandramohan

    2017-01-01

    Full Text Available The aim of this work is to investigate experimentally the variation in temperature, heat transfer coefficient and Nusselt number of a hot plate subjected to multi-jet air impingement cooling to use the multi-objective optimization technique to arrive at optimum conditions. A flat plate of 15 cm x 10 cm is heated through a heating foil with a constant heat flux of 7667 W/m2. Air jets with and without swirling action are considered, fixing the distance of target surface from nozzle exit at 2D, 4D and 6D. Reynolds numbers 18000, 20000and 22000 and pipe diameters 8mm, 10mm and 12 mm have been considered for investigation. Experiments are designed and analyzed using Taguchi’s technique, coupled with principal component analysis for multi-variate optimization by calculating multi-response performance index (MRPI. Based on the observations made, it is concluded that lower H/D ratio and higher Reynolds number result in higher heat transfer coefficient, in accordance with the first principles. Heat transfer coefficient obtained for jets with swirl is compared with that of jet without swirling for the same Reynolds number and H/D ratio. Furthermore, it is concluded that introducing swirl results in increase of heat transfer coefficients for all the test conditions for 10mm and 12mm diameter jets. However for 8mm jet, introduction of swirl reduced the heat transfer rate for all the test conditions. From Analysis of Variance (ANOVA, it is found that significant contributions on outputs are due to the effect of H/D ratio and Reynolds number. Confirmation experiments with optimum condition result in improved heat transfer coefficient and Nusselt number. Numerical simulation has also been performed with the optimum condition. It is observed that the simulation results are in consistence with the experimental results.

  10. High-efficiency gene transfer into skeletal muscle mediated by electric pulses

    DEFF Research Database (Denmark)

    Mir, L M; Bureau, M F; Gehl, J;

    1999-01-01

    Gene delivery to skeletal muscle is a promising strategy for the treatment of muscle disorders and for the systemic secretion of therapeutic proteins. However, present DNA delivery technologies have to be improved with regard to both the level of expression and interindividual variability. We...... report very efficient plasmid DNA transfer in muscle fibers by using square-wave electric pulses of low field strength (less than 300 V/cm) and of long duration (more than 1 ms). Contrary to the electropermeabilization-induced uptake of small molecules into muscle fibers, plasmid DNA has to be present...... in the tissue during the electric pulses, suggesting a direct effect of the electric field on DNA during electrotransfer. This i.m. electrotransfer method increases reporter and therapeutic gene expression by several orders of magnitude in various muscles in mouse, rat, rabbit, and monkey. Moreover, i...

  11. [Gene transfer in human hematopoietic stem cells isolated from peripheral blood].

    Science.gov (United States)

    Mannoni, P

    1996-01-01

    To insert a new genetic information by gene transfer into haemopoietic stem cells would result in expression of the transgene in progenitors and progeny of cell blood lineages. If successfull, such an approach would open interesting prospectives in the field of experimental research and in the possibility to treat genetic defects affecting blood lineages such as immune deficiencies (ADA, SCID, AIDS) or enzymes defects. Moreover progenitors could be engineered to become more resistant to chemotherapy or oncogenic process. Many parameters and technical problems are still involved in this issue, including identification, isolation and selection of the most primitive progenitors, and search for the most efficient vectors to insert new genes into the target cells. So far retroviral vectors have been shown to be the most effective but search for better vectors are still underway. Peripheral blood stem cells isolated from patients stimulated by cytokines and/or chemotherapy appear interesting target cells for genetic manipulations aimed to correct an acquired or genetic defect.

  12. Cutin monomer induces expression of the rice OsLTP5 lipid transfer protein gene.

    Science.gov (United States)

    Kim, Tae Hyun; Park, Jong Ho; Kim, Moon Chul; Cho, Sung Ho

    2008-01-01

    Treatment with the cutin monomer 16-hydroxypalmitic acid (HPA), a major component of cutin, elicited the synthesis of hydrogen peroxide (H2O2) in rice leaves and induced the expression of the lipid transfer protein gene OsLTP5. Treatment with HPA also induced expression of OsLTP1, OsLTP2, and the pathogen-related PR-10 genes to a lesser extent. The OsLTP5 transcript was expressed prominently in stems and flowers, but was barely detectable in leaves. Expression of OsLTP5 was induced in shoots in response to ABA and salicylic acid. It is proposed that HP