WorldWideScience

Sample records for gene transfer horizontal

  1. Panspermia and horizontal gene transfer

    Science.gov (United States)

    Klyce, Brig

    2009-08-01

    Evidence that extremophiles are hardy and ubiquitous is helping to make panspermia a respectable theory. But even if life on Earth originally came from space, biologists assume that the subsequent evolution of life is still governed by the darwinian paradigm. In this review we show how panspermia could amend darwinism and point to a cosmic source for, not only extremophiles but, all of life. This version of panspermia can be called "strong panspermia." To support this theory we will discuss recent evidence pertaining to horizontal gene transfer, viruses, genes apparently older than the Earthly evolution of the features they encode, and primate-specific genes without identifiable precursors.

  2. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  3. Horizontal gene transfer in the phytosphere

    NARCIS (Netherlands)

    Elsas, van J.D.; Turner, S.; Bailey, M.J.

    2003-01-01

    Here, the ecological aspects of gene transfer processes between bacteria in the phytosphere are examined in the context of emerging evidence for the dominant role that horizontal gene transfer (HGT) has played in the evolutionary shaping of bacterial communities. Moreover, the impact of the putative

  4. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  5. Horizontal gene transfer in silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Li Bin

    2011-05-01

    Full Text Available Abstract Background The domesticated silkworm, Bombyx mori, is the model insect for the order Lepidoptera, has economically important values, and has gained some representative behavioral characteristics compared to its wild ancestor. The genome of B. mori has been fully sequenced while function analysis of BmChi-h and BmSuc1 genes revealed that horizontal gene transfer (HGT maybe bestow a clear selective advantage to B. mori. However, the role of HGT in the evolutionary history of B. mori is largely unexplored. In this study, we compare the whole genome of B. mori with those of 382 prokaryotic and eukaryotic species to investigate the potential HGTs. Results Ten candidate HGT events were defined in B. mori by comprehensive sequence analysis using Maximum Likelihood and Bayesian method combining with EST checking. Phylogenetic analysis of the candidate HGT genes suggested that one HGT was plant-to- B. mori transfer while nine were bacteria-to- B. mori transfer. Furthermore, functional analysis based on expression, coexpression and related literature searching revealed that several HGT candidate genes have added important characters, such as resistance to pathogen, to B. mori. Conclusions Results from this study clearly demonstrated that HGTs play an important role in the evolution of B. mori although the number of HGT events in B. mori is in general smaller than those of microbes and other insects. In particular, interdomain HGTs in B. mori may give rise to functional, persistent, and possibly evolutionarily significant new genes.

  6. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Directory of Open Access Journals (Sweden)

    R. Thane Papke

    2015-05-01

    Full Text Available The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria.

  7. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    Science.gov (United States)

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  8. Horizontal gene transfer from Agrobacterium to plants

    Directory of Open Access Journals (Sweden)

    Tatiana V. Matveeva

    2014-08-01

    Full Text Available Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A.rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named cellular T-DNA (cT-DNA. It represents an imperfect inverted repeat and contains homologues of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14 and an opine synthesis gene (Ngmis. A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologues of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

  9. Regulation of mammalian horizontal gene transfer by apoptotic DNA fragmentation

    Science.gov (United States)

    Yan, B; Wang, H; Li, F; Li, C-Y

    2006-01-01

    Previously it was shown that horizontal DNA transfer between mammalian cells can occur through the uptake of apoptotic bodies, where genes from the apoptotic cells were transferred to neighbouring cells phagocytosing the apoptotic bodies. The regulation of this process is poorly understood. It was shown that the ability of cells as recipient of horizontally transferred DNA was enhanced by deficiency of p53 or p21. However, little is known with regard to the regulation of DNA from donor apoptotic cells. Here we report that the DNA fragmentation factor/caspase-activated DNase (DFF/CAD), which is the endonuclease responsible for DNA fragmentation during apoptosis, plays a significant role in regulation of horizontal DNA transfer. Cells with inhibited DFF/CAD function are poor donors for horizontal gene transfer (HGT) while their ability of being recipients of HGT is not affected. PMID:17146478

  10. Computational and phylogenetic validation of nematode horizontal gene transfer

    OpenAIRE

    Bird David; Scholl Elizabeth H

    2011-01-01

    Abstract Sequencing of expressed genes has shown that nematodes, particularly the plant-parasitic nematodes, have genes purportedly acquired from other kingdoms by horizontal gene transfer. The prevailing orthodoxy is that such transfer has been a driving force in the evolution of niche specificity, and a recent paper in BMC Evolutionary Biology that presents a detailed phylogenetic analysis of cellulase genes in the free-living nematode Pristionchus pacificus at the species, genus and family...

  11. Identification and Categorization of Horizontally Transferred Genes in Prokaryotic Genomes

    Institute of Scientific and Technical Information of China (English)

    Shuo-Yong SHI; Xiao-Hui CAI; Da-fu DING

    2005-01-01

    Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.

  12. The interconnection between biofilm formation and horizontal gene transfer.

    Science.gov (United States)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars Hestbjerg; Sørensen, Søren Johannes

    2012-07-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states. Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids are independent replicons that enhance their own success by promoting inter-bacterial interactions. They typically also carry genes that heighten their hosts' direct fitness. Furthermore, current research shows that the so-called mafia traits encoded on mobile genetic elements can enforce bacteria to maintain stable social interactions. It also indicates that horizontal gene transfer ultimately enhances the relatedness of bacteria carrying the mobile genetic elements of the same origin. The perspective of this review extends to an overall interconnectedness between horizontal gene transfer, mobile genetic elements and social evolution of bacteria.

  13. Global Analysis of Horizontal Gene Transfer in Fusarium verticillioides

    Science.gov (United States)

    The co-occurrence of microbes within plants and other specialized niches may facilitate horizontal gene transfer (HGT) affecting host-pathogen interactions. We recently identified fungal-to-fungal HGTs involving metabolic gene clusters. For a global analysis of HGTs in the maize pathogen Fusarium ve...

  14. Quasispecies theory for horizontal gene transfer and recombination

    Science.gov (United States)

    Muñoz, Enrique; Park, Jeong-Man; Deem, Michael W.

    2008-12-01

    We introduce a generalization of the parallel, or Crow-Kimura, and Eigen models of molecular evolution to represent the exchange of genetic information between individuals in a population. We study the effect of different schemes of genetic recombination on the steady-state mean fitness and distribution of individuals in the population, through an analytic field theoretic mapping. We investigate both horizontal gene transfer from a population and recombination between pairs of individuals. Somewhat surprisingly, these nonlinear generalizations of quasispecies theory to modern biology are analytically solvable. For two-parent recombination, we find two selected phases, one of which is spectrally rigid. We present exact analytical formulas for the equilibrium mean fitness of the population, in terms of a maximum principle, which are generally applicable to any permutation invariant replication rate function. For smooth fitness landscapes, we show that when positive epistatic interactions are present, recombination or horizontal gene transfer introduces a mild load against selection. Conversely, if the fitness landscape exhibits negative epistasis, horizontal gene transfer or recombination introduces an advantage by enhancing selection towards the fittest genotypes. These results prove that the mutational deterministic hypothesis holds for quasispecies models. For the discontinuous single sharp peak fitness landscape, we show that horizontal gene transfer has no effect on the fitness, while recombination decreases the fitness, for both the parallel and the Eigen models. We present numerical and analytical results as well as phase diagrams for the different cases.

  15. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  16. The interconnection between biofilm formation and horizontal gene transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Burmølle, Mette; Hansen, Lars H.

    2012-01-01

    Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because of their beli......Recent research has revealed that horizontal gene transfer and biofilm formation are connected processes. Although published research investigating this interconnectedness is still limited, we will review this subject in order to highlight the potential of these observations because...... of their believed importance in the understanding of the adaptation and subsequent evolution of social traits in bacteria. Here, we discuss current evidence for such interconnectedness centred on plasmids. Horizontal transfer rates are typically higher in biofilm communities compared with those in planktonic states....... Biofilms, furthermore, promote plasmid stability and may enhance the host range of mobile genetic elements that are transferred horizontally. Plasmids, on the other hand, are very well suited to promote the evolution of social traits such as biofilm formation. This, essentially, transpires because plasmids...

  17. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Science.gov (United States)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne

    2015-03-01

    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  18. Horizontal functional gene transfer from bacteria to fishes.

    Science.gov (United States)

    Sun, Bao-Fa; Li, Tong; Xiao, Jin-Hua; Jia, Ling-Yi; Liu, Li; Zhang, Peng; Murphy, Robert W; He, Shun-Min; Huang, Da-Wei

    2015-12-22

    Invertebrates can acquire functional genes via horizontal gene transfer (HGT) from bacteria but fishes are not known to do so. We provide the first reliable evidence of one HGT event from marine bacteria to fishes. The HGT appears to have occurred after emergence of the teleosts. The transferred gene is expressed and regulated developmentally. Its successful integration and expression may change the genetic and metabolic repertoire of fishes. In addition, this gene contains conserved domains and similar tertiary structures in fishes and their putative donor bacteria. Thus, it may function similarly in both groups. Evolutionary analyses indicate that it evolved under purifying selection, further indicating its conserved function. We document the first likely case of HGT of functional gene from prokaryote to fishes. This discovery certifies that HGT can influence vertebrate evolution.

  19. Detecting Horizontal Gene Transfer between Closely Related Taxa.

    Directory of Open Access Journals (Sweden)

    Orit Adato

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT, the transfer of genetic material between organisms, is crucial for genetic innovation and the evolution of genome architecture. Existing HGT detection algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from ancestral (vertically derived genes in its recipient genome. Detecting HGT between closely related species or strains is challenging, as the phylogenetic signal is usually weak and the nucleotide composition is normally nearly identical. Nevertheless, there is a great importance in detecting HGT between congeneric species or strains, especially in clinical microbiology, where understanding the emergence of new virulent and drug-resistant strains is crucial, and often time-sensitive. We developed a novel, self-contained technique named Near HGT, based on the synteny index, to measure the divergence of a gene from its native genomic environment and used it to identify candidate HGT events between closely related strains. The method confirms candidate transferred genes based on the constant relative mutability (CRM. Using CRM, the algorithm assigns a confidence score based on "unusual" sequence divergence. A gene exhibiting exceptional deviations according to both synteny and mutability criteria, is considered a validated HGT product. We first employed the technique to a set of three E. coli strains and detected several highly probable horizontally acquired genes. We then compared the method to existing HGT detection tools using a larger strain data set. When combined with additional approaches our new algorithm provides richer picture and brings us closer to the goal of detecting all newly acquired genes in a particular strain.

  20. Dynamic monitoring of horizontal gene transfer in soil

    Science.gov (United States)

    Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.

    2015-12-01

    Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.

  1. Horizontal gene transfer in the evolution of photosynthetic eukaryotes

    Institute of Scientific and Technical Information of China (English)

    Jinling HUANG; Jipei YUE

    2013-01-01

    Horizontal gene transfer (HGT) may not only create genome mosaicism,but also introduce evolutionary novelties to recipient organisms.HGT in plastid genomes,though relatively rare,still exists.HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants.In particular,ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent.There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments.Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes,reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

  2. Examining Ancient Inter-domain Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Francisca C. Almeida

    2008-01-01

    Full Text Available Details of the genomic changes that occurred in the ancestors of Eukarya, Archaea and Bacteria are elusive. Ancient interdomain horizontal gene transfer (IDHGT amongst the ancestors of these three domains has been difficult to detect and analyze because of the extreme degree of divergence of genes in these three domains and because most evidence for such events are poorly supported. In addition, many researchers have suggested that the prevalence of IDHGT events early in the evolution of life would most likely obscure the patterns of divergence of major groups of organisms let alone allow the tracking of horizontal transfer at this level. In order to approach this problem, we mined the E. coli genome for genes with distinct paralogs. Using the 1,268 E. coli K-12 genes with 40% or higher similarity level to a paralog elsewhere in the E. coli genome we detected 95 genes found exclusively in Bacteria and Archaea and 86 genes found in Bacteria and Eukarya. These genes form the basis for our analysis of IDHGT. We also applied a newly developed statistical test (the node height test, to examine the robustness of these inferences and to corroborate the phylogenetically identifi ed cases of ancient IDHGT. Our results suggest that ancient inter domain HGT is restricted to special cases, mostly involving symbiosis in eukaryotes and specific adaptations in prokaryotes. Only three genes in the Bacteria + Eukarya class (Deoxyxylulose-5-phosphate synthase (DXPS, fructose 1,6-phosphate aldolase class II protein and glucosamine-6-phosphate deaminase and three genes–in the Bacteria + Archaea class (ABC-type FE3+ -siderophore transport system, ferrous iron transport protein B, and dipeptide transport protein showed evidence of ancient IDHGT. However, we conclude that robust estimates of IDHGT will be very difficult to obtain due to the methodological limitations and the extreme sequence saturation of the genes suspected of being involved in IDHGT.

  3. Horizontal gene transfer in osmotrophs: playing with public goods.

    Science.gov (United States)

    Richards, Thomas A; Talbot, Nicholas J

    2013-10-01

    Osmotrophic microorganisms, such as fungi and oomycetes, feed by secreting depolymerizing enzymes to process complex food sources in the extracellular environment, and taking up the resulting simple sugars, micronutrients and amino acids. As a consequence of this lifestyle, osmotrophs engage in the acquisition and protection of public goods. In this Opinion article, we propose that horizontal gene transfer (HGT) has played a key part in shaping both the repertoire of proteins required for osmotrophy and the nature of public goods interactions in which eukaryotic microorganisms engage.

  4. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Directory of Open Access Journals (Sweden)

    Grill Andrea

    2006-07-01

    Full Text Available Abstract Background We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA and two mitochondrial (cytb, COI genes. Results Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. Conclusion The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination

  5. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Huddleston JR

    2014-06-01

    Full Text Available Jennifer R HuddlestonBiology Department, Abilene Christian University, Abilene, TX, USAAbstract: Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.Keywords: gut microbiome, conjugation, natural transformation, transduction

  6. Risks from GMOs due to horizontal gene transfer.

    Science.gov (United States)

    Keese, Paul

    2008-01-01

    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  7. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  8. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  9. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events

    OpenAIRE

    Zhaxybayeva, Olga; Gogarten, J. Peter; Charlebois, Robert L.; Doolittle, W Ford; Papke, R Thane

    2006-01-01

    Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of “embedded quartets” allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of c...

  10. Estimating the extent of horizontal gene transfer in metagenomic sequences

    Directory of Open Access Journals (Sweden)

    Moya Andrés

    2008-03-01

    Full Text Available Abstract Background Although the extent of horizontal gene transfer (HGT in complete genomes has been widely studied, its influence in the evolution of natural communities of prokaryotes remains unknown. The availability of metagenomic sequences allows us to address the study of global patterns of prokaryotic evolution in samples from natural communities. However, the methods that have been commonly used for the study of HGT are not suitable for metagenomic samples. Therefore it is important to develop new methods or to adapt existing ones to be used with metagenomic sequences. Results We have created two different methods that are suitable for the study of HGT in metagenomic samples. The methods are based on phylogenetic and DNA compositional approaches, and have allowed us to assess the extent of possible HGT events in metagenomes for the first time. The methods are shown to be compatible and quite precise, although they probably underestimate the number of possible events. Our results show that the phylogenetic method detects HGT in between 0.8% and 1.5% of the sequences, while DNA compositional methods identify putative HGT in between 2% and 8% of the sequences. These ranges are very similar to these found in complete genomes by related approaches. Both methods act with a different sensitivity since they probably target HGT events of different ages: the compositional method mostly identifies recent transfers, while the phylogenetic is more suitable for the detections of older events. Nevertheless, the study of the number of HGT events in metagenomic sequences from different communities shows a consistent trend for both methods: the lower amount is found for the sequences of the Sargasso Sea metagenome, while the higher quantity is found in the whale fall metagenome from the bottom of the ocean. The significance of these observations is discussed. Conclusion The computational approaches that are used to find possible HGT events in complete

  11. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    OpenAIRE

    Boothby, Thomas C; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Messina, David N.; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Despite fascinating scientists for over 200 years, little at the molecular level is known about tardigrades, microscopic animals resistant to extreme stresses. We present the genome of a tardigrade. Approximately one-sixth of the genes in the tardigrade genome were found to have been acquired through horizontal transfer, a proportion nearly double the proportion of previous known cases of extreme horizontal gene transfer (HGT) in animals. Foreign genes have impacted the composition of the tar...

  12. Identification of a saxitoxin biosynthesis gene with a history of frequent horizontal gene transfers.

    Science.gov (United States)

    Kellmann, Ralf; Mihali, Troco Kaan; Michali, Troco Kaan; Neilan, Brett Anthony; Neilan, Brett Adam

    2008-11-01

    The paralytic shellfish poisoning (PSP) toxins, saxitoxin, and its derivatives, are produced by a complex and unique biosynthetic pathway. It involves reactions that are rare in other metabolic pathways, however, distantly related organisms, such as dinoflagellates and cyanobacteria, produce these toxins by an identical pathway. Speculative explanations for the unusual phylogenetic distribution of this metabolic pathway have been proposed, including a polyphyletic origin, the involvement of symbiotic bacteria, and horizontal gene transfer. This study describes for the first time the identity of one gene, sxt1, that is involved in the biosynthesis of saxitoxin in cyanobacteria. It encoded an O-carbamoyltransferase (OCTASE) that was proposed to carbamoylate the hydroxymethyl side chain of saxitoxin precursor. Orthologues of sxt1 were exclusively present in PSP-toxic strains of cyanobacteria and had a high sequence similarity to each other. L. wollei had a naturally mutated sxt1 gene that encoded an inactive enzyme, and was incapable of producing carbamoylated PSP-toxin analogues, supporting the proposed function of Sxt1. Phylogenetic analysis revealed that OCATSE genes were present exclusively in prokaryotic organisms and were characterized by a high rate of horizontal gene transfer. OCTASE has most likely evolved from an ancestral O-sialoglycoprotein endopeptidase from proteobacteria, whereas the most likely phylogenetic origin of sxt1 was an ancestral alpha-proteobacterium. The phylogeny of sxt1 suggested that the entire set of genes required for saxitoxin biosynthesis may spread by horizontal gene transfer.

  13. Estimating the Frequency of Horizontal Gene Transfer Using Phylogenetic Models of Gene Gain and Loss.

    Science.gov (United States)

    Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G

    2016-07-01

    We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Genome-wide identification of horizontal gene transfer in Fusarium verticillioides

    Science.gov (United States)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different lineages, breaks species boundaries and generates new biological diversity. In eukaryotes, despite potential barriers, like the nuclear envelope and multicellularity, HGT may be facilitated by t...

  15. Horizontal gene transfer is a significant driver of gene innovation in dinoflagellates.

    Science.gov (United States)

    Wisecaver, Jennifer H; Brosnahan, Michael L; Hackett, Jeremiah D

    2013-01-01

    The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314-1,563 depending on inference method) relative to all other organisms in the analysis (0-782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.

  16. Evolutionary change and phylogenetic relationships in light of horizontal gene transfer

    Indian Academy of Sciences (India)

    Luis Boto

    2015-06-01

    Horizontal gene transfer has, over the past 25 years, become a part of evolutionary thinking. In the present paper I discuss horizontal gene transfer (HGT) in relation to contingency, natural selection, evolutionary change speed and the Tree-of-Life endeavour, with the aim of contributing to the understanding of the role of HGT in evolutionary processes. In addition, the challenges that HGT imposes on the current view of evolution are emphasized.

  17. A new computational method for the detection of horizontal gene transfer events.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In recent years, the increase in the amounts of available genomic data has made it easier to appreciate the extent by which organisms increase their genetic diversity through horizontally transferred genetic material. Such transfers have the potential to give rise to extremely dynamic genomes where a significant proportion of their coding DNA has been contributed by external sources. Because of the impact of these horizontal transfers on the ecological and pathogenic character of the recipient organisms, methods are continuously sought that are able to computationally determine which of the genes of a given genome are products of transfer events. In this paper, we introduce and discuss a novel computational method for identifying horizontal transfers that relies on a gene's nucleotide composition and obviates the need for knowledge of codon boundaries. In addition to being applicable to individual genes, the method can be easily extended to the case of clusters of horizontally transferred genes. With the help of an extensive and carefully designed set of experiments on 123 archaeal and bacterial genomes, we demonstrate that the new method exhibits significant improvement in sensitivity when compared to previously published approaches. In fact, it achieves an average relative improvement across genomes of between 11 and 41% compared to the Codon Adaptation Index method in distinguishing native from foreign genes. Our method's horizontal gene transfer predictions for 123 microbial genomes are available online at http://cbcsrv.watson.ibm.com/HGT/.

  18. Distant horizontal gene transfer is rare for multiple families of prokaryotic insertion sequences.

    Science.gov (United States)

    Wagner, Andreas; de la Chaux, Nicole

    2008-11-01

    Horizontal gene transfer in prokaryotes is rampant on short and intermediate evolutionary time scales. It poses a fundamental problem to our ability to reconstruct the evolutionary tree of life. Is it also frequent over long evolutionary distances? To address this question, we analyzed the evolution of 2,091 insertion sequences from all 20 major families in 438 completely sequenced prokaryotic genomes. Specifically, we mapped insertion sequence occurrence on a 16S rDNA tree of the genomes we analyzed, and we also constructed phylogenetic trees of the insertion sequence transposase coding sequences. We found only 30 cases of likely horizontal transfer among distantly related prokaryotic clades. Most of these horizontal transfer events are ancient. Only seven events are recent. Almost all of these transfer events occur between pairs of human pathogens or commensals. If true also for other, non-mobile DNA, the rarity of distant horizontal transfer increases the odds of reliable phylogenetic inference from sequence data.

  19. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer.

    Science.gov (United States)

    Jaramillo, Vinicio D Armijos; Sukno, Serenella A; Thon, Michael R

    2015-01-02

    Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum. We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina. Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

  20. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini

    OpenAIRE

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R.; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A.; Blaxter, Mark

    2016-01-01

    Tardigrades, also known as moss piglets or water bears, are renowned for their ability to withstand extreme environmental challenges. A recently published analysis of the genome of the tardigrade Hypsibius dujardini by Boothby et al. concluded that horizontal acquisition of genes from bacterial and other sources might be key to cryptobiosis in tardigrades. We independently sequenced the genome of H. dujardini and detected a low level of horizontal gene transfer. We show that the extensive hor...

  1. Genome-wide experimental determination of barriers to horizontal gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  2. Rare Events of Intragenus and Intraspecies Horizontal Transfer of the 16S rRNA Gene.

    Science.gov (United States)

    Tian, Ren-Mao; Cai, Lin; Zhang, Wei-Peng; Cao, Hui-Luo; Qian, Pei-Yuan

    2015-07-27

    Horizontal gene transfer (HGT) of operational genes has been widely reported in prokaryotic organisms. However, informational genes such as those involved in transcription and translation processes are very difficult to be horizontally transferred, as described by Woese's complexity hypothesis. Here, we analyzed all of the completed prokaryotic genome sequences (2,143 genomes) in the NCBI (National Center for Biotechnology Information) database, scanned for genomes with high intragenomic heterogeneity of 16S rRNA gene copies, and explored potential HGT events of ribosomal RNA genes based on the phylogeny, genomic organization, and secondary structures of the ribosomal RNA genes. Our results revealed 28 genomes with relatively high intragenomic heterogeneity of multiple 16S rRNA gene copies (lowest pairwise identity 16S rRNA gene only occurred at intragenus or intraspecies levels, which is quite different from the HGT of operational genes. Our results improve our understanding regarding the exchange of informational genes.

  3. Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene.

    Directory of Open Access Journals (Sweden)

    Marco A Coelho

    2013-06-01

    Full Text Available Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1 with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.

  4. Incorporation of a horizontally transferred gene into an operon during cnidarian evolution.

    Directory of Open Access Journals (Sweden)

    Catherine E Dana

    Full Text Available Genome sequencing has revealed examples of horizontally transferred genes, but we still know little about how such genes are incorporated into their host genomes. We have previously reported the identification of a gene (flp that appears to have entered the Hydra genome through horizontal transfer. Here we provide additional evidence in support of our original hypothesis that the transfer was from a unicellular organism, and we show that the transfer occurred in an ancestor of two medusozoan cnidarian species. In addition we show that the gene is part of a bicistronic operon in the Hydra genome. These findings identify a new animal phylum in which trans-spliced leader addition has led to the formation of operons, and define the requirements for evolution of an operon in Hydra. The identification of operons in Hydra also provides a tool that can be exploited in the construction of transgenic Hydra strains.

  5. Evidence for Horizontal Gene Transfer as Origin of Putrescine Production in Oenococcus oeni RM83▿

    Science.gov (United States)

    Marcobal, Ángela; de las Rivas, Blanca; Moreno-Arribas, M. Victoria; Muñoz, Rosario

    2006-01-01

    The nucleotide sequence of a 17.2-kb chromosomal DNA fragment containing the odc gene encoding ornithine decarboxylase has been determined in the putrescine producer Oenococcus oeni RM83. This DNA fragment contains 13 open reading frames, including genes coding for five transposases and two phage proteins. This description might represent the first evidence of a horizontal gene transfer event as the origin of a biogenic amine biosynthetic locus. PMID:17056681

  6. Horizontal gene transfer and the evolution of transcriptionalregulation in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Dehal, Paramvir S.; Arkin, Adam P.

    2007-12-20

    Background: Most bacterial genes were acquired by horizontalgene transfer from other bacteria instead of being inherited bycontinuous vertical descent from an ancient ancestor}. To understand howthe regulation of these {acquired} genes evolved, we examined theevolutionary histories of transcription factors and of regulatoryinteractions from the model bacterium Escherichia coli K12. Results:Although most transcription factors have paralogs, these usually arose byhorizontal gene transfer rather than by duplication within the E. colilineage, as previously believed. In general, most neighbor regulators --regulators that are adjacent to genes that they regulate -- were acquiredby horizontal gene transfer, while most global regulators evolvedvertically within the gamma-Proteobacteria. Neighbor regulators wereoften acquired together with the adjacent operon that they regulate, sothe proximity might be maintained by repeated transfers (like "selfishoperons"). Many of the as-yet-uncharacterized (putative) regulators havealso been acquired together with adjacent genes, so we predict that theseare neighbor regulators as well. When we analyzed the histories ofregulatory interactions, we found that the evolution of regulation byduplication was rare, and surprisingly, many of the regulatoryinteractions that are shared between paralogs result from convergentevolution. Another surprise was that horizontally transferred genes aremore likely than other genes to be regulated by multiple regulators, andmost of this complex regulation probably evolved after the transfer.Conclusions: Our results highlight the rapid evolution of niche-specificgene regulation in bacteria.

  7. Role of Vibrio cholerae exochitinase ChiA2 in horizontal gene transfer.

    Science.gov (United States)

    Mondal, Moumita; Chatterjee, Nabendu Sekhar

    2016-03-01

    Vibrio cholerae exochitinase ChiA2 plays a key role in acquisition of nutrients by chitin hydrolysis in the natural environment as well as in pathogenesis in the intestinal milieu. In this study we demonstrate the importance of ChiA2 in horizontal gene transfer in the natural environment. We found that the expression of ChiA2 and TfoX, the central regulator of V. cholerae horizontal gene transfer, varied with changes in environmental conditions. The activity of ChiA2 was also dependent on these conditions. In 3 different environmental conditions tested here, we observed that the supporting environmental condition for maximum expression and activity of ChiA2 was 20 °C, pH 5.5, and 100 mmol/L salinity in the presence of chitin. The same condition also induced TfoX expression and was favorable for horizontal gene transfer in V. cholerae. High-performance liquid chromatography analysis showed that ChiA2 released a significant amount of (GlcNAc)2 from chitin hydrolysis under the favorable condition. We hypothesized that under the favorable environmental condition, ChiA2 was upregulated and maximally active to produce a significant amount of (GlcNAc)2 from chitin. The same environmental condition also induced tfoX expression, followed by its translational activation by the (GlcNAc)2 produced, leading to efficient horizontal gene transfer.

  8. Investigation of horizontal gene transfer in poplar/Amanita muscaria ectomycorrhizas.

    Science.gov (United States)

    Zhang, Chi; Hampp, Rüdiger; Nehls, Uwe

    2005-01-01

    Fine roots of forest trees form together with certain soil fungi symbiotic structures (ectomycorrhizas), where fungal hyphae are in intimate contact with plant cells. Due to root cell degeneration, plant DNA is released and could be taken up by the fungus. The possibility that horizontal gene transfer might result in a risk for the environment should be evaluated before a massive release of genetically engineered trees into nature occurs, even though only a few convincing examples of horizontal gene transfer are known. Transgenic poplars containing a construct of the Streptomyces hygroscopicus bar gene under the control of the Cochliobolus heterostrophus GPD (glyceraldehyde-3-phosphate dehydrogenase) promoter were generated by Agrobacterium-mediated transformation. The functionality of this construct in the ectomycorrhizal model fungus Amanita muscaria was previously verified by protoplast-based fungal transformation. 35,000 ectomycorrhizas, formed between transgenic poplars and non-transgenic A. muscaria hyphae, were isolated and transferred to selective agar plates. Putative herbicide-resistant fungal colonies were obtained after the first round of selection. However, none of these colonies survived a transfer onto fresh selection medium, nor did they contain the bar gene, indicating that no horizontal gene transfer from poplar to A. muscaria occurred during symbiosis under axenic conditions. However, since ectomycorrhizas are associated under natural conditions with viruses, bacteria and other fungi, these additional associations should be evaluated in future.

  9. Phylogenetic analysis of the incidence of lux gene horizontal transfer in Vibrionaceae.

    Science.gov (United States)

    Urbanczyk, Henryk; Ast, Jennifer C; Kaeding, Allison J; Oliver, James D; Dunlap, Paul V

    2008-05-01

    Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2

  10. Multiple inter-kingdom horizontal gene transfers in the evolution of the phosphoenolpyruvate carboxylase gene family.

    Directory of Open Access Journals (Sweden)

    Yingmei Peng

    Full Text Available Pepcase is a gene encoding phosphoenolpyruvate carboxylase that exists in bacteria, archaea and plants,playing an important role in plant metabolism and development. Most plants have two or more pepcase genes belonging to two gene sub-families, while only one gene exists in other organisms. Previous research categorized one plant pepcase gene as plant-type pepcase (PTPC while the other as bacteria-type pepcase (BTPC because of its similarity with the pepcase gene found in bacteria. Phylogenetic reconstruction showed that PTPC is the ancestral lineage of plant pepcase, and that all bacteria, protistpepcase and BTPC in plants are derived from a lineage of pepcase closely related with PTPC in algae. However, their phylogeny contradicts the species tree and traditional chronology of organism evolution. Because the diversification of bacteria occurred much earlier than the origin of plants, presumably all bacterialpepcase derived from the ancestral PTPC of algal plants after divergingfrom the ancestor of vascular plant PTPC. To solve this contradiction, we reconstructed the phylogeny of pepcase gene family. Our result showed that both PTPC and BTPC are derived from an ancestral lineage of gamma-proteobacteriapepcases, possibly via an ancient inter-kingdom horizontal gene transfer (HGT from bacteria to the eukaryotic common ancestor of plants, protists and cellular slime mold. Our phylogenetic analysis also found 48other pepcase genes originated from inter-kingdom HGTs. These results imply that inter-kingdom HGTs played important roles in the evolution of the pepcase gene family and furthermore that HGTsare a more frequent evolutionary event than previouslythought.

  11. In silico Analysis of the Potential Infection Mechanisms of Magnaporthe grisea from Horizontal Gene Transfer Hypothesis

    Institute of Scientific and Technical Information of China (English)

    Chunyang Li; Ying Wang; Hao Peng; Hejiao Bian; Mingwei Min; Longfei Chen; Qian Liu; Jinku Bao

    2009-01-01

    Horizontal gene transfer(HGT)has long been considered as a principal force for an organism to gain novel genes in genome evolution. Homology search, phylogenetic analysis and nucleotide composition analysis are three major objective approaches to arguably determine the occurrence and directionality of HGT. Here, 21 genes that possess the potential to horizontal transfer were acquired from the whole genome of Magnaporthe grisea according to annotation, among which three can-didate genes(corresponding protein accession numbers are EAA55123, EAA47200 and EAA52136)were selected for further analysis. According to BLAST homology results, we subsequently conducted phylogenetic analysis of the three candidate HGT genes. Moreover, nucleotide composition analysis was conducted to further validate these HGTs. In addition, the functions of the three candidate genes were searched in COG database. Consequently, we conclude that the gene encoding protein EAA55123 is transferred from Clostridium perfringens. Another HGT event is between EAA52136 and a certain metazoan's corresponding gene, but the direction remains uncertain. Yet, EAA47200 is not a transferred gene.

  12. Collective evolution of cyanobacteria and cyanophages mediated by horizontal gene transfer

    Science.gov (United States)

    Shih, Hong-Yan; Rogers, Tim; Goldenfeld, Nigel

    We describe a model for how antagonistic predator-prey coevolution can lead to mutualistic adaptation to an environment, as a result of horizontal gene transfer. Our model is a simple description of ecosystems such as marine cyanobacteria and their predator cyanophages, which carry photosynthesis genes. These genes evolve more rapidly in the virosphere than the bacterial pan-genome, and thus the bacterial population could potentially benefit from phage predation. By modeling both the barrier to predation and horizontal gene transfer, we study this balance between individual sacrifice and collective benefits. The outcome is an emergent mutualistic coevolution of improved photosynthesis capability, benefiting both bacteria and phage. This form of multi-level selection can contribute to niche stratification in the cyanobacteria-phage ecosystem. This work is supported in part by a cooperative agreement with NASA, Grant NNA13AA91A/A0018.

  13. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Kevin Dougherty

    Full Text Available Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  14. Enhanced horizontal transfer of antibiotic resistance genes in freshwater microcosms induced by an ionic liquid.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available The spread and propagation of antibiotic resistance genes (ARGs is a worldwide public health concern. Ionic liquids (ILs, considered as "environmentally friendly" replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6] (0.001-5.0 g/L was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups by the IL [BMIm][PF6] (1.0 g/L. Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM. This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.

  15. Multiple phenotypic changes associated with large-scale horizontal gene transfer.

    Science.gov (United States)

    Dougherty, Kevin; Smith, Brian A; Moore, Autumn F; Maitland, Shannon; Fanger, Chris; Murillo, Rachel; Baltrus, David A

    2014-01-01

    Horizontal gene transfer often leads to phenotypic changes within recipient organisms independent of any immediate evolutionary benefits. While secondary phenotypic effects of horizontal transfer (i.e., changes in growth rates) have been demonstrated and studied across a variety of systems using relatively small plasmids and phage, little is known about the magnitude or number of such costs after the transfer of larger regions. Here we describe numerous phenotypic changes that occur after a large-scale horizontal transfer event (∼1 Mb megaplasmid) within Pseudomonas stutzeri including sensitization to various stresses as well as changes in bacterial behavior. These results highlight the power of horizontal transfer to shift pleiotropic relationships and cellular networks within bacterial genomes. They also provide an important context for how secondary effects of transfer can bias evolutionary trajectories and interactions between species. Lastly, these results and system provide a foundation to investigate evolutionary consequences in real time as newly acquired regions are ameliorated and integrated into new genomic contexts.

  16. Bacteriophage WO Can Mediate Horizontal Gene Transfer in Endosymbiotic Wolbachia Genomes

    Science.gov (United States)

    Wang, Guan H.; Sun, Bao F.; Xiong, Tuan L.; Wang, Yan K.; Murfin, Kristen E.; Xiao, Jin H.; Huang, Da W.

    2016-01-01

    Phage-mediated horizontal gene transfer (HGT) is common in free-living bacteria, and many transferred genes can play a significant role in their new bacterial hosts. However, there are few reports concerning phage-mediated HGT in endosymbionts (obligate intracellular bacteria within animal or plant hosts), such as Wolbachia. The Wolbachia-infecting temperate phage WO can actively shift among Wolbachia genomes and has the potential to mediate HGT between Wolbachia strains. In the present study, we extend previous findings by validating that the phage WO can mediate transfer of non-phage genes. To do so, we utilized bioinformatic, phylogenetic, and molecular analyses based on all sequenced Wolbachia and phage WO genomes. Our results show that the phage WO can mediate HGT between Wolbachia strains, regardless of whether the transferred genes originate from Wolbachia or other unrelated bacteria. PMID:27965627

  17. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers.

    Science.gov (United States)

    Grilli, Jacopo; Romano, Mariacristina; Bassetti, Federico; Cosentino Lagomarsino, Marco

    2014-06-01

    Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome 'flux'. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.

  18. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available BACKGROUND: Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive. METHODOLOGY/PRINCIPAL FINDINGS: We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication. CONCLUSIONS/SIGNIFICANCE: Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  19. Two Horizontally Transferred Xenobiotic Resistance Gene Clusters Associated with Detoxification of Benzoxazolinones by Fusarium Species

    Science.gov (United States)

    Glenn, Anthony E.; Davis, C. Britton; Gao, Minglu; Gold, Scott E.; Mitchell, Trevor R.; Proctor, Robert H.; Stewart, Jane E.; Snook, Maurice E.

    2016-01-01

    Microbes encounter a broad spectrum of antimicrobial compounds in their environments and often possess metabolic strategies to detoxify such xenobiotics. We have previously shown that Fusarium verticillioides, a fungal pathogen of maize known for its production of fumonisin mycotoxins, possesses two unlinked loci, FDB1 and FDB2, necessary for detoxification of antimicrobial compounds produced by maize, including the γ-lactam 2-benzoxazolinone (BOA). In support of these earlier studies, microarray analysis of F. verticillioides exposed to BOA identified the induction of multiple genes at FDB1 and FDB2, indicating the loci consist of gene clusters. One of the FDB1 cluster genes encoded a protein having domain homology to the metallo-β-lactamase (MBL) superfamily. Deletion of this gene (MBL1) rendered F. verticillioides incapable of metabolizing BOA and thus unable to grow on BOA-amended media. Deletion of other FDB1 cluster genes, in particular AMD1 and DLH1, did not affect BOA degradation. Phylogenetic analyses and topology testing of the FDB1 and FDB2 cluster genes suggested two horizontal transfer events among fungi, one being transfer of FDB1 from Fusarium to Colletotrichum, and the second being transfer of the FDB2 cluster from Fusarium to Aspergillus. Together, the results suggest that plant-derived xenobiotics have exerted evolutionary pressure on these fungi, leading to horizontal transfer of genes that enhance fitness or virulence. PMID:26808652

  20. Parallel Evolution and Horizontal Gene Transfer of the pst Operon in Firmicutes from Oligotrophic Environments

    Directory of Open Access Journals (Sweden)

    Alejandra Moreno-Letelier

    2011-01-01

    Full Text Available The high affinity phosphate transport system (pst is crucial for phosphate uptake in oligotrophic environments. Cuatro Cienegas Basin (CCB has extremely low P levels and its endemic Bacillus are closely related to oligotrophic marine Firmicutes. Thus, we expected the pst operon of CCB to share the same evolutionary history and protein similarity to marine Firmicutes. Orthologs of the pst operon were searched in 55 genomes of Firmicutes and 13 outgroups. Phylogenetic reconstructions were performed for the pst operon and 14 concatenated housekeeping genes using maximum likelihood methods. Conserved domains and 3D structures of the phosphate-binding protein (PstS were also analyzed. The pst operon of Firmicutes shows two highly divergent clades with no correlation to the type of habitat nor a phylogenetic congruence, suggesting horizontal gene transfer. Despite sequence divergence, the PstS protein had a similar 3D structure, which could be due to parallel evolution after horizontal gene transfer events.

  1. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  2. Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: a phylogenetic study.

    Directory of Open Access Journals (Sweden)

    Jason C Slot

    Full Text Available High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(PH-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts. We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota, which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.

  3. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    Science.gov (United States)

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.

  4. The give-and-take of DNA: horizontal gene transfer in plants.

    Science.gov (United States)

    Bock, Ralph

    2010-01-01

    Horizontal gene transfer (HGT) is increasingly being recognized as a significant force in the evolution of eukaryotic genomes. Plants have been both donors and recipients of horizontally mobilized genes and their genetic barter partners include prokaryotes and eukaryotes from all kingdoms. By expanding the gene pool beyond species boundaries, HGT events can drive genomic and phenotypic changes that increase fitness substantially. Accumulating evidence suggests that HGT is particularly prevalent between organisms that are either intimately associated or establish at least occasionally cell-cell contacts (e.g. in mutualistic or parasitic relationships). Here, I summarize current knowledge about HGT in plants, discuss possible molecular mechanisms and adaptive values of HGT events and highlight recent progress made in reconstructing HGT processes in laboratory experiments.

  5. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Maguin Emmanuelle

    2007-08-01

    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  6. Horizontal gene transfer and nucleotide compositional anomaly in large DNA viruses

    Directory of Open Access Journals (Sweden)

    Ogata Hiroyuki

    2007-12-01

    Full Text Available Abstract Background DNA viruses have a wide range of genome sizes (5 kb up to 1.2 Mb, compared to 0.16 Mb to 1.5 Mb for obligate parasitic bacteria that do not correlate with their virulence or the taxonomic distribution of their hosts. The reasons for such large variation are unclear. According to the traditional view of viruses as gifted "gene pickpockets", large viral genome sizes could originate from numerous gene acquisitions from their hosts. We investigated this hypothesis by studying 67 large DNA viruses with genome sizes larger than 150 kb, including the recently characterized giant mimivirus. Given that horizontally transferred DNA often have anomalous nucleotide compositions differing from the rest of the genome, we conducted a detailed analysis of the inter- and intra-genome compositional properties of these viruses. We then interpreted their compositional heterogeneity in terms of possible causes, including strand asymmetry, gene function/expression, and horizontal transfer. Results We first show that the global nucleotide composition and nucleotide word usage of viral genomes are species-specific and distinct from those of their hosts. Next, we identified compositionally anomalous (cA genes in viral genomes, using a method based on Bayesian inference. The proportion of cA genes is highly variable across viruses and does not exhibit a significant correlation with genome size. The vast majority of the cA genes were of unknown function, lacking homologs in the databases. For genes with known homologs, we found a substantial enrichment of cA genes in specific functional classes for some of the viruses. No significant association was found between cA genes and compositional strand asymmetry. A possible exogenous origin for a small fraction of the cA genes could be confirmed by phylogenetic reconstruction. Conclusion At odds with the traditional dogma, our results argue against frequent genetic transfers to large DNA viruses from their

  7. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    Science.gov (United States)

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  8. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Directory of Open Access Journals (Sweden)

    Hyeonsoo Jeong

    2017-08-01

    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  9. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Directory of Open Access Journals (Sweden)

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  10. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  11. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE(Ac)) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE(Ac)-located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  12. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    Science.gov (United States)

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  13. Horizontal gene transfer events reshape the global landscape of arm race between viruses and homo sapiens.

    Science.gov (United States)

    Chen, Dong-Sheng; Wu, Yi-Quan; Zhang, Wei; Jiang, San-Jie; Chen, Shan-Ze

    2016-06-07

    Horizontal gene transfer (HGT) drives the evolution of recipient organism particularly if it provides a novel function which enhances the fitness or its adaption to the environment. Virus-host co-evolution is attractive for studying co-evolutionary processes, since viruses strictly replicate inside of the host cells and thus their evolution is inexorably tangled with host biology. HGT, as a mechanism of co-evolution between human and viruses, has been widely documented, however, the roles HGT play during the interaction between human and viruses are still in their infancy. In this study, we performed a comprehensive analysis on the genes horizontally transferred between viruses and their corresponding human hosts. Our study suggests that the HGT genes in human are predominantly enriched in immune related GO terms while viral HGT genes are tend to be encoded by viruses which promote the invasion of immune system of hosts. Based on our results, it gives us a hint about the evolution trajectory of HGT events. Overall, our study suggests that the HGT between human and viruses are highly relevant to immune interaction and probably reshaped the arm race between hosts and viruses.

  14. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Foster, Peter G; Leonard, Guy; Thornton, Christopher R; Talbot, Nicholas J

    2009-07-01

    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.

  15. Detection of horizontal transfer of individual genes by anomalous oligomer frequencies

    Directory of Open Access Journals (Sweden)

    Elhai Jeff

    2012-06-01

    Full Text Available Abstract Background Understanding the history of life requires that we understand the transfer of genetic material across phylogenetic boundaries. Detecting genes that were acquired by means other than vertical descent is a basic step in that process. Detection by discordant phylogenies is computationally expensive and not always definitive. Many have used easily computed compositional features as an alternative procedure. However, different compositional methods produce different predictions, and the effectiveness of any method is not well established. Results The ability of octamer frequency comparisons to detect genes artificially seeded in cyanobacterial genomes was markedly increased by using as a training set those genes that are highly conserved over all bacteria. Using a subset of octamer frequencies in such tests also increased effectiveness, but this depended on the specific target genome and the source of the contaminating genes. The presence of high frequency octamers and the GC content of the contaminating genes were important considerations. A method comprising best practices from these tests was devised, the Core Gene Similarity (CGS method, and it performed better than simple octamer frequency analysis, codon bias, or GC contrasts in detecting seeded genes or naturally occurring transposons. From a comparison of predictions with phylogenetic trees, it appears that the effectiveness of the method is confined to horizontal transfer events that have occurred recently in evolutionary time. Conclusions The CGS method may be an improvement over existing surrogate methods to detect genes of foreign origin.

  16. Horizontal Transfer of Plasmid-Mediated Cephalosporin Resistance Genes in the Intestine of Houseflies (Musca domestica).

    Science.gov (United States)

    Fukuda, Akira; Usui, Masaru; Okubo, Torahiko; Tamura, Yutaka

    2016-06-01

    Houseflies are a mechanical vector for various types of bacteria, including antimicrobial-resistant bacteria (ARB). If the intestine of houseflies is a suitable site for the transfer of antimicrobial resistance genes (ARGs), houseflies could also serve as a biological vector for ARB. To clarify whether cephalosporin resistance genes are transferred efficiently in the housefly intestine, we compared with conjugation experiments in vivo (in the intestine) and in vitro by using Escherichia coli with eight combinations of four donor and two recipient strains harboring plasmid-mediated cephalosporin resistance genes and chromosomal-encoded rifampicin resistance genes, respectively. In the in vivo conjugation experiment, houseflies ingested donor strains for 6 hr and then recipient strains for 3 hr, and 24 hr later, the houseflies were surface sterilized and analyzed. In vitro conjugation experiments were conducted using the broth-mating method. In 3/8 combinations, the in vitro transfer frequency (Transconjugants/Donor) was ≥1.3 × 10(-4); the in vivo transfer rates of cephalosporin resistance genes ranged from 2.0 × 10(-4) to 5.7 × 10(-5). Moreover, cephalosporin resistance genes were transferred to other species of enteric bacteria of houseflies such as Achromobacter sp. and Pseudomonas fluorescens. These results suggest that houseflies are not only a mechanical vector for ARB but also a biological vector for the occurrence of new ARB through the horizontal transfer of ARGs in their intestine.

  17. Et tu, Brute? Not Even Intracellular Mutualistic Symbionts Escape Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Sergio López-Madrigal

    2017-09-01

    Full Text Available Many insect species maintain mutualistic relationships with endosymbiotic bacteria. In contrast to their free-living relatives, horizontal gene transfer (HGT has traditionally been considered rare in long-term endosymbionts. Nevertheless, meta-omics exploration of certain symbiotic models has unveiled an increasing number of bacteria-bacteria and bacteria-host genetic transfers. The abundance and function of transferred loci suggest that HGT might play a major role in the evolution of the corresponding consortia, enhancing their adaptive value or buffering detrimental effects derived from the reductive evolution of endosymbionts’ genomes. Here, we comprehensively review the HGT cases recorded to date in insect-bacteria mutualistic consortia, and discuss their impact on the evolutionary success of these associations.

  18. Operon Formation is Driven by Co-Regulation and Not by Horizontal Gene Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Morgan N.; Huang, Katherine H.; Arkin, Adam P.; Alm, Eric J.

    2005-04-12

    Although operons are often subject to horizontal gene transfer (HGT), non-HGT genes are particularly likely to be in operons. To resolve this apparent discrepancy and to determine whether HGT is involved in operon formation, we examined the evolutionary history of the genes and operons in Escherichia coli K12. We show that genes that have homologs in distantly related bacteria but not in close relatives of E. coli (indicating HGTi) form new operons at about the same rates as native genes. Furthermore, genes in new operons are no more likely than other genes to have phylogenetic trees that are inconsistent with the species tree. In contrast, essential genes and ubiquitous genes without paralogs (genes believed to undergo HGT rarely) often form new operons. We conclude that HGT is not associated with operon formation, but instead promotes the prevalence of pre-existing operons. To explain operon formation, we propose that new operons reduce the amount of regulatory information required to specify optimal expression patterns. Consistent with this hypothesis, operons have greater amounts of conserved regulatory sequences than do individually transcribed genes.

  19. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes.

    Science.gov (United States)

    Richards, Thomas A; Soanes, Darren M; Jones, Meredith D M; Vasieva, Olga; Leonard, Guy; Paszkiewicz, Konrad; Foster, Peter G; Hall, Neil; Talbot, Nicholas J

    2011-09-13

    Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.

  20. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Science.gov (United States)

    Arkhipova, Oksana V; Meer, Margarita V; Mikoulinskaia, Galina V; Zakharova, Marina V; Galushko, Alexander S; Akimenko, Vasilii K; Kondrashov, Fyodor A

    2015-01-01

    The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd) and tetraheme cytochrome с (Mcc) in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  1. Recent Origin of the Methacrylate Redox System in Geobacter sulfurreducens AM-1 through Horizontal Gene Transfer.

    Directory of Open Access Journals (Sweden)

    Oksana V Arkhipova

    Full Text Available The origin and evolution of novel biochemical functions remains one of the key questions in molecular evolution. We study recently emerged methacrylate reductase function that is thought to have emerged in the last century and reported in Geobacter sulfurreducens strain AM-1. We report the sequence and study the evolution of the operon coding for the flavin-containing methacrylate reductase (Mrd and tetraheme cytochrome с (Mcc in the genome of G. sulfurreducens AM-1. Different types of signal peptides in functionally interlinked proteins Mrd and Mcc suggest a possible complex mechanism of biogenesis for chromoproteids of the methacrylate redox system. The homologs of the Mrd and Mcc sequence found in δ-Proteobacteria and Deferribacteres are also organized into an operon and their phylogenetic distribution suggested that these two genes tend to be horizontally transferred together. Specifically, the mrd and mcc genes from G. sulfurreducens AM-1 are not monophyletic with any of the homologs found in other Geobacter genomes. The acquisition of methacrylate reductase function by G. sulfurreducens AM-1 appears linked to a horizontal gene transfer event. However, the new function of the products of mrd and mcc may have evolved either prior or subsequent to their acquisition by G. sulfurreducens AM-1.

  2. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  3. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2011-08-01

    Full Text Available Abstract Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica, we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.

  4. Detecting horizontally transferred and essential genes based on dinucleotide relative abundance.

    Science.gov (United States)

    Baran, Robert H; Ko, Hanseok

    2008-10-01

    Various methods have been developed to detect horizontal gene transfer in bacteria, based on anomalous nucleotide composition, assuming that compositional features undergo amelioration in the host genome. Evolutionary theory predicts the inevitability of false positives when essential sequences are strongly conserved. Foreign genes could become more detectable on the basis of their higher order compositions if such features ameliorate more rapidly and uniformly than lower order features. This possibility is tested by comparing the heterogeneities of bacterial genomes with respect to strand-independent first- and second-order features, (i) G + C content and (ii) dinucleotide relative abundance, in 1 kb segments. Although statistical analysis confirms that (ii) is less inhomogeneous than (i) in all 12 species examined, extreme anomalies with respect to (ii) in the Escherichia coli K12 genome are typically co-located with essential genes.

  5. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade.

    Science.gov (United States)

    Boothby, Thomas C; Tenlen, Jennifer R; Smith, Frank W; Wang, Jeremy R; Patanella, Kiera A; Nishimura, Erin Osborne; Tintori, Sophia C; Li, Qing; Jones, Corbin D; Yandell, Mark; Messina, David N; Glasscock, Jarret; Goldstein, Bob

    2015-12-29

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.

  6. Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade

    Science.gov (United States)

    Boothby, Thomas C.; Tenlen, Jennifer R.; Smith, Frank W.; Wang, Jeremy R.; Patanella, Kiera A.; Osborne Nishimura, Erin; Tintori, Sophia C.; Li, Qing; Jones, Corbin D.; Yandell, Mark; Glasscock, Jarret; Goldstein, Bob

    2015-01-01

    Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes. PMID:26598659

  7. The impact of horizontal gene transfer on the adaptive ability of the human oral microbiome.

    Directory of Open Access Journals (Sweden)

    Adam Paul Roberts

    2014-09-01

    Full Text Available The oral microbiome is composed of a multitude of different species of bacteria, each capable of occupying one or more of the many different niches found within the human oral cavity. This community exhibits many types of complex interactions which enable it to colonise and rapidly respond to changes in the environment in which they live. One of these interactions is the transfer, or acquisition, of DNA within this environment, either from co-resident bacterial species or from exogenous sources. Horizontal gene transfer in the oral cavity gives some of the resident bacteria the opportunity to sample a truly enormous metagenome affording them considerable adaptive potential which may be key to survival in such a varying environment. In this review the underlying mechanisms of HGT are discussed in relation to the oral microbiome with numerous examples described where the direct acquisition of exogenous DNA has contributed to the fitness of the bacterial host within the human oral cavity.

  8. Horizontal Gene Transfer of the Secretome Drives the Evolution of Bacterial Cooperation and Virulence

    Science.gov (United States)

    Nogueira, Teresa; Rankin, Daniel J.; Touchon, Marie; Taddei, François; Brown, Sam P.; Rocha, Eduardo P.C.

    2009-01-01

    Summary Background Microbes engage in a remarkable array of cooperative behaviors, secreting shared proteins that are essential for foraging, shelter, microbial warfare, and virulence. These proteins are costly, rendering populations of cooperators vulnerable to exploitation by nonproducing cheaters arising by gene loss or migration. In such conditions, how can cooperation persist? Results Our model predicts that differential gene mobility drives intragenomic variation in investment in cooperative traits. More mobile loci generate stronger among-individual genetic correlations at these loci (higher relatedness) and thereby allow the maintenance of more cooperative traits via kin selection. By analyzing 21 Escherichia genomes, we confirm that genes coding for secreted proteins—the secretome—are very frequently lost and gained and are associated with mobile elements. We show that homologs of the secretome are overrepresented among human gut metagenomics samples, consistent with increased relatedness at secretome loci across multiple species. The biosynthetic cost of secreted proteins is shown to be under intense selective pressure, even more than for highly expressed proteins, consistent with a cost of cooperation driving social dilemmas. Finally, we demonstrate that mobile elements are in conflict with their chromosomal hosts over the chimeric ensemble's social strategy, with mobile elements enforcing cooperation on their otherwise selfish hosts via the cotransfer of secretome genes with “mafia strategy” addictive systems (toxin-antitoxin and restriction-modification). Conclusion Our analysis matches the predictions of our model suggesting that horizontal transfer promotes cooperation, as transmission increases local genetic relatedness at mobile loci and enforces cooperation on the resident genes. As a consequence, horizontal transfer promoted by agents such as plasmids, phages, or integrons drives microbial cooperation. PMID:19800234

  9. Novel recA-Independent Horizontal Gene Transfer in Escherichia coli K-12.

    Directory of Open Access Journals (Sweden)

    Anthony W Kingston

    Full Text Available In bacteria, mechanisms that incorporate DNA into a genome without strand-transfer proteins such as RecA play a major role in generating novelty by horizontal gene transfer. We describe a new illegitimate recombination event in Escherichia coli K-12: RecA-independent homologous replacements, with very large (megabase-length donor patches replacing recipient DNA. A previously uncharacterized gene (yjiP increases the frequency of RecA-independent replacement recombination. To show this, we used conjugal DNA transfer, combining a classical conjugation donor, HfrH, with modern genome engineering methods and whole genome sequencing analysis to enable interrogation of genetic dependence of integration mechanisms and characterization of recombination products. As in classical experiments, genomic DNA transfer begins at a unique position in the donor, entering the recipient via conjugation; antibiotic resistance markers are then used to select recombinant progeny. Different configurations of this system were used to compare known mechanisms for stable DNA incorporation, including homologous recombination, F'-plasmid formation, and genome duplication. A genome island of interest known as the immigration control region was specifically replaced in a minority of recombinants, at a frequency of 3 X 10(-12 CFU/recipient per hour.

  10. Horizontal gene transfer regulation in bacteria as a "spandrel" of DNA repair mechanisms.

    Directory of Open Access Journals (Sweden)

    Saliou Fall

    Full Text Available Horizontal gene transfer (HGT is recognized as the major force for bacterial genome evolution. Yet, numerous questions remain about the transferred genes, their function, quantity and frequency. The extent to which genetic transformation by exogenous DNA has occurred over evolutionary time was initially addressed by an in silico approach using the complete genome sequence of the Ralstonia solanacearum GMI1000 strain. Methods based on phylogenetic reconstruction of prokaryote homologous genes families detected 151 genes (13.3% of foreign origin in the R. solanacearum genome and tentatively identified their bacterial origin. These putative transfers were analyzed in comparison to experimental transformation tests involving 18 different genomic DNA positions in the genome as sites for homologous or homeologous recombination. Significant transformation frequency differences were observed among these positions tested regardless of the overall genomic divergence of the R. solanacearum strains tested as recipients. The genomic positions containing the putative exogenous DNA were not systematically transformed at the highest frequencies. The two genomic "hot spots", which contain recA and mutS genes, exhibited transformation frequencies from 2 to more than 4 orders of magnitude higher than positions associated with other genes depending on the recipient strain. These results support the notion that the bacterial cell is equipped with active mechanisms to modulate acquisition of new DNA in different genomic positions. Bio-informatics study correlated recombination "hot-spots" to the presence of Chi-like signature sequences with which recombination might be preferentially initiated. The fundamental role of HGT is certainly not limited to the critical impact that the very rare foreign genes acquired mainly by chance can have on the bacterial adaptation potential. The frequency to which HGT with homologous and homeologous DNA happens in the environment

  11. VERTICAL HEREDITY VS. HORIZONTAL GENE TRANSFER: A CHALLENGE TO BACTERIAL CLASSIFICATION

    Institute of Scientific and Technical Information of China (English)

    HAO Bailin; QI Ji

    2003-01-01

    The diversity and classification of microbes has been a long-standing issue. Molecular phylogeny of the prokaryotes based on comparison of the 16S rRNA sequences of the small ribosomal subunit has led to a reasonable tree of life in the late 1970s. However, the availability of more and more complete bacterial genomes has brought about complications instead of refinement of the tree. In particular, it turns out that different choice of genes may tell different history. This might be caused by possible horizontal gene transfer (HGT) among species. There is an urgent need to develop phylogenetic methods that make use of whole genome data. We describe a new approach in molecular phylogeny, namely, tree construction based on K-tuple frequency analysis of the genomic sequences. Putting aside the technicalities, we emphasize the transition from randomness to determinism when the string length K increases and try to comment on the challenge mentioned in the title.

  12. The advantages and disadvantages of horizontal gene transfer and the emergence of the first species

    Directory of Open Access Journals (Sweden)

    Higgs Paul G

    2011-01-01

    Full Text Available Abstract Background Horizontal Gene Transfer (HGT is beneficial to a cell if the acquired gene confers a useful function, but is detrimental if the gene has no function, if it is incompatible with existing genes, or if it is a selfishly replicating mobile element. If the balance of these effects is beneficial on average, we would expect cells to evolve high rates of acceptance of horizontally transferred genes, whereas if it is detrimental, cells should reduce the rate of HGT as far as possible. It has been proposed that the rate of HGT was very high in the early stages of prokaryotic evolution, and hence there were no separate lineages of organisms. Only when the HGT rate began to fall, would lineages begin to emerge with their own distinct sets of genes. Evolution would then become more tree-like. This phenomenon has been called the Darwinian Threshold. Results We study a model for genome evolution that incorporates both beneficial and detrimental effects of HGT. We show that if rate of gene loss during genome replication is high, as was probably the case in the earliest genomes before the time of the last universal common ancestor, then a high rate of HGT is favourable. HGT leads to the rapid spread of new genes and allows the build-up of larger, fitter genomes than could be achieved by purely vertical inheritance. In contrast, if the gene loss rate is lower, as in modern prokaryotes, then HGT is, on average, unfavourable. Conclusions Modern cells should therefore evolve to reduce HGT if they can, although the prevalence of independently replicating mobile elements and viruses may mean that cells cannot avoid HGT in practice. In the model, natural selection leads to gradual improvement of the replication accuracy and gradual decrease in the optimal rate of HGT. By clustering genomes based on gene content, we show that there are no separate lineages of organisms when the rate of HGT is high; however, as the rate of HGT decreases, a tree

  13. Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Gabriela Jorge Da Silva

    2016-08-01

    Full Text Available Horizontal gene transfer (HGT is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.

  14. Investigation of possible horizontal gene transfer from transgenic rice to soil microorganisms in paddy rice field.

    Science.gov (United States)

    Kim, Sung Eun; Moon, Jae Sun; Kim, Jung Kyu; Choi, Won Sik; Lee, Sang Han; Kim, Sung Uk

    2010-01-01

    In order to monitor the possibility of horizontal gene transfer between transgenic rice and microorganisms in paddy rice field, the gene flow from bifunctional fusion (TPSP) rice containing trehalose-6-phosphate synthase and phosphatase to microorganisms in soils was investigated. The soil samples collected every month from the paddy rice field during June, 2004 to March, 2006 were investigated by multiplex PCR, Southern hybridization, and amplified fragment length polymorphism (AFLP). The TPSP gene from soil genomics DNAs was not detected by PCR. Soil genomic DNAs were not shown its homologies on the Southern blotting data, indicating that gene-transfer did not occur during the last two years in paddy rice field. In addition, the AFLP band patterns produced by both soil genomic DNAs extracted from transgenic and non-transgenic rice field appeared similar to each other when analyzed by NTSYSpc program. Thus, these data suggest that transgenic rice does not give a significant impact on the communities of soil microorganisms although long-term observation may be needed.

  15. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J. M.; Paulsen, Peter; Szostak, Michael P.; Humphrey, Tom

    2015-01-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health. PMID:25934615

  16. Bacteriophages Isolated from Chicken Meat and the Horizontal Transfer of Antimicrobial Resistance Genes.

    Science.gov (United States)

    Shousha, Amira; Awaiwanont, Nattakarn; Sofka, Dmitrij; Smulders, Frans J M; Paulsen, Peter; Szostak, Michael P; Humphrey, Tom; Hilbert, Friederike

    2015-07-01

    Antimicrobial resistance in microbes poses a global and increasing threat to public health. The horizontal transfer of antimicrobial resistance genes was thought to be due largely to conjugative plasmids or transposons, with only a minor part being played by transduction through bacteriophages. However, whole-genome sequencing has recently shown that the latter mechanism could be highly important in the exchange of antimicrobial resistance genes between microorganisms and environments. The transfer of antimicrobial resistance genes by phages could underlie the origin of resistant bacteria found in food. We show that chicken meat carries a number of phages capable of transferring antimicrobial resistance. Of 243 phages randomly isolated from chicken meat, about a quarter (24.7%) were able to transduce resistance to one or more of the five antimicrobials tested into Escherichia coli ATCC 13706 (DSM 12242). Resistance to kanamycin was transduced the most often, followed by that to chloramphenicol, with four phages transducing tetracycline resistance and three transducing ampicillin resistance. Phages able to transduce antimicrobial resistance were isolated from 44% of the samples of chicken meat that we tested. The statistically significant (P = 0.01) relationship between the presence of phages transducing kanamycin resistance and E. coli isolates resistant to this antibiotic suggests that transduction may be an important mechanism for transferring kanamycin resistance to E. coli. It appears that the transduction of resistance to certain antimicrobials, e.g., kanamycin, not only is widely distributed in E. coli isolates found on meat but also could represent a major mechanism for resistance transfer. The result is of high importance for animal and human health.

  17. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes.

    Science.gov (United States)

    Dunning Hotopp, Julie C; Grifantini, Renata; Kumar, Nikhil; Tzeng, Yih Ling; Fouts, Derrick; Frigimelica, Elisabetta; Draghi, Monia; Giuliani, Marzia Monica; Rappuoli, Rino; Stephens, David S; Grandi, Guido; Tettelin, Hervé

    2006-12-01

    To better understand Neisseria meningitidis genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491 and FAM18, and N. gonorrhoeae FA1090. By comparing hybridization data to genome sequences, the core N. meningitidis genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between N. lactamica and N. meningitidis. However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The N. meningitidis genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.

  18. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?

    Science.gov (United States)

    Tormo, M Angeles; Knecht, Erwin; Götz, Friedrich; Lasa, Iñigo; Penadés, José R

    2005-07-01

    The biofilm-associated protein (Bap) is a surface protein implicated in biofilm formation by Staphylococcus aureus isolated from chronic mastitis infections. The bap gene is carried in a putative composite transposon inserted in SaPIbov2, a mobile staphylococcal pathogenicity island. In this study, bap orthologue genes from several staphylococcal species, including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus, were identified, cloned and sequenced. Sequence analysis comparison of the bap gene from these species revealed a very high sequence similarity, suggesting the horizontal gene transfer of SaPIbov2 amongst them. However, sequence analyses of the flanking region revealed that the bap gene of these species was not contained in the SaPIbov2 pathogenicity island. Although they did not contain the icaADBC operon, all the coagulase-negative staphylococcal isolates harbouring bap were strong biofilm producers. Disruption of the bap gene in S. epidermidis abolished its capacity to form a biofilm, whereas heterologous complementation of a biofilm-negative strain of S. aureus with the Bap protein from S. epidermidis bestowed the capacity to form a biofilm on a polystyrene surface. Altogether, these results demonstrate that Bap orthologues from coagulase-negative staphylococci induce an alternative mechanism of biofilm formation that is independent of the PIA/PNAG exopolysaccharide.

  19. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Maria Virginia Sanchez-Puerta

    2014-12-01

    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  20. Putative cross-kingdom horizontal gene transfer in sponge (Porifera mitochondria

    Directory of Open Access Journals (Sweden)

    Ilan Micha

    2006-09-01

    Full Text Available Abstract Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria, in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera. Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida. This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  1. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    Science.gov (United States)

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  2. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event.

    Science.gov (United States)

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong

    2016-01-01

    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.

  3. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    Science.gov (United States)

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-03

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.

  4. Algal endosymbionts as vectors of horizontal gene transfer in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Huan eQiu

    2013-09-01

    Full Text Available Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup Plantae (or Archaeplastida that includes green, red, and glaucophyte algae and plants. However a variety of other phytoplankton such as the chlorophyll c-containing diatoms, dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin to secondary or tertiary (eukaryote engulfs eukaryote endosymbiosis. The hypothesis of Plantae monophyly has only recently been substantiated, however the extent and role of endosymbiotic and horizontal gene transfer (EGT and HGT in algal genome evolution still remain to be fully understood. What is becoming clear from analysis of complete genome data is that algal gene complements can no longer be considered essentially eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial genes derived from EGT and a similar number derived from the mitochondrial ancestor. For example, we now know that foreign cells such as Chlamydiae and other prokaryotes have made significant contributions to plastid functions in Plantae. Perhaps more surprising is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the unicellular red alga Porphyridium purpureum that does not relate to plastid functions. These non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but also were propagated via secondary endosymbiosis to a multitude of other phytoplankton. Here we discuss the idea that Plantae (in particular red algae are one of the major players in eukaryote genome evolution by virtue of their ability to act as sinks and sources of foreign genes through HGT and endosymbiosis, respectively. This hypothesis recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty among photosynthetic eukaryotes.

  5. Potential for horizontal gene transfer in microbial communities of the terrestrial subsurface.

    Science.gov (United States)

    Coombs, Jonna M

    2009-01-01

    The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.

  6. Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria.

    Science.gov (United States)

    Jung, C M; Crocker, F H; Eberly, J O; Indest, K J

    2011-06-01

    Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many high-explosive formulations and has been found as a contaminant of soil and groundwater. The RDX-degrading gene locus xplAB, located on pGKT2 in Gordonia sp. KTR9, is highly conserved among isolates from disparate geographical locations suggesting a horizontal gene transfer (HGT) event. It was our goal to determine whether Gordonia sp. KTR9 is capable of transferring pGKT2 and the associated RDX degradation ability to other bacteria. We demonstrate the successful conjugal transfer of pGKT2 from Gordonia sp. KTR9 to Gordonia polyisoprenivorans, Rhodococcus jostii RHA1 and Nocardia sp. TW2. Through growth and RDX degradation studies, it was demonstrated that pGKT2 conferred to transconjugants the ability to degrade and utilize RDX as a nitrogen source. The inhibitory effect of exogenous inorganic nitrogen sources on RDX degradation in transconjugant strains was found to be strain specific. Plasmid pGKT2 can be transferred by conjugation, along with the ability to degrade RDX, to related bacteria, providing evidence of at least one mechanism for the dissemination and persistence of xplAB in the environment. These results provide evidence of one mechanism for the environmental dissemination of xplAB and provide a framework for future field relevant bioremediation practices. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology. No claim to US Government works.

  7. Transient hypermutagenesis accelerates the evolution of legume endosymbionts following horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Philippe Remigi

    2014-09-01

    Full Text Available Horizontal gene transfer (HGT is an important mode of adaptation and diversification of prokaryotes and eukaryotes and a major event underlying the emergence of bacterial pathogens and mutualists. Yet it remains unclear how complex phenotypic traits such as the ability to fix nitrogen with legumes have successfully spread over large phylogenetic distances. Here we show, using experimental evolution coupled with whole genome sequencing, that co-transfer of imuABC error-prone DNA polymerase genes with key symbiotic genes accelerates the evolution of a soil bacterium into a legume symbiont. Following introduction of the symbiotic plasmid of Cupriavidus taiwanensis, the Mimosa symbiont, into pathogenic Ralstonia solanacearum we challenged transconjugants to become Mimosa symbionts through serial plant-bacteria co-cultures. We demonstrate that a mutagenesis imuABC cassette encoded on the C. taiwanensis symbiotic plasmid triggered a transient hypermutability stage in R. solanacearum transconjugants that occurred before the cells entered the plant. The generated burst in genetic diversity accelerated symbiotic adaptation of the recipient genome under plant selection pressure, presumably by improving the exploration of the fitness landscape. Finally, we show that plasmid imuABC cassettes are over-represented in rhizobial lineages harboring symbiotic plasmids. Our findings shed light on a mechanism that may have facilitated the dissemination of symbiotic competency among α- and β-proteobacteria in natura and provide evidence for the positive role of environment-induced mutagenesis in the acquisition of a complex lifestyle trait. We speculate that co-transfer of complex phenotypic traits with mutagenesis determinants might frequently enhance the ecological success of HGT.

  8. Cancer progression mediated by horizontal gene transfer in an in vivo model.

    Directory of Open Access Journals (Sweden)

    Catalina Trejo-Becerril

    Full Text Available It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy.

  9. Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model

    Science.gov (United States)

    Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso

    2012-01-01

    It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175

  10. Modeling horizontal gene transfer (HGT in the gut of the Chagas disease vector Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Durvasula Ravi V

    2011-05-01

    Full Text Available Abstract Background Paratransgenesis is an approach to reducing arthropod vector competence using genetically modified symbionts. When applied to control of Chagas disease, the symbiont bacterium Rhodococcus rhodnii, resident in the gut lumen of the triatomine vector Rhodnius prolixus (Hemiptera: Reduviidae, is transformed to export cecropin A, an insect immune peptide. Cecropin A is active against Trypanosoma cruzi, the causative agent of Chagas disease. While proof of concept has been achieved in laboratory studies, a rigorous and comprehensive risk assessment is required prior to consideration of field release. An important part of this assessment involves estimating probability of transgene horizontal transfer to environmental organisms (HGT. This article presents a two-part risk assessment methodology: a theoretical model predicting HGT in the gut of R. prolixus from the genetically transformed symbiont R. rhodnii to a closely related non-target bacterium, Gordona rubropertinctus, in the absence of selection pressure, and a series of laboratory trials designed to test the model. Results The model predicted an HGT frequency of less than 1.14 × 10-16 per 100,000 generations at the 99% certainty level. The model was iterated twenty times, with the mean of the ten highest outputs evaluated at the 99% certainty level. Laboratory trials indicated no horizontal gene transfer, supporting the conclusions of the model. Conclusions The model treats HGT as a composite event, the probability of which is determined by the joint probability of three independent events: gene transfer through the modalities of transformation, transduction, and conjugation. Genes are represented in matrices and Monte Carlo method and Markov chain analysis are used to simulate and evaluate environmental conditions. The model is intended as a risk assessment instrument and predicts HGT frequency of less than 1.14 × 10-16 per 100,000 generations. With laboratory studies that

  11. Polygalacturonase from Sitophilus oryzae: Possible horizontal transfer of a pectinase gene from fungi to weevils

    Directory of Open Access Journals (Sweden)

    Zhicheng Shen

    2003-08-01

    Full Text Available Endo-polygalacturonase, one of the group of enzymes known collectively as pectinases, is widely distributed in bacteria, plants and fungi. The enzyme has also been found in several weevil species and a few other insects, such as aphids, but not in Drosophila melanogaster, Anopheles gambiae, or Caenorhabditis elegans or, as far as is known, in any more primitive animal species. What, then, is the genetic origin of the polygalacturonases in weevils? Since some weevil species harbor symbiotic microorganisms, it has been suggested, reasonably, that the symbionts' genomes of both aphids and weevils, rather than the insects' genomes, could encode polygalacturonase. We report here the cloning of a cDNA that encodes endo-polygalacturonase in the rice weevil, Sitophilus oryzae (L., and investigations based on the cloned cDNA. Our results, which include analysis of genes in antibiotic-treated rice weevils, indicate that the enzyme is, in fact, encoded by the insect genome. Given the apparent absence of the gene in much of the rest of the animal kingdom, it is therefore likely that the rice weevil polygalacturonase gene was incorporated into the weevil's genome by horizontal transfer, possibly from a fungus.

  12. Multiple horizontal transfers of nuclear ribosomal genes between phylogenetically distinct grass lineages

    Science.gov (United States)

    Mahelka, Václav; Krak, Karol; Kopecký, David; Fehrer, Judith; Šafář, Jan; Bartoš, Jan; Hobza, Roman; Blavet, Nicolas; Blattner, Frank R.

    2017-01-01

    The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral. PMID:28137844

  13. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Christian Johannes Hendrik Von Wintersdorff

    2016-02-01

    Full Text Available The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria – and also mobile genetic elements and bacteriophages – form a reservoir of ARGs (the resistome from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT. HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance.

  14. Horizontal gene transfer among microorganisms in food: current knowledge and future perspectives.

    Science.gov (United States)

    Rossi, Franca; Rizzotti, Lucia; Felis, Giovanna E; Torriani, Sandra

    2014-09-01

    The possibility of horizontal gene transfer (HGT) among microorganisms in food matrices has been specifically targeted in a few investigations, though most current knowledge has been obtained indirectly or derived from genome sequence analyses. In this review, we have assembled reported examples of the HGT events that probably occurred in food matrices since the bacterial partners involved are commonly found in association in a food matrix or are specifically adapted to it. Exchanged genes include those encoding for substrate utilization, bacteriocin, exopolysaccharide and biogenic amine (BA) production, immunity to bacteriophages and antibiotic resistance (AR). While the acquisition of new traits involved in substrate utilization led to the natural genetic improvement of the microbial cultures for food production, the acquisition of hazardous traits, e.g., AR, virulence or BA production genes, can give rise to health concerns in otherwise innocuous species. Available evidence suggests that it would be opportune to determine what conditions favour HGT among bacteria in food ecosystems in order to naturally obtain improved starter or adjunct cultures, and also to prevent the propagation of hazardous traits.

  15. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  16. Horizontal gene transfer dynamics and distribution of fitness effects during microbial in silico evolution

    Directory of Open Access Journals (Sweden)

    Mozhayskiy Vadim

    2012-06-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is a process that facilitates the transfer of genetic material between organisms that are not directly related, and thus can affect both the rate of evolution and emergence of traits. Recent phylogenetic studies reveal HGT events are likely ubiquitous in the Tree of Life. However, our knowledge of HGT's role in evolution and biological organization is very limited, mainly due to the lack of ancestral evolutionary signatures and the difficulty to observe complex evolutionary dynamics in a laboratory setting. Here, we utilize a multi-scale microbial evolution model to comprehensively study the effect of HGT on the evolution of complex traits and organization of gene regulatory networks. Results Large-scale simulations reveal a distinct signature of the Distribution of Fitness Effect (DFE for HGT events: during evolution, while mutation fitness effects become more negative and neutral, HGT events result in a balanced effect distribution. In either case, lethal events are significantly decreased during evolution (33.0% to 3.2%, a clear indication of mutational robustness. Interestingly, evolution was accelerated when populations were exposed to correlated environments of increasing complexity, especially in the presence of HGT, a phenomenon that warrants further investigation. High HGT rates were found to be disruptive, while the average transferred fragment size was linked to functional module size in the underlying biological network. Network analysis reveals that HGT results in larger regulatory networks, but with the same sparsity level as those evolved in its absence. Observed phenotypic variability and co-existing solutions were traced to individual gain/loss of function events, while subsequent re-wiring after fragment integration was necessary for complex traits to emerge.

  17. Horizontal Gene Transfer of Pectinases from Bacteria Preceded the Diversification of Stick and Leaf Insects

    National Research Council Canada - National Science Library

    Shelomi, Matan; Danchin, Etienne G J; Heckel, David; Wipfler, Benjamin; Bradler, Sven; Zhou, Xin; Pauchet, Yannick

    2016-01-01

    ...) genes in stick insects (Phasmatodea). By mapping the distribution of pectinase genes on a Polyneoptera phylogeny, we identified the transfer of pectinase genes from known phasmatodean gut microbes into the genome of an early...

  18. No evidence of inhibition of horizontal gene transfer by CRISPR-Cas on evolutionary timescales.

    Science.gov (United States)

    Gophna, Uri; Kristensen, David M; Wolf, Yuri I; Popa, Ovidiu; Drevet, Christine; Koonin, Eugene V

    2015-09-01

    The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)-Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR-Cas maintenance and one of the causes of the patchy distribution of CRISPR-Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR-Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR-Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.

  19. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  20. Think laterally: horizontal gene transfer from symbiotic microbes may extend the phenotype of marine sessile hosts

    Directory of Open Access Journals (Sweden)

    Sandie M Degnan

    2014-11-01

    Full Text Available Since the origin of the animal kingdom, marine animals have lived in association with viruses, prokaryotes and unicellular eukaryotes, often as symbionts. This long and continuous interaction has provided ample opportunity not only for the evolution of intimate interactions such as sharing of metabolic pathways, but also for horizontal gene transfer (HGT of non-metazoan genes into metazoan genomes. The number of demonstrated cases of inter-kingdom HGT is currently small, such that it is not yet widely appreciated as a significant player in animal evolution. Sessile marine invertebrates that vertically inherit bacterial symbionts, that have no dedicated germ line, or that bud or excise pluripotent somatic cells during their life history may be particularly receptive to HGT from their symbionts. Closer scrutiny of the growing number of genomes being accrued for these animals may thus reveal HGT as a regular source of novel variation that can function to extend the host phenotype metabolically, morphologically or even behaviourally. Taxonomic identification of symbionts will help to address the intriguing question of whether past HGT events may constrain contemporary symbioses.

  1. Horizontal gene transfer confers adaptive advantages to phytopathogenic fungi: a case study of catalase-peroxidase in Fusarium verticillioides

    Science.gov (United States)

    Horizontal gene transfer (HGT), the exchange and stable integration of genetic material between different evolutionary lineages, is widely observed in fungi. We hypothesize that successful stabilization of HGT elements provides adaptive advantages (e.g., virulence). Catalase/peroxidases (KatGs) are ...

  2. Lightning-triggered electroporation and electrofusion as possible contributors to natural horizontal gene transfer.

    Science.gov (United States)

    Kotnik, Tadej

    2013-09-01

    Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.

  3. Horizontal gene transfer of a bacterial insect toxin gene into the Epichloë fungal symbionts of grasses

    Science.gov (United States)

    Ambrose, Karen V.; Koppenhöfer, Albrecht M.; Belanger, Faith C.

    2014-01-01

    Horizontal gene transfer is recognized as an important factor in genome evolution, particularly when the newly acquired gene confers a new capability to the recipient species. We identified a gene similar to the makes caterpillars floppy (mcf1 and mcf2) insect toxin genes in Photorhabdus, bacterial symbionts of nematodes, in the genomes of the Epichloë fungi, which are intercellular symbionts of grasses. Infection by Epichloë spp. often confers insect resistance to the grass hosts, largely due to the production of fungal alkaloids. A mcf-like gene is present in all of the Epichloë genome sequences currently available but in no other fungal genomes. This suggests the Epichloë genes were derived from a single lineage-specific HGT event. Molecular dating was used to estimate the time of the HGT event at between 7.2 and 58.8 million years ago. The mcf-like coding sequence from Epichloë typhina subsp. poae was cloned and expressed in Escherichia coli. E. coli cells expressing the Mcf protein were toxic to black cutworms (Agrotis ipsilon), whereas E. coli cells containing the vector only were non-toxic. These results suggest that the Epichloë mcf-like genes may be a component, in addition to the fungal alkaloids, of the insect resistance observed in Epichloë-infected grasses. PMID:24990771

  4. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs

    Directory of Open Access Journals (Sweden)

    Sergio eLópez-Madrigal

    2014-08-01

    Full Text Available Intracellular bacterial supply of essential amino acids is common among sap-feeding insects, thus complementing the scarcity of nitrogenous compounds in plant phloem. This is also the role of the two mealybug endosymbiotic systems whose genomes have been sequenced. In the nested endosymbiotic system from Planococcus citri (Pseudococcinae, Candidatus Tremblaya princeps and Candidatus Moranella endobia cooperate to synthesize essential amino acids, while in Phenacoccus avenae (Phenacoccinae this function is performed by its single endosymbiont Candidatus Tremblaya phenacola. However, little is known regarding the evolution of essential amino acid supplementation strategies in other mealybug systems. To address this knowledge gap, we screened for the presence of six selected loci involved in essential amino acid biosynthesis in five additional mealybug species. We found evidence of ongoing complementarity among endosymbionts from insects of subfamily Pseudococcinae, as well as horizontal gene transfer affecting endosymbionts from insects of family Phenacoccinae, providing a more comprehensive picture of the evolutionary history of these endosymbiotic systems. Additionally, we report two diagnostic motifs to help identify invasive mealybug species.

  5. Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria.

    Directory of Open Access Journals (Sweden)

    Thomas Brody

    Full Text Available BACKGROUND: Acquisition of virulence factors and antibiotic resistance by many clinically important bacteria can be traced to horizontal gene transfer (HGT between related or evolutionarily distant microflora. Comparative genomic analysis has become an important tool for identifying HGT DNA in emerging pathogens. We have adapted the multi-genome alignment tool EvoPrinter to facilitate discovery of HGT DNA sequences within bacterial genomes and within their mobile genetic elements. PRINCIPAL FINDINGS: EvoPrinter analysis of 13 different Staphylococcus aureus genomes revealed that one of the human isolates, the hospital epidemic methicillin-resistant MRSA252 strain, uniquely shares multiple putative HGT DNA sequences with different causative agents of bovine mastitis that are not found in the other human S. aureus isolates. MRSA252 shares over 14 different DNA sequence blocks with the bovine mastitis ET3 S. aureus strain RF122, and many of the HGT DNAs encode virulence factors. EvoPrinter analysis of the MRSA252 chromosome also uncovered virulence-factor encoding HGT events with the genome of Listeria monocytogenes and a Staphylococcus saprophyticus associated plasmid. Both bacteria are also causal agents of contagious bovine mastitis. CONCLUSIONS: EvoPrinter analysis reveals that the human MRSA252 strain uniquely shares multiple DNA sequence blocks with different causative agents of bovine mastitis, suggesting that HGT events may be occurring between these pathogens. These findings have important implications with regard to animal husbandry practices that inadvertently enhance the contact of human and livestock bacterial pathogens.

  6. Horizontal Gene Transfer Can Rescue Prokaryotes from Muller’s Ratchet: Benefit of DNA from Dead Cells and Population Subdivision

    OpenAIRE

    Takeuchi, Nobuto; Kaneko, Kunihiko; Koonin, Eugene V

    2013-01-01

    Horizontal gene transfer (HGT) is a major factor in the evolution of prokaryotes. An intriguing question is whether HGT is maintained during evolution of prokaryotes owing to its adaptive value or is a byproduct of selection driven by other factors such as consumption of extracellular DNA (eDNA) as a nutrient. One hypothesis posits that HGT can restore genes inactivated by mutations and thereby prevent stochastic, irreversible deterioration of genomes in finite populations known as Muller’s r...

  7. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    Science.gov (United States)

    Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.

    2017-01-01

    ABSTRACT Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. PMID:28096488

  8. Novel “Superspreader” Bacteriophages Promote Horizontal Gene Transfer by Transformation

    Directory of Open Access Journals (Sweden)

    Eric C. Keen

    2017-01-01

    Full Text Available Bacteriophages infect an estimated 1023 to 1025 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance. However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub “superspreaders,” releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications.

  9. Evidence of recent interspecies horizontal gene transfer regarding nucleopolyhedrovirus infection of Spodoptera frugiperda.

    Science.gov (United States)

    Barrera, Gloria Patricia; Belaich, Mariano Nicolás; Patarroyo, Manuel Alfonso; Villamizar, Laura Fernanda; Ghiringhelli, Pablo Daniel

    2015-11-25

    Baculoviruses are insect-associated viruses carrying large, circular double-stranded-DNA genomes with significant biotechnological applications such as biological pest control, recombinant protein production, gene delivery in mammals and as a model of DNA genome evolution. These pathogens infect insects from the orders Lepidoptera, Hymenoptera and Diptera, and have high species diversity which is expressed in their diverse biological properties including morphology, virulence or pathogenicity. Spodoptera frugiperda (Lepidoptera: Noctuidae), the fall armyworm, represents a significant pest for agriculture in America; it is a host for baculoviruses such as the Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) (Colombia strain, genotype A) having been classified as a Group II alphabaculovirus making it a very attractive target for bioinsecticidal use. Genome analysis by pyrosequencing revealed that SfMNPV ColA has 145 ORFs, 2 of which were not present in the other sequenced genotypes of the virus (SfMNPV-NicB, SfMNPV-NicG, SfMNPV-19 and SfMNPV-3AP2). An in-depth bioinformatics study showed that ORF023 and ORF024 were acquired by a recent homologous recombination process between Spodoptera frugiperda and Spodoptera litura (the Oriental leafworm moth) nucleopolyhedroviruses. Auxiliary genes are numerous in the affected locus which has a homologous region (hr3), a repetitive sequence associated with genome replication which became lost in SfColA along with 1 ORF. Besides, the mRNAs associated with two acquired genes appeared in the virus' life-cycle during the larval stage. Predictive studies concerning the theoretical proteins identified that ORF023 protein would be a phosphatase involved in DNA repair and that the ORF024 protein would be a membrane polypeptide associated with cell transport. The SfColA genome was thus revealed to be a natural recombinant virus showing evidence of recent horizontal gene transfer between different baculovirus species occurring

  10. Variation in the Genetic Repertoire of Viruses Infecting Micromonas pusilla Reflects Horizontal Gene Transfer and Links to Their Environmental Distribution

    Science.gov (United States)

    Finke, Jan F.; Winget, Danielle M.; Chan, Amy M.; Suttle, Curtis A.

    2017-01-01

    Prasinophytes, a group of eukaryotic phytoplankton, has a global distribution and is infected by large double-stranded DNA viruses (prasinoviruses) in the family Phycodnaviridae. This study examines the genetic repertoire, phylogeny, and environmental distribution of phycodnaviruses infecting Micromonas pusilla, other prasinophytes and chlorophytes. Based on comparisons among the genomes of viruses infecting M. pusilla and other phycodnaviruses, as well as the genome from a host isolate of M. pusilla, viruses infecting M. pusilla (MpVs) share a limited set of core genes, but vary strongly in their flexible pan-genome that includes numerous metabolic genes, such as those associated with amino acid synthesis and sugar manipulation. Surprisingly, few of these presumably host-derived genes are shared with M. pusilla, but rather have their closest non-viral homologue in bacteria and other eukaryotes, indicating horizontal gene transfer. A comparative analysis of full-length DNA polymerase (DNApol) genes from prasinoviruses with their overall gene content, demonstrated that the phylogeny of DNApol gene fragments reflects the gene content of the viruses; hence, environmental DNApol gene sequences from prasinoviruses can be used to infer their overall genetic repertoire. Thus, the distribution of virus ecotypes across environmental samples based on DNApol sequences implies substantial underlying differences in gene content that reflect local environmental conditions. Moreover, the high diversity observed in the genetic repertoire of prasinoviruses has been driven by horizontal gene transfer throughout their evolutionary history, resulting in a broad suite of functional capabilities and a high diversity of prasinovirus ecotypes. PMID:28534829

  11. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep.

    Science.gov (United States)

    Kelley, Scott T; Cassirer, E Frances; Weiser, Glen C; Safaee, Shirin

    2007-01-01

    Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated

  12. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Huping Xue

    Full Text Available BACKGROUND: Horizontal gene transfer (HGT is recognized as one of the major forces for bacterial genome evolution. Many clinically important bacteria may acquire virulence factors and antibiotic resistance through HGT. The comparative genomic analysis has become an important tool for identifying HGT in emerging pathogens. In this study, the Serine-Aspartate Repeat (Sdr family has been compared among different sources of Staphylococcus aureus (S. aureus to discover sequence diversities within their genomes. METHODOLOGY/PRINCIPAL FINDINGS: Four sdr genes were analyzed for 21 different S. aureus strains and 218 mastitis-associated S. aureus isolates from Canada. Comparative genomic analyses revealed that S. aureus strains from bovine mastitis (RF122 and mastitis isolates in this study, ovine mastitis (ED133, pig (ST398, chicken (ED98, and human methicillin-resistant S. aureus (MRSA (TCH130, MRSA252, Mu3, Mu50, N315, 04-02981, JH1 and JH9 were highly associated with one another, presumably due to HGT. In addition, several types of insertion and deletion were found in sdr genes of many isolates. A new insertion sequence was found in mastitis isolates, which was presumably responsible for the HGT of sdrC gene among different strains. Moreover, the sdr genes could be used to type S. aureus. Regional difference of sdr genes distribution was also indicated among the tested S. aureus isolates. Finally, certain associations were found between sdr genes and subclinical or clinical mastitis isolates. CONCLUSIONS: Certain sdr gene sequences were shared in S. aureus strains and isolates from different species presumably due to HGT. Our results also suggest that the distributional assay of virulence factors should detect the full sequences or full functional regions of these factors. The traditional assay using short conserved regions may not be accurate or credible. These findings have important implications with regard to animal husbandry practices that may

  13. Contribution of Multiple Inter-kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-killing Chytrid, Batrachochytrium dendrobatidis

    Directory of Open Access Journals (Sweden)

    Baofa Sun

    2016-08-01

    Full Text Available Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd. Although horizontal gene transfer (HGT facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians.

  14. Contribution of Multiple Inter-Kingdom Horizontal Gene Transfers to Evolution and Adaptation of Amphibian-Killing Chytrid, Batrachochytrium dendrobatidis

    Science.gov (United States)

    Sun, Baofa; Li, Tong; Xiao, Jinhua; Liu, Li; Zhang, Peng; Murphy, Robert W.; He, Shunmin; Huang, Dawei

    2016-01-01

    Amphibian populations are experiencing catastrophic declines driven by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Although horizontal gene transfer (HGT) facilitates the evolution and adaptation in many fungi by conferring novel function genes to the recipient fungi, inter-kingdom HGT in Bd remains largely unexplored. In this study, our investigation detects 19 bacterial genes transferred to Bd, including metallo-beta-lactamase and arsenate reductase that play important roles in the resistance to antibiotics and arsenates. Moreover, three probable HGT gene families in Bd are from plants and one gene family coding the ankyrin repeat-containing protein appears to come from oomycetes. The observed multi-copy gene families associated with HGT are probably due to the independent transfer events or gene duplications. Five HGT genes with extracellular locations may relate to infection, and some other genes may participate in a variety of metabolic pathways, and in doing so add important metabolic traits to the recipient. The evolutionary analysis indicates that all the transferred genes evolved under purifying selection, suggesting that their functions in Bd are similar to those of the donors. Collectively, our results indicate that HGT from diverse donors may be an important evolutionary driver of Bd, and improve its adaptations for infecting and colonizing host amphibians. PMID:27630622

  15. Bayesian analysis of congruence of core genes in Prochlorococcus and Synechococcus and implications on horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Nicholas J Matzke

    Full Text Available It is often suggested that horizontal gene transfer is so ubiquitous in microbes that the concept of a phylogenetic tree representing the pattern of vertical inheritance is oversimplified or even positively misleading. "Universal proteins" have been used to infer the organismal phylogeny, but have been criticized as being only the "tree of one percent." Currently, few options exist for those wishing to rigorously assess how well a universal protein phylogeny, based on a relative handful of well-conserved genes, represents the phylogenetic histories of hundreds of genes. Here, we address this problem by proposing a visualization method and a statistical test within a Bayesian framework. We use the genomes of marine cyanobacteria, a group thought to exhibit substantial amounts of HGT, as a test case. We take 379 orthologous gene families from 28 cyanobacteria genomes and estimate the Bayesian posterior distributions of trees - a "treecloud" - for each, as well as for a concatenated dataset based on putative "universal proteins." We then calculate the average distance between trees within and between all treeclouds on various metrics and visualize this high-dimensional space with non-metric multidimensional scaling (NMMDS. We show that the tree space is strongly clustered and that the universal protein treecloud is statistically significantly closer to the center of this tree space than any individual gene treecloud. We apply several commonly-used tests for incongruence/HGT and show that they agree HGT is rare in this dataset, but make different choices about which genes were subject to HGT. Our results show that the question of the representativeness of the "tree of one percent" is a quantitative empirical question, and that the phylogenetic central tendency is a meaningful observation even if many individual genes disagree due to the various sources of incongruence.

  16. Horizontal transfers and gene losses in the phospholipid pathway of bartonella reveal clues about early ecological niches.

    Science.gov (United States)

    Zhu, Qiyun; Kosoy, Michael; Olival, Kevin J; Dittmar, Katharina

    2014-08-08

    Bartonellae are mammalian pathogens vectored by blood-feeding arthropods. Although of increasing medical importance, little is known about their ecological past, and host associations are underexplored. Previous studies suggest an influence of horizontal gene transfers in ecological niche colonization by acquisition of host pathogenicity genes. We here expand these analyses to metabolic pathways of 28 Bartonella genomes, and experimentally explore the distribution of bartonellae in 21 species of blood-feeding arthropods. Across genomes, repeated gene losses and horizontal gains in the phospholipid pathway were found. The evolutionary timing of these patterns suggests functional consequences likely leading to an early intracellular lifestyle for stem bartonellae. Comparative phylogenomic analyses discover three independent lineage-specific reacquisitions of a core metabolic gene-NAD(P)H-dependent glycerol-3-phosphate dehydrogenase (gpsA)-from Gammaproteobacteria and Epsilonproteobacteria. Transferred genes are significantly closely related to invertebrate Arsenophonus-, and Serratia-like endosymbionts, and mammalian Helicobacter-like pathogens, supporting a cellular association with arthropods and mammals at the base of extant Bartonella spp. Our studies suggest that the horizontal reacquisitions had a key impact on bartonellae lineage specific ecological and functional evolution.

  17. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  18. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    Science.gov (United States)

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  19. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    Directory of Open Access Journals (Sweden)

    Takenaka Akio

    2006-02-01

    Full Text Available Abstract Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants was studied using ciliate Expressed Sequence Tags (ESTs. More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium. Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75% of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.

  20. Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2012-12-01

    Full Text Available Abstract Background Collections of Clusters of Orthologous Genes (COGs provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs. Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea. Results The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer. Conclusions The updated collection

  1. Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†

    OpenAIRE

    2006-01-01

    Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These ...

  2. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota.

    Science.gov (United States)

    Deschamps, Philippe; Zivanovic, Yvan; Moreira, David; Rodriguez-Valera, Francisco; López-García, Purificación

    2014-06-12

    Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success.

  3. Horizontal gene transfer of epigenetic machinery and evolution of parasitism in the malaria parasite Plasmodium falciparum and other apicomplexans.

    Science.gov (United States)

    Kishore, Sandeep P; Stiller, John W; Deitsch, Kirk W

    2013-02-11

    The acquisition of complex transcriptional regulatory abilities and epigenetic machinery facilitated the transition of the ancestor of apicomplexans from a free-living organism to an obligate parasite. The ability to control sophisticated gene expression patterns enabled these ancient organisms to evolve several differentiated forms, invade multiple hosts and evade host immunity. How these abilities were acquired remains an outstanding question in protistan biology. In this work, we study SET domain bearing genes that are implicated in mediating immune evasion, invasion and cytoadhesion pathways of modern apicomplexans, including malaria parasites. We provide the first conclusive evidence of a horizontal gene transfer of a Histone H4 Lysine 20 (H4K20) modifier, Set8, from an animal host to the ancestor of apicomplexans. Set8 is known to contribute to the coordinated expression of genes involved in immune evasion in modern apicomplexans. We also show the likely transfer of a H3K36 methyltransferase (Ashr3 from plants), possibly derived from algal endosymbionts. These transfers appear to date to the transition from free-living organisms to parasitism and coincide with the proposed horizontal acquisition of cytoadhesion domains, the O-glycosyltransferase that modifies these domains, and the primary family of transcription factors found in apicomplexan parasites. Notably, phylogenetic support for these conclusions is robust and the genes clearly are dissimilar to SET sequences found in the closely related parasite Perkinsus marinus, and in ciliates, the nearest free-living organisms with complete genome sequences available. Animal and plant sources of epigenetic machinery provide new insights into the evolution of parasitism in apicomplexans. Along with the horizontal transfer of cytoadhesive domains, O-linked glycosylation and key transcription factors, the acquisition of SET domain methyltransferases marks a key transitional event in the evolution to parasitism in

  4. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer.

    Science.gov (United States)

    Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo

    2014-08-01

    Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria.

  5. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Michael J Bryan

    Full Text Available BACKGROUND: S-PM2 is a phage capable of infecting strains of unicellular cyanobacteria belonging to the genus Synechococcus. S-PM2, like other myoviruses infecting marine cyanobacteria, encodes a number of bacterial-like genes. Amongst these genes is one encoding a MazG homologue that is hypothesized to be involved in the adaption of the infected host for production of progeny phage. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on establishing the occurrence of mazG homologues in other cyanophages isolated from different oceanic locations. Degenerate PCR primers were designed using the mazG gene of S-PM2. The mazG gene was found to be widely distributed and highly conserved among Synechococcus myoviruses and podoviruses from diverse oceanic provinces. CONCLUSIONS/SIGNIFICANCE: This study provides evidence of a globally connected cyanophage gene pool, the cyanophage mazG gene having a small effective population size indicative of rapid lateral gene transfer despite being present in a substantial fraction of cyanophage. The Prochlorococcus and Synechococcus phage mazG genes do not cluster with the host mazG gene, suggesting that their primary hosts are not the source of the mazG gene.

  6. Phylogeny of chitinases and its implications for estimating horizontal gene transfer from chitinase-transgenic silver birch (Betula pendula).

    Science.gov (United States)

    Lohtander, Katileena; Pasonen, Hanna-Leena; Aalto, Markku K; Palva, Tapio; Pappinen, Ari; Rikkinen, Jouko

    2008-01-01

    Chitinases are hydrolytic enzymes that have been employed in biotechnology in attempts to increase plants' resistance against fungal pathogens. Genetically modified plants have given rise to concerns of the spreading of transgenes into the environment through vertical or horizontal gene transfer (HGT). In this study, chitinase-like sequences from silver birch (Betula pendula) EST-libraries were identified and their phylogenetic relationships to other chitinases were studied. Phylogenetic analyses were used to estimate the frequency of historical gene transfer events of chitinase genes between plants and other organisms, and the usefulness of phylogenetic analyses as a source of information for the risk assessment of transgenic silver birch carrying a sugar beet chitinase IV gene was evaluated. Thirteen partial chitinase-like sequences, with an approximate length of 600 bp, were obtained from the EST-libraries. The sequences belonged to five chitinase classes. Some bacterial chitinases from Streptomyces and Burkholderia, as well as a chitinase from an oomycete, Phytophthora infestans, grouped together with the class IV chitinases of plants, supporting the hypothesis that some class IV chitinases in bacteria have evolved from eukaryotic chitinases via horizontal gene transfer. According to our analyses, HGT of a chitinase IV gene from eukaryotes to bacteria has presumably occurred only once. Based on this, the likelihood for the HGT of chitinase IV gene from transgenic birch to other organisms is extremely low. However, as risk is a function of both the likelihood and consequences of an event, the effects of rare HGT event(s) will finally determine the level of the risk.

  7. Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis

    Directory of Open Access Journals (Sweden)

    Butler Geraldine

    2008-06-01

    Full Text Available Abstract Background To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. Results Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR. Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. Conclusion Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.

  8. Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ming eLiu

    2013-10-01

    Full Text Available Vibrio parahaemolyticus is a clinically important foodborne pathogen that causes acute gastroenteritis worldwide. It has been shown that horizontal gene transfer contributes significantly to virulence development of V. parahaemolyticus. In this study, we identified a novel znuA homologue (vpa1307 that belongs to a novel subfamily of ZnuAm, a bacterial zinc transporter. The vpa1307 gene is located upstream of the V. parahaemolyticus pathogenicity island (Vp-PAIs in both tdh-positive and trh-positive V. parahaemolyticus strains. Phylogenetic analysis revealed the exogenous origin of vpa1307 with 40% of V. parahaemolyticus clinical isolates possessing this gene. The expression of vpa1307 gene in V. parahaemolyticus clinical strain VP3218 is induced under zinc limitation condition. Gene deletion and complementation assays confirmed that vpa1307 contributes to the growth of VP3218 under zinc depletion condition and that conserved histidine residues of Vpa1307 contribute to its activity. Importantly, vpa1307 contributes to the cytotoxicity of VP3218 in HeLa cells and a certain degree of virulence in murine model. These results suggest that the horizontally acquired znuA subfamily gene, vpa1307, contributes to the fitness and virulence of Vibrio species.

  9. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile “Ferrovum”

    Science.gov (United States)

    Ullrich, Sophie R.; González, Carolina; Poehlein, Anja; Tischler, Judith S.; Daniel, Rolf; Schlömann, Michael; Holmes, David S.; Mühling, Martin

    2016-01-01

    Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features

  10. A sensitive, support-vector-machine method for the detection of horizontal gene transfers in viral, archaeal and bacterial genomes.

    Science.gov (United States)

    Tsirigos, Aristotelis; Rigoutsos, Isidore

    2005-01-01

    In earlier work, we introduced and discussed a generalized computational framework for identifying horizontal transfers. This framework relied on a gene's nucleotide composition, obviated the need for knowledge of codon boundaries and database searches, and was shown to perform very well across a wide range of archaeal and bacterial genomes when compared with previously published approaches, such as Codon Adaptation Index and C + G content. Nonetheless, two considerations remained outstanding: we wanted to further increase the sensitivity of detecting horizontal transfers and also to be able to apply the method to increasingly smaller genomes. In the discussion that follows, we present such a method, Wn-SVM, and show that it exhibits a very significant improvement in sensitivity compared with earlier approaches. Wn-SVM uses a one-class support-vector machine and can learn using rather small training sets. This property makes Wn-SVM particularly suitable for studying small-size genomes, similar to those of viruses, as well as the typically larger archaeal and bacterial genomes. We show experimentally that the new method results in a superior performance across a wide range of organisms and that it improves even upon our own earlier method by an average of 10% across all examined genomes. As a small-genome case study, we analyze the genome of the human cytomegalovirus and demonstrate that Wn-SVM correctly identifies regions that are known to be conserved and prototypical of all beta-herpesvirinae, regions that are known to have been acquired horizontally from the human host and, finally, regions that had not up to now been suspected to be horizontally transferred. Atypical region predictions for many eukaryotic viruses, including the alpha-, beta- and gamma-herpesvirinae, and 123 archaeal and bacterial genomes, have been made available online at http://cbcsrv.watson.ibm.com/HGT_SVM/.

  11. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2016-07-01

    Full Text Available The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of ‘lateral genomics’ to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly universal genes, translates into the notion of a statistical tree of life (STOL, which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies.

  12. Widespread Inter- and Intra-Domain Horizontal Gene Transfer of d-Amino Acid Metabolism Enzymes in Eukaryotes

    Science.gov (United States)

    Naranjo-Ortíz, Miguel A.; Brock, Matthias; Brunke, Sascha; Hube, Bernhard; Marcet-Houben, Marina; Gabaldón, Toni

    2016-01-01

    Analysis of the growing number of available fully-sequenced genomes has shown that Horizontal Gene Transfer (HGT) in eukaryotes is more common than previously thought. It has been proposed that genes with certain functions may be more prone to HGT than others, but we still have a very poor understanding of the selective forces driving eukaryotic HGT. Recent work uncovered that d-amino acid racemases have been commonly transferred from bacteria to fungi, but their role in the receiving organisms is currently unknown. Here, we set out to assess whether d-amino acid racemases are commonly transferred to and between eukaryotic groups. For this we performed a global survey that used a novel automated phylogeny-based HGT-detection algorithm (Abaccus). Our results revealed that at least 7.0% of the total eukaryotic racemase repertoire is the result of inter- or intra-domain HGT. These transfers are significantly enriched in plant-associated fungi. For these, we hypothesize a possible role for the acquired racemases allowing to exploit minoritary nitrogen sources in plant biomass, a nitrogen-poor environment. Finally, we performed experiments on a transferred aspartate-glutamate racemase in the fungal human pathogen Candida glabrata, which however revealed no obvious biological role. PMID:28066338

  13. The horizontal transfer of antibiotic resistance genes is enhanced by ionic liquid with different structure of varying alkyl chain length

    Directory of Open Access Journals (Sweden)

    Qing eWang

    2015-08-01

    Full Text Available Antibiotic resistance genes (ARGs have become a global health concern. In our previous study, an ionic liquid (IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6] had been proven to facilitate the dissemination of ARGs in the environment. However, enhanced alkyl group chain length or the substitution of alkyl groups with the cation ring corresponded with increased antimicrobial effects. In this study, we investigated how different structures of ILs with 4, 6 and 8 C atoms in the longer alkyl chain on the imidazolium cations facilitated the dissemination of ARGs. The promotion of plasmid RP4 transfer frequency decreased with [CnMIM][BF4] increasing the alkyl chain length from 4 carbon atoms to 8 carbon atoms on the imidazolium cations, which is observed with [BMIM][BF4] (n=4, 5.9 fold> HMIM][BF4] (n=6, 2.2 fold> [OMIM][BF4] (n=8, 1.7 fold. This illustrates that [CnMIM][BF4] with increasing the alkyl chain length exert decreasing ability in facilitating plasmid RP4 horizontal transfer, which is possibly related to IL-structure dependent toxicity. The IL-structure dependent plasmid RP4 transfer frequency was attributable to bacterial cell membrane permeability weaken with increasing alkyl chain length of [CnMIM][PF4], which was evidenced by flow cytometry (FCM. In freshwater microcosm, [CnMIm][BF4] promoted the relative abundance of the sulI and intI genes for 4.6 folds, aphA and traF for 5.2 folds higher than the untreated groups, promoting the propagation of ARGs in the aquatic environment. This is the first report that ILs with different structure of varying alkyl chain length facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment, and thus add the adverse effects of the environmental risk of ILs.

  14. Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota

    Science.gov (United States)

    Loy, Alexander; Pfann, Carina; Steinberger, Michaela; Hanson, Buck; Herp, Simone; Brugiroux, Sandrine; Gomes Neto, João Carlos; Boekschoten, Mark V.; Schwab, Clarissa; Urich, Tim; Ramer-Tait, Amanda E.; Rattei, Thomas; Stecher, Bärbel

    2017-01-01

    ABSTRACT Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our

  15. Genome analysis and gene nblA identification of Microcystis aeruginosa myovirus (MaMV-DC) reveal the evidence for horizontal gene transfer events between cyanomyovirus and host.

    Science.gov (United States)

    Ou, Tong; Gao, Xiao-Chan; Li, San-Hua; Zhang, Qi-Ya

    2015-12-01

    The genome sequence, genetic characterization and nblA gene function of Microcystis aeruginosa myovirus isolated from Lake Dianchi in China (MaMV-DC) have been analysed. The genome DNA is 169 223 bp long, with 170 predicted protein-coding genes (001L–170L) and a tRNA gene. About one-sixth of these genes have homologues in the host cyanobacteria M. aeruginosa. The genome carries a gene homologous to host nblA, which encodes a protein involved in the degradation of cyanobacterial phycobilisome. Its expression during MaMV-DC infection was confirmed by reverse transcriptase PCR and Western blot detection and abundant expression was companied by the significant decline of phycocyanin content and massive release of progeny MaMV-DC. In addition, expressing MaMV-DC nblA reduced the phycocyanin peak and the phycocyanin to chlorophyll ratio in model cyanobacteria. These results confirm that horizontal gene transfer events have occurred between cyanobacterial host and cyanomyovirus and suggest that MaMV-DC carrying host-derived genes (such as 005L, that codes for NblA) is responsible for more efficient expression of cyanophage genes and release of progeny cyanophage. This study provides novel insight into the horizontal gene transfer in cyanophage and the interactions between cyanophage and their host.

  16. Field Supervisory Test of DREB-Transgenic Populus: Salt Tolerance, Long-Term Gene Stability and Horizontal Gene Transfer

    Directory of Open Access Journals (Sweden)

    Nan Lu

    2014-05-01

    Full Text Available Improving saline resistance may be useful for reducing environmental susceptibility and improving yields in poplar plantations. However, the instability of genetically engineered traits and gene transfer reduce their usefulness and commercial value. To investigate whether the foreign gene is still present in the genome of receptor plants after seven years (i.e., long-term foreign gene stability and gene transfer, we randomly analyzed ten field-grown transgenic hybrid Populus ((Populus tomentosa × Populus bolleana × P. tomentosa carrying the DREB1 gene from Atriplex hortensis. The results of PCR and tissue culture experiments showed that AhDREB1 was present in the transgenic trees and was still expressed. However, the transcriptional expression level had decreased compared with that four years earlier. The PCR results also indicated no foreign gene in the genomic DNA of microorganisms in the soil near the transgenic poplars, indicating that no significant gene transfer had occurred from the transgenic poplars to the microorganisms at seven years after planting.

  17. Fluoroquinolone resistance in atypical pneumococci and oral streptococci: evidence of horizontal gene transfer of fluoroquinolone resistance determinants from Streptococcus pneumoniae.

    Science.gov (United States)

    Ip, Margaret; Chau, Shirley S L; Chi, Fang; Tang, Julian; Chan, Paul K

    2007-08-01

    Atypical strains, presumed to be pneumococcus, with ciprofloxacin MICs of > or =4.0 microg/ml and unique sequence variations within the quinolone resistance-determining regions (QRDRs) of the gyrase and topoisomerase genes in comparison with the Streptococcus pneumoniae R6 strain, were examined. These strains were reidentified using phenotypic methods, including detection of optochin susceptibility, bile solubility, and agglutination by serotype-specific antisera, and genotypic methods, including detection of pneumolysin and autolysin genes by PCR, 16S rRNA sequencing, and multilocus sequence typing (MLST). The analysis based on concatenated sequences of the six MLST loci distinguished the "atypical" strains from pneumococci, and these strains clustered closely with S. mitis. However, all these strains and five of nine strains from the viridans streptococcal group possessed one to three gyrA, gyrB, parC, and parE genes whose QRDR sequences clustered with those of S. pneumoniae, providing evidence of horizontal transfer of the QRDRs of the gyrase and topoisomerase genes from pneumococci into viridans streptococci. These genes also conferred fluoroquinolone resistance to viridans streptococci. In addition, the fluoroquinolone resistance determinants of 32 well-characterized Streptococcus mitis and Streptococcus oralis strains from bacteremic patients were also compared. These strains have unique amino acid substitutions in GyrA and ParC that were distinguishable from those in fluoroquinolone-resistant pneumococci and the "atypical" isolates. Both recombinational events and de novo mutations play an important role in the development of fluoroquinolone resistance.

  18. Natural transformation as a mechanism of horizontal gene transfer among environmental Aeromonas species.

    Science.gov (United States)

    Huddleston, Jennifer R; Brokaw, Joshua M; Zak, John C; Jeter, Randall M

    2013-06-01

    Aeromonas species are common inhabitants of aquatic environments and relevant as human pathogens. Their potential as pathogens may be related in part to lateral transfer of genes associated with toxin production, biofilm formation, antibiotic resistance, and other virulence determinants. Natural transformation has not been characterized in aeromonads. DNA from wild-type, prototrophic strains that had been isolated from environmental sources was used as donor DNA in transformation assays with auxotrophs as the recipients. Competence was induced in 20% nutrient broth during the stationary phase of growth. Optimal transformation assay conditions for one chosen isolate were in Tris buffer with magnesium or calcium, pH 5-8, and a saturating concentration of 0.5 μg of DNA per assay (3.3 ng of DNA μl⁻¹) at 30°C. Sodium was also required and could not be replaced with ammonium, potassium, or lithium. The maximal transformation frequency observed was 1.95 × 10⁻³ transformants (recipient cell)⁻¹. A survey of environmental Aeromonas auxotrophic recipients (n=37), assayed with donor DNA from other wild-type environmental aeromonads under optimal assay conditions, demonstrated that 73% were able to act as recipients, and 100% were able to act as donors to at least some other aeromonads. Three different transformation groups were identified based on each isolates' ability to transform other strains with its DNA. The transformation groups roughly corresponded to phylogenetic groups. These results demonstrate that natural transformation is a general property of Aeromonas environmental isolates with implications for the genetic structures of coincident Aeromonas populations.

  19. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    Directory of Open Access Journals (Sweden)

    Vinicio Danilo Armijos Jaramillo

    Full Text Available The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  20. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum.

    Science.gov (United States)

    Armijos Jaramillo, Vinicio Danilo; Vargas, Walter Alberto; Sukno, Serenella Ana; Thon, Michael R

    2013-01-01

    The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150-155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.

  1. A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land

    Directory of Open Access Journals (Sweden)

    Gribaldo Simonetta

    2009-02-01

    Full Text Available Abstract Background The pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified. Results We have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL, which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments. Conclusion Our results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV. Reviewers This article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.

  2. Phase Diagrams of Quasispecies Theory with Recombination and Horizontal Gene Transfer

    Science.gov (United States)

    Park, J.-M.; Deem, M. W.

    2007-02-01

    We consider how transfer of genetic information between individuals influences the phase diagram and mean fitness of both the Eigen and the parallel, or Crow-Kimura, models of evolution. In the absence of genetic transfer, these physical models of evolution consider the replication and point mutation of the genomes of independent individuals in a large population. A phase transition occurs, such that below a critical mutation rate an identifiable quasispecies forms. We show how transfer of genetic information changes the phase diagram and mean fitness and introduces metastability in quasispecies theory, via an analytic field theoretic mapping.

  3. Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers.

    Directory of Open Access Journals (Sweden)

    Jan Janouškovec

    Full Text Available Red algae have the most gene-rich plastid genomes known, but despite their evolutionary importance these genomes remain poorly sampled. Here we characterize three complete and one partial plastid genome from a diverse range of florideophytes. By unifying annotations across all available red algal plastid genomes we show they all share a highly compact and slowly-evolving architecture and uniquely rich gene complements. Both chromosome structure and gene content have changed very little during red algal diversification, and suggest that plastid-to nucleus gene transfers have been rare. Despite their ancient character, however, the red algal plastids also contain several unprecedented features, including a group II intron in a tRNA-Met gene that encodes the first example of red algal plastid intron maturase - a feature uniquely shared among florideophytes. We also identify a rare case of a horizontally-acquired proteobacterial operon, and propose this operon may have been recruited for plastid function and potentially replaced a nucleus-encoded plastid-targeted paralogue. Plastid genome phylogenies yield a fully resolved tree and suggest that plastid DNA is a useful tool for resolving red algal relationships. Lastly, we estimate the evolutionary rates among more than 200 plastid genes, and assess their usefulness for species and subspecies taxonomy by comparison to well-established barcoding markers such as cox1 and rbcL. Overall, these data demonstrates that red algal plastid genomes are easily obtainable using high-throughput sequencing of total genomic DNA, interesting from evolutionary perspectives, and promising in resolving red algal relationships at evolutionarily-deep and species/subspecies levels.

  4. GTOs and HGT: genes are older than expected and can be installed by horizontal gene transfer, especially with help from viruses

    Science.gov (United States)

    Klyce, Brig

    2012-10-01

    The origin of life on Earth took a puzzlingly short time. Panspermia is appealing because it means that the origin of life need not be confined to a few million years on one planet. Similar puzzles arise in the evolution of higher life forms. Punctuated equilibrium, for example, seems to violate the darwinian account of gradual evolution by trial-and-error, a few DNA nucleotides at a time. The strong version of panspermia alleviates this puzzle as well. If all of life comes ultimately from space, genes may appear to be older than necessary, evolution by the acquisition of whole genes or suites of genes, by horizontal gene transfer (HGT), becomes much more important, and punctuated equilibrium is not surprising. Does evidence support this supposition? How common are old genes? How important is HGT versus the gradual composition of genetic programs? We will look at these questions.

  5. Horizontal gene transfer of chromosomal Type II toxin-antitoxin systems of Escherichia coli.

    Science.gov (United States)

    Ramisetty, Bhaskar Chandra Mohan; Santhosh, Ramachandran Sarojini

    2016-02-01

    Type II toxin-antitoxin systems (TAs) are small autoregulated bicistronic operons that encode a toxin protein with the potential to inhibit metabolic processes and an antitoxin protein to neutralize the toxin. Most of the bacterial genomes encode multiple TAs. However, the diversity and accumulation of TAs on bacterial genomes and its physiological implications are highly debated. Here we provide evidence that Escherichia coli chromosomal TAs (encoding RNase toxins) are 'acquired' DNA likely originated from heterologous DNA and are the smallest known autoregulated operons with the potential for horizontal propagation. Sequence analyses revealed that integration of TAs into the bacterial genome is unique and contributes to variations in the coding and/or regulatory regions of flanking host genome sequences. Plasmids and genomes encoding identical TAs of natural isolates are mutually exclusive. Chromosomal TAs might play significant roles in the evolution and ecology of bacteria by contributing to host genome variation and by moderation of plasmid maintenance.

  6. Characterizing proteases in an Antarctic Janthinobacterium sp. isolate:Evidence of a protease horizontal gene transfer event

    Institute of Scientific and Technical Information of China (English)

    Cecilia Martinez-Rosales; Juan Jos Marizcurrena; Andrs Iriarte; Natalia Fullana; Hctor Musto; Susana Castro-Sowinski

    2015-01-01

    We report the isolation of a cold-adapted bacterium belonging to the genus Janthinobacterium (named AU11), from a water sample collected in Lake Uruguay (King George Island, South Shetlands). AU11 (growth between 4°C and 30°C) produces a single cold-active extracellular protease (ExPAU11), differentially expressed at low temperature. ExPAU11 was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) as an alkaline metallo-protease (70% coverage with an extracellular protease of Janthinobacterium sp. PI12), and by protease-inhibitor screening identified as a serine-protease. To the best of our knowledge this is the first experimental evidence of a cold-active extracellular protease produced by Janthinobacterium. Furthermore, we identified a serine-protease gene (named JSP8A) showing 60% identity (98%query coverage) to subtilisin peptidases belonging to the S8 family (S8A subfamily) of many cyanobacteria. A phylogenetic analysis of the JSP8A protease, along with related bacterial protein sequences, confirms that JSP8A clusters with S8A subtilisin sequences from different cyanobacteria, and is clearly separated from S8A bacterial sequences of other phyla (including its own). An analysis of the genomic organization around JSP8A suggests that this protease gene was acquired in an event that duplicated a racemase gene involved in transforming L- to D-amino acids. Our results suggest that AU11 probably acquired this subtilisin-like protease gene by horizontal gene transfer (HGT) from a cyanobacterium. We discuss the relevance of a bacterial protease-HGT in the Antarctic environment in light of this hypothesis.

  7. The Histidine Decarboxylase Gene Cluster of Lactobacillus parabuchneri Was Gained by Horizontal Gene Transfer and Is Mobile within the Species

    Science.gov (United States)

    Wüthrich, Daniel; Berthoud, Hélène; Wechsler, Daniel; Eugster, Elisabeth; Irmler, Stefan; Bruggmann, Rémy

    2017-01-01

    Histamine in food can cause intolerance reactions in consumers. Lactobacillus parabuchneri (L. parabuchneri) is one of the major causes of elevated histamine levels in cheese. Despite its significant economic impact and negative influence on human health, no genomic study has been published so far. We sequenced and analyzed 18 L. parabuchneri strains of which 12 were histamine positive and 6 were histamine negative. We determined the complete genome of the histamine positive strain FAM21731 with PacBio as well as Illumina and the genomes of the remaining 17 strains using the Illumina technology. We developed the synteny aware ortholog finding algorithm SynOrf to compare the genomes and we show that the histidine decarboxylase (HDC) gene cluster is located in a genomic island. It is very likely that the HDC gene cluster was transferred from other lactobacilli, as it is highly conserved within several lactobacilli species. Furthermore, we have evidence that the HDC gene cluster was transferred within the L. parabuchneri species. PMID:28261177

  8. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis

    Science.gov (United States)

    Méric, Guillaume; Miragaia, Maria; de Been, Mark; Yahara, Koji; Pascoe, Ben; Mageiros, Leonardos; Mikhail, Jane; Harris, Llinos G.; Wilkinson, Thomas S.; Rolo, Joana; Lamble, Sarah; Bray, James E.; Jolley, Keith A.; Hanage, William P.; Bowden, Rory; Maiden, Martin C.J.; Mack, Dietrich; de Lencastre, Hermínia; Feil, Edward J.; Corander, Jukka; Sheppard, Samuel K.

    2015-01-01

    The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carried out a comparative analysis of 324 S. aureus and S. epidermidis genomes, including 83 novel S. epidermidis sequences. A reference pan-genome approach and whole genome multilocus-sequence typing revealed that around half of the genome was shared between the species. Based on a BratNextGen analysis, homologous recombination was found to have impacted on 40% of the core genes in S. epidermidis, but on only 24% of the core genes in S. aureus. Homologous recombination between the species is rare, with a maximum of nine gene alleles shared between any two S. epidermidis and S. aureus isolates. In contrast, there was considerable interspecies admixture of mobile elements, in particular genes associated with the SaPIn1 pathogenicity island, metal detoxification, and the methicillin-resistance island SCCmec. Our data and analysis provide a context for considering the nature of recombinational boundaries between S. aureus and S. epidermidis and, the selective forces that influence realized recombination between these species. PMID:25888688

  9. Horizontal gene transfer promoted evolution of the ability to propagate under anaerobic conditions in yeasts

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Knecht, Wolfgang; Warneboldt, J.;

    2004-01-01

    The ability to propagate under anaerobic conditions is an essential and unique trait of brewer's or baker's yeast (Saccharomyces cervisiae). To understand the evolution of facultative anaerobiosis we studied the dependence of de novo pyrimidine biosynthesis, more precisely the fourth enzymic...... a bacterial gene for DHODase, which subsequently allowed cell growth gradually to become independent of oxygen....

  10. Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis

    OpenAIRE

    Méric, Guillaume; Miragaia, Maria; de Been, Mark; Yahara, Koji; Pascoe, Ben; Mageiros, Leonardos; Mikhail, Jane; Harris, Llinos G; Wilkinson, Thomas S.; Rolo, Joana; Lamble, Sarah; Bray, James E.; Jolley, Keith A.; Hanage, William P.; Bowden, Rory

    2015-01-01

    The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carrie...

  11. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.

  12. Comparative genomics study of polyhydroxyalkanoates (PHA and ectoine relevant genes from Halomonas sp. TD01 revealed extensive horizontal gene transfer events and co-evolutionary relationships

    Directory of Open Access Journals (Sweden)

    Cai Lei

    2011-11-01

    Full Text Available Abstract Background Halophilic bacteria have shown their significance in industrial production of polyhydroxyalkanoates (PHA and are gaining more attention for genetic engineering modification. Yet, little information on the genomics and PHA related genes from halophilic bacteria have been disclosed so far. Results The draft genome of moderately halophilic bacterium, Halomonas sp. TD01, a strain of great potential for industrial production of short-chain-length polyhydroxyalkanoates (PHA, was analyzed through computational methods to reveal the osmoregulation mechanism and the evolutionary relationship of the enzymes relevant to PHA and ectoine syntheses. Genes involved in the metabolism of PHA and osmolytes were annotated and studied in silico. Although PHA synthase, depolymerase, regulator/repressor and phasin were all involved in PHA metabolic pathways, they demonstrated different horizontal gene transfer (HGT events between the genomes of different strains. In contrast, co-occurrence of ectoine genes in the same genome was more frequently observed, and ectoine genes were more likely under coincidental horizontal gene transfer than PHA related genes. In addition, the adjacent organization of the homologues of PHA synthase phaC1 and PHA granule binding protein phaP was conserved in the strain TD01, which was also observed in some halophiles and non-halophiles exclusively from γ-proteobacteria. In contrast to haloarchaea, the proteome of Halomonas sp. TD01 did not show obvious inclination towards acidity relative to non-halophilic Escherichia coli MG1655, which signified that Halomonas sp. TD01 preferred the accumulation of organic osmolytes to ions in order to balance the intracellular osmotic pressure with the environment. Conclusions The accessibility of genome information would facilitate research on the genetic engineering of halophilic bacteria including Halomonas sp. TD01.

  13. Intra-firm Horizontal Knowledge Transfer Management

    Institute of Scientific and Technical Information of China (English)

    WANG Yaowu; WANG Yanhang

    2009-01-01

    Knowledge transfer is widely emphasized as a strategic issue for firm competition. A model for intra-firm horizontal knowledge transfer is proposed to model horizontal knowledge transfer to solve some demerits in current knowledge transfer researches. The concept model of intra-firm horizontal knowledge transfer was described and a framework was provided to define the main components of thetransfer process. Horizontal knowledge transfer is that knowledge is transferred from the source to the same hierarchical level recipients as the target. Horizontal knowledge transfer constitutes a strategic area of knowledge management research. However, little is known about the circumstances under which one particular mechanism is the most appropriate. To address these issues, some significant conclusions are drawn concerning knowledge transfer mechanisms in a real-world setting.

  14. Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation.

    Directory of Open Access Journals (Sweden)

    Boris Hespeels

    Full Text Available The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS and seven putative trehalase (TRE gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process.

  15. Experimental examination of EFL and MATX eukaryotic horizontal gene transfers: coexistence of mutually exclusive transcripts predates functional rescue.

    Science.gov (United States)

    Szabová, Jana; Ruzicka, Petr; Verner, Zdenek; Hampl, Vladimír; Lukes, Julius

    2011-08-01

    Many eukaryotic genes do not follow simple vertical inheritance. Elongation factor 1α (EF-1α) and methionine adenosyl transferase (MAT) are enzymes with complicated evolutionary histories and, interestingly, the two cases have several features in common. These essential enzymes occur as two relatively divergent paralogs (EF-1α/EFL, MAT/MATX) that have patchy distributions in eukaryotic lineages that are nearly mutually exclusive. To explain such distributions, we must invoke either multiple eukaryote-to-eukaryote horizontal gene transfers (HGTs) followed by functional replacement or presence of both paralogs in the common ancestor followed by long-term coexistence and differential losses in various eukaryotic lineages. To understand the evolution of these paralogs, we have performed in vivo experiments in Trypanosoma brucei addressing the consequences of long-term coexpression and functional replacement. In the first experiment of its kind, we have demonstrated that EF-1α and MAT can be simultaneously expressed with EFL and MATX, respectively, without affecting the growth of the flagellates. After the endogenous MAT or EF-1α was downregulated by RNA interference, MATX immediately substituted for its paralog, whereas EFL was not able to substitute for EF-1α, leading to mortality. We conclude that MATX is naturally capable of evolving patchy paralog distribution via HGTs and/or long- term coexpression and differential losses. The capability of EFL to spread by HGT is lower and so the patchy distribution of EF-1α/EFL paralogs was probably shaped mainly by deep paralogy followed by long-term coexistence and differential losses.

  16. Widespread horizontal transfer of retrotransposons.

    Science.gov (United States)

    Walsh, Ali Morton; Kortschak, R Daniel; Gardner, Michael G; Bertozzi, Terry; Adelson, David L

    2013-01-15

    In higher organisms such as vertebrates, it is generally believed that lateral transfer of genetic information does not readily occur, with the exception of retroviral infection. However, horizontal transfer (HT) of protein coding repetitive elements is the simplest way to explain the patchy distribution of BovB, a long interspersed element (LINE) about 3.2 kb long, that has been found in ruminants, marsupials, squamates, monotremes, and African mammals. BovB sequences are a major component of some of these genomes. Here we show that HT of BovB is significantly more widespread than believed, and we demonstrate the existence of two plausible arthropod vectors, specifically reptile ticks. A phylogenetic tree built from BovB sequences from species in all of these groups does not conform to expected evolutionary relationships of the species, and our analysis indicates that at least nine HT events are required to explain the observed topology. Our results provide compelling evidence for HT of genetic material that has transformed vertebrate genomes.

  17. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera.

    Science.gov (United States)

    Coffey, Lee; Owens, Erica; Tambling, Karen; O'Neill, David; O'Connor, Laura; O'Reilly, Catherine

    2010-11-01

    Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.

  18. Finite population analysis of the effect of horizontal gene transfer on the origin of an universal and optimal genetic code

    Science.gov (United States)

    Aggarwal, Neha; Vishwa Bandhu, Ashutosh; Sengupta, Supratim

    2016-06-01

    The origin of a universal and optimal genetic code remains a compelling mystery in molecular biology and marks an essential step in the origin of DNA and protein based life. We examine a collective evolution model of genetic code origin that allows for unconstrained horizontal transfer of genetic elements within a finite population of sequences each of which is associated with a genetic code selected from a pool of primordial codes. We find that when horizontal transfer of genetic elements is incorporated in this more realistic model of code-sequence coevolution in a finite population, it can increase the likelihood of emergence of a more optimal code eventually leading to its universality through fixation in the population. The establishment of such an optimal code depends on the probability of HGT events. Only when the probability of HGT events is above a critical threshold, we find that the ten amino acid code having a structure that is most consistent with the standard genetic code (SGC) often gets fixed in the population with the highest probability. We examine how the threshold is determined by factors like the population size, length of the sequences and selection coefficient. Our simulation results reveal the conditions under which sharing of coding innovations through horizontal transfer of genetic elements may have facilitated the emergence of a universal code having a structure similar to that of the SGC.

  19. Finite population analysis of the effect of horizontal gene transfer on the origin of an universal and optimal genetic code.

    Science.gov (United States)

    Aggarwal, Neha; Bandhu, Ashutosh Vishwa; Sengupta, Supratim

    2016-05-27

    The origin of a universal and optimal genetic code remains a compelling mystery in molecular biology and marks an essential step in the origin of DNA and protein based life. We examine a collective evolution model of genetic code origin that allows for unconstrained horizontal transfer of genetic elements within a finite population of sequences each of which is associated with a genetic code selected from a pool of primordial codes. We find that when horizontal transfer of genetic elements is incorporated in this more realistic model of code-sequence coevolution in a finite population, it can increase the likelihood of emergence of a more optimal code eventually leading to its universality through fixation in the population. The establishment of such an optimal code depends on the probability of HGT events. Only when the probability of HGT events is above a critical threshold, we find that the ten amino acid code having a structure that is most consistent with the standard genetic code (SGC) often gets fixed in the population with the highest probability. We examine how the threshold is determined by factors like the population size, length of the sequences and selection coefficient. Our simulation results reveal the conditions under which sharing of coding innovations through horizontal transfer of genetic elements may have facilitated the emergence of a universal code having a structure similar to that of the SGC.

  20. Monitoring of possible horizontal gene transfer from transgenic potatoes to soil microorganisms in the potato fields and the emergence of variants in Phytophthora infestans.

    Science.gov (United States)

    Kim, Sung Eun; Moon, Jae Sun; Kim, Jung Kyu; Yoo, Ran Hee; Choi, Won Sik; Lee, Eun Na; Lee, Sang Han; Kim, Sung Uk

    2010-06-01

    To examine the possibility of horizontal gene transfer between transgenic potatoes and microorganisms in potato fields, the gene flow from transgenic potatoes containing nucleoside diphosphate kinase 2 (NDPK2) gene to microorganisms in soils was investigated. The soil samples collected from the potato fields from March to October in 2007 were examined by PCR, Southern hybridization, and AFLP fingerprinting. The NDPK2 gene from soil genomic DNAs was not detected by both PCR and Southern hybridization, indicating that gene-transfer did not occur in the potato fields. In addition, no discrepancy was found in pathogenicity and noticeable changes for the appearance of variants of Phytophthora infestans in each generation when serial inoculations and the analysis of genomic DNAs by AFLP was conducted. Thus, these data suggest that transgenic potatoes do not give significant impacts on the communities of soil microorganisms and the emergence of variants although continued research efforts may be necessary to make a decisive conclusion.

  1. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change.

    Science.gov (United States)

    Wybouw, N; Balabanidou, V; Ballhorn, D J; Dermauw, W; Grbić, M; Vontas, J; Van Leeuwen, T

    2012-12-01

    The genome of the phytophagous two-spotted spider mite Tetranychus urticae was recently sequenced, representing the first complete chelicerate genome, but also the first genome of a highly polyphagous agricultural pest. Genome analysis revealed the presence of an unexpected high number of cases of putative horizontal gene transfers, including a gene that encodes a cyanase or cyanate lyase. In this study we show by recombinant expression that the T. urticae cyanase remained functionally active after horizontal gene transfer and has a high affinity for cyanate. Cyanases were also detected in other plant parasitic spider mites species such as Tetranychus evansi and Panonychus citri, suggesting that an ancient gene transfer occurred before the diversification within the Tetranychidae family. To investigate the potential role of cyanase in the evolution of plant parasitic spider mites, we studied cyanase expression patterns in T. urticae in relation to host plant range and cyanogenesis, a common plant defense mechanism. Spider mites can alter cyanase expression levels after transfer to several new host plants, including the cyanogenic Phaseolus lunatus. However, the role of cyanase is probably not restricted to cyanide response, but likely to the plant nutritional quality as a whole. We finally discuss potential interactions between cyanase activity and pyrimidine and amino acid synthesis.

  2. A horizontally transferred tRNA(Cys) gene in the sugar beet mitochondrial genome: evidence that the gene is present in diverse angiosperms and its transcript is aminoacylated.

    Science.gov (United States)

    Kitazaki, Kazuyoshi; Kubo, Tomohiko; Kagami, Hiroyo; Matsumoto, Takuma; Fujita, Asami; Matsuhira, Hiroaki; Matsunaga, Muneyuki; Mikami, Tetsuo

    2011-10-01

    Of the two tRNA(Cys) (GCA) genes, trnC1-GCA and trnC2-GCA, previously identified in mitochondrial genome of sugar beet, the former is a native gene and probably a pseudo-copy, whereas the latter, of unknown origin, is transcribed into a tRNA [tRNA(Cys2) (GCA)]. In this study, the trnC2-GCA sequence was mined from various public databases. To evaluate whether or not the trnC2-GCA sequence is located in the mitochondrial genome, the relative copy number of its sequence to nuclear gene was assessed in a number of angiosperm species, using a quantitative real-time PCR assay. The trnC2-GCA sequence was found to exist sporadically in the mitochondrial genomes of a wide range of angiosperms. The mitochondrial tRNA(Cys2) (GCA) species from sugar beet (Beta vulgaris), spinach (Spinacea oleracea) and cucumber (Cucumis sativus) were found to be aminoacylated, indicating that they may participate in translation. We also identified a sugar beet nuclear gene that encodes cysteinyl-tRNA synthetase, which is dual-targeted to mitochondria and plastids, and may aminoacylate tRNA(Cys2) (GCA). What is of particular interest is that trnC1-GCA and trnC2-GCA co-exist in the mitochondrial genomes of eight diverse angiosperms, including spinach, and that the spinach tRNA(Cys1) (GCA) is also aminoacylated. Taken together, our observations lead us to surmise that trnC2-GCA may have been horizontally transferred to a common ancestor of eudicots, followed by co-existence and dual expression of trnC1-GCA and trnC2-GCA in mitochondria with occasional loss or inactivation of either trnC-GCA gene during evolution. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  3. Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees.

    Science.gov (United States)

    Mohr, Kathrin I; Tebbe, Christoph C

    2007-06-01

    Bees are specifically subjected to intimate contacts with transgenic plants due to their feeding activities on pollen. In this study, the probability and ecological risk of a gene transfer from pollen to gut bacteria of bees was investigated with larvae of Apis mellifera (honeybee), Bombus terrestris (bumblebee), and Osmia bicornis (red mason bee), all collected at a flowering transgenic oilseed rape field. The plants were genetically engineered with the pat-gene, conferring resistance against glufosinate (syn. phosphinothricin), a glutamine-synthetase inhibitor in plants and microorganisms. Ninety-six bacterial strains were isolated and characterized by 16S rRNA gene sequencing, revealing that Firmicutes represented 58% of the isolates, Actinobacteria 31%, and Proteobacteria 11%, respectively. Of all isolates, 40% were resistant to 1 mM glufosinate, and 11% even to 10 mM. Resistant phenotypes were found in all phylogenetic groups. None of the resistant phenotypes carried the recombinant pat-gene in its genome. The threshold of detecting gene transfer in this field study was relatively insensitive due to the high background of natural glufosinate resistance. However, the broad occurrence of glufosinate-resistant bacteria from different phylogenetic groups suggests that rare events of horizontal gene transfer will not add significantly to natural bacterial glufosinate resistance.

  4. Testing the possibility of horizontal transfer of introduced neomycin phosphotransferase (nptⅡ) gene of transgenic Eucalyptus camaldulensis into soil bacteria

    Institute of Scientific and Technical Information of China (English)

    Katsuaki ISHII; LU Meng-zhu

    2008-01-01

    The possible horizontal transfer of transgenes is of great concern when the transgenic plants are released into the field. To test the possible transfer of nptⅡ of transgenic trees into soil bacteria, we have used a stool DNA preparation kit to isolate the DNA from the soils in the rhizospheres of two non- and eight transgenic Eucalyptus camaldulensis trees. All the samples have provided the corresponding PCR products in the amplification with bacterial 16S RNA specific sequences, which indicates that the quality of the isolated DNA is adequate for amplification. The nptⅡ specific band has been amplified in three soil samples from the transgenic trees and even treated with filtration before the DNA isolation. This indicates that nptlI DNA exists in the soil, although it is still unclear whether the DNA was in the soil particles, in the soil bacteria or in the Agrobaeterium contamination which was used for the E.camaldulensis transformation. Two approaches on isolation of bacterial DNA have been suggested for testing the possibility of this event in the future.

  5. The interplay between relatedness and horizontal gene transfer drives the evolution of plasmid-carried public goods.

    Science.gov (United States)

    Mc Ginty, Sorcha É; Lehmann, Laurent; Brown, Sam P; Rankin, Daniel J

    2013-06-22

    Plasmids carry a wide range of genes that are often involved in bacterial social behaviour. The question of why such genes are frequently mobile has received increasing attention. Here, we use an explicit population genetic approach to model the evolution of plasmid-borne bacterial public goods production. Our findings highlight the importance of both transmission and relatedness as factors driving the evolution of plasmid-borne public goods production. We partition the effects of plasmid transfer of social traits into those of infectivity and the effect of increased relatedness. Our results demonstrate that, owing to its effect on relatedness, plasmid mobility increases the invasion and stability of public goods, in a way not seen in individually beneficial traits. In addition, we show that plasmid transfer increases relatedness when public goods production is rare but this effect declines when production is common, with both scenarios leading to an increase in the frequency of plasmid-borne public goods. Plasmids remain important vectors for the spread of social genes involved in bacterial virulence thus an understanding of their dynamics is highly relevant from a public health perspective.

  6. Trans-kingdom horizontal DNA transfer from bacteria to yeast is highly plastic due to natural polymorphisms in auxiliary nonessential recipient genes.

    Directory of Open Access Journals (Sweden)

    Kazuki Moriguchi

    Full Text Available With the rapid accumulation of genomic information from various eukaryotes in the last decade, genes proposed to have been derived from recent horizontal gene transfer (HGT events have been reported even in non-phagotrophic unicellular and multicellular organisms, but the molecular pathways underlying HGT remain to be explained. The development of in vitro HGT detection systems, which permit the molecular and genetic analyses of donor and recipient organisms and quantify HGT, are helpful in order to gain insight into mechanisms that may contribute to contemporary HGT events or may have contributed to past HGT events. We applied a horizontal DNA transfer system model based on conjugal gene transfer called trans-kingdom conjugation (TKC from the prokaryote Escherichia coli to the eukaryote Saccharomyces cerevisiae, and assessed whether and to what extent genetic variations in the eukaryotic recipient affect its receptivity to TKC. Strains from a collection of 4,823 knock-out mutants of S. cerevisiae MAT-α haploids were tested for their individual TKC receptivity. Two types of mutants, an ssd1 mutant and respiratory mutants, which are also found in experimental strains and in nature widely, were identified as highly receptive mutants. The TKC efficiency for spontaneously accrued petite (rho (-/0 mutants of the functional allele (SSD1-V strain showed increased receptivity. The TKC efficiency of the ssd1Δ mutant was 36% for bacterial conjugation, while that of the petite/ssd1Δ double mutants was even higher (220% in average compared to bacterial conjugation. This increased TKC receptivity was also observed when other conjugal transfer systems were applied and the donor bacterium was changed to Agrobacterium tumefaciens. These results support the idea that the genomes of certain eukaryotes have been exposed to exogenous DNA more frequently and continuously than previously thought.

  7. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer.

    Science.gov (United States)

    Menna, Pâmela; Hungria, Mariangela

    2011-12-01

    Bacteria belonging to the genus Bradyrhizobium are capable of establishing symbiotic relationships with a broad range of plants belonging to the three subfamilies of the family Leguminosae (=Fabaceae), with the formation of specialized structures on the roots called nodules, where fixation of atmospheric nitrogen takes place. Symbiosis is under the control of finely tuned expression of common and host-specific nodulation genes and also of genes related to the assembly and activity of the nitrogenase, which, in Bradyrhizobium strains investigated so far, are clustered in a symbiotic island. Information about the diversity of these genes is essential to improve our current poor understanding of their origin, spread and maintenance and, in this study, we provide information on 40 Bradyrhizobium strains, mostly of tropical origin. For the nodulation trait, common (nodA), Bradyrhizobium-specific (nodY/K) and host-specific (nodZ) nodulation genes were studied, whereas for fixation ability, the diversity of nifH was investigated. In general, clustering of strains in all nod and nifH trees was similar and the Bradyrhizobium group could be clearly separated from other rhizobial genera. However, the congruence of nod and nif genes with ribosomal and housekeeping genes was low. nodA and nodY/K were not detected in three strains by amplification or hybridization with probes using Bradyrhizobium japonicum and Bradyrhizobium elkanii type strains, indicating the high diversity of these genes or that strains other than photosynthetic Bradyrhizobium must have alternative mechanisms to initiate the process of nodulation. For a large group of strains, the high diversity of nod genes (with an emphasis on nodZ), the low relationship between nod genes and the host legume, and some evidence of horizontal gene transfer might indicate strategies to increase host range. On the other hand, in a group of five symbionts of Acacia mearnsii, the high congruence between nod and ribosomal

  8. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles.

    Science.gov (United States)

    Kirsch, Roy; Gramzow, Lydia; Theißen, Günter; Siegfried, Blair D; Ffrench-Constant, Richard H; Heckel, David G; Pauchet, Yannick

    2014-09-01

    Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome.

    Directory of Open Access Journals (Sweden)

    Paul Francis Morris

    Full Text Available Complex enzymes with multiple catalytic activities are hypothesized to have evolved from more primitive precursors. Global analysis of the Phytophthora sojae genome using conservative criteria for evaluation of complex proteins identified 273 novel multifunctional proteins that were also conserved in P. ramorum. Each of these proteins contains combinations of protein motifs that are not present in bacterial, plant, animal, or fungal genomes. A subset of these proteins were also identified in the two diatom genomes, but the majority of these proteins have formed after the split between diatoms and oomycetes. Documentation of multiple cases of domain fusions that are common to both oomycetes and diatom genomes lends additional support for the hypothesis that oomycetes and diatoms are monophyletic. Bifunctional proteins that catalyze two steps in a metabolic pathway can be used to infer the interaction of orthologous proteins that exist as separate entities in other genomes. We postulated that the novel multifunctional proteins of oomycetes could function as potential Rosetta Stones to identify interacting proteins of conserved metabolic and regulatory networks in other eukaryotic genomes. However ortholog analysis of each domain within our set of 273 multifunctional proteins against 39 sequenced bacterial and eukaryotic genomes, identified only 18 candidate Rosetta Stone proteins. Thus the majority of multifunctional proteins are not Rosetta Stones, but they may nonetheless be useful in identifying novel metabolic and regulatory networks in oomycetes. Phylogenetic analysis of all the enzymes in three pathways with one or more novel multifunctional proteins was conducted to determine the probable origins of individual enzymes. These analyses revealed multiple examples of horizontal transfer from both bacterial genomes and the photosynthetic endosymbiont in the ancestral genome of Stramenopiles. The complexity of the phylogenetic origins of these

  10. The thermostable direct hemolysin gene (tdh) of Vibrio hollisae is dissimilar in prevalence to and phylogenetically distant from the tdh genes of other vibrios: implications in the horizontal transfer of the tdh gene.

    Science.gov (United States)

    Nishibuchi, M; Janda, J M; Ezaki, T

    1996-01-01

    Vibrio hollisae strains isolated recently from patients in various locations were examined for the presence of the thermostable direct hemolysin gene (tdh) using nucleic acid hybridization and polymerase chain reaction assays. The results were consistent with the previous finding that all strains of V. hollisae carry the tdh gene. In contrast, the tdh gene has been detected in a minority of strains for other Vibrio species (V. parahaemolyticus, V. cholerae non-O1, and V. mimicus). Detailed phylogenetic analysis showed that the tdh genes of the non-V. hollisae species were very closely related to each other and that the tdh gene of V. hollisae was distantly related to the tdh genes of the non-V. hollisae species. These results and the proposed insertion sequence-mediated tdh transfer mechanism suggest that the tdh gene may have been maintained stably in V. hollisae and that the tdh genes of the non-V. hollisae species may have been involved in recent horizontal transfer.

  11. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Science.gov (United States)

    Patil, Prabhu B; Sonti, Ramesh V

    2004-01-01

    Background In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively

  12. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-12-01

    Full Text Available In prokaryotes, horizontal gene transfer (HGT has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.

  13. Environmental Bacteriophages of the Emerging Enterobacterial Phytopathogen, Dickeya solani, Show Genomic Conservation and Capacity for Horizontal Gene Transfer between Their Bacterial Hosts

    Directory of Open Access Journals (Sweden)

    Andrew Day

    2017-08-01

    Full Text Available Dickeya solani is an economically important phytopathogen widespread in mainland Europe that can reduce potato crop yields by 25%. There are no effective environmentally-acceptable chemical systems available for diseases caused by Dickeya. Bacteriophages have been suggested for use in biocontrol of this pathogen in the field, and limited field trials have been conducted. To date only a small number of bacteriophages capable of infecting D. solani have been isolated and characterized, and so there is a need to expand the repertoire of phages that may have potential utility in phage therapy strategies. Here we describe 67 bacteriophages from environmental sources, the majority of which are members of the viral family Myoviridae. Full genomic sequencing of two isolates revealed a high degree of DNA identity with D. solani bacteriophages isolated in Europe in the past 5 years, suggesting a wide ecological distribution of this phage family. Transduction experiments showed that the majority of the new environmental bacteriophages are capable of facilitating efficient horizontal gene transfer. The possible risk of unintentional transfer of virulence or antibiotic resistance genes between hosts susceptible to transducing phages cautions against their environmental use for biocontrol, until specific phages are fully tested for transduction capabilities.

  14. Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops

    NARCIS (Netherlands)

    Kleter, G.A.; Peijnenburg, A.A.C.M.; Aarts, H.J.M.

    2005-01-01

    The potential effects of horizontal gene transfer on human health are an important item in the safety assessment of genetically modified organisms. Horizontal gene transfer from genetically modified crops to gut microflora most likely occurs with transgenes of microbial origin. The characteristics o

  15. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    Directory of Open Access Journals (Sweden)

    Siddaramappa Shivakumara

    2011-11-01

    divergence from a common ancestor. Conclusions Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.

  16. Birth, death and horizontal transfer of the fumonisin biosynthetic gene cluster during the evolutionary diversification of Fusarium

    Science.gov (United States)

    In fungi, genes required for synthesis of secondary metabolites are often clustered. The FUM gene cluster is required for synthesis of a family of toxic secondary metabolites, fumonisins, produced by species of Fusarium in the Gibberella fujikuroi species complex (GFSC). Fumonisins are a health and ...

  17. The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs.

    Science.gov (United States)

    Rizzi, Aurora; Raddadi, Noura; Sorlini, Claudia; Nordgrd, Lise; Nielsen, Kaare Magne; Daffonchio, Daniele

    2012-01-01

    The fate of dietary DNA in the gastrointestinal tract (GIT) of animals has gained renewed interest after the commercial introduction of genetically modified organisms (GMO). Among the concerns regarding GM food, are the possible consequences of horizontal gene transfer (HGT) of recombinant dietary DNA to bacteria or animal cells. The exposure of the GIT to dietary DNA is related to the extent of food processing, food composition, and to the level of intake. Animal feeding studies have demonstrated that a minor amount of fragmented dietary DNA may resist the digestive process. Mammals have been shown to take up dietary DNA from the GIT, but stable integration and expression of internalized DNA has not been demonstrated. Despite the ability of several bacterial species to acquire external DNA by natural transformation, in vivo transfer of dietary DNA to bacteria in the intestine has not been detected in the few experimental studies conducted so far. However, major methodological limitations and knowledge gaps of the mechanistic aspects of HGT calls for methodological improvements and further studies to understand the fate of various types of dietary DNA in the GIT.

  18. Transcriptomic and proteomic analyses of a Wolbachia-free filarial parasite provide evidence of trans-kingdom horizontal gene transfer.

    Directory of Open Access Journals (Sweden)

    Samantha N McNulty

    Full Text Available Most filarial parasites in the subfamilies Onchocercinae and Dirofilariinae depend on Wolbachia endobacteria to successfully carry out their life cycle. Recently published data indicate that the few Wolbachia-free species in these subfamilies were infected in the distant past and have subsequently shed their endosymbionts. We used an integrated transcriptomic and proteomic analysis of Onchocerca flexuosa to explore the molecular mechanisms that allow worms of this species to survive without a bacterial partner. Roche/454 sequencing of the adult transcriptome produced 16,814 isogroup and 47,252 singleton sequences that are estimated to represent approximately 41% of the complete gene set. Sequences similar to 97 Wolbachia genes were identified from the transcriptome, some of which appear on the same transcripts as sequences similar to nematode genes. Computationally predicted peptides, including those with similarity to Wolbachia proteins, were classified at the domain and pathway levels in order to assess the metabolic capabilities of O. flexuosa and compare against the Wolbachia-dependent model filaria, Brugia malayi. Transcript data further facilitated a shotgun proteomic analysis of O. flexuosa adult worm lysate, resulting in the identification of 1,803 proteins. Three of the peptides detected by mass spectroscopy map to two ABC transport-related proteins from Wolbachia. Antibodies raised to one of the Wolbachia-like peptides labeled a single 38 kDa band on Western blots of O. flexuosa lysate and stained specific worm tissues by immunohistology. Future studies will be required to determine the exact functions of Wolbachia-like peptides and proteins in O. flexuosa and to assess their roles in worm biology.

  19. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    of the CS clade include the retention of psaM, rpl32 and trnL(caa, the loss of petA, the disruption of three ancestral clusters and the presence of five derived gene clusters. Conclusion The Oedogonium chloroplast genome disclosed additional characters that bolster the evidence for a close alliance between the Oedogoniales and Chaetophorales. Our unprecedented finding of int and dpoB in this cpDNA provides a clear example that novel genes were acquired by the chloroplast genome through horizontal transfers, possibly from a mitochondrial genome donor.

  20. The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting

    Science.gov (United States)

    Doi, Yohei; Adams-Haduch, Jennifer M.; Peleg, Anton Y.; D’Agata, Erika MC

    2012-01-01

    The contribution of horizontal gene transmission (HGT) in the emergence and spread of extended-spectrum beta-lactamase (ESBL)-producing gram-negative bacteria during periods of endemicity is unclear. Over a 12-month period, rectal colonization with SHV-5 and SHV-12 producing-Escherichia coli and Klebsiella pneumoniae was quantified among a cohort of residents in a long-term care facility. Demographic and clinical data were collected on colonized residents. Transferability of SHV-encoding plasmids and pulsed-field gel electrophoresis was performed to quantify the contribution of HGT and cross-transmission, respectively. A total of 25 (12%) of 214 enrolled patients were colonized with 11 SHV-5- and 17 SVH-12-producing E. coli and K. pneumoniae. Clonally-related isolates were detected among multiple residents residing on the same and different wards. Among 12 clonally-distinct isolates, HGT of SHV-5- and SHV-12-encoding plasmids was identified among 6 (50%) isolates. HGT among clonally-distinct strains contributes to the transmission dynamics of these ESBL-producing gram-negative bacteria and should be considered when evaluating the spread of these pathogens. PMID:22722012

  1. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky.

    Directory of Open Access Journals (Sweden)

    Timothy J Johnson

    Full Text Available Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%, Typhimurium (15.0% and Heidelberg (1.7%. We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.

  2. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota

    Science.gov (United States)

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota. PMID:27706188

  3. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer.

    Science.gov (United States)

    Yagi, Jane M; Sims, David; Brettin, Thomas; Bruce, David; Madsen, Eugene L

    2009-09-01

    We analysed the genome of the aromatic hydrocarbon-degrading, facultatively chemolithotrophic betaproteobacterium, Polaromonas naphthalenivorans strain CJ2. Recent work has increasingly shown that Polaromonas species are prevalent in a variety of pristine oligotrophic environments, as well as polluted habitats. Besides a circular chromosome of 4.4 Mb, strain CJ2 carries eight plasmids ranging from 353 to 6.4 kb in size. Overall, the genome is predicted to encode 4929 proteins. Comparisons of DNA sequences at the individual gene, gene cluster and whole-genome scales revealed strong trends in shared heredity between strain CJ2 and other members of the Comamonadaceae and Burkholderiaceae. blastp analyses of protein coding sequences across strain CJ2's genome showed that genetic commonalities with other betaproteobacteria diminished significantly in strain CJ2's plasmids compared with the chromosome, especially for the smallest ones. Broad trends in nucleotide characteristics (GC content, GC skew, Karlin signature difference) showed at least six anomalous regions in the chromosome, indicating alteration of genome architecture via horizontal gene transfer. Detailed analysis of one of these anomalous regions (96 kb in size, containing the nag-like naphthalene catabolic operon) indicates that the fragment's insertion site was within a putative MiaB-like tRNA-modifying enzyme coding sequence. The mosaic nature of strain CJ2's genome was further emphasized by the presence of 309 mobile genetic elements scattered throughout the genome, including 131 predicted transposase genes, 178 phage-related genes, and representatives of 12 families of insertion elements. A total of three different terminal oxidase genes were found (putative cytochrome aa(3)-type oxidase, cytochrome cbb(3)-type oxidase and cytochrome bd-type quinol oxidase), suggesting adaptation by strain CJ2 to variable aerobic and microaerobic conditions. Sequence-suggested abilities of strain CJ2 to carry out

  4. PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli

    Science.gov (United States)

    Miyazaki, Kentaro; Sato, Mitsuharu; Tsukuda, Miyuki

    2017-01-01

    We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the “central pseudoknot” and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A–916U and betaproteobacterial 19C–916G) and the non-native 19A–916G pair retained function, whereas the non-native 19C–916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A–916U or 19C–916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts.

  5. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.

    Science.gov (United States)

    Petitjean, Céline; Moreira, David; López-García, Purificación; Brochier-Armanet, Céline

    2012-11-26

    In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  6. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  7. Horizontal gene exchange in environmental microbiota

    Directory of Open Access Journals (Sweden)

    Rustam I Aminov

    2011-07-01

    Full Text Available Horizontal gene transfer (HGT plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs. The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.

  8. Horizontal Transfer of Small RNAs To and From Plants

    Directory of Open Access Journals (Sweden)

    Lu eHan

    2015-12-01

    Full Text Available Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs. sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs and small interfering RNAs (siRNAs, are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing (HIGS system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.

  9. Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi.

    Science.gov (United States)

    Gonçalves, Isabelle R; Brouillet, Sophie; Soulié, Marie-Christine; Gribaldo, Simonetta; Sirven, Catherine; Charron, Noémie; Boccara, Martine; Choquer, Mathias

    2016-11-24

    Chitin, the second most abundant biopolymer on earth after cellulose, is found in probably all fungi, many animals (mainly invertebrates), several protists and a few algae, playing an essential role in the development of many of them. This polysaccharide is produced by type 2 glycosyltransferases, called chitin synthases (CHS). There are several contradictory classifications of CHS isoenzymes and, as regards their evolutionary history, their origin and diversity is still a matter of debate. A genome-wide analysis resulted in the detection of more than eight hundred putative chitin synthases in proteomes associated with about 130 genomes. Phylogenetic analyses were performed with special care to avoid any pitfalls associated with the peculiarities of these sequences (e.g. highly variable regions, truncated or recombined sequences, long-branch attraction). This allowed us to revise and unify the fungal CHS classification and to study the evolutionary history of the CHS multigenic family. This update has the advantage of being user-friendly due to the development of a dedicated website ( http://wwwabi.snv.jussieu.fr/public/CHSdb ), and it includes any correspondences with previously published classifications and mutants. Concerning the evolutionary history of CHS, this family has mainly evolved via duplications and losses. However, it is likely that several horizontal gene transfers (HGT) also occurred in eukaryotic microorganisms and, even more surprisingly, in bacteria. This comprehensive multi-species analysis contributes to the classification of fungal CHS, in particular by optimizing its robustness, consensuality and accessibility. It also highlights the importance of HGT in the evolutionary history of CHS and describes bacterial chs genes for the first time. Many of the bacteria that have acquired a chitin synthase are plant pathogens (e.g. Dickeya spp; Pectobacterium spp; Brenneria spp; Agrobacterium vitis and Pseudomonas cichorii). Whether they are able to

  10. Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer.

    Science.gov (United States)

    Tepfer, David; Garcia-Gonzales, Rolando; Mansouri, Hounayda; Seruga, Martina; Message, Brigitte; Leach, Francesca; Perica, Mirna Curkovic

    2003-08-01

    DNA transfer was demonstrated from six species of donor plants to the soil bacterium, Acinetobacter spp. BD413, using neomycin phosphotransferase (nptII) as a marker for homologous recombination. These laboratory results are compatible with, but do not prove, DNA transfer in nature. In tobacco carrying a plastid insertion of nptII, transfer was detected with 0.1 g of disrupted leaves and in oilseed rape carrying a nuclear insertion with a similar quantity of roots. Transfer from disrupted leaves occurred in sterile soil and water, without the addition of nutrients. It was detected using intact tobacco leaves and intact tobacco and Arabidopsis plants in vitro. Transfer was dose-dependent and sensitive to DNase, and mutations in the plant nptII were recovered in receptor bacteria. DNA transfer using intact roots and plants in vitro was easily demonstrated, but with greater variability. Transfer varied with plant genome size and the number of repeats of the marker DNA in the donor plant. Transfer was not detected in the absence of a homologous nptII in the receptor bacteria. We discuss these results with reference to non-coding DNA in plant genomes (e.g., introns, transposons and junk DNA) and the possibility that DNA transfer could occur in nature.

  11. Horizontal transfer generates genetic variation in an asexual pathogen

    Directory of Open Access Journals (Sweden)

    Xiaoqiu Huang

    2014-10-01

    Full Text Available There are major gaps in the understanding of how genetic variation is generated in the asexual pathogen Verticillium dahliae. On the one hand, V. dahliae is a haploid organism that reproduces clonally. On the other hand, single-nucleotide polymorphisms and chromosomal rearrangements were found between V. dahliae strains. Lineage-specific (LS regions comprising about 5% of the genome are highly variable between V. dahliae strains. Nonetheless, it is unknown whether horizontal gene transfer plays a major role in generating genetic variation in V. dahliae. Here, we analyzed a previously sequenced V. dahliae population of nine strains from various geographical locations and hosts. We found highly homologous elements in LS regions of each strain; LS regions of V. dahliae strain JR2 are much richer in highly homologous elements than the core genome. In addition, we discovered, in LS regions of JR2, several structural forms of nonhomologous recombination, and two or three homologous sequence types of each form, with almost each sequence type present in an LS region of another strain. A large section of one of the forms is known to be horizontally transferred between V. dahliae strains. We unexpectedly found that 350 kilobases of dynamic LS regions were much more conserved than the core genome between V. dahliae and a closely related species (V. albo-atrum, suggesting that these LS regions were horizontally transferred recently. Our results support the view that genetic variation in LS regions is generated by horizontal transfer between strains, and by chromosomal reshuffling reported previously.

  12. In Vivo Acquisition of Carbapenemase Gene blaKPC-2 in Multiple Species of Enterobacteriaceae through Horizontal Transfer of Insertion Sequence or Plasmid

    Directory of Open Access Journals (Sweden)

    Baixing Ding

    2016-10-01

    Full Text Available Objectives: Current worldwide spread of carbapenem resistance in Enterobacteriaceae constitutes a critical public health threat. This study aims to investigate how carbapenem resistance is acquired in Enterobacteriaceae in patients during antimicrobial therapy. Methods: Clinical strains from the same anatomical site of the same patients that converted from carbapenem-susceptible to resistant during antimicrobial therapy and showed identical or similar PFGE patterns were identified. The similarly sized plasmids carried by the susceptible and resistant strains, the latter containing the carbapenemase genes, were sequenced and analyzed. Results: Paired strains were identified from four patients: three had neurosurgical conditions while the other had acute exacerbation of COPD. Two pairs of Klebsiella pneumoniae (KP1-S/R and KP2-S/R, S and R indicating susceptible and resistant strains, respectively, one pair of Morganella morganii (MM-S/R and one pair of Enterobacter aerogenes (EA-S/R were collected. All four carbapenem-resistant strains carried plasmids harboring blaKPC-2. Compared with the similarly sized plasmids in KP1-S and KP2-S, an insertion sequence that includes ISKpn6-like, blaKPC-2 and ISKpn8 was noted in pKP1-R and pKP2-R. Strains MM-R and EA-R had blaKPC-2-carrying plasmids not resembling plasmids in strains MM-S and EA-S suggesting their new acquisition while on therapy. Conclusions: Enterobacteriaceae can acquire carbapenem resistance during antimicrobial therapy through horizontal transfer of an insertion sequence or plasmid.

  13. In vivo Acquisition of Carbapenemase Gene blaKPC-2 in Multiple Species of Enterobacteriaceae through Horizontal Transfer of Insertion Sequence or Plasmid

    Science.gov (United States)

    Ding, Baixing; Shen, Zhen; Hu, Fupin; Ye, Meiping; Xu, Xiaogang; Guo, Qinglan; Wang, Minggui

    2016-01-01

    Objectives: Current worldwide spread of carbapenem resistance in Enterobacteriaceae constitutes a critical public health threat. This study aims to investigate how carbapenem resistance is acquired in Enterobacteriaceae in patients during antimicrobial therapy. Methods: Clinical strains from the same anatomical site of the same patients that converted from carbapenem-susceptible to resistant during antimicrobial therapy and showed identical or similar PFGE patterns were identified. The similarly sized plasmids carried by the susceptible and resistant strains, the latter containing the carbapenemase genes, were sequenced and analyzed. Results: Paired strains were identified from four patients: three had neurosurgical conditions while the other had acute exacerbation of COPD. Two pairs of Klebsiella pneumoniae (KP1-S/R and KP2-S/R, S and R indicating susceptible and resistant strains, respectively), one pair of Morganella morganii (MM-S/R) and one pair of Enterobacter aerogenes (EA-S/R) were collected. All four carbapenem-resistant strains carried plasmids harboring blaKPC−2. Compared with the similarly sized plasmids in KP1-S and KP2-S, an insertion sequence that includes ISKpn6-like, blaKPC−2 and ISKpn8 was noted in pKP1-R and pKP2-R. Strains MM-R and EA-R had blaKPC−2-carrying plasmids not resembling plasmids in strains MM-S and EA-S suggesting their new acquisition while on therapy. Conclusions: Enterobacteriaceae can acquire carbapenem resistance during antimicrobial therapy through horizontal transfer of an insertion sequence or plasmid. PMID:27818649

  14. The ancestor of the Paulinella chromatophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like γ-proteobacterium

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2007-06-01

    Full Text Available Abstract Background Paulinella chromatophora is a freshwater filose amoeba with photosynthetic endosymbionts (chromatophores of cyanobacterial origin that are closely related to free-living Prochlorococcus and Synechococcus species (PS-clade. Members of the PS-clade of cyanobacteria contain a proteobacterial form 1A RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase that was acquired by horizontal gene transfer (HGT of a carboxysomal operon. In rDNA-phylogenies, the Paulinella chromatophore diverged basal to the PS-clade, raising the question whether the HGT occurred before or after the split of the chromatophore ancestor. Results Phylogenetic analyses of the almost complete rDNA operon with an improved taxon sampling containing most known cyanobacterial lineages recovered the Paulinella chromatophore as sister to the complete PS-clade. The sequence of the complete carboxysomal operon of Paulinella was determined. Analysis of RubisCO large subunit (rbcL sequences revealed that Paulinella shares the proteobacterial form 1A RubisCO with the PS-clade. The γ-proteobacterium Nitrococcus mobilis was identified as sister of the Paulinella chromatophore and the PS-clade in the RubisCO phylogeny. Gene content and order in the carboxysomal operon correlates well with the RubisCO phylogeny demonstrating that the complete carboxysomal operon was acquired by the common ancestor of the Paulinella chromatophore and the PS-clade through HGT. The carboxysomal operon shows a significantly elevated AT content in Paulinella, which in the rbcL gene is confined to third codon positions. Combined phylogenies using rbcL and the rDNA-operon resulted in a nearly fully resolved tree of the PS-clade. Conclusion The HGT of the carboxysomal operon predated the divergence of the chromatophore ancestor from the PS-clade. Following HGT and divergence of the chromatophore ancestor, diversification of the PS-clade into at least three subclades occurred. The

  15. The Type I Restriction Enzymes as Barriers to Horizontal Gene Transfer: Determination of the DNA Target Sequences Recognised by Livestock-Associated Methicillin-Resistant Staphylococcus aureus Clonal Complexes 133/ST771 and 398.

    Science.gov (United States)

    Chen, Kai; Stephanou, Augoustinos S; Roberts, Gareth A; White, John H; Cooper, Laurie P; Houston, Patrick J; Lindsay, Jodi A; Dryden, David T F

    2016-01-01

    The Type I DNA restriction-modification (RM) systems of Staphylococcus aureus are known to act as a significant barrier to horizontal gene transfer between S. aureus strains belonging to different clonal complexes. The livestock-associated clonal complexes CC133/771 and CC398 contain Type I RM systems not found in human MRSA strains as yet but at some point transfer will occur. When this does take place, horizontal gene transfer of resistance will happen more easily between these strains. The reservoir of antibiotic resistance, virulence and host-adaptation genes present in livestock-associated MRSA will then potentially contribute to the development of newly evolving MRSA clones. The target sites recognised by the Type I RM systems of CC133/771 and CC398 were identified as CAG(N)5RTGA and ACC(N)5RTGA, respectively. Assuming that these enzymes recognise the methylation state of adenine, the underlined A and T bases indicate the unique positions of methylation. Target methylation points for enzymes from CC1 were also identified. The methylation points for CC1-1 are CCAY(N)5TTAA and those for CC1-2 are CCAY(N)6 TGT with the underline indicating the adenine methylation site thus clearing up the ambiguity noted previously (Roberts et al. 2013, Nucleic Acids Res 41:7472-7484) for the half sites containing two adenine bases.

  16. Rampant horizontal transfer of SPIN transposons in squamate reptiles.

    Science.gov (United States)

    Gilbert, Clément; Hernandez, Sharon S; Flores-Benabib, Jaime; Smith, Eric N; Feschotte, Cédric

    2012-02-01

    Transposable elements (TEs) are highly abundant in the genome and capable of mobility, two properties that make them particularly prone to transfer horizontally between organisms. Although the impact of horizontal transfer (HT) of TEs is well recognized in prokaryotes, the frequency of this phenomenon and its contribution to genome evolution in eukaryotes remain poorly appreciated. Here, we provide evidence that a DNA transposon called SPIN has colonized the genome of 17 species of reptiles representing nearly every major lineage of squamates, including 14 families of lizards, snakes, and amphisbaenians. Slot blot analyses indicate that SPIN has amplified to high copy numbers in most of these species, ranging from 2,000-28,000 copies per haploid genome. In contrast, we could not detect the presence of SPIN in any of the turtles (seven species from seven families) and crocodiles (four species) examined. Genetic distances between SPIN sequences from species belonging to different squamate families are consistently very low (average = 0.1), considering the deep evolutionary divergence of the families investigated (most are >100 My diverged). Furthermore, these distances fall below interfamilial distances calculated for two genes known to have evolved under strong functional constraint in vertebrates (RAG1, average = 0.24 and C-mos, average = 0.27). These data, combined with phylogenetic analyses, indicate that the widespread distribution of SPIN among squamates is the result of at least 13 independent events of HTs. Molecular dating and paleobiogeographical data suggest that these transfers took place during the last 50 My on at least three different continents (North America, South America and, Africa). Together, these results triple the number of known SPIN transfer events among tetrapods, provide evidence for a previously hypothesized transoceanic movement of SPIN transposons during the Cenozoic, and further underscore the role of HT in the evolution of vertebrate

  17. Next-generation sequencing reveals recent horizontal transfer of a DNA transposon between divergent mosquitoes.

    Directory of Open Access Journals (Sweden)

    Yupu Diao

    Full Text Available Horizontal transfer of genetic material between complex organisms often involves transposable elements (TEs. For example, a DNA transposon mariner has been shown to undergo horizontal transfer between different orders of insects and between different phyla of animals. Here we report the discovery and characterization of an ITmD37D transposon, MJ1, in Anopheles sinensis. We show that some MJ1 elements in Aedes aegypti and An. sinensis contain intact open reading frames and share nearly 99% nucleotide identity over the entire transposon, which is unexpectedly high given that these two genera had diverged 145-200 million years ago. Chromosomal hybridization and TE-display showed that MJ1 copy number is low in An. sinensis. Among 24 mosquito species surveyed, MJ1 is only found in Ae. aegypti and the hyrcanus group of anopheline mosquitoes to which An. sinensis belongs. Phylogenetic analysis is consistent with horizontal transfer and provides the basis for inference of its timing and direction. Although report of horizontal transfer of DNA transposons between higher eukaryotes is accumulating, our analysis is one of a small number of cases in which horizontal transfer of nearly identical TEs among highly divergent species has been thoroughly investigated and strongly supported. Horizontal transfer involving mosquitoes is of particular interest because there are ongoing investigations of the possibility of spreading pathogen-resistant genes into mosquito populations to control malaria and other infectious diseases. The initial indication of horizontal transfer of MJ1 came from comparisons between a 0.4x coverage An. sinensis 454 sequence database and available TEs in mosquito genomes. Therefore we have shown that it is feasible to use low coverage sequencing to systematically uncover horizontal transfer events. Expanding such efforts across a wide range of species will generate novel insights into the relative frequency of horizontal transfer of

  18. Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways

    NARCIS (Netherlands)

    Poelarends, GJ; Kulakov, LA; Larkin, MJ; Vlieg, JETV; Janssen, DB; Kulakov, Leonid A.; Larkin, Michael J.; Hylckama Vlieg, Johan E.T. van

    2000-01-01

    The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct bacter

  19. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  20. Heat transfer to near-critical helium in horizontal channels

    Energy Technology Data Exchange (ETDEWEB)

    Dolgoy, M.L.; Kirichenko, Y.A.; Sklovsky, Y.B.; Troyanov, A.M.; Chernyakov, P.S. (AN Ukrainskoj SSR, Kharkov. Fiziko-Tekhnicheskij Inst. Nizkikh Temperatur)

    1983-03-01

    Experimental results on heat transfer and pressure losses during a forced motion of helium of near-critical state parameters in a horizontal channel are reported. A method of calculation of temperature and pressure distributions along the channel is proposed.

  1. The Widespread Multidrug-Resistant Serotype O12 Pseudomonas aeruginosa Clone Emerged through Concomitant Horizontal Transfer of Serotype Antigen and Antibiotic Resistance Gene Clusters

    DEFF Research Database (Denmark)

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca;

    2015-01-01

    in clinical settings and outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics. Here, we explore how the P. aeruginosa OSA biosynthesis gene clusters evolve in the population by investigating the association between the phylogenetic relationships among 83 P....... aeruginosa O12 OSA gene cluster, an antibiotic resistance determinant (gyrAC248T), and other genes that have been transferred between P. aeruginosa strains with distinct core genome architectures. We showed that these genes were likely acquired from an O12 serotype strain that is closely related to P....... In conclusion, serotype switching in combination with acquisition of an antibiotic resistance determinant most likely contributed to the dissemination of the O12 serotype in clinical settings. Infection rates in hospital settings by multidrug-resistant (MDR) Pseudomonas aeruginosa clones have increased during...

  2. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer

    DEFF Research Database (Denmark)

    Njage, Patrick Murigu Kamau; Buys, E. M.

    2017-01-01

    for the quantitative exposure assessment and models were constructed in Ms. Excel spreadsheet with farm to consumption chain accounted for by primary production, processing, retail and consumer storage. Probability distributions were utilised to take into account the variability of the exposure estimates. Exposure...... and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used...... resulting from ESBL/AmpC positive E. coli and gene transfer was taken into account. Monte Carlo simulation was carried out using @Risk software followed by sensitivity and scenario analysis to assess most effective single or combinations of mitigation strategies for the ESBL/AmpC positive E. coli events...

  3. Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes

    Science.gov (United States)

    Treangen, Todd J.; Rocha, Eduardo P. C.

    2011-01-01

    Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes—xenologs—persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes—paralogs—are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein–protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families. PMID:21298028

  4. International transferability of accident modification functions for horizontal curves.

    Science.gov (United States)

    Elvik, Rune

    2013-10-01

    Studies of the relationship between characteristics of horizontal curves and accident rate have been reported in several countries. The characteristic most often studied is the radius of a horizontal curve. Functions describing the relationship between the radius of horizontal curves and accident rate have been developed in Australia, Canada, Denmark, Germany, Great Britain, New Zealand, Norway, Portugal, Sweden, and the United States. Other characteristics of horizontal curves that have been studied include deflection angle, curve length, the presence of transition curves, super-elevation in curves and distance to adjacent curves. This paper assesses the international transferability of mathematical functions (accident modification functions) that have been developed to relate the radius of horizontal curves to their accident rate. The main research problem is whether these functions are similar, which enhances international transferability, or dissimilar, which reduces international transferability. Accident modification functions for horizontal curve radius developed in the countries listed above are synthesised. The sensitivity of the functions to other characteristics of curves than radius is examined. Accident modification functions developed in different countries have important similarities. The functions diverge with respect to accident rate in the sharpest curves.

  5. Horizontal gene transfer—emerging multidrug resistance in hospital bacteria

    Institute of Scientific and Technical Information of China (English)

    SenkaDZIDIC; VladimirBEDEKOVIC

    2003-01-01

    The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past few decades. This increase has been attributed to a combination of microbial characteristics, the selective pressure of antimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. The resistance is acquired by mutational changer or by the acquisition of resistance-encoding genetic material which is transfered from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuse of antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greater number of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistant organisms. The resistance gene sequences are integrated by recombination into several classes of naturally occurring gene expression cassettes and disseminated within the microbial population by horizontal gene transfer mechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in the intensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistant organisms. Methicilin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum betalactamase(ESBL) producing Gram negative bacilli are identified as major phoblem in nosocomial infections. Recent surveillance studies have demonstrated trend towares more seriously ill patients suffering from multidrug-resistant nosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce the aplication of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures, infection prevention and control of horizontal nosocomial transmission of organisms.

  6. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  7. Horizontal Transfer of Genetic Elements in the Black Aspergilli

    NARCIS (Netherlands)

    Diepeningen, van A.D.

    1999-01-01

    The thesis deals with the horizontal transfer of genetic elements in the black Aspergilli . The black Aspergilli form a complex group of asexual species. All share a characteristic black conidiospore color and the ability to efficiently degrade tannin. Selective isolation of all different black Aspe

  8. The capsule biosynthesis locus of Haemophilus influenzae shows conspicuous similarity to the corresponding locus in Haemophilus sputorum and may have been recruited from this species by horizontal gene transfer.

    Science.gov (United States)

    Nielsen, Signe M; de Gier, Camilla; Dimopoulou, Chrysoula; Gupta, Vikas; Hansen, Lars H; Nørskov-Lauritsen, Niels

    2015-06-01

    The newly described species Haemophilus sputorum has been cultured from the upper respiratory tract of humans and appears to have little pathogenic potential. The species encodes a capsular biosynthesis locus of approximately 12  kb composed of three distinct regions. Region I and III genes, involved in export and processing of the capsular material, show high similarity to the corresponding genes in capsulate lineages of the pathogenic species Haemophilus influenzae; indeed, standard bexA and bexB PCRs for detection of capsulated strains of H. influenzae give positive results with strains of H. sputorum. Three ORFs are present in region II of the sequenced strain of H. sputorum, of which a putative phosphotransferase showed homology with corresponding genes from H. influenzae serotype c and f. Phylogenetic analysis of housekeeping genes from 24 Pasteurellaceae species showed that H. sputorum was only distantly related to H. influenzae. In contrast to H. influenzae, the capsule locus in H. sputorum is not associated with transposases or other transposable elements. Our data suggest that the capsule locus of capsulate lineages of H. influenzae may have been recruited relatively recently from the commensal species H. sputorum by horizontal gene transfer.

  9. Detection of Heat Shock Protein (DnaK, DnaJ and GrpE Horizontal Gene Transfers Among Acanthamoeba polyphaga, Acanthamoeba Polyphaga Mimivirus (APMV, Amoeba-Infecting Bacteria and Sputnik Virophage

    Directory of Open Access Journals (Sweden)

    Morteza Haghi

    2016-12-01

    Full Text Available Acanthamoeba polyphaga mimivirus (APMV was isolated in 1992. . It’s large size, gram positivity and unique genome features attracted many scientists attention in evolutinary and clinical terms since it’s discovery. APMV shares its A.polyphaga host environment with other intracellular bacteria including mpylobacter jejuni, Vibrio cholerae, Legionella pneumophila, Listeria monocytogenes. It has been known that the giant viruses have adopted cellular genes during evolutionary process via horizontal gene transfer (HGT from bacteria and their eukaryotic host. In this study we aim to detect bacterial Heat shock protein (Dnak, DnaJ and GrpE genes which are a group of evolutionary conserved proteins that are produced by cellular organisms under stress conditions.As a result of BLAST, significant matches have been found between APMV genome and bacterial genome. Therefore, our results support the adoption of Hsp genes via HGT from bacteria. However, any significant match was not found among APMV, A. polyphaga and Sputnik virophage.

  10. In situ detection of horizontal transfer of mobile genetic elements

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Johansen, Tove

    2002-01-01

    Plasmid transfer was investigated in microbial populations associated with different types of surfaces. The general strategy behind these investigations was to label the transferable plasmid with a gene encoding a fluorescent protein in order to make it a transfer reporter. This was achieved by f...

  11. Plant genetics: gene transfer from parasitic to host plants.

    Science.gov (United States)

    Mower, Jeffrey P; Stefanović, Sasa; Young, Gregory J; Palmer, Jeffrey D

    2004-11-11

    Plant mitochondrial genes are transmitted horizontally across mating barriers with surprising frequency, but the mechanism of transfer is unclear. Here we describe two new cases of horizontal gene transfer, from parasitic flowering plants to their host flowering plants, and present phylogenetic and biogeographic evidence that this occurred as a result of direct physical contact between the two. Our findings complement the discovery that genes can be transferred in the opposite direction, from host to parasite plant.

  12. Convective condensation heat transfer in a horizontal condenser tube

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, P.K. [College of Engineering, GITAM, Visakhapatnam (India); Sastry, C.V.N.; Rao, V.D. [Andhra Univ., College of Engineering, Visakhapatnam (India); Kakac, S.; Liu, H. [Miami Univ., College of Engineering, FL (United States)

    2002-03-01

    The purpose of this article is to solve analytically the problem of convective condensation of vapors inside a horizontal condenser tube. Homogeneous model approach is employed in the estimation of shear velocity, which is subsequently, made use of in predicting local convective condensation heat transfer coefficients. The resulting analysis of the present study is compared with some of the available equations in the literature. It is observed that the agreement is reasonably satisfactory validating the assumptions and the theory presented. (authors)

  13. In situ detection of horizontal transfer of mobile genetic elements

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Johansen, Tove;

    2002-01-01

    Plasmid transfer was investigated in microbial populations associated with different types of surfaces. The general strategy behind these investigations was to label the transferable plasmid with a gene encoding a fluorescent protein in order to make it a transfer reporter. This was achieved...... promoters (transfer reporters) it was thus possible to detect transfer events in situ and correlate these with either the location of donor and recipient cells or with the growth activity of the cells. In some cases, expression of unstable Gfp from a growth-controlled promoter, rrnB from Escherichia coli...... by fusing the reporter gene with a lac promoter expression cassette and combining this with a donor cell-associated lacI repressor cassette. After construction of a range of strains and plasmids with combinations of genes expressing fluorescent proteins from constitutive (cell tagging) or regulated...

  14. Experimental investigation of ice slurry heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per; Palm, Bjoern; Melinder, Aake [Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Royal Institute of Technology, Brinellvaegen 68, 10044 Stockholm (Sweden)

    2009-09-15

    Heat transfer of ice slurry flow based on ethanol-water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus-Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus-Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Re{sub cf} > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results. (author)

  15. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance.

    Science.gov (United States)

    Jutkina, Jekaterina; Rutgersson, Carolin; Flach, Carl-Fredrik; Larsson, D G Joakim

    2016-04-01

    Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10μg/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens.

  16. Quantitative assessment of human exposure to extended spectrum and AmpC β-lactamases bearing E. coli in lettuce attributable to irrigation water and subsequent horizontal gene transfer.

    Science.gov (United States)

    Njage, P M K; Buys, E M

    2017-01-02

    The contribution of the fresh produce production environment to human exposure with bacteria bearing extended spectrum β-lactamases and AmpC β-lactamases (ESBL/AmpC) has not been reported. High prevalence of ESBLs/AmpC bearing E. coli as well as a high gene transfer efficiency of lettuce and irrigation water E. coli isolates was previously reported. This stochastic modeling was aimed at quantitatively assessing human exposure to ESBL/AmpC bearing E. coli through lettuce attributable to irrigation water and subsequent horizontal gene transfer. Modular process risk approach was used for the quantitative exposure assessment and models were constructed in Ms. Excel spreadsheet with farm to consumption chain accounted for by primary production, processing, retail and consumer storage. Probability distributions were utilised to take into account the variability of the exposure estimates. Exposure resulting from ESBL/AmpC positive E. coli and gene transfer was taken into account. Monte Carlo simulation was carried out using @Risk software followed by sensitivity and scenario analysis to assess most effective single or combinations of mitigation strategies for the ESBL/AmpC positive E. coli events from farm to fork. Three percent of South African lettuce consumers are exposed to lettuce contaminated with about 10(6.4)±10(6.7) (95% CI: 10(5.1)-10(7)) cfu of ESBL/AmpC positive E. coli per serving. The contribution of originally positive isolates and conjugative genetic transfer was 10(6)±10(6.7) (95% CI: 10(5)-10(7)) and 10(5.2)±10(5.6) (95% CI: 10(3.9)-10(5.8)) cfu per serving respectively. Proportion of ESBL/AmpC positive E. coli (Spearman's correlation coefficient (ρ)=0.85), conjugative gene transfer (ρ=0.05-0.14), washing in chlorine water (ρ=0.18), further rinsing (ρ=0.15), and prevalence of E. coli in irrigation water (ρ=0.16) had highest influence on consumer exposure. The most effective single methods in reducing consumer exposure were reduction in

  17. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements.

    Science.gov (United States)

    Richard, D; Ravigné, V; Rieux, A; Facon, B; Boyer, C; Boyer, K; Grygiel, P; Javegny, S; Terville, M; Canteros, B I; Robène, I; Vernière, C; Chabirand, A; Pruvost, O; Lefeuvre, P

    2017-04-01

    Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family. © 2017 John Wiley & Sons Ltd.

  18. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  19. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth families.

    Directory of Open Access Journals (Sweden)

    Angelika Böttger

    Full Text Available The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.

  20. Condensation heat transfer of steam on a single horizontal tube

    Science.gov (United States)

    Graber, K. A.

    1983-06-01

    An experimental apparatus was designed, constructed and instrumented in an effort to systematically and carefully study the condensation heat-transfer coefficient on a single, horizontal tube. A smooth, thick-walled copper tube of length 133.5 mm, with an outside diameter of 15.9 mm and an inside diameter of 12.7 mm was instrumented with six wall thermocouples. The temperature rise across the test section was measured accurately using quartz crystal thermometers. The inside heat-transfer coefficient was determined using the Sieder-Tate correlation with leading coefficient of 0.029. Initial steam side data were taken at atmospheric pressure to test the data acquisition/reduction computer programs.

  1. Acquisition through horizontal gene transfer of plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 points towards the dairy origin of the species.

    Directory of Open Access Journals (Sweden)

    Konstantinos Papadimitriou

    Full Text Available Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex.We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland showing that pSMA198's acquisition is not a recent event.Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species.

  2. Phage-mediated Shiga toxin (Stx) horizontal gene transfer and expression in non-Shiga toxigenic Enterobacter and Escherichia coli strains.

    Science.gov (United States)

    Khalil, Rowaida K S; Skinner, Craig; Patfield, Stephanie; He, Xiaohua

    2016-07-01

    Enterobacter cloacae M12X01451 strain recently identified from a clinical specimen produces a new Stx1 subtype (Stx1e) that was not neutralized by existing anti-Stx1 monoclonal antibodies. Acquisition of stx by Ent. cloacae is rare and origin/stability of stx1e in M12X01451 is not known. In this study, we confirmed the ability of Stx1a- and Stx1e-converting phages from an Escherichia coli O157:H7 strain RM8530 and M12X01451 respectively to infect several E. coli and Ent. cloacae strains. stx1e was detected in 97.5% and 72.5% of progenies of strains lysogenized by stx1e phage after 10 (T10) and 20 (T20) subcultures, versus 65% and 17.5% for stx1a gene. Infection of M12X01451 and RM8530 with each other's phages generated double lysogens containing both phages. stx1a was lost after T10, whereas the stx1e was maintained even after T20 in M12X01451 lysogens. In RM8530 lysogens, the acquired stx1e was retained with no mutations, but 20% of stx1a was lost after T20 ELISA and western blot analyses demonstrated that Stx1e was produced in all strains lysogenized by stx1e phage; however, Stx1a was not detected in any lysogenized strain. The study results highlight the potential risks of emerging Stx-producing strains via bacteriophages either in the human gastrointestinal tract or in food production environments, which are matters of great concern and may have serious impacts on human health.

  3. Acquisition through Horizontal Gene Transfer of Plasmid pSMA198 by Streptococcus macedonicus ACA-DC 198 Points towards the Dairy Origin of the Species

    Science.gov (United States)

    Papadimitriou, Konstantinos; Anastasiou, Rania; Maistrou, Eleni; Plakas, Thomas; Papandreou, Nikos C.; Hamodrakas, Stavros J.; Ferreira, Stéphanie; Supply, Philip; Renault, Pierre; Pot, Bruno; Tsakalidou, Effie

    2015-01-01

    Background Streptococcus macedonicus is an intriguing streptococcal species whose most frequent source of isolation is fermented foods similarly to Streptococcus thermophilus. However, S. macedonicus is closely related to commensal opportunistic pathogens of the Streptococcus bovis/Streptococcus equinus complex. Methodology/Principal Findings We analyzed the pSMA198 plasmid isolated from the dairy strain Streptococcus macedonicus ACA-DC 198 in order to provide novel clues about the main ecological niche of this bacterium. pSMA198 belongs to the narrow host range pCI305/pWV02 family found primarily in lactococci and to the best of our knowledge it is the first such plasmid to be reported in streptococci. Comparative analysis of the pSMA198 sequence revealed a high degree of similarity with plasmids isolated from Lactococcus lactis strains deriving from milk or its products. Phylogenetic analysis of the pSMA198 Rep showed that the vast majority of closely related proteins derive from lactococcal dairy isolates. Additionally, cloning of the pSMA198 ori in L. lactis revealed a 100% stability of replication over 100 generations. Both pSMA198 and the chromosome of S. macedonicus exhibit a high percentage of potential pseudogenes, indicating that they have co-evolved under the same gene decay processes. We identified chromosomal regions in S. macedonicus that may have originated from pSMA198, also supporting a long co-existence of the two replicons. pSMA198 was also found in divergent biotypes of S. macedonicus and in strains isolated from dispersed geographic locations (e.g. Greece and Switzerland) showing that pSMA198’s acquisition is not a recent event. Conclusions/Significance Here we propose that S. macedonicus acquired plasmid pSMA198 from L. lactis via an ancestral genetic exchange event that took place most probably in milk or dairy products. We provide important evidence that point towards the dairy origin of this species. PMID:25584532

  4. Lateral gene transfer, rearrangement, reconciliation

    NARCIS (Netherlands)

    Patterson, M.D.; Szollosi, G.; Daubin, V.; Tannier, E.

    2013-01-01

    Background. Models of ancestral gene order reconstruction have progressively integrated different evolutionary patterns and processes such as unequal gene content, gene duplications, and implicitly sequence evolution via reconciled gene trees. These models have so far ignored lateral gene transfer,

  5. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-12-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native

  6. Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Peden John F

    2005-01-01

    Full Text Available Abstract Background Horizontal gene transfer is central to evolution in most bacterial species. The detection of exchanged regions is often based upon analysis of compositional characteristics and their comparison to the organism as a whole. In this study we describe a new methodology combining aspects of established signature analysis with textual analysis approaches. This approach has been used to analyze the two available genome sequences of H. pylori. Results This gene-by-gene analysis reveals a wide range of genes related to both virulence behaviour and the strain differences that have been relatively recently acquired from other sequence backgrounds. These frequently involve single genes or small numbers of genes that are not associated with transposases or bacteriophage genes, nor with inverted repeats typically used as markers for horizontal transfer. In addition, clear examples of horizontal exchange in genes associated with 'core' metabolic functions were identified, supported by differences between the sequenced strains, including: ftsK, xerD and polA. In some cases it was possible to determine which strain represented the 'parent' and 'altered' states for insertion-deletion events. Different signature component lengths showed different sensitivities for the detection of some horizontally transferred genes, which may reflect different amelioration rates of sequence components. Conclusion New implementations of signature analysis that can be applied on a gene-by-gene basis for the identification of horizontally acquired sequences are described. These findings highlight the central role of the availability of homologous substrates in evolution mediated by horizontal exchange, and suggest that some components of the supposedly stable 'core genome' may actually be favoured targets for integration of foreign sequences because of their degree of conservation.

  7. Boiling heat transfer in horizontal and inclined rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Morcos, S.M.; Mobarak, A.; Hilal, M.; Mohareb, M.R. (Cairo Univ. (Egypt))

    1987-05-01

    The present experimental investigation is concerned with boiling heat transfer of water inside both horizontal and inclined rectangular channels under a relatively low heat flux. These configurations simulate the absorber channel of line-focus solar concentrations under boiling conditions. The experimental facility includes electrically heated aluminum rectangular channels with aspect ratios of 2.67 and 0.37. The experimental results of the two-phase Nusselt number for the two aspect ratios and for the inclination angles 0, 15, 30, and 45 deg were correlated in terms of a ratio of the two-phase to the liquid-phase Reynolds number for the forced-convection vaporization region. The proposed correlations agree well with previous investigations. In the present work, classifications of the various flow patterns were made by direct observation through a glass window at the end of the test section.

  8. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation

    Directory of Open Access Journals (Sweden)

    Finogenova Tatiana V

    2006-10-01

    Full Text Available Abstract Background The glyoxylate cycle is thought to be present in bacteria, protists, plants, fungi, and nematodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate synthase (MS and isocitrate lyase (ICL, in animal tissues has been reported. In order to clarify the status of the MS and ICL genes in animals and get an insight into their evolution, we undertook a comparative-genomic study. Results Using sequence similarity searches, we identified MS genes in arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of placental mammals. The regions of the placental mammals' genomes expected to code for malate synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear similarity to the opossum MS sequence but contain stop codons, indicating that the MS gene became a pseudogene in placental mammals. By contrast, the ICL gene is undetectable in animals other than the nematodes that possess a bifunctional, fused ICL-MS gene. Examination of phylogenetic trees of MS and ICL suggests multiple horizontal gene transfer events that probably went in both directions between several bacterial and eukaryotic lineages. The strongest evidence was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial source with the corresponding operonic organization by the common ancestor of the nematodes. Conclusion The distribution of the MS and ICL genes in animals suggests that either they encode alternative enzymes of the glyoxylate cycle that are not orthologous to the known MS and ICL or the animal MS acquired a new function that remains to be characterized. Regardless of the ultimate solution to this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable variety of evolutionary events including unusual horizontal gene transfer from bacteria to animals. Reviewers Arcady Mushegian

  9. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns.

    Science.gov (United States)

    Li, Fay-Wei; Villarreal, Juan Carlos; Kelly, Steven; Rothfels, Carl J; Melkonian, Michael; Frangedakis, Eftychios; Ruhsam, Markus; Sigel, Erin M; Der, Joshua P; Pittermann, Jarmila; Burge, Dylan O; Pokorny, Lisa; Larsson, Anders; Chen, Tao; Weststrand, Stina; Thomas, Philip; Carpenter, Eric; Zhang, Yong; Tian, Zhijian; Chen, Li; Yan, Zhixiang; Zhu, Ying; Sun, Xiao; Wang, Jun; Stevenson, Dennis W; Crandall-Stotler, Barbara J; Shaw, A Jonathan; Deyholos, Michael K; Soltis, Douglas E; Graham, Sean W; Windham, Michael D; Langdale, Jane A; Wong, Gane Ka-Shu; Mathews, Sarah; Pryer, Kathleen M

    2014-05-06

    Ferns are well known for their shade-dwelling habits. Their ability to thrive under low-light conditions has been linked to the evolution of a novel chimeric photoreceptor--neochrome--that fuses red-sensing phytochrome and blue-sensing phototropin modules into a single gene, thereby optimizing phototropic responses. Despite being implicated in facilitating the diversification of modern ferns, the origin of neochrome has remained a mystery. We present evidence for neochrome in hornworts (a bryophyte lineage) and demonstrate that ferns acquired neochrome from hornworts via horizontal gene transfer (HGT). Fern neochromes are nested within hornwort neochromes in our large-scale phylogenetic reconstructions of phototropin and phytochrome gene families. Divergence date estimates further support the HGT hypothesis, with fern and hornwort neochromes diverging 179 Mya, long after the split between the two plant lineages (at least 400 Mya). By analyzing the draft genome of the hornwort Anthoceros punctatus, we also discovered a previously unidentified phototropin gene that likely represents the ancestral lineage of the neochrome phototropin module. Thus, a neochrome originating in hornworts was transferred horizontally to ferns, where it may have played a significant role in the diversification of modern ferns.

  10. Multiple recent horizontal transfers of a large genomic region in cheese making fungi.

    Science.gov (United States)

    Cheeseman, Kevin; Ropars, Jeanne; Renault, Pierre; Dupont, Joëlle; Gouzy, Jérôme; Branca, Antoine; Abraham, Anne-Laure; Ceppi, Maurizio; Conseiller, Emmanuel; Debuchy, Robert; Malagnac, Fabienne; Goarin, Anne; Silar, Philippe; Lacoste, Sandrine; Sallet, Erika; Bensimon, Aaron; Giraud, Tatiana; Brygoo, Yves

    2014-01-01

    While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti--called Wallaby--present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.

  11. Horizontal gene transfer-emerging multidrug resistance in hospital bacteria%医院菌群因水平基因转移出现的多药抗药性

    Institute of Scientific and Technical Information of China (English)

    Senka DZIDIC; Vladimir BEDEKOVIC

    2003-01-01

    The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past fewdecades. This increase has been attributed to a combination of microbial characteristics, the selective pressure ofantimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. Theresistance is acquired by mutational change or by the acquisition of resistance-encoding genetic material which istransfered from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuseof antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greaternumber of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistantorganisms. The resistance gene sequences are integrated by recombination into several classes of naturally occur-ring gene expression cassettes and disseminated within the microbial population by horizontal gene transfermechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in theintensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistantorganisms. Methicilin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum beta-lactamase (ESBL) producing Gram negative bacilli are identified as major problem in nosocomial infections. Recentsurveillance studies have demonstrated trend towards more seriously ill patients suffering from multidrug-resistantnosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce theaplication of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures,infection prevention and control of horizontal nosocomial transmission of organisms.

  12. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae)

    Science.gov (United States)

    Shannon C.K. Straub; Richard C. Cronn; Christopher Edwards; Mark Fishbein; Aaron. Liston

    2013-01-01

    Horizontal gene transfer (HGT) of DNA from the plastid to the nuclear and mitochondrial genomes of higher plants is a common phenomenon; however, plastid genomes (plastomes) are highly conserved and have generally been regarded as impervious to HGT. We sequenced the 158 kb plastome and the 690 kb mitochondrial genome of common milkweed (Asclepias syriaca [Apocynaceae...

  13. Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts.

    Directory of Open Access Journals (Sweden)

    Donald M Gardiner

    2012-09-01

    Full Text Available Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.

  14. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-05-01

    Full Text Available Small RNAs (sRNAs, including small interfering RNAs (siRNAs and microRNAs (miRNAs, are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  15. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    Science.gov (United States)

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences.

  16. Enhancement of heat transfer in condensation of refrigerant vapor on horizontal finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, O.P.; Khizhnyakov, S.V. (Northwestern Polytechnic Inst. (SU))

    1991-01-01

    This paper reports on the technique for predicting the heat transfer coefficients in film condensation of Freons on horizontal tubes with different fin geometries that has been improved. The suggested technique allows for the spatial orientation of the different parts of the heat transfer area, the capillary contraction of condensate, and its holdup on the bottom zone of the horizontal tube.

  17. Unusual features of the sequences of copies of the 16S-23S rRNA internal transcribed spacer regions of Acinetobacter bereziniae, Acinetobacter guillouiae and Acinetobacter baylyi arise from horizontal gene transfer events.

    Science.gov (United States)

    Maslunka, Christopher; Gürtler, Volker; Seviour, Robert

    2015-02-01

    The highly variable nature of the internal transcribed spacer region (ITS) has been claimed to represent an ideal target for designing species-specific probes/primers capable of differentiating between closely related Acinetobacter species. However, several Acinetobacter species contain multiple ITS copies of variable lengths, and these include Acinetobacter bereziniae, Acinetobacter guillouiae and Acinetobacter baylyi. This study shows these length variations result from inter-genomic insertion/deletion events (indels) involving horizontal transfer of ITS fragments of other Acinetobacter species and possibly unrelated bacteria, as shown previously by us. In some instances, indel incorporation results in the loss of probe target sites in the recipient cell ITS. In other cases, some indel sequences contain target sites for probes designed from a single ITS sequence to target other Acinetobacter species. Hence, these can generate false positives. The largest of the indels that remove probe sites is 683 bp (labelled bay/i1-0), and it derives from the horizontal transfer of a complete ITS between A. bereziniae BCRC15423(T) and A. baylyi strain ADP1. As a consequence, ITS sequencing or fingerprinting cannot be used to distinguish between the 683 bp ITS in these two strains.

  18. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.

    Science.gov (United States)

    Whitehead, Michael P; Hooley, Paul; W Brown, Michael R

    2013-06-05

    Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species

  19. A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus.

    Science.gov (United States)

    Woloszynska, Magdalena; Bocer, Tomasz; Mackiewicz, Pawel; Janska, Hanna

    2004-11-01

    The mitochondrial genomes of some Phaseolus species contain a fragment of chloroplast trnA gene intron, named pvs-trnA for its location within the Phaseolus vulgaris sterility sequence (pvs). The purpose of this study was to determine the type of transfer (intracellular or horizontal) that gave rise to pvs-trnA. Using a PCR approach we could not find the respective portion of the trnA gene as a part of pvs outside the Phaseolus genus. However, a BLAST search revealed longer fragments of trnA present in the mitochondrial genomes of some Citrus species, Helianthus annuus and Zea mays. Basing on the identity or near-identity between these mitochondrial sequences and their chloroplast counterparts we concluded that they had relocated from chloroplasts to mitochondria via recent, independent, intracellular DNA transfers. In contrast, pvs-trnA displayed a relatively higher sequence divergence when compared with its chloroplast counterpart from Phaseolus vulgaris. Alignment of pvs-trnA with corresponding trnA fragments from 35 plant species as well as phylogenetic analysis revealed that pvs-trnA grouped with non-eudicot sequences and was well separated from all Fabales sequences. In conclusion, we propose that pvs-trnA arose via horizontal transfer of a trnA intron fragment from chloroplast of a non-eudicot plant to Phaseolus mitochondria. This is the first example of horizontal transfer of a chloroplast sequence to the mitochondrial genome in higher plants.

  20. Xenorhodopsins, an enigmatic new class of microbial rhodopsins horizontally transferred between archaea and bacteria

    Directory of Open Access Journals (Sweden)

    Ugalde Juan A

    2011-10-01

    Full Text Available Abstract Based on unique, coherent properties of phylogenetic analysis, key amino acid substitutions and structural modeling, we have identified a new class of unusual microbial rhodopsins related to the Anabaena sensory rhodopsin (ASR protein, including multiple homologs not previously recognized. We propose the name xenorhodopsin for this class, reflecting a taxonomically diverse membership spanning five different Bacterial phyla as well as the Euryarchaeotal class Nanohaloarchaea. The patchy phylogenetic distribution of xenorhodopsin homologs is consistent with historical dissemination through horizontal gene transfer. Shared characteristics of xenorhodopsin-containing microbes include the absence of flagellar motility and isolation from high light habitats. Reviewers: This article was reviewed by Dr. Michael Galperin and Dr. Rob Knight.

  1. Heat transfer by natural convection into an horizontal cavity; Transferencia de calor por conveccion natural en una cavidad horizontal

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo J, P

    1998-12-31

    At this thesis it is studied the heat transfer by natural convection in an horizontal cavity, it is involved a boiling`s part that is described the regimes and correlations differences for boiling`s curve. It is designed a horizontal cavity for realize the experimental part and it`s mention from equipment or instrumentation to succeed in a experimentation that permits to realize the analysis of heat transfer, handling as water fluid at atmospheric pressure and where it`s present process from natural convection involving part boiling`s subcooled. The system consists of heater zone submerged in a horizontal cavity with water. Once part finished experimental with information to obtained it`s proceeded to obtain a correlation, realized starting from analysis dimensionless such as: Jakob, Bond and Grasoft (Boiling) besides of knows in natural convection: Prandtl and Nusselt. The mathematical model explains the behavior for natural convection continued part boiling`s subcooled. It is realize analysis graphics too where it`s show comparing with Globe Dropkin and Catton equations by natural convection with bottom heating. (Author)

  2. Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival

    DEFF Research Database (Denmark)

    Peng, Xu

    2008-01-01

    seven ORFs, three of which encode an atypical RepA, a PlrA and a CopG protein. A fourth ORF exhibits a high nucleotide sequence identity to the SSV4 integrase gene, which suggests that it has been transferred to the plasmid from SSV4. A single point mutation within an otherwise identical 500 bp region...... infectivity. The virus and plasmid carry genomes of 15 135 and 6970 bp, respectively. For SSV4, 33 predicted ORFs are compactly organized with a strong preference for UGA stop codons, three-quarters of which overlap with either the Shine-Dalgarno motif or the start codon of the following gene. pXZ1 carries...... of the integrase gene occurs in the viral attachment site (attP), which corresponds to the anticodon region of the targeted tRNA gene in the host chromosome. This point mutation confers on pXZ1 the ability to integrate into the tRNA(Glu)[CUC] gene, which differs from the integration site of SSV4, t...

  3. Simultaneous identification of duplications and lateral gene transfers.

    Science.gov (United States)

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens

    2011-01-01

    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  4. Horizontal

    Institute of Scientific and Technical Information of China (English)

    ZHONG; Chunping

    2005-01-01

    [1]Wu, H., Bochner technique in differential geometry, Advance in Math. (in Chinese), 1981, 10(1): 57-76.[2]Morrow, J., Kodaira, K., Complex Manifolds, New York: Holt, Rinehart & Winston, 1971.[3]Abate, M., Aikou, T., Patrizio, G., Preface for Complex Finsler Geometry, Cont. Math., Vol. 196, Providence,RI: Amer. Math. Soc., 1996, 97-100.[4]Abate, M., Patrizio, G., Finsler Metrics-A global approach with applications to geometric function theory,Lecture Notes in Mathematics, Vol. 1591, Bedin: Springer-Verlag, 1994.[5]Antonelli, P. L., Lackey, B.(eds.), The Theory of Finslerian Laplacians and Applications, MAIA 459, Dordrecht:Kluwer Academic Publishers, 1998.[6]Bao, D., Lackey, B., A Hodge decomposition theorem for Finsler spaces, C. R. Acad. Sci. Paris, t. 323, Serie 1,1996, 51-56.[7]Munteanu, O., Weitzenbock formulas for horizontal and vertical Laplacians, Houston Journal of Mathematics,2003, 29(4): 889-900.[8]Faran, J. J., The equivalence problem for complex Finsler Hamiltonians, Cont. Math.,Vol. 196, Providence, RI:Amer. Math. Soc., 1996, 133-144.[9]Kobayashi, S., Complex Finsler vector bundles, Cont. Math., Vol. 196, Providence, RI: Amer. Math. Soc.,1996,145-153.[10]Aikou, T., On complex Finsler manifolds, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. & Chem.), 1991, 24:9-25.

  5. Achromobacter xylosoxidans: an emerging pathogen carrying different elements involved in horizontal genetic transfer.

    Science.gov (United States)

    Traglia, German Matías; Almuzara, Marisa; Merkier, Andrea Karina; Adams, Christina; Galanternik, Laura; Vay, Carlos; Centrón, Daniela; Ramírez, María Soledad

    2012-12-01

    In the last few years, numerous cases of multidrug-resistant Achromobacter xylosoxidans infections have been documented in immunocompromised and cystic fibrosis patients. To gain insights into the molecular mechanisms and mobile elements related to multidrug resistance in this bacterium, we studied 24 non-epidemiological A. xylosoxidans clinical isolates from Argentina. Specific primers for plasmids, transposons, insertion sequences, bla(ampC), intI1, and intI2 genes were used in PCR reactions. The obtained results showed the presence of wide host range IncP plasmids in ten isolates and a high dispersion of class 1 integrons (n = 10) and class 2 integrons (n = 3). Four arrays in the variable region (vr) of class 1 integrons were identified carrying different gene cassettes as the aminoglycoside resistance aac(6')-Ib and aadA1, the trimethoprim resistance dfrA1 and dfrA16, and the β-lactamase bla(OXA-2). In only one of the class 2 integrons, a vr was amplified that includes sat2-aadA1. The bla(ampC) gene was found in all isolates, confirming its ubiquitous nature. Our results show that A. xylosoxidans clinical isolates contain a rich variety of genetic elements commonly associated with resistance genes and their dissemination. This supports the hypothesis that A. xylosoxidans is becoming a reservoir of horizontal genetic transfer elements commonly involved in spreading antibiotic resistance.

  6. Whole genome evaluation of horizontal transfers in the pathogenic fungus Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Deschavanne Patrick

    2010-03-01

    Full Text Available Abstract Background Numerous cases of horizontal transfers (HTs have been described for eukaryote genomes, but in contrast to prokaryote genomes, no whole genome evaluation of HTs has been carried out. This is mainly due to a lack of parametric methods specially designed to take the intrinsic heterogeneity of eukaryote genomes into account. We applied a simple and tested method based on local variations of genomic signatures to analyze the genome of the pathogenic fungus Aspergillus fumigatus. Results We detected 189 atypical regions containing 214 genes, accounting for about 1 Mb of DNA sequences. However, the fraction of atypical DNA detected was smaller than the average amount detected in the same conditions in prokaryote genomes (3.1% vs 5.6%. It appeared that about one third of these regions contained no annotated genes, a proportion far greater than in prokaryote genomes. When analyzing the origin of these HTs by comparing their signatures to a home made database of species signatures, 3 groups of donor species emerged: bacteria (40%, fungi (25%, and viruses (22%. It is to be noticed that though inter-domain exchanges are confirmed, we only put in evidence very few exchanges between eukaryotic kingdoms. Conclusions In conclusion, we demonstrated that HTs are not negligible in eukaryote genomes, bearing in mind that in our stringent conditions this amount is a floor value, though of a lesser extent than in prokaryote genomes. The biological mechanisms underlying those transfers remain to be elucidated as well as the biological functions of the transferred genes.

  7. The effect of blowing or suction on laminar free convective heat transfer on flat horizontal plates

    NARCIS (Netherlands)

    Brouwers, Jos

    1993-01-01

    In the present paper laminar free convective heat transfer on flat permeable horizontal plates is investigated. To assess the effect of surface suction or injection on heat transfer a correction factor, provided by the film model (or ldquofilm theoryrdquo), is applied. Comparing the film model predi

  8. Heat transfer in a membrane assisted fluidized bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, Salim A.R.K.; Volkers, Sander; Sint Annaland, van Martin; Kuipers, Hans

    2005-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidized bed operated in the bubbling fluidization regime was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged

  9. Heat transfer in a membrane assisted fluidised bed with immersed horizontal tubes

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Volkers, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2004-01-01

    The effect of gas permeation through horizontally immersed membrane tubes on the heat transfer characteristics in a membrane assisted fluidised bed was investigated experimentally. Local time-averaged heat transfer coefficients from copper tubes arranged in a staggered formation with the membrane tu

  10. Horizontal RNA transfer mediates platelet-induced hepatocyte proliferation

    NARCIS (Netherlands)

    Kirschbaum, Marc; Karimian, Golnar; Adelmeijer, Jelle; Giepmans, Ben N. G.; Porte, Robert J.; Lisman, Ton

    2015-01-01

    Liver regeneration is stimulated by blood platelets, but the molecular mechanisms involved are largely unexplored. Although platelets are anucleate, they do contain coding or regulatory RNAs that can be functional within the platelet or, after transfer, in other cell types. Here, we show that

  11. A functional difference between native and horizontally acquired genes in bdelloid rotifers.

    Science.gov (United States)

    Barbosa, Elton G G; Crisp, Alastair; Broadbent, Sarah E; Carrillo, Martina; Boschetti, Chiara; Tunnacliffe, Alan

    2016-09-15

    The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.

  12. Boiling heat transfer in a small horizontal rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.N.; Wambsganss, M.W.; Jendrzejczyk, J.A. [Argonne National Lab., IL (United States); France, D.M. [Illinois Univ., Chicago, IL (United States). Dept. of Mechanical Engineering

    1993-08-01

    Compact heat exchangers have traditionally found wide application in the transportation industry, where they are used as evaporators and condensers in vapor compression cycles for air conditioning and refrigeration. Such heat exchangers possess numerous attractive features including high thermal effectiveness, small size, low weight, design flexibility, and pure counterflow, and they can accommodate multiple streams. Today, there is a widespread interest in expanding the range of application of compact heat exchangers to include phase-change heat transfer in the process industries, among others. An overall objective of this effort is to provide the basis for establishing design technology in this area. In the present study, small channel flow boiling heat transfer was extended to a rectangular channel (4.06 {times} 1.70 mm) using refrigerant 12 (R-12). As with the circular tube studies, the flow channel wall was electrically heated providing a constant heat flux. Tests were performed over a quality range of 0.15 to 0.80, and large ranges of mass fluxes (50 to 400 kg/m{sup 2}s) and heat flux (4 to 34 kW/m{sup 2}). Heat transfer was measured and results are compared with correlation predictions.

  13. Gene transfer from a parasitic flowering plant to a fern

    OpenAIRE

    Davis, Charles C.; Anderson, William R.; Wurdack, Kenneth J

    2005-01-01

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps fro...

  14. Numerical modeling calculation for the spatial distribution characteristics of horizontal field transfer functions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer func-tions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions¢ observation.

  15. Recent horizontal transfer, functional adaptation and dissemination of a bacterial group II intron.

    Science.gov (United States)

    LaRoche-Johnston, Félix; Monat, Caroline; Cousineau, Benoit

    2016-10-20

    Group II introns are catalytically active RNA and mobile retroelements present in certain eukaryotic organelles, bacteria and archaea. These ribozymes self-splice from the pre-mRNA of interrupted genes and reinsert within target DNA sequences by retrohoming and retrotransposition. Evolutionary hypotheses place these retromobile elements at the origin of over half the human genome. Nevertheless, the evolution and dissemination of group II introns was found to be quite difficult to infer. We characterized the functional and evolutionary relationship between the model group II intron from Lactococcus lactis, Ll.LtrB, and Ef.PcfG, a newly discovered intron from a clinical strain of Enterococcus faecalis. Ef.PcfG was found to be homologous to Ll.LtrB and to splice and mobilize in its native environment as well as in L. lactis. Interestingly, Ef.PcfG was shown to splice at the same level as Ll.LtrB but to be significantly less efficient to invade the Ll.LtrB recognition site. We also demonstrated that specific point mutations between the IEPs of both introns correspond to functional adaptations which developed in L. lactis as a response to selective pressure on mobility efficiency independently of splicing. The sequence of all the homologous full-length variants of Ll.LtrB were compared and shown to share a conserved pattern of mutation acquisition. This work shows that Ll.LtrB and Ef.PcfG are homologous and have a common origin resulting from a recent lateral transfer event followed by further adaptation to the new target site and/or host environment. We hypothesize that Ef.PcfG is the ancestor of Ll.LtrB and was initially acquired by L. lactis, most probably by conjugation, via a single event of horizontal transfer. Strong selective pressure on homing site invasion efficiency then led to the emergence of beneficial point mutations in the IEP, enabling the successful establishment and survival of the group II intron in its novel lactococcal environment. The current

  16. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  17. Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil's moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil's moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard "Technical Code for Ground Source Heat Pump (GB 50366-2005)" is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil's structure, backfilled materials,weather data, and economic analysis.

  18. Mechanisms for horizontal transfer of methoprene from treated to untreated Tribolium castaneum (Herbst)

    Science.gov (United States)

    Experiments were performed to determine the relative impact of different mechanisms of horizontal transfer of methoprene by Tribolium castaneum (Herbst), the red flour beetle. Insects exposed to 5 methoprene treated developmental stages (late-stage larvae, pupae, or adults) resulted in 100% mortalit...

  19. Experimental study on heat transfer characteristics of supercritical carbon dioxide in horizontal tube

    Institute of Scientific and Technical Information of China (English)

    Jing LV; Meng FU; Na QIN; Bin DONG

    2008-01-01

    The heat transfer characteristics of supercrit-ical carbon dioxide in a horizontal tube with water in the vertical cross flow form were experimentally investi-gated. The results indicate that the changes of inlet pres-sure, mass flow rate, and cooling water flow rate have major effects on heat transfer performance. The varia-tions of Reynolds number and Prandtl number were obtained in counter flow and vertical cross flow. The four conventional correlations for convection heat transfer of supercritical carbon dioxide were verified by the experi-mental data in this study and the correlation agree with this experimental condition was determined.

  20. Prediction of condensation heat transfer of low GWP refrigerants inside smooth horizontal tube

    Science.gov (United States)

    Hossain, Md. Anowar; Afroz, Hasan M. M.; Talukder, Shaon; Miyara, Akio

    2016-07-01

    The present research work observed the experimental and analytical results of two phase condensation heat transfer of the refrigerants R1234ze(E), R32, R410A, and R1234ze(E)/R32 mixtures inside a smooth horizontal tube. A water heated double tube horizontal heat exchanger with effective length of 3.6m and inner diameter of 4.35mm is used to take place the experiment. Mass flux and the saturation temperature are the design variables under which the experiment is carried out whose values varying from the range 160 to 400 Kg m-2s-1 and 30°C to 45°C, respectively. A new correlation for pure refrigerant has been proposed to predict the heat transfer inside a smooth horizontal tube by investigating the experimental data. The newly proposed correlation and some other existing correlations of condensation heat transfer for pure refrigerant have been used to predict the condensation heat transfer of R1234ze(E), R32, R410A and dimethyl ether (DME) and compared the results. The comparison allows that the proposed model of pure refrigerant offered a better performance for all the refrigerants. All the experimental data can be predicted within a 10.2% mean deviation by using the proposed correlation.

  1. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages.

    Science.gov (United States)

    Chen, John; Carpena, Nuria; Quiles-Puchalt, Nuria; Ram, Geeta; Novick, Richard P; Penadés, José R

    2015-05-01

    Bacteriophage-mediated horizontal gene transfer is one of the primary driving forces of bacterial evolution. The pac-type phages are generally thought to facilitate most of the phage-mediated gene transfer between closely related bacteria, including that of mobile genetic elements-encoded virulence genes. In this study, we report that staphylococcal cos-type phages transferred the Staphylococcus aureus pathogenicity island SaPIbov5 to non-aureus staphylococcal species and also to different genera. Our results describe the first intra- and intergeneric transfer of a pathogenicity island by a cos phage, and highlight a gene transfer mechanism that may have important implications for pathogen evolution.

  2. Skin friction and heat transfer of liquid jet over a continuous moving horizontal hot plate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The skin friction and heat transfer occurring in the laminarboundary layer which caused by a vertical liquid jet impinging on a continuously moving horizontal plate were studied. Similarity solutionsfor shear stress and heat distribution were obtained by using the shooting technique. The results shows that the skin friction decreases with an increase of velocity parameter, the evolving of thermal boundarydecrease with increasing in Prandtl number, but increase with increasing of velocity parameter.

  3. Horizontal Shear Transfer Between Ultra High Performance Concrete And Lightweight Concrete

    OpenAIRE

    Banta, Timothy E.

    2005-01-01

    Ultra high performance concrete, specifically Ductal® concrete, has begun to revolutionize the bridge design industry. This extremely high strength material has given smaller composite sections the ability to carry larger loads. As the forces being transferred through composite members are increasing in magnitude, it is vital that the equations being used for design are applicable for use with the new materials. Of particular importance is the design of the horizontal shear reinforcement ...

  4. Heat transfer coefficient determination for flow boiling in vertical and horizontal minichannels

    Directory of Open Access Journals (Sweden)

    Piasecka Magdalena

    2014-03-01

    Full Text Available The paper presents the results of boiling heat transfer research during FC-72 laminar flow along a minichannel of 1 mm depth, positioned vertically and horizontally, with an enhanced heating surface. One glass pane allows to determine the temperature of the heating wall by liquid crystal thermography. Calculations are aimed at the evaluation of one- and two-dimensional heat transfer approaches to determine the local heat transfer coefficient. In the one-dimensional approach only the direction of the flow in the channel is considered. In the two-dimensional approach the inverse problem in the heating wall and the direct problem in the glass barrier were solved by the finite element method with Trefftz functions as shape functions (FEMT. The developed flow boiling area was studied. Heat transfer coefficient values obtained for the horizontal minichannel were higher than those obtained for the vertical one. When the heat flux supplied to heating wall grows, the share of gas-phase increases leading to the heat transfer coefficient decreases. The same courses of the experiment were observed for the two applied methods, but the results obtained in the one-dimensional approach are considerably higher than in the two-dimensional one. One-dimensional approach seems to be less sensitive to measurement errors.

  5. Radiative and free-convective heat transfer from a finite horizontal plate inside an enclosure

    Science.gov (United States)

    Hrycak, Peter; Sandman, D. J.

    1986-01-01

    An experimental and analytical investigation of heat transfer from a horizontal, thin, square plate inside of an enclosure was carried out. Experimental results were obtained from both the upward-facing and the downward-facing sides of the heated plate. Starting with the integrated momentum and energy equations, approximate solutions were obtained for heat transfer in the laminar and the turbulent regime that correlate well with experimental data. Radiative heat transfer correction was given special attention. Effects of the enclosure-related recirculation of the test fluid, as well as effects of simultaneous heat transfer on both sides of the plate, caused an early transition, and indicated a high level of internal turbulence.

  6. Insights into horizontal acquisition patterns of dormancy and reactivation regulon genes in mycobacterial species using a partitioning-based framework

    Indian Academy of Sciences (India)

    VARUN MEHRA; TARINI SHANKAR GHOSH; SHARMILA S MANDE

    2016-09-01

    Horizontal Gene Transfer (HGT) events, initially thought to be rare in Mycobacterium tuberculosis, have recentlybeen shown to be involved in the acquisition of virulence operons in M. tuberculosis. We have developed a newpartitioning framework based HGT prediction algorithm, called Grid3M, and applied the same for the prediction ofHGTs in Mycobacteria. Validation and testing using simulated and real microbial genomes indicated better performanceof Grid3M as compared with other widely used HGT prediction methods. Specific analysis of the genesbelonging to dormancy/reactivation regulons across 14 mycobacterial genomes indicated that horizontal acquisition isspecifically restricted to important accessory proteins. The results also revealed Burkholderia species to be a probablesource of HGT genes belonging to these regulons. The current study provides a basis for similar analyses investigatingthe functional/evolutionary aspects of HGT genes in other pathogens. A database of Grid3M predicted HGTs incompletely sequenced genomes is available at https://metagenomics.atc.tcs.com/Grid3M/.

  7. Widespread occurrence and lateral transfer of the cyanobactin biosynthesis gene cluster in cyanobacteria.

    Science.gov (United States)

    Leikoski, Niina; Fewer, David P; Sivonen, Kaarina

    2009-02-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  8. Widespread Occurrence and Lateral Transfer of the Cyanobactin Biosynthesis Gene Cluster in Cyanobacteria ▿ †

    OpenAIRE

    Leikoski, Niina; Fewer, David P.; Sivonen, Kaarina

    2008-01-01

    Cyanobactins are small cyclic peptides produced by cyanobacteria. Here we demonstrate the widespread but sporadic occurrence of the cyanobactin biosynthetic pathway. We detected a cyanobactin biosynthetic gene in 48 of the 132 strains included in this study. Our results suggest that cyanobactin biosynthetic genes have a complex evolutionary history in cyanobacteria punctuated by a series of ancient horizontal gene transfer events.

  9. EXPERIMENTAL STUDY OF CONDENSATION HEAT TRANSFER CHARACTERISTICS OF HORIZONTAL TUBE BUNDLES IN VACUUM STATES

    Institute of Scientific and Technical Information of China (English)

    CHENG Shen; SUN Feng-zhong; SHI Yue-tao

    2012-01-01

    To develop an excellent heat transfer element under the vacuum condition,experiments about the heat transfer performance of horizontal tube bundles of different materials under various vacuum conditions were carried out,including the stainless steel tube,the brass tube,the Ni-based implanted steel tube and the ion implanted brass tube.The relative trends show that the condensation heat transfer coefficient and the overall heat transfer coefficient of bundles of four materials all increase with the vacuum degree,especially,those of the Ni-based implanted steel tube and the ion implanted brass tube.Under a high vacuum condition (0.07 MPa),the condensation heat transfer coefficient of the Ni-based implanted steel tube bundle is about 1.4 times of that of the stainless steel tube bundle,the condensation heat transfer coefficient of the ion implanted brass tube bundle is found to be about 1.3 times of that of the common brass tube bundle.Therefore,according to the condensation heat transfer characteristics studied under high vacuum conditions,it is believed that a dropwise condensation is partly achieved on the surface of these two implanted tube bundles,and the ion implantation is shown to be an effective method to achieve the dropwise condensation.Based on this study,it is believed that the Ni-based steel tube may replace the brass tube,which is more expensive as a heat transfer component.

  10. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  11. Detection of Heat Shock Protein (DnaK, DnaJ and GrpE) Horizontal Gene Transfers Among Acanthamoeba polyphaga, Acanthamoeba Polyphaga Mimivirus (APMV), Amoeba-Infecting Bacteria and Sputnik Virophage

    OpenAIRE

    Morteza Haghi; Ahmet Efe Koseoglu; Ismail Karaboz; Cemal Un

    2016-01-01

    Acanthamoeba polyphaga mimivirus (APMV) was isolated in 1992. . It’s large size, gram positivity and unique genome features attracted many scientists attention in evolutinary and clinical terms since it’s discovery. APMV shares its A.polyphaga host environment with other intracellular bacteria including mpylobacter jejuni, Vibrio cholerae, Legionella pneumophila, Listeria monocytogenes. It has been known that the giant viruses have adopted cellular genes during evolutionary process via horiz...

  12. Numerical investigation of flow and heat transfer performances of horizontal spiral-coil pipes

    Institute of Scientific and Technical Information of China (English)

    季家东; 葛培琪; 毕文波

    2016-01-01

    The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied. The numerical results are compared with the experimental data, to verify the numerical method. The effects of the inlet water mass flow rate, the structural parameters, the helical pitch and the radius ratio on the heat transfer performances are investigated. Perfor- mances of the secondary fluid flow with different radius ratios are also investigated. Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch. The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio isequal to 1.00. In addition, the fluid particle moves spirally along the pipe and the velocity changes periodically. The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio. Besides, the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies, and the eddy intensity decreases significantly along the pipe owing to the change of curvature. The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.

  13. Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube

    Science.gov (United States)

    Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il

    2016-10-01

    In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.

  14. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube

    Science.gov (United States)

    Hatami, N.; Kazemnejad Banari, A.; Malekzadeh, A.; Pouranfard, A. R.

    2017-02-01

    In this study, the effects of magnetic field on forced convection heat transfer of Fe3O4-water nanofluid with laminar flow regime in a horizontal pipe under constant heat flux conditions were studied, experimentally. The convective heat transfer of magnetic fluid flow inside the heated pipe with uniform magnetic field was measured. Fe3O4 nanoparticles with diameters less than 100 nm dispersed in water with various volume concentrations are used as the test fluid. The effect of the external magnetic field (Ha = 33.4 ×10-4 to 136.6 ×10-4) and nanoparticle concentrations (φ = 0, 0.1, 0.5, 1%) on heat transfer characteristics were investigated. Results showed that by the presence of a magnetic field, increase in nanoparticle concentration caused reduction of convection heat transfer coefficient. In this condition, heat transfer decreased up to 25%. Where, in the absence of an external magnetic field, adding magnetic nanoparticles increased convection heat transfer more than 60%. It was observed that the Nusselt number decreased by increasing the Hartmann number at a specified concentration of magnetic nanofluids, that reduction about 25% in heat transfer rate could be found.

  15. The capsule biosynthesis locus of Haemophilus influenzae show conspicuous similarity to the corresponding locus in Haemophilus sputorum and may have been recruited from this species by horizontal gene transfer

    DEFF Research Database (Denmark)

    Nielsen, Signe Maria; de Gier, Camilla; Dimopoulou, Chrysoula

    2015-01-01

    in export and processing of the capsular material, show high similarity to the corresponding genes in capsulate lineages of the pathogenic species Haemophilus influenzae; indeed, standard bexA and bexB PCRs for detection of capsulated strains of H. influenzae give positive results with strains of H....... sputorum was only distantly related to H. influenzae. In contrast to H. influenzae, the capsule locus in H. sputorum is not associated with transposases or other transposable elements. Our data suggest that the capsule locus of capsulate lineages of H. influenzae may relatively recently have been recruited...

  16. Flow film boiling heat transfer for subcooled liquids flowing upward perpendicular to single horizontal cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.S. [Kobe Univ. of Mercantile Marine, Dept. of Nuclear Engineering (Japan); Shiotsu, M. [Kyoto Univ., Dept. of Energy Sci. and Tech. (Japan); Sakurai, A. [Kyoto Univ. (Japan)

    2001-07-01

    The knowledge of flow film boiling heat transfer on a horizontal cylinder in various liquids flowing upward perpendicular to the cylinder is important as the database for the safety evaluation of the accidents such as rapid power burst and pressure reduction in the nuclear power plants. Flow film boiling heat transfer from single horizontal cylinders in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured under wide experimental conditions. The flow velocities ranged from 0 to 1 m/s, the system pressures ranged from 100 to 500 kPa, and the surface superheats were raised up to 800 K for water and 400 K for Freon-113, respectively. Platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The test heater was heated by direct electric current. The experimental data of film boiling heat transfer coefficients show that they increase with the increase of flow velocity, liquid subcooling, system pressure and with the decrease of cylinder diameter. Based on the experimental data, a correlation for subcooled flow film boiling heat transfer including the effects of liquid subcooling and radiation was presented, which can describe the experimental data obtained within 20% for the flow velocities below 0.7 m/s, and within -30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi's data were in the range from about -20% to +15%, the data of Motte and Bromley were about 30%,and the data of Sankaran and Witte were within +20 % of the curves given by the corresponding predicted values. (authors)

  17. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Directory of Open Access Journals (Sweden)

    Mei Yang

    Full Text Available Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.

  18. Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A mathematical model, surface-particle-emulsion heat transfer model, is presented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heat transfer near the surface is treated by dispersed particles touching the surface and through the emulsion when the distance from the surface is greater than the diameter of a particle. A film with an adjustable thickness which separates particles from the surface is not introduced in this model. The coverage ratio of particles on the surface is calculated by a stochastic model of particle packing density on a surface. By comparison of theoretical solutions with experimental data from some references, the mathematical model shows better qualitative and quantitative prediction for local heat transfer coefficients around a horizontal immersed tube in a fluidized bed.

  19. Measurements of mixed convective heat transfer to low temperature helium in a horizontal channel

    Science.gov (United States)

    Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevchenko, O. A.; Hendricks, R. C.; Daney, D. E.

    1979-01-01

    A horizontal 2.85 m long, 19 mm i.d. stainless steel heated circular channel was employed to measure coefficients of heat transfer to low temperature helium flow. Experimental parameters range from 6.5 to 15 K, from 0.12 to 0.3 MPa at heat fluxes up to 1000 W/m square and Reynolds numbers from 9,000 to 20,000. A significantly nonuniform distribution of heat transfer coefficients over the tube periphery is observed. Difference between temperatures on the upper and lower surfaces of the stainless steel channel wall was found to reach 9 K. It was noted that the highest temperature on the wall outer surface is displaced from its uppermost point. Measurements of local flow temperatures revealed vortical structure of the flow. The displacement of the point with the highest temperature is attributable to the effect of vortices. The relationships for calculating local and averaged coefficients of heat transfer are proposed.

  20. Numerical Study on the Heat Transfer of Carbon Dioxide in Horizontal Straight Tubes under Supercritical Pressure.

    Science.gov (United States)

    Yang, Mei

    2016-01-01

    Cooling heat transfer of supercritical CO2 in horizontal straight tubes with wall is numerically investigated by using FLUENT. The results show that almost all models are able to present the trend of heat transfer qualitatively, and the stand k-ε with enhanced wall treatment model shows the best agreement with the experimental data, followed by LB low Re turbulence model. Then further studies are discussed on velocity, temperature and turbulence distributions. The parameters which are defined as the criterion of buoyancy effect on convection heat transfer are introduced to judge the condition of the fluid. The relationships among the inlet temperature, outlet temperature, the mass flow rate, the heat flux and the diameter are discussed and the difference between the cooling and heating of CO2 are compared.

  1. Heat transfer in the flow of a cold, two-dimensional vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A cold, thin film of liquid impinging on an isothermal hot, horizontal surface has been investigated. An approximate solution for the velocity and temperature distributions in the flow along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for thin film flow. The approximate solution may provide a valuable basis for assessing flow and heat transfer in more complex settings.

  2. Natural convection heat transfer for a staggered array of heated, horizontal cylinders within a rectangular enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, C.E.

    1996-12-01

    This thesis presents the results of an experimental investigation of natural convection heat transfer in a staggered array of heated cylinders, oriented horizontally within a rectangular enclosure. The main purpose of this research was to extend the knowledge of heat transfer within enclosed bundles of spent nuclear fuel rods sealed within a shipping or storage container. This research extends Canaan`s investigation of an aligned array of heated cylinders that thermally simulated a boiling water reactor (BWR) spent fuel assembly sealed within a shipping or storage cask. The results are presented in terms of piecewise Nusselt-Rayleigh number correlations of the form Nu = C(Ra){sup n}, where C and n are constants. Correlations are presented both for individual rods within the array and for the array as a whole. The correlations are based only on the convective component of the heat transfer. The radiative component was calculated with a finite-element code that used measured surface temperatures, rod array geometry, and measured surface emissivities as inputs. The correlation results are compared to Canaan`s aligned array results and to other studies of natural convection in horizontal tube arrays.

  3. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  4. Security camera resolution measurements: Horizontal TV lines versus modulation transfer function measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, John Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.

  5. Fusion: a tale of recombination in an asexual fungus: The role of nuclear dynamics and hyphal fusion in horizontal chromosome transfer in Fusarium oxysporum

    OpenAIRE

    Shahi, S.

    2016-01-01

    Recent studies have shown that not only meiotic recombination is responsible for the fast evolution of fungal pathogens. In the asexual fungus F. oxysporum (Fo) the "fast" evolving part of the genome is organized into small chromosomes and one such chromosome houses all effector genes and is referred to as the "pathogenicity" chromosome. This pathogenicity chromosome can be horizontally transferred to a non-pathogenic strain, conferring pathogenicity. Here we use Fo as a model organism to add...

  6. Natural Convection Heat Transfer in Concentric Horizontal Annuli Containing a Saturated Porous Medi

    Directory of Open Access Journals (Sweden)

    Ahmed F. Alfahaid, R.Y. Sakr

    2012-10-01

    Full Text Available Natural convection in horizontal annular porous media has become a subject receiving increasing attention due to its practical importance in the problem of insulators, such as ducting system in high temperature gas-cooled reactors, heating systems, thermal energy storage systems, under ground cable systems, etc. This paper presents a numerical study for steady state thermal convection in a fully saturated porous media bounded by two horizontal concentric cylinders, the cylinders are impermeable to fluid motion and maintained at different, uniform temperatures.  The solution scheme is based on two-dimensional model, which is governed by Darcy-Oberbeck-Boussinesq equations. The finite element method using Galerkin technique is developed and employed to solve the present problem. A numerical simulation is carried out to examine the parametric effects of Rayleigh number and radius ratio on the role played by natural convection heat transfer in the porous annuli. The numerical results obtained from the present model were compared with the available published results and good agreement is observed. The average Nusselt number at the heating surface of the inner cylinder is correlated to Rayleigh number and radius ratio.Keywords: Natural convection, numerical investigation, saturated porous media, finite element method, concentric horizontal annuli.

  7. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    Science.gov (United States)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  8. Numerical Investigation on Slot air Jet impingement Heat Transfer between Horizontal Concentric Circular Cylinders

    Directory of Open Access Journals (Sweden)

    Arash Azimi

    2015-04-01

    Full Text Available Numerical study has been carried out for slot air jet impingement cooling of horizontal concentric circular cylinders. The slot air jet is situated at the symmetry line of a horizontal cylinder along the gravity vector and impinges to the bottom of the outer cylinder which is designated as θ=0°. The outer cylinder is partially opened at the top with width of W=30mm and is kept at constant temperature T= 62°C. Inner cylinder which is a part of the slot jet structure is chosen to be insulated. The effects of jet Reynolds number in the range of 100≤ Rej ≤1000 and the ratio of spacing between nozzle and outer cylinder surface to the jet width for H=4.2 and H=12.5 on the local and average Nusselt numbers are examined. In the numerical study, FLUENT CFD package is used and validated by comparing the results with the experimental data at the same Reynolds number. It is observed that the maximum Nusselt number occurs at the stagnation point at (θ=0° and the local heat transfer coefficient decrease on the circumference of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  9. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita

    NARCIS (Netherlands)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V.; Pringle, Anne

    2015-01-01

    - The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes invol

  10. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer

    Science.gov (United States)

    Novais, Carla; Tedim, Ana P.; Lanza, Val F.; Freitas, Ana R.; Silveira, Eduarda; Escada, Ricardo; Roberts, Adam P.; Al-Haroni, Mohammed; Baquero, Fernando; Peixe, Luísa; Coque, Teresa M.

    2016-01-01

    Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen. PMID

  11. Co-diversification of Enterococcus faecium core genomes and PBP5: evidences of pbp5 horizontal transfer

    Directory of Open Access Journals (Sweden)

    Carla Novais

    2016-10-01

    Full Text Available Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18 and ST78 in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180-280 kb chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen.

  12. Gene transfer strategies for augmenting cardiac function.

    Science.gov (United States)

    Peppel, K; Koch, W J; Lefkowitz, R J

    1997-07-01

    Recent transgenic as well as gene-targeted animal models have greatly increased our understanding of the molecular mechanisms of normal and compromised heart function. These studies have raised the possibility of using somatic gene transfer as a means for improving cardiac function. DNA transfer to a significant portion of the myocardium has thus far been difficult to accomplish. This review describes current efforts to achieve myocardial gene transfer in several model systems, with particular emphasis placed on adenovirus-mediated gene delivery, its possibilities, and current limitations. (Trend Cardiovasc Med 1997;7:145-150). © 1997, Elsevier Science Inc.

  13. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  14. Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, T.; Paknezhad, M. [Mechanical Engineering Department, Razi University, Kermanshah, Tehran 11365-4563 (Iran); Ashjaee, M.; Yazdani, S. [School of Mechanical Engineering, University of Tehran, Tehran 11365-4563 (Iran)

    2009-09-15

    Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)

  15. Heat and mass transfer characteristics of absorption of R134a into DMAC in a horizontal tube absorber

    Science.gov (United States)

    Harikrishnan, L.; Maiya, M. P.; Tiwari, S.; Wohlfeil, A.; Ziegler, F.

    2009-10-01

    In this paper the heat and mass transfer characteristics of a horizontal tube absorber for the mixture R134a/DMAC in terms of experimentally gained heat and mass transfer coefficients are presented. The heat transfer coefficient is mainly dependent on the solution’s mass flow rate. The mass transfer coefficient is strongly related to the subcooling of the solution. The data are compared to experimental absorption characteristics of water into aqueous lithium bromide in an absorption chiller. The mass transfer coefficients are of similar size whereas the heat transfer coefficients are about one order of magnitude smaller for R134a-DMAC.

  16. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, K.; Shiotsu, M.; Takeuchi, Y. [Institute of Atomic Energy, Kyoto Univ. (Japan)] [and others

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  17. Mobilisation and remobilisation of a large archetypal pathogenicity island of uropathogenic Escherichia coli in vitro support the role of conjugation for horizontal transfer of genomic islands

    Directory of Open Access Journals (Sweden)

    Hochhut Bianca

    2011-09-01

    Full Text Available Abstract Background A substantial amount of data has been accumulated supporting the important role of genomic islands (GEIs - including pathogenicity islands (PAIs - in bacterial genome plasticity and the evolution of bacterial pathogens. Their instability and the high level sequence similarity of different (partial islands suggest an exchange of PAIs between strains of the same or even different bacterial species by horizontal gene transfer (HGT. Transfer events of archetypal large genomic islands of enterobacteria which often lack genes required for mobilisation or transfer have been rarely investigated so far. Results To study mobilisation of such large genomic regions in prototypic uropathogenic E. coli (UPEC strain 536, PAI II536 was supplemented with the mobRP4 region, an origin of replication (oriVR6K, an origin of transfer (oriTRP4 and a chloramphenicol resistance selection marker. In the presence of helper plasmid RP4, conjugative transfer of the 107-kb PAI II536 construct occured from strain 536 into an E. coli K-12 recipient. In transconjugants, PAI II536 existed either as a cytoplasmic circular intermediate (CI or integrated site-specifically into the recipient's chromosome at the leuX tRNA gene. This locus is the chromosomal integration site of PAI II536 in UPEC strain 536. From the E. coli K-12 recipient, the chromosomal PAI II536 construct as well as the CIs could be successfully remobilised and inserted into leuX in a PAI II536 deletion mutant of E. coli 536. Conclusions Our results corroborate that mobilisation and conjugal transfer may contribute to evolution of bacterial pathogens through horizontal transfer of large chromosomal regions such as PAIs. Stabilisation of these mobile genetic elements in the bacterial chromosome result from selective loss of mobilisation and transfer functions of genomic islands.

  18. Gene transfer from a parasitic flowering plant to a fern.

    Science.gov (United States)

    Davis, Charles C; Anderson, William R; Wurdack, Kenneth J

    2005-11-07

    The rattlesnake fern (Botrychium virginianum (L.) Sw.) is obligately mycotrophic and widely distributed across the northern hemisphere. Three mitochondrial gene regions place this species with other ferns in Ophioglossaceae, while two regions place it as a member of the largely parasitic angiosperm order Santalales (sandalwoods and mistletoes). These discordant phylogenetic placements suggest that part of the genome in B. virginianum was acquired by horizontal gene transfer (HGT), perhaps from root-parasitic Loranthaceae. These transgenes are restricted to B. virginianum and occur across the range of the species. Molecular and life-history traits indicate that the transfer preceded the global expansion of B. virginianum, and that the latter may have happened very rapidly. This is the first report of HGT from an angiosperm to a fern, through either direct parasitism or the mediation of interconnecting fungal symbionts.

  19. Whole genome surveys of rice, maize and sorghum reveal multiple horizontal transfers of the LTR-retrotransposon Route66 in Poaceae

    Directory of Open Access Journals (Sweden)

    Manicacci Domenica

    2009-03-01

    Full Text Available Abstract Background Horizontal transfers (HTs refer to the transmission of genetic material between phylogenetically distant species. Although most of the cases of HTs described so far concern genes, there is increasing evidence that some involve transposable elements (TEs in Eukaryotes. The availability of the full genome sequence of two cereal species, (i.e. rice and Sorghum, as well as the partial genome sequence of maize, provides the opportunity to carry out genome-wide searches for TE-HTs in Poaceae. Results We have identified an LTR-retrotransposon, that we named Route66, with more than 95% sequence identity between rice and Sorghum. Using a combination of in silico and molecular approaches, we are able to present a substantial phylogenetic evidence that Route66 has been transferred horizontally between Panicoideae and several species of the genus Oryza. In addition, we show that it has remained active after these transfers. Conclusion This study constitutes a new case of HTs for an LTR-retrotransposon and we strongly believe that this mechanism could play a major role in the life cycle of transposable elements. We therefore propose to integrate classe I elements into the previous model of transposable element evolution through horizontal transfers.

  20. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  1. Effects of Adding Nanoparticles on Boiling and Condensing Heat Transfer inside a horizontal round tube

    Science.gov (United States)

    Sheikholeslami, Mohsen; Sadoughi, Mohammadkazem; Shariatmadar, Hamed; Akhavan-Behabadi, Mohammad Ali

    2015-11-01

    An experimental investigation is performed on heat transfer evaluation of a nano-refrigerant flow during condensation and evaporation inside a horizontal round tube. Experiments are carried out for three working fluid types including: i) pure refrigerant (R600a); ii) refrigerant/lubricant (R600a/oil); and iii) nano-refrigerant: refrigerant/lubricant/nanoparticles (R600a/oil/CuO). Nanoparticles are added to the lubricant and their mixture is mixed with pure refrigerant. Therefore, nano-refrigerants (R600a/oil/CuO) are prepared by dispersing CuO nanoparticles with different fractions of 0.5%, 1% and 1.5% in the baseline mixture (R600a/oil). Effects of different factors including vapor quality, mass flux, and nanoparticles on the heat transfer coefficient are examined for both of condensation and evaporation flows, separately. The results shows that maximum heat transfer augmentation of 79% and 83% are achieved by using the refrigerant/lubricant/nanoparticles mixture, in comparison with the pure refrigerant case in condensation and evaporation, respectively which are occurred for nano-refrigerant with 1.5% mass fraction in both of them.

  2. Horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, Cimex lectularius L.; hemiptera: cimicidae.

    Directory of Open Access Journals (Sweden)

    Yasmin Akhtar

    Full Text Available BACKGROUND: Horizontal transfer of insecticide occurs when insects contact or ingest an insecticide, return to an aggregation or a nest, and transfer the insecticide to other conspecific insects through contact. This phenomenon has been reported in a number of insects including social insects, however it has not been reported in bed bugs. Since horizontal transfer can facilitate the spread of insecticide into hard to reach spaces, it could contribute greatly to the management of these public health pests. METHODOLOGY/RESULTS: To demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in C. lectularius, an exposed (donor bed bug, following a 10-minute acquisition period, was placed with unexposed (recipient bed bugs. Mortality data clearly demonstrates that diatomaceous earth (DE 51 was actively transferred from a single exposed bug to unexposed bugs in a concentration dependent manner. LC50 values varied from 24.4 mg at 48 h to 5.1 mg at 216 h when a single exposed bed bug was placed with 5 unexposed bed bugs. LT50 values also exhibited a concentration response. LT50 values varied from 1.8 days to 8.4 days when a 'donor' bug exposed to 20 and 5 mg of dust respectively was placed with 5 'recipient' bugs. Dust was also actively transferred from adult bed bugs to the nymphs. In addition we observed horizontal transfer of botanical insecticides including neem, ryania, and rotenone to varying degrees. CONCLUSION/SIGNIFICANCE: Our data clearly demonstrate horizontal transfer of diatomaceous earth and botanical insecticides in the common bed bug, C. lectularius. Use of a fluorescent dust provided visual confirmation that contaminated bed bugs transfer dust to untreated bed bugs in harborage. This result is important because bedbugs live in hard-to-reach places and interaction between conspecifics can be exploited for delivery and dissemination of management products directed at this public health pest.

  3. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  4. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  5. Experimental and theoretical study of horizontal tube bundle for passive condensation heat transfer

    Science.gov (United States)

    Song, Yong Jae

    The research in this thesis supports the design of a horizontal tube bundle condenser for passive heat removal system in nuclear reactors. From nuclear power plant containment, condensation of steam from a steam/noncondensable gas occurs on the primary side and boiling occurs on the secondary side; thus, heat exchanger modeling is a challenge. For the purpose of this experimental study, a six-tube bundle is used, where the outer diameter, inner diameter, and length of each stainless steel tube measures 38.10mm (1.5 inches), 31.75mm (1.25 inches) and 3.96m (156 inches), respectively. The pitch to diameter ratio was determined based on information gathered from literature surveys, and the dimensions were determined from calculations and experimental data. The objective of the calculations, correlations, and experimental data was to obtain complete condensation within the tube bundle. Experimental conditions for the tests in this thesis work were determined from Design Basis Accident (DBA). The applications are for an actual Passive Containment Cooling Systems (PCCS) condenser under postulated accident conditions in future light water reactors. In this research, steady state and transient experiments were performed to investigate the effect of noncondensable gas on steam condensation inside and boiling outside a tube bundle heat exchanger. The condenser tube inlet steam mass flow rate varied from 18.0 to 48.0 g/s, the inlet pressure varied from 100 kPa to 400 kPa, and the inlet noncondensable gas mass fraction varied from 1% to 10%. The effect of the noncondensable gas was examined by comparing the tube centerline temperatures for various inlet and system conditions. As a result, it was determined that the noncondensable gas accumulated near the condensate film causing a decrease of mass and energy transfer. In addition, the effect of the inlet steam flow rate gas was investigated by comparing the tube centerline temperatures, the conclusion being that, as the inlet

  6. Natural replacement of vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologues.

    Science.gov (United States)

    Urbanczyk, Henryk; Furukawa, Takashi; Yamamoto, Yuki; Dunlap, Paul V

    2012-08-01

    We report here the first instance of a complete replacement of vertically inherited luminescence genes by horizontally acquired homologues. Different strains of Photobacterium aquimaris contain homologues of the lux-rib genes that have a different evolutionary history. Strain BS1 from the Black Sea contains a vertically inherited lux-rib operon, which presumably arose in the ancestor of this species, whereas the type strain NBRC 104633(T) , from Sagami Bay, lacks the vertically inherited lux-rib operon and instead carries a complete and functional lux-rib operon acquired horizontally from a bacterium related to Photobacterium mandapamensis. The results indicate that the horizontal acquisition of the lux genes expanded the pan-genome of P. aquimaris, but it did not influence the phylogenetic divergence of this species.

  7. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail: hoseinir@aut.ac.ir; Saffar-avval, Majid

    2015-09-01

    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364. - Highlights: • In this numerical study, the thermohydrodynamic characteristics of a laminar steady state ferroconvection was investigated in circular axisymmetric pipe under constant heat flux. • A magnetic field causes an increase in both pressure loss and heat transfer such that performance index remain acceptable for all linear distributions. • In constant total magnetic energy, an increase of magnetic field gradient tends to decrease the effectiveness slightly. • Magnetic field of lower gradient with high intensity is the best choice for both saving energy and heat transfer enhancement increase of up to 1.3638 and 135.65% respectively.

  8. MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between

    Directory of Open Access Journals (Sweden)

    Raju T. Linga

    2014-02-01

    Full Text Available An unsteady magnetohydrodynamic (MHD two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  9. CONJUGATE HEAT TRANSFER WITH VARIABLE FLUID PROPERTIES IN A HORIZONTAL ANNULUS

    Directory of Open Access Journals (Sweden)

    S TOUAHRI

    2010-12-01

    Full Text Available In the present work, we numerically study the three-dimensional conjugate heat transfer in an annular space between two horizontal concentric cylinders; the outer cylinder is subjected to an internal energy generated by Joule effect through its thickness while the inner is adiabatic. The thermal convection in the fluid domain is conjugated to the thermal conduction in the solid. The physical properties of the fluid are thermal dependant. The heat losses from the external outside pipe surface to the surrounding ambient are considered. The model equations of continuity, momenta and energy are numerically solved by a finite volume method with a second order spatiotemporal discretization. The obtained results show the three dimensional aspect of the thermal and dynamical fields with considerable variations of the viscosity and moderate variations of the fluid thermal conductivity. As expected, the mixed convection Nusselt number becomes more superior to that of the forced convection when the Grashof number is increased. At the solid-fluid interface, the results show clearly the azimuthal and axial variations of the local heat flux and the local Nusselt numbers. Following these results, we have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation:  Nua = 12.8678 Ri (pui 01426

  10. Experimental verification of the horizontal steam generator boil-off transfer degradation at natural circulation

    Energy Technology Data Exchange (ETDEWEB)

    Hyvaerinen, J. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1997-12-31

    The presentation summarises the highlights of experimental results obtained for VVER type horizontal steam generator heat transfer, primary side flow pattern, and mixing in the hot collector during secondary side boil-off with primary at single-phase natural circulation. The experiments were performed using the PACTEL facility with Large Diameter (LD) steam generator models, with collector instrumentation designed specifically for these tests. The key findings are as follows: (1) the primary to secondary heat transfer degrades as the secondary water inventory is depleted, following closely the wetted tube area; (2) a circulatory flow pattern exists in the tube bundle, resulting in reversed flow (from cold to the hot collector) in the lower part of the tube bundle, and continuous flow through the upper part, including the tubes that have already dried out; and (3) mixing of the hot leg flow entering the hot collector and reversed, cold, tube flow remains confined within the collector itself, extending only a row or two above the elevation at which tube flow reversal has taken place. 6 refs.

  11. Birth of a W sex chromosome by horizontal transfer of Wolbachia bacterial symbiont genome

    Science.gov (United States)

    Leclercq, Sébastien; Thézé, Julien; Chebbi, Mohamed Amine; Giraud, Isabelle; Moumen, Bouziane; Ernenwein, Lise; Grève, Pierre; Cordaux, Richard

    2016-01-01

    Sex determination is a fundamental developmental pathway governing male and female differentiation, with profound implications for morphology, reproductive strategies, and behavior. In animals, sex differences between males and females are generally determined by genetic factors carried by sex chromosomes. Sex chromosomes are remarkably variable in origin and can differ even between closely related species, indicating that transitions occur frequently and independently in different groups of organisms. The evolutionary causes underlying sex chromosome turnover are poorly understood, however. Here we provide evidence indicating that Wolbachia bacterial endosymbionts triggered the evolution of new sex chromosomes in the common pillbug Armadillidium vulgare. We identified a 3-Mb insert of a feminizing Wolbachia genome that was recently transferred into the pillbug nuclear genome. The Wolbachia insert shows perfect linkage to the female sex, occurs in a male genetic background (i.e., lacking the ancestral W female sex chromosome), and is hemizygous. Our results support the conclusion that the Wolbachia insert is now acting as a female sex-determining region in pillbugs, and that the chromosome carrying the insert is a new W sex chromosome. Thus, bacteria-to-animal horizontal genome transfer represents a remarkable mechanism underpinning the birth of sex chromosomes. We conclude that sex ratio distorters, such as Wolbachia endosymbionts, can be powerful agents of evolutionary transitions in sex determination systems in animals. PMID:27930295

  12. Ancestral genes can control the ability of horizontally acquired loci to confer new traits.

    Directory of Open Access Journals (Sweden)

    H Deborah Chen

    2011-07-01

    Full Text Available Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestral PmrA/PmrB two-component system in Salmonella enterica but not in the closely related bacterium Escherichia coli. The Salmonella PmrD protein binds to the phosphorylated PmrA protein (PmrA-P, protecting it from dephosphorylation by the PmrB protein. This results in transcription of PmrA-dependent genes, including those conferring polymyxin B resistance. We now report that the E. coli PmrD protein can activate the PmrA/PmrB system in Salmonella even though it cannot do it in E. coli, suggesting that these two species differ in an additional component controlling PmrA-P levels. We establish that the E. coli PmrB displays higher phosphatase activity towards PmrA-P than the Salmonella PmrB, and we identified a PmrB subdomain responsible for this property. Replacement of the E. coli pmrB gene with the Salmonella homolog was sufficient to render E. coli resistant to polymyxin B under PmrD-inducing conditions. Our findings provide a singular example whereby quantitative differences in the biochemical activities of orthologous ancestral proteins dictate the ability of a horizontally acquired gene product to confer species-specific traits. And they suggest that horizontally acquired genes can potentiate selection at ancestral loci.

  13. Análisis de transferencia horizontal de genes en ensayos de biorremediación con grasas recalcitrantes

    Directory of Open Access Journals (Sweden)

    Catalina Rozo

    2010-08-01

    The purpose of this study was to evaluate the horizontal gene transfer (HGT potential, in vitro and in soil microcosms, of bacterial strains isolated from grease samples obtained from a disposal site situated in the coal mine “Cerrejon”. Initially the isolates were grouped by selective markers: Ampicillin, chloramphenicol, gentamicin, tetracycline and kanamycin. The HGT potential of strains: Vlf4, Ot3, Ot6, Pgt4, Blf11 y Vlf13 was evaluated in vitro on Luria-Bertani LB agar. New phenotypes were obtained from matings between Vlf13xOt6 and Pgt4xOt6. The new phenotype indicates resistances to both antibiotic markers and its morphology suggests that isolate Ogt6 is the receptor in both cases. The parental strains Vlf13, Pgt4 and Ot6 were identified by RNAr 16S as Pseudomonas sp. Pseudomonas sp. and Chryseobacterium sp. respectively and the transconjugants as Chryseobacterium sp. Subsequently soil microcosms were conducted with Vlf13xOt6 and Pgt4xOt6 and new phenotypes were detected at a lower rate again but with the same possible receptor but. These results suggest the possibility of horizontal gene transfer potential within the selected isolates, giving the possibility of formulating, in future studies, a bacterial consortium with an adaptive advantage. Key words: Conjugation, transconjugants, replica plating.

  14. Influence of exogenous melatonin on horizontal transfer of Escherichia coli O157:H7 in experimentally infected sheep

    Science.gov (United States)

    The objective of the current research was to determine if exogenous melatonin would exert a “protective” effect on the gastrointestinal tract of sheep and prevent or reduce the horizontal transfer of E. coli O157:H7 from experimentally-infected to non-infected or “naïve” sheep. Sixteen crossbred ewe...

  15. Gene transfer to promote cardiac regeneration.

    Science.gov (United States)

    Collesi, Chiara; Giacca, Mauro

    2016-12-01

    There is an impelling need to develop new therapeutic strategies for patients with myocardial infarction and heart failure. Leading from the large quantity of new information gathered over the last few years on the mechanisms controlling cardiomyocyte proliferation during embryonic and fetal life, it is now possible to devise innovative therapies based on cardiac gene transfer. Different protein-coding genes controlling cell cycle progression or cardiomyocyte specification and differentiation, along with microRNA mimics and inhibitors regulating pre-natal and early post-natal cell proliferation, are amenable to transformation in potential therapeutics for cardiac regeneration. These gene therapy approaches are conceptually revolutionary, since they are aimed at stimulating the intrinsic potential of differentiated cardiac cells to proliferate, rather than relying on the implantation of exogenously expanded cells to achieve tissue regeneration. For efficient and prolonged cardiac gene transfer, vectors based on the Adeno-Associated Virus stand as safe, efficient and reliable tools for cardiac gene therapy applications.

  16. Influence of Bt rice plants on nitrogen fixation bacteria and horizontal transfer of the gene for Nitrogenase iron protein%种植转Bt水稻对固氮细菌多样性和固氮酶铁蛋白基因nifH的水平转移的影响

    Institute of Scientific and Technical Information of China (English)

    任少华; 徐斌; 黄晶心; 王婧; 章振亚; 陈艳; 肖明

    2012-01-01

    Enumeration of culturable bacteria colonies on nitrogen fixing medium (NFM) and LB medium conducted by this study revealed statistically significant difference among various soil samples collected from both transgenic Bacillus thuringiensis (Bt) rice fields and non-transgenic Bacillus thuringiensis (Bt) rice field.The transgenic Bt rice had generated impact on the quantities of microorganism communities in soil.Similar results were obtained by measuring shoot lengths after seeds germination.This also suggested that the planting of transgenic Bt rice may affect rice cultivation in the same field.However,such inhibitory effect was often transient in duration.Phylogenetic tree of 16S rDNAs showed a great genetic diversity of our isolated nitrogen fixation bacteria strains,and found that the majority of clones were related to two groups:one group belongs to the classes of Actinobacteria and the other group is Proteobacteria including α-Proteobacteri,more than half of nitrogen fixation bacteria (92%) in the rhizosphere belong to Actinobacteria.The sequences of the 16S rDNAs and the Nitrogenase iron protein coding genes (nifH) of eight nitrogen-fixing bacteria isolated from the transgenic Bt rice soil field were also compared.A lack of phylogenetic congruence of the nifH genes and 16S rDNAs might indicate the occurrence of relatively recent in situ horizontal transfer of the nifH gene,possibly as a direct or indirect consequence of transgenic Bt rice.%通过对具有不同种植年限和不同种植强度的转Bt基因水稻与非转Bt基因水稻土壤中的细菌以及固氮细菌群落结构进行研究,发现转Bt水稻的种植可能会影响土壤中微生物群落的多样性,但是这种影响的可能只是暂时的,通过对测量种植水稻的芽长实验也得出相似的结论.另外,根据16S rDNA基因构建的系统发育进化树揭示了本实验分离的固氮细菌的遗传多样性,发现实验土壤中的固氮细

  17. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    Science.gov (United States)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-07-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  18. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    Science.gov (United States)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  19. Influence of short incompatible practice on the Simon effect: transfer along the vertical dimension and across vertical and horizontal dimensions.

    Science.gov (United States)

    Conde, Erick F Q; Fraga-Filho, Roberto Sena; Lameira, Allan Pablo; Mograbi, Daniel C; Riggio, Lucia; Gawryszewski, Luiz G

    2015-11-01

    In spatial compatibility and Simon tasks, the response is faster when stimulus and response locations are on the same side than when they are on opposite sides. It has been shown that a spatial incompatible practice leads to a subsequent modulation of the Simon effect along the horizontal dimension. It has also been reported that this modulation occurs both along and across vertical and horizontal dimensions, but only after intensive incompatible training (600 trials). In this work, we show that this modulatory effect can be obtained with a smaller number of incompatible trials, changing the spatial arrangement of the vertical response keys to obtain a stronger dimensional overlap between the spatial codes of stimuli and response keys. The results of Experiment 1 showed that 80 incompatible vertical trials abolished the Simon effect in the same dimension. Experiment 2 showed that a modulation of the vertical Simon effect could be obtained after 80 horizontal incompatible trials. Experiment 3 explored whether the transfer effect can also occur in a horizontal Simon task after a brief vertical spatial incompatibility task, and results were similar to the previous experiments. In conclusion, we suggest that the spatial arrangement between response key and stimulus locations may be critical to establish the short-term memory links that enable the transfer of learning between brief incompatible practices and the Simon effects, both along the vertical dimension and across vertical and horizontal dimensions.

  20. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR.

    Science.gov (United States)

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of "self-target" spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage "self DNA." Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships.

  1. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR

    Science.gov (United States)

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of “self-target” spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage “self DNA.” Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships. PMID:26327282

  2. On the Complexity of Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul

    2015-12-23

    Duplication-Transfer-Loss (DTL) reconciliation has emerged as a powerful technique for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation takes as input a gene family phylogeny and the corresponding species phylogeny, and reconciles the two by postulating speciation, gene duplication, horizontal gene transfer, and gene loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. However, gene trees are frequently non-binary. With such non-binary gene trees, the reconciliation problem seeks to find a binary resolution of the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary gene trees, many efficient algorithms have been developed for this problem in the context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no efficient algorithms exist for DTL reconciliation with non-binary gene trees and the complexity of the problem remains unknown. In this work, we resolve this open question by showing that the problem is, in fact, NP-hard. Our reduction applies to both the dated and undated formulations of DTL reconciliation. By resolving this long-standing open problem, this work will spur the development of both exact and heuristic algorithms for this important problem.

  3. An experimental investigation of the interfacial condensation heat transfer in steam/water countercurrent stratified flow in a horizontal pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In Cheol; Yu, Seon Oh; Chun, Moon Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Byong Sup; Kim, Yang Seok; Kim, In Hwan; Lee, Sang Won [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    An interfacial condensation heat transfer phenomenon in a steam/water countercurrent stratified flow in a nearly horizontal pipe has been experimentally investigated. The present study has been focused on the measurement of the temperature and velocity distributions within the water layer. In particular, the water layer thickness used in the present work is large enough so that the turbulent mixing is limited and the thermal stratification is established. As a result, the thermal resistance of the water layer to the condensation heat transfer is increased significantly. An empirical correlation of the interfacial condensation heat transfer has been developed. The present correlation agrees with the data within {+-} 15%. 5 refs., 6 figs. (Author)

  4. 生产过程中抗生素与抗药基因的排放特征、环境行为及控制∗%Antibiotics, antibiotic resistance genes, pollutant discharge characteristics, horizontal transfer mechanism, pollution control technology

    Institute of Scientific and Technical Information of China (English)

    张昱; 杨敏; 王春艳; 田哲

    2015-01-01

    世界卫生组织在2000年的报告中将抗生素抗性列为本世纪人类在健康领域面临的最大挑战之一,有关抗药基因传播机制与控制技术的研究已经成为国际环境科学领域的一个前沿问题。本文以生产量大、使用历史长的几种发酵类和化学合成类生素为对象,以典型城市污水厂为对照系统,全面评估抗生素生产及废水处理过程中抗生素与抗药基因的排放特征;把传统的筛选培养方法与高通量测序技术及生物信息学手段有机结合,深入研究抗生素胁迫下整合子对抗性基因的重组作用及质粒介导的结合转移作用,以揭示抗药基因在抗生素压力驱动下主要的水平转移机制;构建多通道生物膜流动暴露系统进行抗生素最小选择浓度评价;研究针对抗生素生产全过程的抗生素及抗药基因控制多级屏障技术,为抗药基因的污染控制与管理提供全面系统的科学基础。%Antibiotic resistance has been listed as one of the major challenges for human health in WHO report issued in 2000, and antibiotic resistance genes ( ARGs ) , which have been considered as a kind of emerging contaminant, have now become one of the most important issues in environmental studies. Focusing on several fermentative antibiotics and one synthetic antibiotic, this study will mainly focus on the following issues: ( 1 ) to evaluate the discharging characteristics of antibiotics and ARGs from the above six typical antibiotic manufacturing processes with typical municipal wastewater treatment plants as the control;(2) to better understand the horizontal transfer mechanisms of ARGs in environment, the contributions of the recombination of ARG cassettes by integrons and the ARGs transfer by conjugation of plasmids under the existence of antibiotics will be revealed by combining the traditional culture⁃based approach with the high through⁃put sequencing technique and bioinformatics

  5. Viral Vectors for in Vivo Gene Transfer

    Science.gov (United States)

    Thévenot, E.; Dufour, N.; Déglon, N.

    The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the

  6. Lateral transfer of the lux gene cluster.

    Science.gov (United States)

    Kasai, Sabu; Okada, Kazuhisa; Hoshino, Akinori; Iida, Tetsuya; Honda, Takeshi

    2007-02-01

    The lux operon is an uncommon gene cluster. To find the pathway through which the operon has been transferred, we sequenced the operon and both flanking regions in four typical luminous species. In Vibrio cholerae NCIMB 41, a five-gene cluster, most genes of which were highly similar to orthologues present in Gram-positive bacteria, along with the lux operon, is inserted between VC1560 and VC1563, on chromosome 1. Because this entire five-gene cluster is present in Photorhabdus luminescens TT01, about 1.5 Mbp upstream of the operon, we deduced that the operon and the gene cluster were transferred from V. cholerae to an ancestor of Pr. luminescens. Because in both V. fischeri and Shewanella hanedai, luxR and luxI were found just upstream of the operon, we concluded that the operon was transferred from either species to the other. Because most of the genes flanking the operon were highly similar to orthologues present on chromosome 2 of vibrios, we speculated that the operon of most species is located on this chromosome. The undigested genomic DNAs of five luminous species were analysed by pulsed-field gel electrophoresis and Southern hybridization. In all the species except V. cholerae, the operons are located on chromosome 2.

  7. Laminar Film Boiling Heat Transfer on a Horizontal Cylinder Submerged in an Upward Crossflow of Saturated Liquids

    OpenAIRE

    茂地, 徹; 川江, 信治; 金丸, 邦康; 山田, 岹

    1988-01-01

    An analysis was made of the steady-state, forced convection film boiling heat transfer on an isothermal horizontal cylinder submerged in an upward crossflow of saturated liquids in the gravitational field. The boundary-layer equations of momentum and of energy for the laminar vapor film, including both the inertia force in the former and the convection term in the latter, were solved using an integral method. The analytical solution was obtained for the integrated boundary-layer equations. A ...

  8. Experimental Studies on COndensation Heat Transfer of the Moist Air outside the Horizontal Circular Pipe with a Porous Layer

    Institute of Scientific and Technical Information of China (English)

    LiuQiang; ZhangJiaxuntffu

    1999-01-01

    This paper presents the structure design of four kinds of circular pipes with porous layer and the experimental results of condensation heat transfer of the moist air outside the horizontal circular pipes,By comparison with the experiments on bare piper,it is concluded that,the designed pipes not only have good condensation heat transfer performance,but also have the ability to collect and remove condensed liquid under zero gravity.They can be applied to the thermal control system for future large spacecraft.

  9. Viral vectors for gene transfer: current status of gene therapeutics.

    Science.gov (United States)

    Heilbronn, Regine; Weger, Stefan

    2010-01-01

    Gene therapy for the correction of inherited or acquired disease has gained increasing importance in recent years. Successful treatment of children suffering from severe combined immunodeficiency (SCID) was achieved using retrovirus vectors for gene transfer. Encouraging improvements of vision were reported in a genetic eye disorder (LCA) leading to early childhood blindness. Adeno-associated virus (AAV) vectors were used for gene transfer in these trials. This chapter gives an overview of the design and delivery of viral vectors for the transport of a therapeutic gene into a target cell or tissue. The construction and production of retrovirus, lentivirus, and AAV vectors are covered. The focus is on production methods suitable for biopharmaceutical upscaling and for downstream processing. Quality control measures and biological safety considerations for the use of vectors in clinical trials are discussed.

  10. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS.

    Directory of Open Access Journals (Sweden)

    Rosa C Baños

    2009-06-01

    Full Text Available Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

  11. The influence of gene transfer on the lactic acid bacteria evolution

    Directory of Open Access Journals (Sweden)

    Višnja Bačun-Družina

    2009-09-01

    Full Text Available In the case of preparing various dairy products, the exploitation of lactic acid bacteria has been essential in the course of past millennia in all known nations. Numerous comparative analyses of gene and genome sequences reveal that the exchange of genetic material within and between bacterial species is far more general and frequent than has previously been thought. Consequently, the horizontal gene transfer between distant species or within the same species is an important factor in the Lactobacillales evolution. Knowledge about the exchange of lactobacillus genetic information through horizontal gene transfer, mobile genetic elements, and its evolution is very important due to characterizations and stability maintenance of autochthonous as well as industrial lactic acid bacteria strains in dairy products that benefit human health.

  12. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.

    Directory of Open Access Journals (Sweden)

    Atsushi Nakabachi

    Full Text Available he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.

  13. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements.

    Directory of Open Access Journals (Sweden)

    Erik Kristiansson

    Full Text Available The high and sometimes inappropriate use of antibiotics has accelerated the development of antibiotic resistance, creating a major challenge for the sustainable treatment of infections world-wide. Bacterial communities often respond to antibiotic selection pressure by acquiring resistance genes, i.e. mobile genetic elements that can be shared horizontally between species. Environmental microbial communities maintain diverse collections of resistance genes, which can be mobilized into pathogenic bacteria. Recently, exceptional environmental releases of antibiotics have been documented, but the effects on the promotion of resistance genes and the potential for horizontal gene transfer have yet received limited attention. In this study, we have used culture-independent shotgun metagenomics to investigate microbial communities in river sediments exposed to waste water from the production of antibiotics in India. Our analysis identified very high levels of several classes of resistance genes as well as elements for horizontal gene transfer, including integrons, transposons and plasmids. In addition, two abundant previously uncharacterized resistance plasmids were identified. The results suggest that antibiotic contamination plays a role in the promotion of resistance genes and their mobilization from environmental microbes to other species and eventually to human pathogens. The entire life-cycle of antibiotic substances, both before, under and after usage, should therefore be considered to fully evaluate their role in the promotion of resistance.

  14. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    Directory of Open Access Journals (Sweden)

    Antonio Palazzo

    Full Text Available Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.

  15. Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.

    Science.gov (United States)

    Kordi, Misagh; Bansal, Mukul S

    2017-06-01

    Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.

  16. Effect of direct and indirect face-bow transfer on the horizontal condylar guidance values: A pilot study

    Directory of Open Access Journals (Sweden)

    Aditi Mishra

    2014-01-01

    Full Text Available Aims and Objectives: This study aimed to evaluate the effect of direct and indirect face-bow transfer on the horizontal condylar guidance (HCG values obtained on the semi-adjustable articulator. Materials and Methods: A total of 15 subjects of age 20-30 years, of either sex were selected. Two sets of maxillary and mandibular casts were obtained. A single arbitrary face-bow record was used for mounting the maxillary casts by direct and indirect transfer for each subject. The mandibular casts were mounted using maximum intercuspation record. Protrusive records were made in Alu wax and used to program the directly and indirectly transferred casts. HCG values obtained from cephalometric records were taken as control. The data was subjected to ANOVA and Bonferroni post hoc test. Results: Mean values of HCG obtained in direct face-bow transfer were 24.93°, indirect transfer −27.66°, and cephalometric analysis −32.73°. One-way ANOVA test indicated that there was a significant difference between all the groups (P < 0.05. Tukey′s test with Bonferroni′s correction (P < 0.01 was significant for direct and indirect transfer (P = 0.008, and direct transfer and cephalometric readings (P = 0.0046. A nonsignificant difference was found between indirect transfer and cephalometric readings (P = 0.047. Conclusion : There is a statistically significant difference in HCG values obtained from direct and indirect face-bow transfer records. Lateral cephalograms gave higher mean HCG values than those obtained from protrusive records. Mean HCG values obtained from indirect face-bow transfers are significantly more than those obtained from direct transfers and are also closer to the values obtained from the lateral cephalograms.

  17. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Directory of Open Access Journals (Sweden)

    Zhenxiang Xi

    Full Text Available Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT, especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae, whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria and a species interaction (i.e., parasitism where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  18. Massive mitochondrial gene transfer in a parasitic flowering plant clade.

    Science.gov (United States)

    Xi, Zhenxiang; Wang, Yuguo; Bradley, Robert K; Sugumaran, M; Marx, Christopher J; Rest, Joshua S; Davis, Charles C

    2013-01-01

    Recent studies have suggested that plant genomes have undergone potentially rampant horizontal gene transfer (HGT), especially in the mitochondrial genome. Parasitic plants have provided the strongest evidence of HGT, which appears to be facilitated by the intimate physical association between the parasites and their hosts. A recent phylogenomic study demonstrated that in the holoparasite Rafflesia cantleyi (Rafflesiaceae), whose close relatives possess the world's largest flowers, about 2.1% of nuclear gene transcripts were likely acquired from its obligate host. Here, we used next-generation sequencing to obtain the 38 protein-coding and ribosomal RNA genes common to the mitochondrial genomes of angiosperms from R. cantleyi and five additional species, including two of its closest relatives and two host species. Strikingly, our phylogenetic analyses conservatively indicate that 24%-41% of these gene sequences show evidence of HGT in Rafflesiaceae, depending on the species. Most of these transgenic sequences possess intact reading frames and are actively transcribed, indicating that they are potentially functional. Additionally, some of these transgenes maintain synteny with their donor and recipient lineages, suggesting that native genes have likely been displaced via homologous recombination. Our study is the first to comprehensively assess the magnitude of HGT in plants involving a genome (i.e., mitochondria) and a species interaction (i.e., parasitism) where it has been hypothesized to be potentially rampant. Our results establish for the first time that, although the magnitude of HGT involving nuclear genes is appreciable in these parasitic plants, HGT involving mitochondrial genes is substantially higher. This may represent a more general pattern for other parasitic plant clades and perhaps more broadly for angiosperms.

  19. Free Convention Heat Transfer from an Isothermal Horizontal Thin Strip: the Influence of the Prandtl Number

    Institute of Scientific and Technical Information of China (English)

    Lucia Fontana

    2014-01-01

    Simultaneous free convection above and below a uniformly heated horizontal plate has been widely investigated,both in the case of an isothermal surface,and of a uniformly heated surface,but always assuming only air as fluid (Pr=0.7).Nevertheless,there are works dealing with horizontal plates whose results show that the Nu dependence on Pr may not be simply expressed by a power law with the same exponent of the Gr one.So it was considered useful to study the Prandtl number influence in the case of the isothermal horizontal strip.Results show that,while for the lower surface of the strip the Nu dependence in Gr can be expressed by a power law with an exponent close to the Gr one,for the upper surface the exponent is sensibly different.Correlating equations related to the investigated situations are proposed.

  20. Occurrence, horizontal transfer and degeneration of VDE intein family in Saccharomycete yeasts.

    Science.gov (United States)

    Okuda, Yoshihiro; Sasaki, Daisuke; Nogami, Satoru; Kaneko, Yoshinobu; Ohya, Yoshikazu; Anraku, Yasuhiro

    2003-05-01

    VDE is a homing endonuclease gene originally discovered as an intervening element in VMA1s of Saccharomyces cerevisiae. There have been two independent subfamilies of VDE, one from S. cerevisiae strain X2180-1A and the other from Saccharomyces sp. DH1-1A in the host VMA1 gene, and they share the identity of 96.3%. In order to search the occurrence, intra/interspecies transfer and molecular degeneration of VDE, complete sequences of VMA1 in 10 strains of S. cerevisiae, eight species of saccharomycete yeasts, Candida glabrata and Kluyveromyces lactis were determined. We found that six of 10 S. cerevisiae strains contain VDEs 99.7-100% identical to that of the strain X2180-1A, one has no VDE, whereas the other three harbour VDEs 100% identical to that of the strain DH1-1A. S. carlsbergensis has two VMA1s, one being 99.8% identical to that of the strain X2180-1A with VDE 100% identical to that of the strain DH1-1A and the other containing the same VMA1 in S. pastorianus with no VDE. This and other evidence indicates that intra/interspecies transmissions of VDEs have occurred among saccharomycete yeasts. Phylogenetic analyses of VMA1 and VDE suggest that the S. cerevisiae VDEs had branched earlier than other VDEs from an ancestral VDE and had invaded into the host loci as relatively late events. The two VDEs seemed to degenerate in individual host loci, retaining their splicing capacity intact. The degeneration of the endonuclease domains was distinct and, if compared, its apparent rate was much faster than that of the protein-splicing domains. Copyright 2003 John Wiley & Sons, Ltd.

  1. Prediction of Heat Transfer Performance on Horizontal U-Shaped Heat Exchanger in Passive Safety System Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Cho, Hyoung-Kyu; Park, Goon-Cherl [Seoul National University, Seoul (Korea, Republic of)

    2015-10-15

    The design and the safety analysis of the passive safety systems are performed mainly using the best-estimate thermal-hydraulic analysis codes such as RELAP5 and MARS. This study developed the heat transfer model package for the horizontal U-shaped HX submerged in a pool by improving the horizontal in-tube condensation model and developing the outside-tube natural convective nucleate boiling model. This paper presents the HX model package and the validation results against the passive safety system-related experimental data of PASCAL and ATLAS-PAFS. This study developed the heat transfer model package of the horizontal U-shaped HX submerged in a pool in order to obtain a reliable prediction of the HX heat removal performance of the passive safety system, especially PAFS, using MARS. From the validation results, the proposed model package provided the improved prediction of HX performance (condensation, natural convective nucleate boiling, and heat removal rate of the HX) compared to the default model in MARS.

  2. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  3. CONDENSATION HEAT TRANSFER OF R-134A IN HORIZONTAL STRAIGHT AND HELICALLY COILED TUBE-IN-TUBE HEAT EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article presents an experimental investigation on condensation heat transfer of R-134a in horizontal straight and helically coiled tube-in-tube heat exchangers. The experiments were carried out at three saturation temperatures(35℃, 40℃ and 45℃) with the refrigerant mass flux varying from 100 kg/m2 s to 400 kg/m2 s and the vapor quality ranging from 0.1 to 0.8. The effects of vapor quality and mass flux of R-134a on the condensation heat transfer coefficient were investigated. The results indicate that the condensation heat transfer coefficients of the helical section are 4%-13.8% higher than that of the straight section. The experimental results were compared with the data available in literature for helical and straight pipes.

  4. Ultrasound and Microbubbles: Their Functions in Gene Transfer In Vitro

    Institute of Scientific and Technical Information of China (English)

    CHEN Yunchao; HUANG Daozhong; LI Kaiyan; WANG Zhihui; HONG Kai; WANG Fen; ZANG Qingping

    2007-01-01

    To examine the role of ultrasound in gene delivery in vitro, three cells lines were exposed to the low-frequency ultrasound of varying intensities and for different durations to evaluate their effect on gene transfection and cell viability of the cells. Microbubble (MB), Optison (10%), was also used to observe the role of the microbubbles in gene transfection. The results demonstrated that as the ultrasound intensity and the exposure time increased, the gene transfer rate increased and the cell viability decreased, but at high energy intensities, the cell viability decreased dramatically, which caused the transfer rate to decrease. The most efficient ultrasound intensity for inducing gene transfer was 1 W/cm2 with duration being 20 s. At the same energy intensity, higher ultrasound intensity could achieve maximal gene transfer rate earlier. Microbubbles could increase ultrasound-induced cell gene transfer rate by about 2 to 3 times mainly at lower energy intensities. Moreover, microbubbles could raise the maximum gene transfer rate mediated by ultrasound. It is concluded that the low-frequency ultrasound can induce cell gene transfer and the cell gene transfer rate and viability are correlated with not only the ultrasound energy intensity but also the ultrasound intensity, the higher ultrasound intensity achieves its maximal transfer rate more quickly and the ultrasound intensity that can induce optimal gene transfer is 1 W/cm2 with duration being 20 s, and microbubbles can significantly increase the maximal gene transfer rate in vitro.

  5. Heat Transfer Coefficient during Evaporation of R-1234yf, R-134a, and R-22 in Horizontal Circular Small Tubes

    Directory of Open Access Journals (Sweden)

    Kwang-Il Choi

    2013-01-01

    Full Text Available Experimental data of heat transfer coefficient during evaporation of R-1234yf, R-134a, and R-22 in horizontal circular small tubes are compared. The local heat transfer coefficient is obtained for heat fluxes ranging from 10 to 35 kW m−2, mass fluxes ranging from 100 to 650 kg m−2 s−1, saturation temperatures of 5, 10, and 15°C, and quality up to 1.0. The test sections are made of stainless steel tubes with inner diameters of 1.5 and 3.0 mm, the lengths of 1000 and 2000. Effects of heat flux, inner tube diameter, and saturation temperature on heat transfer coefficient are reported in the present study. Nucleate boiling heat transfer contribution is predominant, especially at low quality region, and laminar flow appears in the evaporative small tubes. The experimental results are compared against four existing heat transfer coefficients, and the modified correlation of heat transfer coefficient is developed with good prediction.

  6. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  7. Modelling of Heat Transfer Phenomena for Vertical and Horizontal Configurations of In-Pool Condensers and Comparison with Experimental Findings

    Directory of Open Access Journals (Sweden)

    Davide Papini

    2010-01-01

    Different condenser tube arrangements have been developed for applications to the next generation NPPs. The two most used configurations, namely, horizontal and vertical tube condensers, are thoroughly investigated in this paper. Several thermal-hydraulic features were explored, being the analysis mainly devoted to the description of the best-estimate correlations and models for heat transfer coefficient prediction. In spite of a more critical behaviour concerning thermal expansion issues, vertical tube condensers offer remarkably better thermal-hydraulic performances. An experimental validation of the vertical tube correlations is provided by PERSEO facility (SIET labs, Piacenza, showing a fairly good agreement.

  8. Heat transfer in the flow of a cold, two-dimensional draining sheet over a hot, horizontal cylinder

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The paper considers heat transfer characteristics of thin film flow over a hot horizontal cylinder resulting from a cold vertical sheet of liquid falling onto the surface. The underlying physical features of the developing film thickness, velocity and temperature distributions have been illustrated by numerical solutions of high accuracy for large Reynolds numbers using the modified Keller box method. The solutions for film thickness distribution are good agreement with those obtained using the Pohlhausen integral momentum technique thus providing a basic confirmation of the validity of the results presented.

  9. Heat transfer in the flow of a cold, axisymmetric vertical liquid jet against a hot, horizontal plate

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    The paper considers heat transfer characteristics of thin film flow over a hot horizontal flat plate resulting from a cold vertical jet of liquid falling onto the surface. A numerical solution of high accuracy is obtained for large Reynolds numbers using the modified Keller box method. For the flat plate, solutions for axisymmetric jets are obtained. In a parallel approximation theory an advanced polynomial approximation for the velocity and temperature distribution is employed and results are good agreement with those obtained using a simple Pohlhausen polynomial and the numerical solutions.

  10. Two-phase heat transfer and pressure drop of LNG during saturated flow boiling in a horizontal tube

    Science.gov (United States)

    Chen, Dongsheng; Shi, Yumei

    2013-12-01

    Two-phase heat transfer and pressure drop of LNG (liquefied natural gas) have been measured in a horizontal smooth tube with an inner diameter of 8 mm. The experiments were conducted at inlet pressures from 0.3 to 0.7 MPa with a heat flux of 8-36 kW m-2, and mass flux of 49.2-201.8 kg m-2 s-1. The effect of vapor quality, inlet pressure, heat flux and mass flux on the heat transfer characteristic are discussed. The comparisons of the experimental data with the predicted value by existing correlations are analyzed. Zou et al. (2010) correlation shows the best accuracy with 24.1% RMS deviation among them. Moreover four frictional pressure drop methods are also chosen to compare with the experimental database.

  11. Mainstreams of horizontal gene exchange in enterobacteria: consideration of the outbreak of enterohemorrhagic E. coli O104:H4 in Germany in 2011.

    Directory of Open Access Journals (Sweden)

    Oliver Bezuidt

    Full Text Available BACKGROUND: Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods. PRINCIPAL FINDINGS: The study revealed oscillations of gene exchange in enterobacteria, which originated from marine γ-Proteobacteria. These mobile genetic elements have become recombination hotspots and effective 'vehicles' ensuring a wide distribution of successful combinations of fitness and virulence genes among enterobacteria. Two remarkable peculiarities of the strain TY-2482 and its relatives were observed: i retaining the genetic primitiveness by these strains as they somehow avoided the main fluxes of horizontal gene transfer which effectively penetrated other enetrobacteria; ii acquisition of antibiotic resistance genes in a plasmid genomic island of β-Proteobacteria origin which ontologically is unrelated to the predominant genomic islands of enterobacteria. CONCLUSIONS: Oscillations of horizontal gene exchange activity were reported which result from a counterbalance between the acquired resistance of bacteria towards existing mobile vectors and the generation of new vectors in the environmental microflora. We hypothesized that TY-2482 may originate from a genetically primitive lineage of E. coli that has evolved in confined geographical areas and brought by human migration or cattle trade onto an intersection of several independent streams of horizontal gene exchange. Development of a system for monitoring the new and most active gene exchange events was proposed.

  12. Study on solid liquid interface heat transfer of PCM under simultaneous charging and discharging (SCD) in horizontal cylinder annulus

    Science.gov (United States)

    Omojaro, Adebola Peter; Breitkopf, Cornelia

    2017-07-01

    Heat transfer performance during the simultaneous charging and discharging (SCD) operation process for phase change materials (PCM) contained inside the annulus of concentric horizontal cylinder was investigated. In the experimental set-up, the PCM inside the annulus serves as the heat sink along with an externally imposed forced cooling air. The obtained time wise temperature profile was used to determine the effects of different heat fluxes and the imposed forced convection cooling on the melt fraction values and the transition shift time from the observed conduction to natural convection heat transfer patterns. Furthermore, non-dimensional analysis was presented for the heat transfer at the interface to enable generalizing the result. Comparison of the results show that the SCD operation mode establish the condition that enables much PCM phase transition time and thus longer time of large latent heat transfer effect than the Partial and non simultaneous operations. Analysis results show that the variation of the heat flux for the SCD mode did not change the dominance of the natural convection over conduction heat transfers in the PCM. However, it significantly influences the commencement/transition shift time and melting rate while higher heat fluxes yields melt fraction that was 38-63% more for investigated process time. Variation with different cooling air flow rate shows more influences on the melt fraction than on the mode of heat transfer occurring in the PCM during melting. Available non-SCD modes correlation was shown to be insufficient to accurately predict interface heat transfer for the SCD modes.

  13. Heat Transfer between Horizontal Finned Tubes and a Gas-Solid Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Grewal, N.S.; Cheung, T.K.; Saxena, S.C.

    1985-04-01

    The heat-transfer coefficients are measured between electrically heated V-thread tubes and square fluidized beds of alumina and silica sand. The effect of particle size, mass fluidizing velocity, V-thread pitch, and tube pitch on the heat transfer rate is investigated. One-dimensional and two-dimensional heat conduction models are developed for determining the temperature distribution in a V-thread fin. The models are used to calculate the corrected heat-transfer coefficients for the finned tubes. A correlation for the fin effectiveness factor is proposed and is found to be reliable to predict its value for finned tubes with geometry and orientation similar to that in the present investigation. The correlation in conjunction with the existing correlatins for the heat-transfer coefficient for smooth tubes is found, in general, to predict the coefficients for finned tubes immersed in a fluidized bed within + or - 25%.

  14. Accidental Genetic Engineers: Horizontal Sequence Transfer from Parasitoid Wasps to Their Lepidopteran Hosts: e109446

    National Research Council Canada - National Science Library

    Sean E Schneider; James H Thomas

    2014-01-01

    .... Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host...

  15. Accidental genetic engineers: horizontal sequence transfer from parasitoid wasps to their Lepidopteran hosts

    National Research Council Canada - National Science Library

    Schneider, Sean E; Thomas, James H

    2014-01-01

    .... Because these virus-like particles deliver wasp DNA to the cells of the host, there has been much interest in whether genetic information can be permanently transferred from the wasp to the host...

  16. Aphids acquired symbiotic genes via lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Nakabachi Atsushi

    2009-03-01

    Full Text Available Abstract Background Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist Buchnera aphidicola (γ-Proteobacteria. Buchnera has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid Acyrthosiphon pisum, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR. Results Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes ldcA (product, LD-carboxypeptidase and rlpA (product, rare lipoprotein A, respectively. Buchnera lacks these genes, whereas many other bacteria, including Escherichia coli, a close relative of Buchnera, possess both ldcA and rlpA. Molecular phylogenetic analysis clearly demonstrated that the aphid ldcA was derived from a rickettsial bacterium closely related to the extant Wolbachia spp. (α-Proteobacteria, Rickettsiales, which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of rlpA was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that ldcA and rlpA are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan, which is a component of the bacterial cell wall. As Buchnera possesses a cell wall composed of murein but lacks ldcA, a high level of expression of the aphid ldcA in the

  17. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    Science.gov (United States)

    Alavi Fazel, S. Ali

    2017-03-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  18. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    Energy Technology Data Exchange (ETDEWEB)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  19. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime

    Science.gov (United States)

    Alavi Fazel, S. Ali

    2017-09-01

    A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.

  20. Detecting rare gene transfer events in bacterial populations

    Directory of Open Access Journals (Sweden)

    Kaare Magne Nielsen

    2014-01-01

    Full Text Available Horizontal gene transfer (HGT enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.

  1. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome.

    Science.gov (United States)

    Karberg, Katherine A; Olsen, Gary J; Davis, James J

    2011-12-13

    Most bacterial and archaeal genomes contain many genes with little or no similarity to other genes, a property that impedes identification of gene origins. By comparing the codon usage of genes shared among strains (primarily vertically inherited genes) and genes unique to one strain (primarily recently horizontally acquired genes), we found that the plurality of unique genes in Escherichia coli and Salmonella enterica are much more similar to each other than are their vertically inherited genes. We conclude that E. coli and S. enterica derive these unique genes from a common source, a supraspecies phylogenetic group that includes the organisms themselves. The phylogenetic range of the sharing appears to include other (but not all) members of the Enterobacteriaceae. We found evidence of similar gene sharing in other bacterial and archaeal taxa. Thus, we conclude that frequent gene exchange, particularly that of genetic novelties, extends well beyond accepted species boundaries.

  2. Experimental Study on Cooling Heat Transfer of Supercritical Carbon Dioxide Inside Horizontal Micro-Fin Tubes

    Science.gov (United States)

    Kuwahara, Ken; Higashiiu, Shinya; Ito, Daisuke; Koyama, Shigeru

    This paper deals with the experimental study on cooling heat transfer of supercritical carbon dioxide inside micro-fin tubes. The geometrical parameters in micro-fin tubes used in the present study are 6.02 mm in outer diameter, 4.76 mm to 5.11 mm in average inner diameter, 0.15 mm to 0.24 mm in fin height, 5 to 25 in helix angle, 46 to 52 in number of fins and 1.4 to 2.3 in area expansion ratio. Heat transfer coefficients were measured at 8-10 MPa in pressure, 360-690 kg/(m2•s) in mass velocity and 20-75 °C in CO2 temperature. The measured heat transfer coefficients of micro-fin tubes were 1.4 to 2 times higher than those of the smooth tube having 4.42 in inner diameter. The predicted heat transfer coefficients using the correlation equation, which was developed for single-phase turbulent fluid flow inside micro-fin-tubes, showed large deviations to the measured values. The new correlation to predict cooling heat transfer coefficient of supercritical carbon dioxide inside micro-fin tubes was developed taking into account the shape of fins based on experimental data empirically. This correlation equation agreed within ±20% of almost all of the experimental data.

  3. Progress in gene transfer by germ cells in mammals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells.

  4. ToxR Antagonizes H-NS Regulation of Horizontally Acquired Genes to Drive Host Colonization.

    Directory of Open Access Journals (Sweden)

    Misha I Kazi

    2016-04-01

    Full Text Available The virulence regulator ToxR initiates and coordinates gene expression needed by Vibrio cholerae to colonize the small intestine and cause disease. Despite its prominence in V. cholerae virulence, our understanding of the direct ToxR regulon is limited to four genes: toxT, ompT, ompU and ctxA. Here, we determine ToxR's genome-wide DNA-binding profile and demonstrate that ToxR is a global regulator of both progenitor genome-encoded genes and horizontally acquired islands that encode V. cholerae's major virulence factors and define pandemic lineages. We show that ToxR shares more than a third of its regulon with the histone-like nucleoid structuring protein H-NS, and antagonizes H-NS binding at shared binding locations. Importantly, we demonstrate that this regulatory interaction is the critical function of ToxR in V. cholerae colonization and biofilm formation. In the absence of H-NS, ToxR is no longer required for V. cholerae to colonize the infant mouse intestine or for robust biofilm formation. We further illustrate a dramatic difference in regulatory scope between ToxR and other prominent virulence regulators, despite similar predicted requirements for DNA binding. Our results suggest that factors in addition to primary DNA structure influence the ability of ToxR to recognize its target promoters.

  5. The horizontal transfer of Salmonella between the lesser mealworm (Alphitobius diaperinus) and poultry manure.

    Science.gov (United States)

    Crippen, T L; Sheffield, C L; Beier, R C; Nisbet, D J

    2017-09-19

    There is need to determine the nature of enduring reservoirs of Salmonella contributing to perpetual contamination within poultry flocks. The dispersal of Salmonella between birds, litter and the lesser mealworm has been established, but the extent that these act as critical components in the epidemiology of Salmonella infection during broiler grow-out and flock rotation has not been delineated; in particular, the level of participation by the lesser mealworm beetles (LMB) as agents of retention and dispersal. This study defines this route of transmission and provides empirical data on bacterial loads that facilitate Salmonella transfer. Results showed differential Salmonella transfer dependent on bacterial concentration. At 10(3)  cfu/ml, only a small, but not significant, amount of Salmonella was transferred, from the LMB to the manure and back to uninfected LMB; while from 10(5) to 10(7)  cfu/ml, a significant acquisition and transfer occurred both internally and externally to the LMB over 4 and 24 hr exposures. These data will be used in correlation with facility management practices to develop intervention strategies to mitigate the establishment and spreading of reservoir Salmonella populations contributing to pre-harvest contamination of poultry flocks. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Mixed convection heat transfer from confined tandem square cylinders in a horizontal channel

    KAUST Repository

    Huang, Zhu

    2013-11-01

    This paper presents a numerical study on the two-dimensional laminar mixed convective flow and heat transfer around two identical isothermal square cylinders arranged in tandem and confined in a channel. The spacing between the cylinders is fixed with four widths of the cylinder and the blockage ratio and the Prandtl number are fixed at 0.1 and 0.7 respectively. The mixed convective flow and heat transfer is simulated by high accuracy multidomain pseudospectral method. The Reynolds number (Re) is studied in the range 80 ≤ Re ≤ 150, the Richardson number (Ri) demonstrating the influence of thermal buoyancy ranges from 0 to 1. Numerical results reveal that, with the thermal buoyancy effect, the mixed convective flow sheds vortex behind the cylinders and keeps periodic oscillating. The variations of characteristic quantities related to flow and heat transfer processes, such as the overall drag and lift coefficients and the Nusselt numbers, are presented and discussed. Furthermore, the influence of thermal buoyancy on the fluid flow and heat transfer are discussed and analysed. © 2013 Elsevier Ltd. All rights reserved.

  7. Gene recruitment--a common mechanism in the evolution of transfer RNA gene families.

    Science.gov (United States)

    Wang, Xiujuan; Lavrov, Dennis V

    2011-04-01

    The evolution of alloacceptor transfer RNAs (tRNAs) has been traditionally thought to occur vertically and reflect the evolution of the genetic code. Yet there have been several indications that a tRNA gene could evolve horizontally, from a copy of an alloacceptor tRNA gene in the same genome. Earlier, we provided the first unambiguous evidence for the occurrence of such "tRNA gene recruitment" in nature--in the mitochondrial (mt) genome of the demosponge Axinella corrugata. Yet the extent and the pattern of this process in the evolution of tRNA gene families remained unclear. Here we analyzed tRNA genes from 21 mt genomes of demosponges as well as nuclear genomes of rhesus macaque, chimpanzee and human. We found four new cases of alloacceptor tRNA gene recruitment in mt genomes and eleven cases in the nuclear genomes. In most of these cases we observed a single nucleotide substitution at the middle position of the anticodon, which resulted in the change of not only the tRNA's amino-acid identity but also the class of the amino-acyl tRNA synthetases (aaRSs) involved in amino-acylation. We hypothesize that the switch to a different class of aaRSs may have prevented the conflict between anticodon and amino-acid identities of recruited tRNAs. Overall our results suggest that gene recruitment is a common phenomenon in tRNA multigene family evolution and should be taken into consideration when tRNA evolutionary history is reconstructed.

  8. Experimental investigation on TBAB clathrate hydrate slurry flows in a horizontal tube: Forced convective heat transfer behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Wenji, Song [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Rui, Xiao; Chong, Huang; Shihui, He; Kaijun, Dong; Ziping, Feng [Guangzhou Institute of Energy Conversion, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China); Key Laboratory of Renewable Energy and Gas Hydrate, CAS, No. 2 Nengyuan Road, Tianhe District, Guangzhou 510640 (China)

    2009-11-15

    Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within {+-}20%. (author)

  9. An instrument for local radiative heat transfer measurement around a horizontal tube immersed in a fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Alavizedeh, N.; Adams, R.L.; Welty, J.R.; Goshayeshi, A. (Oregon State Univ., Corvallis (United States))

    1990-05-01

    An instrument for the measurement of the radiative component of total heat transfer in a high-temperature gas fluidized bed is described. The main objective of this paper is to emphasize the design, instrumentation, and calibration of this device. The results are presented and discussed elsewhere (Alavizadeh, 1985; Alavizadeh et al., 1985). The design makes use of a silicon window to transmit the radiative heat flux to a thermopile-type heat flow detector located at the base of a cavity. The window material thermal conductivity is sufficiently large to prevent conduction errors due to the convective component of total heat transfer. Also, its transmission and mechanical hardness are well suited for the fluid bed environment. The device has been calibrated using a blackbody source both before and after exposure to a fluidized bed, indicating the effect of the abrasive bed environment on performance. The instrument has been used to measure local radiative heat transfer around a horizontal tube. Typical results for a particle size of 2.14 mm and a bed tempeature of 1,050 K are presented and discussed to illustrate instrument performance.

  10. Inheritance of Pantoea type III secretion systems through both vertical and horizontal transfer.

    Science.gov (United States)

    Kirzinger, Morgan W B; Butz, Cory J; Stavrinides, John

    2015-12-01

    The type III secretion system (T3SS) is an extracellular apparatus used by many Gram-negative bacteria to deliver effector proteins directly into plant and animal cells, thereby facilitating host-specific association. Strains of the enterobacterial genus, Pantoea, have been isolated from a wide variety of hosts, including plants, insects, and humans, yet it is unclear whether the T3SS may be involved in these associations. In this study, we use comparative genomics and phylogenetic methods to examine the origin and distribution of T3SSs in 35 sequenced environmental and clinical strains of Pantoea. We began our analysis by examining the distribution of the previously characterized plant cell-specific PSI-1 and animal cell-specific PSI-2 of the plant pathogenic Pantoea stewartii subsp. stewartii DC283 (PstDC283), and showed that both had a somewhat limited distribution. Our analysis, however, identified two variants of a unique plant cell-specific T3SS (PSI-1a and PSI-1b) in six Pantoea strains, including a clinical isolate. Our genome analysis of PstDC283 also identified a third T3SS that we named PSI-3, which has a similar genetic content and organization to the Salmonella, animal cell-specific SPI-2 system. Phylogenetic analysis of all three systems suggests that the PSI-1 system has been inherited vertically, whereas the newly identified PSI-1a and PSI-1b systems have been acquired independently from other genera within the Enterobacteriaceae. PSI-2 appears to have been acquired horizontally as far back as the Erwinia/Pantoea common ancestor, with evidence of more recent horizontal acquisition of the PSI-3 system. Our results suggest that Pantoea is a relatively old plant pathogen that has lost and subsequently regained different plant-associated T3SSs. This work has broad implications for understanding the host-associating capacity of Pantoea strains, and reveals the propensity for Pantoea isolates to exchange pathogenicity determinants with human

  11. Gene Transfer & Hybridization Studies in Hyperthermophilic Species

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Karen E.

    2005-10-14

    A. ABSTRACT The importance of lateral gene transfer (LGT) in the evolution of microbial species has become increasingly evident with each completed microbial genome sequence. Most significantly, the genome of Thermotoga maritima MSB8, a hyperthermophilic bacterium isolated by Karl Stetter and workers from Vulcano Italy in 1986, and sequenced at The Institute for Genomic Research (TIGR) in Rockville Maryland in 1999, revealed extensive LGT between % . this bacterium and members of the archaeal domain (in particular Archaeoglobus fulgidus, and Pyracoccus frcriosus species). Based on whole genome comparisons, it was estimated that 24% of the genetic information in this organism was acquired by genetic exchange with archaeal species, Independent analyses including periodicity analysis of the T. maritimu genomic DNA sequence, phylogenetic reconstruction based on genes that appear archaeal-like, and codon and amino acid usage, have provided additional evidence for LGT between T. maritima and the archaea. More recently, DiRuggiero and workers have identified a very recent LGT event between two genera of hyperthermophilic archaea, where a nearly identical DNA fragment of 16 kb in length flanked by insertion sequence (IS) elements, exists. Undoubtedly, additional examples of LGT will be identified as more microbial genomes are completed. For the present moment however, the genome sequence of T. maritima and other hyperthermophiles including P. furiosus, Pyrococcus horikoshii, Pyrococcus abyssi, A. fulgidus, and Aquifex aeolicus, have significantly increased out awareness of evolution being a web of life rather than a tree of life, as suggested by single gene phylogenies. In this proposal, we will aim to determine the extent of LGT across the hyperthemophiles, employing iY maritima as the model organism. A variety of biochemical techniques and phylogenetic reconstructions will allow for a detailed and thorough characterization of the extent of LGT in this species. The

  12. Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shome, B. [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering

    1998-01-01

    Energy and material savings, as well as economic incentives, have led to concentrated efforts over the past several decades in the field of heat transfer enhancement to produce more efficient and compact heat exchangers. Internally finned tubes are widely used for heat transfer enhancement, particularly in chemical process and petroleum industries. A finned tube heat exchanger with optimum geometry could offer 35--40% increase in heat duty for equal pumping power and size over a smooth tube heat exchanger or a comparable decrease in the heat exchanger size for a given heat duty. Developing mixed convection flow in internally finned tubes with variable viscosity was numerically investigated for a fin geometry range of 8 {le} N {le} 24, 0.1 {le} H {le} 0.3 and an operating condition range of 50 {le} Pr{sub in} {le} 1,250, 0 {le} Ra{sub in} {le} 10{sup 7}, and 0 {le} q{sub w}d/k{sub in} {le} 2,000. The numerical model was validated by comparison with existing numerical and experimental data. Internal finning was found to produce a complex two-cell, buoyancy-induced vortex structure. The results show that coring (retarded velocity in the interfin region) leads to poor heat transfer performance of tubes with large numbers of fins or with tall fins. The overall results indicated that large enhancement in the heat transfer can be obtained in the entrance region. Furthermore, variable viscosity effects are seen to have a pronounced effect on the friction factor and Nusselt number predictions.

  13. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  14. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  15. Flow and heat transfer characteristics of graphene oxide nanofluids in a horizontal tube

    Science.gov (United States)

    Nunna, Maheshwar Rao

    This thesis presents a fundamental study conducted on heat transfer and decrease in flow through a straight copper tube of a graphene oxide (GO) nanofluid developed in-house. The GO particles were synthesized using the modified Hummers method. The physicochemical properties of the fabricated GO were characterized using X-ray diffraction analysis (XRD), a scanning electron microscope (SEM), and UV-Vis spectrophotometry, and the particle size distribution was investigated using dynamic light scattering. GO nanofluids of 0.01 wt. % and 0.1 wt. % were prepared by dispersing GO sheets in de-ionized water. Thermo-physical properties of GO nanofluids were also measured at different temperatures. An experimental setup was developed to find the heat transfer characteristics and pressure drop of nanofluids in the test section. A flexible heater was used to provide the constant heat flux condition at the wall of the tube for all the experiments. In this study, the experimental investigations of flow regime, flowrates, pressure drop and heat transfer characteristics were performed by considering three different heat flux conditions (7.38 kW/m2, 9.08 kW/m2, and 12.55 kW/m2) at three different set points of variable frequency drive (VFD), 15, 20, and 25, connected to the pump. Due to the increase in viscosity, there was a decrease in flowrate and Reynolds number from 0.01 wt. % to 0.1 wt. % of GO nanofluids at constant pump frequency. Experimental data obtained for water was validated with available data from the literature, and the correlations were formulated for the Nusselt number and Reynolds number by considering the multiple regression analysis. Convective heat transfer coefficient and dimensionless wall temperature for water and GO nanofluids were investigated. A rise in dimensionless wall temperature with the increase of velocity and particle concentration was observed. The convective heat transfer coefficient for GO 0.01 wt. % was higher when compared to GO 0.1 wt

  16. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race.

    Science.gov (United States)

    Ma, Wenbo; Dong, Frederick F T; Stavrinides, John; Guttman, David S

    2006-12-01

    The concept of the coevolutionary arms race holds a central position in our understanding of pathogen-host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3) distributed among approximately 45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine-protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range.

  17. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race.

    Directory of Open Access Journals (Sweden)

    Wenbo Ma

    2006-12-01

    Full Text Available The concept of the coevolutionary arms race holds a central position in our understanding of pathogen-host interactions. Here we identify the molecular mechanisms and follow the stepwise progression of an arms race in a natural system. We show how the evolution and function of the HopZ family of type III secreted effector proteins carried by the plant pathogen Pseudomonas syringae are influenced by a coevolutionary arms race between pathogen and host. We surveyed 96 isolates of P. syringae and identified three homologs (HopZ1, HopZ2, and HopZ3 distributed among approximately 45% of the strains. All alleles were sequenced and their expression was confirmed. Evolutionary analyses determined that the diverse HopZ1 homologs are ancestral to P. syringae, and have diverged via pathoadaptive mutational changes into three functional and two degenerate forms, while HopZ2 and HopZ3 have been brought into P. syringae via horizontal transfer from other ecologically similar bacteria. A PAML selection analysis revealed that the C terminus of HopZ1 is under strong positive selection. Despite the extensive genetic variation observed in this family, all three homologs have cysteine-protease activity, although their substrate specificity may vary. The introduction of the ancestral hopZ1 allele into strains harboring alternate alleles results in a resistance protein-mediated defense response in their respective hosts, which is not observed with the endogenous allele. These data indicate that the P. syringae HopZ family has undergone allelic diversification via both pathoadaptive mutational changes and horizontal transfer in response to selection imposed by the host defense system. This genetic diversity permits the pathogen to avoid host defenses while still maintaining a virulence-associated protease, thereby allowing it to thrive on its current host, while simultaneously impacting its host range.

  18. Indirect Measurement of Local Condensing Heat-Transfer Coefficient Around Horizontal Finned Tubes

    Science.gov (United States)

    1987-09-01

    5.9 Effect of Tube Insulation on Sieder -Tate-Type Coefficient (C ) and Modified Coefficient (C.) for All Tubes •t Atmospheric Pressure...specific tube C Sleder-Tate-type coefficient in eqn. (4.2) C Modified Sieder -Tate-type coefficient in eqn. (5.2) D Tube diameter (m) D Equivalent diameter...an outside diameter equal to the fin root diameter). The Inside heat-transfer coefficent is given by a Sieder -Tate-type equation (4.2) and is

  19. Convective mass transfer from a horizontal rotating cylinder in a slot air jet flow

    Institute of Scientific and Technical Information of China (English)

    Hongting MA; Dandan MA; Na YANG

    2009-01-01

    The effects of air jet impinging on the mass transfer characteristics from a rotating spinning cylinder surface were experimentally investigated. The effects of rotational Reynolds numberRer, jet-exit Reynolds number Rej, the nozzle width-to-cylinder diameter ratio B/d, and the ratio of the distance between nozzle exit and the front of cylinder to nozzle width L/B on the mean Sh were determined. The phenomena of the first and second critical point was analyzed and validated. On the basis of experimental data, the correlation equation was obtained.

  20. Horizontal gene transfer and gene dosage drives adaptation to wood colonization in a tree pathogen

    NARCIS (Netherlands)

    Dhillon, Braham; Feau, Nicolas; Aerts, Andrea L; Beauseigle, Stéphanie; Bernier, Louis; Copeland, Alex; Foster, Adam; Gill, Navdeep; Henrissat, Bernard; Herath, Padmini; LaButti, Kurt M; Levasseur, Anthony; Lindquist, Erika A; Majoor, Eline; Ohm, Robin A; Pangilinan, Jasmyn L; Pribowo, Amadeus; Saddler, John N; Sakalidis, Monique L; de Vries, Ronald P; Grigoriev, Igor V; Goodwin, Stephen B; Tanguay, Philippe; Hamelin, Richard C

    2015-01-01

    Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely rela

  1. Experimental and numerical simulations of heat transfers between flowing water and a horizontal frozen porous medium

    Science.gov (United States)

    Roux, N.; Costard, F.; Grenier, C. F.

    2013-12-01

    In permafrost-affected regions, hydrological changes due to global warming are still under investigation. But yet, we can already foresee from recent studies that for example, the variability and intensity of surface/subsurface flow are likely to be affected by permafrost degradation. And the feedback induced by such changes on permafrost degradation is still not clearly assessed. Of particular interest are lake and river-taliks. A talik is a permanently unfrozen zone that lies below rivers or lake. They should play a key role in these interactions given that they are the only paths for groundwater flow in permafrost regions. Thus heat transfers on a regional scale are potentially influenced by groundwater circulation. The aim of our study is therefore to investigate the evolution of river taliks. We developed a multidisciplinary approach coupling field investigation, experimental studies in a cold room and numerical modeling. In Central Yakutia, Siberia, where permafrost is continuous, we recently installed instruments to monitor ground temperature and water pressure in a river talik between two thermokarst lakes. We present here the coupling of numerical modeling and laboratory experiments in order to look after the main parameters controlling river-talik installation. In a cold room at IDES, where a metric scale channel is filled with sand as a porous medium, we are able to control air, water and permafrost temperature, but also water flow, so that we can test various parameter sets for a miniaturized river. These results are confronted with a numerical model developed at the LSCE with Cast3m (www-cast3m.cea.fr), that couples heat and water transfer. In particular, expressions for river-talik heat exchange terms are investigated. A further step will come in the near future with results from field investigation providing the full complexity of a natural system. Keywords: Talik, River, Numerical Modeling, Cold Room, Permafrost.

  2. Investigation of heat transfer and pressure drop of CO(2) two-phase flow in a horizontal minichannel

    CERN Document Server

    Wu, J; Haug, F; Franke, C; Bremer, J; Eisel, T; Koettig, T

    2011-01-01

    An innovative cooling system based on evaporative CO(2) two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m(2) s, the heat flux from 7.5 to 29.8 kW/m(2) and the saturation temperature from -40 to 0 degrees C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m(2) K and 28 kW/m(2) K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed...

  3. Gene transfer for congestive heart failure: update 2013.

    Science.gov (United States)

    Tang, Tong; Hammond, H Kirk

    2013-04-01

    Congestive heart failure is a major cause of morbidity and mortality with increasing social and economic costs. There have been no new high impact therapeutic agents for this devastating disease for more than a decade. However, many pivotal regulators of cardiac function have been identified using cardiac-directed transgene expression and gene deletion in preclinical studies. Some of these increase function of the failing heart. Altering the expression of these pivotal regulators using gene transfer is now either being tested in clinical gene transfer trials, or soon will be. In this review, we summarize recent progress in cardiac gene transfer for clinical congestive heart failure.

  4. HIGH EFFICIENCY RETROVIRUS-MEDIATED GENE TRANSFER TO LEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    FU Jian-xin; CHEN Zi-xing; CEN Jian-nong; WANG Wei; RUAN Chang-geng

    1999-01-01

    Objective: To establish an efficient and safe gene transfer system mediated by retrovirus for gene marking and gene therapy of human leukemia. Method: The retroviral vector LXSN, containing the neomycin resistance (NeoR) gene, was transferred into amphotropic packaging cells GP+envAm12 by liposome transfection or by ecotropic retrovirus transduction. Amphotropic retrovirus in supernatants with higher titer was used to infect human leukemic cell lines NB4, U937, and THP-1.The efficiency of gene transfer was assayed on colonies formed by transduced K562 cells. Results: The titer of DOSPER directly transfected GP+envAm12 cells determined on NIH3T3 cells was 8.0×105 CFU/ml, while that of producer infected with retrovirus was 1.6×107CFU/ml. Integration of NeoR gene into all leukemia cells was confirmed by polymerase chain reaction (PCR).Absence of replication-competent virus was proved by both nested PCR for env gene and marker gene rescue assay. Gene transfer with the efficiency as high as 93.3 to 100% in K562 cells was verified by seminested PCR for integrated NeoR gene on colonies after 7 days' culture.Conclusion: The efficiency and safety of retrovirus mediated gene transfer system might provide an optimal system in gene therapy for leukemia or genetic diseases.

  5. Problems associated with gene transfer and opportunities for microgravity environments

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, D.J. [Floriculture and Ornamental Horticulture Cornell University, Ithaca, New York14853 (United States)

    1997-01-01

    The method of crop improvement by gene transfer is becoming increasingly routine with transgenic foods and ornamental crops now being marketed to consumers. However, biological processes of plants, and the physical barriers of current protocols continue to limit the application of gene transfer in many commercial crops. The goal of this paper is to outline the current limitations of gene transfer and to hypothesize possible opportunities for use of microgravity to overcome such limitations. The limitations detailed in this paper include host-range specificity of {ital Agrobacterium} mediated transformation, probability of gene insertion, position effects of the inserted genes, gene copy number, stability of foreign gene expression in host plants, and regeneration of recalcitrant plant species. Microgravity offers an opportunity for gene transfer where cell growth kinetics, DNA synthesis, and genetic recombination rates can be altered. Such biological conditions may enhance the ability for recombination of reporter genes and other genes of interest to agriculture. Proposed studies would be useful for understanding instability of foreign gene expression and may lead to stable transformed plants. Other aspects of gene transfer in microgravity are discussed. {copyright} {ital 1997 American Institute of Physics.}

  6. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    Progeny from crosses of Nicotiana langsdorffii with gamma irradiated pollen of Nicotiana alata ‘Crimson Bedder’ showed skewed segregation in the F2 favoring the maternal parent. This is probably not gene transfer in a strict sense, rather just an extreme case of reduced transmission of irradiated...... chromosomes, leading to massive overrepresentation of maternal genes. Gene transfer or mutational loss may explain some anomalous F1 plants. Segregation in the F2 progeny showed the presence of several genes from the irradiated pollen. Crosses of Nicotiana sylvestris, N. plumbaginifolia N. paniculata......, and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  7. Saturated flow boiling heat transfer correlation for carbon dioxide for horizontal smooth tubes

    Science.gov (United States)

    Turgut, Oguz Emrah; Asker, Mustafa

    2017-01-01

    Literature comprises fewer studies about flow boiling modelling of refrigerants for in tube flows. In addition, researches on two phase flow heat transfer are based on the mathematical models which were derived in a very limited operational condition and correlated for their own measurements. In this study, a new flow boiling model including the superposed effects of nucleate and convective boiling mechanisms is proposed through the minimization of the cumulative error between the proposed mathematical model and actual data by means of artificial cooperative search algorithm and applied to the database of R-744 (carbon dioxide), available from different studies in the literature. Predictions obtained from the proposed model have been compared with those of retained from the literature correlations developed for flow boiling in tubes. The comparison results indicate that the new model outperforms the literature correlations in terms of prediction accuracy. Results of the comparisons reveal that the proposed flow boiling mathematical model has a mean absolute relative error of 14.6% and predicts 76.7% of the experimental data within ±20.0%.

  8. Horizontal Transfer of the Salmonella enterica Serovar Infantis Resistance and Virulence Plasmid pESI to the Gut Microbiota of Warm-Blooded Hosts

    Directory of Open Access Journals (Sweden)

    Gili Aviv

    2016-09-01

    Full Text Available Salmonella enterica serovar Infantis is one of the prevalent salmonellae worldwide. Recently, we showed that the emergence of S. Infantis in Israel was facilitated by the acquisition of a unique megaplasmid (pESI conferring multidrug resistance and increased virulence phenotypes. Here we elucidate the ecology, transmission properties, and regulation of pESI. We show that despite its large size (~280 kb, pESI does not impose a significant metabolic burden in vitro and that it has been recently fixed in the domestic S. Infantis population. pESI conjugation and the transcription of its pilus (pil genes are inhibited at the ambient temperature (27°C and by ≥1% bile but increased under temperatures of 37 to 41°C, oxidative stress, moderate osmolarity, and the microaerobic conditions characterizing the intestinal environment of warm-blooded animals. The pESI-encoded protein TraB and the oxygen homeostasis regulator Fnr were identified as transcriptional regulators of pESI conjugation. Using the mouse model, we show that following S. Infantis infection, pESI can be horizontally transferred to the gut microbiota, including to commensal Escherichia coli strains. Possible transfer, but not persistence, of pESI was also observed into Gram-positive mouse microbiota species, especially Lactobacillus reuteri. Moreover, pESI was demonstrated to further disseminate from gut microbiota to S. enterica serovar Typhimurium, in the context of gastrointestinal infection. These findings exhibit the ability of a selfish clinically relevant megaplasmid to distribute to and from the microbiota and suggest an overlooked role of the microbiota as a reservoir of mobile genetic elements and intermediator in the spread of resistance and virulence genes between commensals and pathogenic bacteria.

  9. Multiple horizontal transfers of bacteriophage WO and host Wolbachia in fig wasps in a closed community

    Directory of Open Access Journals (Sweden)

    Ningxin eWang

    2016-02-01

    Full Text Available Wolbachia-bacteriophage WO is a good model system for studying interactions between bacteria and viruses. Previous surveys of insect hosts have been conducted via sampling from open or semi-open communities; however, no studies have reported the infection patterns of phage WO of insects living in a closed community. Figs and fig wasps form a peculiar closed community in which the Ficus tree provides a compact syconium habitat for a variety of fig wasps. Therefore, in this study, we performed a thorough survey of Wolbachia and bacteriophage WO infection patterns in a total of 1406 individuals from 23 fig wasps species living on three different fig tree species. The infection rates of Wolbachia and phage WO were 82.6% (19/23 and 39.1% (9/23, respectively. Additionally, phage WO from fig wasps showed strong insect host specificity based on orf7 sequences from fig wasps and 21 other insect species. Probably due to the physical barrier of fig syconium, most phage WO from fig wasps form a special clade. Phylogenetic analysis showed the absence of congruence between WO and host Wolbachia, WO and insect host, as well as Wolbachia and fig wasps, suggesting that both Wolbachia and phage WO exchanged frequently and independently within the closed syconium. Thus, the infection pattern of bacteriophage WO from fig wasps appeared quite different from that in other insects living outside, although the effect and the transfer routes of phage WO are unclear, which need to be investigated in the future.

  10. Vertical evolution and horizontal transfer of CR1 non-LTR retrotransposons and Tc1/mariner DNA transposons in Lepidoptera species.

    Science.gov (United States)

    Sormacheva, Irina; Smyshlyaev, Georgiy; Mayorov, Vladimir; Blinov, Alexander; Novikov, Anton; Novikova, Olga

    2012-12-01

    Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long terminal repeat (LTR) retrotransposons, non-LTR retrotransposons rarely undergo HT, and their phylogenies are largely congruent to those of their hosts. Previously, we described HT of CR1-like non-LTR retrotransposons between butterflies (Maculinea) and moths (Bombyx), which occurred less than 5 million years ago (Novikova O, Sliwinska E, Fet V, Settele J, Blinov A, Woyciechowski M. 2007. CR1 clade of non-LTR retrotransposons from Maculinea butterflies (Lepidoptera: Lycaenidae): evidence for recent horizontal transmission. BMC Evol Biol. 7:93). In this study, we continued to explore the diversity of CR1 non-LTR retrotransposons among lepidopterans providing additional evidences to support HT hypothesis. We also hypothesized that DNA transposons could be involved in HT of non-LTR retrotransposons. Thus, we performed analysis of one of the groups of DNA transposons, mariner-like DNA elements, as potential vectors for HT of non-LTR retrotransposons. Our results demonstrate multiple HTs between Maculinea and Bombyx genera. Although we did not find strong evidence for our hypothesis of the involvement of DNA transposons in HT of non-LTR retrotransposons, we demonstrated that recurrent and/or simultaneous flow of TEs took place between distantly related moths and butterflies.

  11. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 1st Report, Saturated Liquid

    OpenAIRE

    Ito, Takehiro; Nishikawa, Kaneyasu; Shigechi, Tooru

    1981-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to saturated liquid cross-flowing upward is analyzed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined by means of the integral method of boundary-layer for water, ethanol and hexane under the atmospheric pressure. The velocity profile, separation point of the boundary-layer, thickness of the boundary-layer, distribution of the heat transfer coefficients and avera...

  12. Gene transfer approaches in cancer immunotherapy.

    Science.gov (United States)

    Larin, S S; Georgiev, G P; Kiselev, S L

    2004-10-01

    The idea of enhancing or establishing effective immune response against endogenously developed tumor cells is not novel. More than a hundred years ago, bacterial components were used to develop antitumor immune response. Later, when a number of immune system-effecting cytokines had been discovered, they were used for systemic treatment of cancer patients. However, systemic treatment often resulted in even negative outcome. Recent developments of genetic approaches of cell modifications allowed developing of modern techniques of targeted tumor cell elimination. In the present paper, we review modern trends of the antitumor response enhancement based on immunoregulatory gene transfer into different cell types both in vivo and in vitro. Almost all these approaches are based on the activation of the adaptive arm of the immune system in response to tumor cells. However, recent studies indicate that the innate arm of the immune system, as well as adaptive arm, is involved in tumor suppression. The innate immune system uses nonrearranging germline receptors, which could trigger cellular effector responses that are conditional (or instructive) to the subsequent adaptive immune response. Last years' viewpoints on 'self' and 'non-self' recognition and primary induction of the immune response have changed. The key role of lymphocytes is pathogen recognition and, following immune response induction, switched on the central role of dendritic cells in 'non-self' recognition and induction of both innate and adaptive responses. Moreover, innate response is supposed to be an essential starting point in induction of successful and effective acquired response. Most cancer vaccines do not have 'non-self' marks presentation due to their endogenous origin, thus lacking their effectiveness in the induction of the specific long-lasting immune response. Taking this point into consideration, we can conclude that to make cancer vaccine more effective we have to present tumor antigens

  13. Nonviral gene transfer strategies to promote bone regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2013-10-01

    Despite the inherent ability of bone to regenerate itself, there are a number of clinical situations in which complete bone regeneration fails to occur. In view of shortcomings of conventional treatment, gene therapy may have a place in cases of critical-size bone loss that cannot be properly treated with current medical or surgical treatment. The purpose of this review is to provide an overview of gene therapy in general, nonviral techniques of gene transfer including physical and chemical methods, RNA-based therapy, therapeutic genes to be transferred for bone regeneration, route of application including ex vivo application, and direct gene therapy approaches to regenerate bone.

  14. Transfer of engineered genes from crop to wild plants

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.;

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier...

  15. Transfer of antibiotic-resistance genes via phage-related mobile elements.

    Science.gov (United States)

    Brown-Jaque, Maryury; Calero-Cáceres, William; Muniesa, Maite

    2015-05-01

    Antibiotic resistance is a major concern for society because it threatens the effective prevention of infectious diseases. While some bacterial strains display intrinsic resistance, others achieve antibiotic resistance by mutation, by the recombination of foreign DNA into the chromosome or by horizontal gene acquisition. In many cases, these three mechanisms operate together. Several mobile genetic elements (MGEs) have been reported to mobilize different types of resistance genes and despite sharing common features, they are often considered and studied separately. Bacteriophages and phage-related particles have recently been highlighted as MGEs that transfer antibiotic resistance. This review focuses on phages, phage-related elements and on composite MGEs (phages-MGEs) involved in antibiotic resistance mobility. We review common features of these elements, rather than differences, and provide a broad overview of the antibiotic resistance transfer mechanisms observed in nature, which is a necessary first step to controlling them.

  16. Gene Transfer Strategies to Promote Chondrogenesis and Cartilage Regeneration.

    Science.gov (United States)

    Im, Gun-Il

    2016-04-01

    Gene transfer has been used experimentally to promote chondrogenesis and cartilage regeneration. While it is controversial to apply gene therapy for nonlethal conditions such as cartilage defect, there is a possibility that the transfer of therapeutic transgenes may dramatically increase the effectiveness of cell therapy and reduce the quantity of cells that are needed to regenerate cartilage. Single or combination of growth factors and transcription factors has been transferred to mesenchymal stem cells or articular chondrocytes using both nonviral and viral approaches. The current challenge for the clinical applications of genetically modified cells is ensuring the safety of gene therapy while guaranteeing effectiveness. Viral gene delivery methods have been mainstays currently with enhanced safety features being recently refined. On the other hand, efficiency has been greatly improved in nonviral delivery. This review summarizes the history and recent update on the gene transfer to enhance chondrogenesis from stem cells or articular chondrocytes.

  17. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  18. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor

    Science.gov (United States)

    Leavitt, Justin C.; Gilcrease, Eddie B.; Wilson, Kassandra; Casjens, Sherwood R.

    2013-01-01

    Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2 kbp region. Our in vivo studies that show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful. PMID:23562538

  19. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3")-II, is horizontally transferred among Acinetobacter spp. by homologous recombination

    Science.gov (United States)

    Zhang, Gang; Leclercq, Sébastien Olivier; Tian, Jingjing; Wang, Chao; Ai, Guomin; Liu, Shuangjiang

    2017-01-01

    The emergence and spread of antibiotic resistance among Acinetobacter spp. have been investigated extensively. Most studies focused on the multiple antibiotic resistance genes located on plasmids or genomic resistance islands. On the other hand, the mechanisms controlling intrinsic resistance are still not well understood. In this study, we identified the novel subclass of aminoglycoside nucleotidyltransferase ANT(3")-II in Acinetobacter spp., which comprised numerous variants distributed among three main clades. All members of this subclass can inactivate streptomycin and spectinomycin. The three ant(3")-II genes, encoding for the three ANT(3")-II clades, are widely distributed in the genus Acinetobacter and always located in the same conserved genomic region. According to their prevalence, these genes are intrinsic in Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter gyllenbergii. We also demonstrated that the ant(3")-II genes are located in a homologous recombination hotspot and were recurrently transferred among Acinetobacter species. In conclusion, our findings demonstrated a novel mechanism of natural resistance in Acinetobacter spp., identified a novel subclass of aminoglycoside nucleotidyltransferase and provided new insight into the evolutionary history of intrinsic resistance genes. PMID:28152054

  20. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    , dramatically affecting the enzymes of core pathways, particularly amino acid and sugar metabolism, but also providing new genes of potential adaptive significance in the life of parasites. A broad range of prokaryotic donors is involved in such transfers, but there is clear and significant enrichment......BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... for bacterial groups that share the same habitats, including the human microbiota, as the parasites investigated. CONCLUSIONS: Our data show that ecology and lifestyle strongly influence gene origins and opportunities for gene transfer and reveal that, although the outlines of the core eukaryotic metabolism...

  1. Identification of Horizontally-transferred Genomic Islands and Genome Segmentation Points by Using the GC Profile Method.

    Science.gov (United States)

    Zhang, Ren; Ou, Hong-Yu; Gao, Feng; Luo, Hao

    2014-04-01

    The nucleotide composition of genomes undergoes dramatic variations among all three kingdoms of life. GC content, an important characteristic for a genome, is related to many important functions, and therefore GC content and its distribution are routinely reported for sequenced genomes. Traditionally, GC content distribution is assessed by computing GC contents in windows that slide along the genome. Disadvantages of this routinely used window-based method include low resolution and low sensitivity. Additionally, different window sizes result in different GC content distribution patterns within the same genome. We proposed a windowless method, the GC profile, for displaying GC content variations across the genome. Compared to the window-based method, the GC profile has the following advantages: 1) higher sensitivity, because of variation-amplifying procedures; 2) higher resolution, because boundaries between domains can be determined at one single base pair; 3) uniqueness, because the GC profile is unique for a given genome and 4) the capacity to show both global and regional GC content distributions. These characteristics are useful in identifying horizontally-transferred genomic islands and homogenous GC-content domains. Here, we review the applications of the GC profile in identifying genomic islands and genome segmentation points, and in serving as a platform to integrate with other algorithms for genome analysis. A web server generating GC profiles and implementing relevant genome segmentation algorithms is available at: www.zcurve.net.

  2. Heat transfer through a horizontal annular layer of magnetic fluid during the cooling of cylindrical current conductors

    Energy Technology Data Exchange (ETDEWEB)

    Polevikov, V.K.; Fertman, V.E.

    1977-01-01

    The results of a numerical study are presented for stationary natural convection in an annular magnetic fluid layer which cools a horizontal cylindrical current conductor. The system of two-dimensional hydrodynamics equations was solved in a non-inductive approximation by the finite differences method. A monotonic conservative differential system of second order accuracy was used. The studies were made in the ranges: 10 < or = to Pr < or = to 10/sup 4/, 0 < or = to Ra < or = to 10/sup 6/, 0 < or = to Ra/sub m/ < or = to 10/sup 8/, 1.5 < or = to r/sub 2//r/sub 1/ < or = to 5 (Pr--Prandtl number; Ra--Rayleigh number; Ra/sub m/--parameter of magnetic convection mechanism; r/sub 2//r/sub 1/--radius ratio of coaxial cylinders). The developmental characteristics of thermoconvective structures, local and integral thermal currents in an annular layer during a change in specific parameters are discussed. Critical formulae are constructed which describe convective heat transfer when Ra/sub m/ much greater than Ra and Ra/sub m/ much less than Ra in which case a good agreement is obtained with known experimental data. The results of the study may be used in devising cooling systems for electrical cables. 5 illustrations, 11 references.

  3. Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions.

    Science.gov (United States)

    Guo, Xuezhu; Gao, Jingkun; Li, Fei; Wang, Jianjun

    2014-05-30

    Horizontal transfer (HT) of transposable elements has been recognized to be a major force driving genomic variation and biological innovation of eukaryotic organisms. However, the mechanisms of HT in eukaryotes remain poorly appreciated. The non-autonomous Helitron family, Lep1, has been found to be widespread in lepidopteran species, and showed little interspecific sequence similarity of acquired sequences at 3' end, which makes Lep1 a good candidate for the study of HT. In this study, we describe the Lep1-like elements in multiple non-lepidopteran species, including two aphids, Acyrthosiphon pisum and Aphis gossypii, two parasitoid wasps, Cotesia vestalis, and Copidosoma floridanum, one beetle, Anoplophora glabripennis, as well as two bracoviruses in parasitoid wasps, and one intracellular microsporidia parasite, Nosema bombycis. The patchy distribution and high sequence similarity of Lep1-like elements among distantly related lineages as well as incongruence of Lep1-like elements and host phylogeny suggest the occurrence of HT. Remarkably, the acquired sequences of both NbLep1 from N. bombycis and CfLep1 from C. floridanum showed over 90% identity with their lepidopteran host Lep1. Thus, our study provides evidence of HT facilitated by host-parasite interactions. Furthermore, in the context of these data, we discuss the putative directions and vectors of HT of Lep1 Helitrons.

  4. Horizontally Transferred Genetic Elements in the Tsetse Fly Genome: An Alignment-Free Clustering Approach Using Batch Learning Self-Organising Map (BLSOM)

    Science.gov (United States)

    Nakao, Ryo; Funayama, Shunsuke

    2016-01-01

    Tsetse flies (Glossina spp.) are the primary vectors of trypanosomes, which can cause human and animal African trypanosomiasis in Sub-Saharan African countries. The objective of this study was to explore the genome of Glossina morsitans morsitans for evidence of horizontal gene transfer (HGT) from microorganisms. We employed an alignment-free clustering method, that is, batch learning self-organising map (BLSOM), in which sequence fragments are clustered based on the similarity of oligonucleotide frequencies independently of sequence homology. After an initial scan of HGT events using BLSOM, we identified 3.8% of the tsetse fly genome as HGT candidates. The predicted donors of these HGT candidates included known symbionts, such as Wolbachia, as well as bacteria that have not previously been associated with the tsetse fly. We detected HGT candidates from diverse bacteria such as Bacillus and Flavobacteria, suggesting a past association between these taxa. Functional annotation revealed that the HGT candidates encoded loci in various functional pathways, such as metabolic and antibiotic biosynthesis pathways. These findings provide a basis for understanding the coevolutionary history of the tsetse fly and its microbes and establish the effectiveness of BLSOM for the detection of HGT events. PMID:28074180

  5. Fluoroquinolone induction of phage-mediated gene transfer in multidrug-resistant Salmonella.

    Science.gov (United States)

    Bearson, Bradley L; Brunelle, Brian W

    2015-08-01

    Fluoroquinolones are broad-spectrum antibiotics that inhibit bacterial DNA gyrase and topoisomerase activity, which can cause DNA damage and result in bacterial cell death. In response to DNA damage, bacteria induce an SOS response to stimulate DNA repair. However, the SOS response may also induce prophage with production of infectious virions. Salmonella strains typically contain multiple prophages, and certain strains including phage types DT120 and DT104 contain prophage that upon induction are capable of generalised transduction. In this study, strains of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium DT120 and DT104 were exposed to fluoroquinolones important for use in human and veterinary disease therapy to determine whether prophage(s) are induced that could facilitate phage-mediated gene transfer. Cultures of MDR S. Typhimurium DT120 and DT104 containing a kanamycin resistance plasmid were lysed after exposure to fluoroquinolones (ciprofloxacin, enrofloxacin and danofloxacin). Bacterial cell lysates were able to transfer the plasmid to a recipient kanamycin-susceptible Salmonella strain by generalised transduction. In addition, exposure of DT120 to ciprofloxacin induced the recA gene of the bacterial SOS response and genes encoded in a P22-like generalised transducing prophage. This research indicates that fluoroquinolone exposure of MDR Salmonella can facilitate horizontal gene transfer, suggesting that fluoroquinolone usage in human and veterinary medicine may have unintended consequences, including the induction of phage-mediated gene transfer from MDR Salmonella. Stimulation of gene transfer following bacterial exposure to fluoroquinolones should be considered an adverse effect, and clinical decisions regarding antibiotic selection for infectious disease therapy should include this potential risk. Published by Elsevier B.V.

  6. In vivo particle-mediated gene transfer for cancer therapy.

    Science.gov (United States)

    Rakhmilevich, A L; Yang, N S

    2000-01-01

    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  7. Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth.

    Science.gov (United States)

    Mattozzi, Matthew d; Ziesack, Marika; Voges, Mathias J; Silver, Pamela A; Way, Jeffrey C

    2013-03-01

    The 3-hydroxypropionate (3-HPA) bicycle is unique among CO2-fixing systems in that none of its enzymes appear to be affected by oxygen. Moreover, the bicycle includes a number of enzymes that produce novel intermediates of biotechnological interest, and the CO2-fixing steps in this pathway are relatively rapid. We expressed portions of the 3-HPA bicycle in a heterologous organism, E. coli K12. We subdivided the 3-HPA bicycle into four sub-pathways: (1) synthesis of propionyl-CoA from acetyl-CoA, (2) synthesis of succinate from propionyl-CoA, (3) glyoxylate production and regeneration of acetyl-CoA, and (4) assimilation of glyoxylate and propionyl-CoA to form pyruvate and regenerate acetyl-CoA. We expressed the novel enzymes of the 3-HPA bicycle in operon form and used phenotypic tests for activity. Sub-pathway 1 activated a propionate-specific biosensor. Sub-pathway 2, found in non-CO2-fixing bacteria, was reassembled in E. coli using genes from diverse sources. Sub-pathway 3, operating in reverse, generated succinyl-CoA sufficient to rescue a sucAD(-) double mutant of its diaminopimelic acid (DAP) auxotrophy. Sub-pathway 4 was able to reduce the toxicity of propionate and allow propionate to contribute to cell biomass in a prpC(-)(2 methylcitrate synthase) mutant strain. These results indicate that all of the sub-pathways of the 3-HPA bicycle can function to some extent in vivo in a heterologous organism, as indicated by growth tests. Overexpression of certain enzymes was deleterious to cell growth, and, in particular, expression of MMC-CoA lyase caused a mucoid phenotype. These results have implications for metabolic engineering and for bacterial evolution through horizontal gene transfer.

  8. Prediction of nucleate boiling heat transfer on horizontal U-shaped heat exchanger submerged in a pool of water using MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Su [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Hong, Soon-Joon [Department of Nuclear Thermal-hydraulic Research, FNC Technology Co., Ltd., 46, Tapsil-ro, Giheung-gu, Yongin-si 446-902, Gyeonggi-do (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2015-12-15

    Highlights: • PAFS has a horizontal U-shaped heat exchanger submerged in a pool. • PASCAL and ATLAS-PAFS experiments were simulated using MARS code. • This study assessed the predictive capability of 15 nucleate boiling correlations on horizontal tubes. • This study investigated heat transfer mechanisms of the heat exchanger and proposed new boiling model. • The proposed boiling model predicted the experimental heat transfer coefficients well. - Abstract: In advanced nuclear power plants, a horizontal U-shaped heat exchanger submerged in a pool is under development as a key equipment of a passive safety system. For the successful design of the heat exchanger and the safety analysis of the nuclear power plant incorporating this passive safety system, the reliable prediction of the nucleate boiling heat transfer on the horizontal parts of the U-shaped tubes is one of the important factors. At present, the best estimate thermal hydraulic analysis codes such as RELAP5 and MARS are used to analyze the nucleate boiling heat transfer on the horizontal U-shaped heat exchanger submerged in a pool; however, it is still not known how to physically model the heat exchanger pool, and which correlations are suitable among the pool boiling and forced convective boiling correlations. To secure the applicable correlation for the heat exchanger, this study assessed 15 nucleate boiling correlations using MARS. To improve the prediction capability of the best estimate code, this study investigated the main heat transfer mechanisms on the horizontal U-shaped heat exchanger submerged in a pool, then proposed a prediction method, and finally developed a nucleate boiling model. From the validation of the proposed model against PAFS (passive auxiliary feedwater system)-related experimental data of PASCAL and ATLAS-PAFS, the proposed boiling model predicted the experimental heat transfer coefficients much better than the default nucleate boiling model by Chen (1966, Ind. Eng. Chem

  9. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut.

    Science.gov (United States)

    Hinnebusch, B Joseph; Rosso, Marie-Laure; Schwan, Tom G; Carniel, Elisabeth

    2002-10-01

    The acquisition of foreign DNA by horizontal transfer from unrelated organisms is a major source of variation leading to new strains of bacterial pathogens. The extent to which this occurs varies widely, due in part to lifestyle factors that determine exposure to potential donors. Yersinia pestis, the plague bacillus, infects normally sterile sites in its mammalian host, but forms dense aggregates in the non-sterile digestive tract of its flea vector to produce a transmissible infection. Here we show that unrelated co-infecting bacteria in the flea midgut are readily incorporated into these aggregates, and that this close physical contact leads to high-frequency conjugative genetic exchange. Transfer of an antibiotic resistance plasmid from an Escherichia coli donor to Y. pestis occurred in the flea midgut at a frequency of 10-3 after only 3 days of co-infection, and after 4 weeks 95% of co-infected fleas contained an average of 103 antibiotic-resistant Y. pestis transconjugants. Thus, transit in its arthropod vector exposes Y. pestis to favourable conditions for efficient genetic exchange with microbial flora of the flea gut. Horizontal gene transfer in the flea may be the source of antibiotic-resistant Y. pestis strains recently isolated from plague patients in Madagascar.

  10. Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology.

    Directory of Open Access Journals (Sweden)

    David M Goldenberg

    Full Text Available We report the in-vivo fusion of two Hodgkin lymphomas with golden hamster cheek pouch cells, resulting in serially-transplanted (over 5-6 years GW-532 and GW-584 heterosynkaryon tumor cells displaying both human and hamster DNA (by FISH, lymphoma-like morphology, aggressive metastasis, and retention of 7 human genes (CD74, CXCR4, CD19, CD20, CD71, CD79b, and VIM out of 24 tested by PCR. The prevalence of B-cell restricted genes (CD19, CD20, and CD79b suggests that this uniform population may be the clonal initiating (malignant cells of Hodgkin lymphoma, despite their not showing translation to their respective proteins by immunohistochemical analysis. This is believed to be the first report of in-vivo cell-cell fusion of human lymphoma and rodent host cells, and may be a method to disclose genes regulating both organoid and metastasis signatures, suggesting that the horizontal transfer of tumor DNA to adjacent stromal cells may be implicated in tumor heterogeneity and progression. The B-cell gene signature of the hybrid xenografts suggests that Hodgkin lymphoma, or its initiating cells, is a B-cell malignancy.

  11. The advantages of complementing MT profiles in 3-D environments with geomagnetic transfer function and interstation horizontal magnetic transfer function data: results from a synthetic case study

    Science.gov (United States)

    Campanyà, Joan; Ogaya, Xènia; Jones, Alan G.; Rath, Volker; Vozar, Jan; Meqbel, Naser

    2016-12-01

    As a consequence of measuring time variations of the electric and the magnetic field, which are related to current flow and charge distribution, magnetotelluric (MT) data in 2-D and 3-D environments are not only sensitive to the geoelectrical structures below the measuring points but also to any lateral anomalies surrounding the acquisition site. This behaviour complicates the characterization of the electrical resistivity distribution of the subsurface, particularly in complex areas. In this manuscript we assess the main advantages of complementing the standard MT impedance tensor (Z) data with interstation horizontal magnetic tensor (H) and geomagnetic transfer function (T) data in constraining the subsurface in a 3-D environment beneath a MT profile. Our analysis was performed using synthetic responses with added normally distributed and scattered random noise. The sensitivity of each type of data to different resistivity anomalies was evaluated, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data. A dimensionality analysis, using Z, H and T data, identified the presence of the 3-D anomalies close to the profile, suggesting a 3-D approach for recovering the electrical resistivity values of the subsurface. Finally, the capacity for recovering the geoelectrical structures of the subsurface was evaluated by performing joint inversion using different data combinations, quantifying the differences between the true synthetic model and the models from inversion process. Four main improvements were observed when performing joint inversion of Z, H and T data: (1) superior precision and accuracy at characterizing the electrical resistivity values of the anomalies below and outside the profile; (2) the potential to recover high electrical resistivity anomalies that are poorly recovered using Z data alone; (3) improvement in the characterization of the bottom and lateral boundaries of the anomalies with low

  12. Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria.

    Science.gov (United States)

    Bouzat, Juan L; Hoostal, Matthew J

    2013-05-01

    Microorganisms have adapted intricate signal transduction mechanisms to coordinate tolerance to toxic levels of metals, including two-component regulatory systems (TCRS). In particular, both cop and czc operons are regulated by TCRS; the cop operon plays a key role in bacterial tolerance to copper, whereas the czc operon is involved in the efflux of cadmium, zinc, and cobalt from the cell. Although the molecular physiology of heavy metal tolerance genes has been extensively studied, their evolutionary relationships are not well-understood. Phylogenetic relationships among heavy-metal efflux proteins and their corresponding two-component regulatory proteins revealed orthologous and paralogous relationships from species divergences and ancient gene duplications. The presence of heavy metal tolerance genes on bacterial plasmids suggests these genes may be prone to spread through horizontal gene transfer. Phylogenetic inferences revealed nine potential examples of lateral gene transfer associated with metal efflux proteins and two examples for regulatory proteins. Notably, four of the examples suggest lateral transfer across major evolutionary domains. In most cases, differences in GC content in metal tolerance genes and their corresponding host genomes confirmed lateral gene transfer events. Three-dimensional protein structures predicted for the response regulators encoded by cop and czc operons showed a high degree of structural similarity with other known proteins involved in TCRS signal transduction, which suggests common evolutionary origins of functional phenotypes and similar mechanisms of action for these response regulators.

  13. Forced Convection Film Boiling Heat Transfer from a Horizontal Cylinder to Liquid Cross-flowing Upward : 2nd Report, Subcooled Liquid

    OpenAIRE

    Shigechi, Tooru; Ito, Takehiro; Nishikawa, Kaneyasu

    1983-01-01

    Forced convection film boiling heat transfer from a horizontal cylinder to a subcooled liquid cross-flowing upward is analysed based on the two-phase boundary-layer theory. Numerical solution of the conservation equations is determined for subcooled water, ethanol and hexane under the atmospheric pressure by the method similar to that of the first report for saturated liquid. The velocity profile, the separation point in the vapor film, the thickness of the boundary-layer and the average Nuss...

  14. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes

    Directory of Open Access Journals (Sweden)

    Yiwei Chen

    2013-01-01

    Full Text Available We developed a single vector recombinant adeno-associated viral (rAAV expression system for spatial and reversible control of polycistronic gene expression. Our approach (i integrates the advantages of the tetracycline (Tet-controlled transcriptional silencer tTSKid and the self-cleaving 2A peptide bridge, (ii combines essential regulatory components as an autoregulatory loop, (iii simplifies the gene delivery scheme, and (iv regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE, both the ubiquitous chicken β-actin promoter (CAG and the neuron-specific synapsin-1 promoter (Syn could regulate expression of tTSKid together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox. Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI visualized reversible “ON/OFF” gene switches over repeated “Doxy-Cycling” in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.

  15. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes.

    Science.gov (United States)

    Chen, Yiwei; Cao, Liji; Luo, Chonglin; Ditzel, Désirée Aw; Peter, Jörg; Sprengel, Rolf

    2013-04-09

    We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTS(Kid) and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTS(Kid) together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible "ON/OFF" gene switches over repeated "Doxy-Cycling" in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e85; doi:10.1038/mtna.2013.15; published online 9 April 2013.

  16. Genes codificadores de proteínas implicadas na relação de espécies do gênero Trypanosoma com seus hospedeiros: diversidade, transferência horizontal e relações filogenéticas.

    OpenAIRE

    André Guilherme da Costa Martins

    2016-01-01

    A diversidade de tripanossomas é atribuída a um arsenal gene vasto. HSP compreendem várias famílias que atuam como uma chaperona moleculares em condições de estresse e fisiológicas. A HSP70 em tripanossomas consiste em 9 genes: Canonical, HSP70.4, HSP70.c, GRP78, Lc2.2, HSP70.b, Grp170, HSP110 e HSP70.a. Análises filogenéticas indicam que a evolução de HSP70 segue um padrão de ramificação que coincide com a compartimentação celular. As inferências filogenéticas de Trypanosoma obtidas a partir...

  17. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin.

    Science.gov (United States)

    Raji, Grace R; Sruthi, T V; Edatt, Lincy; Haritha, K; Sharath Shankar, S; Sameer Kumar, V B

    2017-10-01

    Recent studies indicate that horizontal transfer of genetic material can act as a communication tool between heterogenous populations of tumour cells, thus altering the chemosensitivity of tumour cells. The present study was designed to check whether the horizontal transfer of miRNAs released by cisplatin resistant (Cp-r) Hepatocarcinoma cells can alter the sensitivity of cervical cancer cells. For this exosomes secreted by cisplatin resistant and cisplatin sensitive HepG2 cells (EXres and EXsen) were isolated and characterised. Cytotoxicity analysis showed that EXres can make Hela cells resistant to cisplatin. Analysis of miR-106a/b levels in EXres and EXsen showed that their levels vary. Mechanistic studies showed that miR-106a/b play an important role in EXsen and EXres mediated change in chemosensitivity of Hela cells to cisplatin. Further SIRT1 was identified as a major target of miR-106a/b using in silico tools and this was proved by experimentation. Also the effect of miR-106a/b in chemosensitivity was seen to be dependent on regulation of SIRT1 by miR-106a/b. In brief, this study brings into light, the SIRT1 dependent mechanism of miR-106a/b mediated regulation of chemosensitivity upon the horizontal transfer from one cell type to another. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Agrobacterium-mediated gene transfer to Chrysanthemum.

    NARCIS (Netherlands)

    Wordragen, van M.F.

    1991-01-01

    Genetic manipulation of plants is a technique that enables us to add to the plant genome, in a precise and well controlled manner, one or a few new genes, coding for desirable traits. In contrast to this, the conventional method for the introduction of new properties in plants, by cross breeding, is

  19. Boiling heat-transfer coefficient variation for R407C inside horizontal tubes of a refrigerating vapour-compression plant's shell-and-tube evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Torrella, Enrique [Department of Applied Thermodynamics, Camino de Vera, 14, Polytechnic University of Valencia, E-46022 Valencia (Spain); Navarro-Esbri, Joaquin; Cabello, Ramon [Department of Technology, Campus de Riu Sec,University Jaume I, E-12071 Castellon (Spain)

    2006-03-01

    The present paper presents experimental results obtained from a refrigerating vapour-compression plant's shell-and-tube (1-2) evaporator working with R407C. Several tests have been carried out to study the influence of the evaporating pressure and the refrigerant's mass flow rate on the refrigerant's boiling heat-transfer coefficient inside horizontal tubes. This work has been performed by analyzing the variations of the evaporator's overall thermal-resistance, computed using the effectiveness-NTU method, considering the influence of pressure drops and glide at the evaporator, and finally transferring the results and conclusions to the boiling heat-transfer coefficient. It has been observed that the variations of the boiling heat-transfer coefficient show a dependence on the evaporating temperature and the refrigerant's mass-flow rate, which has been analyzed in the test range. [Author].

  20. Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families.

    Science.gov (United States)

    Merlo, Manuel A; Cross, Ismael; Palazón, José L; Ubeda-Manzanaro, María; Sarasquete, Carmen; Rebordinos, Laureana

    2012-10-07

    hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATA)n repeats, from dispersed to localized in one locus. The accumulation of (GATA)n repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

  1. Evidence for 5S rDNA Horizontal Transfer in the toadfish Halobatrachus didactylus (Schneider, 1801 based on the analysis of three multigene families

    Directory of Open Access Journals (Sweden)

    Merlo Manuel A

    2012-10-01

    in the Pleuronectiformes and Clupeiformes orders. Two hypotheses have been outlined: one is the possible vertical permanence of the shared type in some fish lineages, and the other is the possibility of a horizontal transference event between ancient species of the Perciformes and Batrachoidiformes orders. This finding opens a new perspective in fish evolution and in the knowledge of the dynamism of the 5S rDNA. Cytogenetic analysis allowed some evolutionary trends to be roughed out, such as the progressive change in the U2 snDNA and the organization of (GATAn repeats, from dispersed to localized in one locus. The accumulation of (GATAn repeats in one chromosome pair could be implicated in the evolution of a pair of proto-sex chromosomes. This possibility could situate H. didactylus as the most highly evolved of the Batrachoididae family in terms of sex chromosome biology.

  2. [Gene transfer as treatment for metabolic inherited liver diseases

    Science.gov (United States)

    Godoy, J L

    2000-01-01

    OBJECTIVE: To study gene transfer looking for its future clinical application in the treatment of metabolic inherited liver diseases. METHODS: Bibliographic review about the subject. RESULTS AND CONCLUSIONS: Gene transfer into the liver would be an alternative to liver transplantation to treat some inherited metabolic diseases. Various vectors have been employed for gene transfer, including retrovirus vectors, whose integration into the chromosomal DNA would allow stable long term expression of the transgene. The integration of retrovirus vectors into the genoma of the target cell is only possible during mitosis. Therefore, these vectors must be delivered during hepatic regeneration induced by partial hepatectomy, for example. Another obstacle to be overcome is the extra hepatic dissemination of retrovirus, in particular to the germinals cells, due to the risk of changing the genetical heritage of the progeniture.

  3. Important aspects of placental-specific gene transfer.

    Science.gov (United States)

    Kaufman, Melissa R; Albers, Renee E; Keoni, Chanel; Kulkarni-Datar, Kashmira; Natale, David R; Brown, Thomas L

    2014-10-15

    The placenta is a unique and highly complex organ that develops only during pregnancy and is essential for growth and survival of the developing fetus. The placenta provides the vital exchange of gases and wastes, the necessary nutrients for fetal development, acts as immune barrier that protects against maternal rejection, and produces numerous hormones and growth factors that promote fetal maturity to regulate pregnancy until parturition. Abnormal placental development is a major underlying cause of pregnancy-associated disorders that often result in preterm birth. Defects in placental stem cell propagation, growth, and differentiation are the major factors that affect embryonic and fetal well-being and dramatically increase the risk of pregnancy complications. Understanding the processes that regulate placentation is important in determining the underlying factors behind abnormal placental development. The ability to manipulate genes in a placenta-specific manner provides a unique tool to analyze development and eliminates potentially confounding results that can occur with traditional gene knockouts. Trophoblast stem cells and mouse embryos are not overly amenable to traditional gene transfer techniques. Most viral vectors, however, have a low infection rate and often lead to mosaic transgenesis. Although the traditional method of embryo transfer is intrauterine surgical implantation, the methodology reported here, combining lentiviral blastocyst infection and nonsurgical embryo transfer, leads to highly efficient and placental-specific gene transfer. Numerous advantages of our optimized procedures include increased investigator safety, a reduction in animal stress, rapid and noninvasive embryo transfer, and higher a rate of pregnancy and live birth.

  4. A gene in the process of endosymbiotic transfer.

    Directory of Open Access Journals (Sweden)

    Kateřina Jiroutová

    Full Text Available BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28 through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont.

  5. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  6. Experiments on Gene Transferring to Primary Hematopoietic Cells by Liposome

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Liposomes have showed many advantages in mediating exogenous gene into many cell types in vitro and in vivo. But few data are available concerning gene transfer into hematopoietic cells. In this report, we described two-marker genes (Neo R and Lac Z) co-transferred into hematopoietic cells of human and mouse by using liposome in vitro. The efficiency of gene transfer was tested by Xgal staining and observation of colony formation. The X-gal blue staining rate of transduced cells was about (13.33±2. 68) % in human and about (16. 28±2.95) % in mouse without G418 selection. After G418 selection, the blue cell rate was (46. 06±3.47)%in human and (43. 45±4. 1) % in mouse, which were markedly higher than those before selection, suggesting that high-efficiency gene transfer and expression could be attained in primary hematopoietic cells using this easy and harmless transduction protocol. At the same time, this protocol provided experimental data for clinicians to investigate the biology of marrow reconstitution and trace the origin of relapse after autologous bone marrow transplantation for the patients with leukemia.

  7. Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment.

    Science.gov (United States)

    Jacobs, William R

    2014-04-01

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.

  8. Evidence of prokaryote like protein associated with nickel resistance in higher plants: horizontal transfer of TonB-dependent receptor/protein in Betula genus or de novo mechanisms?

    Science.gov (United States)

    Theriault, G; Nkongolo, K K

    2017-04-01

    Mechanisms of metal resistance have been reported in many plants but knowledge in woody species is scarce. The TonB-dependent receptors family (TBDTs) is a large group of proteins that facilitate the transport of molecules across the membrane of Gram-negative bacteria. Some evidence exists that TB