WorldWideScience

Sample records for gene transduction technologies

  1. Prolactin receptor and signal transduction to milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Djiane, J.; Daniel, N.; Bignon, C. [Unite d`Endocrinologie Moleculaire, Jouy en Josas (France)] [and others

    1994-06-01

    After cloning of the mammary gland prolactin (PRL) receptor cDNA, a functional assay was established using co-transfection of PRL receptor cDNA together with a milk protein promoter/chloramphenicol acetyl transferase (CAT) construct in Chinese hamster ovary (CHO) cells. Different mutants of the PRL receptor were tested in this CAT assay to delimit the domains in the receptor necessary for signal transduction to milk protein genes. In CHO cells stably transfected with PRL receptor cDNA, high numbers of PRL receptor are expressed. By metabolic labeling and immunoprecipitation, expressed PRL receptor was identified as a single species of 100 kDa. Using these cells, we analyzed the effects of PRL on intracellular free Ca{sup ++} concentration. PRL stimulates Ca{sup ++} entry and induces secondary Ca{sup ++} mobilization. The entry of Ca{sup ++} is a result of an increase in K{sup +} conductance that hyperpolarizes the membranes. We have also analyzed tyrosine phosphorylation induced by PRL. In CHO cells stably transfected with PRL receptor cDNA, PRL induced a very rapid and transient tyrosine phosphorylation of a 100-kDa protein which is most probably the PRL receptor. The same finding was obtained in mammary membranes after PRL injection to lactating rabbits. Whereas tyrosine kinase inhibitors genistein and lavendustin were without effect, PRL stimulation of milk protein gene promoters was partially inhibited by 2 {mu}M herbimycin in CHO cells co-transfected with PRL receptor cDNA and the {Beta} lactoglobulin CAT construct. Taken together these observations indicate that the cytoplasmic domain of the PRL receptor interacts with one or several tyrosine kinases, which may represent early postreceptor events necessary for PRL signal transduction to milk protein genes. 14 refs., 4 figs.

  2. Transduction-like gene transfer in the methanogen Methanococcus voltae

    Science.gov (United States)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  3. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  4. Creation and validation of a ligation-independent cloning (LIC retroviral vector for stable gene transduction in mammalian cells

    Directory of Open Access Journals (Sweden)

    Patel Asmita

    2012-01-01

    Full Text Available Abstract Background Cloning vectors capable of retroviral transduction have enabled stable gene overexpression in numerous mitotic cell lines. However, the relatively small number of feasible restriction enzyme sequences in their cloning sites can hinder successful generation of overexpression constructs if these sequences are also present in the target cDNA insert. Results Utilizing ligation-independent cloning (LIC technology, we have modified the highly efficient retroviral transduction vector, pBABE, to eliminate reliance on restriction enzymes for cloning. Instead, the modified plasmid, pBLIC, utilizes random 12/13-base overhangs generated by T4 DNA polymerase 3' exonuclease activity. PCR-based introduction of the complementary sequence into any cDNA of interest enables universal cloning into pBLIC. Here we describe creation of the pBLIC plasmid, and demonstrate successful cloning and protein overexpression from three different cDNAs, Bax, catalase, and p53 through transduction into the human prostate cancer cell line, LNCaP or the human lung cancer line, H358. Conclusions Our results show that pBLIC vector retains the high transduction efficiency of the original pBABE while eliminating the requirement for checking individual cDNA inserts for internal restriction sites. Thus it comprises an effective retroviral cloning system for laboratory-scale stable gene overexpression or for high-throughput applications such as creation of retroviral cDNA libraries. To our knowledge, pBLIC is the first LIC vector for retroviral transduction-mediated stable gene expression in mammalian cells.

  5. Coordinate gene regulation by fimbriae-induced signal transduction

    DEFF Research Database (Denmark)

    Schembri, Mark; Klemm, Per

    2001-01-01

    whether fimbriae expression can affect expression of other genes, Analysis of gene expression in two E.coli strains, differing in the fim locus, indicated the flu gene to be affected. The flu gene encodes the antigen 43 (Ag43) surface protein, specifically involved in bacterial aggregation...

  6. The SUMOylation Pathway Restricts Gene Transduction by Adeno-Associated Viruses.

    Directory of Open Access Journals (Sweden)

    Christina Hölscher

    2015-12-01

    Full Text Available Adeno-associated viruses are members of the genus dependoviruses of the parvoviridae family. AAV vectors are considered promising vectors for gene therapy and genetic vaccination as they can be easily produced, are highly stable and non-pathogenic. Nevertheless, transduction of cells in vitro and in vivo by AAV in the absence of a helper virus is comparatively inefficient requiring high multiplicity of infection. Several bottlenecks for AAV transduction have previously been described, including release from endosomes, nuclear transport and conversion of the single stranded DNA into a double stranded molecule. We hypothesized that the bottlenecks in AAV transduction are, in part, due to the presence of host cell restriction factors acting directly or indirectly on the AAV-mediated gene transduction. In order to identify such factors we performed a whole genome siRNA screen which identified a number of putative genes interfering with AAV gene transduction. A number of factors, yielding the highest scores, were identified as members of the SUMOylation pathway. We identified Ubc9, the E2 conjugating enzyme as well as Sae1 and Sae2, enzymes responsible for activating E1, as factors involved in restricting AAV. The restriction effect, mediated by these factors, was validated and reproduced independently. Our data indicate that SUMOylation targets entry of AAV capsids and not downstream processes of uncoating, including DNA single strand conversion or DNA damage signaling. We suggest that transiently targeting SUMOylation will enhance application of AAV in vitro and in vivo.

  7. Suppression of tumorigenicity and metastatic potential of melanoma cells by transduction of interferon gene

    Directory of Open Access Journals (Sweden)

    Lykhova A. A.

    2014-01-01

    Full Text Available The aim of this study was to investigate an inhibitory effect of baculovirus-mediated transduction of the murine interferon-beta gene on mouse melanoma in vitro and in vivo. Methods. Studies were performed on B16 mouse melanoma (MM-4 cell line. Transduction, immunocytochemical and tumor cell biology approaches have been used in this study. Results. Transduction of MM-4 cells by the recombinant baculovirus with IFN-beta gene is accompanied by morphological changes of tumor cells, suppression of cell proliferation, significant inhibition of platting efficiency of cells and their colonies formation in semisolid agar. Moreover, transduction of melanoma MM-4 cells by the baculovirus IFN-transgene leads to inhibition of tumorigenicity and metastatic ability of the cells in vivo. The intravenous administration of recombinant baculovirus vector with IFN gene inhibits growth of metastases induced in the lungs of mice by intravenously injected tumor cells. Conclusions. Transduction of mouse melanoma cells by the recombinant baculovirus with murine IFN-beta gene inhibits their proliferative potential, tumorigenicity and metastatic activity.

  8. Phage Transduction.

    Science.gov (United States)

    Goh, Shan

    2016-01-01

    Bacteriophages mediate horizontal gene transfer through a mechanism known as transduction. Phage transduction carried out in the laboratory involves a bacterial donor and a recipient, both of which are susceptible to infection by the phage of interest. Phage is propagated in the donor, concentrated, and exposed transiently to recipient at different multiplicity of infection ratios. Transductants are selected for the desired phenotype by culture on selective medium. Here we describe transduction of ermB conferring resistance to erythromycin by the C. difficile phage ϕC2.

  9. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction

    NARCIS (Netherlands)

    Watson, Bridget N.J.; Staals, Raymond H.J.; Fineran, Peter C.

    2018-01-01

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly

  10. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  11. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  12. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  13. Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology.

    Science.gov (United States)

    Suzuki, Yasuhiro

    2012-01-01

    Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  14. Exploring Transduction Mechanisms of Protein Transduction Domains (PTDs in Living Cells Utilizing Single-Quantum Dot Tracking (SQT Technology

    Directory of Open Access Journals (Sweden)

    Yasuhiro Suzuki

    2012-01-01

    Full Text Available Specific protein domains known as protein transduction domains (PTDs can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs, we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT, to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.

  15. Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread

    Science.gov (United States)

    Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T.

    2014-01-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits (“worst-case scenario”) of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 108 E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ∼2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 103 times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. PMID:24814786

  16. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Directory of Open Access Journals (Sweden)

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  17. Plant gravitropic signal transduction: A network analysis leads to gene discovery

    Science.gov (United States)

    Wyatt, Sarah

    Gravity plays a fundamental role in plant growth and development. Although a significant body of research has helped define the events of gravity perception, the role of the plant growth regulator auxin, and the mechanisms resulting in the gravity response, the events of signal transduction, those that link the biophysical action of perception to a biochemical signal that results in auxin redistribution, those that regulate the gravitropic effects on plant growth, remain, for the most part, a “black box.” Using a cold affect, dubbed the gravity persistent signal (GPS) response, we developed a mutant screen to specifically identify components of the signal transduction pathway. Cloning of the GPS genes have identified new proteins involved in gravitropic signaling. We have further exploited the GPS response using a multi-faceted approach including gene expression microarrays, proteomics analysis, and bioinformatics analysis and continued mutant analysis to identified additional genes, physiological and biochemical processes. Gene expression data provided the foundation of a regulatory network for gravitropic signaling. Based on these gene expression data and related data sets/information from the literature/repositories, we constructed a gravitropic signaling network for Arabidopsis inflorescence stems. To generate the network, both a dynamic Bayesian network approach and a time-lagged correlation coefficient approach were used. The dynamic Bayesian network added existing information of protein-protein interaction while the time-lagged correlation coefficient allowed incorporation of temporal regulation and thus could incorporate the time-course metric from the data set. Thus the methods complemented each other and provided us with a more comprehensive evaluation of connections. Each method generated a list of possible interactions associated with a statistical significance value. The two networks were then overlaid to generate a more rigorous, intersected

  18. Drawing a Transductive Ecosophy in Process: Technological Arts, Residual Matter, Associated Milieus

    Directory of Open Access Journals (Sweden)

    Gisèle Trudel

    2015-06-01

    Full Text Available Drawing a Transductive Ecosophy in Process: Technological Arts, Residual Matter, Associated Milieus by Gisèle Trudel. NANO: New American Notes Online, Issue 7: The Aesthetics of Trash - nanocrit.com. This text examines the tetralogy of media artworks about residual matter produced by Ælab between 2008 and 2014. Taking its own title as a diagram (Deleuze and Guattari Mille Plateaux, it charts and builds on the processes of these artworks, elucidating their relations to materiality, philosophy and technicity. Technological research-creation becomes in these instances a transdisciplinary aesthetic act, emerging from an ecology of practices that combine humans, non-humans and waste matter in an effort to increase attentiveness in actions.

  19. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction

    International Nuclear Information System (INIS)

    Han Jianfeng; Zhao Dong; Zhong Zhirong; Zhang Zhirong; Gong Tao; Sun Xun

    2010-01-01

    Recombinant adenovirus (Ad)-mediated gene therapy is an exciting novel strategy in cancer treatment. However, poor infection efficiency with coxsackievirus and adenovirus receptor (CAR) down-regulated cancer cell lines is one of the major challenges for its practical and extensive application. As an alternative method of viral gene delivery, a non-viral carrier using cationic materials could compensate for the limitation of adenovirus. In our study, adenovectors were complexed with a new synthetic polymer PEI-DEG-bis-NPC (PDN) based on polyethylenimine (PEI), and then the properties of the vehicle were characterized by measurement of size distribution, zeta potential and transmission electron microscopy (TEM). Enhancement of gene transduction by Ad/PDN complexes was observed in both CAR-overexpressing cell lines (A549) and CAR-lacking cell lines (MDCK, CHO, LLC), as a result of facilitating binding and cell uptake of adenoviral particles by the cationic component. Ad/PDN complexes also promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. These data suggest that a combination of viral and non-viral gene delivery methods may offer a new approach to successful cancer gene therapy.

  20. A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation

    NARCIS (Netherlands)

    Eekels, J. J. M.; Pasternak, A. O.; Schut, A. M.; Geerts, D.; Jeeninga, R. E.; Berkhout, B.

    2012-01-01

    RNA interference (RNAi) is a sequence-specific gene silencing mechanism with therapeutic potential against many human pathogens. To obtain a durable therapeutic effect, stable transduction of target cells with for instance a lentiviral vector that expresses a short hairpin (shRNA) inducer of the

  1. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae.

    Science.gov (United States)

    Glöer, Jens; Thummer, Robert; Ullrich, Heike; Schmitz, Ruth A

    2008-12-01

    In the diazotroph Klebsiella pneumoniae, the nitrogen sensory protein GlnK mediates the cellular nitrogen status towards the NifL/NifA system that regulates transcription of the nitrogen fixation genes in response to ammonium and molecular oxygen. To identify amino acids of GlnK essential for this signal transduction by protein-protein interaction, we performed random point mutagenesis by PCR amplification under conditions of reduced Taq polymerase fidelity. Three thousand two hundred mutated glnK genes were screened to identify those that would no longer complement a K. pneumoniaeDeltaglnK strain for growth under nitrogen fixing conditions. Twenty-four candidates resulting in a Nif(-) phenotype were identified, carrying 1-11 amino acid changes in GlnK. Based on these findings, as well as structural data, several single mutations were introduced into glnK by site-directed mutagenesis, and the Nif phenotype and the respective effects on NifA-mediated nif gene induction was monitored in K. pneumoniae using a chromosomal nifK'-'lacZ fusion. Single amino acid changes resulting in significant nif gene inhibition under nitrogen limiting conditions were located within the highly conserved T-loop (A43G, A49T and N54D), the body of the protein (G87V and K79E) and in the C-terminal region (I100M, R103S, E106Q and D108G). Complex formation analyses between GlnK (wild-type or derivatives) and NifL or NifA in response to 2-oxoglutarate indicated that: (a) besides the T-loop, the C-terminal region of GlnK is essential for the interaction with NifL and NifA and (b) GlnK binds both proteins in the absence of 2-oxoglutarate, whereas, in the presence of 2-oxoglutarate, NifA is released but NifL remains bound to GlnK.

  2. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants.

    Science.gov (United States)

    Wang, Da-Zhi; Jin, Ya-Nan; Ding, Xi-Han; Wang, Wen-Jia; Zhai, Shan-Shan; Bai, Li-Ping; Guo, Zhi-Fu

    2017-10-01

    Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.

  3. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S.; Odom, Guy L.; Hopkins, Stephanie; Case, Amanda; Wang, David B.; Chamberlain, Jeffrey S.; Garden, Gwenn A.

    2015-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre-recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. PMID:25708596

  4. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia.

    Science.gov (United States)

    Su, Wei; Kang, John; Sopher, Bryce; Gillespie, James; Aloi, Macarena S; Odom, Guy L; Hopkins, Stephanie; Case, Amanda; Wang, David B; Chamberlain, Jeffrey S; Garden, Gwenn A

    2016-01-01

    Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia. © 2015 International Society for

  5. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector

    Directory of Open Access Journals (Sweden)

    Giridhar Murlidharan

    2016-01-01

    Full Text Available Gene therapy using recombinant adeno-associated viral (AAV vectors is emerging as a promising approach to treat central nervous system disorders such as Spinal muscular atrophy, Batten, Parkinson and Alzheimer disease amongst others. A critical remaining challenge for central nervous system-targeted gene therapy, silencing or gene editing is to limit potential vector dose-related toxicity in off-target cells and organs. Here, we characterize a lab-derived AAV chimeric (AAV2g9, which displays favorable central nervous system attributes derived from both parental counterparts, AAV2 and AAV9. This synthetic AAV strain displays preferential, robust, and widespread neuronal transduction within the brain and decreased glial tropism. Importantly, we observed minimal systemic leakage, decreased sequestration and gene transfer in off-target organs with AAV2g9, when administered into the cerebrospinal fluid. A single intracranial injection of AAV2g9 vectors encoding guide RNAs targeting the schizophrenia risk gene MIR137 (encoding MIR137 in CRISPR/Cas9 knockin mice resulted in brain-specific gene deletion with no detectable events in the liver. This engineered AAV vector is a promising platform for treating neurological disorders through gene therapy, silencing or editing modalities.

  6. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy

    Directory of Open Access Journals (Sweden)

    Siegal Gene P

    2007-10-01

    Full Text Available Abstract Background Human adenovirus serotype 5 (Ad5 has been widely explored as a gene delivery vector for a variety of diseases. Many target cells, however, express low levels of Ad5 native receptor, the Coxsackie-Adenovirus Receptor (CAR, and thus are resistant to Ad5 infection. The Protein Transduction Domain of the HIV Tat protein, namely PTDtat, has been shown to mediate protein transduction in a wide range of cells. We hypothesize that re-targeting Ad5 vector via the PTDtat motif would improve the efficacy of Ad5-mediated gene delivery. Results In this study, we genetically incorporated the PTDtat motif into the knob domain of Ad5 fiber, and rescued the resultant viral vector, Ad5.PTDtat. Our data showed the modification did not interfere with Ad5 binding to its native receptor CAR, suggesting Ad5 infection via the CAR pathway is retained. In addition, we found that Ad5.PTDtat exhibited enhanced gene transfer efficacy in all of the cell lines that we have tested, which included both low-CAR and high-CAR decorated cells. Competitive inhibition assays suggested the enhanced infectivity of Ad5.PTDtat was mediated by binding of the positively charged PTDtat peptide to the negatively charged epitopes on the cells' surface. Furthermore, we investigated in vivo gene delivery efficacy of Ad5.PTDtat using subcutaneous tumor models established with U118MG glioma cells, and found that Ad5.PTDtat exhibited enhanced gene transfer efficacy compared to unmodified Ad5 vector as analyzed by a non-invasive fluorescence imaging technique. Conclusion Genetic incorporation of the PTDtat motif into Ad5 fiber allowed Ad5 vectors to infect cells via an alternative PTDtat targeting motif while retaining the native CAR-mediated infection pathway. The enhanced infectivity was demonstrated in both cultured cells and in in vivo tumor models. Taken together, our study identifies a novel tropism expanded Ad5 vector that may be useful for clinical gene therapy

  7. Environmental factors influencing gene transfer agent (GTA mediated transduction in the subtropical ocean.

    Directory of Open Access Journals (Sweden)

    Lauren D McDaniel

    Full Text Available Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT. However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI and ambient bacterial abundance. These results indicate that GTA

  8. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  9. Salinity stress induces the production of 2-(2-phenylethyl)chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli.

    Science.gov (United States)

    Wang, Xiaohui; Gao, Bowen; Liu, Xiao; Dong, Xianjuan; Zhang, Zhongxiu; Fan, Huiyan; Zhang, Le; Wang, Juan; Shi, Shepo; Tu, Pengfei

    2016-05-26

    Agarwood, is a resinous portion derived from Aquilaria sinensis, has been widely used in traditional medicine and incense. 2-(2-phenylethyl)chromones are principal components responsible for the quality of agarwood. However, the molecular basis of 2-(2-phenylethyl)chromones biosynthesis and regulation remains almost unknown. Our research indicated that salt stress induced production of several of 2-(2-phenylethyl)chromones in A. sinensis calli. Transcriptome analysis of A. sinensis calli treated with NaCl is required to further facilitate the multiple signal pathways in response to salt stress and to understand the mechanism of 2-(2-phenylethyl)chromones biosynthesis. Forty one 2-(2-phenylethyl)chromones were identified from NaCl-treated A. sinensis calli. 93 041 unigenes with an average length of 1562 nt were generated from the control and salt-treated calli by Illmunina sequencing after assembly, and the unigenes were annotated by comparing with the public databases including NR, Swiss-Prot, KEGG, COG, and GO database. In total, 18 069 differentially expressed transcripts were identified by the transcriptome comparisons on the control calli and calli induced by 24 h or 120 h salinity stress. Numerous genes involved in signal transduction pathways including the genes responsible for hormone signal transduction, receptor-like kinases, MAPK cascades, Ca(2+) signal transduction, and transcription factors showed clear differences between the control calli and NaCl-treated calli. Furthermore, our data suggested that the genes annotated as chalcone synthases and O-methyltransferases may contribute to the biosynthesis of 2-(2-phenylethyl)chromones. Salinity stress could induce the production of 41 2-(2-phenylethyl)chromones in A. sinensis calli. We conducted the first deep-sequencing transcriptome profiling of A. sinensis under salt stress and observed a large number of differentially expressed genes in response to salinity stress. Moreover, salt stress induced

  10. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors

    Directory of Open Access Journals (Sweden)

    Nicolas eMerienne

    2013-07-01

    Full Text Available Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during CNS development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

  11. Expression of signal transduction system encoding genes of Yersinia pseudotuberculosis IP32953 at 28°C and 3°C.

    Directory of Open Access Journals (Sweden)

    Eveliina Palonen

    Full Text Available Yersinia pseudotuberculosis is a significant psychrotrophic food pathogen whose cold tolerance mechanisms are poorly understood. Signal transduction systems serve to monitor the environment, but no systematic investigation of their role at cold temperatures in Y. pseudotuberculosis has yet been undertaken. The relative expression levels of 54 genes predicted to encode proteins belonging to signal transduction systems in Y. pseudotuberculosis IP32953 were determined at 28°C and 3°C by quantitative real-time reverse transcription-PCR. The relative expression levels of 44 genes were significantly (p<0.05 higher at 3°C than at 28°C. Genes encoding the two-component system CheA/CheY had the highest relative expression levels at 3°C. Mutational analysis revealed that cheA is important for growth and motility at 3°C. The relative expression level of one gene, rssB, encoding an RpoS regulator, was significantly (p<0.05 lower at 3°C than at 28°C. The results suggest that several signal transduction systems might be used during growth at low temperature, and at least, CheA/CheY two-component system is important for low-temperature growth.

  12. Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients With Radiorecurrent Prostate Cancer

    National Research Council Canada - National Science Library

    Hall, Simon J

    2004-01-01

    .... Pre-clinical studies using adenovirus-mediated (Ad) transduction of IL-12 (Ad.mIL-12) in metastatic model of prostate cancer resulted in local growth suppression, survival enhancement and inhibition of pre-established metastases...

  13. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  14. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  15. Predictive and prognostic factors in non small cell lung cancer: identification of new genes and signal transduction pathways in the study of genomic and oncoproteomic

    International Nuclear Information System (INIS)

    Crino, L.; Martelli, M.

    2009-01-01

    The aim of the project is the comprehension of resistance and survival mechanisms of the neoplastic cell in Non-Small Cell Lung Cancer (NSCLC) in both patients subjected to surgery or with advanced disease. In order to identify new genes, proteins and signal transduction pathways, involved in the establishment of the treatment resistance of neoplastic cells, cellular cohort derived from lung cancers will be compared, by gene expression profiling, to normal cells and cells derived from cancer relapse. Twenty patients with NSCLC surgically resected and one patient with advanced NSCLC have been enrolled in this study

  16. Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse Yolk Sac: a comparative study between in situ electroporation and retroviral transduction

    Directory of Open Access Journals (Sweden)

    Lécluse Yann

    2007-07-01

    Full Text Available Abstract Background Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC, precursors formed earlier in the yolk sac (YS display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors. Results One transduction protocol involves transient modification of gene expression through in situ electroporation of the prospective blood islands, which allows the evolution of transfected mesodermal cells in their "normal" environment, upon organ culture. Following in situ electroporation of a GFP reporter construct into the YS cavity of embryos at post-streak (mesodermal/pre-hematopoietic precursors or early somite (hematopoietic precursors stages, high GFP expression levels as well as a good preservation of cell viability is observed in YS explants. Moreover, the erythro-myeloid progeny typical of the YS arises from GFP+ mesodermal cells or hematopoietic precursors, even if the number of targeted precursors is low. The second approach, based on retroviral transduction allows a very efficient transduction of large precursor numbers, but may only be used to target 8 dpc YS hematopoietic precursors. Again, transduced cells generate a progeny quantitatively and qualitatively similar to that of control YS. Conclusion We thus provide two protocols whose combination may allow a thorough study of both early and late events of hematopoietic development in the murine YS. In situ

  17. Biodegradable nanoparticles for gene therapy technology

    International Nuclear Information System (INIS)

    Hosseinkhani, Hossein; He, Wen-Jie; Chiang, Chiao-Hsi; Hong, Po-Da; Yu, Dah-Shyong; Domb, Abraham J.; Ou, Keng-Liang

    2013-01-01

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes

  18. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    Science.gov (United States)

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  19. A novel multi-level IC-compatible surface microfabrication technology for MEMS with independently controlled lateral and vertical submicron transduction gaps

    Science.gov (United States)

    Cicek, Paul-Vahe; Elsayed, Mohannad; Nabki, Frederic; El-Gamal, Mourad

    2017-11-01

    An above-IC compatible multi-level MEMS surface microfabrication technology based on a silicon carbide structural layer is presented. The fabrication process flow provides optimal electrostatic transduction by allowing the creation of independently controlled submicron vertical and lateral gaps without the need for high resolution lithography. Adopting silicon carbide as the structural material, the technology ensures material, chemical and thermal compatibility with modern semiconductor nodes, reporting the lowest peak processing temperature (i.e. 200 °C) of all comparable works. This makes this process ideally suited for integrating capacitive-based MEMS directly above standard CMOS substrates. Process flow design and optimization are presented in the context of bulk-mode disk resonators, devices that are shown to exhibit improved performance with respect to previous generation flexural beam resonators, and that represent relatively complex MEMS structures. The impact of impending improvements to the fabrication technology is discussed.

  20. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway

    Science.gov (United States)

    Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.

    2003-01-01

    The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.

  1. Adeno-associated virus gene therapy vector scAAVIGF-I for transduction of equine articular chondrocytes and RNA-seq analysis.

    Science.gov (United States)

    Hemphill, D D; McIlwraith, C W; Slayden, R A; Samulski, R J; Goodrich, L R

    2016-05-01

    IGF-I is one of several anabolic factors being investigated for the treatment of osteoarthritis (OA). Due to the short biological half-life, extended administration is required for more robust cartilage healing. Here we create a self-complimentary adeno-associated virus (AAV) gene therapy vector utilizing the transgene for IGF-I. Various biochemical assays were performed to investigate the cellular response to scAAVIGF-I treatment vs an scAAVGFP positive transduction control and a negative for transduction control culture. RNA-sequencing analysis was also performed to establish a differential regulation profile of scAAVIGF-I transduced chondrocytes. Biochemical analyses indicated an average media IGF-I concentration of 608 ng/ml in the scAAVIGF-I transduced chondrocytes. This increase in IGF-I led to increased expression of collagen type II and aggrecan and increased protein concentrations of cellular collagen type II and media glycosaminoglycan vs both controls. RNA-seq revealed a global regulatory pattern consisting of 113 differentially regulated GO categories including those for chondrocyte and cartilage development and regulation of apoptosis. This research substantiates that scAAVIGF-I gene therapy vector increased production of IGF-I to clinically relevant levels with a biological response by chondrocytes conducive to increased cartilage healing. The RNA-seq further established a set of differentially expressed genes and gene ontologies induced by the scAAVIGF-I vector while controlling for AAV infection. This dataset provides a static representation of the cellular transcriptome that, while only consisting of one time point, will allow for further gene expression analyses to compare additional cartilage healing therapeutics or a transient cellular response. Copyright © 2015. Published by Elsevier Ltd.

  2. Human hematopoietic cell culture, transduction, and analyses

    DEFF Research Database (Denmark)

    Bonde, Jesper; Wirthlin, Louisa; Kohn, Donald B

    2008-01-01

    This unit provides methods for introducing genes into human hematopoietic progenitor cells. The Basic Protocol describes isolation of CD34(+) cells, transduction of these cells with a retroviral vector on fibronectin-coated plates, assaying the efficiency of transduction, and establishing long-te...

  3. Portulaca oleracea extract can inhibit nodule formation of colon cancer stem cells by regulating gene expression of the Notch signal transduction pathway.

    Science.gov (United States)

    Jin, Heiying; Chen, Li; Wang, Shuiming; Chao, Deng

    2017-07-01

    To investigate whether Portulaca oleracea extract affects tumor formation in colon cancer stem cells and its chemotherapy sensitivity. In addition, to analyze associated genetic changes within the Notch signal transduction pathway. Serum-free cultures of colon cancer cells (HT-29) and HT-29 cancer stem cells were treated with the chemotherapeutic drug 5-fluorouracil to assess sensitivity. Injections of the stem cells were also given to BALB/c mice to confirm tumor growth and note its characteristics. In addition, the effect of different concentrations of P. oleracea extract was tested on the growth of HT-29 colon cancer cells and HT-29 cancer stem cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The effects of P. oleracea extract on the expression of β-catenin, Notch1, and Notch2 in the HT-29 cells were studied using reverse transcription polymerase chain reaction and Western blotting. The tumor volume of the HT29 cells was two times larger than that of HT29 cancer stem cells. Treatment with P. oleracea extract inhibited the proliferation of both HT-29 cancer cells and HT-29 cancer stem cells at doses from 0.07 to 2.25 µg/mL. Apoptosis of HT-29 cancer cells and HT-29 cancer stem cells was assessed by flow cytometry; it was enhanced by the addition of P. oleracea extract. Finally, treatment with P. oleracea extract significantly downregulated the expression of the Notch1 and β-catenin genes in both cell types. The results of this study show that P. oleracea extract inhibits the growth of colon cancer stem cells in a dose-dependent manner. Furthermore, it inhibits the expression of the Notch1 and β-catenin genes. Taken together, this suggests that it may elicit its effects through regulatory and target genes that mediate the Notch signal transduction pathway.

  4. Usefulness of intra-arterial embolization method using gelfoam particles in effective gene transduction of adenoviral vector for liver-directed gene therapy: an preliminary animal study in dogs

    International Nuclear Information System (INIS)

    Lee, Jin Hwa; Park, Byeong Ho; Kim, Chan Sung

    2003-01-01

    Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. Using the angiographic approach, three dogs each weighing 9.5-11kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x10 11 particles/kg of recombinant adv. CMV.LacZ(LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by X-gal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy

  5. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2009-06-01

    Full Text Available Abstract Background Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish. Results We applied a state-of-the-art method of maximum-likelihood phylogenetic inference and conserved synteny analyses to each of 130 genes involved in the above biological systems of human. These analyses identified 116 orthologous gene groups between teleosts and tetrapods, and 45 pairs of 3R-WGD-derived duplicate genes among them. This suggests that more than half [(45×2/(116+45] = 56.5% of the loci, probably more than ten thousand genes, present in a common ancestor of the four teleosts were still duplicated after the 3R-WGD. The estimated temporal pattern of gene loss suggested that, after the 3R-WGD, many (71/116 of the duplicated genes were rapidly lost during the initial 75 million years (MY, whereas on average more than half (27.3/45 of the duplicated genes remaining in the ancestor of the four teleosts (45/116 have persisted for about 275 MY. The 3R-WGD-derived duplicates that have persisted for a long evolutionary periods of time had significantly larger number of interacting partners and longer length of protein coding sequence, implying that they tend to be more multifunctional than the singletons after the 3R-WGD. Conclusion

  6. Plant gene technology: social considerations

    African Journals Online (AJOL)

    Administrator

    exogenous fertilizers. This process, in addition to increasing yield, may maintain the soil ecosystem undisturbed by chemical fertilizers. Modern ... money that was used to buy insecticidal chemicals, this technology is environmentally very friendly. Improving the quality of food products: It has become possible to delay the ...

  7. Identification of Novel Signal Transduction, Immune Function, and Oxidative Stress Genes and Pathways by Topiramate for Treatment of Methamphetamine Dependence Based on Secondary Outcomes

    Directory of Open Access Journals (Sweden)

    Tianhua Niu

    2017-12-01

    Full Text Available BackgroundTopiramate (TPM is suggested to be a promising medication for treatment of methamphetamine (METH dependence, but the molecular basis remains to be elucidated.MethodsAmong 140 METH-dependent participants randomly assigned to receive either TPM (N = 69 or placebo (N = 71 in a previously conducted randomized controlled trial, 50 TPM- and 49 placebo-treated participants had a total 212 RNA samples available at baseline, week 8, and week 12 time points. Following our primary analysis of gene expression data, we reanalyzed the microarray expression data based on a latent class analysis of binary secondary outcomes during weeks 1–12 that provided a classification of 21 responders and 31 non-responders with consistent responses at both time points.ResultsBased on secondary outcomes, 1,381, 576, 905, and 711 differentially expressed genes at nominal P values < 0.05 were identified in responders versus non-responders for week 8 TPM, week 8 placebo, week 12 TPM, and week 12 placebo groups, respectively. Among 1,381 genes identified in week 8 TPM responders, 359 genes were identified in both week 8 and week 12 TPM groups, of which 300 genes were exclusively detected in TPM responders. Of them, 32 genes had nominal P values < 5 × 10−3 at either week 8 or week 12 and false discovery rates < 0.15 at both time points with consistent directions of gene expression changes, which include GABARAPL1, GPR155, and IL15RA in GABA receptor signaling that represent direct targets for TPM. Analyses of these 300 genes revealed 7 enriched pathways belonging to neuronal function/synaptic plasticity, signal transduction, inflammation/immune function, and oxidative stress response categories. No pathways were enriched for 72 genes exclusively detected in both week 8 and week 12 placebo groups.ConclusionThis secondary analysis study of gene expression data from a TPM clinical trial not only yielded consistent results with those of primary

  8. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...... "adapter" proteins, which are involved in transducing signals from receptor tyrosine kinases to downstream signal recipients such as ras, because adaptor protein genes could also, logically, serve as targets of mutation, rearrangement, or other aberration in disease. Therefore, DNAs from panels of rodent...... hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types....

  9. GhCAX3 gene, a novel Ca(2+/H(+ exchanger from cotton, confers regulation of cold response and ABA induced signal transduction.

    Directory of Open Access Journals (Sweden)

    Lian Xu

    Full Text Available As a second messenger, Ca(2+ plays a major role in cold induced transduction via stimulus-specific increases in [Ca(2+]cyt, which is called calcium signature. During this process, CAXs (Ca(2+/H(+ exchangers play critical role. For the first time, a putative Ca(2+/H(+ exchanger GhCAX3 gene from upland cotton (Gossypium hirsutum cv. 'YZ-1' was isolated and characterized. It was highly expressed in all tissues of cotton except roots and fibers. This gene may act as a regulator in cotton's response to abiotic stresses as it could be up-regulated by Ca(2+, NaCl, ABA and cold stress. Similar to other CAXs, it was proved that GhCAX3 also had Ca(2+ transport activity and the N-terminal regulatory region (NRR through yeast complementation assay. Over-expression of GhCAX3 in tobacco showed less sensitivity to ABA during seed germination and seedling stages, and the phenotypic difference between wild type (WT and transgenic plants was more significant when the NRR was truncated. Furthermore, GhCAX3 conferred cold tolerance in yeast as well as in tobacco seedlings based on physiological and molecular studies. However, transgenic plant seeds showed more sensitivity to cold stress compared to WT during seed germination, especially when expressed in N-terminal truncated version. Finally, the extent of sensitivity in transgenic lines was more severe than that in WT line under sodium tungstate treatment (an ABA repressor, indicating that ABA could alleviate cold sensitivity of GhCAX3 seeds, especially in short of its NRR. Meanwhile, we also found that overexpression of GhCAX3 could enhance some cold and ABA responsive marker genes. Taken together, these results suggested that GhCAX3 plays important roles in the cross-talk of ABA and cold signal transduction, and compared to full-length of GhCAX3, the absence of NRR could enhance the tolerance or sensitivity to cold stress, depending on seedling's developmental stages.

  10. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus.

    Science.gov (United States)

    Watanabe, T; Sadamoto, Hitoshi; Aonuma, H

    2011-10-01

    Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  11. Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2)

    DEFF Research Database (Denmark)

    Huebner, K; Kastury, K; Druck, T

    1994-01-01

    -human hybrids carrying defined complements of human chromosomes were assayed for the presence of the cognate genes for NCK, SHC, and GRB2, three SH2 or SH2/SH3 (Src homology 2 and 3) domain-containing adapter proteins. Additionally, NCK and SHC genes were more narrowly localized by chromosomal in situ...... hybridization. The NCK locus is at chromosome region 3q21, a region involved in neoplasia-associated changes; the SHC cognate locus, SHC1, is at 1q21, and the GRB2 locus is at 17q22-qter telomeric to the HOXB and NGFR loci. Both SHC1 and GRB2 are in chromosome regions that may be duplicated in some tumor types.......Abnormalities due to chromosomal aberration or point mutation in gene products of growth factor receptors or in ras gene products, which lie on the same signaling pathway, can cause disease in animals and humans. Thus, it can be important to determine chromosomal map positions of genes encoding...

  12. Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene.

    Science.gov (United States)

    Zeman, M; Mašlaňová, I; Indráková, A; Šiborová, M; Mikulášek, K; Bendíčková, K; Plevka, P; Vrbovská, V; Zdráhal, Z; Doškař, J; Pantůček, R

    2017-04-13

    Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

  13. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  14. A gene in the region of the autosomal dominant torsion dystonia locus on 9q34 contains SH3 signal transduction and binding motifs

    Energy Technology Data Exchange (ETDEWEB)

    Cox, G.F.; Kunkel, L.M.; Khurana, T. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    In a search to identify cytoskeletal proteins which might be involved in neuromuscular diseases, we identified an expressed tag (EST) that exhibited distant sequence homology to dystrophia and which mapped to 9q24-ter in somatic cell hybrids. A dinucleotide repeat polymorphism from a genomic clone of the EST showed complete co-segregation without recombination to the DYT1 locus on the 9q34 in families with autosomal dominant torsion dystonia. cDNAs were obtained from the brain cDNA libraries and these contained parts of trapped exons from the 9q34 region. Northern blotting reveals two distinct transcripts, 6-7 kb and 3 kb, which differ primarily in their 3{prime} untranslated regions. The transcripts are co-expressed at highest levels in brain and thymus, but are found in most other tissues as well. A comparison of cDNA sequences derived from this gene reveals a high degree of alternate processing in both the coding and 3{prime} untranslated regions. Antibodies raised against synthetic peptides from the ORF recognize a doublet of bands at approximately 50-55 kd in brain by Western blotting. In contrast to the Northern tissue distribution, the protein is detected only in small amounts in peripheral nerve and muscle and not at all in several other tissues, with the amount in thymus yet to be determined. A Genbank search of amino acid sequence homologies has revealed several interesting features, including: aN src homology 3 (SH3) domain that is a common feature of proteins involved in the tyrosine kinase signal transduction pathway and is found in some cytoskeletal proteins; a proline-rich region that may function as an intra- or intermolecular SH3 binding site; and weak homologies to the rod domains of dystrophin, myosin, and spectrin. These findings raise the possibility of a defect in signal transduction or the cytoskeleton as a cause of torsion dystonia. Mutation analysis of the gene and biochemical characterization of the protein are in progress.

  15. Molecular characterization of the cold- and heat-induced Arabidopsis PXL1 gene and its potential role in transduction pathways under temperature fluctuations.

    Science.gov (United States)

    Jung, Chang Gyo; Hwang, Sun-Goo; Park, Yong Chan; Park, Hyeon Mi; Kim, Dong Sub; Park, Duck Hwan; Jang, Cheol Seong

    2015-03-15

    LRR-RLK (Leucine-Rich Repeat Receptor-Like Kinase) proteins are believed to play essential roles in cell-to-cell communication during various cellular processes including development, hormone perception, and abiotic stress responses. We isolated an LRR-RLK gene previously named Arabidopsis PHLOEM INTERCALATED WITH XYLEM-LIKE 1 (AtPXL1) and examined its expression patterns. AtPXL1 was highly induced by cold and heat stress, but not by drought. The fluorescence signal of 35S::AtPXL1-EGFP was closely localized to the plasma membrane. A yeast two-hybrid and bimolecular fluorescence complementation assay exhibited that AtPXL1 interacts with both proteins, A. thaliana histidine-rich dehydrin1 (AtHIRD1) and A. thaliana light-harvesting protein complex I (AtLHCA1). We found that AtPXL1 possesses autophosphorylation activity and phosphorylates AtHIRD1 and AtLHCA1 in an in vitro assay. Subsequently, we found that the knockout line (atpxl1) showed hypersensitive phenotypes when subjected to cold and heat during the germination stage, while the AtPXL1 overexpressing line as well as wild type plants showed high germination rates compared to the knockout plants. These results provide an insight into the molecular function of AtPXL1 in the regulation of signal transduction pathways under temperature fluctuations. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Neogenesis and proliferation of β-cells induced by human betacellulin gene transduction via retrograde pancreatic duct injection of an adenovirus vector

    International Nuclear Information System (INIS)

    Tokui, Yae; Kozawa, Junji; Yamagata, Kazuya; Zhang, Jun; Ohmoto, Hiroshi; Tochino, Yoshihiro; Okita, Kohei; Iwahashi, Hiromi; Namba, Mitsuyoshi; Shimomura, Iichiro; Miyagawa, Jun-ichiro

    2006-01-01

    Betacellulin (BTC) has been shown to have a role in the differentiation and proliferation of β-cells both in vitro and in vivo. We administered a human betacellulin (hBTC) adenovirus vector to male ICR mice via retrograde pancreatic duct injection. As a control, we administered a β-galactosidase adenovirus vector. In the mice, hBTC protein was mainly overexpressed by pancreatic duct cells. On immunohistochemical analysis, we observed features of β-cell neogenesis as newly formed insulin-positive cells in the duct cell lining or islet-like cell clusters (ICCs) closely associated with the ducts. The BrdU labeling index of β-cells was also increased by the betacellulin vector compared with that of control mice. These results indicate that hBTC gene transduction into adult pancreatic duct cells promoted β-cell differentiation (mainly from duct cells) and proliferation of pre-existing β-cells, resulting in an increase of the β-cell mass that improved glucose tolerance in diabetic mice

  17. An Efficient Large-Scale Retroviral Transduction Method Involving Preloading the Vector into a RetroNectin-Coated Bag with Low-Temperature Shaking

    Science.gov (United States)

    Dodo, Katsuyuki; Chono, Hideto; Saito, Naoki; Tanaka, Yoshinori; Tahara, Kenichi; Nukaya, Ikuei; Mineno, Junichi

    2014-01-01

    In retroviral vector-mediated gene transfer, transduction efficiency can be hampered by inhibitory molecules derived from the culture fluid of virus producer cell lines. To remove these inhibitory molecules to enable better gene transduction, we had previously developed a transduction method using a fibronectin fragment-coated vessel (i.e., the RetroNectin-bound virus transduction method). In the present study, we developed a method that combined RetroNectin-bound virus transduction with low-temperature shaking and applied this method in manufacturing autologous retroviral-engineered T cells for adoptive transfer gene therapy in a large-scale closed system. Retroviral vector was preloaded into a RetroNectin-coated bag and incubated at 4°C for 16 h on a reciprocating shaker at 50 rounds per minute. After the supernatant was removed, activated T cells were added to the bag. The bag transduction method has the advantage of increasing transduction efficiency, as simply flipping over the bag during gene transduction facilitates more efficient utilization of the retroviral vector adsorbed on the top and bottom surfaces of the bag. Finally, we performed validation runs of endoribonuclease MazF-modified CD4+ T cell manufacturing for HIV-1 gene therapy and T cell receptor-modified T cell manufacturing for MAGE-A4 antigen-expressing cancer gene therapy and achieved over 200-fold (≥1010) and 100-fold (≥5×109) expansion, respectively. In conclusion, we demonstrated that the large-scale closed transduction system is highly efficient for retroviral vector-based T cell manufacturing for adoptive transfer gene therapy, and this technology is expected to be amenable to automation and improve current clinical gene therapy protocols. PMID:24454964

  18. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: rationale for tropism modified vectors in PD gene therapy.

    Directory of Open Access Journals (Sweden)

    Travis B Lewis

    2010-09-01

    Full Text Available Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR. Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA neurons in vivo.Ad5 was delivered to the substantia nigra (SN in wild type (wt and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in

  19. Phase I Trial of Adenovirus-Mediated IL-12 Gene Transduction in Patients with Recurrent Locally Advanced Prostate Cancer Following Therapy

    National Research Council Canada - National Science Library

    Hall, Simon J

    2005-01-01

    .... Pre-clinical studies using adenovirus-mediated (Ad.) transduction of IL-12 (Ad.mIL-12) in a metastatic model of prostate cancer resulted in local growth suppression, survival enhancement and inhibition of pre-established metastases...

  20. A Study on Effect of Electroacupuncture on Gene Expression in Hypothalamus of Rats with Stress-Induced Prehypertension Based on Gene Chip Technology

    Directory of Open Access Journals (Sweden)

    Xiaojia Xie

    2015-01-01

    Full Text Available Objective. To explore the effect of electroacupuncture (EA on gene expression in the hypothalamus of rats with stress-induced prehypertension and try to reveal its biological mechanism with gene chip technology. Methods. The stress-induced hypertensive rat model was prepared by combining electric foot-shocks with generated noise. Molding cycle lasted for 14 days and EA intervention was applied on model + EA group during model preparation. Rat Gene 2.0 Array technology was used for the determination of gene expression profiles and the screened key genes were verified by real-time fluorescence quantitative PCR method. Results. Compared with the blank group, 234 genes were upregulated and 73 were downregulated in the model group. Compared with the model group, 110 genes were upregulated and 273 genes were downregulated in model + EA group. The PCR results of the key genes including HSPB1, P2RX4, PPP1R14A, and TH are consistent with that of gene chip test. Conclusion. EA could significantly lower blood pressure of stress-induced prehypertension rats and affect its gene expression profile in hypothalamus. Genes and their signal transduction pathway that related to the contraction of vascular smooth muscle, concentration of Ca2+, and excitability of sympathetic nerve may be involved in EA’s antihypertensive mechanism.

  1. Dielectric Transduction of NEMS

    OpenAIRE

    Howell, Kaitlin

    2017-01-01

    We report on a four-mask process flow for creating resonant NanoElectroMechanical Systems (NEMS) based on dielectric transduction. Current transduction mechanisms for NEMS include piezoelectricity, flexoelectricity and dielectric force. While piezoelectricity gives the highest electromechanical efficiency in, NEMS using flexoelectricity and dielectric force are interesting alternatives with a larger range of possible active materials and potentially simpler fabrication. In this four-mask proc...

  2. Quantitative, noninvasive, in vivo longitudinal monitoring of gene expression in the brain by co-AAV transduction with a PET reporter gene

    Directory of Open Access Journals (Sweden)

    Sea Young Yoon

    2014-01-01

    Full Text Available In vivo imaging of vector transgene expression would be particularly valuable for repetitive monitoring of therapy in the brain, where invasive tissue sampling is contraindicated. We evaluated adeno-associated virus vector expression of a dopamine-2 receptor (D2R mutant (D2R80A by positron emission tomography in the brains of mice and cats. D2R80A is inactivated for intracellular signaling and binds subphysiologic amounts of the radioactive [18F]-fallypride analog of dopamine. The [18F]-fallypride signal bound to D2R80A in the injection site was normalized to the signal from endogenous D2R in the striatum and showed stable levels of expression within individual animals. A separate adeno-associated virus type 1 vector with identical gene expression control elements, expressing green fluorescent protein or a therapeutic gene, was coinjected with the D2R80A vector at equal doses into specific sites. Both transgenes had similar levels of gene expression by immunohistochemistry, in situ hybridization, and quantitative PCR assays, demonstrating that D2R80A is a faithful surrogate measure for expression of a gene of interest. This dual vector approach allows the D2R80A gene to be used with any therapeutic gene and to be injected into a single site for monitoring while the therapeutic gene can be distributed more widely as needed in each disease.

  3. The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction.

    Science.gov (United States)

    Claudianos, C; Campbell, H D

    1995-05-01

    The Drosophila melanogaster gene flightless-I, involved in gastrulation and muscle degeneration, has Caenorhabditis elegans and human homologues. In these highly conserved genes, two previously known gene families have been brought together, families encoding the actin-binding proteins related to gelsolin and the leucine-rich-repeat (LRR) group of proteins involved in protein-protein interactions. Both these gene families exhibit characteristics of molecular changes involving replication slippage and exon shuffling. Phylogenetic analyses of 19 amino acid sequences of 6 related protein types indicate that actin-associated proteins related to gelsolin are monophyletic to a common ancestor and include flightless proteins. Conversely, comparison of 24 amino acid sequences of LRR proteins including the flightless proteins indicates that flightless proteins are members of a structurally related subgroup. Included in the flightless cluster are human and mouse rsp-1 proteins involved in suppressing v-Ras transformation of cells and the membrane-associated yeast (Saccharomyces cerevisae) adenylate cyclase whose analogous LRRs are required for interaction with Ras proteins. There is a strong possibility that ligands for this group could be related and that flightless may have a similar role in Ras signal transduction. It is hypothesized that an ancestral monomeric gelsolin precursor protein has undergone at least four independent gene reorganization events to account for the structural diversity of the extant family of gelsolin-related proteins and that gene duplication and exon shuffling events occurred prior to or at the beginning of multicellular life, resulting in the evolution of some members of the family soon after the appearance of actin-type proteins.

  4. Viral vectors: a look back and ahead on gene transfer technology.

    Science.gov (United States)

    Vannucci, Laura; Lai, Michele; Chiuppesi, Flavia; Ceccherini-Nelli, Luca; Pistello, Mauro

    2013-01-01

    No matter what their origin, strain and family, viruses have evolved exquisite strategies to reach and penetrate specific target cells where they hijack the cellular machinery to express viral genes and produce progeny particles. The ability to deliver and express genetic information to cells is the basis for exploiting viruses as "Trojan horses" to genetically modify the natural cell target or, upon manipulation of the viral receptor to retarget the virus, to genetically engineer different cell types. This process, known as transduction, is accomplished using viral vectors derived from parental wild type viruses whose viral genes, essential for replication and virulence, have been replaced with the heterologous gene(s) required for cell manipulation. Rearrangement of the viral genome to impede replication or generation of infectious virions but maintaining the ability to deliver nucleic acids has been the object of intense research since the early 1980s. Technological advances and the ever-growing knowledge of molecular virology and virus-host cell relationships have constantly improved the safety profile of viral vectors that are now used in vitro and in vivo to study cellular gene function, correct genetic defects (gene therapy), express therapeutic proteins, vaccinate against infectious agents and tumors, produce experimental animal models, and for other purposes. This review illustrates the strategies used to generate some of the most used viral vectors, and their advantages, limitations and principal applications.

  5. Gene transfer technology and genetic radioisotope targeting therapy

    International Nuclear Information System (INIS)

    Wang Jiaqiong; Wang Zizheng

    2004-01-01

    With deeper cognition about mechanisms of disease at the cellular and molecular level, gene therapy has become one of the most important research fields in medical molecular biology at present. Gene transfer technology plays an important role during the course of gene therapy, and further improvement should be made about vectors carrying target gene sequences. Also, gene survey is needed during gene therapy, and gene imaging is the most effective method. The combination of gene therapy and targeted radiotherapy, that is, 'Genetic Radioisotope Targeting Therapy', will be a novel approach to tumor gene therapy

  6. Loss of tumorigenicity of murine colon carcinoma MC38/0 cell line after transduction with a retroviral vector carrying murine IL-12 genes

    Czech Academy of Sciences Publication Activity Database

    Pajtasz-Piasecka, E.; Szyda, A.; Rossowska, J.; Krawczenko, A.; Indrová, Marie; Grabarczyk, P.; Wysocki, P.; Mackiewicz, A.; DuĽ, D.

    2004-01-01

    Roč. 50, č. 1 (2004), s. 7-14 ISSN 0015-5500 Grant - others:State Committee for Scientific Research of the Republic of Poland (KBN)(PL) PBZ-KBN 004/PO4/98/5f Institutional research plan: CEZ:AV0Z5052915 Keywords : MC38 murine colon carcinoma * IL-12 transduction * tumorigenicity Subject RIV: EC - Immunology Impact factor: 0.507, year: 2004

  7. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  8. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.

    Science.gov (United States)

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A F V

    2016-02-18

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. FCJ-124 Interactive Environments as Fields of Transduction

    Directory of Open Access Journals (Sweden)

    Cristoph Brunner

    2011-10-01

    Full Text Available This article proposes a critical inquiry of interactive environments as fields of transduction. It is argued that Gilbert Simondon’s concepts of individuation, transduction, in-formation, the preindividual, and the associated milieu enable a processual thinking of the analysis and design of interactive technologies as technogenetic emergence. These concepts offer a way for interaction design to understand interactive environments through the dynamics between fields of transduction and fields of experience in relational and affective terms. The article analyses the way in which two technological assemblages, Voz Alta and the Impossible Room, provide different experiential fields experimenting with the transductive power of digital and interactive media. We emphasise the potential for creating new modes of experience. Our aim is to underline the necessary convergences between practices of design and thought; to enable affectively engaging fields of transduction.

  10. Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence.

    Science.gov (United States)

    Caré, A; Silvani, A; Meccia, E; Mattia, G; Peschle, C; Colombo, M P

    1998-06-25

    Several melanomas, carcinomas, glioblastomas and leukemias showed coordinated expression of HOXB7 and bFGF with exception of the SkBr3 mammary carcinoma that was negative for both. Transduction of HOXB7 gene into SkBr3 cells, induced bFGF expression, increased growth rate, independence from serum withdrawal and ability to form colonies in semisolid medium. ELISA assay showed that most of bFGF was associated to cell lysate when cells were cultured at 1% serum whereas in cells kept to 10% serum bFGF was detected both within cell lysate or secreted into cell supernatants. Antisense oligos to bFGF inhibited the growth of cells cultured in 1%, indicating that beside the possible activation of additional genes other than bFGF by HOXB7 transduction, only bFGF induction accounts for the observed results. Moreover, since inhibition of cell proliferation occurred in cells kept in 1% but not 10% serum, a bFGF intracrine loop appears operative in serum starved SkBr3/HOXB7 cells. Also, these results further indicate bFGF as target of HOXB7.

  11. Genes involved in brassinosteroids's metabolism and signal transduction pathways Genes envolvidos nas vias de biossíntese e de transdução de sinal de brassinoesteróides

    Directory of Open Access Journals (Sweden)

    Adaucto Bellarmino Pereira-Netto

    2007-07-01

    Full Text Available Brassinosteroids (BRs are plant steroids essential for the normal growth and development, which carry an oxygen moiety at C-3 and additional ones at one or more of the C-2, C-6, C-22 and C-23 carbon atoms. In the past few years, application of molecular genetics allowed significant progress on the understanding of the BRs biosynthetic pathway regulation and on the identification of several components of their signal transduction pathway, as well. Search in eletronic databases show dozens of records for brassinosteroid-related genes for the last twelve months, demonstrating the big efforts being carried out in this field. This review highlights the recent advances on the characterization of genes and mutations that are helping to unravel the molecular mechanisms involved in the BRs synthesis/metabolism, perception and response, with especial emphasis on their role in plant cell elongation. Aspects of the involvement of BRs on the regulation of cell cycle-controlling proteins are discussed as well.Brassinoesteróides são esteróides vegetais, essenciais para o crescimento e o desenvolvimento, que apresentam um oxigênio no carbono C-3 e oxigênios adicionais em um ou mais dos átomos de carbono C-2, C-6, C-22 e C-23. Nos últimos anos, a aplicação de técnicas de genética molecular possibilitou progresso significativo no entendimento da regulação da via biossintética e na identificação de vários componentes da via de transdução de sinal de brassinoesteróides. Buscas em bases de dados eletrônicas mostram dúzias de registros para genes relacionados a brassinoesteróides nos últimos doze meses, demonstrando os grandes esforços desenvolvidos neste campo. Esta revisão destaca os recentes avanços na caracterização de genes e mutações que estão auxiliando na elucidação dos mecanismos moleculares envolvidos na síntese/metabolismo, e percepção e resposta de brassinoesteróides, com ênfase especial no seu papel no alongamento

  12. Transduction mechanisms and their applications in micromechanical devices

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt; Blom, F.R.; Bouwstra, S.; Lammerink, Theodorus S.J.; van de Pol, F.C.M.; Tilmans, H.A.C.; Popma, T.J.A.; Fluitman, J.H.J.

    1989-01-01

    Transduction mechanisms and their applications in micromechanical actuators and resonating sensors are presented. They include piezoelectric, dielectric, electro-thermo-mechanic, opto-thermo-mechanic, and thermo-pneumatic mechanisms. Advantages and disadvantages with respect to technology and

  13. Genome-editing Technologies for Gene and Cell Therapy

    OpenAIRE

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanis...

  14. TRPM5 and taste transduction.

    Science.gov (United States)

    Liman, E R

    2007-01-01

    TRPM5 is a cation channel that it is essential for transduction of bitter, sweet and umami tastes. Signaling of these tastes involves the activation of G protein-coupled receptors that stimulate phospholipase C (PLC) beta2, leading to the breakdown of phosphatidylinositol bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3), and release of Ca2+ from intracellular stores. TRPM5 forms a nonselective cation channel that is directly activated by Ca2+ and it is likely to be the downstream target of this signaling cascade. Therefore, study of TRPM5 promises to provide insight into fundamental mechanisms of taste transduction. This review highlights recent work on the mechanisms of activation of the TRPM5 channel. The mouse TRPM5 gene encodes a protein of 1,158 amino acids that is proposed to have six transmembrane domains and to function as a tetramer. TRPM5 is structurally most closely related to the Ca(2+)-activated channel TRPM4 and it is more distantly related to the cold-activated channel TRPM8. In patch clamp recordings, TRPM5 channels are activated by micromolar concentrations of Ca2+ and are permeable to monovalent but not divalent cations. TRPM5 channel activity is strongly regulated by voltage, phosphoinositides and temperature, and is blocked by acid pH. Study of TRPM4 and TRPM8, which show similar modes of regulation, has yielded insights into possible structural domains of TRPM5. Understanding the structural basis for TRPM5 function will ultimately allow the design of pharmaceuticals to enhance or interfere with taste sensations.

  15. Transduction of an immortalized olfactory ensheathing glia cell line with the green fluorescent protein (GFP) gene: Evaluation of its neuroregenerative capacity as a proof of concept.

    Science.gov (United States)

    Plaza, N; Simón, D; Sierra, J; Moreno-Flores, M T

    2016-01-26

    Olfactory ensheathing glia (OEG) cells are known to foster axonal regeneration of central nervous system (CNS) neurons. Several lines of reversibly immortalized human OEG (ihOEG) have been previously established that enabled to develop models for their validation in vitro and in vivo. In this work, a constitutively GFP-expressing ihOEG cell line was obtained, and named Ts14-GFP. Ts14-GFP neuroregenerative ability was similar to that found for the parental line Ts14 and it can be assayed using in vivo transplantation experimental paradigms, after spinal cord or optic nerve damage. Additionally, we have engineered a low-regenerative ihOEG line, hTL2, using lentiviral transduction of the large T antigen from SV40 virus, denominated from now on Ts12. Ts12 can be used as a low regeneration control in these experiments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. [Can gene technology in agriculture prevent hunger in the world?].

    Science.gov (United States)

    Goewie, E A

    2002-03-01

    The world population grows rapidly: the number of mouths to feed increases. Is an agriculture without gene technology able to produce sufficiently in order to prevent hunger? Research indicates that hunger is not the result of short comings in agricultural outputs. It is however the result of poverty. This problem will not be solved by gene technology based agricultural production. This article explains the basic principles of mainstream and organic farming. Literature shows that the production potentials of both kinds of farming are, by far most, not yet exhausted. Gene technology is therefore unnecessary.

  17. [Sequencing technology in gene diagnosis and its application].

    Science.gov (United States)

    Yibin, Guo

    2014-11-01

    The study of gene mutation is one of the hot topics in the field of life science nowadays, and the related detection methods and diagnostic technology have been developed rapidly. Sequencing technology plays an indispensable role in the definite diagnosis and classification of genetic diseases. In this review, we summarize the research progress in sequencing technology, evaluate the advantages and disadvantages of 1(st) ~3(rd) generation of sequencing technology, and describe its application in gene diagnosis. Also we made forecasts and prospects on its development trend.

  18. Determinants of reactions to gene technology: a generic approach

    NARCIS (Netherlands)

    Pin, R.R.; Gutteling, Jan M.; Kuttschreuter, M.

    2009-01-01

    This paper examines the reactions to gene technology (the intention to buy gene-tech food, worry about abuse, and the public's desire that different actors be able to influence decisions) in a sample of the Dutch population (n = 1010) and studies the relationship between these reactions and

  19. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  20. [Research progress in sperm mediated gene transfer technology].

    Science.gov (United States)

    Hao, Xiaoxiong; Zhu, Zheng; Cao, Mianfu; Li, Chengren; Lin, Yunlai

    2013-04-01

    With the rapid development of biotechnology, we can change the trait of organism using transgenetic technology. In recent years, there are growing interests in the establishment of sperm mediated gene transfer (SMGT) technology as an effective and convenient method to produce transgenic animals. SMGT technology is a transgenetic method, which is easy in operation and does little harm to the cell compared with the other transgenetic methods. In this review, we expound the background, development, mechanism, operation and application of SMGT.

  1. Pheromone transduction in moths

    Directory of Open Access Journals (Sweden)

    Monika Stengl

    2010-12-01

    Full Text Available Calling female moths attract their mates late at night with intermittent release of a species-specific sex-pheromone blend. Mean frequency of pheromone filaments encodes distance to the calling female. In their zig-zagging upwind search male moths encounter turbulent pheromone blend filaments at highly variable concentrations and frequencies. The male moth antennae are delicately designed to detect and distinguish even traces of these sex pheromones amongst the abundance of other odors. Its olfactory receptor neurons sense even single pheromone molecules and track intermittent pheromone filaments of highly variable frequencies up to about 30 Hz over a wide concentration range. In the hawkmoth Manduca sexta brief, weak pheromone stimuli as encountered during flight are detected via a metabotropic PLCβ-dependent signal transduction cascade which leads to transient changes in intracellular Ca2+ concentrations. Strong or long pheromone stimuli, which are possibly perceived in direct contact with the female, activate receptor-guanylyl cyclases causing long-term adaptation. In addition, depending on endogenous rhythms of the moth´s physiological state, hormones such as the stress hormone octopamine modulate second messenger levels in sensory neurons. High octopamine levels during the activity phase maximize temporal resolution cAMP-dependently as a prerequisite to mate location. Thus, I suggest that sliding adjustment of odor response threshold and kinetics is based upon relative concentration ratios of intracellular Ca2+ and cyclic nucleotide levels which gate different ion channels synergistically. In addition, I propose a new hypothesis for the cyclic nucleotide-dependent ion channel formed by insect olfactory receptor/coreceptor complexes. Instead of being employed for an ionotropic mechanism of odor detection it is proposed to control subthreshold membrane potential oscillation of sensory neurons, as a basis for temporal encoding of odors.

  2. In Vitro Transduction and Target-Mutagenesis Efficiency of HIV-1 pol Gene Targeting ZFN and CRISPR/Cas9 Delivered by Various Plasmids and/or Vectors: Toward an HIV Cure.

    Science.gov (United States)

    Okee, Moses; Bayiyana, Alice; Musubika, Carol; Joloba, Moses L; Ashaba-Katabazi, Fred; Bagaya, Bernard; Wayengera, Misaki

    2018-01-01

    Efficiency of artificial restriction enzymes toward curing HIV has only been separately examined, using differing delivery vehicles. We compared the in vitro transduction and target-mutagenesis efficiency of consortium plasmid and adenoviral vector delivered HIV-1 pol gene targeting zinc finger nuclease (ZFN) with CRISPR/Cas, Custom-ZFN, CRISPR-Cas-9, and plasmids and vectors (murCTSD_pZFN, pGS-U-gRNA, pCMV-Cas-D01A, Ad5-RGD); cell lines (TZM-bl and ACH-2/J-Lat cells); and the latency reversing agents prostratin, suberoylanilide hydroxamic acid, and phorbol myristate acetate. Cell lines were grown in either Dulbecco's modified Eagle's medium or Roswell Park Memorial Institute with the antibiotics kanamycin, zeocin, and efavirenz. Efficiency was assayed by GFP/luciferase activity and/or validated by yeast MEL1 reporter assay, CEL1 restriction fragment assay, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Ad5-RGD vectors had better transduction efficiency than murCTSD and pGS-U-gRNA/pCMV-Cas-D01A plasmids. CRISPR/Cas9 exhibited better target-mutagenesis efficiency relative to ZFN (delivered by either plasmid or Ad5 vector) based on gel electrophoresis of pol gene amplicons within ACH-2 and J-Lat cells. Ad-5-RGD vectors enhanced target mutagenesis of ZFN, relative to murCTSD_pZFN plasmids, to levels of CRISPR/Cas9 plasmids. Similar reduction of luciferase activity among TZM-bl treated with Ad5-ZFN vectors relative to CRISPR/Cas-9 and murCTSD_pZFN plasmids was observed on challenge with HIV-1. qRT-PCR of HIV-1 pol gene transcripts affirmed that Ad5 (RGD) vectors enhanced target mutagenesis of ZFN. Whereas CRISPR/Cas-9 may possess inherent superior target-mutagenesis efficiency; the efficiency of ZFN (off-target toxicity withstanding) can be enhanced by altering delivery vehicle from plasmid to Ad5 (RGD) vectors.

  3. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS

    Directory of Open Access Journals (Sweden)

    Jinfeng Yang

    2017-01-01

    Full Text Available Introduction. Green fluorescent protein (GFP is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs. Methods. The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP+hPMSCs. A sensitive 13C/12C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. Results. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. Conclusion. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  4. [Application of gene detection technology in food species identification].

    Science.gov (United States)

    Chen, Ying; Wu, Yajun

    2011-07-01

    It is critical to determine the biological identity of all ingredients in food to ensure its safety and quality. Modern gene detection technology makes species identification in food more accurate, sensitive and rapid. A comprehensive review on its current applications in the last decade and the future perspective in food species identification is presented, including a brief introduction of gene detection methods, and their applications in plant-originated food, animal-originated food, high value-added food and highly processed food.

  5. Gene targeting in embryonic stem cells, II: conditional technologies

    Science.gov (United States)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  6. Scandinavian perspectives on plant gene technology: applications, policies and progress.

    Science.gov (United States)

    Eriksson, Dennis; Brinch-Pedersen, Henrik; Chawade, Aakash; Holme, Inger B; Hvoslef-Eide, Trine A K; Ritala, Anneli; Teeri, Teemu H; Thorstensen, Tage

    2018-02-01

    Plant research and breeding has a long and successful history in the Scandinavian countries, Denmark, Finland, Norway and Sweden. Researchers in the region have been early in adopting plant gene technologies as they developed. This review gives a background, as well as discuss the current and future progress of plant gene technology in these four countries. Country-specific details of the regulation of genetically modified plants are described, as well as similarities and differences in the approach to regulation of novel genome-editing techniques. Also, the development of a sustainable bioeconomy may encompass the application of plant gene technology and we discuss whether or not this is reflected in current associated national strategies. In addition, country-specific information about the opinion of the public and other stakeholders on plant gene technology is presented, together with a country-wise political comparison and a discussion of the potential reciprocal influence between public opinion and the political process of policy development. The Scandinavian region is unique in several aspects, such as climate and certain agriculturally related regulations, and at the same time the region is vulnerable to changes in plant breeding investments due to the relatively small market sizes. It is therefore important to discuss the role and regulation of innovative solutions in Scandinavian plant research and breeding. © 2017 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  7. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  8. Abundance of Antibiotic Resistance Genes in Bacteriophage following Soil Fertilization with Dairy Manure or Municipal Biosolids, and Evidence for Potential Transduction.

    Science.gov (United States)

    Ross, Joseph; Topp, Edward

    2015-11-01

    Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Gene Prioritization of Resistant Rice Gene against Xanthomas oryzae pv. oryzae by Using Text Mining Technologies

    Directory of Open Access Journals (Sweden)

    Jingbo Xia

    2013-01-01

    Full Text Available To effectively assess the possibility of the unknown rice protein resistant to Xanthomonas oryzae pv. oryzae, a hybrid strategy is proposed to enhance gene prioritization by combining text mining technologies with a sequence-based approach. The text mining technique of term frequency inverse document frequency is used to measure the importance of distinguished terms which reflect biomedical activity in rice before candidate genes are screened and vital terms are produced. Afterwards, a built-in classifier under the chaos games representation algorithm is used to sieve the best possible candidate gene. Our experiment results show that the combination of these two methods achieves enhanced gene prioritization.

  10. Genome-editing Technologies for Gene and Cell Therapy.

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  11. Adenovirus transduction: More complicated than receptor expression.

    Science.gov (United States)

    Sharma, Priyanka; Martis, Prithy C; Excoffon, Katherine J D A

    2017-02-01

    The abundance and accessibility of a primary virus receptor are critical factors that impact the susceptibility of a host cell to virus infection. The Coxsackievirus and adenovirus receptor (CAR) has two transmembrane isoforms that occur due to alternative splicing and differ in localization and function in polarized epithelia. To determine the relevance of isoform-specific expression across cell types, the abundance and localization of both isoforms were determined in ten common cell lines, and correlated with susceptibility to adenovirus transduction relative to polarized primary human airway epithelia. Data show that the gene and protein expression for each isoform of CAR varies significantly between cell lines and polarization, as indicated by high transepithelial resistance, is inversely related to adenovirus transduction. In summary, the variability of polarity and isoform-specific expression among model cells are critical parameters that must be considered when evaluating the clinical relevance of potential adenovirus-mediated gene therapy and anti-adenovirus strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Cellular semiotics and signal transduction

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2007-01-01

    (s)" in signal transduction; i.e.: how specificity is determined, how ubiquitous signals or messengers convey specific information, how undesired cross-talk is avoided, how redundancy integrates the system. This chapter proposes a basic conceptual toolbox for interpreting empirical data that deals...

  13. Gene Technology for Papaya Ringspot Virus Disease Management

    OpenAIRE

    Azad, Md. Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase...

  14. Immunologic applications of conditional gene modification technology in the mouse.

    Science.gov (United States)

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  15. Gene Technology for Papaya Ringspot Virus Disease Management

    Science.gov (United States)

    Azad, Md. Abul Kalam; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research. PMID:24757435

  16. Gene technology for papaya ringspot virus disease management.

    Science.gov (United States)

    Azad, Md Abul Kalam; Amin, Latifah; Sidik, Nik Marzuki

    2014-01-01

    Papaya (Carica papaya) is severely damaged by the papaya ringspot virus (PRSV). This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  17. Gene Technology for Papaya Ringspot Virus Disease Management

    Directory of Open Access Journals (Sweden)

    Md. Abul Kalam Azad

    2014-01-01

    Full Text Available Papaya (Carica papaya is severely damaged by the papaya ringspot virus (PRSV. This review focuses on the development of PRSV resistant transgenic papaya through gene technology. The genetic diversity of PRSV depends upon geographical distribution and the influence of PRSV disease management on a sequence of PRSV isolates. The concept of pathogen-derived resistance has been employed for the development of transgenic papaya, using a coat protein-mediated, RNA-silencing mechanism and replicase gene-mediated transformation for effective PRSV disease management. The development of PRSV-resistant papaya via post-transcriptional gene silencing is a promising technology for PRSV disease management. PRSV-resistant transgenic papaya is environmentally safe and has no harmful effects on human health. Recent studies have revealed that the success of adoption of transgenic papaya depends upon the application, it being a commercially viable product, bio-safety regulatory issues, trade regulations, and the wider social acceptance of the technology. This review discusses the genome and the genetic diversity of PRSV, host range determinants, molecular diagnosis, disease management strategies, the development of transgenic papaya, environmental issues, issues in the adoption of transgenic papaya, and future directions for research.

  18. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  19. Controlling Signal Transduction with Synthetic Ligands

    Science.gov (United States)

    Spencer, David M.; Wandless, Thomas J.; Schreiber, Stuart L.; Crabtree, Gerald R.

    1993-11-01

    Dimerization and oligomerization are general biological control mechanisms contributing to the activation of cell membrane receptors, transcription factors, vesicle fusion proteins, and other classes of intra- and extracellular proteins. Cell permeable, synthetic ligands were devised that can be used to control the intracellular oligomerization of specific proteins. To demonstrate their utility, these ligands were used to reduce intracellular oligomerization of cell surface receptors that lacked their transmembrane and extracellular regions but contained intracellular signaling domains. Addition of these ligands to cells in culture resulted in signal transmission and specific target gene activation. Monomeric forms of the ligands blocked the pathway. This method of ligandregulated activation and termination of signaling pathways has the potential to be applied wherever precise control of a signal transduction pathway is desired.

  20. Gene network analysis in plant development by genomic technologies.

    Science.gov (United States)

    Wellmer, Frank; Riechmann, José Luis

    2005-01-01

    The analysis of the gene regulatory networks underlying development is of central importance for a better understanding of the mechanisms that control the formation of the different cell-types, tissues or organs of an organism. The recent invention of genomic technologies has opened the possibility of studying these networks at a global level. In this paper, we summarize some of the recent advances that have been made in the understanding of plant development by the application of genomic technologies. We focus on a few specific processes, namely flower and root development and the control of the cell cycle, but we also highlight landmark studies in other areas that opened new avenues of experimentation or analysis. We describe the methods and the strategies that are currently used for the analysis of plant development by genomic technologies, as well as some of the problems and limitations that hamper their application. Since many genomic technologies and concepts were first developed and tested in organisms other than plants, we make reference to work in non-plant species and compare the current state of network analysis in plants to that in other multicellular organisms.

  1. Effects of Assisted Reproduction Technology on Placental Imprinted Gene Expression

    Science.gov (United States)

    Katagiri, Yukiko; Aoki, Chizu; Tamaki-Ishihara, Yuko; Fukuda, Yusuke; Kitamura, Mamoru; Matsue, Yoichi; So, Akiko; Morita, Mineto

    2010-01-01

    We used placental tissue to compare the imprinted gene expression of IGF2, H19, KCNQ1OT1, and CDKN1C of singletons conceived via assisted reproduction technology (ART) with that of spontaneously conceived (SC) singletons. Of 989 singletons examined (ART n = 65; SC n = 924), neonatal weight was significantly lower (P < .001) in the ART group than in the SC group, but placental weight showed no significant difference. Gene expression analyzed by real-time PCR was similar for both groups with appropriate-for-date (AFD) birth weight. H19 expression was suppressed in fetal growth retardation (FGR) cases in the ART and SC groups compared with AFD cases (P < .02 and P < .05, resp.). In contrast, CDKN1C expression was suppressed in FGR cases in the ART group (P < .01), while KCNQ1OT1 expression was hyperexpressed in FGR cases in the SC group (P < .05). As imprinted gene expression patterns differed between the ART and SC groups, we speculate that ART modifies epigenetic status even though the possibilities always exist. PMID:20706653

  2. [Cellular adhesion signal transduction network of tumor necrosis factor-alpha induced hepatocellular carcinoma cells].

    Science.gov (United States)

    Zheng, Yongchang; Du, Shunda; Xu, Haifeng; Xu, Yiyao; Zhao, Haitao; Chi, Tianyi; Lu, Xin; Sang, Xinting; Mao, Yilei

    2014-11-18

    To systemically explore the cellular adhesion signal transduction network of tumor necrosis factor-alpha (TNF-α)-induced hepatocellular carcinoma cells with bioinformatics tools. Published microarray dataset of TNF-α-induced HepG2, human transcription factor database HTRI and human protein-protein interaction database HPRD were used to construct and analyze the signal transduction network. In the signal transduction network, MYC and SP1 were the key nodes of signaling transduction. Several genes from the network were closely related with cellular adhesion.Epidermal growth factor receptor (EGFR) is a possible key gene of effectively regulating cellular adhesion during the induction of TNF-α. EGFR is a possible key gene for TNF-α-induced metastasis of hepatocellular carcinoma.

  3. The Role of Cgrp-Receptor Component Protein (Rcp in Cgrp-Mediated Signal Transduction

    Directory of Open Access Journals (Sweden)

    M. A. Prado

    2001-01-01

    Full Text Available The calcitonin gene-related peptide (CGRP-receptor component protein (RCP is a 17-kDa intracellular peripheral membrane protein required for signal transduction at CGRP receptors. To determine the role of RCP in CGRP-mediated signal transduction, RCP was depleted from NIH3T3 cells using antisense strategy. Loss of RCP protein correlated with loss of cAMP production by CGRP in the antisense cells. In contrast, loss of RCP had no effect on CGRP-mediated binding; therefore RCP is not acting as a chaperone for the CGRP receptor. Instead, RCP is a novel signal transduction molecule that couples the CGRP receptor to the cellular signal transduction machinery. RCP thus represents a prototype for a new class of signal transduction proteins that are required for regulation of G protein-coupled receptors.

  4. Transduction of normal and malignant oral epithelium by particle bombardment.

    Science.gov (United States)

    Shillitoe, E J; Noonan, S; Hinkle, C C; Marini, F C; Kellman, R M

    1998-01-01

    Although genetic approaches to the treatment and prevention of oral cancer are being developed, there are no suitable methods of transduction of the oral mucosa or early cancers. We therefore tested the technique of particle bombardment for its ability to transduce oral cancer cells in vitro and normal epithelium of the hamster cheek pouch in vivo. A gene gun was used to transfer a plasmid that encoded a marker/suicide fusion gene, beta-galactosidase-thymidine kinase (GAL-TEK), under control of a CMV promoter. For comparison we used the method of lipofection and an adenovirus vector. Particle bombardment transduced up to 13% of cells in culture, resulting in a 24.3% reduction in growth in the presence of ganciclovir. The efficiency of transduction was similar to that of lipofection but was much less than that of the adenovirus vector, which transduced 54% of cells and completely inhibited their growth in the presence of ganciclovir. Transduction of the hamster cheek pouch by particle bombardment produced expression of beta-galactosidase as judged by macroscopic staining, for up to 5 days. However, histological examination showed that the transduced cells were rare and superficial, and that administration of systemic ganciclovir did not lead to any changes in the tissue. Improvements in efficiency are necessary before the gene gun can be used in the management of oral cancer.

  5. TMC function in hair cell transduction

    Science.gov (United States)

    Holt, Jeffrey R.; Pan, Bifeng; Koussa, Mounir A.; Asai, Yukako

    2014-01-01

    Transmembrane channel-like (TMC) proteins 1 and 2 are necessary for hair cell mechanotransduction but their precise function is controversial. A growing body of evidence supports a direct role for TMC1 and TMC2 as components of the transduction complex. However, a number of important questions remain and alternate hypotheses have been proposed. Here we present an historical overview of the identification and cloning of Tmc genes, a discussion of mutations in TMC1 that cause deafness in mice and humans and a brief review of other members of the Tmc gene superfamily. We also examine expression of Tmc mRNAs and localization of the protein products. The review focuses on potential functions of TMC proteins and the evidence from Beethoven mice that suggests a direct role for TMC1 in hair cell mechanotransduction. Data that support alternate interpretations are also considered. The article concludes with a discussion of outstanding questions and future directions for TMC research. This article is part of a Special Issue entitled “Annual Reviews 2014”. PMID:24423408

  6. Quantum Transduction with Adaptive Control.

    Science.gov (United States)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  7. [Progress on Hedgehog signaling transduction].

    Science.gov (United States)

    Tang, Ying; Cheng, Steven

    2014-08-25

    Hedgehog (Hh) signaling pathway plays an important role during embryonic development and pattern formation. Disruption of Hh pathway results in various developmental disorders and increasing cancer incidence. Here we provide a comprehensive review of the pathway members, focusing on how mammalian Hh regulates the Gli family of transcription factors through its downstream members, the so-called "canonical signaling pathway". Hh signaling pathway is highly conserved among species, and primary cilia plays an important role as a "signaling center" during vertebrate signal transduction. Further, in the past few years, numerous studies have shown that Hh signal can also be transduced through Gli-independent ways collectively referred to as "non-canonical signaling pathways", which can be subdivided into two modules: (i) those not requiring Smo and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, we review the rapid progress on canonical and non-canonical Hh pathways.

  8. [Application of gene capture technology on mutation screening of RB1 gene in retinoblastoma patients].

    Science.gov (United States)

    Meng, Q Y; Huang, L Z; Wang, B; Li, X X; Liang, J H

    2017-06-11

    Objectives: To analyze RB1 gene mutation in retinoblastoma (RB) patients using gene capture technology. Methods: Experimental research. The clinical data of 17 RB patients were collected at Department of Ophthalmology, Peking University People's Hospital from June 2010 to Jun 2014. Peripheral blood samples of seventeen RB patients and their parents were collected and genomic DNA were extracted. DNA library from RB patients was mixed with designed gene capture probe of RB1 exons and its flanking sequences. The data were analyzed using bioinformatics software. To avoid the false positive, the abnormal sites were verified using the Sanger sequencing method. Results: Totally, there were 17 RB patients, including 12 males and 5 females, from 0.5 to 23 years old, average ages were (3.2±5.2) years old. Both eyes were involved in 6 patients. The other 11 cases were only one eye was attacked. Four RB patients were found to have germline mutations, among whom 2 had bilateral tumors and 2 had unilateral tumors. 2 novel missense mutations were identified, including 15(th) exon c.1408A>T (p. Ile470Phe) and c.1960G>C (p. Val654Leu) at 19(th) exon. No RB1 mutation was identified in any of their parents. We also identified 2 mutations reported previously. One is c.1030C>T termination mutation at 10(th) exon in a bilateral RB patients and his father, who was diagnosed with unilateral RB. The other is c.371-372delTA frame shift mutation at 3(rd) exon. No mutation was found in their parents. Conclusions: Two novel germline RB1 mutations were found using gene capture technology, which enriched RB1 mutations library. (Chin J Ophthalmol, 2017, 53: 455-459) .

  9. Telemetric Technologies for the Assay of Gene Expression

    Science.gov (United States)

    Paul, Anna-Lisa; Bamsey, Matthew; Berinstain, Alain; Neron, Philip; Graham, Thomas; Ferl, Robert

    Telemetric data collection has been widely used in spaceflight applications where human participation is limited (orbital mission payloads) or unfeasible (planetary landers, satellites, and probes). The transmission of digital data from electronic sensors of typical environmental parameters, growth patterns and physical properties of materials is routine telemetry, and even the collection and transmission of deep space images is a standard tool of astrophysics. But telemetric imaging for current biological payloads has thus far been limited to the collection of standard white-light photography that is largely confined to reporting the surface characteristics of the specimens involved. Advances in imaging technologies that facilitate the collection of a variety of light wavelengths will expand the science return on biological payloads to include evaluations of the molecular genetic response of organisms to the spaceflight or extraterrestrial environment, with minimal or no human intervention. Advanced imaging technology in combination with biologically engineered sensor organisms can create a system that can report via telemetry on the patterns of gene expression required to adapt to a novel environment. The utilization of genetically engineered plants as biosensors has made elegant strides in the recent years, providing keen insights into the health of plants in general and particularly in the nature and cellular location of stress responses. Moreover, molecular responses to gravitational vectors have been elegantly analyzed with fluorescent tools. Green Fluorescence Protein (GFP) and other fluorophores have made it possible for analyses of gene expression and biological responses to occur telemetrically, with the information potentially delivered to the investigator over large distances as simple, preprocessed fluorescence images. Having previously deployed transgenic plant biosensors to evaluate responses to orbital spaceflight, we wish to develop both the plants

  10. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis.

    Science.gov (United States)

    Rádis-Baptista, Gandhi; Campelo, Iana S; Morlighem, Jean-Étienne R L; Melo, Luciana M; Freitas, Vicente J F

    2017-06-20

    Cell-penetrating peptides (CPPs) have been studied for their capacity to translocate across the lipid membrane of several cell types. In membrane translocation, these peptides can remarkably transport biologically active hydrophilic molecules, such as pharmaceuticals, nucleic acids (DNA and RNA) and even high-molecular-weight proteins, Fig. 3 into the cell cytoplasm and organelles. The development of CPPs as transduction agents includes the modification of gene and protein expression, the reprogramming and differentiation of induced pluripotent stem cells and the preparation of cellular vaccines. A relatively recent field of CPP application is the transduction of plasmid DNA vectors and CPP-fusion proteins to modify genomes and introduce new traits in cells and organisms. CPP-mediated transduction of components for genome editing is an advantageous alternative to viral DNA vectors. Engineered site-specific nucleases, such as Cre recombinase, ZFN, TALENs and CRISPR associated protein (Cas), have been coupled to CPPs, and the fused proteins have been used to permeate targeted cells and tissues. The functionally active fusion CPP-nucleases subsequently home to the nucleus, incise genomic DNA at specific sites and induce repair and recombination. This review has the objective of discussing CPPs and elucidating the prospective use of CPP-mediated transduction technology, particularly in genome modification and transgenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Architectures and representations for string transduction

    NARCIS (Netherlands)

    Chrupala, Grzegorz

    2015-01-01

    String transduction problems are ubiquitous in natural language processing: they include transliteration, grapheme-to-phoneme conversion, text normalization and translation. String transduction can be reduced to the simpler problems of sequence labeling by expressing the target string as a sequence

  12. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  13. Technology development for gene discovery and full-length sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Marcelo Bento Soares

    2004-07-19

    In previous years, with support from the U.S. Department of Energy, we developed methods for construction of normalized and subtracted cDNA libraries, and constructed hundreds of high-quality libraries for production of Expressed Sequence Tags (ESTs). Our clones were made widely available to the scientific community through the IMAGE Consortium, and millions of ESTs were produced from our libraries either by collaborators or by our own sequencing laboratory at the University of Iowa. During this grant period, we focused on (1) the development of a method for preferential cloning of tissue-specific and/or rare transcripts, (2) its utilization to expedite EST-based gene discovery for the NIH Mouse Brain Molecular Anatomy Project, (3) further development and optimization of a method for construction of full-length-enriched cDNA libraries, and (4) modification of a plasmid vector to maximize efficiency of full-length cDNA sequencing by the transposon-mediated approach. It is noteworthy that the technology developed for preferential cloning of rare mRNAs enabled identification of over 2,000 mouse transcripts differentially expressed in the hippocampus. In addition, the method that we optimized for construction of full-length-enriched cDNA libraries was successfully utilized for the production of approximately fifty libraries from the developing mouse nervous system, from which over 2,500 full-ORF-containing cDNAs have been identified and accurately sequenced in their entirety either by our group or by the NIH-Mammalian Gene Collection Program Sequencing Team.

  14. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  15. An Undergraduate Laboratory Class Using CRISPR/Cas9 Technology to Mutate Drosophila Genes

    Science.gov (United States)

    Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L.; Chechenova, Maria B.; Guerin, Paul; Cripps, Richard M.

    2016-01-01

    CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using…

  16. Characterization of the ABA signal transduction pathway in Vitis vinifera.

    Science.gov (United States)

    Boneh, Uri; Biton, Iris; Schwartz, Amnon; Ben-Ari, Giora

    2012-05-01

    The plant hormone abscisic acid (ABA) regulates many key processes in plants including the response to abiotic stress. ABA signal transduction consists of a double-negative regulatory mechanism, whereby ABA-bound PYR/RCARs inhibit PP2C activity, and PP2Cs inactivate SnRK2s. We studied and analyzed the various genes participating in the ABA signaling cascade of the grape (Vitis vinifera). The grape ABA signal transduction consists of at least six SnRK2s. Yeast two-hybrid system was used to test direct interactions between core components of grape ABA signal transduction. We found that a total of forty eight interactions can occur between the various components. Exogenous abscisic acid (ABA) and abiotic stresses such as drought, high salt concentration and cold, were applied to vines growing in a hydroponic system. These stresses regulated the expression of various grape SnRK2s as well as ABFs in leaves and roots. Based on the interactions between SnRK2s and its targets and the expression pattern, we suggest that VvSnRK2.1 and VvSnRK2.6, can be considered the major VvSnRK2 candidates involved in the stomata response to abiotic stress. Furthermore, we found that the expression pattern of the two grape ABF genes indicates organ specificity of these genes. The key role of ABA signaling in response to abiotic stresses makes the genes involve in this signaling potential candidates for manipulation in programs designed to improve fruit tree performance in extreme environments. © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2006-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitateinternalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  18. Capacitive axial position and speed transduction system

    International Nuclear Information System (INIS)

    Jimenez D, H.; Flores Ll, H.; Cabral P, A.; Ramirez J, F.J.; Galindo, S.

    1984-01-01

    A new and inexpensive circuit arrangement of a capacitive axial position and speed transduction system is described. Design details and the theory of operation of the device are briefly outlined together with performance results. (author)

  19. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2004-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  20. Protein Transduction Based Therapies for Breast Cancer

    National Research Council Canada - National Science Library

    Robbins, Paul D

    2005-01-01

    We have demonstrated that certain transduction peptides such as 12 lysines and 12 arginines can facilitate internalization into breast tumor lines with higher efficiency than smaller polymers of cationic amino acids...

  1. Rod Outer Segment Development Influences AAV-Mediated Photoreceptor Transduction After Subretinal Injection.

    Science.gov (United States)

    Petit, Lolita; Ma, Shan; Cheng, Shun-Yun; Gao, Guangping; Punzo, Claudio

    2017-06-01

    Vectors based on the adeno-associated virus (AAV) are currently the preferred tools for delivering genes to photoreceptors (PR) in small and large animals. AAVs have been applied successfully in various models of PR dystrophies. However, unknown barriers still limit AAV's efficient application in several forms of severe PR degenerations due to insufficient transgene expression and/or treated cells at the time of injection. Optimizations of PR gene therapy strategies will likely benefit from the identification of the cellular factors that influence PR transduction. Interestingly, recent studies have shown that the AAV transduction profile of PRs differs significantly between neonatal and adult mouse retinas after subretinal injection. This phenomenon may provide clues to identify host factors that influence the efficiency of AAV-mediated PR transduction. This study demonstrates that rod outer segments are critical modulators of efficient AAV-mediated rod transduction. During retinal development, rod transduction correlated temporally and spatially with the differentiation order of PRs when vectors were introduced subretinally but not when introduced intravitreally. All subretinally injected vectors had an initial preference to transduce cones in the absence of formed rod outer segments and then displayed a preference for rods as the cells matured, independently of the expression cassette or AAV serotype. Consistent with this observation, altered development of rod outer segments was associated with a strong reduction of rod transduction and an increase in the percentage of transduced cones by 2- to 2.8-fold. A similar increase of cone transduction was observed in the adult retinal degeneration 1 (rd1) retina compared to wild-type mice. These results suggest that the loss of rod outer segments in diseased retinas could markedly affect gene transfer efficiency of AAV vectors by limiting the ability of AAVs to infect dying rods efficiently. This information could be

  2. Towards a clinically relevant lentiviral transduction protocol for primary human CD34 hematopoietic stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Michelle Millington

    2009-07-01

    Full Text Available Hematopoietic stem cells (HSC, in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34(+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin.Using commercially available G-CSF mobilized peripheral blood (PB CD34(+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI, transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV carrying enhanced green fluorescent protein (GFP was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin.This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34(+ cells.

  3. Modeling evolution of crosstalk in noisy signal transduction networks

    Science.gov (United States)

    Tareen, Ammar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-02-01

    Signal transduction networks can form highly interconnected systems within cells due to crosstalk between constituent pathways. To better understand the evolutionary design principles underlying such networks, we study the evolution of crosstalk for two parallel signaling pathways that arise via gene duplication. We use a sequence-based evolutionary algorithm and evolve the network based on two physically motivated fitness functions related to information transmission. We find that one fitness function leads to a high degree of crosstalk while the other leads to pathway specificity. Our results offer insights on the relationship between network architecture and information transmission for noisy biomolecular networks.

  4. Use of Intraductal Adenovins Transduction to Assess the Mammary Tumorigenic Potential of a Constitutively Active Prolactin Receptor

    National Research Council Canada - National Science Library

    2000-01-01

    ... are expressed. Transgenic technology has been used to evaluate the effects of an activated prolactin receptor, aPRLR, and an activated member of the prolactin signal transduction pathway, Akt, on the mammary...

  5. Future of health technology assessment studies in gene and cell ...

    African Journals Online (AJOL)

    The application of new knowledge and technological change is a key driver of the achievements in policy decisions in health care environments at macro and micro level to achieve better health outcomes. The newly emerging stem cell therapies and genomics technologies stay at the interface of Research and ...

  6. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    Energy Technology Data Exchange (ETDEWEB)

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  7. Generating Transgenic Mice by Lentiviral Transduction of Spermatozoa Followed by In Vitro Fertilization and Embryo Transfer.

    Science.gov (United States)

    Chandrashekran, Anil; Casimir, Colin; Dibb, Nick; Readhead, Carol; Winston, Robert

    2016-01-01

    Most transgenic technologies rely on the oocyte as a substrate for genetic modification. Transgenics animals are usually generated by the injection of the gene constructs (including lentiviruses encoding gene constructs or modified embryonic stem cells) into the pronucleus of a fertilized egg followed by the transfer of the injected embryos into the uterus of a foster mother. Male germ cells also have potential as templates for transgenic development. We have previously shown that mature sperm can be utilized as template for lentiviral transduction and as such used to generate transgenic mice efficiently with germ line capabilities. We provide here a detailed protocol that is relatively simple, to establish transgenic mice using lentivirally transduced spermatozoa. This protocol employs a well-established lentiviral gene delivery system (usual for somatic cells) delivering a variety of transgenes to be directly used with sperm, and the subsequent use of these modified sperm in in vitro fertilization studies and embryo transfer into foster female mice, for the establishment of transgenic mice.

  8. A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities during Experimentation in an Outreach Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2011-01-01

    Emphasis on improving higher level biology education continues. A new two-step approach to the experimental phases within an outreach gene technology lab, derived from cognitive load theory, is presented. We compared our approach using a quasi-experimental design with the conventional one-step mode. The difference consisted of additional focused…

  9. Gene Technology: Also a Gender Issue. Views of Dutch Informed Women on Genetic Screening and Gene Therapy.

    Science.gov (United States)

    van Berkel, Dymphie; Klinge, Ineke

    1997-01-01

    The views of Dutch women on the implications of the analysis of the human genome were studied by questionnaire and interview. Although a serious lack of knowledge about the topic was found, interviews produced a broad range of problematic issues. Attention to gender implications of gene technology is needed. (Author/EMK)

  10. Purinergic mechanosensory transduction and visceral pain

    Directory of Open Access Journals (Sweden)

    Burnstock Geoffrey

    2009-11-01

    Full Text Available Abstract In this review, evidence is presented to support the hypothesis that mechanosensory transduction occurs in tubes and sacs and can initiate visceral pain. Experimental evidence for this mechanism in urinary bladder, ureter, gut, lung, uterus, tooth-pulp and tongue is reviewed. Potential therapeutic strategies are considered for the treatment of visceral pain in such conditions as renal colic, interstitial cystitis and inflammatory bowel disease by agents that interfere with mechanosensory transduction in the organs considered, including P2X3 and P2X2/3 receptor antagonists that are orally bioavailable and stable in vivo and agents that inhibit or enhance ATP release and breakdown.

  11. Status of clean gene (selection marker-free)technology | Afolabi ...

    African Journals Online (AJOL)

    Transformation biotechnology can also help especially where classical breeding lacks solution (e.g. limited availability of stable and durable genetic source of resistance). However, plant ... with the gene of interest(s) in one Mendelian locus in the plant genome; hence, their removal is highly desirable. This may also help in ...

  12. Signal transduction by interferon-α through arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Hannigan, G.E.; Williams, B.R.G.

    1991-01-01

    Molecular mechanisms that mediate signal transduction by growth inhibitory cytokines are poorly understood. Type 1 (α and β) interferons (IFNs) are potent growth inhibitory cytokines whose biological activities depend on induced changes in gene expression. IFN-α induced the transient activation of phospholipase A 2 in 3T3 fibroblasts and rapid hydrolysis of [ 3 H]arachidonic acid (AA) from prelabeled phospholipid pools. The phospholipase inhibitor, bromophenacyl bromide (BPB), specifically blocked IFN-induced binding of nuclear factors to a conserved, IFN-regulated enhancer element, the interferon-stimulated response element (ISRE). BPB also caused a dose-dependent inhibition of IFN-α-induced ISRE-dependent transcription in transient transfection assays. Specific inhibition of AA oxygenation by eicosatetraynoic acid prevented IFN-α induction of factor binding to the ISRE. Treatment of intact cells with inhibitors of fatty acid cyclooxygenase or lipoxygenase enzymes resulted in amplification of IFN-α-induced ISRE binding and gene expression. Thus, IFN-α receptor-coupled AA hydrolysis may function in activation of latent transcription factors by IFN-α and provides a system for studying the role of AA metabolism in transduction of growth inhibitory signals

  13. Myosin individualized: single nucleotide polymorphisms in energy transduction

    Directory of Open Access Journals (Sweden)

    Wieben Eric D

    2010-03-01

    Full Text Available Abstract Background Myosin performs ATP free energy transduction into mechanical work in the motor domain of the myosin heavy chain (MHC. Energy transduction is the definitive systemic feature of the myosin motor performed by coordinating in a time ordered sequence: ATP hydrolysis at the active site, actin affinity modulation at the actin binding site, and the lever-arm rotation of the power stroke. These functions are carried out by several conserved sub-domains within the motor domain. Single nucleotide polymorphisms (SNPs affect the MHC sequence of many isoforms expressed in striated muscle, smooth muscle, and non-muscle tissue. The purpose of this work is to provide a rationale for using SNPs as a functional genomics tool to investigate structurefunction relationships in myosin. In particular, to discover SNP distribution over the conserved sub-domains and surmise what it implies about sub-domain stability and criticality in the energy transduction mechanism. Results An automated routine identifying human nonsynonymous SNP amino acid missense substitutions for any MHC gene mined the NCBI SNP data base. The routine tested 22 MHC genes coding muscle and non-muscle isoforms and identified 89 missense mutation positions in the motor domain with 10 already implicated in heart disease and another 8 lacking sequence homology with a skeletal MHC isoform for which a crystallographic model is available. The remaining 71 SNP substitutions were found to be distributed over MHC with 22 falling outside identified functional sub-domains and 49 in or very near to myosin sub-domains assigned specific crucial functions in energy transduction. The latter includes the active site, the actin binding site, the rigid lever-arm, and regions facilitating their communication. Most MHC isoforms contained SNPs somewhere in the motor domain. Conclusions Several functional-crucial sub-domains are infiltrated by a large number of SNP substitution sites suggesting these

  14. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells.

    Science.gov (United States)

    Sui, Guangchao; Soohoo, Christina; Affar, El Bachir; Gay, Frédérique; Shi, Yujiang; Forrester, William C; Shi, Yang

    2002-04-16

    Double-stranded RNA-mediated interference (RNAi) has recently emerged as a powerful reverse genetic tool to silence gene expression in multiple organisms including plants, Caenorhabditis elegans, and Drosophila. The discovery that synthetic double-stranded, 21-nt small interfering RNA triggers gene-specific silencing in mammalian cells has further expanded the utility of RNAi into mammalian systems. Here we report a technology that allows synthesis of small interfering RNAs from DNA templates in vivo to efficiently inhibit endogenous gene expression. Significantly, we were able to use this approach to demonstrate, in multiple cell lines, robust inhibition of several endogenous genes of diverse functions. These findings highlight the general utility of this DNA vector-based RNAi technology in suppressing gene expression in mammalian cells.

  15. Energy transduction in lactic acid bacteria

    NARCIS (Netherlands)

    Poolman, Bert

    In the discovery of some general principles of energy transduction, lactic acid bacteria have played an important role. In this review, the energy transducing processes of lactic acid bacteria are discussed with the emphasis on the major developments of the past 5 years. This work not only includes

  16. Identification of signal transduction pathways used by orphan g protein-coupled receptors.

    Science.gov (United States)

    Bresnick, Janine N; Skynner, Heather A; Chapman, Kerry L; Jack, Andrew D; Zamiara, Elize; Negulescu, Paul; Beaumont, Kevin; Patel, Smita; McAllister, George

    2003-04-01

    The superfamily of GPCRs have diverse biological roles, transducing signals from a range of stimuli, from photon recognition by opsins to neurotransmitter regulation of neuronal function. Of the many identified genes encoding GPCRs, >130 are orphan receptors ( i.e., their endogenous ligands are unknown), and this subset represents putative novel therapeutic targets for pharmaceutical intervention in a variety of diseases. As an initial step toward drug discovery, determining a biological function for these newly identified receptors is of vital importance, and thus identification of a natural ligand(s) is a primary aim. There are several established methods for doing this, but many have drawbacks and usually require some in-depth knowledge about how the receptor functions. The technique described here utilizes a transcription-based reporter assay in live cells. This allows the determination of the signal transduction pathway any given oGPCR uses, without any prior knowledge of the endogenous ligand. This can therefore reduce the redundancy of effort involved in screening ligands at a given receptor in multiple formats (i.e., Galpha(s), Galpha(i/0), and Galpha(q) assays), as well as ensuring that the receptor targeted is capable of signaling if appropriately activated. Such knowledge is often laboriously obtained, and for almost all oGPCRs, this kind of information is not yet available. This technology can also be used to develop inverse agonist as well as agonist sensitive high throughput assays for oGPCRs. The veracity of this approach is demonstrated, using a number of known GPCRs. The likely signaling pathways of the GPR3, GPR12, GPR19, GPR21, and HG55 oGPCRs are shown, and a high throughput assay for GPR26 receptors developed. The methods outlined here for elucidation of the signal transduction pathways for oGPCRs and development of functional assays should speed up the process of identification of ligands for this potentially therapeutically useful group of

  17. Tyrosine phosphorylation in signal transduction

    International Nuclear Information System (INIS)

    Roberts, T.M.; Kaplan, D.; Morgan, W.; Keller, T.; Mamon, H.; Piwnica-Worms, H.; Druker, B.; Whitman, M.; Morrison, D.; Cohen, B.; Schaffhausen, B.; Cantley, L.; Rapp, U.

    1988-01-01

    Recent work has focused on the elucidation of the mechanisms by which membrane-bound tyrosine kinases transmit signals within the cell. To examine the role of tyrosine phosphorylation the authors have employed the following strategy. First, they have utilized antibodies to phosphotyrosine (anti-P.Tyr) to identify candidate substrates of various tyrosine kinases, such as pp60 c-src , the CSF- receptor, or the platelet-derived growth factor (PDGF) receptor. Second, they have attempted to characterize the biochemical properties of the putative substrates and to determine in what manner these properties are modified by phosphorylation on tyrosine residues. In this endeavor, they are recapitulating the classic biochemical analysis used to study the effect of kinases on metabolism. The final portion of our work consists of using modern molecular biological strategies to clone the genes or cDNAs for the substrates and overproduce the relevant proteins for studies in vitro in defined systems. This paper describes the first and second aspects of this strategy, the identification and characterization of novel substrate molecules

  18. Transforming growth factor beta signal transduction: a potential target for maintenance/restoration of transparency of the cornea.

    Science.gov (United States)

    Saika, Shizuya; Yamanaka, Osamu; Sumioka, Takayoshi; Okada, Yuka; Miyamoto, Takeshi; Shirai, Kumi; Kitano, Ai; Tanaka, Sai-ichi

    2010-09-01

    Maintenance of the transparency and regular shape of the cornea are essential to the normal vision, whereas opacification of the tissue impairs vision. Fibrogenic reaction leading to scarring in an injured cornea is characterized by appearance of myofibroblasts, the key player of the fibrogenic reaction, and excess accumulation of fibrous extracellular matrix. Inflammatory/fibrogenic growth factors/cytokines produced by inflammatory cells play a pivotal role in fibrogenic response. Signaling systems involved in myofibroblast formation and fibrogenesis are activated by various growth factors, i.e., transforming growth factor beta or others. Modulation of transforming growth factor beta signal transduction molecules, e.g., Smad and mitogen-activated protein kinases, by gene transfer and other technology provides a new concept of prevention/treatment of unfavorable fibrogenesis in the cornea.

  19. Kinome profiling for studying lipopolysaccharide signal transduction in human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Diks, SH; Kok, K; O'Toole, T; Hommes, DW; van Dijken, P; Joore, J; Peppelenbosch, MP

    2004-01-01

    The DNA array technique allows comprehensive analysis of the genome and transcriptome, but the high throughput array-based assessment of intracellular signal transduction remains troublesome. The goal of this study was to test a new peptide array technology for studying the activity of all kinases

  20. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish

    Directory of Open Access Journals (Sweden)

    Atsuo Kawahara

    2016-05-01

    Full Text Available The zebrafish (Danio rerio is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs and the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR associated protein 9 (Cas9 system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  1. Intrapulmonary Versus Nasal Transduction of Murine Airways With GP64-pseudotyped Viral Vectors

    Directory of Open Access Journals (Sweden)

    Mayumi Oakland

    2013-01-01

    Full Text Available Persistent viral vector-mediated transgene expression in the airways requires delivery to cells with progenitor capacity and avoidance of immune responses. Previously, we observed that GP64-pseudotyped feline immunodeficiency virus (FIV-mediated gene transfer was more efficient in the nasal airways than the large airways of the murine lung. We hypothesized that in vivo gene transfer was limited by immunological and physiological barriers in the murine intrapulmonary airways. Here, we systematically investigate multiple potential barriers to lentiviral gene transfer in the airways of mice. We show that GP64-FIV vector transduced primary cultures of well-differentiated murine nasal epithelia with greater efficiency than primary cultures of murine tracheal epithelia. We further demonstrate that neutrophils, type I interferon (IFN responses, as well as T and B lymphocytes are not the major factors limiting the transduction of murine conducting airways. In addition, we observed better transduction of GP64-pseudotyped vesicular stomatitis virus (VSV in the nasal epithelia compared with the intrapulmonary airways in mice. VSVG glycoprotein pseudotyped VSV transduced intrapulmonary epithelia with similar efficiency as nasal epithelia. Our results suggest that the differential transduction efficiency of nasal versus intrapulmonary airways by FIV vector is not a result of immunological barriers or surface area, but rather differential expression of cellular factors specific for FIV vector transduction.

  2. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  3. The effect of antimicrobials on verocytotoxin bacteriophage transduction under bovine rumen fluid and broth conditions

    Directory of Open Access Journals (Sweden)

    Nyambe S.

    2017-11-01

    Full Text Available The verocytotoxin genes in verocytotoxigenic Escherichia coli (VTEC are carried by bacteriophages, incorporated into the bacterial genome (prophage. Antibiotics may promote phage replication and release to infect other cells (transduction, thus leading to the emergence of new VTEC strains. This study investigated transduction of a verocytotoxin2-encoding bacteriophage (3538(vtx2::cat under laboratory conditions, including the effect of antibiotic treatments. Luria-Bertani Miller broth and rumen fluid (raw and sterilised by irradiation were inoculated with the donor (C600φ3538(Δvtx2::cat and recipient (E. coli C600::kanamycinR strains (4 log10 cfu/mL and incubated at 38°C. Antibiotic treatments (minimal inhibitory and sub-inhibitory concentrations of ampicillin, cefquinome, oxytetracycline and sodium sulfamethazine were applied after 3 h. Samples were tested for donor, recipient, cell-free phage and transductants at times t = 0, 3, 4, 6, 27 (24 h post-antibiotic treatment and 51 h. Free phage was detected in the untreated broth and rumen samples, as were the transductants confirmed by polymerase chain reaction. The antibiotic treatments did not significantly (P > 0.01 increase the concentrations of free phage or transductants detected. It was therefore concluded that, under laboratory conditions, the antibiotics tested did not induce bacteriophage lysis, release and infection of new bacterial cells beyond that constitutively found in the phage population.

  4. Construction of adenovirus vectors encoding the lumican gene by gateway recombinant cloning technology.

    Science.gov (United States)

    Wang, Gui-Fang; Qi, Bing; Tu, Lei-Lei; Liu, Lian; Yu, Guo-Cheng; Zhong, Jing-Xiang

    2016-01-01

    To construct adenovirus vectors of lumican gene by gateway recombinant cloning technology to further understand the role of lumican gene in myopia. Gateway recombinant cloning technology was used to construct adenovirus vectors. The wild-type (wt) and mutant (mut) forms of the lumican gene were synthesized and amplified by polymerase chain reaction (PCR). The lumican cDNA fragments were purified and ligated into the adenovirus shuttle vector pDown-multiple cloning site (MCS)-/internal ribozyme entry site (IRES)/enhanced green fluorescent protein (EGFP). Then the desired DNA fragments were integrated into the destination vector pAV.Des1d yielding the final expression constructs pAV.Ex1d-cytomegalovirus (CMV)>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES /EGFP, respectively. The adenovirus plasmids pAV.Ex1d-CMV>wt-lumican/IRES/EGFP and pAV.Ex1d-CMV>mut-lumican/IRES/EGFP were successfully constructed by gateway recombinant cloning technology. Positive clones identified by PCR and sequencing were selected and packaged into recombinant adenovirus in HEK293 cells. We construct adenovirus vectors containing the lumican gene by gateway recombinant cloning technology, which provides a basis for investigating the role of lumican gene in the pathogenesis of high myopia.

  5. The sugarcane signal transduction (SUCAST catalogue: prospecting signal transduction in sugarcane

    Directory of Open Access Journals (Sweden)

    Glaucia Mendes Souza

    2001-12-01

    Full Text Available EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST project (http://sucest.lad.ic.unicamp.br that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST catalogue (http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm that covered the main categories and pathways. Expressed sequence tags (ESTs encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.O sequenciamento de ESTs (etiquetas de sequencias transcritas tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (http://sucest.lad.ic. unicamp.br que

  6. Molecular electroporation and the transduction of oligoarginines

    Science.gov (United States)

    Cahill, Kevin

    2010-03-01

    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of about 200 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40-60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.

  7. EB-1, a tyrosine kinase signal transduction gene, is transcriptionally activated in the t(1;19) subset of pre-B ALL, which express oncoprotein E2a-Pbx1.

    Science.gov (United States)

    Fu, X; McGrath, S; Pasillas, M; Nakazawa, S; Kamps, M P

    1999-09-02

    The t(1;19) translocation of pre-B cell acute lymphocytic leukemia (ALL) produces E2a-Pbx1, a chimeric oncoprotein containing the transactivation domains of E2a joined to the homeodomain protein, Pbx1. E2a-Pbx1 causes T cell and myeloid leukemia in mice, blocks differentiation of cultured myeloid progenitors, and transforms fibroblasts through a mechanism accompanied by aberrant expression of tissue-specific and developmentally-regulated genes. Here we investigate whether aberrant gene expression also occurs specifically in the t(1;19)-containing subset of pre-B cell ALL in man. Two new genes, EB-1 and EB-2, as well as Caldesmon were transcriptionally activated in each of seven t(1;19) cell lines. EB-1 expression was extremely low in marrow from patients having pre-B ALL not associated with the t(1;19), and elevated more than 100-fold in marrow from patients with pre-B ALL associated with the t(1;19). Normal EB-1 expression was strong in brain and testis, the same tissues exhibiting the highest levels of PBX1 expression. EB-1 encodes a signaling protein containing a phosphotyrosine binding domain homologous to that of dNumb developmental regulators and two SAM domains homologous to those in the C-terminal tail of Eph receptor tyrosine kinases. We conclude that aberrant expression of tissue-specific genes is a characteristic of t(1;19) pre-B ALL, as was previously found in fibroblasts transformed by E2a-Pbx1. Potentially, EB-1 overexpression could interfere with normal signaling controlling proliferation or differentiation.

  8. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  9. [PCR-derived technology in gene identification and typing of Yersinia pestis].

    Science.gov (United States)

    Wang, Mei; Tang, Xinyuan; Wang, Zuyun

    2015-01-01

    Application of the PCR-derived technology in gene identification and genotypes of different ecotype Yersinia pestis to make the high-throughput experimental results can reflect the epidemic history and compare the diversity in genome, pathogenicity, so that results from these experiments provide an important basis for clinical diagnosis, treatment and origin. But the experiment should be considered typing ability, practicality, budget and other experimental factors or conditions, because each PCR-derivative technology has advantages and disadvantages.

  10. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo.

    Science.gov (United States)

    Richter, M; Iwata, A; Nyhuis, J; Nitta, Y; Miller, A D; Halbert, C L; Allen, M D

    2000-04-27

    Adeno-associated virus (AAV) vectors might offer solutions for restenosis and angiogenesis by transducing nondividing cells and providing long-term gene expression. We investigated the feasibility of vascular cell transduction by AAV vectors in an in vivo rabbit carotid artery model. Time course of gene expression, inflammatory reaction to the vector, and effects of varying viral titer, exposure time, and intraluminal pressures on gene expression were examined. Recombinant AAV vectors with an Rous sarcoma virus promoter and alkaline phosphatase reporter gene were injected intraluminally into transiently isolated carotid segments. Following transduction, gene expression increased significantly over 14 days and then remained stable to 28 days, the last time point examined. Medial vascular smooth muscle cells were the main cell type transduced even with an intact endothelial layer. Increasing the viral titer and intraluminal pressure both enhanced transduction efficiency to achieve a mean of 34 +/- 7% of the subintimal layer of smooth muscle cells expressing gene product. A mild inflammatory reaction, composed of T cells with only rare macrophages, with minimal intimal thickening was demonstrated in 40% of transduced vessels; inflammatory cells were not detected in sham-operated control arteries. These findings demonstrate that AAV is a promising vector for intravascular applications in coronary and peripheral vascular diseases.

  11. [Application of gene chip technology for acupuncture research over the past 15 years].

    Science.gov (United States)

    Jia, Wenrui; Zhang, Yue; Guo, Qiying; Sun, Qisheng; Guo, Qiulei; Ji, Zhi; Yang, Fangyuan; Zhan, He; Wang, He; Sui, Minghe; Hou, Zhongwei; Wang, Chaoyang; Liu, Qingguo

    2017-12-12

    To explore the application of gene chip technology in the acupuncture research so as to provide evidences for the mechanism of acupuncture for regulating bodies. The literature on the application of gene chip technology in the acupuncture field from 2001 to 2016 was collected in PubMed, Springer, CNKI and WANFANG databases, which was analyzed and summarized. There were some achievements of the technology for acupuncture research, focusing on the five aspects, including the study of the relationship between meridian-point and viscera, the influencing factors of acupuncture effect, the effect and mechanism of acupuncture analgesia, the mechanism of acupuncture anti-aging, the effect and mechanism of acupuncture for diseases of each system. Gene chip technology plays an important role in researching acupuncture mechanism. It is an important technology for genomics study of acupuncture. However, there are also some disadvantages such as high cost, deficient data mining, non-uniform observation objects, deficient professionals, etc. All those need further resolution so as to promote the application of this technology in the acupuncture researching field.

  12. Driven to extinction? The ethics of eradicating mosquitoes with gene-drive technologies.

    Science.gov (United States)

    Pugh, Jonathan

    2016-09-01

    Mosquito-borne diseases represent a significant global disease burden, and recent outbreaks of such diseases have led to calls to reduce mosquito populations. Furthermore, advances in 'gene-drive' technology have raised the prospect of eradicating certain species of mosquito via genetic modification. This technology has attracted a great deal of media attention, and the idea of using gene-drive technology to eradicate mosquitoes has been met with criticism in the public domain. In this paper, I shall dispel two moral objections that have been raised in the public domain against the use of gene-drive technologies to eradicate mosquitoes. The first objection invokes the concept of the 'sanctity of life' in order to claim that we should not drive an animal to extinction. In response, I follow Peter Singer in raising doubts about general appeals to the sanctity of life, and argue that neither individual mosquitoes nor mosquitoes species considered holistically are appropriately described as bearing a significant degree of moral status. The second objection claims that seeking to eradicate mosquitoes amounts to displaying unacceptable degrees of hubris. Although I argue that this objection also fails, I conclude by claiming that it raises the important point that we need to acquire more empirical data about, inter alia, the likely effects of mosquito eradication on the ecosystem, and the likelihood of gene-drive technology successfully eradicating the intended mosquito species, in order to adequately inform our moral analysis of gene-drive technologies in this context. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology

    Directory of Open Access Journals (Sweden)

    Cubero José I

    2011-01-01

    Full Text Available Abstract Background Ascochyta blight, caused by Mycosphaerella pinodes is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against M. pinodes in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in Pisum relatives. The identification of the genes underlying resistance would increase our knowledge about M. pinodes-pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant P. sativum ssp. syriacum accession P665 comparing to the susceptible pea cv. Messire after inoculation with M. pinodes have been identified using a M. truncatula microarray. Results Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR proteins and detoxification processes. Genes associated with jasmonic acid (JA and ethylene signal transduction pathways were induced suggesting that the response to M. pinodes in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b, glutathione S-transferase (GST and 6a-hydroxymaackiain methyltransferase. Conclusions Through this study a global view of genes expressed during resistance to M. pinodes has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the M. truncatula microarray represents an efficient tool to

  14. Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology.

    Science.gov (United States)

    Fondevilla, Sara; Küster, Helge; Krajinski, Franziska; Cubero, José I; Rubiales, Diego

    2011-01-13

    Ascochyta blight, caused by Mycosphaerella pinodes is one of the most important pea pathogens. However, little is known about the genes and mechanisms of resistance acting against M. pinodes in pea. Resistance identified so far to this pathogen is incomplete, polygenic and scarce in pea, being most common in Pisum relatives. The identification of the genes underlying resistance would increase our knowledge about M. pinodes-pea interaction and would facilitate the introgression of resistance into pea varieties. In the present study differentially expressed genes in the resistant P. sativum ssp. syriacum accession P665 comparing to the susceptible pea cv. Messire after inoculation with M. pinodes have been identified using a M. truncatula microarray. Of the 16,470 sequences analysed, 346 were differentially regulated. Differentially regulated genes belonged to almost all functional categories and included genes involved in defense such as genes involved in cell wall reinforcement, phenylpropanoid and phytoalexins metabolism, pathogenesis- related (PR) proteins and detoxification processes. Genes associated with jasmonic acid (JA) and ethylene signal transduction pathways were induced suggesting that the response to M. pinodes in pea is regulated via JA and ET pathways. Expression levels of ten differentially regulated genes were validated in inoculated and control plants using qRT-PCR showing that the P665 accession shows constitutively an increased expression of the defense related genes as peroxidases, disease resistance response protein 39 (DRR230-b), glutathione S-transferase (GST) and 6a-hydroxymaackiain methyltransferase. Through this study a global view of genes expressed during resistance to M. pinodes has been obtained, giving relevant information about the mechanisms and pathways conferring resistance to this important disease. In addition, the M. truncatula microarray represents an efficient tool to identify candidate genes controlling resistance to M

  15. Quantitative insight into models of Hedgehog signal transduction.

    Science.gov (United States)

    Farzan, Shohreh F; Ogden, Stacey K; Robbins, David J

    2010-01-01

    The Hedgehog (Hh) signaling pathway is an essential regulator of embryonic development and a key factor in carcinogenesis.(1,2) Hh, a secreted morphogen, activates intracellular signaling events via downstream effector proteins, which translate the signal to regulate target gene transcription.(3,4) In a recent publication, we quantitatively compared two commonly accepted models of Hh signal transduction.(5) Each model requires a different ratio of signaling components to be feasible. Thus, we hypothesized that knowing the steady-state ratio of core signaling components might allow us to distinguish between models. We reported vast differences in the molar concentrations of endogenous effectors of Hh signaling, with Smo present in limiting concentrations.(5) This extra view summarizes the implications of this endogenous ratio in relation to current models of Hh signaling and places our results in the context of recent work describing the involvement of guanine nucleotide binding protein Galphai and Cos2 motility.

  16. Switching on the lights for gene therapy.

    Directory of Open Access Journals (Sweden)

    Alexandra Winkeler

    Full Text Available Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy. To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1 amplicon vectors carrying hormone (mifepristone or antibiotic (tetracycline regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET or bioluminescence (BLI in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.

  17. Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2014-01-01

    Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…

  18. Is gene technology in agriculture able to prevent hunger in the world?

    NARCIS (Netherlands)

    Goewie, E.A.

    2002-01-01

    The worldpopulation grows rapidly: the number of mouths to feed increases. Is ar agriculture without gene technology able to produce sufficiently in order to prevent hunger? Research indicates that hunger is not the result of short comings in agricultural outputs. It is however the result of

  19. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier.

    Science.gov (United States)

    Boado, Ruben J; Pardridge, William M

    2011-01-01

    The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB). Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV) administration. Recent progress in the "Trojan Horse Liposome" (THL) technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb) component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.

  20. Physical Mapping Technologies for the Identification and Characterization of Mutated Genes to Crop Quality

    International Nuclear Information System (INIS)

    2011-09-01

    The improvement of quality traits in food and industrial crops is an important breeding objective for both developed and developing countries in order to add value to the crop and thereby increasing farmers' income. It has been well established that the application of mutagens can be a very important approach for manipulating many crop characteristics including quality. While mutation induction using nuclear techniques such as gamma irradiation is a power tool in generating new genotypes with favourable alleles for improving crop quality in plant breeding, a more thorough understanding of gene expression, gene interactions, and physical location will improve ability to manipulate and control genes, and directly lead to crop improvement. Physical mapping technologies, molecular markers and molecular cytogenetic techniques are tools available with the potential to enhance the ability to tag genes and gene complexes to facilitate the selection of desirable genotypes in breeding programmes, including those based on mutation breeding. This Coordinated Research Project (CRP) on 'Physical Mapping Technologies for the Identification and Characterization of Mutated Genes Contributing to Crop Quality' was conducted under the overall IAEA project objective of 'Identification, Characterization and Transfer of Mutated Genes'. The specific objectives of the CRP were to assist Member States in accelerating crop breeding programmes through the application of physical mapping and complementary genomic approaches, and the characterization and utilization of induced mutants for improvement of crop quality. The IAEA-TECDOC describes the success obtained in the application of molecular cytology, molecular markers, physical mapping and mutation technologies since the inception of the CRP in 2003. The CRP also resulted in two book chapters, 35 peer reviewed papers, 25 conference proceedings, one PhD thesis, and 22 published abstracts. In addition, thirteen sequences were submitted to the

  1. Energy metabolism and transduction in smooth muscle.

    Science.gov (United States)

    Lynch, R M; Paul, R J

    1985-08-15

    Early investigations into the nature of the coupling between energy transduction and metabolism in smooth muscle, particularly from the laboratories of Bülbring and Lundholm, suggested that specific metabolic pathways could independently supply energy for ion transport and actin-myosin interactions. Subsequent work has solidified the concept that oxidative phosphorylation is specifically coupled to tension generation and maintenance, whereas, aerobic glycolysis is not only a vital characteristic of smooth muscle metabolism, but also is likely to be independently coupled to Na-K transport at the plasmalemma. The independence of oxidative and glycolytic metabolism is reflected as a compartmentation of carbohydrate metabolism in the porcine carotid artery. The coupling of these independent metabolic pathways with specific energy utilizing processes, indicates a means by which energy production and transduction can be closely and efficiently regulated. The coupling of glycogenolysis to mitochondrial respiration may have evolved as a direct response to the energetic needs of VSM. That is, the large glycogenolytic response in the initial minutes of stimulation may be necessary to maximize the cellular production of ATP during the presteady state. Likewise, the coupling between aerobic glycolysis and Na-K transport indicates a sensitive and efficient means of coordinating energy metabolism with ion transport at the membrane level. Additionally, the regulation of substrate supply, i.e. glucose transport, also may be closely coordinated with changes in ion transport. One may speculate that alterations in the microenvironment of each compartment can independently regulate intermediary metabolism and therefore allow the cell to quickly and efficiently respond to localized stimuli. Thus, stimulation of Na-K transport could effectively regulate energy production at the membrane level without mobilizing or competing with the energy transduction of other cellular processes. This

  2. Exploration of new perspectives and limitations in Agrobacterium mediated gene transfer technology. Progress report, [June 1, 1992-- May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Marton, L.

    1994-12-31

    This report describes progress aimed at constructing gene-transfer technology for Nicotiana plumbaginifolia. Most actual effort as described herein has so far been directed at exploring new perspectives and limitations in Agrobacterium mediated gene transfer. Accomplishments are described using a core homologous gene targeting vector.

  3. Simulated evolution of signal transduction networks.

    Directory of Open Access Journals (Sweden)

    Mohammad Mobashir

    Full Text Available Signal transduction is the process of routing information inside cells when receiving stimuli from their environment that modulate the behavior and function. In such biological processes, the receptors, after receiving the corresponding signals, activate a number of biomolecules which eventually transduce the signal to the nucleus. The main objective of our work is to develop a theoretical approach which will help to better understand the behavior of signal transduction networks due to changes in kinetic parameters and network topology. By using an evolutionary algorithm, we designed a mathematical model which performs basic signaling tasks similar to the signaling process of living cells. We use a simple dynamical model of signaling networks of interacting proteins and their complexes. We study the evolution of signaling networks described by mass-action kinetics. The fitness of the networks is determined by the number of signals detected out of a series of signals with varying strength. The mutations include changes in the reaction rate and network topology. We found that stronger interactions and addition of new nodes lead to improved evolved responses. The strength of the signal does not play any role in determining the response type. This model will help to understand the dynamic behavior of the proteins involved in signaling pathways. It will also help to understand the robustness of the kinetics of the output response upon changes in the rate of reactions and the topology of the network.

  4. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates.

    Science.gov (United States)

    Liu, Fang; Jenssen, Tor-Kristian; Trimarchi, Jeff; Punzo, Claudio; Cepko, Connie L; Ohno-Machado, Lucila; Hovig, Eivind; Kuo, Winston Patrick

    2007-06-07

    High-throughput systems for gene expression profiling have been developed and have matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised about the level of agreement across technologies. As part of an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing). The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery. Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive alternatives for measuring gene expression, and currently, both are important tools for transcriptome profiling.

  5. Comparison of hybridization-based and sequencing-based gene expression technologies on biological replicates

    Directory of Open Access Journals (Sweden)

    Cepko Connie L

    2007-06-01

    Full Text Available Abstract Background High-throughput systems for gene expression profiling have been developed and have matured rapidly through the past decade. Broadly, these can be divided into two categories: hybridization-based and sequencing-based approaches. With data from different technologies being accumulated, concerns and challenges are raised about the level of agreement across technologies. As part of an ongoing large-scale cross-platform data comparison framework, we report here a comparison based on identical samples between one-dye DNA microarray platforms and MPSS (Massively Parallel Signature Sequencing. Results The DNA microarray platforms generally provided highly correlated data, while moderate correlations between microarrays and MPSS were obtained. Disagreements between the two types of technologies can be attributed to limitations inherent to both technologies. The variation found between pooled biological replicates underlines the importance of exercising caution in identification of differential expression, especially for the purposes of biomarker discovery. Conclusion Based on different principles, hybridization-based and sequencing-based technologies should be considered complementary to each other, rather than competitive alternatives for measuring gene expression, and currently, both are important tools for transcriptome profiling.

  6. FLT3 ligand preserves the uncommitted CD34+CD38- progenitor cells during cytokine prestimulation for retroviral transduction

    DEFF Research Database (Denmark)

    Nielsen, S D; Husemoen, L L; Sørensen, T U

    2000-01-01

    Before stem cell gene therapy can be considered for clinical applications, problems regarding cytokine prestimulation remain to be solved. In this study, a retroviral vector carrying the genes for the enhanced version of green fluorescent protein (EGFP) and neomycin resistance (neo(r)) was used...... (SCF), FLT3 ligand, interleukin-3 (IL-3), IL-6, and IL-7 prior to transduction. Expression of the two genes was assessed by flow cytometry and determination of neomycin-resistant colonies in a selective colony-forming unit (CFU) assay, respectively. The neomycin resistance gene was expressed...... in a higher percentage of cells than the EGFP gene, but there seemed to be a positive correlation between expression of the two genes. The effect of cytokine prestimulation was therefore monitored using EGFP as marker for transduction. When SCF was compared to SCF in combination with more potent cytokines...

  7. Efficient transduction of neurons using Ross River glycoprotein-pseudotyped lentiviral vectors

    DEFF Research Database (Denmark)

    Jakobsson, J; Nielsen, T Tolstrup; Staflin, K

    2006-01-01

    Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV-G-pseudotyped le......Lentiviral vectors are promising tools for CNS gene transfer since they efficiently transduce the cells of the nervous system in vivo. In this study, we have investigated the transduction efficiency of lentiviral vectors pseudotyped with Ross River virus glycoprotein (RRV-G) (RRV...... and human glial fibrillary acidic protein, we demonstrated cell-specific transgene expression in the desired cell type. Ross River virus glycoprotein-pseudotyped lentiviral vectors also transduced human neural progenitor cells in vitro, showing that receptors for the RRV-G are present on human neural cells....

  8. Prenatal Alcohol Exposure Damages Brain Signal Transduction Systems

    National Research Council Canada - National Science Library

    Caldwell, Kevin

    2001-01-01

    .... One and twenty-four hours following fear conditioning this learning deficit is associated with altered brain signal transduction mechanisms that are dependent on an enzyme termed phosphatidylinositol...

  9. Transductive Ridge Regression in Structure-activity Modeling.

    Science.gov (United States)

    Marcou, Gilles; Delouis, Grace; Mokshyna, Olena; Horvath, Dragos; Lachiche, Nicolas; Varnek, Alexandre

    2018-01-01

    In this article we consider the application of the Transductive Ridge Regression (TRR) approach to structure-activity modeling. An original procedure of the TRR parameters optimization is suggested. Calculations performed on 3 different datasets involving two types of descriptors demonstrated that TRR outperforms its non-transductive analogue (Ridge Regression) in more than 90 % of cases. The most significant transductive effect was observed for small datasets. This suggests that transduction may be particularly useful when the data are expensive or difficult to collect. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. FDA Regulation of Clinical Applications of CRISPR-CAS Gene-Editing Technology.

    Science.gov (United States)

    Grant, Evita V

    Scientists have repurposed an adaptive immune system of single cell organisms to create a new type of gene-editing tool: CRISPR (clustered regularly interspaced short palindromic repeats)-Cas technology. Scientists in China have reported its use in the genome modification of non-viable human embryos. This has ignited a spirited debate about the moral, ethical, scientific, and social implications of human germline genome engineering. There have also been calls for regulations; however, FDA has yet to formally announce its oversight of clinical applications of CRISPR-Cas systems. This paper reviews FDA regulation of previously controversial biotechnology breakthroughs, recombinant DNA and human cloning. It then shows that FDA is well positioned to regulate CRISPR-Cas clinical applications, due to its legislative mandates, its existing regulatory frameworks for gene therapies and assisted reproductive technologies, and other considerations.

  11. An intimate link: two-component signal transduction systems and metal transport systems in bacteria

    OpenAIRE

    Singh, Kamna; Senadheera, Dilani B; Cvitkovitch, Dennis G

    2014-01-01

    Bacteria have evolved various strategies to contend with high concentrations of environmental heavy metal ions for rapid, adaptive responses to maintain cell viability. Evidence gathered in the past two decades suggests that bacterial two-component signal transduction systems (TCSTSs) are intimately involved in monitoring cation accumulation, and can regulate the expression of related metabolic and virulence genes to elicit adaptive responses to changes in the concentration of these ions. Usi...

  12. Role of Glycolytic Intermediates in Global Regulation and Signal Transduction. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.C.

    2000-05-08

    The goal of this project is to determine the role of glycolytic intermediates in regulation of cell physiology. It is known that many glycolytic intermediates are involved in regulation of enzyme activities at the kinetic level. However, little is known regarding the role of these metabolites in global regulation and signal transduction. This project aims to investigate the role of glycolytic intermediates in the regulation of gene expression.

  13. Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction

    Science.gov (United States)

    Nakanishi, Hiroshi; Kurima, Kiyoto; Kawashima, Yoshiyuki; Griffith, Andrew J.

    2014-01-01

    Objective Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant (DFNA36) or recessive (DFNB7/B11) deafness. In this article, we describe the characteristics of DFNA36 and DFNB7/B11 deafness, the features of the Tmc1 mutant mouse strains, and recent advances in our understanding of TMC1 function. Methods Publications related to TMC1, DFNA36 or DFNB7/B11 were identified through PubMed. Results All affected DFNA36 subjects showed post-lingual, progressive, sensorineural hearing loss (HL), initially affecting high frequencies. In contrast, almost all affected DFNB7/B11 subjects demonstrated congenital or prelingual severe to profound sensorineural HL. The mouse Tmc1 gene also has dominant and recessive mutant alleles that cause HL in mutant strains, including Beethoven, deafness and Tmc1 knockout mice. These mutant mice have been instrumental for revealing that Tmc1 and its closely related paralog Tmc2 are expressed in cochlear and vestibular hair cells, and are required for hair cell mechanoelectrical transduction (MET). Recent studies suggest that TMC1 and TMC2 may be components of the long-sought hair cell MET channel. Conclusion TMC1 mutations disrupt hair cell MET. PMID:24933710

  14. Mutations of TMC1 cause deafness by disrupting mechanoelectrical transduction.

    Science.gov (United States)

    Nakanishi, Hiroshi; Kurima, Kiyoto; Kawashima, Yoshiyuki; Griffith, Andrew J

    2014-10-01

    Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant (DFNA36) or recessive (DFNB7/B11) deafness. In this article, we describe the characteristics of DFNA36 and DFNB7/B11 deafness, the features of the Tmc1 mutant mouse strains, and recent advances in our understanding of TMC1 function. Publications related to TMC1, DFNA36, or DFNB7/B11 were identified through PubMed. All affected DFNA36 subjects showed post-lingual, progressive, sensorineural hearing loss (HL), initially affecting high frequencies. In contrast, almost all affected DFNB7/B11 subjects demonstrated congenital or prelingual severe to profound sensorineural HL. The mouse Tmc1 gene also has dominant and recessive mutant alleles that cause HL in mutant strains, including Beethoven, deafness, and Tmc1 knockout mice. These mutant mice have been instrumental for revealing that Tmc1 and its closely related paralog Tmc2 are expressed in cochlear and vestibular hair cells, and are required for hair cell mechanoelectrical transduction (MET). Recent studies suggest that TMC1 and TMC2 may be components of the long-sought hair cell MET channel. TMC1 mutations disrupt hair cell MET. Published by Elsevier Ireland Ltd.

  15. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    Science.gov (United States)

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Plant Genes Involved in Symbiotic Sinal Perception/Signal Transduction

    DEFF Research Database (Denmark)

    Binder, A; Soyano, T; Hayashi, H

    2014-01-01

    A host genetic programme that is initiated upon recognition of specific rhizobial Nod factors governs the symbiosis of legumes with nitrogen-fixing bacteria. This programme coordinates two major developmental processes that run in parallel in legume roots: de novo cortical cell division leading...

  17. Transposon assisted gene insertion technology (TAGIT: a tool for generating fluorescent fusion proteins.

    Directory of Open Access Journals (Sweden)

    James A Gregory

    2010-01-01

    Full Text Available We constructed a transposon (transposon assisted gene insertion technology, or TAGIT that allows the random insertion of gfp (or other genes into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses Kan(R to select for insertions on the chromosome or plasmid, beta-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5' and 3' of gfp and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI. We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins.

  18. Proof-of-concept: neonatal intravenous injection of adeno-associated virus vectors results in successful transduction of myenteric and submucosal neurons in the mouse small and large intestine.

    Science.gov (United States)

    Buckinx, R; Van Remoortel, S; Gijsbers, R; Waddington, S N; Timmermans, J-P

    2016-02-01

    Despite the success of viral vector technology in the transduction of the central nervous system in both preclinical research and gene therapy, its potential in neurogastroenterological research remains largely unexploited. This study asked whether and to what extent myenteric and submucosal neurons in the ileum and distal colon of the mouse were transduced after neonatal systemic delivery of recombinant adeno-associated viral vectors (AAVs). Mice were intravenously injected at postnatal day one with AAV pseudotypes AAV8 or AAV9 carrying a cassette encoding enhanced green fluorescent protein (eGFP) as a reporter under the control of a cytomegalovirus promoter. At postnatal day 35, transduction of the myenteric and submucosal plexuses of the ileum and distal colon was evaluated in whole-mount preparations, using immunohistochemistry to neurochemically identify transduced enteric neurons. The pseudotypes AAV8 and AAV9 showed equal potential in transducing the enteric nervous system (ENS), with 25-30% of the neurons expressing eGFP. However, the percentage of eGFP-expressing colonic submucosal neurons was significantly lower. Neurochemical analysis showed that all enteric neuron subtypes, but not glia, expressed the reporter protein. Intrinsic sensory neurons were most efficiently transduced as nearly 80% of calcitonin gene-related peptide-positive neurons expressed the transgene. The pseudotypes AAV8 and AAV9 can be employed for gene delivery to both the myenteric and the submucosal plexus, although the transduction efficiency in the latter is region-dependent. These findings open perspectives for novel preclinical applications aimed at manipulating and imaging the ENS in the short term, and in gene therapy in the longer term. © 2015 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  19. Reporter gene imaging: potential impact on therapy

    International Nuclear Information System (INIS)

    Serganova, Inna; Blasberg, Ronald

    2005-01-01

    Positron emission tomography (PET)-based molecular-genetic imaging in living organisms has enjoyed exceptional growth over the past 5 years; this is particularly striking since it has been identified as a new discipline only within the past decade. Positron emission tomography is one of three imaging technologies (nuclear, magnetic resonance and optical) that has begun to incorporate methods that are established in molecular and cell biology research. The convergence of these disciplines and the wider application of multi-modality imaging are at the heart of this success story. Most current molecular-genetic imaging strategies are 'indirect,' coupling a 'reporter gene' with a complimentary 'reporter probe.' Reporter gene constructs can be driven by constitutive promoter elements and used to monitor gene therapy vectors and the efficacy of trans gene targeting and transduction, as well as to monitor adoptive cell-based therapies. Inducible promoters can be used as 'sensors' to regulate the magnitude of reporter gene expression and can be used to provide information about endogenous cell processes. Reporter systems can also be constructed to monitor mRNA stabilization and specific protein-protein interactions. Promoters can be cell specific and restrict transgene expression to certain tissue and organs. The translation of reporter gene imaging to specific clinical applications is discussed. Several examples that have potential for patient imaging studies in the near future include monitoring adenoviral-based gene therapy, oncolytic herpes virus therapy, adoptive cell-based therapies and Salmonella-based tumor-targeted cancer therapy and imaging. The primary translational applications of noninvasive in vivo reporter gene imaging are likely to be (a) quantitative monitoring of the gene therapy vector and the efficacy of transduction in clinical protocols, by imaging the location, extent and duration of transgene expression; (b) monitoring cell trafficking, targeting

  20. [Recent progress in gene mapping through high-throughput sequencing technology and forward genetic approaches].

    Science.gov (United States)

    Lu, Cai-rui; Zou, Chang-song; Song, Guo-li

    2015-08-01

    Traditional gene mapping using forward genetic approaches is conducted primarily through construction of a genetic linkage map, the process of which is tedious and time-consuming, and often results in low accuracy of mapping and large mapping intervals. With the rapid development of high-throughput sequencing technology and decreasing cost of sequencing, a variety of simple and quick methods of gene mapping through sequencing have been developed, including direct sequencing of the mutant genome, sequencing of selective mutant DNA pooling, genetic map construction through sequencing of individuals in population, as well as sequencing of transcriptome and partial genome. These methods can be used to identify mutations at the nucleotide level and has been applied in complex genetic background. Recent reports have shown that sequencing mapping could be even done without the reference of genome sequence, hybridization, and genetic linkage information, which made it possible to perform forward genetic study in many non-model species. In this review, we summarized these new technologies and their application in gene mapping.

  1. Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages.

    Science.gov (United States)

    Yasmin, Azra; Kenny, John G; Shankar, Jayendra; Darby, Alistair C; Hall, Neil; Edwards, Clive; Horsburgh, Malcolm J

    2010-02-01

    To determine the relative importance of temperate bacteriophage in the horizontal gene transfer of fitness and virulence determinants of Enterococcus faecalis, a panel of 47 bacteremia isolates were treated with the inducing agents mitomycin C, norfloxacin, and UV radiation. Thirty-four phages were purified from culture supernatants and discriminated using pulsed-field gel electrophoresis (PFGE) and restriction mapping. From these analyses the genomes of eight representative phages were pyrosequenced, revealing four distinct groups of phages. Three groups of phages, PhiFL1 to 3, were found to be sequence related, with PhiFL1A to C and PhiFL2A and B sharing the greatest identity (87 to 88%), while PhiFL3A and B share 37 to 41% identity with PhiFL1 and 2. PhiFL4A shares 3 to 12% identity with the phages PhiFL1 to 3. The PhiFL3A and B phages possess a high DNA sequence identity with the morphogenesis and lysis modules of Lactococcus lactis subsp. cremoris prophages. Homologs of the Streptococcus mitis platelet binding phage tail proteins, PblA and PblB, are encoded on each sequenced E. faecalis phage. Few other phage genes encoding potential virulence functions were identified, and there was little evidence of carriage of lysogenic conversion genes distal to endolysin, as has been observed with genomes of many temperate phages from the opportunist pathogens Staphylococcus aureus and Streptococcus pyogenes. E. faecalis JH2-2 lysogens were generated using the eight phages, and these were examined for their relative fitness in Galleria mellonella. Several lysogens exhibited different effects upon survival of G. mellonella compared to their isogenic parent. The eight phages were tested for their ability to package host DNA, and three were shown to be very effective for generalized transduction of naive host cells of the laboratory strains OG1RF and JH2-2.

  2. Resting lymphocyte transduction with measles virus glycoprotein pseudotyped lentiviral vectors relies on CD46 and SLAM

    International Nuclear Information System (INIS)

    Zhou Qi; Schneider, Irene C.; Gallet, Manuela; Kneissl, Sabrina; Buchholz, Christian J.

    2011-01-01

    The measles virus (MV) glycoproteins hemagglutinin (H) and fusion (F) were recently shown to mediate transduction of resting lymphocytes by lentiviral vectors. MV vaccine strains use CD46 or signaling lymphocyte activation molecule (SLAM) as receptor for cell entry. A panel of H protein mutants derived from vaccine strain or wild-type MVs that lost or gained CD46 or SLAM receptor usage were investigated for their ability to mediate gene transfer into unstimulated T lymphocytes. The results demonstrate that CD46 is sufficient for efficient vector particle association with unstimulated lymphocytes. For stable gene transfer into these cells, however, both MV receptors were found to be essential.

  3. Membrane guanylate cyclase, a multimodal transduction machine: history, present, and future directions.

    Science.gov (United States)

    Sharma, Rameshwar K; Duda, Teresa

    2014-01-01

    A sequel to these authors' earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC) from its origin to the year 2010, this article contains 13 sections. The first is historical and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its biochemical identity. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its expansion. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of phototransduction. Sections ROS-GC, a Ca(2+)-Modulated Two Component Transduction System to Migration Patterns and Translations of the GCAP Signals Into Production of Cyclic GMP are Different cover its biochemistry and physiology. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca(2+) signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Section ROS-GC1 Gene Linked Retinal Dystrophies demonstrates how this knowledge begins to be translated into the diagnosis and providing the molecular definition of retinal dystrophies. Section Controlled By Low and High Levels of [Ca(2+)]i, ROS-GC1 is a Bimodal Transduction Switch discusses a striking property of ROS-GC where it becomes a "[Ca(2+)]i bimodal switch" and transcends its signaling role in other neural processes. In this course, discovery of the first CD-GCAP (Ca(2+)-dependent guanylate cyclase activator), the S100B protein, is made. It extends the role of the ROS-GC transduction system beyond the phototransduction to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in section Ca(2

  4. Self-organization of signal transduction.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We propose a model of parameter learning for signal transduction, where the objective function is defined by signal transmission efficiency. We apply this to learn kinetic rates as a form of evolutionary learning, and look for parameters which satisfy the objective. This is a novel approach compared to the usual technique of adjusting parameters only on the basis of experimental data. The resulting model is self-organizing, i.e. perturbations in protein concentrations or changes in extracellular signaling will automatically lead to adaptation. We systematically perturb protein concentrations and observe the response of the system. We find compensatory or co-regulation of protein expression levels. In a novel experiment, we alter the distribution of extracellular signaling, and observe adaptation based on optimizing signal transmission. We also discuss the relationship between signaling with and without transients. Signaling by transients may involve maximization of signal transmission efficiency for the peak response, but a minimization in steady-state responses. With an appropriate objective function, this can also be achieved by concentration adjustment. Self-organizing systems may be predictive of unwanted drug interference effects, since they aim to mimic complex cellular adaptation in a unified way.

  5. Glycosphingolipid–Protein Interaction in Signal Transduction

    Directory of Open Access Journals (Sweden)

    Domenico Russo

    2016-10-01

    Full Text Available Glycosphingolipids (GSLs are a class of ceramide-based glycolipids essential for embryo development in mammals. The synthesis of specific GSLs depends on the expression of distinctive sets of GSL synthesizing enzymes that is tightly regulated during development. Several reports have described how cell surface receptors can be kept in a resting state or activate alternative signalling events as a consequence of their interaction with GSLs. Specific GSLs, indeed, interface with specific protein domains that are found in signalling molecules and which act as GSL sensors to modify signalling responses. The regulation exerted by GSLs on signal transduction is orthogonal to the ligand–receptor axis, as it usually does not directly interfere with the ligand binding to receptors. Due to their properties of adjustable production and orthogonal action on receptors, GSLs add a new dimension to the control of the signalling in development. GSLs can, indeed, dynamically influence progenitor cell response to morphogenetic stimuli, resulting in alternative differentiation fates. Here, we review the available literature on GSL–protein interactions and their effects on cell signalling and development.

  6. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.

    Science.gov (United States)

    Zhang, Dandan; Li, Zhenxiang; Li, Jian-Feng

    2016-05-20

    The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  7. A microfluidic platform for regulating signal transduction in single cells

    Science.gov (United States)

    Wong, Pak Kin; Yu, Fuqu; Sun, Ren; Ho, Chih-Ming

    2004-11-01

    Recent progress in micro cell culture systems has lead to new approaches in cell biology studies. Using micro devices for cell culturing possesses distinctive advantages over traditional methods. Length scale matching facilitates manipulation and detection at the single cell level. Previously, we have demonstrated generation of various stimulations such as spatial chemical gradient, electric field, and shear stress to study the dynamic responses of individual cells. Dynamic stimulations and continuous monitoring in a microfluidic system can be useful in studying different aspects of cellular process. In this work, we present a microfluidic platform for regulating nuclear factor kappa B (NF-kB) signal transduction in human embryonic kidney 293T cells. Time-varying bio-chemical stimulants, such as interleukin 1 and tumor necrosis factor, are introduced into the microchannel to activate the NF-kB signaling pathway. The dynamic responses of individual cells are monitored with the expression of reporter gene, green fluorescent protein. Regulation of the NF-kB activity is successfully demonstrated. This work is supported by CMISE through NASA URETI program.

  8. Gene-based technologies for livestock industries in the 3rd millennium

    International Nuclear Information System (INIS)

    Cunningham, E.P.

    2005-01-01

    The first complete genome sequence of an organism was for yeast, in 1996. Since then, the much larger task of doing a complete human sequence has been completed. Those of major domestic animals are following rapidly. It will always be impossible to foresee the full potential of such an explosion in knowledge, but aspects of gene-based technologies are already beginning to have an impact in the livestock sector. The first and most obvious area of impact concerns feed supply, which constitutes 50-75 percent of total costs in many livestock systems. Production costs for maize and soybean are being reduced by genetic modification of the crop for herbicide and insect resistance. Maize has been modified to reduce phosphorous and nitrogen excretion in swine and poultry, and also to provide a more valuable amino acid balance. Genetic modification of the animal is also possible. Most dramatically, the insertion of a growth hormone in the DNA of fish accelerates growth. However, in this and all other cases, the genetic modification (GM) of animals has produced profound physiological disturbances. At the same time, the administration of GM-produced growth hormone to dairy cows is now routine in the United States of America and several other countries. This is not permitted in Europe, where the attitude to all GM technologies has been much more cautious. Conventional selection programmes continue to deliver steady genetic improvement in all animal populations. New molecular methods offer the prospect of enhancing genetic gains, particularly for traits that are difficult or expensive to measure, or which have low heritability. Gene technologies have much to contribute to the control of disease in animals. As pressure to reduce antibiotic and drug use increases, genetically modified vaccines with proven specificity and distinguishable from natural infections are already in use. DNA typing is helping with rapid and precise diagnosis. In addition, the interaction of some pathogens

  9. Self-Complementary Adeno-Associated Virus Vectors Improve Transduction Efficiency of Corneal Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Anja K Gruenert

    Full Text Available Transplantation of a donor cornea to restore vision is the most frequently performed transplantation in the world. Corneal endothelial cells (CEC are crucial for the outcome of a graft as they maintain corneal transparency and avoid graft failure due to corneal opaqueness. Given the characteristic of being a monolayer and in direct contact with culture medium during cultivation in eye banks, CEC are specifically suitable for gene therapeutic approaches prior to transplantation. Recombinant adeno-associated virus 2 (rAAV2 vectors represent a promising tool for gene therapy of CEC. However, high vector titers are needed to achieve sufficient gene expression. One of the rate-limiting steps for transgene expression is the conversion of single-stranded (ss- DNA vector genome into double-stranded (ds- DNA. This step can be bypassed by using self-complementary (sc- AAV2 vectors. Aim of this study was to compare for the first time transduction efficiencies of ss- and scAAV2 vectors in CEC. For this purpose AAV2 vectors containing enhanced green fluorescent protein (GFP as transgene were used. Both in CEC and in donor corneas, transduction with scAAV2 resulted in significantly higher transgene expression compared to ssAAV2. The difference in transduction efficiency decreased with increasing vector titer. In most cases, only half the vector titer of scAAV2 was required for equal or higher gene expression rates than those of ssAAV2. In human donor corneas, GFP expression was 64.7±11.3% (scAAV and 38.0±8.6% (ssAAV (p<0.001, respectively. Furthermore, transduced cells maintained their viability and showed regular morphology. Working together with regulatory authorities, a translation of AAV2 vector-mediated gene therapy to achieve a temporary protection of corneal allografts during cultivation and transplantation could therefore become more realistic.

  10. AAV9 supports wide-scale transduction of the CNS and TDP-43 disease modeling in adult rats

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    Full Text Available AAV9 has emerged as an efficient adeno-associated virus (AAV serotype for gene transfer to the central nervous system. We have used this technique to study aspects of amyotrophic lateral sclerosis (ALS by administering AAV encoding the ALS-related gene transactive response DNA binding protein of 43 kDa (TDP-43 to neonatal rats. However, inducing the expression in adult subjects would be preferable to mimic the adult onset of symptoms in ALS. We expressed either green fluorescent protein (GFP or TDP-43 in adult rats after an intravenous (i.v. route of administration to attempt wide-scale transduction of the spinal cord for disease modeling. In order to optimize the gene transfer, we made comparisons of efficiency by age, gender, and across several AAV serotypes (AAV1, AAV8, AAV9, and AAV10. The data indicate more efficient neuronal transduction in neonates, with little evidence of glial transduction at either age, no gender-related differences in transduction, and that AAV9 was efficient in adults relative to the other serotypes tested. Based on these data, AAV9 TDP-43 was expressed at three vector doses in adult female rats yielding highly consistent, dose-dependent motor deficits. AAV9 can be delivered i.v. to adult rats to achieve consistent pathophysiological changes and a relevant adult-onset system for disease modeling.

  11. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway.

    Science.gov (United States)

    Sato, Yukuto; Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2009-02-20

    Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization) and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization). Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17) 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8-9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT) pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our analyses imply that an increase in gene product sometimes

  12. Evolution of multiple phosphodiesterase isoforms in stickleback involved in cAMP signal transduction pathway

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2009-02-01

    Full Text Available Abstract Background Duplicate genes are considered to have evolved through the partitioning of ancestral functions among duplicates (subfunctionalization and/or the acquisition of novel functions from a beneficial mutation (neofunctionalization. Additionally, an increase in gene dosage resulting from duplication may also confer an advantageous effect, as has been suggested for histone, tRNA, and rRNA genes. Currently, there is little understanding of the effect of increased gene dosage on subcellular networks like signal transduction pathways. Addressing this issue may provide further insights into the evolution by gene duplication. Results We analyzed the evolution of multiple stickleback phosphodiesterase (PDE, EC: 3.1.4.17 1C genes involved in the cyclic nucleotide signaling pathway. Stickleback has 8–9 copies of this gene, whereas only one or two loci exist in other model vertebrates. Our phylogenetic and synteny analyses suggested that the multiple PDE1C genes in stickleback were generated by repeated duplications of >100-kbp chromosome segments. Sequence evolution analysis did not provide strong evidence for neofunctionalization in the coding sequences of stickleback PDE1C isoforms. On the other hand, gene expression analysis suggested that the derived isoforms acquired expression in new organs, implying their neofunctionalization in terms of expression patterns. In addition, at least seven isoforms of the stickleback PDE1C were co-expressed with olfactory-type G-proteins in the nose, suggesting that PDE1C dosage is increased in the stickleback olfactory transduction (OT pathway. In silico simulations of OT implied that the increased PDE1C dosage extends the longevity of the depolarization signals of the olfactory receptor neuron. Conclusion The predicted effect of the increase in PDE1C products on the OT pathway may play an important role in stickleback behavior and ecology. However, this possibility should be empirically examined. Our

  13. The expanding universe of transposon technologies for gene and cell engineering

    Directory of Open Access Journals (Sweden)

    Ivics Zoltán

    2010-12-01

    Full Text Available Abstract Transposable elements can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of class II transposable elements (DNA transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest (be it a fluorescent marker, a small hairpin (shRNA expression cassette, a mutagenic gene trap or a therapeutic gene construct cloned between the inverted repeat sequences of a transposon-based vector can be used for stable genomic insertion in a regulated and highly efficient manner. This methodological paradigm opened up a number of avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture, the production of germline transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species, and therapy of genetic disorders in humans. Sleeping Beauty (SB was the first transposon shown to be capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering including transgenesis, insertional mutagenesis, and therapeutic somatic gene transfer both ex vivo and in vivo. The first clinical application of the SB system will help to validate both the safety and efficacy of this approach. In this review, we describe the major transposon systems currently available (with special emphasis on SB, discuss the various parameters and considerations pertinent to their experimental use, and highlight the state of the art in transposon technology in diverse genetic applications.

  14. Phosphoproteomics-based systems analysis of signal transduction networks

    Directory of Open Access Journals (Sweden)

    Hiroko eKozuka-Hata

    2012-01-01

    Full Text Available Signal transduction systems coordinate complex cellular information to regulate biological events such as cell proliferation and differentiation. Although the accumulating evidence on widespread association of signaling molecules has revealed essential contribution of phosphorylation-dependent interaction networks to cellular regulation, their dynamic behavior is mostly yet to be analyzed. Recent technological advances regarding mass spectrometry-based quantitative proteomics have enabled us to describe the comprehensive status of phosphorylated molecules in a time-resolved manner. Computational analyses based on the phosphoproteome dynamics accelerate generation of novel methodologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numerical modeling can be used to evaluate regulatory network elements from a statistical point of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the transcriptional level. These omics-based computational methodologies, which have firstly been applied to representative signaling systems such as the epidermal growth factor receptor pathway, have now opened up a gate for systems analysis of signaling networks involved in immune response and cancer.

  15. Ethical issues of CRISPR technology and gene editing through the lens of solidarity.

    Science.gov (United States)

    Mulvihill, John J; Capps, Benjamin; Joly, Yann; Lysaght, Tamra; Zwart, Hub A E; Chadwick, Ruth

    2017-06-01

    The avalanche of commentaries on CRISPR-Cas9 technology, a bacterial immune system modified to recognize any short DNA sequence, cut it out, and insert a new one, has rekindled hopes for gene therapy and other applications and raised criticisms of engineering genes in future generations. This discussion draws on articles that emphasize ethics, identified partly through PubMed and Google, 2014-2016. CRISPR-Cas9 has taken the pace and prospects for genetic discovery and applications to a high level, stoking anticipation for somatic gene engineering to help patients. We support a moratorium on germ line manipulation. We place increased emphasis on the principle of solidarity and the public good. The genetic bases of some diseases are not thoroughly addressable with CRISPR-Cas9. We see no new ethical issues, compared with gene therapy and genetic engineering in general, apart from the explosive rate of findings. Other controversies include eugenics, patentability and unrealistic expectations of professionals and the public. Biggest issues are the void of research on human germ cell biology, the appropriate routes for oversight and transparency, and the scientific and ethical areas of reproductive medicine. The principle of genomic solidarity and priority on public good should be a lens for bringing clarity to CRISPR debates. The valid claim of genetic exceptionalism supports restraint on experimentation in human germ cells, given the trans-generational dangers and the knowledge gap in germ cell biology. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    In fission yeast (Schizosaccharomyces pombe), the mat1-Pm gene, which is required for entry into meiosis, is expressed in response to a pheromone signal. Cells carrying a mutation in the ste8 gene are unable to induce transcription of mat1-Pm in response to pheromone, suggesting that the ste8 gene...... in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  17. Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors

    Science.gov (United States)

    CHEN, SIFENG; KAPTURCZAK, MATTHIAS; LOILER, SCOTT A.; ZOLOTUKHIN, SERGEI; GLUSHAKOVA, OLENA Y.; MADSEN, KIRSTEN M.; SAMULSKI, RICHARD J.; HAUSWIRTH, WILLIAM W.; CAMPBELL-THOMPSON, MARTHA; BERNS, KENNETH I.; FLOTTE, TERENCE R.; ATKINSON, MARK A.; TISHER, C. CRAIG

    2006-01-01

    Recombinant adeno-associated virus (rAAV) has become an attractive tool for gene therapy because of its ability to transduce both dividing and nondividing cells, elicit a limited immune response, and the capacity for imparting long-term transgene expression. Previous studies have utilized rAAV serotype 2 predominantly and found that transduction of vascular cells is relatively inefficient. The purpose of the present study was to evaluate the transduction efficiency of rAAV serotypes 1 through 5 in human and rat aortic endothelial cells (HAEC and RAEC). rAAV vectors with AAV2 inverted terminal repeats containing the human α1-antitrypsin (hAAT) gene were transcapsidated using helper plasmids to provide viral capsids for the AAV1 through 5 serotypes. True type rAAV2 and 5 vectors encoding β-galactosidase or green fluorescence protein were also studied. Infection with rAAV1 resulted in the most efficient transduction in both HAEC and RAEC compared to other serotypes (p < 0.001) at 7 days posttransduction. Interestingly, expression was increased in cells transduced with rAAV5 to levels surpassing rAAV1 by day 14 and 21. Transduction with rAAV1 was completely inhibited by removal of sialic acid with sialidase, while heparin had no effect. These studies are the first demonstration that sialic acid residues are required for rAAV1 transduction in endothelial cells. Transduction of rat aortic segments ex vivo and in vivo demonstrated significant transgene expression in endothelial and smooth muscle cells with rAAV1 and 5 serotype vectors, in comparison to rAAV2. These results suggest the unique potential of rAAV1 and rAAV5-based vectors for vascular-targeted gene-based therapeutic strategies. OVERVIEW SUMMARY Gene delivery to the vasculature has significant potential as a therapeutic strategy for several cardiovascular disorders including atherosclerosis, hypertension, angiogenesis, and chronic vascular rejection of transplanted organs. However, limited advances have been

  18. Nox family NADPH oxidases in mechano-transduction: mechanisms and consequences.

    Science.gov (United States)

    Brandes, Ralf P; Weissmann, Norbert; Schröder, Katrin

    2014-02-20

    The majority of cells in a multi-cellular organism are continuously exposed to ever-changing physical forces. Mechano-transduction links these events to appropriate reactions of the cells involving stimulation of signaling cascades, reorganization of the cytoskeleton and alteration of gene expression. Mechano-transduction alters the cellular redox balance and the formation of reactive oxygen species (ROS). Nicotine amide adenine dinucleotide reduced form (NADPH) oxidases of the Nox family are prominent ROS generators and thus, contribute to this stress-induced ROS formation. Different types and patterns of mechano-stress lead to Nox-dependent ROS formation and Nox-mediated ROS formation contributes to cellular responses and adaptation to physical forces. Thereby, Nox enzymes can mediate vascular protection during physiological mechano-stress. Despite this, over-activation and induction of Nox enzymes and a subsequent substantial increase in ROS formation also promotes oxidative stress in pathological situations like disturbed blood flow or extensive stretch. Individual protein targets of Nox-mediated redox-signaling will be identified to better understand the specificity of Nox-dependent ROS signaling in mechano-transduction. Nox-inhibitors will be tested to reduce cellular activation in response to mechano-stimuli.

  19. Adenovirus coxsackie adenovirus receptor-mediated binding to human erythrocytes does not preclude systemic transduction.

    Science.gov (United States)

    Rojas, L A; Moreno, R; Calderón, H; Alemany, R

    2016-12-01

    There is great skepticism in the capability of adenovirus vectors and oncolytic adenoviruses to reach specific organs or tumors upon systemic administration. Besides antibodies, the presence of CAR (coxsackie and adenovirus receptor) in human erythrocytes has been postulated to sequester CAR-binding adenoviruses, commonly used in gene therapy and oncolytic applications. The use of non-CAR-binding fibers or serotypes has been postulated to solve this limitation. Given the lack of integrins in erythrocytes and therefore of internalization of the CAR-bound virus, we hypothesized that the interaction of adenovirus type 5 (Ad5) with CAR in human erythrocytes could be reversible. In this work, we have studied the effects of Ad5 interaction with human erythrocytes via CAR. Although erythrocyte binding was observed, it did not reduce viral transduction of tumor cells in vitro after long-term incubations. Transplantation of human erythrocytes into nude mice did not reduce Ad5 extravasation and transduction of liver and human xenograft tumors after systemic administration. These findings indicate that despite human erythrocytes are able to bind to Ad5, this binding is reversible and does not prevent extravasation and organ transduction after systemic delivery. Thus, the poor bioavailability of systemically delivered CAR-binding adenoviruses in humans is likely due to other factors such as liver sequestration or neutralizing antibodies.

  20. Introduction to Gene Editing and Manipulation Using CRISPR/Cas9 Technology.

    Science.gov (United States)

    Newman, Martin; Ausubel, Frederick M

    2016-07-01

    Until very recently, the prospect of introducing mutations or exogenous DNA sequences at precise locations in the genomes of plants and animals was difficult, if not impossible. This rapidly changed with the demonstration that the type II CRISPR-Cas complex, a bacterial anti-viral surveillance system, could be engineered into a simple and robust platform for introducing double-stranded DNA breaks at nearly any position of plant and animal genomes. The prospect of efficiently creating tailored changes to a gene of interest is revolutionizing biomedical research, allowing exciting new questions to be asked. This overview introduces CRISPR-Cas technology as a tool for molecular biology and briefly discusses the advantages of this method over earlier techniques, as well as unique opportunities to create new avenues of research. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  1. Disease Control in Animals Using Molecular Technology by Inactivation of ASO, RNAi and ss-siRNA Genes

    Directory of Open Access Journals (Sweden)

    Muhamad Ali

    2014-03-01

    Full Text Available Globalization causes high mobility of human and livestock, hence increase the transmission of infectious diseases, including avian influenza, severe acute respiratory syndrome (SARS, and swine influenza. Therefore, prevention of those diseases is required. Vaccines are effective to prevent infectious diseases; however, their development takes a long time and they cannot provide immediate protection in pandemic cases. This paper describes several gene silencing technologies including antisense oligonucleotide (ASO, RNA interference (RNAi and single strand-small interfering RNA (ss-siRNA for controlling diseases. The primary mechanism of these technologies is inhibition of gene expression, typically by causing the destruction of specific RNA molecule of the pathogen. The use of gene silencing technologies is expected to give new alternative that is more effective in eradication of infectious diseases in animals before threaten human being.

  2. Intellectual property rights and gene-based technologies for animal production and health. Issues for developing countries

    International Nuclear Information System (INIS)

    Dutfield, G.

    2005-01-01

    Intellectual property rights (IPR) are legal and institutional devices to protect creations of the mind. With respect to gene-based innovation, the most significant IPR is patents. Appropriate patent regimes have the potential to foster innovation in animal biotechnology and the transfer of gene-based technologies. Inappropriate patent systems may be counter-productive. Indeed, many critics are doubtful that the current international patent standards, based as they are on a combination of the United States of America' and European regimes, can help countries that lack the capacity to do much life science and biotechnology research to become more innovative o r contribute to the acquisition, absorption and, where desirable, the adaptation of new gene-based technologies from outside. Present legislation in Europe, North America and internationally is considered, together with the controversies and important policy questions for developing countries, and the choices facing countries seeking to enhance their scientific and technological capacities in these areas. (author)

  3. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  4. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  5. Integrated Electromechanical Transduction Schemes for Polymer MEMS Sensors

    Directory of Open Access Journals (Sweden)

    Damien Thuau

    2018-04-01

    Full Text Available Polymer Micro ElectroMechanical Systems (MEMS have the potential to constitute a powerful alternative to silicon-based MEMS devices for sensing applications. Although the use of commercial photoresists as structural material in polymer MEMS has been widely reported, the integration of functional polymer materials as electromechanical transducers has not yet received the same amount of interest. In this context, we report on the design and fabrication of different electromechanical schemes based on polymeric materials ensuring different transduction functions. Piezoresistive transduction made of carbon nanotube-based nanocomposites with a gauge factor of 200 was embedded within U-shaped polymeric cantilevers operating either in static or dynamic modes. Flexible resonators with integrated piezoelectric transduction were also realized and used as efficient viscosity sensors. Finally, piezoelectric-based organic field effect transistor (OFET electromechanical transduction exhibiting a record sensitivity of over 600 was integrated into polymer cantilevers and used as highly sensitive strain and humidity sensors. Such advances in integrated electromechanical transduction schemes should favor the development of novel all-polymer MEMS devices for flexible and wearable applications in the future.

  6. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  7. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  8. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    Mechanical Engineering, State Key Lab of Fluid Power and Mechatronic Systems, Denmark); Li, H.Y.; Tzou, H.S. Source: ASME International Mechanical...capacitor Novakova, Katerina (Institute of Mechatronics and Computer Engineering, Technical University ofLiberec, Czech Republic); Mokry, Pavel Source...Department of Robotics and Mechatronics , AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland); Rosiek, Mateusz; Martowicz

  9. Signal Transduction in Histidine Kinases: Insights from New Structures

    Science.gov (United States)

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how different HK domains undergo asymmetric-to-symmetric transitions during signal transduction and catalysis. A thermodynamic framework for signaling that encompasses these various properties is presented and the consequences of weak thermodynamic coupling are discussed. The synthesis of observations from enzymology, structural biology, protein engineering and thermodynamics paves the way for a deeper molecular understanding of histidine kinase signal transduction. PMID:25982528

  10. Physical aspects of sensory transduction on seeing, hearing and smelling.

    Science.gov (United States)

    Yoshioka, Tohru; Sakakibara, Manabu

    2013-01-01

    What is the general principle of sensory transduction? Sensory transduction is defined as energy transformation from the external world to the internal world. The energy of the external world, such as thermal energy (heat), electro-magnetic energy (light), mechanical energy (sound) and the energy from molecules (chemicals), is converted into electrochemical events in the animal nervous system. The following five classes of special sense receptors are utilized for energy conversion: vision (photo); audition (sound); taste and smell (chemo); and tactile (mechano). There are also other special sense receptors, including thermo and noxious receptors. The focus of this study is on photoreceptors, sound-receptors and odorant-receptors because the transduction mechanisms of these receptors are explained biochemically and understood by a common physical principle; these biochemical models are well known in neuroscience. The following notable problems are inherent in these biochemical models: the cGMP ionophore model of the vertebrate photoreceptor cannot explain the fast photo-response (∼msec); the tip links connection model of stereocilia in the basilar membrane for opening the K(+) channel on the tip of a hair has difficulty explaining the high frequency vibration of hair cells without a damping of the oscillation, and the odorant shape-specific receptor model for olfactory transduction has difficulty in discriminating the minute differences among similar fragrant smells of essential oils with different molecular shapes. These difficulties might arise from a lack of the physical sense when the transduction models were proposed. This article will reconsider these problems and propose rational models for visual, olfactory and auditory transduction.

  11. Resistance gene transfer: induction of transducing phage by sub-inhibitory concentrations of antimicrobials is not correlated to induction of lytic phage.

    Science.gov (United States)

    Stanczak-Mrozek, Kinga I; Laing, Ken G; Lindsay, Jodi A

    2017-06-01

    Horizontal gene transfer of antimicrobial resistance (AMR) genes between clinical isolates via transduction is poorly understood. MRSA are opportunistic pathogens resistant to all classes of antimicrobial agents but currently no strains are fully drug resistant. AMR gene transfer between Staphylococcus aureus isolates is predominantly due to generalized transduction via endogenous bacteriophage, and recent studies have suggested transfer is elevated during host colonization. The aim was to investigate whether exposure to sub-MIC concentrations of antimicrobials triggers bacteriophage induction and/or increased efficiency of AMR gene transfer. Isolates from MRSA carriers were exposed to nine antimicrobials and supernatants were compared for lytic phage particles and ability to transfer an AMR gene. A new technology, droplet digital PCR, was used to measure the concentration of genes in phage particles. All antibiotics tested induced lytic phage and AMR gene transduction, although the ratio of transducing particles to lytic particles differed substantially for each antibiotic. Mupirocin induced the highest ratio of transducing versus lytic particles. Gentamicin and novobiocin reduced UV-induced AMR transduction. The genes carried in phage particles correlated with AMR transfer or lytic particle activity, suggesting antimicrobials influence which DNA sequences are packaged into phage particles. Sub-inhibitory antibiotics induce AMR gene transfer between clinical MRSA, while combination therapy with an inhibiting antibiotic could potentially alter AMR gene packaging into phage particles, reducing AMR transfer. In a continually evolving environment, pathogens have an advantage if they can transfer DNA while lowering the risk of lytic death. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  12. Targeting Visceral Fat by Intraperitoneal Delivery of Novel AAV Serotype Vector Restricting Off-Target Transduction in Liver

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-09-01

    Full Text Available It is challenging to genetically manipulate fat in adults. We demonstrate that intraperitoneal (i.p. injection of an engineered adeno-associated virus (AAV serotype Rec2 leads to high transduction of multiple visceral fat depots at a dose of 1 to 2 orders lower than commonly used doses for systemic gene delivery. To target adipose tissue, we develop a single AAV vector harboring two expression cassettes: one using the CBA promoter to drive transgene expression and one using the liver-specific albumin promoter to drive a microRNA-targeting WPRE sequence that only exists in this AAV vector. This dual-cassette vector achieves highly selective transduction of visceral fat while severely restricting off-target transduction of liver. As proof of efficacy, i.p. administration of an adipose-targeting Rec2 vector harboring the leptin gene corrects leptin deficiency, obesity, and metabolic syndromes of ob/ob mice. This study provides a powerful tool to genetically manipulate fat for basic research and gene therapies of genetic and acquired diseases.

  13. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Directory of Open Access Journals (Sweden)

    William R. Critchley

    2018-03-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.

  14. Molecular Analysis of the Graviperception Signal Transduction in the Flagellate Euglena

    Science.gov (United States)

    Häder, Donat; Daiker, Viktor; Richter, Peter; Lebert, Michael

    The unicellular flagellate Euglena gracilis perceives and reacts to the gravitational vector of the Earth. Recent results of experiments on parabolic rocket flights have revealed that the orientation can be explained by passive orientation only to a small extend while the remainder relies on an active physiological sensor and an internal sensory transduction chain. Our current working hypothesis is based on the fact that the cellular contents is heavier than the surrounding medium and consequently exerts pressure onto the lower membrane where it activates mechano-sensitive ion channels located at the front end under the trailing flagellum. We recently succeeded in identifying these channels as gene products of the TRP family. RNAi of the corresponding gene abolished graviperception. These channels allow a gated influx of calcium which depolarizes the internal electrical potential and eventually causes a course correction by the flagellar beating. The inwardly gated calcium binds to a specific calmodulin which is likewise an intrinsic element of the signal transduction chain. RNAi of the related mRNA also stopped graviperception. This calmodulin is thought to activate an adenylyl cyclase which generates cyclic AMP which in turn modulates the beating pattern of the flagellum.

  15. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking

    Science.gov (United States)

    Critchley, William R.; Pellet-Many, Caroline; Ringham-Terry, Benjamin; Zachary, Ian C.; Ponnambalam, Sreenivasan

    2018-01-01

    Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states. PMID:29543760

  16. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  17. Sensory transduction channel subunits, tax-4 and tax-2, modify presynaptic molecular architecture in C. elegans.

    Science.gov (United States)

    Hellman, Andrew B; Shen, Kang

    2011-01-01

    During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV) markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses.

  18. Sensory transduction channel subunits, tax-4 and tax-2, modify presynaptic molecular architecture in C. elegans.

    Directory of Open Access Journals (Sweden)

    Andrew B Hellman

    Full Text Available During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses.

  19. Further evidence supporting a role for gs signal transduction in severe malaria pathogenesis.

    Directory of Open Access Journals (Sweden)

    Sarah Auburn

    2010-04-01

    Full Text Available With the functional demonstration of a role in erythrocyte invasion by Plasmodium falciparum parasites, implications in the aetiology of common conditions that prevail in individuals of African origin, and a wealth of pharmacological knowledge, the stimulatory G protein (Gs signal transduction pathway presents an exciting target for anti-malarial drug intervention. Having previously demonstrated a role for the G-alpha-s gene, GNAS, in severe malaria disease, we sought to identify other important components of the Gs pathway. Using meta-analysis across case-control and family trio (affected child and parental controls studies of severe malaria from The Gambia and Malawi, we sought evidence of association in six Gs pathway candidate genes: adenosine receptor 2A (ADORA2A and 2B (ADORA2B, beta-adrenergic receptor kinase 1 (ADRBK1, adenylyl cyclase 9 (ADCY9, G protein beta subunit 3 (GNB3, and regulator of G protein signalling 2 (RGS2. Our study amassed a total of 2278 cases and 2364 controls. Allele-based models of association were investigated in all genes, and genotype and haplotype-based models were investigated where significant allelic associations were identified. Although no significant associations were observed in the other genes, several were identified in ADORA2A. The most significant association was observed at the rs9624472 locus, where the G allele (approximately 20% frequency appeared to confer enhanced risk to severe malaria [OR = 1.22 (1.09-1.37; P = 0.001]. Further investigation of the ADORA2A gene region is required to validate the associations identified here, and to identify and functionally characterize the responsible causal variant(s. Our results provide further evidence supporting a role of the Gs signal transduction pathway in the regulation of severe malaria, and request further exploration of this pathway in future studies.

  20. The blue light signal transduction pathway is involved in anthocyanin accumulation in 'Red Zaosu' pear.

    Science.gov (United States)

    Tao, Ruiyan; Bai, Songling; Ni, Junbei; Yang, Qinsong; Zhao, Yuan; Teng, Yuanwen

    2018-03-15

    A conserved blue light sensing and transduction pathway contributes to blue light-induced anthocyanin accumulation in the peel of red pear. Peel color is an economically important characteristic that influences the appearance quality of red pear, whose red color is due to anthocyanin accumulation. The process of coloration in the fruit peel is strongly influenced by light. However, how light quality influences color development remains unclear. In this study, we analyzed the effects of different light qualities on color development in the red pear 'Red Zaosu', a mutant of the hybrid cultivar 'Zaosu' of Pyrus pyrifolia and P. communis. The results showed that blue light increased anthocyanin accumulation after 72 h of light treatment, while red light had almost no effect. The expression of anthocyanin biosynthesis-related genes showed a similar trend to the anthocyanin accumulation. To clarify the mechanism of blue-light induced coloration, PpCRYs, PpCOP1 and PpHY5 genes were cloned. Gene expression analysis showed that their transcript abundance did not correlate with the expression of anthocyanin-related genes or anthocyanin content, but the yeast two-hybrid system revealed conserved physical interactions among these proteins. In addition, PpHY5 directly bound to the promoters of the anthocyanin biosynthesis genes PpCHS, PpDFR, PpANS and PpMYB10, and activated the transcription of PpCHS in a Nicotiana benthamiana-based dual-luciferase assay. In summary, our results preliminarily revealed that the conserved blue light signal transduction module CRY-COP1-HY5 contributed to the anthocyanin biosynthesis induced by blue light in red pear. However, our results did not provide evidence for why red light had no effect on anthocyanin accumulation, which needs further study.

  1. A Comparison of Global Gene Expression Measurement Technologies in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Blake Meyers

    2006-03-01

    Full Text Available Microarrays and tag-based transcriptional profiling technologies represent diverse but complementary data types. We are currently conducting a comparison of high-density in situ synthesized microarrays and massively-parallel signature sequencing (MPSS data in the model plant, Arabidopsis thaliana. The MPSS data (available at http://mpss.udel.edu/at and the microarray data have been compiled using the same RNA source material. In this review, we outline the experimental strategy that we are using, and present preliminary data and interpretations from the transcriptional profiles of Arabidopsis leaves and roots. The preliminary data indicate that the log ratio differences of transcripts between leaves and roots measured by microarray data are in better agreement with the MPSS data than the absolute intensities measured for individual microarrays hybridized to only one of the cRNA populations. The correlation was substantially improved by focusing on a subset of genes excluding those with very low expression levels; this selection may have removed noisy data. Future reports will incorporate more than 10 tissues that have been sampled by MPSS.

  2. From Flavr Savr Tomatoes to STEM Cell Therapy: Young People's Understandings of Gene Technology, 15 Years On

    Science.gov (United States)

    Lewis, Jenny

    2014-01-01

    This paper explores knowledge and understanding of basic genetics and gene technologies in school students who have been taught to a "science for all" National Curriculum and compares 482 students in 1995 (gene technology was a new and rapidly developing area of science with potential to impact on everyday life; the first cohort of…

  3. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  4. A new dynamic electrochemical transduction mechanism for interdigitated array microelectrodes.

    Science.gov (United States)

    Zhu, Xiaoshan; Choi, Jin-Woo; Ahn, Chong H

    2004-12-01

    A dynamic electrochemical transduction mechanism for interdigitated array microelectrodes using an electrical charge pumping method is presented in this paper. In this dynamic transduction mechanism, a charged external capacitor is used as the charge supplier for the electrochemical reaction of the reversible redox species at the interdigitated array electrodes. The charges stored in the capacitor are consumed as the electrochemical reaction current, which causes the capacitor potential decay. The theoretical analysis has shown that the species concentration has a decisive effect on the capacitor potential decay, and therefore the characteristics of the capacitor potential decay are recorded and analyzed to evaluate the concentration of redox species. The new transduction mechanism has the advantages of achieving high sensitivity with small sensor area and simplifying the measurement instrumentation. As a demonstration device, interdigitated array microelectrodes (approximately 0.2 mm(2) electrode surface area) have been fabricated and successfully characterized using p-aminophenol as the redox species under this dynamic mechanism. The detection limit of p-aminophenol was calculated to be approximately 4 x 10(-7) M for the sensor with the new dynamic transduction mechanism.

  5. Protein phosphorylation and its role in archaeal signal transduction

    Science.gov (United States)

    Esser, Dominik; Hoffmann, Lena; Pham, Trong Khoa; Bräsen, Christopher; Qiu, Wen; Wright, Phillip C.; Albers, Sonja-Verena; Siebers, Bettina

    2016-01-01

    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studies. PMID:27476079

  6. Diffusion wave and signal transduction in biological live cells

    OpenAIRE

    Fan, Tian You; Fan, Lei

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  7. Exploring signal transduction networks using mass spectrometry-based proteomics

    NARCIS (Netherlands)

    Meijer, L.A.T.

    2012-01-01

    Mass spectrometry (MS)-based proteomics can be used to answer a diversity of biological questions. In this thesis, we describe the application of several MS-based proteomics approaches to get insight into several aspects of signal transduction. In Chapter 2, quantitative global phosphoproteomics are

  8. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  9. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  10. First study on gene expression of cement proteins and potential adhesion-related genes of a membranous-based barnacle as revealed from Next-Generation Sequencing technology

    KAUST Repository

    Lin, Hsiu Chin

    2013-12-12

    This is the first study applying Next-Generation Sequencing (NGS) technology to survey the kinds, expression location, and pattern of adhesion-related genes in a membranous-based barnacle. A total of 77,528,326 and 59,244,468 raw sequence reads of total RNA were generated from the prosoma and the basis of Tetraclita japonica formosana, respectively. In addition, 55,441 and 67,774 genes were further assembled and analyzed. The combined sequence data from both body parts generates a total of 79,833 genes of which 47.7% were shared. Homologues of barnacle cement proteins - CP-19K, -52K, and -100K - were found and all were dominantly expressed at the basis where the cement gland complex is located. This is the main area where transcripts of cement proteins and other potential adhesion-related genes were detected. The absence of another common barnacle cement protein, CP-20K, in the adult transcriptome suggested a possible life-stage restricted gene function and/or a different mechanism in adhesion between membranous-based and calcareous-based barnacles. © 2013 © 2013 Taylor & Francis.

  11. Expression of cDNAs in human Natural Killer cell lines by retroviral transduction.

    Science.gov (United States)

    Miah, S M Shahjahan; Campbell, Kerry S

    2010-01-01

    Human NK-like cell lines are difficult to transfect using standard mammalian expression vectors and conventional transfection protocols, but they are susceptible to retroviral transduction as a means to introduce cDNAs. Our laboratory has exploited this technique to study a number of receptors in human NK cell lines. The method utilizes a bicistronic retroviral vector that co-expresses either drug resistance or enhanced green fluorescent protein (EGFP) in parallel with the gene of interest. After a single infection with recombinant retrovirus, transduced NK cells can be sorted for expression of EGFP or the transduced cell surface marker. Alternatively, cells expressing the transduced cDNAs can be selected for by treatment with neomycin, puromycin, or hygromycin. Using this method, the sorted/selected cells uniformly express the gene of interest and the expression is stable for many weeks of culture.

  12. Mechanical transduction by ion channels: A cautionary tale.

    Science.gov (United States)

    Sachs, Frederick

    2015-09-28

    Mechanical transduction by ion channels occurs in all cells. The physiological functions of these channels have just begun to be elaborated, but if we focus on the upper animal kingdom, these channels serve the common sensory services such as hearing and touch, provide the central nervous system with information on the force and position of muscles and joints, and they provide the autonomic system with information about the filling of hollow organs such as blood vessels. However, all cells of the body have mechanosensitive channels (MSCs), including red cells. Most of these channels are cation selective and are activated by bilayer tension. There are also K + selective MSCs found commonly in neurons where they may be responsible for both general anesthesia and knockout punches in the boxing ring by hyperpolarizing neurons to reduce excitability. The cationic MSCs are typically inactive under normal mechanical stress, but open under pathologic stress. The channels are normally inactive because they are shielded from stress by the cytoskeleton. The cationic MSCs are specifically blocked by the externally applied peptide GsMtx4 (aka, AT-300). This is the first drug of its class and provides a new approach to many pathologies since it is nontoxic, non-immunogenic, stable in a biological environment and has a long pharmacokinetic lifetime. Pathologies involving excessive stress are common. They produce cardiac arrhythmias, contraction in stretched dystrophic muscle, xerocytotic and sickled red cells, etc . The channels seem to function primarily as "fire alarms", providing feedback to the cytoskeleton that a region of the bilayer is under excessive tension and needs reinforcing. The eukaryotic forms of MSCs have only been cloned in recent years and few people have experience working with them. "Newbies" need to become aware of the technology, potential artifacts, and the fundamentals of mechanics. The most difficult problem in studying MSCs is that the actual stimulus

  13. Report on emerging technologies for translational bioinformatics: a symposium on gene expression profiling for archival tissues

    Directory of Open Access Journals (Sweden)

    Waldron Levi

    2012-03-01

    Full Text Available Abstract Background With over 20 million formalin-fixed, paraffin-embedded (FFPE tissue samples archived each year in the United States alone, archival tissues remain a vast and under-utilized resource in the genomic study of cancer. Technologies have recently been introduced for whole-transcriptome amplification and microarray analysis of degraded mRNA fragments from FFPE samples, and studies of these platforms have only recently begun to enter the published literature. Results The Emerging Technologies for Translational Bioinformatics symposium on gene expression profiling for archival tissues featured presentations of two large-scale FFPE expression profiling studies (each involving over 1,000 samples, overviews of several smaller studies, and representatives from three leading companies in the field (Illumina, Affymetrix, and NuGEN. The meeting highlighted challenges in the analysis of expression data from archival tissues and strategies being developed to overcome them. In particular, speakers reported higher rates of clinical sample failure (from 10% to 70% than are typical for fresh-frozen tissues, as well as more frequent probe failure for individual samples. The symposium program is available at http://www.hsph.harvard.edu/ffpe. Conclusions Multiple solutions now exist for whole-genome expression profiling of FFPE tissues, including both microarray- and sequencing-based platforms. Several studies have reported their successful application, but substantial challenges and risks still exist. Symposium speakers presented novel methodology for analysis of FFPE expression data and suggestions for improving data recovery and quality assessment in pre-analytical stages. Research presentations emphasized the need for careful study design, including the use of pilot studies, replication, and randomization of samples among batches, as well as careful attention to data quality control. Regardless of any limitations in quantitave transcriptomics for

  14. Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 TransductionIn Vitroin the Presence of Mouse Serum.

    Science.gov (United States)

    Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R; Coughlan, Lynda; Bradshaw, Angela C; White, Katie M; Denby, Laura; Nicklin, Stuart A; Baker, Andrew H

    2017-06-15

    administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy. Copyright © 2017 Lopez-Gordo et al.

  15. Coating with spermine-pullulan polymer enhances adenoviral transduction of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan L

    2016-12-01

    coating could enhance adenoviral transduction of MSCs without detectable cytotoxicity or effects on differentiation. Our results argue in favor of the potentiality of the SP-coated Adv as a prototype vector for efficient and safe transduction of MSCs. Keywords: mesenchymal stem cells, adenovirus vectors, spermine-pullulan, polymer, gene transduction

  16. Sindbis Virus-Pseudotyped Lentiviral Vectors Carrying VEGFR2-Specific Nanobody for Potential Transductional Targeting of Tumor Vasculature.

    Science.gov (United States)

    Ahani, Roshank; Roohvand, Farzin; Cohan, Reza Ahangari; Etemadzadeh, Mohammad Hossein; Mohajel, Nasir; Behdani, Mahdi; Shahosseini, Zahra; Madani, Navid; Azadmanesh, Kayhan

    2016-11-01

    Introduction of selectivity/specificity into viral-based gene delivery systems, such as lentiviral vectors (LVs), is crucial in their systemic administration for cancer gene therapy. The pivotal role of tumor-associated endothelial cells (TAECs) in tumor angiogenesis and overexpression of vascular endothelial growth factor receptor-2 (VEGFR2 or KDR) in TAECs makes them a potent target in cancer treatment. Herein, we report the development of VEGFR2-targeted LVs pseudotyped with chimeric sindbis virus E2 glycoprotein (cSVE2s). For this purpose, either sequence of a VEGFR2-specific nanobody or its natural ligand (VEGF 121 ) was inserted into the binding site of sindbis virus E2 glycoprotein. In silico modeling data suggested that the inserted targeting motifs were exposed in the context of cSVE2s. Western blot analysis of LVs indicated the incorporation of cSVE2s into viral particles. Capture ELISA demonstrated the specificity/functionality of the incorporated cSVE2s. Transduction of 293/KDR (expressing VEGFR2) or 293T cells (negative control) by constructed LVs followed by fluorescent microscopy and flow cytometric analyses indicated selective transduction of 293/KDR cells (30 %) by both targeting motifs compared to 293T control cells (1-2 %). These results implied similar targeting properties of VEGFR2-specific nanobody compared to the VEGF 121 and indicated the potential for transductional targeting of tumor vasculature by the nanobody displaying LVs.

  17. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1999-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway. C...

  18. Characterization of sur-2, a Novel Ras-Mediated Signal Transduction Component in C. elegans

    National Research Council Canada - National Science Library

    DesJardins, Edward

    1998-01-01

    ... (oncogenes). A subset of proto-oncogenes comprise the RAS signal transduction pathway. Vulval development in the nematode worm Caenorhabditis elegans is controlled by a RAS signal transduction pathway...

  19. GeneRank: Using search engine technology for the analysis of microarray experiments

    Directory of Open Access Journals (Sweden)

    Breitling Rainer

    2005-09-01

    Full Text Available Abstract Background Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method – based on the PageRank algorithm employed by the popular search engine Google – that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. Results GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Conclusion Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  20. GeneRank: using search engine technology for the analysis of microarray experiments.

    Science.gov (United States)

    Morrison, Julie L; Breitling, Rainer; Higham, Desmond J; Gilbert, David R

    2005-09-21

    Interpretation of simple microarray experiments is usually based on the fold-change of gene expression between a reference and a "treated" sample where the treatment can be of many types from drug exposure to genetic variation. Interpretation of the results usually combines lists of differentially expressed genes with previous knowledge about their biological function. Here we evaluate a method--based on the PageRank algorithm employed by the popular search engine Google--that tries to automate some of this procedure to generate prioritized gene lists by exploiting biological background information. GeneRank is an intuitive modification of PageRank that maintains many of its mathematical properties. It combines gene expression information with a network structure derived from gene annotations (gene ontologies) or expression profile correlations. Using both simulated and real data we find that the algorithm offers an improved ranking of genes compared to pure expression change rankings. Our modification of the PageRank algorithm provides an alternative method of evaluating microarray experimental results which combines prior knowledge about the underlying network. GeneRank offers an improvement compared to assessing the importance of a gene based on its experimentally observed fold-change alone and may be used as a basis for further analytical developments.

  1. Recombinant Adeno-associated virus (rAAV)-mediated transduction and optogenetic manipulation of cortical neurons in vitro

    Science.gov (United States)

    Lange, Wienke; Jin, Lei; Maybeck, Vanessa; Meisenberg, Annika; Baumann, Arnd; Offenhäusser, Andreas

    2014-03-01

    Genetically encoded light-sensitive proteins can be used to manipulate and observe cellular functions. According to different modes of action, these proteins are divided into actuators like the blue-light gated cation channel Channelrhodopsin-2 (ChR2) and detectors like the calcium sensor GCaMP. In order to optogenetically control and study the activity of rat primary cortical neurons, we established a transduction procedure using recombinant Adeno-associated viruses (rAAVs) as gene-ferries. Thereby, we achieved high transduction rates of these neurons with ChR2. In ChR2 expressing neurons, action potentials could be repeatedly and precisely elicited with laser pulses and measured via patch clamp recording.

  2. A functional TOC complex contributes to gravity signal transduction in Arabidopsis.

    Science.gov (United States)

    Strohm, Allison K; Barrett-Wilt, Greg A; Masson, Patrick H

    2014-01-01

    Although plastid sedimentation has long been recognized as important for a plant's perception of gravity, it was recently shown that plastids play an additional function in gravitropism. The Translocon at the Outer envelope membrane of Chloroplasts (TOC) complex transports nuclear-encoded proteins into plastids, and a receptor of this complex, Toc132, was previously hypothesized to contribute to gravitropism either by directly functioning as a gravity signal transducer or by indirectly mediating the plastid localization of a gravity signal transducer. Here we show that mutations in multiple genes encoding TOC complex components affect gravitropism in a genetically sensitized background and that the cytoplasmic acidic domain of Toc132 is not required for its involvement in this process. Furthermore, mutations in TOC132 enhance the gravitropic defect of a mutant whose amyloplasts lack starch. Finally, we show that the levels of several nuclear-encoded root proteins are altered in toc132 mutants. These data suggest that the TOC complex indirectly mediates gravity signal transduction in Arabidopsis and support the idea that plastids are involved in gravitropism not only through their ability to sediment but also as part of the signal transduction mechanism.

  3. Cell loss during pseudoislet formation hampers profound improvements in islet lentiviral transduction efficacy for transplantation purposes.

    Science.gov (United States)

    Callewaert, H; Gysemans, C; Cardozo, A K; Elsner, M; Tiedge, M; Eizirik, D L; Mathieu, C

    2007-01-01

    Islet transplantation is a promising treatment in type 1 diabetes, but the need for chronic immunosuppression is a major hurdle to broad applicability. Ex vivo introduction of agents by lentiviral vectors-improving beta-cell resistance against immune attack-is an attractive path to pursue. The aim of this study was to investigate whether dissociation of islets to single cells prior to viral infection and reaggregation before transplantation would improve viral transduction efficacy without cytotoxicity. This procedure improved transduction efficacy with a LV-pWPT-CMV-EGFP construct from 11.2 +/- 4.1% at MOI 50 in whole islets to 80.0 +/- 2.8% at MOI 5. Viability (as measured by Hoechst/PI) and functionality (as measured by glucose challenge) remained high. After transplantation, the transfected pseudoislet aggregates remained EGFP positive for more than 90 days and the expression of EGFP colocalized primarily with the insulin-positive beta-cells. No increased vulnerability to immune attack was observed in vitro or in vivo. These data demonstrate that dispersion of islets prior to lentiviral transfection and reaggregation prior to transplantation is a highly efficient way to introduce genes of interest into islets for transplantation purposes in vitro and in vivo, but the amount of beta-cells needed for normalization of glycemia was more than eightfold higher when using dispersed cell aggregates versus unmanipulated islets. The high price to pay to reach stable and strong transgene expression in islet cells is certainly an important cell loss.

  4. Uncovering signal transduction networks from high-throughput data by integer linear programming.

    Science.gov (United States)

    Zhao, Xing-Ming; Wang, Rui-Sheng; Chen, Luonan; Aihara, Kazuyuki

    2008-05-01

    Signal transduction is an important process that transmits signals from the outside of a cell to the inside to mediate sophisticated biological responses. Effective computational models to unravel such a process by taking advantage of high-throughput genomic and proteomic data are needed to understand the essential mechanisms underlying the signaling pathways. In this article, we propose a novel method for uncovering signal transduction networks (STNs) by integrating protein interaction with gene expression data. Specifically, we formulate STN identification problem as an integer linear programming (ILP) model, which can be actually solved by a relaxed linear programming algorithm and is flexible for handling various prior information without any restriction on the network structures. The numerical results on yeast MAPK signaling pathways demonstrate that the proposed ILP model is able to uncover STNs or pathways in an efficient and accurate manner. In particular, the prediction results are found to be in high agreement with current biological knowledge and available information in literature. In addition, the proposed model is simple to be interpreted and easy to be implemented even for a large-scale system.

  5. [The progress and prospect of application of genetic testing technology-based gene detection technology in the diagnosis and treatment of hereditary cancer].

    Science.gov (United States)

    He, J X; Jiang, Y F

    2017-08-06

    Hereditary cancer is caused by specific pathogenic gene mutations. Early detection and early intervention are the most effective ways to prevent and control hereditary cancer. High-throughput sequencing based genetic testing technology (NGS) breaks through the restrictions of pedigree analysis, provide a convenient and efficient method to detect and diagnose hereditary cancer. Here, we introduce the mechanism of hereditary cancer, summarize, discuss and prospect the application of NGS and other genetic tests in the diagnosis of hereditary retinoblastoma, hereditary breast and ovarian cancer syndrome, hereditary colorectal cancer and other complex and rare hereditary tumors.

  6. DMPD: LPS/TLR4 signal transduction pathway. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18304834 LPS/TLR4 signal transduction pathway. Lu YC, Yeh WC, Ohashi PS. Cytokine. ...2008 May;42(2):145-51. Epub 2008 Mar 4. (.png) (.svg) (.html) (.csml) Show LPS/TLR4 signal transduction path...way. PubmedID 18304834 Title LPS/TLR4 signal transduction pathway. Authors Lu YC, Yeh WC, Ohashi PS. Publica

  7. DMPD: Toll-like receptor signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17934330 Toll-like receptor signal transduction. Krishnan J, Selvarajoo K, Tsuchiya... M, Lee G, Choi S. Exp Mol Med. 2007 Aug 31;39(4):421-38. (.png) (.svg) (.html) (.csml) Show Toll-like receptor sign...al transduction. PubmedID 17934330 Title Toll-like receptor signal transduction. Authors Krishnan J,

  8. Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein.

    Science.gov (United States)

    Ohno, Yoshinori; Yasunaga, Shin'ichiro; Janmohamed, Salima; Ohtsubo, Motoaki; Saeki, Keita; Kurogi, Toshiaki; Mihara, Keichiro; Iscove, Norman N; Takihara, Yoshihiro

    2013-01-01

    Hoxb4, a 3'-located Hox gene, enhances hematopoietic stem cell (HSC) activity, while a subset of 5'-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98) in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5'-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin.

  9. Hoxa9 transduction induces hematopoietic stem and progenitor cell activity through direct down-regulation of geminin protein.

    Directory of Open Access Journals (Sweden)

    Yoshinori Ohno

    Full Text Available Hoxb4, a 3'-located Hox gene, enhances hematopoietic stem cell (HSC activity, while a subset of 5'-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98 in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5'-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin.

  10. Hoxa9 Transduction Induces Hematopoietic Stem and Progenitor Cell Activity through Direct Down-Regulation of Geminin Protein

    Science.gov (United States)

    Ohno, Yoshinori; Yasunaga, Shin'ichiro; Janmohamed, Salima; Ohtsubo, Motoaki; Saeki, Keita; Kurogi, Toshiaki; Mihara, Keichiro; Iscove, Norman N.; Takihara, Yoshihiro

    2013-01-01

    Hoxb4, a 3′-located Hox gene, enhances hematopoietic stem cell (HSC) activity, while a subset of 5′-located Hox genes is involved in hematopoiesis and leukemogenesis, and some of them are common translocation partners for Nucleoporin 98 (Nup98) in patients with leukemia. Although these Hox gene derivatives are believed to act as transcription regulators, the molecular involvement of the Hox gene derivatives in hematopoiesis and leukemogenesis remains largely elusive. Since we previously showed that Hoxb4 forms a complex with a Roc1-Ddb1-Cul4a ubiquitin ligase core component and functions as an E3 ubiquitin ligase activator for Geminin, we here examined the E3 ubiquitin ligase activities of the 5′-located Hox genes, Hoxa9 and Hoxc13, and Nup98-Hoxa9. Hoxa9 formed a similar complex with the Roc1-Ddb1-Cul4a component to induce ubiquitination of Geminin, but the others did not. Retroviral transduction-mediated overexpression or siRNA-mediated knock-down of Hoxa9 respectively down-regulated or up-regulated Geminin in hematopoietic cells. And Hoxa9 transduction-induced repopulating and clonogenic activities were suppressed by Geminin supertransduction. These findings suggest that Hoxa9 and Hoxb4 differ from Hoxc13 and Nup98-Hoxa9 in their molecular role in hematopoiesis, and that Hoxa9 induces the activity of HSCs and hematopoietic progenitors at least in part through direct down-regulation of Geminin. PMID:23326393

  11. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species.

    Science.gov (United States)

    Sumbayev, V V; Yasinska, I M

    2007-05-01

    Recent reports devoted to the field of oxygen sensing outline that signalling molecules such as nitric oxide/nitric oxide derived species as well as cytokines and other inflammatory mediators participate in hypoxic signal transduction. In the present review, we summarize the current knowledge about the role of nitric oxide and reactive nitrogen species (RNS) derived from it in hypoxic signal transduction and particularly in accumulation/de-accumulation of hypoxia inducible factor 1 alpha (HIF-1alpha) protein, which is critical not only for cellular adaptation to low oxygen availability but also for generation of inflammatory and innate immune responses. After brief description of nitric oxide and other RNS as multifunctional messengers we analyse and discuss the RNS-dependent accumulation of HIF-1alpha protein under normoxia followed by discussion of the mechanisms of nitric oxide (NO)-dependent enzyme-regulated degradation of HIF-1alpha protein under low oxygen availability.

  12. Molecular methods for the study of signal transduction in plants.

    Science.gov (United States)

    Irving, Helen R; Gehring, Chris

    2013-01-01

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively.

  13. Transductive Regression for Data With Latent Dependence Structure.

    Science.gov (United States)

    Gornitz, Nico; Lima, Luiz Alberto; Varella, Luiz Eduardo; Muller, Klaus-Robert; Nakajima, Shinichi

    2017-05-18

    Analyzing data with latent spatial and/or temporal structure is a challenge for machine learning. In this paper, we propose a novel nonlinear model for studying data with latent dependence structure. It successfully combines the concepts of Markov random fields, transductive learning, and regression, making heavy use of the notion of joint feature maps. Our transductive conditional random field regression model is able to infer the latent states by combining limited labeled data of high precision with unlabeled data containing measurement uncertainty. In this manner, we can propagate accurate information and greatly reduce uncertainty. We demonstrate the usefulness of our novel framework on generated time series data with the known temporal structure and successfully validate it on synthetic as well as real-world offshore data with the spatial structure from the oil industry to predict rock porosities from acoustic impedance data.

  14. Molecular methods for the study of signal transduction in plants

    KAUST Repository

    Irving, Helen R.

    2013-09-03

    Novel and improved analytical methods have led to a rapid increase in our understanding of the molecular mechanism underlying plant signal transduction. Progress has been made both at the level of single-component analysis and in vivo imaging as well as at the systems level where transcriptomics and particularly phosphoproteomics afford a window into complex biological responses. Here we review the role of the cyclic nucleotides cAMP and cGMP in plant signal transduction as well as the discovery and biochemical and biological characterization of an increasing number of complex multi-domain nucleotide cyclases that catalyze the synthesis of cAMP and cGMP from ATP and GTP, respectively. © Springer Science+Business Media New York 2013.

  15. Efficiency of Free Energy Transduction in Autonomous Systems

    OpenAIRE

    Kawaguchi, Kyogo; Sano, Masaki

    2011-01-01

    We consider the thermodynamics of chemical coupling from the viewpoint of free energy transduction efficiency. In contrast to an external parameter-driven stochastic energetics setup, the dynamic change of the equilibrium distribution induced by chemical coupling, adopted, for example, in biological systems, is inevitably an autonomous process. We found that the efficiency is bounded by the ratio between the non-symmetric and the symmetrized Kullback-Leibler distance, which is significantly l...

  16. Tuning piezoresistive transduction in nanomechanical resonators by geometrical asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, J.; Sansa, M.; Lorenzoni, M.; Pérez-Murano, F., E-mail: francesc.perez@csic.es [Institut de Microelectrònica de Barcelona (IMB-CNM CSIC), Campus UAB, 08193 Bellaterra (Spain); Borrisé, X. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus UAB, 08193 Bellaterra Spain (Spain); San Paulo, A. [Instituto de Microelectrónica de Madrid (IMM-CSIC), 28760 Tres Cantos, Madrid (Spain)

    2015-08-17

    The effect of geometrical asymmetries on the piezoresistive transduction in suspended double clamped beam nanomechanical resonators is investigated. Tapered silicon nano-beams, fabricated using a fast and flexible prototyping method, are employed to determine how the asymmetry affects the transduced piezoresistive signal for different mechanical resonant modes. This effect is attributed to the modulation of the strain in pre-strained double clamped beams, and it is confirmed by means of finite element simulations.

  17. Signal Transduction in Histidine Kinases: Insights from New Structures

    OpenAIRE

    Bhate, Manasi P.; Molnar, Kathleen S.; Goulian, Mark; DeGrado, William F.

    2015-01-01

    Histidine kinases (HKs) are major players in bacterial signaling. There has been an explosion of new HK crystal structures in the last five years. We globally analyze the structures of HKs to yield insights into the mechanisms by which signals are transmitted to and across protein structures in this family. We interpret known enzymological data in the context of new structural data to show how asymmetry across the dimer interface is a key feature of signal transduction in HKs, and discuss how...

  18. Dynamic disorder and the energetic costs of information transduction

    International Nuclear Information System (INIS)

    Thill, Peter

    2014-01-01

    We study a model of dynamic disorder relevant for signal transduction pathways in which enzymatic reaction rates fluctuate over several orders of magnitude. For the simple networks we consider, dynamic disorder drives the system far from equilibrium and imposes an energetic burden for high fidelity signaling capability. We study how the dynamics of the underlying stochastic behavior in the reaction rate process is related to the energetic cost of transmitting information through the network

  19. Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy.

    Directory of Open Access Journals (Sweden)

    Jennifer L Chinnici

    Full Text Available Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1 Genes encoding components of the PACC signal transduction pathway, 2 Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3 Transcriptional factor genes, 4 Autophagy genes, and 5 Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.

  20. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Nuzaihan, M.N.M., E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis (Malaysia)

    2016-09-07

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  1. Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials

    International Nuclear Information System (INIS)

    Fathil, M.F.M.; Md Arshad, M.K.; Ruslinda, A.R.; Nuzaihan, M.N.M.; Gopinath, Subash C.B.; Adzhri, R.; Hashim, U.

    2016-01-01

    A real-time ability to interpret the interaction between targeted biomolecules and the surface of semiconductors (metal transducers) into readable electrical signals, without biomolecular modification involving fluorescence dyes, redox enzymes, and radioactive labels, created by label-free biosensors has been extensively researched. Field-effect transistor (FET)- and capacitor-based biosensors are among the diverse electrical charge biosensing architectures that have drawn much attention for having charge transduction; thus, enabling the early and rapid diagnosis of the appropriate cardiac biomarkers at lower concentrations. These semiconducting material-based transducers are very suitable to be integrated with portable electronic devices for future online collection, transmission, reception, analysis, and reporting. This overview elucidates and clarifies two major electrical label-free systems (FET- and capacitor-based biosensors) with cardiac troponin (cTn) biomarker-mediated charge transduction for acute myocardial infarction (AMI) diagnosis. Advances in these systems are highlighted by their progression in bridging the laboratory and industry; the foremost technologies have made the transition from benchtop to bedside and beyond. - Highlights: • The progression of cardiac troponin detection from past to future are presented. • Electrical label-free biosensors for cardiac troponin are discussed. • The discussion focused on field-effect transistor-and capacitor-based devices. • Surface functionalization, sensitivity, and innovation of devices are highlighted. • They presented high sensitivity and specificity of real-time AMI determination.

  2. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy

    Science.gov (United States)

    Talukdar, Abdul; Faheem Khan, M.; Lee, Dongkyu; Kim, Seonghwan; Thundat, Thomas; Koley, Goutam

    2015-08-01

    Measurement of femtoscale displacements in the ultrasonic frequency range is attractive for advanced material characterization and sensing, yet major challenges remain in their reliable transduction using non-optical modalities, which can dramatically reduce the size and complexity of the transducer assembly. Here we demonstrate femtoscale displacement transduction using an AlGaN/GaN heterojunction field effect transistor-integrated GaN microcantilever that utilizes piezoelectric polarization-induced changes in two-dimensional electron gas to transduce displacement with very high sensitivity. The piezotransistor demonstrated an ultra-high gauge factor of 8,700 while consuming an extremely low power of 1.36 nW, and transduced external excitation with a superior noise-limited resolution of 12.43 fm Hz-1/2 and an outstanding responsivity of 170 nV fm-1, which is comparable to the optical transduction limits. These extraordinary characteristics, which enabled unique detection of nanogram quantity of analytes using photoacoustic spectroscopy, can be readily exploited in realizing a multitude of novel sensing paradigms.

  3. Gene therapy for inherited immunodeficiency.

    Science.gov (United States)

    Touzot, Fabien; Hacein-Bey-Abina, Salima; Fischer, Alain; Cavazzana, Marina

    2014-06-01

    During the last decade, gene therapy has emerged as a convincing therapy for primary immunodeficiencies (PIDs). Ex vivo gene transfer into autologous hematopoietic stem cells (HSCs) via viral vectors permits sustained correction of T cell immunodeficiency in two forms of severe combined immunodeficiency: X-linked SCID (SCID-X1) (γ chain [γc] deficiency) and adenosine deaminase deficiency. However, this success has been balanced by the occurrence of genotoxicity generated by the integration of first-generation retroviral vectors. Recently, the development of safer self-inactivating vectors has led to the initiation of new studies with the hope of equivalent efficacy and a better safety profile. This review article focuses on the updated results of gene therapy trials for PIDs - from early studies to ongoing clinical trials. We detail the major advances made in gene transfer and repair technologies, and discuss the many ways to extend our present experience. With optimization in terms of safety and efficacy, gene therapy by lentiviral transduction could become a compelling alternative to allogeneic HSC transplantation, and thus may take center stage in the management of PIDs in coming years.

  4. Development of a predictor for human brain tumors based on gene expression values obtained from two types of microarray technologies.

    Science.gov (United States)

    Castells, Xavier; Acebes, Juan José; Boluda, Susana; Moreno-Torres, Angel; Pujol, Jesús; Julià-Sapé, Margarida; Candiota, Ana Paula; Ariño, Joaquín; Barceló, Anna; Arús, Carles

    2010-04-01

    Development of molecular diagnostics that can reliably differentiate amongst different subtypes of brain tumors is an important unmet clinical need in postgenomics medicine and clinical oncology. A simple linear formula derived from gene expression values of four genes (GFAP, PTPRZ1, GPM6B, and PRELP) measured from cDNA microarrays (n = 35) have distinguished glioblastoma and meningioma cases in a previous study. We herein extend this work further and report that the above predictor formula showed its robustness when applied to Affymetrix microarray data acquired prospectively in our laboratory (n = 80) as well as publicly available data (n = 98). Importantly, GFAP and GPM6B were both retained as being significant in the predictive model upon using the Affymetrix data obtained in our laboratory, whereas the other two predictor genes were SFRP2 and SLC6A2. These results collectively indicate the importance of the expression values of GFAP and GPM6B genes sampled from the two types of microarray technologies tested. The high prediction accuracy obtained in these instances demonstrates the robustness of the predictors across microarray platforms used. This result would require further validation with a larger population of meningioma and glioblastoma cases. At any rate, this study paves the way for further application of gene signatures to more stringent biopsy discrimination challenges.

  5. In vitro identification and in silico utilization of interspecies sequence similarities using GeneChip® technology

    Directory of Open Access Journals (Sweden)

    Ye Shui Q

    2005-05-01

    Full Text Available Abstract Background Genomic approaches in large animal models (canine, ovine etc are challenging due to insufficient genomic information for these species and the lack of availability of corresponding microarray platforms. To address this problem, we speculated that conserved interspecies genetic sequences can be experimentally detected by cross-species hybridization. The Affymetrix platform probe redundancy offers flexibility in selecting individual probes with high sequence similarities between related species for gene expression analysis. Results Gene expression profiles of 40 canine samples were generated using the human HG-U133A GeneChip (U133A. Due to interspecies genetic differences, only 14 ± 2% of canine transcripts were detected by U133A probe sets whereas profiling of 40 human samples detected 49 ± 6% of human transcripts. However, when these probe sets were deconstructed into individual probes and examined performance of each probe, we found that 47% of human probes were able to find their targets in canine tissues and generate a detectable hybridization signal. Therefore, we restricted gene expression analysis to these probes and observed the 60% increase in the number of identified canine transcripts. These results were validated by comparison of transcripts identified by our restricted analysis of cross-species hybridization with transcripts identified by hybridization of total lung canine mRNA to new Affymetrix Canine GeneChip®. Conclusion The experimental identification and restriction of gene expression analysis to probes with detectable hybridization signal drastically increases transcript detection of canine-human hybridization suggesting the possibility of broad utilization of cross-hybridizations of related species using GeneChip technology.

  6. Evaluation of low density array technology for quantitative parallel measurement of multiple genes in human tissue

    Directory of Open Access Journals (Sweden)

    Harmer Daniel W

    2006-02-01

    Full Text Available Abstract Background Low density arrays (LDAs have recently been introduced as a novel approach to gene expression profiling. Based on real time quantitative RT-PCR (QRT-PCR, these arrays enable a more focused and sensitive approach to the study of gene expression than gene chips, while offering higher throughput than more established approaches to QRT-PCR. We have now evaluated LDAs as a means of determining the expression of multiple genes simultaneously in human tissues and cells. Results Comparisons between LDAs reveal low variability, with correlation coefficients close to 1. By performing 2-fold and 10-fold serial dilutions of cDNA samples in the LDAs we determined a clear linear relationship between the gene expression data points over 5 orders of magnitude. We also showed that it is possible to use LDAs to accurately and quantitatively detect 2-fold changes in target copy number as well as measuring genes that are expressed with low and high copy numbers in the range of 1 × 102 – 1 × 106 copies. Furthermore, the data generated by the LDA from a cell based pharmacological study were comparable to data generated by conventional QRT-PCR. Conclusion LDAs represent a valuable new approach for sensitive and quantitative gene expression profiling.

  7. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1999-01-01

    ), which were among the first substrates of ERK to be discovered and which has proven to be a ubiquitous and versatile mediator of ERK signal transduction. RSK is composed of two functional kinase domains that are activated in a sequential manner by a series of phosphorylations. Recently, a family of RSK......-related kinases that are activated by ERK as well as p38 MAPK were discovered and named mitogen- and stress-activated protein kinases (MSK). A number of cellular functions of RSK have been proposed. (1) Regulation of gene expression via association and phosphorylation of transcriptional regulators including c......-Fos, estrogen receptor, NFkappaB/IkappaB alpha, cAMP-response element-binding protein (CREB) and CREB-binding protein; (2) RSK is implicated in cell cycle regulation in Xenopus laevis oocytes by inactivation of the Myt1 protein kinase leading to activation of the cyclin-dependent kinase p34cdc2; (3) RSK may...

  8. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    DEFF Research Database (Denmark)

    Billestrup, N; Allevato, G; Norstedt, G

    1994-01-01

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated...... a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to mediate GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH...... as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (i) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (ii...

  9. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  10. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

    Science.gov (United States)

    Bucher, T; Dubreil, L; Colle, M-A; Maquigneau, M; Deniaud, J; Ledevin, M; Moullier, P; Joussemet, B

    2014-05-01

    Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.

  11. Human HOXA5 homeodomain enhances protein transduction and its application to vascular inflammation

    International Nuclear Information System (INIS)

    Lee, Ji Young; Park, Kyoung sook; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Sang Ki; Lee, Sang Do; Park, Jin Bong; Chang, Seok Jong; Jeon, Byeong Hwa

    2011-01-01

    Highlights: → We have developed an E. coli protein expression vector including human specific gene sequences for protein cellular delivery. → The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence. → HOXA5-APE1/Ref-1 inhibited TNF-alpha-induced monocyte adhesion to endothelial cells. → Human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins. -- Abstract: Cellular protein delivery is an emerging technique by which exogenous recombinant proteins are delivered into mammalian cells across the membrane. We have developed an Escherichia coli expression vector including human specific gene sequences for protein cellular delivery. The plasmid was generated by ligation the nucleotides 770-817 of the homeobox A5 mRNA sequence which was matched with protein transduction domain (PTD) of homeodomain protein A5 (HOXA5) into pET expression vector. The cellular uptake of HOXA5-PTD-EGFP was detected in 1 min and its transduction reached a maximum at 1 h within cell lysates. The cellular uptake of HOXA5-EGFP at 37 o C was greater than in 4 o C. For study for the functional role of human HOXA5-PTD, we purified HOXA5-APE1/Ref-1 and applied it on monocyte adhesion. Pretreatment with HOXA5-APE1/Ref-1 (100 nM) inhibited TNF-α-induced monocyte adhesion to endothelial cells, compared with HOXA5-EGFP. Taken together, our data suggested that human HOXA5-PTD vector provides a powerful research tools for uncovering cellular functions of proteins or for the generation of human PTD-containing proteins.

  12. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Science.gov (United States)

    Bosch, Marie K; Nerbonne, Jeanne M; Ornitz, David M

    2014-01-01

    Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV), serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES), a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  13. Dual transgene expression in murine cerebellar Purkinje neurons by viral transduction in vivo.

    Directory of Open Access Journals (Sweden)

    Marie K Bosch

    Full Text Available Viral-vector mediated gene transfer to cerebellar Purkinje neurons in vivo is a promising avenue for gene therapy of cerebellar ataxias and for genetic manipulation in functional studies of animal models of cerebellar disease. Here, we report the results of experiments designed to identify efficient methods for viral transduction of adult murine Purkinje neurons in vivo. For these analyses, several lentiviral and an adeno-associated virus (AAV, serotype 1, vector with various promoter combinations were generated and compared for in situ transduction efficiency, assayed by fluorescent reporter protein expression in Purkinje neurons. Additional experiments were also conducted to identify the optimal experimental strategy for co-expression of two proteins in individual Purkinje neurons. Of the viruses tested, AAV1 with a CAG promoter exhibited the highest specificity for Purkinje neurons. To deliver two proteins to the same Purkinje neuron, several methods were tested, including: an internal ribosome entry site (IRES, a 2A sequence, a dual promoter vector, and co-injection of two viruses. Efficient expression of both proteins in the same Purkinje neuron was only achieved by co-injecting two AAV1-CAG viruses. We found that use of an AAV1-CAG virus outperformed similar lentivirus vectors and that co-injection of two AAV1-CAG viruses could be used to efficiently deliver two proteins to the same Purkinje neuron in adult mice. AAV1 with a CAG promoter is highly efficient and selective at transducing adult cerebellar Purkinje neurons and two AAV-CAG viruses can be used to efficiently express two proteins in the same neuron in vivo.

  14. Retroviral transduction of murine and human hematopoietic progenitors and stem cells.

    Science.gov (United States)

    Ciuculescu, Marioara F; Brendel, Christian; Harris, Chad E; Williams, David A

    2014-01-01

    Genetic modification of cells using retroviral vectors is the method of choice when the cell population is difficult to transfect and/or requires persistent transgene expression in progeny cells. There are innumerable potential applications for these procedures in laboratory research and clinical therapeutic interventions. One paradigmatic example is the genetic modification of hematopoietic stem and progenitor cells (HSPCs). These are rare nucleated cells which reside in a specialized microenvironment within the bone marrow, and have the potential to self-renew and/or differentiate into all hematopoietic lineages. Due to their enormous regenerative capacity in steady state or under stress conditions these cells are routinely used in allogeneic bone marrow transplantation to reconstitute the hematopoietic system in patients with metabolic, inflammatory, malignant, and other hematologic disorders. For patients lacking a matched bone marrow donor, gene therapy of autologous hematopoietic stem cells has proven to be an alternative as highlighted recently by several successful gene therapy trials. Genetic modification of HSPCs using retrovirus vectors requires ex vivo manipulation to efficiently introduce the new genetic material into cells (transduction). Optimal culture conditions are essential to facilitate this process while preserving the stemness of the cells. The most frequently used retroviral vector systems for the genetic modifications of HSPCs are derived either from Moloney murine leukemia-virus (Mo-MLV) or the human immunodeficiency virus-1 (HIV-1) and are generally termed according to their genus gamma-retroviral (γ-RV) or lentiviral vectors (LV), respectively. This chapter describes in a step-by-step fashion some techniques used to produce research grade vector supernatants and to obtain purified murine or human hematopoietic stem cells for transduction, as well as follow-up methods for analysis of transduced cell populations.

  15. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Peter Gee

    2017-01-01

    Full Text Available In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.

  16. Heparan Sulfate Binding Promotes Accumulation of Intravitreally Delivered Adeno-associated Viral Vectors at the Retina for Enhanced Transduction but Weakly Influences Tropism.

    Science.gov (United States)

    Woodard, Kenton T; Liang, Katharine J; Bennett, William C; Samulski, R Jude

    2016-11-01

    Many adeno-associated virus (AAV) serotypes efficiently transduce the retina when delivered to the subretinal space but show limited success when delivered to the vitreous due to the inner limiting membrane (ILM). Subretinal delivery of AAV serotype 2 (AAV2) and its heparan sulfate (HS)-binding-deficient capsid led to similar expression, indicating transduction of the outer retina occurred by HS-independent mechanisms. However, intravitreal delivery of HS-ablated recombinant AAV2 (rAAV2) led to a 300-fold decrease in transduction compared to AAV2. Fluorescence in situ hybridization of AAV transgenes was used to identify differences in retinal trafficking and revealed that HS binding was responsible for AAV2 accumulation at the ILM. This mechanism was tested on human ex vivo retinas and showed similar accumulation with HS-binding AAV2 capsid only. To evaluate if HS binding could be applied to other AAV serotypes to enhance their transduction, AAV1 and AAV8 were modified to bind HS with a single-amino-acid mutation and tested in mice. Both HS-binding mutants of AAV1 and AAV8 had higher intravitreal transduction than their non-HS-binding parent capsid due to increased retinal accumulation. To understand the influence that HS binding has on tropism, chimeric AAV2 capsids with dual-glycan usage were tested intravitreally in mice. Compared to HS binding alone, these chimeric capsids displayed enhanced transduction that was correlated with a change in tropism. Taken together, these data indicate that HS binding serves to sequester AAV capsids from the vitreous to the ILM but does not influence retinal tropism. The enhanced retinal transduction of HS-binding capsids provides a rational design strategy for engineering capsids for intravitreal delivery. Adeno-associated virus (AAV) has become the vector of choice for viral gene transfer and has shown great promise in clinical trials. The need for development of an easy, less invasive injection route for ocular gene therapy

  17. How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals.

    Science.gov (United States)

    Woelders, H; Windig, J; Hiemstra, S J

    2012-08-01

    Many local breeds are currently at risk because of replacement by a limited number of specialized commercial breeds. Concurrently, for many breeds, allelic diversity within breeds declines because of inbreeding. Gene banking of germplasm may serve to secure the breeds and the alleles for any future use, for instance to recover a lost breed, to address new breeding goals, to support breeding schemes in small populations to minimize inbreeding, and for conservation genetics and genomics research. Developments in cryobiology and reproductive technology have generated several possibilities for preserving germplasm in farm animals. Furthermore, in some mammalian and bird species, gene banking of material is difficult or impossible, requiring development of new alternative methods or improvement of existing methods. Depending on the species, there are interesting possibilities or research developments in the use of epididymal spermatozoa, oocytes and embryos, ovarian and testicular tissue, primordial germ cells, and somatic cells for the conservation of genetic diversity in farm- and other animal species. Rapid developments in genomics research also provide new opportunities to optimize conservation and sampling strategies and to characterize genome-wide genetic variation. With regard to gene banks for farm animals, collaboration between European countries is being developed through a number of organizations, aimed at sharing knowledge and expertise between national programmes. It would be useful to explore further collaboration between countries, within the framework of a European gene banking strategy that should minimize costs of conservation and maximize opportunities for exploitation and sustainable use of genetic diversity. © 2012 Blackwell Verlag GmbH.

  18. [Study on gene expression of Tamarix under NaHCO3 stress using SSH technology].

    Science.gov (United States)

    Yang, Chuan-Ping; Wang, Yu-Cheng; Liu, Gui-Feng; Jiang, Jing

    2004-09-01

    The gene expression of Tamarix androssowii under NaHCO3 stresses is studied by using SSH technique, in which the cDNA from the materials treated with NaHCO3 solution is as tester and the cDNA from the materials in normal growth is as driver. Total 36 genes related to NaHCO3 stress were obtained through Northern hybridization. Blastx analysis showed that the proteins encoded by these genes were homologous to the following proteins: the antioxidant enzymes catalase and peroxiredoxin; trehalose phosphatase, which was related to trehalose synthesis; a few regulation proteins such as bZIP transcription factor, MADS-box protein, glycine-rich RNA-binding proteins, CCCH-type zinc finger protein and F-box protein etc; early light-induced protein, which could protect and/or repair the photosynthetic apparatus damage induced by stress; cysteine proteinase and vacuolar processing enzyme that can make function in plant cell death, and lipid transfer protein precursor, polyubiquitin, chalcone synthase, NADP-dependent isocitrate dehydrogenase, salt-induced S12 protein, and oxygen-evolving enhancer protein 1 etc. Among 36 genes obtained, the proteins encoded three genes were homologous to 3 putative proteins: HAK2, calcium-binding protein and RNA-binding protein, respectively. In addition, 6 new salt stress response squences were found. The result indicated that the salt-tolerant mechanism of Tamarix androssowii may be a complicated, interactive system involving multiple approaches and multiple genes, but not only a single salt gland-depended approach.

  19. Umami taste in mice uses multiple receptors and transduction pathways.

    Science.gov (United States)

    Yasumatsu, Keiko; Ogiwara, Yoko; Takai, Shingo; Yoshida, Ryusuke; Iwatsuki, Ken; Torii, Kunio; Margolskee, Robert F; Ninomiya, Yuzo

    2012-03-01

    The distinctive umami taste elicited by l-glutamate and some other amino acids is thought to be initiated by G-protein-coupled receptors. Proposed umami receptors include heteromers of taste receptor type 1, members 1 and 3 (T1R1+T1R3), and metabotropic glutamate receptors 1 and 4 (mGluR1 and mGluR4). Multiple lines of evidence support the involvement of T1R1+T1R3 in umami responses of mice. Although several studies suggest the involvement of receptors other than T1R1+T1R3 in umami, the identity of those receptors remains unclear. Here, we examined taste responsiveness of umami-sensitive chorda tympani nerve fibres from wild-type mice and mice genetically lacking T1R3 or its downstream transduction molecule, the ion channel TRPM5. Our results indicate that single umami-sensitive fibres in wild-type mice fall into two major groups: sucrose-best (S-type) and monopotassium glutamate (MPG)-best (M-type). Each fibre type has two subtypes; one shows synergism between MPG and inosine monophosphate (S1, M1) and the other shows no synergism (S2, M2). In both T1R3 and TRPM5 null mice, S1-type fibres were absent, whereas S2-, M1- and M2-types remained. Lingual application of mGluR antagonists selectively suppressed MPG responses of M1- and M2-type fibres. These data suggest the existence of multiple receptors and transduction pathways for umami responses in mice. Information initiated from T1R3-containing receptors may be mediated by a transduction pathway including TRPM5 and conveyed by sweet-best fibres, whereas umami information from mGluRs may be mediated by TRPM5-independent pathway(s) and conveyed by glutamate-best fibres.

  20. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  1. Signaling transduction pathways involved in basophil adhesion and histamine release

    DEFF Research Database (Denmark)

    Sha, Quan; Poulsen, Lars K.; Gerwien, Jens

    2006-01-01

    Little is known about basophil with respect to the different signaling transduction pathways involved in spontaneous, cytokine or anti-IgE induced adhesion and how this compares to IgE-dependent and IgE-independent mediator secretion. The purpose of the present study was to investigate the roles ...... of beta1 and beta2 integrins in basophil adhesion as well as hosphatidylinositol 3-kinase (PI3K), src-kinases and extracellular signal regulated kinase (ERK) 1/2 in basophil adhesion and histamine release (HR)....

  2. Sensors and signal transduction pathways in vertebrate cell volume regulation

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Pedersen, Stine F

    2006-01-01

    to the identification of transporter binding partners such as protein kinases and phosphatases, cytoskeletal elements and lipids. Considerable progress has also been made recently in understanding the upstream elements in volume sensing and volume-sensitive signal transduction, and salient features of these systems...... will be discussed. In contrast to the simple pathway of osmosensing in yeast, cells from vertebrate organisms appear to exhibit multiple volume sensing systems, the specific mechanism(s) activated being cell type- and stimulus-dependent. Candidate sensors include integrins and growth factor receptors, while other...

  3. Signal transduction and activation of the NADPH oxidase in eosinophils

    Directory of Open Access Journals (Sweden)

    Mark A Lindsay

    1997-12-01

    Full Text Available Activation of the eosinophil NADPH oxidase and the subsequent release of toxic oxygen radicals has been implicated in the mechanism of parasite killing and inflammation. At present, little is known of the signal transduction pathway that govern agonist-induced activation of the respiratory burst and is the subject of this review. In particular, we focus on the ability of leukotrine B4 to activate the NADPH oxidase in guinea-pig peritoneal eosinophils which can be obtained in sufficient number and purity for detailed biochemical experiments to be performed.

  4. Organizing signal transduction through A-kinase anchoring proteins (AKAPs).

    Science.gov (United States)

    Logue, Jeremy S; Scott, John D

    2010-11-01

    A fundamental role for protein-protein interactions in the organization of signal transduction pathways is evident. Anchoring, scaffolding and adapter proteins function to enhance the precision and directionality of these signaling events by bringing enzymes together. The cAMP signaling pathway is organized by A-kinase anchoring proteins. This family of proteins assembles enzyme complexes containing the cAMP-dependent protein kinase, phosphoprotein phosphatases, phosphodiesterases and other signaling effectors to optimize cellular responses to cAMP and other second messengers. Selected A-kinase anchoring protein signaling complexes are highlighted in this minireview. © 2010 The Authors Journal compilation © 2010 FEBS.

  5. Sugar signalling and gene expression in relation to carbohydrate ...

    Indian Academy of Sciences (India)

    Unknown

    function of sugars as a nutrient and a signalling molecule complicates the analysis of mechanisms involved in sig- nal transduction pathways (Rolland et al 2001). 3. Signal transduction cascades. Very little is known about the effect that sugars have on expression of genes involved in sugar signalling cascade. The sugar ...

  6. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping.

    Science.gov (United States)

    Glazebrook, Jane; Chen, Wenqiong; Estes, Bram; Chang, Hur-Song; Nawrath, Christiane; Métraux, Jean-Pierre; Zhu, Tong; Katagiri, Fumiaki

    2003-04-01

    The signal transduction network controlling plant responses to pathogens includes pathways requiring the signal molecules salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The network topology was explored using global expression phenotyping of wild-type and signaling-defective mutant plants, including eds3, eds4, eds5, eds8, pad1, pad2, pad4, NahG, npr1, sid2, ein2, and coi1. Hierarchical clustering was used to define groups of mutations with similar effects on gene expression and groups of similarly regulated genes. Mutations affecting SA signaling formed two groups: one comprised of eds4, eds5, sid2, and npr1-3 affecting only SA signaling; and the other comprised of pad2, eds3, npr1-1, pad4, and NahG affecting SA signaling as well as another unknown process. Major differences between the expression patterns in NahG and the SA biosynthetic mutant sid2 suggest that NahG has pleiotropic effects beyond elimination of SA. A third group of mutants comprised of eds8, pad1, ein2, and coi1 affected ethylene and jasmonate signaling. Expression patterns of some genes revealed mutual inhibition between SA- and JA-dependent signaling, while other genes required JA and ET signaling as well as the unknown signaling process for full expression. Global expression phenotype similarities among mutants suggested, and experiments confirmed, that EDS3 affects SA signaling while EDS8 and PAD1 affect JA signaling. This work allowed modeling of network topology, definition of co-regulated genes, and placement of previously uncharacterized regulatory genes in the network.

  7. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Simone ePelliciari

    2015-08-01

    Full Text Available The microaerophilic gastric pathogen Helicobacter pylori is exposed to oxidative stress originating from the aerobic environment, the oxidative burst of phagocytes and the formation of reactive oxygen species, catalyzed by iron excess. Accordingly, the expression of genes involved in oxidative stress defense have been repeatedly linked to the ferric uptake regulator Fur. Moreover, mutations in the Fur protein affect the resistance to metronidazole, likely due to loss-of-function in the regulation of genes involved in redox control. Although many advances in the molecular understanding of HpFur function were made, little is known about the mechanisms that enable Fur to mediate the responses to oxidative stress.Here we show that iron-inducible, apo-Fur repressed genes, such as pfr and hydA, are induced shortly after oxidative stress, while their oxidative induction is lost in a fur knockout strain. On the contrary, holo-Fur repressed genes, such as frpB1 and fecA1, vary modestly in response to oxidative stress. This indicates that the oxidative stress signal specifically targets apo-Fur repressed genes, rather than impairing indiscriminately the regulatory function of Fur. Footprinting analyses showed that the oxidative signal strongly impairs the binding affinity of Fur towards apo-operators, while the binding towards holo-operators is less affected. Further evidence is presented that a reduced state of Fur is needed to maintain apo-repression, while oxidative conditions shift the preferred binding architecture of Fur towards the holo-operator binding conformation, even in the absence of iron. Together the results demonstrate that the allosteric regulation of Fur enables transduction of oxidative stress signals in H. pylori, supporting the concept that apo-Fur repressed genes can be considered oxidation inducible Fur regulatory targets. These findings may have important implications in the study of H. pylori treatment and resistance to

  8. Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences

    OpenAIRE

    Weltner, J.; Anisimov, A.; Alitalo, K.; Otonkoski, T.; Trokovic, R.

    2012-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) by ectopic expression of key transcription factors. Current methods for the generation of integration-free iPSC are limited by the low efficiency of iPSC generation and by challenges in reprogramming methodology. Recombinant adeno-associated virus (rAAV) is a potent gene delivery vehicle capable of efficient transduction of transgenic DNA into cells. rAAV stays mainly as an episome in nondividing cells, and the extent ...

  9. The effect of different treatment technologies on the fate of antibiotic resistance genes and class 1 integrons after the application of residual municipal wastewater solids to soil

    Science.gov (United States)

    Land-application of residual wastewater solids is an important environmental source of antibiotic resistance genes (ARGs). Treatment technologies exist that can reduce ARG levels in residual solids prior to land-application, but the effect of these technologies on ARG levels in soil following land-a...

  10. The Drosophila secreted protein Argos regulates signal transduction in the Ras/MAPK pathway.

    Science.gov (United States)

    Sawamoto, K; Okabe, M; Tanimura, T; Mikoshiba, K; Nishida, Y; Okano, H

    1996-08-25

    The Drosophila argos gene encodes a secreted protein with an EGF motif which acts as an inhibitor of cellular differentiation in multiple developmental processes. To investigate the cellular pathways regulated by Argos, we screened for mutations which could modify the phenotype caused by overexpression of argos. We show that the effects of argos overexpression on the eye and wing vein development are suppressed by gain-of-function mutations of the MAPKK/D-MEK gene (Dsor1/D-mek) and the MAPK/ERK-A gene (rolled) and were enhanced by loss-of-function mutations of Star. Loss-of-function mutations in components of the Ras/MAPK signaling cascade act as dominant suppressors of the phenotype caused by the argos null mutations. A loss-of-function argos mutation enhanced the overproduction of R7 neurons caused by gain-of-function alleles of Son of sevenless and Dsor1. Conversely, overexpression of argos inhibited formation of the extra R7 cells that was caused by high-level MAPK/ERK-A activity. A phenotype of the sev; argos double mutants revealed that sev is epistatic to argos. These results provide evidence that Argos negatively regulates signal transduction events in the Ras/MAPK cascade.

  11. Gene Technology in the eyes of the public and experts. Moral opinions, attitudes and risk perception.

    OpenAIRE

    Sjöberg, Lennart

    2004-01-01

    Risk perceptions and attitudes to genetically modified food (GMF) were investigated in a survey study of the public (N=469) and experts (N=49). The response rate was 47 percent for the public. For the experts, response rate was 60 percent. GMF technology was rated as the worst of 18 technologies by members of the public and highly replaceable. Experts had a very different view but also saw GMF as replaceable. Models of risk perceptions and attitudes with regard to policy and consumer intentio...

  12. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation.

    Science.gov (United States)

    Amor, Besma Ben; Shaw, Sidney L; Oldroyd, Giles E D; Maillet, Fabienne; Penmetsa, R Varma; Cook, Douglas; Long, Sharon R; Dénarié, Jean; Gough, Clare

    2003-05-01

    Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.

  13. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  14. Fetus Sound Stimulation: Cilia Memristor Effect of Signal Transduction

    Directory of Open Access Journals (Sweden)

    Svetlana Jankovic-Raznatovic

    2014-01-01

    Full Text Available Background. This experimental study evaluates fetal middle cerebral artery (MCA circulation after the defined prenatal acoustical stimulation (PAS and the role of cilia in hearing and memory and could explain signal transduction and memory according to cilia optical-acoustical properties. Methods. PAS was performed twice on 119 no-risk term pregnancies. We analyzed fetal MCA circulation before, after first and second PAS. Results. Analysis of the Pulsatility index basic (PIB and before PAS and Pulsatility index reactive after the first PAS (PIR 1 shows high statistical difference, representing high influence on the brain circulation. Analysis of PIB and Pulsatility index reactive after the second PAS (PIR 2 shows no statistical difference. Cilia as nanoscale structure possess magnetic flux linkage that depends on the amount of charge that has passed between two-terminal variable resistors of cilia. Microtubule resistance, as a function of the current through and voltage across the structure, leads to appearance of cilia memory with the “memristor” property. Conclusion. Acoustical and optical cilia properties play crucial role in hearing and memory processes. We suggest that fetuses are getting used to sound, developing a kind of memory patterns, considering acoustical and electromagnetically waves and involving cilia and microtubules and try to explain signal transduction.

  15. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  16. Challenges and opportunities for controlling and preventing animal diseases in developing countries through gene-based technologies

    International Nuclear Information System (INIS)

    Crowther, J.R.; Jeggo, M.H.

    2005-01-01

    Polymerase Chain Reaction (PCR) technology allows scientist to amplify, copy, identify, characterize and manipulate genes in a relatively simple way. Exploitation of the technology to devise new products and translate these to the commercial sector has been remarkable. Molecular technologies are not difficult to establish and use, and can appear to offer developing countries many opportunities. However, developing countries should look in a different way at the apparent advantages offered. Whilst molecular biological science appears to offer solutions to many problems, there are a number of drawbacks. This desire to adopt the latest technology often overrides any considerations of the use of more conventional technologies to address needs. The conventional, and often more practical, methods already provide many specific tools in the disease control area. Changing the technology can also deflect critical resources into the molecular field in terms of laboratory funding and training. This may cause redundancy of staff, limit further development in conventional techniques, and polarize scientists into the older (less glossy) and newer (molecular) camps. Animal disease diagnosis still primarily utilizes conventional techniques such as Enzyme Linked Immunosorbent Assay (ELISA). This will not change drastically in developing countries, but developments will combine such methods with more discriminatory molecular techniques, and a balanced and parallel development is needed. An understanding of the use and possible advantages of the various technologies is required by both scientists and policy-makers in developing nations. Vaccines based on molecular science could have a real impact in developing countries, but 'vaccinology' needs to examine both the animal (immunology of target species) and the disease agent itself. This is a research-based science and, as such, is expensive, with no surety of success. Developing countries should exploit links with developed countries

  17. Nano-scale gene delivery systems; current technology, obstacles, and future directions.

    Science.gov (United States)

    Garcia-Guerra, Antonio; Dunwell, Thomas L; Trigueros, Sonia

    2018-01-07

    Within the different applications of nanomedicine currently being developed, nano-gene delivery is appearing as an exciting new technique with the possibility to overcome recognised hurdles and fulfill several biological and medical needs. The central component of all delivery systems is the requirement for the delivery of genetic material into cells, and for them to eventually reside in the nucleus where their desired function will be exposed. However, genetic material does not passively enter cells; thus, a delivery system is necessary. The emerging field of nano-gene delivery exploits the use of new materials and the properties that arise at the nanometre-scale to produce delivery vectors that can effectively deliver genetic material into a variety of different types of cells. The novel physicochemical properties of the new delivery vectors can be used to address the current challenges existing in nucleic acid delivery in vitro and in vivo. While there is a growing interest in nanostructure-based gene delivery, the field is still in its infancy, and there is yet much to discover about nanostructures and their physicochemical properties in a biological context. We carry out an organized and focused search of bibliographic databases. Our results suggest that despite new breakthroughs in nanostructure synthesis and advanced characterization techniques, we still face many barriers in producing highly efficient and non-toxic delivery systems. In this review, we overview the types of systems currently used for clinical and biomedical research applications along with their advantages and disadvantages, as well as discussing barriers that arise from nano-scale interactions with biological material. In conclusion, we hope that by bringing the far reaching multidisciplinary nature of nano-gene delivery to light, new targeted nanotechnology-bases strategies are developed to overcome the major challenges covered in this review. Copyright© Bentham Science Publishers; For

  18. The transduction of Coxsackie and Adenovirus Receptor-negative cells and protection against neutralizing antibodies by HPMA-co-oligolysine copolymer-coated adenovirus.

    Science.gov (United States)

    Wang, Chung-Huei K; Chan, Leslie W; Johnson, Russell N; Chu, David S H; Shi, Julie; Schellinger, Joan G; Lieber, André; Pun, Suzie H

    2011-12-01

    Adenoviral (AdV) gene vectors offer efficient nucleic acid transfer into both dividing and non-dividing cells. However issues such as vector immunogenicity, toxicity and restricted transduction to receptor-expressing cells have prevented broad clinical translation of these constructs. To address this issue, engineered AdV have been prepared by both genetic and chemical manipulation. In this work, a polymer-coated Ad5 formulation is optimized by evaluating a series of N-(2-hydroxypropyl) methacrylamide (HPMA)-co-oligolysine copolymers synthesized by living polymerization techniques. This synthesis approach was used to generate highly controlled and well-defined polymers with varying peptide length (K(5), K(10) and K(15)), polymer molecular weight, and degradability to coat the viral capsid. The optimal formulation was not affected by the presence of serum during transduction and significantly increased Ad5 transduction of several cell types that lack the Coxsackie and Adenovirus Receptor (CAR) by up to 6-fold compared to unmodified AdV. Polymer-coated Ad5 also retained high transduction capability in the presence of Ad5 neutralizing antibodies. The critical role of heparan sulfate proteoglycans (HSPGs) in mediating cell binding and internalization of polymer-coated AdV was also demonstrated by evaluating transduction in HSPG-defective recombinant CHO cells. The formulations developed here are attractive vectors for ex vivo gene transfer in applications such as cell therapy. In addition, this platform for adenoviral modification allows for facile introduction of alternative targeting ligands. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention

    International Nuclear Information System (INIS)

    Neergheen, Vidushi S.; Bahorun, Theeshan; Taylor, Ethan Will; Jen, Ling-Sun; Aruoma, Okezie I.

    2010-01-01

    Natural phytochemicals derived from dietary sources or medicinal plants have gained significant recognition in the potential management of several human clinical conditions. Much research has also been geared towards the evaluation of plant extracts as effective prophylactic agents since they can act on specific and/or multiple molecular and cellular targets. Plants have been an abundant source of highly effective phytochemicals which offer great potential in the fight against cancer by inhibiting the process of carcinogenesis through the upregulation of cytoprotective genes that encode for carcinogen detoxifying enzymes and antioxidant enzymes. The mechanistic insight into chemoprevention further includes induction of cell cycle arrest and apoptosis or inhibition of signal transduction pathways mainly the mitogen-activated protein kinases (MAPK), protein kinases C (PKC), phosphoinositide 3-kinase (PI3K), glycogen synthase kinase (GSK) which lead to abnormal cyclooxygenase-2 (COX-2), activator protein-1 (AP-1), nuclear factor-kappaB (NF-κB) and c-myc expression. Effectiveness of chemopreventive agents reflects their ability to counteract certain upstream signals that leads to genotoxic damage, redox imbalances and other forms of cellular stress. Targeting malfunctioning molecules along the disrupted signal transduction pathway in cancer represent a rational strategy in chemoprevention. NF-κB and AP-1 provide mechanistic links between inflammation and cancer, and moreover regulate tumor angiogenesis and invasiveness, indicating that signaling pathways that mediate their activation provide attractive targets for new chemotherapeutic approaches. Thus cell signaling cascades and their interacting factors have become important targets of chemoprevention and phenolic phytochemicals and plant extracts seem to be promising in this endeavor.

  20. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  1. Molecular biology of stress genes in methanogens: potential for bioreactor technology.

    Science.gov (United States)

    Conway de Macario, Everly; Macario, Alberto J L

    2003-01-01

    Many agents of physical, chemical, or biological nature, have the potential for causing cell stress. These agents are called stressors and their effects on cells are due to protein denaturation. Cells, microbes, for instance, perform their physiological functions and survive stress only if they have their proteins in the necessary concentrations and shapes. To be functional a protein shape must conform to a specific three-dimensional arrangement, named the native configuration. When a stressor (e.g., temperature elevation or heat shock, decrease in pH, hypersalinity, heavy metals) hits a microbe, it causes proteins to lose their native configuration, which is to say that stressors cause protein denaturation. The cell mounts an anti-stress response: house-keeping genes are down-regulated and stress genes are activated. Among the latter are the genes that produce the Hsp70(DnaK), Hsp60, and small heat protein (sHsp) families of stress proteins. Hsp70(DnaK) is part of the molecular chaperone machine together with Hsp40(DnaJ) and GrpE, and Hsp60 is a component of the chaperonin complex. Both the chaperone machine and the chaperonins play a crucial role in assisting microbial proteins to reach their native, functional configuration and to regain it when it is partially lost due to stress. Proteins that are denatured beyond repair are degraded by proteases so they do not accumulate and become a burden to the cell. All Archaea studied to date possess chaperonins but only some methanogens have the chaperone machine. A recent genome survey indicates that Archaea do not harbor well conserved equivalents of the co-chaperones trigger factor, Hip, Hop, BAG-1, and NAC, although the data suggest that Archaea have proteins related to Hop and to the NAC alpha subunit whose functions remain to be elucidated. Other anti-stress means involve osmolytes, ion traffic, and formation of multicellular structures. All cellular anti-stress mechanisms depend on genes whose products are

  2. Global hepatic gene expression in rainbow trout exposed to sewage effluents: A comparison of different sewage treatment technologies

    International Nuclear Information System (INIS)

    Cuklev, Filip; Gunnarsson, Lina; Cvijovic, Marija; Kristiansson, Erik; Rutgersson, Carolin; Björlenius, Berndt; Larsson, D.G. Joakim

    2012-01-01

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. - Highlights: ► Livers of trout exposed to different sewage effluents were analysed by microarray. ► Exposure to conventionally

  3. Sensory Transduction of the CO2 Response of Guard Cells

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Eduardo Zeiger

    2003-06-30

    Stomata have a key role in the regulation of gas exchange and intercellular CO2 concentrations of leaves. Guard cells sense internal and external signals in the leaf environment and transduce these signals into osmoregulatory processes that control stomatal apertures. This research proposal addresses the characterization of the sensory transduction of the CO2 signal in guard cells. Recent studies have shown that in Vicia leaves kept at constant light and temperature in a growth chamber, changes in ambient CO2 concentrations cause large changes in guard cell zeaxanthin that are linear with CO2-dependent changes in stomatal apertures. Research proposed here will test the hypothesis that zeaxanthin function as a transducer of CO2 signals in guard cells. Three central aspects of this hypothesis will be investigated: CO2 sensing by the carboxylation reaction of Rubisco in the guard cell chloroplast, which would modulate zeaxanthin concentrations via changes in lumen pH; transduction of the CO2 signal by zeaxanthin via a transducing cascade that controls guard cell osmoregulation; and blue light dependence of the CO2 signal transduction by zeaxanthin, required for the formation of an isomeric form of zeaxanthin that is physiologically active as a transducer. The role of Rubisco in CO2 sensing will be investigated in experiments characterizing the stomatal response to CO2 in the Arabidopsis mutants R100 and rca-, which have reduced rates of Rubisco-dependent carboxylation. The role of zeaxanthin as a CO2 transducer will be studied in npq1, a zeaxanthin-less mutant. The blue light-dependence of CO2 sensing will be studied in experiments characterizing the stomatal response to CO2 under red light. Arabidopsis mutants will also be used in further studies of an acclimation of the stomatal response to CO2, and a possible role of the xanthophyll cycle of the guard cell chloroplast in acclimations of the stomatal response to CO2. Studies on the osmoregulatory role of sucrose in

  4. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  5. Footprintless disruption of prosurvival genes in aneuploid cancer cells using CRISPR/Cas9 technology.

    Science.gov (United States)

    Krachulec, Justyna M; Sedlmeier, Georg; Thiele, Wilko; Sleeman, Jonathan P

    2016-06-01

    CRISPR/Cas9 has emerged as a powerful methodology for the targeted editing of genomic DNA sequences. Nevertheless, the intrinsic inefficiency of transfection methods required to use this technique with cultured cells requires the selection and isolation of successfully modified cells, which invariably subjects the cells to stress. Here we report a workflow that allows the isolation of genomically modified cells, even where loss of functional alleles constitutes a selective disadvantage owing to impaired ability to survive stress. Using targeted disruption of the Id1 and Id3 genes in murine B16-F10 and Ret melanoma cell lines as an example, we show that the method allows for the footprintless isolation of CRISPR/Cas9-modified aneuploid cancer cells. We also provide evidence that serial CRISPR/Cas9 modifications can occur, for example when initial homologous recombination events introduce cryptic PAM sequences, and demonstrate that multiple alleles can be successfully targeted in aneuploid cancer cells. By sequencing individual alleles we also found evidence for CRISPR/Cas9-induced transposable element insertion, albeit at a low frequency. This workflow should have broad application in the functional analysis of prosurvival gene function in cultured cells.

  6. Progress on fragile histidine triad and cell signal transduction

    International Nuclear Information System (INIS)

    Yang Jian; Han Ling

    2007-01-01

    Fragile histidine triad (FHIT) gene is a new tumour surpress gene. During the past decade, evidence has accumulated in surport that plays a roll in many tumors. In this review, describe the recent finding between FHIT and upstream or downsream gene in post-radiation, including ATR/CHK1 gene, bcl-2 geme, caspase family, cyclophilin A gene and nuclear factor-κB. (authors)

  7. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  8. Quinoxyfen perturbs signal transduction in barley powdery mildew (Blumeria graminis f.sp. hordei).

    Science.gov (United States)

    Wheeler, Ian E; Hollomon, Derek W; Gustafson, Gary; Mitchell, Jon C; Longhurst, Chris; Zhang, Ziguo; Gurr, Sarah J

    2003-05-01

    SUMMARY Quinoxyfen is a protectant fungicide which controls powdery mildew diseases by interfering with germination and/or appressorium formation. Mutants of barley powdery mildew, Blumeria graminis f.sp. hordei, which are resistant to quinoxyfen produce fewer conidia, which germinate and form appressoria more promiscuously than do the prolific numbers of wild-type spores. This suggests that resistance bypasses host recognition signals. RT-PCR profiles of signal transduction genes, recorded during wild-type germling morphogenesis, reveals that quinoxyfen alters the accumulation of Protein Kinase C (pkc), pkc-like and catalytic subunit of Protein Kinase A (cpka) transcripts. Differential display-reverse transcription PCR identified a gene transcript in wild-type conidia that was absent, or much less abundant, in conidia from quinoxyfen-resistant mutants. This mRNA was not detectable 24 h after wild-type conidia were inoculated on to barley. It encodes a GTPase activating protein (GAP), which may interact with a small molecular weight Ras-type GTP binding protein. In the presence of quinoxyfen, the gap mRNA remains throughout germling morphogenesis. The involvement of GAP in resistance suggests that quinoxyfen inhibits mildew infection by disrupting early cell signalling events.

  9. A computational approach for ordering signal transduction pathway components from genomics and proteomics Data

    Directory of Open Access Journals (Sweden)

    Zhao Hongyu

    2004-10-01

    Full Text Available Abstract Background Signal transduction is one of the most important biological processes by which cells convert an external signal into a response. Novel computational approaches to mapping proteins onto signaling pathways are needed to fully take advantage of the rapid accumulation of genomic and proteomics information. However, despite their importance, research on signaling pathways reconstruction utilizing large-scale genomics and proteomics information has been limited. Results We have developed an approach for predicting the order of signaling pathway components, assuming all the components on the pathways are known. Our method is built on a score function that integrates protein-protein interaction data and microarray gene expression data. Compared to the individual datasets, either protein interactions or gene transcript abundance measurements, the integrated approach leads to better identification of the order of the pathway components. Conclusions As demonstrated in our study on the yeast MAPK signaling pathways, the integration analysis of high-throughput genomics and proteomics data can be a powerful means to infer the order of pathway components, enabling the transformation from molecular data into knowledge of cellular mechanisms.

  10. Enhanced transduction and replication of RGD-fiber modified adenovirus in primary T cells.

    Directory of Open Access Journals (Sweden)

    Sadhak Sengupta

    2011-03-01

    Full Text Available Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR. T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD.A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35-45% of splenic T cells were transduced by Ad-RGD.Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin.

  11. The transduction channel TRPM5 is gated by intracellular calcium in taste cells.

    Science.gov (United States)

    Zhang, Zheng; Zhao, Zhen; Margolskee, Robert; Liman, Emily

    2007-05-23

    Bitter, sweet, and umami tastants are detected by G-protein-coupled receptors that signal through a common second-messenger cascade involving gustducin, phospholipase C beta2, and the transient receptor potential M5 (TRPM5) ion channel. The mechanism by which phosphoinositide signaling activates TRPM5 has been studied in heterologous cell types with contradictory results. To resolve this issue and understand the role of TRPM5 in taste signaling, we took advantage of mice in which the TRPM5 promoter drives expression of green fluorescent protein and mice that carry a targeted deletion of the TRPM5 gene to unequivocally identify TRPM5-dependent currents in taste receptor cells. Our results show that brief elevation of intracellular inositol trisphosphate or Ca2+ is sufficient to gate TRPM5-dependent currents in intact taste cells, but only intracellular Ca2+ is able to activate TRPM5-dependent currents in excised patches. Detailed study in excised patches showed that TRPM5 forms a nonselective cation channel that is half-activated by 8 microM Ca2+ and that desensitizes in response to prolonged exposure to intracellular Ca2+. In addition to channels encoded by the TRPM5 gene, we found that taste cells have a second type of Ca2+-activated nonselective cation channel that is less sensitive to intracellular Ca2+. These data constrain proposed models for taste transduction and suggest a link between receptor signaling and membrane potential in taste cells.

  12. Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction System

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)

    2014-01-01

    A novel full piezoelectric multilayer stacked hybrid actuation/transduction system. The system demonstrates significantly-enhanced electromechanical performance by utilizing the cooperative contributions of the electromechanical responses of multilayer stacked negative and positive strain components. Both experimental and theoretical studies indicate that for this system, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The system consists of at least 2 layers which include electromechanically active components. The layers are arranged such that when electric power is applied, one layer contracts in a transverse direction while the second layer expands in a transverse direction which is perpendicular to the transverse direction of the first layer. An alternate embodiment includes a third layer. In this embodiment, the outer two layers contract in parallel transverse directions while the middle layer expands in a transverse direction which is perpendicular to the transverse direction of the outer layers.

  13. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    -out by mass spectrometry-based proteomics has allowed exciting views on the very early events in signal transduction. Activation profiles of regulated phosphorylation sites on epidermal growth factor receptor and downstream signal transducers showed different kinetics within the first ten seconds......Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...... of stimulation. This new technique opens the perspectives for accurate analysis of rapid cellular processes and will help to establish models describing signal initiation at the plasma membrane....

  14. Single-cell analysis of G-protein signal transduction.

    Science.gov (United States)

    Clister, Terri; Mehta, Sohum; Zhang, Jin

    2015-03-13

    The growing use of fluorescent biosensors to directly probe the spatiotemporal dynamics of biochemical processes in living cells has revolutionized the study of intracellular signaling. In this review, we summarize recent developments in the use of biosensors to illuminate the molecular details of G-protein-coupled receptor (GPCR) signaling pathways, which have long served as the model for our understanding of signal transduction, while also offering our perspectives on the future of this exciting field. Specifically, we highlight several ways in which biosensor-based single-cell analyses are being used to unravel many of the enduring mysteries that surround these diverse signaling pathways. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Phosphoinositide signal transduction pathway in rat liver mitochondria

    International Nuclear Information System (INIS)

    Pasupathy, K.; Krishna, M.; Bhattacharya, R.K.

    1997-01-01

    Phosphorylation of endogenous phospholipids of rat liver mitochondrial fractions with γ[ 32 P]ATP revealed formation of all the known inositol phospholipids, such as phosphatidylinositol, phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. Additionally, a new inositol phospholipid was detected. Incorporation of [ 3 H]-labelled inositol followed a similar profile. Enzymatic experiments indicated that the new lipid could possibly be phosphatidylinositoltrisphosphate. The presence of phosphoinositides-generated second messengers such as diacylglycerol and inositol trisphosphate was also confirmed. Protein kinase C, which acts as mediator between second messengers and nuclear factors, was also found to be present in mitochondria in significant amount. These results suggest that phosphoinositide signal transduction pathway is operative in rat liver mitochondria. (author)

  16. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks

    Directory of Open Access Journals (Sweden)

    Kirouac Daniel C

    2012-05-01

    Full Text Available Abstract Background Understanding the information-processing capabilities of signal transduction networks, how those networks are disrupted in disease, and rationally designing therapies to manipulate diseased states require systematic and accurate reconstruction of network topology. Data on networks central to human physiology, such as the inflammatory signalling networks analyzed here, are found in a multiplicity of on-line resources of pathway and interactome databases (Cancer CellMap, GeneGo, KEGG, NCI-Pathway Interactome Database (NCI-PID, PANTHER, Reactome, I2D, and STRING. We sought to determine whether these databases contain overlapping information and whether they can be used to construct high reliability prior knowledge networks for subsequent modeling of experimental data. Results We have assembled an ensemble network from multiple on-line sources representing a significant portion of all machine-readable and reconcilable human knowledge on proteins and protein interactions involved in inflammation. This ensemble network has many features expected of complex signalling networks assembled from high-throughput data: a power law distribution of both node degree and edge annotations, and topological features of a “bow tie” architecture in which diverse pathways converge on a highly conserved set of enzymatic cascades focused around PI3K/AKT, MAPK/ERK, JAK/STAT, NFκB, and apoptotic signaling. Individual pathways exhibit “fuzzy” modularity that is statistically significant but still involving a majority of “cross-talk” interactions. However, we find that the most widely used pathway databases are highly inconsistent with respect to the actual constituents and interactions in this network. Using a set of growth factor signalling networks as examples (epidermal growth factor, transforming growth factor-beta, tumor necrosis factor, and wingless, we find a multiplicity of network topologies in which receptors couple to downstream

  17. Vpx rescues HIV-1 transduction of dendritic cells from the antiviral state established by type 1 interferon

    Directory of Open Access Journals (Sweden)

    Reinhard Christian

    2011-06-01

    Full Text Available Abstract Background Vpx is a virion-associated protein encoded by SIVSM, a lentivirus endemic to the West African sooty mangabey (Cercocebus atys. HIV-2 and SIVMAC, zoonoses resulting from SIVSM transmission to humans or Asian rhesus macaques (Macaca mulatta, also encode Vpx. In myeloid cells, Vpx promotes reverse transcription and transduction by these viruses. This activity correlates with Vpx binding to DCAF1 (VPRBP and association with the DDB1/RBX1/CUL4A E3 ubiquitin ligase complex. When delivered experimentally to myeloid cells using VSV G-pseudotyped virus-like particles (VLPs, Vpx promotes reverse transcription of retroviruses that do not normally encode Vpx. Results Here we show that Vpx has the extraordinary ability to completely rescue HIV-1 transduction of human monocyte-derived dendritic cells (MDDCs from the potent antiviral state established by prior treatment with exogenous type 1 interferon (IFN. The magnitude of rescue was up to 1,000-fold, depending on the blood donor, and was also observed after induction of endogenous IFN and IFN-stimulated genes (ISGs by LPS, poly(I:C, or poly(dA:dT. The effect was relatively specific in that Vpx-associated suppression of soluble IFN-β production, of mRNA levels for ISGs, or of cell surface markers for MDDC differentiation, was not detected. Vpx did not rescue HIV-2 or SIVMAC transduction from the antiviral state, even in the presence of SIVMAC or HIV-2 VLPs bearing additional Vpx, or in the presence of HIV-1 VLPs bearing all accessory genes. In contrast to the effect of Vpx on transduction of untreated MDDCs, HIV-1 rescue from the antiviral state was not dependent upon Vpx interaction with DCAF1 or on the presence of DCAF1 within the MDDC target cells. Additionally, although Vpx increased the level of HIV-1 reverse transcripts in MDDCs to the same extent whether or not MDDCs were treated with IFN or LPS, Vpx rescued a block specific to the antiviral state that occurred after HIV-1 c

  18. Information and Communication Technologies, Genes, and Peer-Production of Knowledge to Empower Citizens' Health.

    Science.gov (United States)

    Biggeri, Annibale; Tallacchini, Mariachiara

    2015-11-07

    The different and seemingly unrelated practices of Information and Communication Technologies (ICT) used to collect and share personal and scientific data within networked communities, and the organized storage of human genetic samples and information-namely biobanking-have merged with another recent epistemic and social phenomenon, namely scientists and citizens collaborating as "peers" in creating knowledge (or peer-production of knowledge). These different dimensions can be found in joint initiatives where scientists-and-citizens use genetic information and ICT as powerful ways to gain more control over their health and the environment. While this kind of initiative usually takes place only after rights have been infringed (or are put at risk)-as the two cases presented in the paper show-collaborative scientists-and-citizens' knowledge should be institutionally allowed to complement and corroborate official knowledge-supporting policies.

  19. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology?

    Science.gov (United States)

    Rylott, Elizabeth L; Johnston, Emily J; Bruce, Neil C

    2015-11-01

    It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer.

    Science.gov (United States)

    Vorvis, Christina; Hatziapostolou, Maria; Mahurkar-Joshi, Swapna; Koutsioumpa, Marina; Williams, Jennifer; Donahue, Timothy R; Poultsides, George A; Eibl, Guido; Iliopoulos, Dimitrios

    2016-06-01

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with low survival rates and limited therapeutic options. Thus elucidation of signaling pathways involved in PDAC pathogenesis is essential for identifying novel potential therapeutic gene targets. Here, we used a systems approach to elucidate those pathways by integrating gene and microRNA profiling analyses together with CRISPR/Cas9 technology to identify novel transcription factors involved in PDAC pathogenesis. FOXA2 transcription factor was found to be significantly downregulated in PDAC relative to control pancreatic tissues. Functional experiments revealed that FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation. In situ hybridization analysis revealed miR-199a to be significantly upregulated in pancreatic cancer. Bioinformatics and luciferase analyses showed that miR-199a negatively but directly regulates FOXA2 expression through binding in its 3'-untranslated region (UTR). Evaluation of the functional importance of miR-199a on pancreatic cancer revealed that miR-199a acts as an inhibitor of FOXA2 expression, inducing an increase in pancreatic cancer cell proliferation, migration, and invasion. Additionally, gene ontology and network analyses in PANC-1 cells treated with a small interfering RNA (siRNA) against FOXA2 revealed an enrichment for cell invasion mechanisms through PLAUR and ERK activation. FOXA2 deletion (FOXA2Δ) by using two CRISPR/Cas9 vectors in PANC-1 cells induced tumor growth in vivo resulting in upregulation of PLAUR and ERK pathways in FOXA2Δ xenograft tumors. We have identified FOXA2 as a novel tumor suppressor in pancreatic cancer and it is regulated directly by miR-199a, thereby enhancing our understanding of how microRNAs interplay with the transcription factors to affect pancreatic oncogenesis. Copyright © 2016 the American Physiological Society.

  1. Global hepatic gene expression in rainbow trout exposed to sewage effluents: a comparison of different sewage treatment technologies.

    Science.gov (United States)

    Cuklev, Filip; Gunnarsson, Lina; Cvijovic, Marija; Kristiansson, Erik; Rutgersson, Carolin; Björlenius, Berndt; Larsson, D G Joakim

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Objectives, capabilities and dangers in the role of international organizations and funding agencies in promoting gene-based technologies for livestock in developing countries

    International Nuclear Information System (INIS)

    Hodges, J.

    2005-01-01

    Gene-based technologies offer the world unprecedented opportunities for improving quality of life, or for reducing it in irreversible ways. The basic question addressed in this paper is the position and response of international bodies and donors on whether or not to provide gene-based technologies to developing countries. It will not be easy to attain a responsible and coherent answer to this challenging question. Gaining an objective understanding of the essential issues is hard when controversy rages across the supposedly neutral scientific facts. Nevertheless, the outcome of the discussion is of prime importance at a global level. This paper seeks to bring light into this arena. After the Introduction, three principle concerns are examined which should be at the top of the agenda of these international institutions. Following this, short reviews of the critical issues are presented covering: the scientific characteristics and uncertainties associated with gene-based technologies; the nature of target areas in which they may be applied; and the considerable disquiet in society generally. These short outlines highlight the possible benefits and dangers associated with the critical issues. It is concluded that the objectives, capabilities, opportunities and dangers cannot be evaluated at the scientific level alone; they must be evaluated as matters of high policy by all stakeholders before gene-based technologies are implemented on the ground. In view of these perspectives, at the end of the paper it is proposed that scientists should place a moratorium on the development of gene-based technologies for the development of transgenic animals. It is also proposed that, during the moratorium, the United Nations should carry out a global referendum on the desirability of gene-based technologies being applied to the food chain. Meanwhile it is recommended that international organizations and funding bodies should not promote these techniques. (author)

  3. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  4. Analysis of diverse signal transduction pathways using the genetic model system Caenorhabditis elegans

    NARCIS (Netherlands)

    Moorman, Celine

    2003-01-01

    Signal transduction allows cells to respond to signals from their environment and is therefore important for most biological processes. The binding of an extracellular signalling molecule to a cell-surface receptor is the first step in most signal transduction pathways. Cell-surface receptors

  5. Alpha(1,3) Galactosyltransferase Gene Therapy for Breast Cancer

    National Research Council Canada - National Science Library

    Link, Charles

    2003-01-01

    .... In vitro transduction of MCF-7, and T47D human breast cancer cells with an HSV amplicon vector resulted in expression of the suicide gene as detected by specific binding of labeled IB-4 isolectin...

  6. CesRK, a two-component signal transduction system in Listeria monocytogenes, responds to the presence of cell wall-acting antibiotics and affects beta-lactam resistance

    DEFF Research Database (Denmark)

    Kallipolitis, Birgitte H; Ingmer, Hanne; Gahan, Cormac G

    2003-01-01

    of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability...

  7. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  8. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  9. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  10. Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5.

    Directory of Open Access Journals (Sweden)

    Elisa Belian

    Full Text Available Adult cardiac stem cells (CSCs express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT, and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains. MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized.(1 GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2 Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3 Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.

  11. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Science.gov (United States)

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-03-09

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  12. The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation.

    Science.gov (United States)

    Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H

    2017-09-15

    Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying Δ vxrA and Δ vxrB mutations are deficient in biofilm formation, while the Δ vxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers

  13. Glycation & the RAGE axis: targeting signal transduction through DIAPH1.

    Science.gov (United States)

    Shekhtman, Alexander; Ramasamy, Ravichandran; Schmidt, Ann Marie

    2017-02-01

    The consequences of chronic disease are vast and unremitting; hence, understanding the pathogenic mechanisms mediating such disorders holds promise to identify therapeutics and diminish the consequences. The ligands of the receptor for advanced glycation end products (RAGE) accumulate in chronic diseases, particularly those characterized by inflammation and metabolic dysfunction. Although first discovered and reported as a receptor for advanced glycation end products (AGEs), the expansion of the repertoire of RAGE ligands implicates the receptor in diverse milieus, such as autoimmunity, chronic inflammation, obesity, diabetes, and neurodegeneration. Areas covered: This review summarizes current knowledge regarding the ligand families of RAGE and data from human subjects and animal models on the role of the RAGE axis in chronic diseases. The recent discovery that the cytoplasmic domain of RAGE binds to the formin homology 1 (FH1) domain, DIAPH1, and that this interaction is essential for RAGE ligand-stimulated signal transduction, is discussed. Finally, we review therapeutic opportunities targeting the RAGE axis as a means to mitigate chronic diseases. Expert commentary: With the aging of the population and the epidemic of cardiometabolic disease, therapeutic strategies to target molecular pathways that contribute to the sequelae of these chronic diseases are urgently needed. In this review, we propose that the ligand/RAGE axis and its signaling nexus is a key factor in the pathogenesis of chronic disease and that therapeutic interruption of this pathway may improve quality and duration of life.

  14. The interleukin-4 receptor: signal transduction by a hematopoietin receptor.

    Science.gov (United States)

    Keegan, A D; Pierce, J H

    1994-02-01

    Over the last several years, the receptors for numerous cytokines have been molecularly characterized. Analysis of their amino acid sequences shows that some of these receptors bear certain motifs in their extracellular domains that define a family of receptors called the Hematopoietin receptor superfamily. Significant advances in characterizing the structure, function, and mechanisms of signal transduction have been made for several members of this family. The purpose of this review is to discuss the recent advances made for one of the family members, the interleukin (IL) 4 receptor. Other receptor systems have recently been reviewed elsewhere. The IL-4 receptor consists of, at the minimum, the cloned 140 kDa IL-4-binding chain with the potential for associating with other chains. The IL-4 receptor transduces its signal by activating a tyrosine kinase that phosphorylates cellular substrates, including the receptor itself, and the 170 kDa substrate called 4PS. Phosphorylated 4PS interacts with the SH2 domain of the enzyme PI-3'-kinase and increases its enzymatic activity. These early events in the IL-4 receptor initiated signaling pathway may trigger a series of signals that will ultimately lead to an IL-4 specific biologic outcome.

  15. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  16. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction.

    Science.gov (United States)

    Sommer, Natascha; Strielkov, Ievgen; Pak, Oleg; Weissmann, Norbert

    2016-01-01

    Hypoxic pulmonary vasoconstriction (HPV), also known as the von Euler-Liljestrand mechanism, is an essential response of the pulmonary vasculature to acute and sustained alveolar hypoxia. During local alveolar hypoxia, HPV matches perfusion to ventilation to maintain optimal arterial oxygenation. In contrast, during global alveolar hypoxia, HPV leads to pulmonary hypertension. The oxygen sensing and signal transduction machinery is located in the pulmonary arterial smooth muscle cells (PASMCs) of the pre-capillary vessels, albeit the physiological response may be modulated in vivo by the endothelium. While factors such as nitric oxide modulate HPV, reactive oxygen species (ROS) have been suggested to act as essential mediators in HPV. ROS may originate from mitochondria and/or NADPH oxidases but the exact oxygen sensing mechanisms, as well as the question of whether increased or decreased ROS cause HPV, are under debate. ROS may induce intracellular calcium increase and subsequent contraction of PASMCs via direct or indirect interactions with protein kinases, phospholipases, sarcoplasmic calcium channels, transient receptor potential channels, voltage-dependent potassium channels and L-type calcium channels, whose relevance may vary under different experimental conditions. Successful identification of factors regulating HPV may allow development of novel therapeutic approaches for conditions of disturbed HPV. Copyright ©ERS 2016.

  17. Signal transduction in cells of the immune system in microgravity

    Directory of Open Access Journals (Sweden)

    Huber Kathrin

    2008-10-01

    Full Text Available Abstract Life on Earth developed in the presence and under the constant influence of gravity. Gravity has been present during the entire evolution, from the first organic molecule to mammals and humans. Modern research revealed clearly that gravity is important, probably indispensable for the function of living systems, from unicellular organisms to men. Thus, gravity research is no more or less a fundamental question about the conditions of life on Earth. Since the first space missions and supported thereafter by a multitude of space and ground-based experiments, it is well known that immune cell function is severely suppressed in microgravity, which renders the cells of the immune system an ideal model organism to investigate the influence of gravity on the cellular and molecular level. Here we review the current knowledge about the question, if and how cellular signal transduction depends on the existence of gravity, with special focus on cells of the immune system. Since immune cell function is fundamental to keep the organism under imnological surveillance during the defence against pathogens, to investigate the effects and possible molecular mechanisms of altered gravity is indispensable for long-term space flights to Earth Moon or Mars. Thus, understanding the impact of gravity on cellular functions on Earth will provide not only important informations about the development of life on Earth, but also for therapeutic and preventive strategies to cope successfully with medical problems during space exploration.

  18. Signal transduction by the platelet-derived growth factor receptor

    International Nuclear Information System (INIS)

    Williams, L.T.; Escobedo, J.A.; Keating, M.T.; Coughlin, S.R.

    1988-01-01

    The mitogenic effects of platelet-derived growth factor (PDGF) are mediated by the PDGF receptor. The mouse PDGF receptor was recently purified on the basis of its ability to become tyrosine phosphorylated in response to the A-B human platelet form of PDGF, and the receptor amino acid sequence was determined from a full-length cDNA clone. Both the human and mouse receptor cDNA sequences have been expressed in Chinese hamster ovary fibroblast (CHO) cells that normally lack PDGF receptors. This paper summarizes recent results using this system to study signal transduction by the PDGF receptor. Some of the findings show that the KI domain of the PDGF receptor plays an important role in the stimulation of DNA synthesis by PDGF. Surprisingly, the kinase insert region is not essential for PDGF stimulation of PtdIns turnover, pH change, increase in cellular calcium, and receptor autophosphorylation. In addition, PDGF stimulates a conformational change in the receptor

  19. Modulation of signal transduction by tea catechins and related phytochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Masahito [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States); Weinstein, I. Bernard [Herbert Irving Comprehensive Cancer Center and Department of Medicine, Columbia University Medical Center, HHSC-1509, 701 West 168 Street, NY 10032-2704 (United States)]. E-mail: ibw1@columbia.edu

    2005-12-11

    Epidemiologic studies in human populations and experimental studies in rodents provide evidence that green tea and its constituents can inhibit both the development and growth of tumors at a variety of tissue sites. In addition, EGCG, a major biologically active component of green tea, inhibits growth and induces apoptosis in a variety of cancer cell lines. The purpose of this paper is to review evidence that these effects are mediated, at least in part, through inhibition of the activity of specific receptor tyrosine kinases (RTKs) and related downstream pathways of signal transduction. We also review evidence indicating that the antitumor effects of the related polyphenolic phytochemicals resveratrol, genistein, curcumin, and capsaicin are exerted via similar mechanisms. Some of these agents (EGCG, genistein, and curcumin) appear to directly target specific RTKs, and all of these compounds cause inhibition of the activity of the transcription factors AP-1 and NF-{kappa}B, thus inhibiting cell proliferation and enhancing apoptosis. Critical areas of future investigation include: (1) identification of the direct molecular target(s) of EGCG and related polyphenolic compounds in cells; (2) the in vivo metabolism and bioavailability of these compounds; (3) the ancillary effects of these compounds on tumor-stromal interactions; (4) the development of synergistic combinations with other antitumor agents to enhance efficacy in cancer prevention and therapy, and also minimize potential toxicities.

  20. Signal transduction around thymic stromal lymphopoietin (TSLP in atopic asthma

    Directory of Open Access Journals (Sweden)

    Kuepper Michael

    2008-08-01

    Full Text Available Abstract Thymic stromal lymphopoietin (TSLP, a novel interleukin-7-like cytokine, triggers dendritic cell-mediated inflammatory responses ultimately executed by T helper cells of the Th2 subtype. TSLP emerged as a central player in the development of allergic symptoms, especially in the airways, and is a prime regulatory cytokine at the interface of virus- or antigen-exposed epithelial cells and dendritic cells (DCs. DCs activated by epithelium-derived TSLP can promote naïve CD4+ T cells to adopt a Th2 phenotype, which in turn recruite eosinophilic and basophilic granulocytes as well as mast cells into the airway mucosa. These different cells secrete inflammatory cytokines and chemokines operative in inducing an allergic inflammation and atopic asthma. TSLP is, thus, involved in the control of both an innate and an adaptive immune response. Since TSLP links contact of allergen with the airway epithelium to the onset and maintainance of the asthmatic syndrome, defining the signal transduction underlying TSLP expression and function is of profound interest for a better understandimg of the disease and for the development of new therapeutics.

  1. Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement

    Science.gov (United States)

    Scharfenberg, Franz-Josef; Bogner, Franz X.

    2013-01-01

    This study classified students into different cognitive load (CL) groups by means of cluster analysis based on their experienced CL in a gene technology outreach lab which has instructionally been designed with regard to CL theory. The relationships of the identified student CL clusters to learner characteristics, laboratory variables, and…

  2. Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes

    Directory of Open Access Journals (Sweden)

    Bihoreau Marie-Thérèse

    2009-02-01

    Full Text Available Abstract Background Microarray technologies are widely used to quantify the abundance of transcripts corresponding to thousands of genes. To maximise the robustness of transcriptome results, we have tested the performance and reproducibility of rat and mouse gene expression data obtained with Affymetrix, Illumina and Operon platforms. Results We present a thorough analysis of the degree of reproducibility provided by analysing the transcriptomic profile of the same animals of several experimental groups under different popular microarray technologies in different tissues. Concordant results from inter- and intra-platform comparisons were maximised by testing many popular computational methods for generating fold changes and significances and by only considering oligonucleotides giving high expression levels. The choice of Affymetrix signal extraction technique was shown to have the greatest effect on the concordance across platforms. In both species, when choosing optimal methods, the agreement between data generated on the Affymetrix and Illumina was excellent; this was verified using qRT-PCR on a selection of genes present on all platforms. Conclusion This study provides an extensive assessment of analytical methods best suited for processing data from different microarray technologies and can assist integration of technologically different gene expression datasets in biological systems.

  3. Constructive Technology Assessment (CTA) as a tool in coverage with evidence development: the case of the 70-gene prognosis signature for breast cancer diagnostics

    NARCIS (Netherlands)

    Retel, Valesca; Retèl, Valesca P.; Bueno-de-Mesquita, Jolien M.; Hummel, J. Marjan; van de Vijver, Marc J.; Douma, Kirsten F.L.; Karsenberg, Kim; van Dam, Frits S.A.M.; van Krimpen, Cees; Bellot, Frank E.; Roumen, Rudi M.H.; Linn, Sabine C.; van Harten, Willem H.

    2009-01-01

    Objectives: Constructive Technology Assessment (CTA) is a means to guide early implementation of new developments in society, and can be used as an evaluation tool for Coverage with Evidence Development (CED). We used CTA for the introduction of a new diagnostic test in the Netherlands, the 70-gene

  4. Constructive Technology Assessment (CTA) as a tool in Coverage with Evidence Development: The case of the 70-gene prognosis signature for breast cancer diagnostics

    NARCIS (Netherlands)

    Retèl, Valesca P.; Bueno-de-Mesquita, Jolien M.; Hummel, Marjan J. M.; van de Vijver, Marc J.; Douma, Kirsten F. L.; Karsenberg, Kim; van Dam, Frits S. A. M.; van Krimpen, Cees; Bellot, Frank E.; Roumen, Rudi M. H.; Linn, Sabine C.; van Harten, Wim H.

    2009-01-01

    Objectives: Constructive Technology Assessment (CTA) is a means to guide early implementation of new developments in society, and can be used as an evaluation tool for Coverage with Evidence Development (CED). We used CTA for the introduction of a new diagnostic test in the Netherlands, the 70-gene

  5. Transduction with the antioxidant enzyme catalase protects human T cells against oxidative stress.

    Science.gov (United States)

    Ando, Takashi; Mimura, Kousaku; Johansson, C Christian; Hanson, Mikael G; Mougiakakos, Dimitrios; Larsson, Charlotte; Martins da Palma, Telma; Sakurai, Daiju; Norell, Håkan; Li, Mingli; Nishimura, Michael I; Kiessling, Rolf

    2008-12-15

    Patients with diseases characterized by chronic inflammation, caused by infection or cancer, have T cells and NK cells with impaired function. The underlying molecular mechanisms are diverse, but one of the major mediators in this immune suppression is oxidative stress caused by activated monocytes, granulocytes, or myeloid-derived suppressor cells. Reactive oxygen species can seriously hamper the efficacy of active immunotherapy and adoptive transfer of T and NK cells into patients. In this study, we have evaluated whether enhanced expression of the antioxidant enzyme catalase in human T cells can protect them against reactive oxygen species. Human CD4(+) and CD8(+) T cells retrovirally transduced with the catalase gene had increased intracellular expression and activity of catalase. Catalase transduction made CD4(+) T cells less sensitive to H(2)O(2)-induced loss-of-function, measured by their cytokine production and ability to expand in vitro following anti-CD3 stimulation. It also enhanced the resistance to oxidative stress-induced cell death after coculture with activated granulocytes, exposure to the oxidized lipid 4-hydroxynonenal, or H(2)O(2). Expression of catalase by CMV-specific CD8(+) T cells saved cells from cell death and improved their capacity to recognize CMV peptide-loaded target cells when exposed to H(2)O(2). These findings indicate that catalase-transduced T cells potentially are more efficacious for the immunotherapy of patients with advanced cancer or chronic viral infections.

  6. Involvement of SGT1 in COR-mediated signal transduction pathway leading to disease symptom development.

    Science.gov (United States)

    Ishiga, Yasuhiro; Uppalapati, Srinivasa Rao; Ishiga, Takako; Mysore, Kirankumar S

    2011-07-01

    Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), that causes bacterial speck disease on tomato, produces a non-host-specific virulence effector, coronatine (COR). COR functions as a jasmonic acid (JA)-isoleucine mimic in planta and has multiple roles in the pathogenicity of Pst DC3000. One of the hallmarks of bacterial speck disease on tomato is the formation of necrotic lesions surrounded by chlorosis and COR is required for disease development. However, the molecular basis of COR-mediated disease symptom development including chlorosis and necrosis is still largely unknown. In our recent publication in New Phytologist, using virus-induced gene silencing (VIGS) based reverse genetics screen, we demonstrated that SGT1 (suppressor of G2 allele of skp1) is required for COR-induced chlorosis in Nicotiana benthamiana. SGT1-silenced tomato leaves showed a complete loss of COR-induced chlorosis and reduced disease symptom development after the inoculation with Pst DC3000. Furthermore, Arabidopsis sgt1b mutant was less sensitive to COR-induced root growth inhibition and showed delayed Pst DC3000 disease symptoms. In this addendum, we discuss the possible contribution of SGT1 to COR-mediated signal transduction pathway leading to disease symptom development during Pst DC3000 pathogenesis in tomato and Arabidopsis.

  7. Information theory and signal transduction systems: from molecular information processing to network inference.

    Science.gov (United States)

    Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H

    2014-11-01

    Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Disruption of Microtubules Post-Virus Entry Enhances Adeno-Associated Virus Vector Transduction

    Science.gov (United States)

    Xiao, Ping-Jie; Mitchell, Angela M.; Huang, Lu; Li, Chengwen; Samulski, R. Jude

    2016-01-01

    Perinuclear retention of viral particles is a poorly understood phenomenon observed during many virus infections. In this study, we investigated whether perinuclear accumulation acts as a barrier to limit recombinant adeno-associated virus (rAAV) transduction. After nocodazole treatment to disrupt microtubules at microtubule-organization center (MT-MTOC) after virus entry, we observed higher rAAV transduction. To elucidate the role of MT-MTOC in rAAV infection and study its underlying mechanisms, we demonstrated that rAAV's perinuclear localization was retained by MT-MTOC with fluorescent analysis, and enhanced rAAV transduction from MT-MTOC disruption was dependent on the rAAV capsid's nuclear import signals. Interestingly, after knocking down RhoA or inhibiting its downstream effectors (ROCK and Actin), MT-MTOC disruption failed to increase rAAV transduction or nuclear entry. These data suggest that enhancement of rAAV transduction is the result of increased trafficking to the nucleus via the RhoA-ROCK-Actin pathway. Ten-fold higher rAAV transduction was also observed by disrupting MT-MTOC in brain, liver, and tumor in vivo. In summary, this study indicates that virus perinuclear accumulation at MT-MTOC is a barrier-limiting parameter for effective rAAV transduction and defines a novel defense mechanism by which host cells restrain viral invasion. PMID:26942476

  9. Oxidative Stress, Signal Transduction, Cell-Cell Communication

    National Research Council Canada - National Science Library

    Trosko, James

    1999-01-01

    .... The integration of intercellular communication through gap junctions and intracellular pathways plays a role in maintaining the homeostasis by controlling the expression of genes that control cell...

  10. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  11. DMPD: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15379975 Signal transduction by the lipopolysaccharide receptor, Toll-like receptor... Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. PubmedID 15379975 Title Signa...l transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Authors

  12. Generation of retroviral particles for the spleen necrosis virus (SNV)-based vector system and their use in transduction of various cell types.

    Science.gov (United States)

    Parveen, Zahida; Mukhtar, Muhammad; Pomerantz, Roger J

    2010-06-01

    Genetically engineered retroviruses are widely used for gene delivery into human cells. A number of investigators have studied spleen necrosis virus (SNV) as a vehicle for gene delivery. Vectors developed from SNV and its closely associated avian reticuloendotheliosis virus strain A (REV-A) can be used for gene transfer into a variety of cells, including primary hematopoietic cells and human brain and post-mitotic neuronal cells that are difficult to transduce with other vector systems. SNV-based vector systems have the advantage of being quite safe, because wild-type SNV is unable to infect human cells and has less preference for integration into transcriptionally active sites or genes. However, the generation of retroviral vectors requires cotransfection of more than one plasmid into a packaging cell line, which is a tedious process. The development of stable packaging cell lines expressing envelope (Env) proteins and the structural proteins Gag-Pol will enhance mass production of retroviral vectors for future gene therapy experiments both in vitro and in vivo. This protocol describes the generation of retroviral particles for the SNV-based vector system. These particles can then be used for transduction of various cell types; as an example, a technique for transduction of post-mitotic neurons is also presented.

  13. Radioactive cDNA microarrys for gene expression profiles in antidepressant therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M. S.; Han, B. J.; Cha, J. H.; Ryu, Y. M.; Shin, E. K.; Park, J. H.; Park, Y. H.; Kim, M. K. [Korea University Medical College, Seoul (Korea, Republic of)

    2002-07-01

    Using radioactive cDNA microarray, we investigated a pattern of gene regulation under treatment of antidepressant on patients of depressive disoder. Basic microarray technology was performed as previously described in our research. The bioinformatic selection of human cDNAs, which is specifically designed for psychiatry, neurology, and signal transduction, were arrayed on nylon membranes. Using with 33P-labeled probes, this method provided highly sensitive gene expression profiles of our interest including brain receptors, drug metabolism, and cellular signalings. Gene expression profiles were also classified into several categories in accordance with the gene-regulation of antidepressant. The gene profiles of our interest were significantly up- (16 genes, >2.0 of Z-ratio) or down- (24 genes, <-2.0 of Z ratio) regulated when compared the good responsed group with the bad-responsed one. Consequently, we demonstrated that radioactive human cDNA microarray is highly likely to be an efficient technology for evaluating the gene regulation of antidepressants, such as selective serotonin-reuptake inhibitors (SSRIs), by using high-throughput biotechnology.

  14. Graph Regularized Meta-path Based Transductive Regression in Heterogeneous Information Network.

    Science.gov (United States)

    Wan, Mengting; Ouyang, Yunbo; Kaplan, Lance; Han, Jiawei

    2015-01-01

    A number of real-world networks are heterogeneous information networks, which are composed of different types of nodes and links. Numerical prediction in heterogeneous information networks is a challenging but significant area because network based information for unlabeled objects is usually limited to make precise estimations. In this paper, we consider a graph regularized meta-path based transductive regression model ( Grempt ), which combines the principal philosophies of typical graph-based transductive classification methods and transductive regression models designed for homogeneous networks. The computation of our method is time and space efficient and the precision of our model can be verified by numerical experiments.

  15. Standard practice for guided wave testing of above ground steel pipework using piezoelectric effect transduction

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice provides a procedure for the use of guided wave testing (GWT), also previously known as long range ultrasonic testing (LRUT) or guided wave ultrasonic testing (GWUT). 1.2 GWT utilizes ultrasonic guided waves, sent in the axial direction of the pipe, to non-destructively test pipes for defects or other features by detecting changes in the cross-section and/or stiffness of the pipe. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of defects/defected area; an estimate of the defect severity however can be provided. 1.4 This practice is intended for use with tubular carbon steel or low-alloy steel products having Nominal Pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice covers GWT using piezoelectric transduction technology. 1.6 This practice only applies to GWT of basic pipe configuration. This inc...

  16. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van [The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Melbourne, Victoria 3010 (Australia)], E-mail: i.vandriel@unimelb.edu.au

    2008-09-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain {approx}60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H{sup +}/K{sup +} ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H{sup +}/K{sup +} ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H{sup +}/K{sup +} ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in {approx}30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H{sup +}/K{sup +} ATPase which underpin the regulation of acid secretion.

  17. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa

    International Nuclear Information System (INIS)

    Gliddon, Briony L; Nguyen, Nhung V; Gunn, Priscilla A; Gleeson, Paul A; Driel, Ian R van

    2008-01-01

    Here we describe a method for the isolation of intact gastric glands from mice and primary culture and transfection of mouse gastric epithelial cells. Collagenase digestion of PBS-perfused mouse stomachs released large intact gastric glands that were plated on a basement membrane matrix. The heterogeneous gland cell cultures typically contain ∼60% parietal cells. Isolated mouse parietal cells remain viable in culture for up to 5 days and react strongly with an antibody specific to the gastric H + /K + ATPase. Isolated intact mouse gastric glands and primary cultures of mouse parietal cells respond to the secretagogue, histamine. Typical morphological changes from a resting to an acid-secreting active parietal cell were observed. In resting cultures of mouse parietal cells, the H + /K + ATPase displayed a cytoplasmic punctate staining pattern consistent with tubulovesicle element structures. Following histamine stimulation, an expansion of internal apical vacuole structures was observed together with a pronounced redistribution of the H + /K + ATPase from the cytoplasm to the apical vacuoles. A reproducible procedure to express genes of interest exogenously in these cultures of mouse parietal cells was also established. This method combines recombinant adenoviral transduction with magnetic field-assisted transfection resulting in ∼30% transduced parietal cells. Adenoviral-transduced parietal cells maintain their ability to undergo agonist-induced activation. This protocol will be useful for the isolation, culture and expression of genes in parietal cells from genetically modified mice and as such will be an invaluable tool for studying the complex exocytic and endocytic trafficking events of the H + /K + ATPase which underpin the regulation of acid secretion

  18. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    Science.gov (United States)

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  19. Signal transduction through the IL-4 and insulin receptor families.

    Science.gov (United States)

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. New insights into transduction pathways that regulate boar sperm function.

    Science.gov (United States)

    Hurtado de Llera, A; Martin-Hidalgo, D; Gil, M C; Garcia-Marin, L J; Bragado, M J

    2016-01-01

    Detailed molecular mechanisms mediating signal transduction cascades that regulate boar sperm function involving Ser/Thr and tyrosine phosphorylation of proteins have been reviewed previously. Therefore, this review will focus in those kinase pathways identified recently (functional spermatozoa processes. AMP-activated protein kinase (AMPK) is a cell energy sensor kinase that was first identified in mammalian spermatozoa in 2012, and since then it has emerged as an essential regulator of boar sperm function. Signaling pathways leading to AMPK activation in boar sperm are highlighted in this review (PKA, CaMKKα/β, and PKC as well as Ca(2+) and cAMP messengers as upstream regulators). Interestingly, stimuli considered as cell stress (hyperosmotic stress, inhibition of mitochondrial activity, absence of intracellular Ca(2+)) markedly activate AMPK in boar spermatozoa. Moreover, AMPK plays a remarkable and necessary regulatory role in mammalian sperm function, controlling essential boar sperm functional processes such as motility, viability, mitochondrial membrane potential, organization and fluidity of plasma membrane, and outer acrosome membrane integrity. These mentioned processes are all required under fluctuating environment of spermatozoa when transiting through the female reproductive tract to achieve fertilization. An applied role of AMPK in artificial insemination techniques is also suggested as during boar seminal doses preservation at 17 °C, physiological levels of AMPK activity markedly increase (maximum on Day 7) and result essential to maintain the aforementioned fundamental sperm processes. Moreover, regulation of sperm function exerted by the glycogen synthase kinase 3 and Src family kinase pathways is summarized. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Transduction on Directed Graphs via Absorbing Random Walks.

    Science.gov (United States)

    De, Jaydeep; Zhang, Xiaowei; Lin, Feng; Cheng, Li

    2017-08-11

    In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications.Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.

  2. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  3. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants1

    Science.gov (United States)

    Gibbs, Daniel J.; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M.; Holdsworth, Michael J.

    2015-01-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling. PMID:25944828

  4. Finite-State Channel Models for Signal Transduction in Neural Systems

    OpenAIRE

    Eckford, Andrew W.; Loparo, Kenneth A.; Thomas, Peter J.

    2016-01-01

    Information theory provides powerful tools for understanding communication systems. This analysis can be applied to intercellular signal transduction, which is a means of chemical communication among cells and microbes. We discuss how to apply information-theoretic analysis to ligand-receptor systems, which form the signal carrier and receiver in intercellular signal transduction channels. We also discuss the applications of these results to neuroscience.

  5. A design of the acoustic electric transduction system with piezoelectric ceramic

    Science.gov (United States)

    Ge, Qingyu

    2017-05-01

    Based on the theory of acoustic-electric transduction, a piezoelectric acoustic electric transduction system was designed, aiming at recycling the noise of turbine generator sets. The frequency response characteristic of the equivalent input impedance and output voltage. And the simulation was conducted with MATLAB. Then the conclusion was drawn that when the equivalent input impedance reached the minimum, the output voltage amplitude reached the maximum. The resonance frequency of Helmholtz resonator is the primary factor to the whole system.

  6. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  7. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5

    OpenAIRE

    Liu, Dan; Liman, Emily R.

    2003-01-01

    The transduction of taste is a fundamental process that allows animals to discriminate nutritious from noxious substances. Three taste modalities, bitter, sweet, and amino acid, are mediated by G protein-coupled receptors that signal through a common transduction cascade: activation of phospholipase C β2, leading to a breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol and inositol 1,4,5-trisphosphate, which causes release of Ca2+ from intracellular stores. The ion c...

  8. Gravity persistent signal 1 reveals a novel cytochrome P450 involved in gravitropic signal transduction

    Science.gov (United States)

    Wyatt, Sarah

    Understanding gene expression that occurs during gravitopism is important for studying the processes that link the perception of gravity to the growth response. Arabidopsis plants with a mutation in the GRAVITY PERSISTENT SIGNAL (GPS)1 locus show a "no response" phenotype during gravistimulation experiments. Basepital auxin transport in gps1 mutant was unaffected by the mutation, but auxin was not laterally redistributed after gravistimulation. GPS1 encodes CYP705A22, a cytochrome P450 protein (P450) of unknown function. The wild type CYP705A22 gene was transformed into the gps1 mutant background and successfully rescued the mutant phenotype. Data mining of microarray data collected from gravistimulated root tips of Arabidopsis indicated that although CYP705A22 was not expressed in roots, a family member CYP705A5 was up-regulated within 3 minutes after gravistimulation. Expression profiling of CYP705A5, using real-time quantitative PCR, showed that CYP705A5 was up-regulated nearly five fold within minutes of gravity stimulation. And reporter gene fusions that link the CYP705A5 gene to the green fluorescent protein showed that CYP705A5 was expressed in the root zones of elongation and maturation. Computer modeling of the catalytic domain of CYP705A22 and CYP705A5 and in silico substrate docking simulations generated a list of 130 compounds that are potential substrates of the P450s. Many of the compounds are phenylpropanoid derivatives. Heterologous expression of CYP705A5 in baculovirus and Type 1 binding studies indicate the substrate of the P450 may be quercitin or myricetin. A mutation affecting CYP705A5 expression resulted in a delayed gravity response in roots. The mutant phenotype could be chemically complemented, and DPBA staining in the CYP705A5 mutant indicated a 1.5 fold accumulation of quercetin in mutant roots as compared to WT. These data, taken together, may indicate that we have identified a flavonoid pathway that regulates auxin distribution and thus

  9. Genomic Targets and Features of BarA-UvrY (-SirA Signal Transduction Systems.

    Directory of Open Access Journals (Sweden)

    Tesfalem R Zere

    Full Text Available The two-component signal transduction system BarA-UvrY of Escherichia coli and its orthologs globally regulate metabolism, motility, biofilm formation, stress resistance, virulence of pathogens and quorum sensing by activating the transcription of genes for regulatory sRNAs, e.g. CsrB and CsrC in E. coli. These sRNAs act by sequestering the RNA binding protein CsrA (RsmA away from lower affinity mRNA targets. In this study, we used ChIP-exo to identify, at single nucleotide resolution, genomic sites for UvrY (SirA binding in E. coli and Salmonella enterica. The csrB and csrC genes were the strongest targets of crosslinking, which required UvrY phosphorylation by the BarA sensor kinase. Crosslinking occurred at two sites, an inverted repeat sequence far upstream of the promoter and a site near the -35 sequence. DNAse I footprinting revealed specific binding of UvrY in vitro only to the upstream site, indicative of additional binding requirements and/or indirect binding to the downstream site. Additional genes, including cspA, encoding the cold-shock RNA-binding protein CspA, showed weaker crosslinking and modest or negligible regulation by UvrY. We conclude that the global effects of UvrY/SirA on gene expression are primarily mediated by activating csrB and csrC transcription. We also used in vivo crosslinking and other experimental approaches to reveal new features of csrB/csrC regulation by the DeaD and SrmB RNA helicases, IHF, ppGpp and DksA. Finally, the phylogenetic distribution of BarA-UvrY was analyzed and found to be uniquely characteristic of γ-Proteobacteria and strongly anti-correlated with fliW, which encodes a protein that binds to CsrA and antagonizes its activity in Bacillus subtilis. We propose that BarA-UvrY and orthologous TCS transcribe sRNA antagonists of CsrA throughout the γ-Proteobacteria, but rarely or never perform this function in other species.

  10. Manipulation of Light Signal Transduction Factors as a Means of Modifying Steroidal Glycoalkaloids Accumulation in Tomato Leaves

    Directory of Open Access Journals (Sweden)

    Cui-cui Wang

    2018-04-01

    Full Text Available Steroidal glycoalkaloids (SGAs are cholesterol-derived specialized metabolites produced by Solanaceous plant species. They contribute to pathogen defense but are considered as anti-nutritional compounds and toxic to humans. Although the genes involved in the SGA biosynthetic pathway have been successfully cloned and identified, transcription factors regulating this pathway are still poorly understood. We report that silencing tomato light signal transduction transcription factors ELONGATED HYPOCOTYL 5 (SlHY5 and PHYTOCHROME INTERACTING FACTOR3 (SlPIF3, by virus-induced gene silencing (VIGS, altered glycoalkaloids levels in tomato leaves compared to control plant. Electrophoretic mobility shift assay (EMSA and Chromatin immunoprecipitation (ChIP analysis confirmed that SlHY5 and SlPIF3 bind to the promoter of target genes of GLYCOALKALOID METABOLISM (GAME1, GAME4, GAME17, affecting the steady-state concentrations of transcripts coding for SGA pathway enzymes. The results indicate that light-signaling transcription factors HY5 and PIF3 regulate the abundance of SGAs by modulating the transcript levels of these GAME genes. This insight into the regulation of SGA biosynthesis can be used for manipulating the level of these metabolites in crops.

  11. Transduction between worlds: using virtual and mixed reality for earth and planetary science

    Science.gov (United States)

    Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.

    2017-12-01

    Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.

  12. High efficiency generalized transduction in Escherichia coli O157:H7 [v1; ref status: indexed, http://f1000r.es/8f

    Directory of Open Access Journals (Sweden)

    Martin G Marinus

    2013-01-01

    Full Text Available Genetic manipulation in enterohemorrhagic E. coli O157:H7 is currently restricted to recombineering, a method that utilizes the recombination system of bacteriophage lambda, to introduce gene replacements and base changes inter alia into the genome. Bacteriophage 933W is a prophage in E. coli O157:H7 strain EDL933, which encodes the genes (stx2AB for the production of Shiga toxin which is the basis for the potentially fatal Hemolytic Uremic Syndrome in infected humans. We replaced the stx2AB genes with a kanamycin cassette using recombineering. After induction of the prophage by ultra-violet light, we found that bacteriophage lysates were capable of transducing to wildtype, point mutations in the lactose, arabinose and maltose genes. The lysates could also transduce tetracycline resistant cassettes. Bacteriophage 933W is also efficient at transducing markers in E. coli K-12. Co-transduction experiments indicated that the maximal amount of transferred DNA was likely the size of the bacteriophage genome, 61 kB. All tested transductants, in both E. coli K-12 and O157:H7, were kanamycin-sensitive indicating that the transducing particles contained host DNA.

  13. Evidence that membrane transduction of oligoarginine does not require vesicle formation

    International Nuclear Information System (INIS)

    Zaro, Jennica L.; Shen Weichiang

    2005-01-01

    The involvement of vesicular formation processes in the membrane transduction and nuclear transport of oligoarginine is currently a subject of controversy. In this report, a novel quantitative method which allows for the selective measurement of membrane transduction excluding concurrent endocytosis was used to determine the effects of temperature, endosomal acidification, endosomolysis, and several known inhibitors of endocytic pathways on the internalization of oligoarginine. The results show that, unlike endocytosis, transduction of oligoarginine was not affected by incubation at 16 deg. C as compared to the 37 deg. C control, and was only partially inhibited at 4 deg. C incubation. Additionally, membrane transduction was not inhibited to the same extent as endocytosis following treatment with ammonium chloride, hypertonic medium, amiloride, or filipin. The endosomolytic activity of oligoarginine was investigated by examining the leakage of FITC-dextran into the cytosolic compartment, which was not higher in the presence of oligoarginine. Furthermore, ammonium chloride showed no effect on the nuclear transport of oligoarginine. The data presented in this report indicate that membrane transduction is likely to occur at the plasma membrane without the formation of membrane vesicles, and the nuclear localization involves membrane transduction, rather than endocytosis of oligoarginine

  14. Identification of the trehalose-6-phosphate synthase gene family in ...

    Indian Academy of Sciences (India)

    ... our study mainly analysed the TPS gene family under freezing conditions in winter wheat, and determined that most of the TPS gene expression in winter wheat was induced by freezing conditions, which further suggested that wheat TPS genes were involved in winter wheat freeze-resistance signal transduction pathways ...

  15. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    NARCIS (Netherlands)

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction

  16. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side effects

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2014-01-01

    Full Text Available Empty virions are inadvertent by-products of recombinant adeno-associated virus (rAAV packaging process, resulting in vector lots with mixtures of full and empty virions at variable ratios. Impact of empty virions on the efficiency and side effects of rAAV transduction has not been well characterized. Here, we generated partially and completely empty AAV8 virions, fully packaged rAAV8 lots, and mixtures of empty and fully packaged virions with variable ratios of empty virions. The aforementioned dosing formulations of rAAV8 expressing either cellular (EGFP (enhanced green fluorescent protein or nuclear-targeted (n LacZ or secreted (human α1-antitrypsin (hA1AT reporter genes were intravenously injected into two different mouse strains, followed by analyses of transgene expressions and serum alanine aminotransferase (ALT levels at different time points. We found that addition of empty particles to the fixed doses of rAAV8 preparations repressed liver transduction up to 64% (serum hA1AT and 44% (nLacZ in C57BL/6 mice, respectively. The similar trend in inhibiting EGFP expression together with concurrent elevations of serum ALT levels were observed in the BALB/c mice, indicating that empty particles may also exacerbate side effects of rAAV8 EGFP transduction. Our results suggest that removal of empty particles from rAAV preparations may improve efficacy and safety of AAV in clinical applications.

  17. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nicholas Brookhouser

    2017-02-01

    Full Text Available In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN, transcription activator-like effector nuclease (TALEN, and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  18. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  19. Proposed Role for KaiC-Like ATPases as Major Signal Transduction Hubs in Archaea.

    Science.gov (United States)

    Makarova, Kira S; Galperin, Michael Y; Koonin, Eugene V

    2017-12-05

    All organisms must adapt to ever-changing environmental conditions and accordingly have evolved diverse signal transduction systems. In bacteria, the most abundant networks are built around the two-component signal transduction systems that include histidine kinases and receiver domains. In contrast, eukaryotic signal transduction is dominated by serine/threonine/tyrosine protein kinases. Both of these systems are also found in archaea, but they are not as common and diversified as their bacterial and eukaryotic counterparts, suggesting the possibility that archaea have evolved other, still uncharacterized signal transduction networks. Here we propose a role for KaiC family ATPases, known to be key components of the circadian clock in cyanobacteria, in archaeal signal transduction. The KaiC family is notably expanded in most archaeal genomes, and although most of these ATPases remain poorly characterized, members of the KaiC family have been shown to control archaellum assembly and have been found to be a stable component of the gas vesicle system in Halobacteria Computational analyses described here suggest that KaiC-like ATPases and their homologues with inactivated ATPase domains are involved in many other archaeal signal transduction pathways and comprise major hubs of complex regulatory networks. We predict numerous input and output domains that are linked to KaiC-like proteins, including putative homologues of eukaryotic DEATH domains that could function as adapters in archaeal signaling networks. We further address the relationships of the archaeal family of KaiC homologues to the bona fide KaiC of cyanobacteria and implications for the existence of a KaiC-based circadian clock apparatus in archaea. IMPORTANCE Little is currently known about signal transduction pathways in Archaea Recent studies indicate that KaiC-like ATPases, known as key components of the circadian clock apparatus in cyanobacteria, are involved in the regulation of archaellum assembly and

  20. Combinations of SNPs Related to Signal Transduction in Bipolar Disorder

    DEFF Research Database (Denmark)

    Koefoed, Pernille; Andreassen, Ole A; Bennike, Bente

    2011-01-01

    of complex diseases, it may be useful to look at combinations of genotypes. Genes related to signal transmission, e.g., ion channel genes, may be of interest in this respect in the context of bipolar disorder. In the present study, we analysed 803 SNPs in 55 genes related to aspects of signal transmission...... and calculated all combinations of three genotypes from the 3×803 SNP genotypes for 1355 controls and 607 patients with bipolar disorder. Four clusters of patient-specific combinations were identified. Permutation tests indicated that some of these combinations might be related to bipolar disorder. The WTCCC...... in the clusters in the two datasets. The present analyses of the combinations of SNP genotypes support a role for both genetic heterogeneity and interactions in the genetic architecture of bipolar disorder....

  1. Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates

    Directory of Open Access Journals (Sweden)

    Yusuke eNakane

    2014-05-01

    Full Text Available Most vertebrates living outside the tropical zone show robust physiological responses in response to seasonal changes in photoperiod, such as seasonal reproduction, molt, and migration. The highly sophisticated photoperiodic mechanism in Japanese quail has been used to uncover the mechanism of seasonal reproduction. Molecular analysis of quail mediobasal hypothalamus (MBH revealed that local thyroid hormone activation within the MBH plays a critical role in the photoperiodic response of gonads. This activation is accomplished by two gene switches: thyroid hormone-activating (DIO2 and thyroid hormone-inactivating enzymes (DIO3. Functional genomics studies have shown that long-day induced thyroid-stimulating hormone (TSH in the pars tuberalis (PT of the pituitary gland regulates DIO2/3 switching. In birds, light information received directly by deep brain photoreceptors regulates PT TSH. Recent studies demonstrated that Opsin 5-positive cerebrospinal fluid (CSF-contacting neurons are deep brain photoreceptors that regulate avian seasonal reproduction. Although the involvement of TSH and DIO2/3 in seasonal reproduction has been confirmed in various mammals, the light input pathway that regulates PT TSH in mammals differs from that of birds. In mammals, the eye is the only photoreceptor organ and light information received by the eye is transmitted to the pineal gland through the circadian pacemaker, the suprachiasmatic nucleus. Nocturnal melatonin secretion from the pineal gland indicates the length of night and regulates the PT TSH. In fish, the regulatory machinery for seasonal reproduction, from light input to neuroendocrine output, has been recently demonstrated in the coronet cells of the saccus vasculosus (SV. The SV is unique to fish and coronet cells are CSF-contacting neurons. Here, we discuss the universality and diversity of signal transduction pathways that regulate vertebrate seasonal reproduction.

  2. A transductive neuro-fuzzy controller: application to a drilling process.

    Science.gov (United States)

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  3. Increased entropy of signal transduction in the cancer metastasis phenotype

    Directory of Open Access Journals (Sweden)

    Teschendorff Andrew E

    2010-07-01

    Full Text Available Abstract Background The statistical study of biological networks has led to important novel biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Results Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis and provide examples of de-novo discoveries of gene modules with known roles in apoptosis, immune-mediated tumour suppression, cell-cycle and tumour invasion. Importantly, we also identify a novel gene module within the insulin growth factor signalling pathway, alteration of which may

  4. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Li, Xinfeng; Wang, Xun; Li, Zhou; He, Jin

    2016-10-01

    YvcPQ is one of the two-component signal transduction systems that respond to specific stimuli and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvcQ and a response regulator YvcP. In this study, through searching the consensus sequence recognized by YvcP, we found four YvcP-binding motifs in the promoter regions of genes yvcR (BMB171_C4100), BMB171_C4385, kapD (BMB171_C4525) and BMB171_C4835 in Bacillus thuringiensis BMB171 which is a representative of Bacillus cereus group, and confirmed that these genes are regulated by YvcP. We compared the sequence of yvcPQ and its downstream genes in genus Bacillus, and found two different kinds of yvc locus, one was the yvcPQ-RS in B. subtilis species and the other was the yvcPQ-R-S1S2 in B. cereus group. Furthermore, we found that YvcP activates the transcription of yvcS1S2 (downstream of yvcR) to promote bacterial resistance to bacitracin and deletion of either yvcPQ operon or yvcS1S2 operon renders the bacterial cells more sensitive to bacitracin. This study enriched our understanding of both the YvcPQ's function and the mechanism of bacterial resistance to bacitracin.

  5. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenes

    Science.gov (United States)

    2015-12-01

    MP, Wang C, Pestell RG. Acetylation of the cell-fate factor dachshund determines p53 binding and signaling modules in breast cancer . Oncotarget...cell proliferation in vivo using Ki67 immunostaining • Expression of Dach1 was shown to block prostate cancer cell proliferation in tissue culture...studies demonstrated that these interactions between Dach1 and associated proteins (with YB1 and p53) contribute to growth of other cancer ( breast

  6. The Role of Retinal Determination Gene Network (RDGN) in Hormone Signaling Transduction and Prostate Tumorigenesis

    Science.gov (United States)

    2012-10-01

    mutant or flag-tagged Six1 were seeded into 4-well chamber. Fluorescent stain was performed with anti-Flag (M2, Sigma) and AR (H280, Santa Cruz ...402. 62. Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R, Fisher PB, Plymate SR, Wu JD. IL-6 promotes prostate tumorigenesis and progression

  7. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  8. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  9. Discovery of intramolecular signal transduction network based on a new protein dynamics model of energy dissipation.

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Ma

    Full Text Available A novel approach to reveal intramolecular signal transduction network is proposed in this work. To this end, a new algorithm of network construction is developed, which is based on a new protein dynamics model of energy dissipation. A key feature of this approach is that direction information is specified after inferring protein residue-residue interaction network involved in the process of signal transduction. This enables fundamental analysis of the regulation hierarchy and identification of regulation hubs of the signaling network. A well-studied allosteric enzyme, E. coli aspartokinase III, is used as a model system to demonstrate the new method. Comparison with experimental results shows that the new approach is able to predict all the sites that have been experimentally proved to desensitize allosteric regulation of the enzyme. In addition, the signal transduction network shows a clear preference for specific structural regions, secondary structural types and residue conservation. Occurrence of super-hubs in the network indicates that allosteric regulation tends to gather residues with high connection ability to collectively facilitate the signaling process. Furthermore, a new parameter of propagation coefficient is defined to determine the propagation capability of residues within a signal transduction network. In conclusion, the new approach is useful for fundamental understanding of the process of intramolecular signal transduction and thus has significant impact on rational design of novel allosteric proteins.

  10. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  11. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  12. Mutations in the gravity persistence signal loci in Arabidopsis disrupt the perception and/or signal transduction of gravitropic stimuli

    Science.gov (United States)

    Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2002-01-01

    Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.

  13. Binary transformation systems based on 'shooter' mutants of Agrobacterium tumefaciens: a simple, efficient and universal gene transfer technology that permits marker gene elimination.

    Science.gov (United States)

    Mihálka, V; Balázs, E; Nagy, I

    2003-04-01

    A simple transformation procedure with a positive selection scheme using the expression of the isopentenyl transferase ( ipt) gene of transfer DNA (T-DNA) 'shooter' mutants of Agrobacterium tumefaciens was elaborated. After comparing several 'shooter' mutants we found that particular strains frequently produced phenotypically normal shoots after co-culturing with tobacco leaf explants. Shoots selected for normal phenotype showed apical dominance and could be rooted with the same efficiency as non-transformed shoots. When binary vectors were introduced into these strains, stably integrated binary vector T-DNA sequences were found in some regenerants, which were produced under non-selective conditions on growth-regulator-free medium. Such phenotypically normal transformants typically lacked a stably integrated ipt gene. Normal looking shoots could also be produced in tomato, muskmelon and sweet pepper.

  14. Gene expression in the brain and kidney of rainbow trout in response to handling stress

    Directory of Open Access Journals (Sweden)

    Afanasyev Sergey

    2005-01-01

    Full Text Available Abstract Background Microarray technologies are rapidly becoming available for new species including teleost fishes. We constructed a rainbow trout cDNA microarray targeted at the identification of genes which are differentially expressed in response to environmental stressors. This platform included clones from normalized and subtracted libraries and genes selected through functional annotation. Present study focused on time-course comparisons of stress responses in the brain and kidney and the identification of a set of genes which are diagnostic for stress response. Results Fish were stressed with handling and samples were collected 1, 3 and 5 days after the first exposure. Gene expression profiles were analysed in terms of Gene Ontology categories. Stress affected different functional groups of genes in the tissues studied. Mitochondria, extracellular matrix and endopeptidases (especially collagenases were the major targets in kidney. Stress response in brain was characterized with dramatic temporal alterations. Metal ion binding proteins, glycolytic enzymes and motor proteins were induced transiently, whereas expression of genes involved in stress and immune response, cell proliferation and growth, signal transduction and apoptosis, protein biosynthesis and folding changed in a reciprocal fashion. Despite dramatic difference between tissues and time-points, we were able to identify a group of 48 genes that showed strong correlation of expression profiles (Pearson r > |0.65| in 35 microarray experiments being regulated by stress. We evaluated performance of the clone sets used for preparation of microarray. Overall, the number of differentially expressed genes was markedly higher in EST than in genes selected through Gene Ontology annotations, however 63% of stress-responsive genes were from this group. Conclusions 1. Stress responses in fish brain and kidney are different in function and time-course. 2. Identification of stress

  15. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity.

    Science.gov (United States)

    Elosegui-Artola, Alberto; Oria, Roger; Chen, Yunfeng; Kosmalska, Anita; Pérez-González, Carlos; Castro, Natalia; Zhu, Cheng; Trepat, Xavier; Roca-Cusachs, Pere

    2016-05-01

    Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.

  16. Ciliary neurotrophic factor infused intracerebroventricularly shows reduced catabolic effects when linked to the TAT protein transduction domain.

    Science.gov (United States)

    Vieira, André S; Rezende, Alexandre C S; Grigoletto, Jessica; Rogério, Fabio; Velloso, Lício A; Skaper, Stephen D; Negro, Alessandro; Langone, Francesco

    2009-09-01

    Ciliary neurotrophic factor (CNTF) regulates the differentiation and survival of a wide spectrum of developing and adult neurons, including motor neuron loss after injury. We recently described a cell-penetrant recombinant human CNTF (rhCNTF) molecule, formed by fusion with the human immunodeficiency virus-1 transactivator of transcription (TAT) protein transduction domain (TAT-CNTF) that, upon subcutaneous administration, retains full neurotrophic activity without cytokine-like side-effects. Although the CNTF receptor is present in hypothalamic nuclei, which are involved in the control of energy, rhCNTF but not TAT-CNTF stimulates signal transducers and activators of transcription 3 phosphorylation in the rat hypothalamus after subcutaneous administration. This could be due limited TAT-CNTF distribution in the hypothalamus and/or altered intracellular signaling by the fusion protein. To explore these possibilities, we examined the effect of intracerebroventricular administration of TAT-CNTF in male adult rats. TAT-CNTF-induced weight loss, although the effect was smaller than that seen with either rhCNTF or leptin (which exerts CNTF-like effects via its receptor). In contrast to rhCNTF and leptin, TAT-CNTF neither induced morphological changes in adipose tissues nor increased uncoupling protein 1 expression in brown adipose tissue, a characteristic feature of rhCNTF and leptin. Acute intracerebroventricular administration of TAT-CNTF induced a less robust phosphorylation of signal transducers and activators of transcription 3 in the hypothalamus, compared with rhCNTF. The data show that fusion of a protein transduction domain may change rhCNTF CNS distribution, while further strengthening the utility of cell-penetrating peptide technology to neurotrophic factor biology beyond the neuroscience field.

  17. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Lim, Soon Sung [Department of Food Science and Nutrition and RIC Center, Hallym University, Chunchon 200-702 (Korea, Republic of); Kang, Tae-Cheon [Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kwon, Hyeok Yil [Department of Physiology, College of Medicine, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Hwang, Hyun Sook, E-mail: wazzup@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2011-03-18

    Research highlights: {yields} We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. {yields} PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. {yields} PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. {yields} PM increased anti-inflammatory activity of PEP-1-catalase. {yields} PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1{beta}, and tumor necrosis factor-{alpha} induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  18. Effects of pergolide mesylate on transduction efficiency of PEP-1-catalase protein

    International Nuclear Information System (INIS)

    Sohn, Eun Jeong; Kim, Dae Won; Kim, Young Nam; Kim, So Mi; Lim, Soon Sung; Kang, Tae-Cheon; Kwon, Hyeok Yil; Kim, Duk-Soo; Cho, Sung-Woo; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Hwang, Hyun Sook; Choi, Soo Young

    2011-01-01

    Research highlights: → We studied effects of pergolide mesylate (PM) on in vitro and in vivo transduction of PEP-1-catalase. → PEP-1-catatase inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation. → PM enhanced the transduction of PEP-1-catalase into HaCaT cells and skin tissue. → PM increased anti-inflammatory activity of PEP-1-catalase. → PM stimulated therapeutic action of anti-oxidant enzyme catalase in oxidative-related diseases. -- Abstract: The low transduction efficiency of various proteins is an obstacle to their therapeutic application. However, protein transduction domains (PTDs) are well-known for a highly effective tool for exogenous protein delivery to cells. We examined the effects of pergolide mesylate (PM) on the transduction of PEP-1-catalase into HaCaT human keratinocytes and mice skin and on the anti-inflammatory activity of PEP-1-catatase against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation using Western blot and histological analysis. PM enhanced the time- and dose-dependent transduction of PEP-1-catalase into HaCaT cells without affecting the cellular toxicity. In a mouse edema model, PEP-1-catalase inhibited the increased expressions of inflammatory mediators and cytokines such as cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6 and -1β, and tumor necrosis factor-α induced by TPA. On the other hand, PM alone failed to exert any significant anti-inflammatory effects. However, the anti-inflammatory effect of co-treatment with PEP-1-catalase and PM was more potent than that of PEP-1-catalase alone. Our results indicate that PM may enhance the delivery of PTDs fusion therapeutic proteins to target cells and tissues and has potential to increase their therapeutic effects of such drugs against various diseases.

  19. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Science.gov (United States)

    Jiang, Lingyan; Feng, Lu; Yang, Bin; Zhang, Wenwen; Wang, Peisheng; Jiang, Xiaohan; Wang, Lei

    2017-06-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1)-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2) limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008), named LoiA (low oxygen induced factor A), directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1). Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF) under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  20. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced Salmonella Typhimurium invasion.

    Directory of Open Access Journals (Sweden)

    Lingyan Jiang

    2017-06-01

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium is a major intestinal pathogen of both humans and animals. Salmonella pathogenicity island 1 (SPI-1-encoded virulence genes are required for S. Typhimurium invasion. While oxygen (O2 limitation is an important signal for SPI-1 induction under host conditions, how the signal is received and integrated to the central SPI-1 regulatory system in S. Typhimurium is not clear. Here, we report a signal transduction pathway that activates SPI-1 expression in response to low O2. A novel regulator encoded within SPI-14 (STM14_1008, named LoiA (low oxygen induced factor A, directly binds to the promoter and activates transcription of hilD, leading to the activation of hilA (the master activator of SPI-1. Deletion of loiA significantly decreased the transcription of hilA, hilD and other representative SPI-1 genes (sipB, spaO, invH, prgH and invF under low O2 conditions. The response of LoiA to the low O2 signal is mediated by the ArcB/ArcA two-component system. Deletion of either arcA or arcB significantly decreased transcription of loiA under low O2 conditions. We also confirmed that SPI-14 contributes to S. Typhimurium virulence by affecting invasion, and that loiA is the virulence determinant of SPI-14. Mice infection assays showed that S. Typhimurium virulence was severely attenuated by deletion of either the entire SPI-14 region or the single loiA gene after oral infection, while the virulence was not affected by either deletion after intraperitoneal infection. The signal transduction pathway described represents an important mechanism for S. Typhimurium to sense and respond to low O2 conditions of the host intestinal tract for invasion. SPI-14-encoded loiA is an essential element of this pathway that integrates the low O2 signal into the SPI-1 regulatory system. Acquisition of SPI-14 is therefore crucial for the evolution of S. Typhimurium as an intestinal pathogen.

  1. Editing of the Luteinizing Hormone Gene to Sterilize Channel Catfish, Ictalurus punctatus, Using a Modified Zinc Finger Nuclease Technology with Electroporation.

    Science.gov (United States)

    Qin, Zhenkui; Li, Yun; Su, Baofeng; Cheng, Qi; Ye, Zhi; Perera, Dayan A; Fobes, Michael; Shang, Mei; Dunham, Rex A

    2016-04-01

    Channel catfish (Ictalurus punctatus) is the most important freshwater aquaculture species in the USA. Genetically enhanced fish that are sterile could both profit the catfish industry and reduce potential environmental and ecological risks. As the first step to generate sterile channel catfish, three sets of zinc finger nuclease (ZFN) plasmids targeting the luteinizing hormone (LH) gene were designed and electroporated into one-cell embryos, different concentrations were introduced, and the Cel-I assay was conducted to detect mutations. Channel catfish carrying the mutated LH gene were sterile, as confirmed by DNA sequencing and mating experiments. The overall mutation rate was 19.7 % for 66 channel catfish, and the best treatment was ZFN set 1 at the concentration 25 μg/ml. To our knowledge, this is the first instance of gene editing of fish via plasmid introduction instead of mRNA microinjection. The introduction of the ZFN plasmids may have reduced mosaicism, as mutated individuals were gene edited in every tissue evaluated. Apparently, the plasmids were eventually degraded without integration, as they were not detectable in mutated individuals using PCR. Carp pituitary extract failed to induce spawning and restoration of fertility, indicating the need for developing other hormone therapies to achieve reversal of sterility upon demand. This is the first sterilization achieved using ZFN technology in an aquaculture species and the first successful gene editing of channel catfish. Our results will help understand the roles of the LH gene, purposeful sterilization of teleost fishes, and is a step towards control of domestic, hybrid, exotic, invasive, and transgenic fishes.

  2. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Sotirios Vasileiadis

    Full Text Available The novel multi-million read generating sequencing technologies are very promising for resolving the immense soil 16S rRNA gene bacterial diversity. Yet they have a limited maximum sequence length screening ability, restricting studies in screening DNA stretches of single 16S rRNA gene hypervariable (V regions. The aim of the present study was to assess the effects of properties of four consecutive V regions (V3-6 on commonly applied analytical methodologies in bacterial ecology studies. Using an in silico approach, the performance of each V region was compared with the complete 16S rRNA gene stretch. We assessed related properties of the soil derived bacterial sequence collection of the Ribosomal Database Project (RDP database and concomitantly performed simulations based on published datasets. Results indicate that overall the most prominent V region for soil bacterial diversity studies was V3, even though it was outperformed in some of the tests. Despite its high performance during most tests, V4 was less conserved along flanking sites, thus reducing its ability for bacterial diversity coverage. V5 performed well in the non-redundant RDP database based analysis. However V5 did not resemble the full-length 16S rRNA gene sequence results as well as V3 and V4 did when the natural sequence frequency and occurrence approximation was considered in the virtual experiment. Although, the highly conserved flanking sequence regions of V6 provide the ability to amplify partial 16S rRNA gene sequences from very diverse owners, it was demonstrated that V6 was the least informative compared to the rest examined V regions. Our results indicate that environment specific database exploration and theoretical assessment of the experimental approach are strongly suggested in 16S rRNA gene based bacterial diversity studies.

  3. Better Targeting, Better Efficiency for Wide-scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B

    Directory of Open Access Journals (Sweden)

    Kasey L Jackson

    2016-11-01

    Full Text Available Widespread genetic modification of cells in the central nervous system (CNS with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin hybrid (CBA promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered AAV-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS-related protein TDP-43 with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  4. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae.

    Science.gov (United States)

    Mitchell, Stephanie L; Ismail, Ayman M; Kenrick, Sophia A; Camilli, Andrew

    2015-03-04

    Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.

  5. Activation of CNTF/CNTFRα signaling pathway by hRheb(S16H transduction of dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Kyoung Hoon Jeong

    Full Text Available Ciliary neurotrophic factor (CNTF is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα. It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson's disease (PD patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc, suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb, with an S16H mutation [hRheb(S16H], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H may have therapeutic potential in the treatment of PD.

  6. Activation of CNTF/CNTFRα Signaling Pathway by hRheb(S16H) Transduction of Dopaminergic Neurons In Vivo

    Science.gov (United States)

    Jeong, Kyoung Hoon; Nam, Jin Han; Jin, Byung Kwan; Kim, Sang Ryong

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is one of representative neurotrophic factors for the survival of dopaminergic neurons. Its effects are primarily mediated via CNTF receptor α (CNTFRα). It is still unclear whether the levels of CNTFRα change in the substantia nigra of Parkinson’s disease (PD) patients, but CNTF expression shows the remarkable decrease in dopaminergic neurons in the substantia nigra pars compacta (SNpc), suggesting that the support of CNTF/CNTFRα signaling pathway may be a useful neuroprotective strategy for the nigrostriatal dopaminergic projection in the adult brain. Here, we report that transduction of rat SNpc dopaminergic neurons by adeno-associated virus with a gene encoding human ras homolog enriched in brain (hRheb), with an S16H mutation [hRheb(S16H)], significantly upregulated the levels of both CNTF and CNTFRα in dopaminergic neurons. Moreover, the hRheb(S16H)-activated CNTF/CNTFRα signaling pathway was protective against 1-methyl-4-phenylpyridinium-induced neurotoxicity in the nigrostriatal dopaminergic projections. These results suggest that activation of CNTF/CNTFRα signaling pathway by specific gene delivery such as hRheb(S16H) may have therapeutic potential in the treatment of PD. PMID:25799580

  7. Better Targeting, Better Efficiency for Wide-Scale Neuronal Transduction with the Synapsin Promoter and AAV-PHP.B.

    Science.gov (United States)

    Jackson, Kasey L; Dayton, Robert D; Deverman, Benjamin E; Klein, Ronald L

    2016-01-01

    Widespread genetic modification of cells in the central nervous system (CNS) with a viral vector has become possible and increasingly more efficient. We previously applied an AAV9 vector with the cytomegalovirus/chicken beta-actin (CBA) hybrid promoter and achieved wide-scale CNS transduction in neonatal and adult rats. However, this method transduces a variety of tissues in addition to the CNS. Thus we studied intravenous AAV9 gene transfer with a synapsin promoter to better target the neurons. We noted in systematic comparisons that the synapsin promoter drives lower level expression than does the CBA promoter. The engineered adeno-associated virus (AAV)-PHP.B serotype was compared with AAV9, and AAV-PHP.B did enhance the efficiency of expression. Combining the synapsin promoter with AAV-PHP.B could therefore be advantageous in terms of combining two refinements of targeting and efficiency. Wide-scale expression was used to model a disease with widespread pathology. Vectors encoding the amyotrophic lateral sclerosis (ALS)-related protein transactive response DNA-binding protein, 43 kDa (TDP-43) with the synapsin promoter and AAV-PHP.B were used for efficient CNS-targeted TDP-43 expression. Intracerebroventricular injections were also explored to limit TDP-43 expression to the CNS. The neuron-selective promoter and the AAV-PHP.B enhanced gene transfer and ALS disease modeling in adult rats.

  8. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.

    Science.gov (United States)

    Liu, Ding-yuan; Qiu, Ting; Ding, Xiao-hui; Li, Miao-miao; Zhu, Mu-yuan; Wang, Jun-hui

    2016-08-01

    IAA2 is a member of the Aux/IAA auxin responsive gene family in Arabidopsis thaliana. No iaa2 mutant has been reported until now, thus hindering its further mechanistic investigations. The normal genomic editing technology of CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) uses only a single guide RNA (sgRNA) to target one site in a specific gene, and the gene knockout efficiency is not high. Instead, multiple sgRNAs can target multiple sites; therefore, the efficiency may be improved. In the present investigation, we used the golden-gate cloning strategy and two rounds of PCR reactions to combine three sgRNAs in the same entry vector. The final expression vector was obtained by LR reactions with the destination vector containing the Cas9 expression cassette. Four out of the six sgRNAs were effective, and we also obtained a lot of insertion and deletion mutations. Compared with one sgRNA approach, multiple sgRNAs displayed higher gene-knockout efficiency and produced more germ-line mutants. Thus, we established a more rapid and efficient method and generated five mutants for further studies of IAA2 functions.

  9. Adenovirus serotype 5 vectors with Tat-PTD modified hexon and serotype 35 fiber show greatly enhanced transduction capacity of primary cell cultures.

    Directory of Open Access Journals (Sweden)

    Di Yu

    Full Text Available Recombinant adenovirus serotype 5 (Ad5 vectors represent one of the most efficient gene delivery vectors in life sciences. However, Ad5 is dependent on expression of the coxsackievirus-adenovirus-receptor (CAR on the surface of target cell for efficient transduction, which limits it's utility for certain cell types. Herein we present a new vector, Ad5PTDf35, which is an Ad5 vector having serotype 35 fiber-specificity and Tat-PTD hexon-modification. This vector shows dramatically increased transduction capacity of primary human cell cultures including T cells, monocytes, macrophages, dendritic cells, pancreatic islets and exocrine cells, mesenchymal stem cells and tumor initiating cells. Biodistribution in mice following systemic administration (tail-vein injection show significantly reduced uptake in the liver and spleen of Ad5PTDf35 compared to unmodified Ad5. Therefore, replication-competent viruses with these modifications may be further developed as oncolytic agents for cancer therapy. User-friendly backbone plasmids containing these modifications were developed for compatibility to the AdEasy-system to facilitate the development of surface-modified adenoviruses for gene delivery to difficult-to-transduce cells in basic, pre-clinical and clinical research.

  10. The application of gene-based technologies in the study of Newcastle disease virus isolates from Uganda

    International Nuclear Information System (INIS)

    Otim, M.O.; Bisgaard, M.; Christensen, H.; Jorgensen, P.; Handberg, K.

    2005-01-01

    Molecular techniques were used to characterize 16 Newcastle disease (ND) Virus (NDV) isolates from ND outbreaks in chickens in eastern Uganda in 2001, and evaluate ND epidemiology, with emphasis on molecular aspects. F and HN genes, which are the major determinants of virulence, were studied. Strain pathogenicity was derived from genetic analysis of the F gene sequence and intracerebral pathogenicity index (ICPI). Comparative genetic and phylogenetic tree analyses were performed on the HN genes of the isolates and some strains selected from GenBank. ClustalX 1.81 and Phylip were used for gene alignment analysis and the final phylogeny was produced by the neighbour-joining method. F gene cleavage site sequence analysis, phylogenetic analysis and biological characterization showed that the strains were very virulent and closely related, being of common ancestry. All the Ugandan NDV isolates formed separate clades from the currently known genotypes, suggesting that they are a novel genotype, unrelated to those that have caused previous pandemics. (author)

  11. In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology

    Science.gov (United States)

    Fazli, Mustafa; Harrison, Joe J.; Gambino, Michela; Givskov, Michael

    2015-01-01

    Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. PMID:25795676

  12. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems.

    Science.gov (United States)

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-10-01

    The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.

  13. The Pacific White Shrimp β-actin Promoter: Functional Properties and the Potential Application for Transduction System Using Recombinant Baculovirus.

    Science.gov (United States)

    Shi, Yingli; Xiang, Jianhai; Zhou, Guangzhou; Ron, Tetsuzan Benny; Tong, Hsin-I; Kang, Wen; Sun, Si; Lu, Yuanan

    2016-06-01

    A newly isolated Pacific white shrimp (Litopenaeus vannamei) beta-actin promoter SbaP and its derivative compact construct SbaP (ENX) have recently been demonstrated to promote ectopic gene expression in vitro and in vivo. To further explore the potential transduction application, this newly isolated shrimp promoter SbaP was comparatively tested with cytomegalovirus (CMV), simian virus 40 (SV40), polyhedrin (Polh), and white spot syndrome virus immediate early gene 1 (WSSV ie1) four constitutive promoters and a beta-actin promoter (TbaP) from tilapia fish to characterize its promoting function in eight different cell lines. Luciferase quantitation assays revealed that SbaP can drive luciferase gene expression in all eight cell lines including sf21 (insect), PAC2 (zebrafish), EPC (carp), CHSE-214 (chinook salmon), GSTEF (green sea turtle), MS-1 (monk seal), 293T (human), and HeLa (human), but at different levels. Comparative analysis revealed that the promoting activity of SbaP was lower (≤10-fold) than CMV but higher (2-20 folds) than Polh in most of these cell lines tested. Whereas, SbaP mediated luciferase expression in sf21 cells was over 20-fold higher than CMV, SV40, Polh, and TbaP promoter. Compared to the SbaP, SbaP (ENX), which was constructed on the basis of SbaP by deletion of two "negative" regulatory elements, exhibited no significant change of promoting activity in EPC and PAC2 cells, but a 5 and 16 % lower promoting effect in 293T and HeLa cells, respectively. Additionally, a recombinant baculovirus was constructed under the control of SbaP (ENX), and efficient promoter activity of newly generated baculoviral vector was detected both in vitro of infected sf21 cells and in vivo of injected indicator shrimp. These results warrant the potential application of SbaP, particularly SbaP (ENX) in ectopic gene expression in future.

  14. hHO-1 combined with GATA-4 transduction promotes myocardial transdifferentiation and anti- apoptosis of rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ning-bo DENG

    2017-06-01

    Full Text Available Objectives To explore if the rat bone marrow mesenchymal stem cells (BMSCs modified by human heme oxygenase 1 (hHO-1 gene combined with GATA-4 gene may promote the ability of anti-apoptosis and myocardial transdifferentiation in vitro in hypoxia ischemic environment. Methods The rat BMSCs were isolated and cultured by whole bone marrow adherence and identified in vitro, and then were transfected with recombinant adenovirus; Western blotting was used to determinate the optimal time of gene expression; the genetically modified BMSCs were taken to hypoxia serum-free conditions simulating ischemia hypoxia microenvironment in vivo; CCK-8 kit and trypan blue staining were performed to detect the 12, 24, 48 and 72h survival rates in hypoxia ischemia respectively; flow cytometry was used to detect the apoptosis of BMSCs in hypoxia ischemia for 24h. The cardiomyocyte-specific cardiac troponin I (cTnI was detected by Western blotting and cellular immunofluorescence. Results The 12, 24, 48 and 72h survival rates were higher in hHO-1+GATA-4 group cultured in ischemia and hypoxia condition than in hHO-1 group (P<0.05 and GATA-4 group (P<0.05. After 24h cultivation in ischemia hypoxia condition, the apoptotic rates were lower in hHO-1+GATA-4 group than in hHO-1 group (P<0.05 and GATA-4 group (P<0.05. No significant difference existed in cTnI expressions between GATA-4 group and hHO-1+GATA-4 group. Conclusion Compared with transfection of hHO-1 or GATA-4 single gene, hHO-1 combined with GATA-4 transduction can significantly increase the survival rate of BMSCs in hypoxia ischemic condition, but myocardial transdifferentiation does not increase significantly. DOI: 10.11855/j.issn.0577-7402.2017.04.08

  15. The role of plant bio-technologies with P4502E1 gene to remove radioactive contamination

    International Nuclear Information System (INIS)

    Mohammed, R. S.; Ibrahim, K.; Ali, N.; Al-Daoude, A.

    2012-12-01

    The aim of this research is to attempt removing pollution caused by some radioactive materials in polluted soils as a result exposure to radioactive particularly radioactive bombardments or misuse of atomic reactors, causing soil, water and air pollution. Two plant species were used in this study namely, sabins grandiflora and Arabidopsis thaliana. The bacterium victor Agrobacterium tumefaciens was used to transform the two plant species with used to transform the two plant species with the cytochrome gene P4502E1 which has been isolated from rabbit liver. The presence of the gene was investigated in plants using polymers chain reaction (PCR) after design of primers for this purpose. Transformation was proved after gene expression of P4502E1. Results showed that the plants were examined after transformation for their ability in removing the uranium, cesium and strontium in soils polluted with the three pollutants. (Author)

  16. Sensory cilia and integration of signal transduction in human health and disease

    DEFF Research Database (Denmark)

    Christensen, Søren T; Pedersen, Lotte B; Schneider, Linda

    2007-01-01

    The primary cilium is a hallmark of mammalian tissue cells. Recent research has shown that these organelles display unique sets of selected signal transduction modules including receptors, ion channels, effector proteins and transcription factors that relay chemical and physical stimuli from the ...

  17. Expression of the cholinergic signal-transduction pathway components during embryonic rat heart development

    NARCIS (Netherlands)

    Franco, D.; Moorman, A. F.; Lamers, W. H.

    1997-01-01

    BACKGROUND: Previous studies showed that acetylcholinesterase (AChE) activity is present in the downstream (arterial) part of the embryonic chick and rat heart, but its functional significance was unclear. To establish whether other components of a cholinergic signal-transduction pathway are present

  18. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction

    NARCIS (Netherlands)

    Green, J.; Nusse, R.; van Amerongen, R.

    2014-01-01

    Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their

  19. Molecular insights into the mechanism of sensing and signal transduction of the thermosensor DesK

    NARCIS (Netherlands)

    Ballering, J.

    2016-01-01

    The ability to sense and respond to environmental signals is essential for cell survival. Unraveling the molecular mechanisms underlying signaling processes remains a challenge, however. This thesis provides molecular insights into the mechanism of sensing and signal transduction of the thermosensor

  20. Regulation of autophagy by amino acids and MTOR-dependent signal transduction

    NARCIS (Netherlands)

    Meijer, Alfred J.; Lorin, Séverine; Blommaart, Edward F.; Codogno, Patrice

    2015-01-01

    Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins

  1. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  2. Effects of matrine on JAK-STAT signaling transduction pathways in ...

    African Journals Online (AJOL)

    The current study aims to investigate the effects of matrine on the JAK-STAT signaling transduction pathways in bleomycin (BLM)-induced pulmonary fibrosis (PF) and to explore its action mechanism. A total of 72 male C57BL/6 mice were randomized into the control, model, and treatment groups. PF models were ...

  3. NA+ AS COUPLING ION IN ENERGY TRANSDUCTION IN EXTREMOPHILIC BACTERIA AND ARCHAEA

    NARCIS (Netherlands)

    Speelmans, G.; Poolman, B.; Konings, W.N

    For microoganisms to live under extreme physical conditions requires important adaptations of the cells. In many organisms the use of Na+ instead of protons as coupling ion in energy transduction is associated with such adaptation. This review focuses on the enzymes that are responsible for the

  4. How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals

    NARCIS (Netherlands)

    Woelders, H.; Windig, J.J.; Hiemstra, S.J.

    2012-01-01

    Many local breeds are currently at risk because of replacement by a limited number of specialized commercial breeds. Concurrently, for many breeds, allelic diversity within breeds declines because of inbreeding. Gene banking of germplasm may serve to secure the breeds and the alleles for any future

  5. Detection of p53 Gene by Using Genomagnetic Assay Combined with Carbon Nanotube Modified Disposable Sensor Technology

    Czech Academy of Sciences Publication Activity Database

    Congur, G.; Plucnara, Medard; Erdem, A.; Fojta, Miroslav

    2015-01-01

    Roč. 27, č. 7 (2015), s. 1579-1586 ISSN 1040-0397 R&D Projects: GA ČR GAP206/11/1638 Institutional support: RVO:68081707 Keywords : p53 Gene * Carbon nanotubes * Magnetic particles Subject RIV: BO - Biophysics Impact factor: 2.471, year: 2015

  6. FASEB summer research conference on signal transduction in plants. Final report, June 16, 1996--June 21, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lomax, T.L.; Quatrano, R.S.

    1996-12-31

    This is the program from the second FASEB conference on Signal Transduction in Plants. Topic areas included the following: environmental signaling; perception and transduction of light signals; signaling in plant microbe interactions; signaling in plant pathogen interactions; cell, cell communication; cytoskeleton, plasma membrane, and cellwall continuum; signaling molecules in plant growth and development I and II. A list of participants is included.

  7. Hair cell mechano-transduction : Its influence on the gross mechanical characteristics of a hair cell sense organ

    NARCIS (Netherlands)

    vanNetten, Sietse M.

    1997-01-01

    The complex mechanical behaviour of a hair cell bundle appears to be a direct consequence of the gating forces on the individual transduction channels. The mechanical molecular interactions involved in transduction channel gating, therefore, also bear a reciprocal influence, via the hair bundles; on

  8. Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, Peter L.; Pedersen, Per Amstrup

    2000-01-01

    Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction......Na,K-ATPase; Mutagenesis; Na+ binding; K+ binding; Tl+ binding; Mg2+ binding; ATP binding; Cation binding site; Energy transduction...

  9. Target of rapamycin is a key player for auxin signaling transduction in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Kexuan eDeng

    2016-03-01

    Full Text Available Target of rapamycin (TOR, a master sensor for growth factors and nutrition availability in eukaryotic species, is a specific target protein of rapamycin. Rapamycin inhibits TOR kinase activity via FK506 binding protein 12 kDa (FKBP12 in all examined heterotrophic eukaryotic organisms. In Arabidopsis, several independent studies have shown that AtFKBP12 is non-functional under aerobic condition, but one study suggests that AtFKBP12 is functional during anaerobic growth. However, the functions of AtFKBP12 have never been examined in parallel under aerobic and anaerobic growth conditions so far. To this end, we cloned the FKBP12 gene of humans, yeast, and Arabidopsis, respectively. Transgenic plants were generated, and pharmacological examinations were performed in parallel with Arabidopsis under aerobic and anaerobic conditions. ScFKBP12 conferred plants with the strongest sensitivity to rapamycin, followed by HsFKBP12, whereas AtFKBP12 failed to generate rapamycin sensitivity under aerobic condition. Upon submergence, yeast and human FKBP12 can significantly block cotyledon greening while Arabidopsis FKBP12 only retards plant growth in the presence of rapamycin, suggesting that hypoxia stress could partially restore the functions of AtFKBP12 to bridge the interaction between rapamycin and TOR. To further determine if communication between TOR and auxin signaling exists in plants, yeast FKBP12 was introduced into DR5::GUS homozygous plants. The transgenic plants DR5/BP12 were then treated with rapamycin or KU63794 (a new inhibitor of TOR. GUS staining showed that the auxin content of root tips decreased compared to the control. DR5/BP12 plants lost sensitivity to auxin after treatment with rapamycin. Auxin-defective phenotypes, including short primary roots, fewer lateral roots, and loss of gravitropism, occurred in DR5/BP12 plants when seedlings were treated with rapamycin+KU63794. This indicated that the combination of rapamycin and KU63794 can

  10. Signal transduction through CsrRS confers an invasive phenotype in group A Streptococcus.

    Directory of Open Access Journals (Sweden)

    Hien J Tran-Winkler

    2011-10-01

    Full Text Available The CsrRS (or CovRS two component system controls expression of up to 15% of the genome of group A Streptococcus (GAS. While some studies have suggested that the sensor histidine kinase CsrS responds to membrane perturbations as a result of various environmental stresses, other data have implicated the human antimicrobial peptide LL-37 and extracellular Mg(2+ as specific signals. We now report that Mg(2+ and LL-37 have opposite effects on expression of multiple genes that are activated or repressed by the transcriptional regulator CsrR. Using a GAS isolate representative of the recently emerged and widely disseminated M1T1 clone implicated in severe invasive disease, we found marked up-regulation by CsrRS of multiple virulence factors including pyrogenic exotoxin A, DNase Sda1, streptolysin O, and the hyaluronic acid capsular polysaccharide, among others. Topology and surface protein labeling studies indicated that CsrS is associated with the bacterial cell membrane and has a surface-exposed extracellular domain accessible to environmental ligands. Replacement of a cluster of three acidic amino acids with uncharged residues in the extracellular domain of CsrS abrogated LL-37 signaling and conferred a hyporesponsive phenotype consistent with tonic activation of CsrS autokinase activity, an effect that could be overridden by mutation of the CsrS active site histidine. Both loss- and gain-of-function mutations of a conserved site in the receiver domain of CsrR established an essential role for lysine 102 in CsrS-to-CsrR signal transduction. These results provide strong evidence that Mg(2+ and LL-37 are specific signals that function by altering CsrS autokinase activity and downstream phosphotransfer to CsrR to modulate its activity as a transcriptional regulator. The representation of multiple antiphagocytic and cytotoxic factors in the CsrRS regulon together with results of in vitro phagocytic killing assays support the hypothesis that Csr

  11. ARG1 and ARL2 contribute to gravity signal transduction in the statocytes of Arabidopsis thaliana roots and hypocotyls

    Science.gov (United States)

    Masson, Patrick; Harrison, Benjamin; Stanga, John; Otegui, Marisa; Sedbrook, John

    Gravity is an important cue that plant organs use to guide their growth. Each organ is characterized by a defined gravity set point angle that dictates its optimal orientation within the gravity field. Specialized cells, named statocytes, enable this directional growth response by perceiving gravity via the sedimentation of, and/or tension/pressure exerted by, starch-filled plastids within their cytoplasm. Located in the columella region of the cap in roots and in the endodermis of hypocotyls and stems, these cells modulate the lateral transport of auxin across the corresponding organ in a gravistimulus-dependent manner. Upon plant reorientation within the gravity field, a gravity signal transduction pathway is activated within those cells, which in roots leads to a relocalization of the PIN3 auxin efflux carrier toward the lower membrane and an alkalinization of the cytoplasm. In turn, these events appear to promote a lateral transport of auxin toward the bottom side of the stimulated organ, which promotes a curvature. We previously uncovered ARG1 and ARL2 as essential contributors to these cellular processes. Mutations in these genes result in altered root and hypocotyl gravitropism. In roots, this abnormal growth behavior is associated with a lack of PIN3 relocalization within the statocytes and an absence of preferential downward auxin transport upon gravistimulation. These two genes encode paralogous J-domain proteins that are associated with the plasma membrane and other membranes of the vesicular trafficking pathway, and appear to modulate protein trafficking within the statocytes. An analysis of the root gravitropic phenotypes associated with different double mutant configurations affecting ARG1, ARL2 and PIN3 suggest that all three proteins function in a common gravity-signaling pathway. Surprisingly, when a mutation that affects starch biosynthesis (pgm) is introgressed into an arg1-2 mutant, the gravitropic defects are dramatically enhanced relative to

  12. Towards the systematic discovery of signal transduction networks using phosphorylation dynamics data

    Directory of Open Access Journals (Sweden)

    Yachie Nozomu

    2010-05-01

    Full Text Available Abstract Background Phosphorylation is a ubiquitous and fundamental regulatory mechanism that controls signal transduction in living cells. The number of identified phosphoproteins and their phosphosites is rapidly increasing as a result of recent mass spectrometry-based approaches. Results We analyzed time-course phosphoproteome data obtained previously by liquid chromatography mass spectrometry with the stable isotope labeling using amino acids in cell culture (SILAC method. This provides the relative phosphorylation activities of digested peptides at each of five time points after stimulating HeLa cells with epidermal growth factor (EGF. We initially calculated the correlations between the phosphorylation dynamics patterns of every pair of peptides and connected the strongly correlated pairs to construct a network. We found that peptides extracted from the same intracellular fraction (nucleus vs. cytoplasm tended to be close together within this phosphorylation dynamics-based network. The network was then analyzed using graph theory and compared with five known signal-transduction pathways. The dynamics-based network was correlated with known signaling pathways in the NetPath and Phospho.ELM databases, and especially with the EGF receptor (EGFR signaling pathway. Although the phosphorylation patterns of many proteins were drastically changed by the EGF stimulation, our results suggest that only EGFR signaling transduction was both strongly activated and precisely controlled. Conclusions The construction of a phosphorylation dynamics-based network provides a useful overview of condition-specific intracellular signal transduction using quantitative time-course phosphoproteome data under specific experimental conditions. Detailed prediction of signal transduction based on phosphoproteome dynamics remains challenging. However, since the phosphorylation profiles of kinase-substrate pairs on the specific pathway were localized in the dynamics

  13. Imatinib effect on growth and signal transduction in polycythemia vera.

    Science.gov (United States)

    Gaikwad, Amos; Verstovsek, Srdan; Yoon, Donghoon; Chang, Ko-Tung; Manshouri, Taghi; Nussenzveig, Roberto; Cortes, Jorge; Vainchenker, William; Prchal, Josef T

    2007-06-01

    An activating mutation of Janus kinase 2 (JAK2) in majority of polycythemia vera (PV) and other myeloproliferative disorders was reported. As imatinib inhibits several tyrosine kinases, we studied its effect in PV. We employed FDCP reporter cells expressing wild-type JAK2 and mutant JAK2(V617F) to study the efficacy of imatinib by cell proliferation assay and its effect on several cell-signaling events. Imatinib's efficacy was also examined on in vitro expanded native human erythroid progenitors. In addition, analysis of the percent JAK2 T-allele and phospho-signal transducer and activator of transcription-5 (STAT5) in granulocytes of PV patients following imatinib therapy was assessed. Imatinib showed a specific time- and dose-dependent growth inhibitory effect on FDCP cells expressing JAK2(V617F), wherein we observed imatinib's inactivation of JAK2, STAT5 and cKIT proteins. In vitro expanded human PV erythroid progenitors were more sensitive to imatinib than normal erythroid progenitors and FDCP cells expressing JAK2(V617F), with growth inhibition at concentrations attainable in vivo. In an ongoing clinical study, a PV patient showed strong correlation between the percent JAK2 T-allele and his responsiveness to imatinib therapy. Our data elucidate the therapeutic benefit of imatinib seen in some PV patients. Our data suggest that JAK2/STAT5 and cKIT activation may be integrated. To our knowledge, this is the first report demonstrating imatinib's effect on PV erythroid progenitors. These studies underscore the limitation of experiments using cell lines expressing the gene of interest.

  14. Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Ann M. Stock

    2009-04-08

    Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behavior and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of many other microbial sensing systems. This conference aims to bring together researchers investigating different prokaryotic and eukaryotic microbial systems using diverse approaches to compare data, share methodologies and ideas, and seek to understand the fundamental principles underlying sensory responses. Topic areas include: (1) Receptor Sensing and Signaling; (2) Intracellular Signaling (two-component, c-di-GMP, c-AMP, etc.); (3) Intracellular Localization and

  15. High-efficiency transduction and specific expression of ChR2opt for optogenetic manipulation of primary cortical neurons mediated by recombinant adeno-associated viruses.

    Science.gov (United States)

    Jin, Lei; Lange, Wienke; Kempmann, Annika; Maybeck, Vanessa; Günther, Anne; Gruteser, Nadine; Baumann, Arnd; Offenhäusser, Andreas

    2016-09-10

    In recent years, optogenetic approaches have significantly advanced the experimental repertoire of cellular and functional neuroscience. Yet, precise and reliable methods for specific expression of optogenetic tools remain challenging. In this work, we studied the transduction efficiency of seven different adeno-associated virus (AAV) serotypes in primary cortical neurons and revealed recombinant (r) AAV6 to be the most efficient for constructs under control of the cytomegalovirus (CMV) promoter. To further specify expression of the transgene, we exchanged the CMV promoter for the human synapsin (hSyn) promoter. In primary cortical-glial mixed cultures transduced with hSyn promoter-containing rAAVs, expression of ChR2opt (a Channelrhodopsin-2 variant) was limited to neurons. In these neurons action potentials could be reliably elicited upon laser stimulation (473nm). The use of rAAV serotype alone to restrict expression to neurons results in a lower transduction efficiency than the use of a broader transducing serotype with specificity conferred via a restrictive promoter. Cells transduced with the hSyn driven gene expression were able to elicit action potentials with more spatially and temporally accurate illumination than neurons electrofected with the CMV driven construct. The hSyn promoter is particularly suited to use in AAVs due to its small size. These results demonstrate that rAAVs are versatile tools to mediate specific and efficient transduction as well as functional and stable expression of transgenes in primary cortical neurons. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  17. Constructive Technology Assessment (CTA) as a tool in coverage with evidence development: the case of the 70-gene prognosis signature for breast cancer diagnostics.

    Science.gov (United States)

    Retèl, Valesca P; Bueno-de-Mesquita, Jolien M; Hummel, Marjan J M; van de Vijver, Marc J; Douma, Kirsten F L; Karsenberg, Kim; van Dam, Frits S A M; van Krimpen, Cees; Bellot, Frank E; Roumen, Rudi M H; Linn, Sabine C; van Harten, Wim H

    2009-01-01

    Constructive Technology Assessment (CTA) is a means to guide early implementation of new developments in society, and can be used as an evaluation tool for Coverage with Evidence Development (CED). We used CTA for the introduction of a new diagnostic test in the Netherlands, the 70-gene prognosis signature (MammaPrint) for node-negative breast cancer patients. Studied aspects were (organizational) efficiency, patient-centeredness and diffusion scenarios. Pre-post structured surveys were conducted in fifteen community hospitals concerning changes in logistics and teamwork as a consequence of the introduction of the 70-gene signature. Patient-centeredness was measured by questionnaires and interviews regarding knowledge and psychological impact of the test. Diffusion scenarios, which are commonly applied in industry to anticipate on future development and diffusion of their products, have been applied in this study. Median implementation-time of the 70-gene signature was 1.2 months. Most changes were seen in pathology processes and adjuvant treatment decisions. Physicians valued the addition of the 70-gene signature information as beneficial for patient management. Patient-centeredness (n = 77, response 78 percent): patients receiving a concordant high-risk and discordant clinical low/high risk-signature showed significantly more negative emotions with respect to receiving both test-results compared with concordant low-risk and discordant clinical high/low risk-signature patients. The first scenario was written in 2004 before the introduction of the 70-gene signature and identified hypothetical developments that could influence diffusion; especially the "what-if" deviation describing a discussion on validity among physicians proved to be realistic. Differences in speed of implementation and influenced treatment decisions were seen. Impact on patients seems especially related to discordance and its successive communication. In the future, scenario drafting will lead

  18. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  19. Translational control is a major contributor to hypoxia induced gene expression

    International Nuclear Information System (INIS)

    Beucken, Twan van den; Magagnin, Michael G.; Jutten, Barry; Seigneuric, Renaud; Lambin, Philippe; Koritzinsky, Marianne; Wouters, Bradly G.

    2011-01-01

    Background and purpose: Hypoxia is a common feature of solid tumors that is associated with an aggressive phenotype, resistance to therapy and poor prognosis. Major contributors to these adverse effects are the transcriptional program activated by the HIF family of transcription factors as well as the translational response mediated by PERK-dependent phosphorylation of eIF2α and inhibition of mTORC1 activity. In this study we determined the relative contribution of both transcriptional and translational responses to changes in hypoxia induced gene expression. Material and methods: Total and efficiently translated (polysomal) mRNA was isolated from DU145 prostate carcinoma cells that were exposed for up to 24 h of hypoxia ( 2 ). Changes in transcription and translation were assessed using affymetrix microarray technology. Results: Our data reveal an unexpectedly large contribution of translation control on both induced and repressed gene expression at all hypoxic time points, particularly during acute hypoxia (2-4 h). Gene ontology analysis revealed that gene classes like transcription and signal transduction are stimulated by translational control whereas expression of genes involved in cell growth and protein metabolism are repressed during hypoxic conditions by translational control. Conclusions: Our data indicate that translation influences gene expression during hypoxia on a scale comparable to that of transcription.

  20. Digital gene expression analysis in the gills of Ruditapes philippinarum exposed to short- and long-term exposures of ammonia nitrogen.

    Science.gov (United States)

    Cong, Ming; Wu, Huifeng; Cao, Tengfei; Lv, Jiasen; Wang, Qing; Ji, Chenglong; Li, Chenghua; Zhao, Jianmin

    2018-01-01

    Previous study revealed severe toxic effects of ammonia nitrogen on Ruditapes philippinarum including lysosomal instability, disturbed metabolic profiles, gill tissues with damaged structure, and variation of neurotransmitter concentrations. However, the underlying molecular mechanism was not fully understood yet. In the present study, digital gene expression technology (DGE) was applied to globally screen the key genes and pathways involved in the responses to short- and long-term exposures of ammonia nitrogen. Results of DGE analysis indicated that short-term duration of ammonia exposure affected pathways in Dorso-ventral axis formation, Notch signaling, thyroid hormone signaling and protein processing in endoplasmic reticulum. The long-term exposure led to DEGs significantly enriched in gap junction, immunity, signal and hormone transduction, as well as key substance metabolism pathways. Functional research of significantly changed DEGs suggested that the immunity of R. philippinarum was weakened heavily by toxic effects of ammonia nitrogen, as well as neuro-transduction and metabolism of important substances. Taken together, the present study provides a molecular support for the previous results of the detrimental toxicity of ammonia exposure in R. philippinarum, further work will be performed to investigate the specific genes and their certain functions involved in ammonia toxicity to molluscs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Science.gov (United States)

    Tóth, Anna; Fodor, Katalin; Praznovszky, Tünde; Tubak, Vilmos; Udvardy, Andor; Hadlaczky, Gyula; Katona, Robert L

    2014-01-01

    Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs) was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS) cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  2. Novel method to load multiple genes onto a mammalian artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Anna Tóth

    Full Text Available Mammalian artificial chromosomes are natural chromosome-based vectors that may carry a vast amount of genetic material in terms of both size and number. They are reasonably stable and segregate well in both mitosis and meiosis. A platform artificial chromosome expression system (ACEs was earlier described with multiple loading sites for a modified lambda-integrase enzyme. It has been shown that this ACEs is suitable for high-level industrial protein production and the treatment of a mouse model for a devastating human disorder, Krabbe's disease. ACEs-treated mutant mice carrying a therapeutic gene lived more than four times longer than untreated counterparts. This novel gene therapy method is called combined mammalian artificial chromosome-stem cell therapy. At present, this method suffers from the limitation that a new selection marker gene should be present for each therapeutic gene loaded onto the ACEs. Complex diseases require the cooperative action of several genes for treatment, but only a limited number of selection marker genes are available and there is also a risk of serious side-effects caused by the unwanted expression of these marker genes in mammalian cells, organs and organisms. We describe here a novel method to load multiple genes onto the ACEs by using only two selectable marker genes. These markers may be removed from the ACEs before therapeutic application. This novel technology could revolutionize gene therapeutic applications targeting the treatment of complex disorders and cancers. It could also speed up cell therapy by allowing researchers to engineer a chromosome with a predetermined set of genetic factors to differentiate adult stem cells, embryonic stem cells and induced pluripotent stem (iPS cells into cell types of therapeutic value. It is also a suitable tool for the investigation of complex biochemical pathways in basic science by producing an ACEs with several genes from a signal transduction pathway of interest.

  3. Membrane Guanylate Cyclase, A Multimodal Transduction Machine: History, Present and Future Directions

    Directory of Open Access Journals (Sweden)

    Rameshwar K Sharma

    2014-07-01

    Full Text Available A sequel to these authors’ earlier comprehensive reviews which covered the field of mammalian membrane guanylate cyclase (MGC from its origin to the year 2010, this article contains 13 parts. The first is HISTORICAL and covers MGC from the year 1963-1987, summarizing its colorful developmental stages from its passionate pursuit to its consolidation. The second deals with the establishment of its BIOCHEMICAL IDENTITY. MGC becomes the transducer of a hormonal signal and founder of the peptide hormone receptor family, and creates the notion that hormone signal transduction is its sole physiological function. The third defines its EXPANSION. The discovery of ROS-GC subfamily is made and it links ROS-GC with the physiology of PHOTOTRANSDUCTION. Parts 4 to 7 cover its BIOCHEMISTRY and PHYSIOLOGY. The noteworthy events are that augmented by GCAPs, ROS-GC proves to be a transducer of the free Ca2+ signals generated within neurons; ROS-GC becomes a two-component transduction system and establishes itself as a source of cyclic GMP, the second messenger of phototransduction. Part 8 demonstrates how this knowledge begins to be TRANSLATED into the diagnosis and providing the molecular definition of retinal dystrophies. Part 9 discusses a striking property of ROS-GC where it becomes a [Ca2+]i bimodal switch and transcends its signaling role in other neural transduction processes. In this course, discovery of the first CD-GCAP (Ca2+-dependent guanylate cycles activator, the S100B protein, is made. It extends the role of ROS-GC transduction system beyond the photoreceptor cells to the signaling processes in the synapse region between photoreceptor and cone ON-bipolar cells; in Part 10, discovery of ANOTHER CD-GCAP, NC, is made and its linkage with signaling of the inner plexiform layer neurons is established. Part 11 discusses linkage of the ROS-GC transduction system with other sensory transduction processes: Pineal gland, Olfaction and Gustation. In the

  4. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  5. Micro-system inertial sensing technology overview.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, James Joe

    2009-02-01

    The purpose of this report is to provide an overview of Micro-System technology as it applies to inertial sensing. Transduction methods are reviewed with capacitance and piezoresistive being the most often used in COTS Micro-electro-mechanical system (MEMS) inertial sensors. Optical transduction is the most recent transduction method having significant impact on improving sensor resolution. A few other methods are motioned which are in a R&D status to hopefully allow MEMS inertial sensors to become viable as a navigation grade sensor. The accelerometer, gyroscope and gravity gradiometer are the type of inertial sensors which are reviewed in this report. Their method of operation and a sampling of COTS sensors and grade are reviewed as well.

  6. Group VII Ethylene Response Factors Coordinate Oxygen and Nitric Oxide Signal Transduction and Stress Responses in Plants.

    Science.gov (United States)

    Gibbs, Daniel J; Conde, Jorge Vicente; Berckhan, Sophie; Prasad, Geeta; Mendiondo, Guillermina M; Holdsworth, Michael J

    2015-09-01

    The group VII ethylene response factors (ERFVIIs) are plant-specific transcription factors that have emerged as important regulators of abiotic and biotic stress responses, in particular, low-oxygen stress. A defining feature of ERFVIIs is their conserved N-terminal domain, which renders them oxygen- and nitric oxide (NO)-dependent substrates of the N-end rule pathway of targeted proteolysis. In the presence of these gases, ERFVIIs are destabilized, whereas an absence of either permits their accumulation; ERFVIIs therefore coordinate plant homeostatic responses to oxygen availability and control a wide range of NO-mediated processes. ERFVIIs have a variety of context-specific protein and gene interaction partners, and also modulate gibberellin and abscisic acid signaling to regulate diverse developmental processes and stress responses. This update discusses recent advances in our understanding of ERFVII regulation and function, highlighting their role as central regulators of gaseous signal transduction at the interface of ethylene, oxygen, and NO signaling. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Adeno-associated-virus-mediated transduction of the mammary gland enables sustained production of recombinant proteins in milk.

    Science.gov (United States)

    Wagner, Stefan; Thresher, Rosemary; Bland, Ross; Laible, Götz

    2015-10-14

    Biopharming for the production of recombinant pharmaceutical proteins in the mammary gland of transgenic animals is an attractive but laborious alternative compared to mammalian cell fermentation. The disadvantage of the lengthy process of genetically modifying an entire animal could be circumvented with somatic transduction of only the mammary epithelium with recombinant, replication-defective viruses. While other viral vectors offer very limited scope for this approach, vectors based on adeno-associated virus (AAV) appear to be ideal candidates because AAV is helper-dependent, does not induce a strong immune response and has no association with disease. Here, we sought to test the suitability of recombinant AAV (rAAV) for biopharming. Using reporter genes, we showed that injected rAAV efficiently transduced mouse mammary cells. When rAAV encoding human myelin basic protein (hMBP) was injected into the mammary glands of mice and rabbits, this resulted in the expression of readily detectable protein levels of up to 0.5 g/L in the milk. Furthermore we demonstrated that production of hMBP persisted over extended periods and that protein expression could be renewed in a subsequent lactation by re-injection of rAAV into a previously injected mouse gland.

  8. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  9. MAPK Signal Transduction Pathway Regulation: A Novel Mechanism of Rat HSC-T6 Cell Apoptosis Induced by FUZHENGHUAYU Tablet

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2013-01-01

    Full Text Available FUZHENGHUAYU Tablets have been widely used in the treatment of liver fibrosis in China. Here, we investigate the apoptotic effect of FUZHENGHUAYU Tablet in rat liver stellate cell line HSC-T6. HSC-T6 cells were incubated with control serum or drug serum from rats fed with 0.9% NaCl or FUZHENGHUAYU Tablet, respectively. Cells exposed to drug serum showed higher proportions of early and late apoptotic cells than controls. The mRNA levels of collagens I and III, TGF-β1 and α-SMA were reduced by drug serum compared to control serum. Differentially expressed mRNAs and miRNAs were analyzed by microarray and sequencing, respectively. We identified 334 differentially expressed mRNAs and also 60 GOs and two pathways related to the mRNAs. Seventy-five differentially expressed miRNAs were down-regulated by drug serum and 1963 target genes were predicted. 134 GOs up-regulated in drug serum group were linked to miRNA targets, and drug serum also regulated 43 miRNA signal transduction pathways. Protein levels were evaluated by Western blot. Drug serum down-regulated (phospho-SAPK/JNK/(SAPK/JNK and up-regulated phospho-p38/p38 ratios. The study showed that FUZHENGHUAYU Tablet induced apoptosis in rat HSC-T6 cells possibly in part by activating p38 and inhibiting SAPK/JNK.

  10. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions.

    Science.gov (United States)

    Elia, Leonardo; Contu, Riccardo; Quintavalle, Manuela; Varrone, Francesca; Chimenti, Cristina; Russo, Matteo Antonio; Cimino, Vincenzo; De Marinis, Laura; Frustaci, Andrea; Catalucci, Daniele; Condorelli, Gianluigi

    2009-12-08

    MicroRNAs (miRNAs/miRs) are small conserved RNA molecules of 22 nucleotides that negatively modulate gene expression primarily through base paring to the 3' untranslated region of target messenger RNAs. The muscle-specific miR-1 has been implicated in cardiac hypertrophy, heart development, cardiac stem cell differentiation, and arrhythmias through targeting of regulatory proteins. In this study, we investigated the molecular mechanisms through which miR-1 intervenes in regulation of muscle cell growth and differentiation. On the basis of bioinformatics tools, biochemical assays, and in vivo models, we demonstrate that (1) insulin-like growth factor-1 (IGF-1) and IGF-1 receptor are targets of miR-1; (2) miR-1 and IGF-1 protein levels are correlated inversely in models of cardiac hypertrophy and failure as well as in the C2C12 skeletal muscle cell model of differentiation; (3) the activation state of the IGF-1 signal transduction cascade reciprocally regulates miR-1 expression through the Foxo3a transcription factor; and (4) miR-1 expression correlates inversely with cardiac mass and thickness in myocardial biopsies of acromegalic patients, in which IGF-1 is overproduced after aberrant synthesis of growth hormone. Our results reveal a critical role of miR-1 in mediating the effects of the IGF-1 pathway and demonstrate a feedback loop between miR-1 expression and the IGF-1 signal transduction cascade.

  11. Catecholamine-Stimulated Growth of Aeromonas hydrophila Requires the TonB2 Energy Transduction System but Is Independent of the Amonabactin Siderophore

    Science.gov (United States)

    Dong, Yuhao; Liu, Jin; Pang, Maoda; Du, Hechao; Wang, Nannan; Awan, Furqan; Lu, Chengping; Liu, Yongjie

    2016-01-01

    The growth-stimulating effects of catecholamine stress hormones have been demonstrated in many pathogens. However, catecholamine-induced growth and its underlying mechanisms remain poorly understood in Aeromonas hydrophila. The present study sought to demonstrate that norepinephrine (NE), epinephrine (Epi), dopamine (Dopa), and L-dopa stimulate the growth of A. hydrophila in iron-restricted media containing serum. NE exhibited the strongest growth stimulation, which could be blocked by adrenergic antagonists. Furthermore, it was demonstrated that NE could sequester iron from transferrin, thereby providing a more accessible iron source for utilization by A. hydrophila. The deletion of the amoA gene associated with amonabactin synthesis revealed that the amonabactin siderophore is not required for NE-stimulated growth. However, the deletion of the TonB2 energy transduction system resulted in the loss of growth promotion by NE, indicating that a specific TonB-dependent outer membrane receptor might be involved in the transport of iron from transferrin. Collectively, our data show that catecholamine sensing promotes the growth of A. hydrophila in a manner that is dependent on the TonB2 energy transduction system. PMID:28018865

  12. [Progress and potential applications of induced pluripotent stem cell technology].

    Science.gov (United States)

    Wu, Cui-Ling; Zhang, Yu-Ming

    2014-08-01

    Differentiated somatic cells can be reprogrammed to a pluripotent state through ectopic expression of specific transcription factors. These reprogrammed cells, which were designated as induced pluripotent stem (iPS) cells, are detected to exhibit unlimited self-renewal capacity and pluripotency. This breakthrough in stem cell research provides a powerful and novel tool for the studies on pathogenesis of diseases, reprogramming mechanism and development of new therapies. For this reason, the iPSC technology has currently become one of the hot topics in stem cells research. Recently, major progress in this field has been achieved: initially, researchers succeeded in inducing the reprogramming of mouse fibroblasts by retroviral transduction of four specific transcription factors; in succession, the accelerated development of iPSC technology by employing non-integrating viral vectors, non-viral vectors or removing the introduced foreign genes via gene knock-out has ensured the yields of much safer iPSC; meanwhile, some researches discovered the proofs that a number of micro molecular compounds were potent in accelerating the cellular reprogramming. For a prospect, iPSC are highly promising for regenerative medicine, disease modeling and drug screening. In this review, the recent progress in the generation of iPSC, prospects of their possible clinical applications and problems in the iPSC research are summarized and discussed.

  13. Silence of the Genes

    Indian Academy of Sciences (India)

    Srimath

    tary to the endogenous sense mRNA produced by the normal gene. The antisense strand binds to the sense strand and blocks protein synthesis. This method of gene inhibition was termed antisense technology. The antisense technology soon became a. RNA interference. (RNAi) is a novel mechanism for controlling gene.

  14. DMPD: Signal transduction pathways mediated by the interaction of CpG DNA withToll-like receptor 9. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14751759 Signal transduction pathways mediated by the interaction of CpG DNA withTo...;16(1):17-22. (.png) (.svg) (.html) (.csml) Show Signal transduction pathways mediated by the interaction of... CpG DNA withToll-like receptor 9. PubmedID 14751759 Title Signal transduction pathways

  15. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  16. TWNFI--a transductive neuro-fuzzy inference system with weighted data normalization for personalized modeling.

    Science.gov (United States)

    Song, Qun; Kasabov, Nikola

    2006-12-01

    This paper introduces a novel transductive neuro-fuzzy inference model with weighted data normalization (TWNFI). In transductive systems a local model is developed for every new input vector, based on a certain number of data that are selected from the training data set and the closest to this vector. The weighted data normalization method (WDN) optimizes the data normalization ranges of the input variables for the model. A steepest descent algorithm is used for training the TWNFI models. The TWNFI is compared with some other widely used connectionist systems on two case study problems: Mackey-Glass time series prediction and a real medical decision support problem of estimating the level of renal function of a patient. The TWNFI method not only results in a "personalized" model with a better accuracy of prediction for a single new sample, but also depicts the most significant input variables (features) for the model that may be used for a personalized medicine.

  17. Improved migration of tumor ascites lymphocytes to ovarian cancer microenvironment by CXCR2 transduction

    DEFF Research Database (Denmark)

    Idorn, Manja; Olsen, Maria; Halldórsdóttir, Hólmfrídur Rósa

    2018-01-01

    analyzed by flow cytometry. We found that FoxP3+ regulatory T cells accumulation in patients with OC associates with CCR4 expression. We characterized a chemokine profile of ascites chemokines, and expression of corresponding receptors on circulating T cells and tumor ascites lymphocytes (TALs). CCL22......, CXCL9, CXCL10 and CXCL12 associated with enrichment of CCR4+, CCR5+, CXCR3+ and CXCR4+ T cells in ascites. Circulating T cells and TALs however did not express CXCR2, identifying CXCR2 as candidate for chemokine receptor transduction. TALs readily expressed IFNγ and TNFα upon stimulation despite...... the frequency decreasing with in vitro expansion. Lentiviral transduction of TALs (n = 4) with chemokine receptor CXCR2 significantly increased transwell migration of TALs towards rhIL8 and autologous ascites. The majority of expanded and transduced TALs were of a T effector memory subtype. This proof...

  18. Robustness and fragility in the yeast high osmolarity glycerol (HOG) signal-transduction pathway.

    Science.gov (United States)

    Krantz, Marcus; Ahmadpour, Doryaneh; Ottosson, Lars-Göran; Warringer, Jonas; Waltermann, Christian; Nordlander, Bodil; Klipp, Edda; Blomberg, Anders; Hohmann, Stefan; Kitano, Hiroaki

    2009-01-01

    Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal-transduction pathway with systematic perturbations in components' expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal-transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models.

  19. Pharmacological analysis of feeding in a caterpillar: different transduction pathways for umami and saccharin?

    Science.gov (United States)

    Pszczolkowski, Maciej A.; Durden, Kevin; Marquis, Juleah; Ramaswamy, Sonny B.; Brown, John J.

    2009-05-01

    Neonate larvae of codling moth, Cydia pomonella (L.), modify their behavior in the presence of saccharin, monosodium glutamate (MSG), or L(+)-2-amino-4-phosphonobutyric acid (L-AP4) by commencing their feeding earlier. Previously published pharmacological analysis demonstrated that phagostimulatory effects of MSG and L-AP4 (which elicit umami taste sensation in humans) are reversed by adenylate cyclase activator and phosphodiesterase inhibitor. In this study, by measuring the time needed to start ingestion of foliage treated with mixtures of phagostimulants and signal transduction modulators, we show that phagostimulatory effects of l-aspartate (the third hallmark umami substance) are also abolished by both adenylate cyclase activator and phosphodiesterase inhibitor, but not by phospholipase C inhibitor. However, stimulatory effects of hemicalcium saccharin were affected only by phospholipase C inhibitor. The results suggest that codling moth neonates use different transduction pathways for perception of hemicalcium saccharin and umami.

  20. A Prize-Collecting Steiner Tree Approach for Transduction Network Inference

    Science.gov (United States)

    Bailly-Bechet, Marc; Braunstein, Alfredo; Zecchina, Riccardo

    Into the cell, information from the environment is mainly propagated via signaling pathways which form a transduction network. Here we propose a new algorithm to infer transduction networks from heterogeneous data, using both the protein interaction network and expression datasets. We formulate the inference problem as an optimization task, and develop a message-passing, probabilistic and distributed formalism to solve it. We apply our algorithm to the pheromone response in the baker’s yeast S. cerevisiae. We are able to find the backbone of the known structure of the MAPK cascade of pheromone response, validating our algorithm. More importantly, we make biological predictions about some proteins whose role could be at the interface between pheromone response and other cellular functions.

  1. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  2. A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction.

    Science.gov (United States)

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Nagiah, Naveen; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2018-07-26

    A multifunctional material based on co-electrospinning has been developed as a basic material for the development of biosensors with optical oxygen transduction. It is based on coaxial nanofibres: inner fibres containing an oxygen sensitive dye and outer fibres containing aldehyde groups to allow the formation of Schiff bases with the amino groups of the enzyme. The resulting material preserves the oxygen sensing properties of the inner optical transducer as well as exhibits a high capacity for immobilizing molecules on its surface. Uricase has been selected as model enzyme and several parameters (temperature, pH, reaction time, buffer, and enzyme concentration) have been optimised to demonstrate the versatility of this novel multifunctional material in the development of biosensors with optical oxygen transduction for determining uric acid in serum samples. It suggests that the proposed multifunctional material can provide a promising multifunctional platform for biosensing applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Gene-Regulatory Activity of α-Tocopherol

    Directory of Open Access Journals (Sweden)

    John K. Lodge

    2010-03-01

    Full Text Available Vitamin E is an essential vitamin and a lipid soluble antioxidant, at least, under in vitro conditions. The antioxidant properties of vitamin E are exerted through its phenolic hydroxyl group, which donates hydrogen to peroxyl radicals, resulting in the formation of stable lipid species. Beside an antioxidant role, important cell signalling properties of vitamin E have been described. By using gene chip technology we have identified α-tocopherol sensitive molecular targets in vivo including christmas factor (involved in the blood coagulation and 5α-steroid reductase type 1 (catalyzes the conversion of testosterone to 5α-dihydrotestosterone being upregulated and γ-glutamyl-cysteinyl synthetase (the rate limiting enzyme in GSH synthesis being downregulated due to a-tocopherol deficiency. α-Tocopherol regulates signal transduction cascades not only at the mRNA but also at the miRNA level since miRNA 122a (involved in lipid metabolism and miRNA 125b (involved in inflammation are downregulated by α-tocopherol. Genetic polymorphisms may determine the biological and gene-regulatory activity of a-tocopherol. In this context we have recently shown that genes encoding for proteins involved in peripheral α-tocopherol transport and degradation are significantly affected by the apoE genotype.

  4. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  5. A Computational Study on the Structure, Dynamics and Mechanoelectric Transduction of Vestibular Hair cell

    OpenAIRE

    Nam, Jong-Hoon

    2005-01-01

    The hair cell, a specialized cell in the inner ear, is responsible for hearing and balance. The hair cell is an exquisite sensor that captures mechanical stimuli and generates neurosensory signals. A theory called gating theory has been developed and widely used to analyze the experimental data of hair cell transduction. Despite increasing knowledge about molecular structures of hair cells, the mechanical model in the gating theory remained simple. Efforts to make the most of the recent f...

  6. Physiological performance of warm-adapted marine ectotherms: Thermal limits of mitochondrial energy transduction efficiency.

    Science.gov (United States)

    Martinez, Eloy; Hendricks, Eric; Menze, Michael A; Torres, Joseph J

    2016-01-01

    Thermal regimes in aquatic systems have profound implications for the physiology of ectotherms. In particular, the effect of elevated temperatures on mitochondrial energy transduction in tropical and subtropical teleosts may have profound consequences on organismal performance and population viability. Upper and lower whole-organism critical temperatures for teleosts suggest that subtropical and tropical species are not susceptible to the warming trends associated with climate change, but sub-lethal effects on energy transduction efficiency and population dynamics remain unclear. The goal of the present study was to compare the thermal sensitivity of processes associated with mitochondrial energy transduction in liver mitochondria from the striped mojarra (Eugerres plumieri), the whitemouth croaker (Micropogonias furnieri) and the palometa (Trachinotus goodei), to those of the subtropical pinfish (Lagodon rhomboides) and the blue runner (Caranx crysos). Mitochondrial function was assayed at temperatures ranging from 10 to 40°C and results obtained for both tropical and subtropical species showed a reduction in the energy transduction efficiency of the oxidative phosphorylation (OXPHOS) system in most species studied at temperatures below whole-organism critical temperature thresholds. Our results show a loss of coupling between O2 consumption and ATP production before the onset of the critical thermal maxima, indicating that elevated temperature may severely impact the yield of ATP production per carbon unit oxidized. As warming trends are projected for tropical regions, increasing water temperatures in tropical estuaries and coral reefs could impact long-term growth and reproductive performance in tropical organisms, which are already close to their upper thermal limit. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Elementary signaling modes predict the essentiality of signal transduction network components.

    Science.gov (United States)

    Wang, Rui-Sheng; Albert, Réka

    2011-03-22

    Understanding how signals propagate through signaling pathways and networks is a central goal in systems biology. Quantitative dynamic models help to achieve this understanding, but are difficult to construct and validate because of the scarcity of known mechanistic details and kinetic parameters. Structural and qualitative analysis is emerging as a feasible and useful alternative for interpreting signal transduction. In this work, we present an integrative computational method for evaluating the essentiality of components in signaling networks. This approach expands an existing signaling network to a richer representation that incorporates the positive or negative nature of interactions and the synergistic behaviors among multiple components. Our method simulates both knockout and constitutive activation of components as node disruptions, and takes into account the possible cascading effects of a node's disruption. We introduce the concept of elementary signaling mode (ESM), as the minimal set of nodes that can perform signal transduction independently. Our method ranks the importance of signaling components by the effects of their perturbation on the ESMs of the network. Validation on several signaling networks describing the immune response of mammals to bacteria, guard cell abscisic acid signaling in plants, and T cell receptor signaling shows that this method can effectively uncover the essentiality of components mediating a signal transduction process and results in strong agreement with the results of Boolean (logical) dynamic models and experimental observations. This integrative method is an efficient procedure for exploratory analysis of large signaling and regulatory networks where dynamic modeling or experimental tests are impractical. Its results serve as testable predictions, provide insights into signal transduction and regulatory mechanisms and can guide targeted computational or experimental follow-up studies. The source codes for the algorithms

  8. A Learning-Based CT Prostate Segmentation Method via Joint Transductive Feature Selection and Regression.

    Science.gov (United States)

    Shi, Yinghuan; Gao, Yaozong; Liao, Shu; Zhang, Daoqiang; Gao, Yang; Shen, Dinggang

    2016-01-15

    In 1 recent years, there has been a great interest in prostate segmentation, which is a important and challenging task for CT image guided radiotherapy. In this paper, a learning-based segmentation method via joint transductive feature selection and transductive regression is presented, which incorporates the physician's simple manual specification (only taking a few seconds), to aid accurate segmentation, especially for the case with large irregular prostate motion. More specifically, for the current treatment image, experienced physician is first allowed to manually assign the labels for a small subset of prostate and non-prostate voxels, especially in the first and last slices of the prostate regions. Then, the proposed method follows the two step: in prostate-likelihood estimation step, two novel algorithms: tLasso and wLapRLS, will be sequentially employed for transductive feature selection and transductive regression, respectively, aiming to generate the prostate-likelihood map. In multi-atlases based label fusion step, the final segmentation result will be obtained according to the corresponding prostate-likelihood map and the previous images of the same patient. The proposed method has been substantially evaluated on a real prostate CT dataset including 24 patients with 330 CT images, and compared with several state-of-the-art methods. Experimental results show that the proposed method outperforms the state-of-the-arts in terms of higher Dice ratio, higher true positive fraction, and lower centroid distances. Also, the results demonstrate that simple manual specification can help improve the segmentation performance, which is clinically feasible in real practice.

  9. Ca2+-sensors and ROS-GC: Interlocked sensory transduction elements: A review

    Directory of Open Access Journals (Sweden)

    Rameshwar K Sharma

    2012-04-01

    Full Text Available From its initial discovery that ROS-GC membrane guanylate cyclase is a mono-modal Ca2+-transduction system linked exclusively with the phototransduction machinery to the successive finding that it embodies a remarkable bimodal Ca2+signaling device, its widened transduction role in the general signaling mechanisms of the sensory neuron cells was envisioned. A theoretical concept was proposed where Ca2+-modulates ROS-GC through its generated cyclic GMP via a nearby cyclic nucleotide gated channel and creates a hyper- or depolarized sate in the neuron membrane (Ca2+ Binding Proteins 1:1, 7-11, 2006. The generated electric potential then becomes a mode of transmission of the parent [Ca2+]i signal. Ca2+ and ROS-GC are interlocked messengers in multiple sensory transduction mechanisms.This comprehensive review discusses the developmental stages to the present status of this concept and demonstrates how neuronal Ca2+-sensor proteins are the interconnected elements of this elegant ROS-GC transduction system. The focus is on the dynamism of the structural composition of this system, and how it accommodates selectivity and elasticity for the Ca2+ signals to perform multiple tasks linked with the SENSES of vision, smell and possibly of taste and the pineal gland. An intriguing illustration is provided for the Ca2+ sensor GCAP1 which displays its remarkable ability for its flexibility in function from being a photoreceptor sensor to an odorant receptor sensor. In doing so it reverses its function from an inhibitor of ROS-GC to the stimulator of ONE-GC membrane guanylate cyclase.

  10. Mechanism of active transport: free energy dissipation and free energy transduction.

    OpenAIRE

    Tanford, C

    1982-01-01

    The thermodynamic pathway for "chemiosmotic" free energy transduction in active transport is discussed with an ATP-driven Ca2+ pump as an illustrative example. Two innovations are made in the analysis. (i) Free energy dissipated as heat is rigorously excluded from overall free energy bookkeeping by focusing on the dynamic equilibrium state of the chemiosmotic process. (ii) Separate chemical potential terms for free energy donor and transported ions are used to keep track of the thermodynamic ...

  11. A matrix formulation for noise transduction as a general case of noise measure

    OpenAIRE

    Hallgren, Robert B.

    1992-01-01

    Conventional noise characteristics of an active device or circuit are given by the minimum noise figure, the optimum source reflection coefficient, and a noise resistance. The noise measure proposed extends the noise figure to include the available gain of the network, for the case of a conjugate output match, and gives values that minimize the noise power available from the network consistent with maximum available gain. Noise transduction follows as a general case of the noise measure by us...

  12. Tapping of Love waves in an isotropic surface waveguide by surface-to-bulk wave transduction.

    Science.gov (United States)

    Tuan, H.-S.; Chang, C.-P.

    1972-01-01

    A theoretical study of tapping a Love wave in an isotropic microacoustic surface waveguide is given. The surface Love wave is tapped by partial transduction into a bulk wave at a discontinuity. It is shown that, by careful design of the discontinuity, the converted bulk wave power and the radiation pattern may be controlled. General formulas are derived for the calculation of these important characteristics from a relatively general surface contour deformation.

  13. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  14. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  15. Rapid identification of Candida spp. frequently involved in invasive mycoses by using flow-through hybridization and Gene Chip (FHGC) technology.

    Science.gov (United States)

    Li, Chen; Ding, Xiurong; Liu, Zhizhong; Zhu, Juanjuan

    2017-01-01

    The incidence of invasive fungal infections in immunocompromised patients has increased in recent decades. Rapid and accurate identification of these pathogenic fungi is crucial for initiating a timely, safe, and effective antifungal therapy. Here we developed a microarray based on flow-through hybridization gene chip technology. The microarray was tested for its specificity using a panel of reference and blinded clinical isolates. The results proved that this microarray was highly discriminative, leading to the unequivocal identification of each species, including Candida famata and the highly related species Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis. This new system represents a reliable method that is of potential use in clinical laboratories for the simultaneous detection and identification of the most common pathogenic fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. LOX Gene Transcript Accumulation in Olive (Olea europaea L. Fruits at Different Stages of Maturation: Relationship between Volatile Compounds, Environmental Factors, and Technological Treatments for Oil Extraction

    Directory of Open Access Journals (Sweden)

    Innocenzo Muzzalupo

    2012-01-01

    Full Text Available The quality of olive oil is influenced by genetic and environmental factors and by the maturation state of drupes, but it is equally affected by technological treatments of the process. This work investigates the possible correlation between olive LOX gene transcript accumulation, evaluated in fruits collected at different stages of maturation, and chemical biomarkers of its activity. During olive fruit ripening, the same genotype harvested from two different farms shows a positive linear trend between LOX relative transcript accumulation and the content of volatile compounds present in the olive oil aroma. Interestingly, a negative linear trend was observed between LOX relative transcript accumulation and the content of volatile compounds present in the olive pastes obtained from olive fruits with and without malaxation. The changes in the olive LOX transcript accumulation reveal its environmental regulation and suggest differential physiological functions for the LOXs.

  17. LOX Gene transcript accumulation in olive (Olea europaea L.) fruits at different stages of maturation: relationship between volatile compounds, environmental factors, and technological treatments for oil extraction.

    Science.gov (United States)

    Muzzalupo, Innocenzo; Macchione, Barbara; Bucci, Cristina; Stefanizzi, Francesca; Perri, Enzo; Chiappetta, Adriana; Tagarelli, Antonio; Sindona, Giovanni

    2012-01-01

    The quality of olive oil is influenced by genetic and environmental factors and by the maturation state of drupes, but it is equally affected by technological treatments of the process. This work investigates the possible correlation between olive LOX gene transcript accumulation, evaluated in fruits collected at different stages of maturation, and chemical biomarkers of its activity. During olive fruit ripening, the same genotype harvested from two different farms shows a positive linear trend between LOX relative transcript accumulation and the content of volatile compounds present in the olive oil aroma. Interestingly, a negative linear trend was observed between LOX relative transcript accumulation and the content of volatile compounds present in the olive pastes obtained from olive fruits with and without malaxation. The changes in the olive LOX transcript accumulation reveal its environmental regulation and suggest differential physiological functions for the LOXs.

  18. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  19. G-protein-coupled receptors mediate 14-3-3 signal transduction.

    Science.gov (United States)

    Li, Hua; Eishingdrelo, Alex; Kongsamut, Sathapana; Eishingdrelo, Haifeng

    2016-01-01

    G-protein-coupled receptor (GPCR)-interacting proteins likely participate in regulating GPCR signaling by eliciting specific signal transduction cascades, inducing cross-talk with other pathways, and fine tuning the signal. However, except for G-proteins and β-arrestins, other GPCR-interacting proteins are poorly characterized. 14-3-3 proteins are signal adaptors, and their participation in GPCR signaling is not well understood or recognized. Here we demonstrate that GPCR-mediated 14-3-3 signaling is ligand-regulated and is likely to be a more general phenomenon than suggested by the previous reports of 14-3-3 involvement with a few GPCRs. For the first time, we can pharmacologically characterize GPCR/14-3-3 signaling. We have shown that GPCR-mediated 14-3-3 signaling is phosphorylation-dependent, and that the GPCR/14-3-3 interaction likely occurs later than receptor desensitization and internalization. GPCR-mediated 14-3-3 signaling can be β-arrestin-independent, and individual agonists can have different potencies on 14-3-3 and β-arrestin signaling. GPCRs can also mediate the interaction between 14-3-3 and Raf-1. Our work opens up a new broad realm of previously unappreciated GPCR signal transduction. Linking GPCRs to 14-3-3 signal transduction creates the potential for the development of new research directions and provides a new signaling pathway for drug discovery.

  20. A Biosensor for Urea from Succinimide-Modified Acrylic Microspheres Based on Reflectance Transduction

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2011-08-01

    Full Text Available New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294 for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97 with a limit of detection of 9.97 mM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5 with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.

  1. Nanopore Event-Transduction Signal Stabilization for Wide pH Range under Extreme Chaotrope Conditions.

    Science.gov (United States)

    Winters-Hilt, Stephen; Stoyanov, Alexander

    2016-03-14

    Operation of an α-hemolysin nanopore transduction detector is found to be surprisingly robust over a critical range of pH (6-9), including physiological pH = 7.4 and polymerase chain reaction (PCR) pH = 8.4, and extreme chaotrope concentration, including 5 M urea. The engineered transducer molecule that is captured in the standard α-hemolysin nanopore detector, to transform it into a transduction detector, appears to play a central role in this stabilization process by stabilizing the channel against gating during its capture. This enables the nanopore transduction detector to operate as a single molecule "nanoscope" in a wide range of conditions, where tracking on molecular state is possible in a variety of different environmental conditions. In the case of streptavidin biosensing, results are shown for detector operation when in the presence of extreme (5 M) urea concentration. Complications involving degenerate states are encountered at higher chaotrope concentrations, but since the degeneracy is only of order two, this is easily absorbed into the classification task as in prior work. This allows useful detector operation over a wide range of conditions relevant to biochemistry, biomedical engineering, and biotechnology.

  2. Nanopore Event-Transduction Signal Stabilization for Wide pH Range under Extreme Chaotrope Conditions

    Directory of Open Access Journals (Sweden)

    Stephen Winters-Hilt

    2016-03-01

    Full Text Available Operation of an α-hemolysin nanopore transduction detector is found to be surprisingly robust over a critical range of pH (6–9, including physiological pH = 7.4 and polymerase chain reaction (PCR pH = 8.4, and extreme chaotrope concentration, including 5 M urea. The engineered transducer molecule that is captured in the standard α-hemolysin nanopore detector, to transform it into a transduction detector, appears to play a central role in this stabilization process by stabilizing the channel against gating during its capture. This enables the nanopore transduction detector to operate as a single molecule “nanoscope” in a wide range of conditions, where tracking on molecular state is possible in a variety of different environmental conditions. In the case of streptavidin biosensing, results are shown for detector operation when in the presence of extreme (5 M urea concentration. Complications involving degenerate states are encountered at higher chaotrope concentrations, but since the degeneracy is only of order two, this is easily absorbed into the classification task as in prior work. This allows useful detector operation over a wide range of conditions relevant to biochemistry, biomedical engineering, and biotechnology.

  3. Morphing structures and signal transduction in Mimosa pudica L. induced by localized thermal stress.

    Science.gov (United States)

    Volkov, Alexander G; O'Neal, Lawrence; Volkova, Maia I; Markin, Vladislav S

    2013-10-15

    Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. New Signal Transduction Principles for Amperometric Enzyme and Antibody based Sensors

    Science.gov (United States)

    Warsinke, Axel

    2008-10-01

    The way of how the signal transfer from the analyte recognizing biocomponent to the sensor surface is performed influences strongly the characteristics of a biosensor e.g. response time, sensitivity and specificity. Most of the described amperometric enzyme sensors are using oxidases. The signal transduction is carried out simply by electrochemical indication of the produced hydrogen peroxide or via a sensor-immobilized redox polymer. However, due to the limited number of appropriate oxidases the range of detectable analytes is restricted. Hence, we have developed a new general principle for the sensitive transduction of the more than 400 different NAD(P) dependent dehydrogenase reactions. The transduction is based on a hydroxylase reaction which produces an electrochemically active substance under the consumption of NAD(P)H. The principle should be applicable to miniaturized sensor configuration and could be the basis for a new generation of point-of-care devices. For other analytes where no oxidases and dehydrogenases are available antibodies can be used as specific recognition element. We have developed a new principle of redox-labeled immunoassays called size exclusion redox-labeled immunoassay (SERI), where after the antigen antibody binding reaction the indication is carried out amperometrically without a washing step in between. The principle was proved for measurement of creatinine. At the moment the assay needs a relatively high amount of antibodies. However, in future it should be possible to reduce the amount of antibodies by using miniaturized microfluidic chips.

  5. Decision Aggregation in Distributed Classification by a Transductive Extension of Maximum Entropy/Improved Iterative Scaling

    Directory of Open Access Journals (Sweden)

    George Kesidis

    2008-06-01

    Full Text Available In many ensemble classification paradigms, the function which combines local/base classifier decisions is learned in a supervised fashion. Such methods require common labeled training examples across the classifier ensemble. However, in some scenarios, where an ensemble solution is necessitated, common labeled data may not exist: (i legacy/proprietary classifiers, and (ii spatially distributed and/or multiple modality sensors. In such cases, it is standard to apply fixed (untrained decision aggregation such as voting, averaging, or naive Bayes rules. In recent work, an alternative transductive learning strategy was proposed. There, decisions on test samples were chosen aiming to satisfy constraints measured by each local classifier. This approach was shown to reliably correct for class prior mismatch and to robustly account for classifier dependencies. Significant gains in accuracy over fixed aggregation rules were demonstrated. There are two main limitations of that work. First, feasibility of the constraints was not guaranteed. Second, heuristic learning was applied. Here, we overcome these problems via a transductive extension of maximum entropy/improved iterative scaling for aggregation in distributed classification. This method is shown to achieve improved decision accuracy over the earlier transductive approach and fixed rules on a number of UC Irvine datasets.

  6. Development and validation of a variant detection workflow for BRCA1 and BRCA2 genes and its clinical application based on the Ion Torrent technology.

    Science.gov (United States)

    Buzolin, Ana Lígia; Moreira, Caroline Mônaco; Sacramento, Patricia Rossi; Oku, Andre Yuji; Fornari, Alexandre Ricardo Dos Santos; Antonio, David Santos Marco; Quaio, Caio Robledo D Angioli Costa; Baratela, Wagner Rosa; Mitne-Neto, Miguel

    2017-06-26

    Breast cancer is the most common among women worldwide, and ovarian cancer is the most difficult gynecological tumor to diagnose and with the lowest chance of cure. Mutations in BRCA1 and BRCA2 genes increase the risk of ovarian cancer by 60% and breast cancer by up to 80% in women. Molecular tests allow a better orientation for patients carrying these mutations, affecting prophylaxis, treatment, and genetic counseling. Here, we evaluated the performance of a panel for BRCA1 and BRCA2, using the Ion Torrent PGM (Life Technologies) platform in a customized workflow and multiplex ligation-dependent probe amplification for detection of mutations, insertions, and deletions in these genes. We validated the panel with 26 samples previously analyzed by Myriad Genetics Laboratory, and our workflow showed 95.6% sensitivity and 100% agreement with Myriad reports, with 85% sensitivity on the positive control sample from NIST. We also screened 68 clinical samples and found 22 distinct mutations. The selection of a robust methodology for sample preparation and sequencing, together with bioinformatics tools optimized for the data analysis, enabled the development of a very sensitive test with high reproducibility. We also highlight the need to explore the limitations of the NGS technique and the strategies to overcome them in a clinically confident manner.

  7. Advanced cell culture technology for essential oil production and micro array studies leading to discovery of genes for fragrance compounds in Michelia alba (Cempaka Putih)

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Norazlina Nordin; Edrina Azlan

    2006-01-01

    Michelia spp. is known to produce high value essential oil for perfumery industry. The essence of world's most expensive perfumes, such as JOY and Jadore, is based on the oil of Michelia spp. One major problem anticipated in this approach, based on our early experiments, is limited amount of fragrance produced in cell cultures. The appropriate strategy is to superimpose DNA micro array studies on top of the cell culture project. The study covers natural flower development phases that led to the identification of genes or sets of genes that regulate the production of the fragrance. Seven developmental stages of Michelia alba flower namely Stage 5 to 11 were investigated for their volatile constituents. The essential oil was isolated by Simultaneous Distillation Extraction technique and the oil obtained was subjected to GC-MS analysis. In total, seventy-seven compounds representing 93-98% of the overall volatiles compounds were identified on the basis of mass spectra and retention indices. Thirty-three of these compounds belonged to isoprenoids group which comprised 30-50% of the total volatile compounds whereas the remaining belonged to fatty acid derivatives, benzenoid, phenylpropanoid and other hydrocarbon compounds. Studies were conducted to optimize culture parameters for scaling-up the production of callus, suspension cell cultures and somatic and product accumulation of essential oils using bioreactor technology. (Author)

  8. Inconsistent Transduction

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær; Riis, Morten S.

    2017-01-01

    The growing integration of sounding art as research practice in academia is a part of the “practice turn” in humanities and social sciences, where artistic practices and artefacts themselves become a form of academic inquiry. As the process of creating art represents a valid research method...... for gaining new knowledge, sounding art pieces thus become more than mere objects for analysis: because the research unfolds in and through the acts of creating and performing art, practice is not only a methodological vehicle but also a site of knowledge production. Scholars in this new strand of literature...... with the objects in question on their own premises. Therefore, tuning into the “not-knowing” requires expanding the perspective to encompass non-human forms of knowledge incorporated through an object-oriented ontological line of thinking. By switching the focus from the human perspective to that of the objects...

  9. Structures of the first representatives of Pfam family PF06938 (DUF1285) reveal a new fold with repeated structural motifs and possible involvement in signal transduction

    International Nuclear Information System (INIS)

    Han, Gye Won; Bakolitsa, Constantina; Miller, Mitchell D.; Kumar, Abhinav; Carlton, Dennis; Najmanovich, Rafael J.; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ernst, Dustin; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Jaroszewski, Lukasz; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Marciano, David; McMullan, Daniel; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structures of SPO0140 and Sbal-2486 revealed a two-domain structure that adopts a novel fold. Analysis of the interdomain cleft suggests a nucleotide-based ligand with a genome context indicating signaling as a possible role for this family. The crystal structures of SPO0140 and Sbal-2486 were determined using the semiautomated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). The structures revealed a conserved core with domain duplication and a superficial similarity of the C-terminal domain to pleckstrin homology-like folds. The conservation of the domain interface indicates a potential binding site that is likely to involve a nucleotide-based ligand, with genome-context and gene-fusion analyses additionally supporting a role for this family in signal transduction, possibly during oxidative stress

  10. Cross-platform comparison of SYBR® Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC study

    Directory of Open Access Journals (Sweden)

    Dial Stacey L

    2008-07-01

    Full Text Available Abstract Background The MicroArray Quality Control (MAQC project evaluated the inter- and intra-platform reproducibility of seven microarray platforms and three quantitative gene expression assays in profiling the expression of two commercially available Reference RNA samples (Nat Biotechnol 24:1115-22, 2006. The tested microarrays were the platforms from Affymetrix, Agilent Technologies, Applied Biosystems, GE Healthcare, Illumina, Eppendorf and the National Cancer Institute, and quantitative gene expression assays included TaqMan® Gene Expression PCR Assay, Standardized (Sta RT-PCR™ and QuantiGene®. The data showed great consistency in gene expression measurements across different microarray platforms, different technologies and test sites. However, SYBR® Green real-time PCR, another common technique utilized by half of all real-time PCR users for gene expression measurement, was not addressed in the MAQC study. In the present study, we compared the performance of SYBR Green PCR with TaqMan PCR, microarrays and other quantitative technologies using the same two Reference RNA samples as the MAQC project. We assessed SYBR Green real-time PCR using commercially available RT2 Profil