WorldWideScience

Sample records for gene transcripts expressed

  1. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    2013-01-01

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an experiment

  2. Transcription mediated insulation and interference direct gene cluster expression switches.

    Science.gov (United States)

    Nguyen, Tania; Fischl, Harry; Howe, Françoise S; Woloszczuk, Ronja; Serra Barros, Ana; Xu, Zhenyu; Brown, David; Murray, Struan C; Haenni, Simon; Halstead, James M; O'Connor, Leigh; Shipkovenska, Gergana; Steinmetz, Lars M; Mellor, Jane

    2014-11-19

    In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

  3. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of

  4. Antisense transcription as a tool to tune gene expression.

    Science.gov (United States)

    Brophy, Jennifer A N; Voigt, Christopher A

    2016-01-14

    A surprise that has emerged from transcriptomics is the prevalence of genomic antisense transcription, which occurs counter to gene orientation. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in Escherichia coli to study how antisense transcription can change the expression of a gene and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that this part represses gene expression proportionally to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations that was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new mode to control gene expression that has been previously overlooked in genetic engineering.

  5. Transcriptional control of hepatocanalicular transporter gene expression

    NARCIS (Netherlands)

    Muller, M

    2000-01-01

    Transport processes for larger organic solutes at the canalicular membrane are mainly driven by members of the superfamily of ATP-binding cassette (ABC) transporters. The funct ions of these transporters range from bile component secretion to xenobiotica and phase II-conjugate export. The transcript

  6. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  7. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    OpenAIRE

    Anastasis Stephanou; Latchman, David S.

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  8. Transcriptional modulation of heat-shock protein gene expression.

    OpenAIRE

    A. Stephanou; Latchman, D S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex sig...

  9. Transcriptional Modulation of Heat-Shock Protein Gene Expression

    Directory of Open Access Journals (Sweden)

    Anastasis Stephanou

    2011-01-01

    Full Text Available Heat-shock proteins (Hsps are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  10. Transcriptional modulation of heat-shock protein gene expression.

    Science.gov (United States)

    Stephanou, Anastasis; Latchman, David S

    2011-01-01

    Heat-shock proteins (Hsps) are molecular chaperones that are ubiquitously expressed but are also induced in cells exposed to stressful stimuli. Hsps have been implicated in the induction and propagation of several diseases. This paper focuses on regulatory factors that control the transcription of the genes encoding Hsps. We also highlight how distinct transcription factors are able to interact and modulate Hsps in different pathological states. Thus, a better understanding of the complex signaling pathways regulating Hsp expression may lead to novel therapeutic targets.

  11. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  12. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  13. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  14. The transcriptional interactome: gene expression in 3D.

    Science.gov (United States)

    Schoenfelder, Stefan; Clay, Ieuan; Fraser, Peter

    2010-04-01

    Transcription in the eukaryotic nucleus has long been thought of as conforming to a model in which RNA polymerase complexes are recruited to and track along isolated templates. However, a more dynamic role for chromatin in transcriptional regulation is materializing: enhancer elements interact with promoters forming loops that often bridge considerable distances and genomic loci, even located on different chromosomes, undergo chromosomal associations. These associations amass to form an extensive 'transcriptional interactome', enacted at functional subnuclear compartments, to which genes dynamically relocate. The emerging view is that long-range chromosomal associations between genomic regions, and their repositioning in the three-dimensional space of the nucleus, are key contributors to the regulation of gene expression. 2010 Elsevier Ltd. All rights reserved.

  15. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Science.gov (United States)

    Kula, Anna; Marcello, Alessandro

    2012-01-01

    Gene expression of the human immunodeficiency virus type 1 (HIV-1) is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE). These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function. PMID:24832221

  16. Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Alessandro Marcello

    2012-07-01

    Full Text Available Gene expression of the human immunodeficiency virus type 1 (HIV-1 is a highly regulated process. Basal transcription of the integrated provirus generates early transcripts that encode for the viral products Tat and Rev. Tat promotes the elongation of RNA polymerase while Rev mediates the nuclear export of viral RNAs that contain the Rev-responsive RNA element (RRE. These RNAs are exported from the nucleus to allow expression of Gag-Pol and Env proteins and for the production of full-length genomic RNAs. A balance exists between completely processed mRNAs and RRE-containing RNAs. Rev functions as an adaptor that recruits cellular factors to re-direct singly spliced and unspliced viral RNAs to nuclear export. The aim of this review is to address the dynamic regulation of this post-transcriptional pathway in light of recent findings that implicate several novel cellular cofactors of Rev function.

  17. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    Science.gov (United States)

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  18. Effects of transcriptional pausing on gene expression dynamics.

    Directory of Open Access Journals (Sweden)

    Tiina Rajala

    2010-03-01

    Full Text Available Stochasticity in gene expression affects many cellular processes and is a source of phenotypic diversity between genetically identical individuals. Events in elongation, particularly RNA polymerase pausing, are a source of this noise. Since the rate and duration of pausing are sequence-dependent, this regulatory mechanism of transcriptional dynamics is evolvable. The dependency of pause propensity on regulatory molecules makes pausing a response mechanism to external stress. Using a delayed stochastic model of bacterial transcription at the single nucleotide level that includes the promoter open complex formation, pausing, arrest, misincorporation and editing, pyrophosphorolysis, and premature termination, we investigate how RNA polymerase pausing affects a gene's transcriptional dynamics and gene networks. We show that pauses' duration and rate of occurrence affect the bursting in RNA production, transcriptional and translational noise, and the transient to reach mean RNA and protein levels. In a genetic repressilator, increasing the pausing rate and the duration of pausing events increases the period length but does not affect the robustness of the periodicity. We conclude that RNA polymerase pausing might be an important evolvable feature of genetic networks.

  19. A weakened transcriptional enhancer yields variegated gene expression.

    Directory of Open Access Journals (Sweden)

    Cathy Collins

    Full Text Available Identical genes in the same cellular environment are sometimes expressed differently. In some cases, including the immunoglobulin heavy chain (IgH locus, this type of differential gene expression has been related to the absence of a transcriptional enhancer. To gain additional information on the role of the IgH enhancer, we examined expression driven by enhancers that were merely weakened, rather than fully deleted, using both mutations and insulators to impair enhancer activity. For this purpose we used a LoxP/Cre system to place a reporter gene at the same genomic site of a stable cell line. Whereas expression of the reporter gene was uniformly high in the presence of the normal, uninsulated enhancer and undetectable in its absence, weakened enhancers yielded variegated expression of the reporter gene; i.e., the average level of expression of the same gene differed in different clones, and expression varied significantly among cells within individual clones. These results indicate that the weakened enhancer allows the reporter gene to exist in at least two states. Subtle aspects of the variegation suggest that the IgH enhancer decreases the average duration (half-life of the silent state. This analysis has also tested the conventional wisdom that enhancer activity is independent of distance and orientation. Thus, our analysis of mutant (truncated forms of the IgH enhancer revealed that the 250 bp core enhancer was active in its normal position, approximately 1.4 kb 3' of the promoter, but inactive approximately 6 kb 3', indicating that the activity of the core enhancer was distance-dependent. A longer segment--the core enhancer plus approximately 1 kb of 3' flanking material, including the 3' matrix attachment region--was active, and the activity of this longer segment was orientation-dependent. Our data suggest that this 3' flank includes binding sites for at least two activators.

  20. Differential gene expression regulated by oscillatory transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Cerone

    Full Text Available Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.

  1. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  2. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish.

    Science.gov (United States)

    Leong, Ivone U S; Skinner, Jonathan R; Shelling, Andrew N; Love, Donald R

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 syndrome mouse models have been created that vary in the physiological similarity to the human disease. To complement the LQT7 mouse models, we investigated the usefulness of the zebrafish as an alternative model via a transient approach. Initial bioinformatic analysis identified the zebrafish orthologue of the human KCNJ2 gene, together with a spatial expression profile that was similar to that of human. The expression of a kcnj2-12 transcript carrying an in-frame deletion of critical amino acids identified in human studies resulted in embryos that exhibited defects in muscle development, thereby affecting movement, a decrease in jaw size, pupil-pupil distance, and signs of scoliosis. These defects correspond to some phenotypes expressed by human LQT7 patients.

  3. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    Science.gov (United States)

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  4. Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation

    Institute of Scientific and Technical Information of China (English)

    Lin Xu; Li Yang; Hai Huang

    2007-01-01

    Leaf morphogenesis requires the establishment of adaxial-abaxial polarity after primordium initiation from the shoot apical meristem (SAM). Several families of transcription factors are known to play critical roles in promoting adaxial or abaxial leaf fate. Recently, post-transcriptional gene silencing pathways have been shown to regulate the establishment of leaf polarity, providing novel and exciting insights into leaf development. For example, microRNAs (miR165/166)and a trans-acting siRNA (TAS3-derived tasiR-ARF) have been shown to repress the expression of several key transcription factor genes. In addition, yet another level of regulation, post-translational regulation, has been revealed recently by studies on the role of the 26S proteasome in leaf polarity. Although our understanding regarding the molecular mechanisms underlying establishment of adaxial-abaxial polarity has greatly improved, there is still much that remains elusive.This review aims to discuss recent progress, as well as the remaining questions, regarding the molecular mechanisms underlying leaf polarity formation.

  5. Is transcription the dominant force during dynamic changes in gene expression?

    Science.gov (United States)

    Turner, Martin

    2011-01-01

    Dynamic changes in gene expression punctuate lymphocyte development and are a characteristic of lymphocyte activation. A prevailing view has been that these changes are driven by DNA transcription factors, which are the dominant force in gene expression. Accumulating evidence is challenging this DNA centric view and has highlighted the prevalence and dynamic nature of RNA handling mechanisms. Alternative splicing and differential polyadenylation appear to be more widespread than first thought. Changes in mRNA decay rates also affect the abundance of transcripts and this mechanism may contribute significantly to gene expression. Additional RNA handling mechanisms that control the intracellular localization of mRNA and association with translating ribosomes are also important. Thus, gene expression is regulated through the coordination of transcriptional and post-transcriptional mechanisms. Developing a more "RNA centric" view of gene expression will allow a more systematic understanding of how gene expression and cell function are integrated.

  6. Scaling of Gene Expression with Transcription-Factor Fugacity

    Science.gov (United States)

    Weinert, Franz M.; Brewster, Robert C.; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K.

    2015-01-01

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve. PMID:25554908

  7. Scaling of gene expression with transcription-factor fugacity.

    Science.gov (United States)

    Weinert, Franz M; Brewster, Robert C; Rydenfelt, Mattias; Phillips, Rob; Kegel, Willem K

    2014-12-19

    The proteins associated with gene regulation are often shared between multiple pathways simultaneously. By way of contrast, models in regulatory biology often assume these pathways act independently. We demonstrate a framework for calculating the change in gene expression for the interacting case by decoupling repressor occupancy across the cell from the gene of interest by way of a chemical potential. The details of the interacting regulatory architecture are encompassed in an effective concentration, and thus, a single scaling function describes a collection of gene expression data from diverse regulatory situations and collapses it onto a single master curve.

  8. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  9. Widespread transcriptional autosomal dosage compensation in Drosophila correlates with gene expression level.

    Science.gov (United States)

    McAnally, Ashley A; Yampolsky, Lev Y

    2009-12-23

    Little is known about dosage compensation in autosomal genes. Transcription-level compensation of deletions and other loss-of-function mutations may be a mechanism of dominance of wild-type alleles, a ubiquitous phenomenon whose nature has been a subject of a long debate. We measured gene expression in two isogenic Drosophila lines heterozygous for long deletions and compared our results with previously published gene expression data in a line heterozygous for a long duplication. We find that a majority of genes are at least partially compensated at transcription, both for (1/2)-fold dosage (in heterozygotes for deletions) and for 1.5-fold dosage (in heterozygotes for a duplication). The degree of compensation does not vary among functional classes of genes. Compensation for deletions is stronger for highly expressed genes. In contrast, the degree of compensation for duplications is stronger for weakly expressed genes. Thus, partial transcriptional compensation appears to be based on regulatory mechanisms that insure high transcription levels of some genes and low transcription levels of other genes, instead of precise maintenance of a particular homeostatic expression level. Given the ubiquity of transcriptional compensation, dominance of wild-type alleles may be at least partially caused by of the regulation at transcription level.

  10. Reverse-engineering transcriptional modules from gene expression data

    OpenAIRE

    Michoel, Tom; De Smet, Riet; Joshi, Anagha; Marchal, Kathleen; de Peer, Yves Van

    2009-01-01

    "Module networks" are a framework to learn gene regulatory networks from expression data using a probabilistic model in which coregulated genes share the same parameters and conditional distributions. We present a method to infer ensembles of such networks and an averaging procedure to extract the statistically most significant modules and their regulators. We show that the inferred probabilistic models extend beyond the data set used to learn the models.

  11. Understanding Transcription Factor Regulation by Integrating Gene Expression and DNase I Hypersensitive Sites

    Directory of Open Access Journals (Sweden)

    Guohua Wang

    2015-01-01

    Full Text Available Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5–20 bp long specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours, we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.

  12. Highly expressed genes are associated with inverse antisense transcription in mouse

    Indian Academy of Sciences (India)

    Andras Györffy; Pawel Surowiak; Zsolt Tulassay; Balazs Györffy

    2007-08-01

    There is a growing evidence, that antisense transcription might have a key role in a range of human diseases. Although predefined sense–antisense pairs were extensively studied, the antisense expression of the known sense genes is rarely investigated. We retrieved and correlated the expression of sense and antisense sequences of 1182 mouse transcripts to assess the prevalence and to find the characteristic pattern of antisense transcription. We contrasted three Affymetrix MGU74A version 1 mouse genome chips to six MGU74A version 2 chips. For these 1182 transcripts, the version 1 chips contain the antisense sequences of the transcripts presented on the version 2 chips. The original data was taken from the GEO database (GDS431 and GDS432). As the Affymetrix data are semiquantitative, the relative expression levels of antisense partners were analysed. We detected antisense transcription, although the average antisense expression is shifted towards smaller expression values (MGU74A version 1, 516; version 2, 1688). An inverse direct correlation between sense and antisense expression values could be observed at high expression values. At a very high relative expression—above 40,000—the Pearson correlation coefficient is getting closer to −1. Transcripts with high inverse expression ratio may be correlated to the investigated gene (major histocompatibility complex class II trans activator). The ratio of sense to antisense transcripts varied among different chromosomes; on chromosomes 14 and 1 the level of antisense expression was higher than that of sense. We conclude that antisense transcription is a common phenomenon in the mouse genome. The hypothesis of regulatory role of antisense transcripts is supported by the inverse antisense gene expression of highly expressed genes.

  13. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  14. A primer on molecular biology for imagers: II. Transcription and gene expression.

    Science.gov (United States)

    Pandit, Sunil D; Li, King C P

    2004-03-01

    The process of gene expression is complex and highly regulated to ensure that the right gene is expressed at the right place, at the right time, and in regulated amounts. The cell has multiple levels at which it controls the expression of a transcript including gene expression, alternate splicing, and stability of the transcript. Alternate splicing to generate different RNA species from a given gene and DNA rearrangements where genes are rearranged during cellular differentiation (eg, immunoglobulin genes) are additional mechanisms used to generate diversity in complex organisms. Epigenetic mechanisms such as methylation where CpG-rich islands in the promoter region depending on their methylation status can also modulate gene expression. The reader is requested to refer to the books, review articles, and web sites for additional information.

  15. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    Directory of Open Access Journals (Sweden)

    Vidal Marc

    2007-01-01

    Full Text Available Abstract Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale.

  16. Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

    Science.gov (United States)

    Alonge, Kimberly M; Meares, Gordon P; Hillgartner, F Bradley

    2017-03-31

    Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell.

    NARCIS (Netherlands)

    Berthoumieux, S.; Jong, H. de; Baptist, G.; Pinel, C.; Ranquet, C.; Ropers, D.; Geiselmann, J.

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these t

  18. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Won-Chan; Han, Kyung-Hwan

    2009-11-01

    MYB46 functions as a transcriptional switch that turns on the genes necessary for secondary wall biosynthesis. Elucidating the transcriptional regulatory network immediately downstream of MYB46 is crucial to our understanding of the molecular and biochemical processes involved in the biosynthesis and deposition of secondary walls in plants. To gain insights into MYB46-mediated transcriptional regulation, we first established an inducible secondary wall thickening system in Arabidopsis by expressing MYB46 under the control of dexamethasone-inducible promoter. Then, we used an ATH1 GeneChip microarray and Illumina digital gene expression system to obtain a series of transcriptome profiles with regard to the induction of secondary wall development. These analyses allowed us to identify a group of transcription factors whose expression coincided with or preceded the induction of secondary wall biosynthetic genes. A transient transcriptional activation assay was used to confirm the hierarchical relationships among the transcription factors in the network. The in vivo assay showed that MYB46 transcriptionally activates downstream target transcription factors, three of which (AtC3H14, MYB52 and MYB63) were shown to be able to activate secondary wall biosynthesis genes. AtC3H14 activated the transcription of all of the secondary wall biosynthesis genes tested, suggesting that AtC3H14 may be another master regulator of secondary wall biosynthesis. The transcription factors identified here may include direct activators of secondary wall biosynthesis genes. The present study discovered novel hierarchical relationships among the transcription factors involved in the transcriptional regulation of secondary wall biosynthesis, and generated several testable hypotheses.

  19. Transcriptional Regulation of Fucosyltransferase 1 Gene Expression in Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fumiko Taniuchi

    2013-01-01

    Full Text Available The α1,2-fucosyltransferase I (FUT1 enzyme is important for the biosynthesis of H antigens, Lewis B, and Lewis Y. In this study, we clarified the transcriptional regulation of FUT1 in the DLD-1 colon cancer cell line, which has high expression of Lewis B and Lewis Y antigens, expresses the FUT1 gene, and shows α1,2-fucosyltransferase (FUT activity. 5′-rapid amplification of cDNA ends revealed a FUT1 transcriptional start site −10 nucleotides upstream of the site registered at NM_000148 in the DataBase of Human Transcription Start Sites (DBTSS. Using the dual luciferase assay, FUT1 gene expression was shown to be regulated at the region −91 to −81 nt to the transcriptional start site, which contains the Elk-1 binding site. Site-directed mutagenesis of this region revealed the Elk-1 binding site to be essential for FUT1 transcription. Furthermore, transfection of the dominant negative Elk-1 gene, and the chromatin immunoprecipitation (CHIp assay, supported Elk-1-dependent transcriptional regulation of FUT1 gene expression in DLD-1 cells. These results suggest that a defined region in the 5′-flanking region of FUT1 is critical for FUT1 transcription and that constitutive gene expression of FUT1 is regulated by Elk-1 in DLD-1 cells.

  20. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  1. Intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions.

    Science.gov (United States)

    Leister, Dario; Wang, Xi; Haberer, Georg; Mayer, Klaus F X; Kleine, Tatjana

    2011-09-01

    Genes for mitochondrial and chloroplast proteins are distributed between the nuclear and organellar genomes. Organelle biogenesis and metabolism, therefore, require appropriate coordination of gene expression in the different compartments to ensure efficient synthesis of essential multiprotein complexes of mixed genetic origin. Whereas organelle-to-nucleus signaling influences nuclear gene expression at the transcriptional level, organellar gene expression (OGE) is thought to be primarily regulated posttranscriptionally. Here, we show that intracompartmental and intercompartmental transcriptional networks coordinate the expression of genes for organellar functions. Nearly 1,300 ATH1 microarray-based transcriptional profiles of nuclear and organellar genes for mitochondrial and chloroplast proteins in the model plant Arabidopsis (Arabidopsis thaliana) were analyzed. The activity of genes involved in organellar energy production (OEP) or OGE in each of the organelles and in the nucleus is highly coordinated. Intracompartmental networks that link the OEP and OGE gene sets serve to synchronize the expression of nucleus- and organelle-encoded proteins. At a higher regulatory level, coexpression of organellar and nuclear OEP/OGE genes typically modulates chloroplast functions but affects mitochondria only when chloroplast functions are perturbed. Under conditions that induce energy shortage, the intercompartmental coregulation of photosynthesis genes can even override intracompartmental networks. We conclude that dynamic intracompartmental and intercompartmental transcriptional networks for OEP and OGE genes adjust the activity of organelles in response to the cellular energy state and environmental stresses, and we identify candidate cis-elements involved in the transcriptional coregulation of nuclear genes. Regarding the transcriptional regulation of chloroplast genes, novel tentative target genes of σ factors are identified.

  2. Gene expression profiling of aging reveals activation of a p53-mediated transcriptional program

    Directory of Open Access Journals (Sweden)

    Weindruch Richard

    2007-03-01

    Full Text Available Abstract Background Aging has been associated with widespread changes at the gene expression level in multiple mammalian tissues. We have used high density oligonucleotide arrays and novel statistical methods to identify specific transcriptional classes that may uncover biological processes that play a central role in mammalian aging. Results We identified 712 transcripts that are differentially expressed in young (5 month old and old (25-month old mouse skeletal muscle. Caloric restriction (CR completely or partially reversed 87% of the changes in expression. Examination of individual genes revealed a transcriptional profile indicative of increased p53 activity in the older muscle. To determine whether the increase in p53 activity is associated with transcriptional activation of apoptotic targets, we performed RT-PCR on four well known mediators of p53-induced apoptosis: puma, noxa, tnfrsf10b and bok. Expression levels for these proapoptotic genes increased significantly with age (P +/- and GPX4+/- mice, suggesting that oxidative stress does not induce the expression of these genes. Western blot analysis confirmed that protein levels for both p21 and GADD45a, two established transcriptional targets of p53, were higher in the older muscle tissue. Conclusion These observations support a role for p53-mediated transcriptional program in mammalian aging and suggest that mechanisms other than reactive oxygen species are involved in the age-related transcriptional activation of p53 targets.

  3. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Identifying Stress Transcription Factors Using Gene Expression and TF-Gene Association Data.

    Science.gov (United States)

    Wu, Wei-Sheng; Chen, Bor-Sen

    2009-11-24

    Unicellular organisms such as yeasts have evolved to survive environmental stresses by rapidly reorganizing the genomic expression program to meet the challenges of harsh environments. The complex adaptation mechanisms to stress remain to be elucidated. In this study, we developed Stress Transcription Factor Identification Algorithm (STFIA), which integrates gene expression and TF-gene association data to identify the stress transcription factors (TFs) of six kinds of stresses. We identified some general stress TFs that are in response to various stresses, and some specific stress TFs that are in response to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs may be sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the adaptation mechanisms to different stresses may have a bow-tie structure. Second, there may exist extensive regulatory cross-talk among different stress responses. In conclusion, this study proposes a network of the regulators of stress responses and their mechanism of action.

  5. Reciprocal regulation of transcription factors and PLC isozyme gene expression in adult cardiomyocytes.

    Science.gov (United States)

    Singal, Tushi; Dhalla, Naranjan S; Tappia, Paramjit S

    2010-06-01

    By employing a pharmacological approach, we have shown that phospholipase C (PLC) activity is involved in the regulation of gene expression of transcription factors such as c-Fos and c-Jun in cardiomyocytes in response to norepinephrine (NE). However, there is no information available regarding the identity of specific PLC isozymes involved in the regulation of c-Fos and c-Jun or on the involvement of these transcription factors in PLC isozyme gene expression in adult cardiomyocytes. In this study, transfection of cardiomyocytes with PLC isozyme specific siRNA was found to prevent the NE-mediated increases in the corresponding PLC isozyme gene expression, protein content and activity. Unlike PLC gamma(1) gene, silencing of PLC beta(1), beta(3) and delta(1) genes with si RNA prevented the increases in c-Fos and c-Jun gene expression in response to NE. On the other hand, transfection with c-Jun si RNA suppressed the NE-induced increase in c-Jun as well as PLC beta(1), beta(3) and delta(1) gene expression, but had no effect on PLC gamma(1) gene expression. Although transfection of cardiomyocytes with c-Fos si RNA prevented NE-induced expression of c-Fos, PLC beta(1) and PLC beta(3) genes, it did not affect the increases in PLC delta(1) and PLC gamma(1) gene expression. Silencing of either c-Fos or c-Jun also depressed the NE-mediated increases in PLC beta(1), beta(3) and gamma(1) protein content and activity in an isozyme specific manner. Furthermore, silencing of all PLC isozymes as well as of c-Fos and c-Jun resulted in prevention of the NE-mediated increase in atrial natriuretic factor gene expression. These findings, by employing gene silencing techniques, demonstrate that there occurs a reciprocal regulation of transcription factors and specific PLC isozyme gene expression in cardiomyocytes.

  6. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression.

    Directory of Open Access Journals (Sweden)

    Seth A Ament

    Full Text Available Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF, ultraspiracle (usp; the insect homolog of the Retinoid X Receptor, working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

  7. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  8. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  9. Expression liver-directed genes by employing synthetic transcriptional control units

    Institute of Scientific and Technical Information of China (English)

    Marie-Luise Lemken; Wolfgang A. Wybranietz; Ulrike Schmidt; Florian Graepler; Sorin Armeanu; Michael Bitzer; Ulrich M. Lauer

    2005-01-01

    AIM: To generate and characterize the synthetic transcriptional control units for transcriptional targeting of the liver,thereby compensating for the lack of specificity of currently available gene therapeutic vector systems.METHODS: Synthetic transcriptional control unit constructs were generated and analyzed for transcriptional activities in different cell types by FACS quantification, semi-quantitative RT-PCR, and Western blotting. RESULTS: A new bifunctionally-enhanced green fluorescent protein (EGFP)/neor fusion gene cassette was generated,and could flexibly be used both for transcript quantification and for selection of stable cell clones. Then, numerous synthetic transcriptional control units consisting of a minimal promoter linked to "naturally" derived composite enhancer elements from liver-specific expressed genes or binding sites of liver-specific transcription factors were inserted upstream of this reporter cassette. Following liposome-mediated transfection, EGFP reporter protein quantification by FACS analysis identified constructs encoding multimerized composite elements of the apolipoprotein B100 (ApoB) promoter or the ornithin transcarbamoylase (OTC) enhancer to exhibit maximum transcriptional activities in liver originating cell lines, but only background levels in non-liver originating cell lines. In contrast, constructs encoding only singular binding sites of liver-specific transcription factors, namely hepatocyte nuclear factor (HNF)1, HNF3, HNF4, HNF5, or CAAT/enhancer binding protein (C/EBP) only achieved background levels of EGFP expression. Finally, both semi-quantitative RT-PCR and Western blotting analysis of Hep3B cells demonstrated maximum transcriptional activities for a multimeric 4xApoB cassette construct, which fully complied with the data obtained by initial FACS analysis.CONCLUSION: Synthetic transcriptional control unit constructs not only exhibit a superb degree of structural compactness, but also provide new means for liver

  10. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  11. Comparative transcriptional analysis reveals differential gene expression between asymmetric and symmetric zygotic divisions in tobacco.

    Directory of Open Access Journals (Sweden)

    Tian-Xiang Hu

    Full Text Available Asymmetric cell divisions occur widely during many developmental processes in plants. In most angiosperms, the first zygotic cell division is asymmetric resulting in two daughter cells of unequal size and with distinct fates. However, the critical molecular mechanisms regulating this division remain unknown. Previously we showed that treatment of tobacco zygotes with beta-glucosyl Yariv (βGlcY could dramatically alter the first zygotic asymmetric division to produce symmetric two-celled proembryos. In the present study, we isolated zygotes and two-celled asymmetric proembryos in vivo by micromanipulation, and obtained symmetric, two-celled proembryos by in vitro cell cultures. Using suppression-subtractive hybridization (SSH and macroarray analysis differential gene expression between the zygote and the asymmetric and symmetric two-celled proembryos was investigated. After sequencing of the differentially expressed clones, a total of 1610 EST clones representing 685 non-redundant transcripts were obtained. Gene ontology (GO term analysis revealed that these transcripts include those involved in physiological processes such as response to stimulus, regulation of gene expression, and localization and formation of anatomical structures. A homology search against known genes from Arabidopsis indicated that some of the above transcripts are involved in asymmetric cell division and embryogenesis. Quantitative real-time PCR confirmed the up- or down-regulation of the selected candidate transcripts during zygotic division. A few of these transcripts were expressed exclusively in the zygote, or in either type of the two-celled proembryos. Expression analyses of select genes in different tissues and organs also revealed potential roles of these transcripts in fertilization, seed maturation and organ development. The putative roles of few of the identified transcripts in the regulation of zygotic division are discussed. Further functional work on these

  12. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae

    Science.gov (United States)

    Rantasalo, Anssi; Czeizler, Elena; Virtanen, Riitta; Rousu, Juho; Lähdesmäki, Harri; Penttilä, Merja

    2016-01-01

    This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF) onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1) the transcription-activation domain of the sTF, 2) the binding-site modules in the output promoter, and 3) the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications. PMID:26901642

  13. Synthetic Transcription Amplifier System for Orthogonal Control of Gene Expression in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anssi Rantasalo

    Full Text Available This work describes the development and characterization of a modular synthetic expression system that provides a broad range of adjustable and predictable expression levels in S. cerevisiae. The system works as a fixed-gain transcription amplifier, where the input signal is transferred via a synthetic transcription factor (sTF onto a synthetic promoter, containing a defined core promoter, generating a transcription output signal. The system activation is based on the bacterial LexA-DNA-binding domain, a set of modified, modular LexA-binding sites and a selection of transcription activation domains. We show both experimentally and computationally that the tuning of the system is achieved through the selection of three separate modules, each of which enables an adjustable output signal: 1 the transcription-activation domain of the sTF, 2 the binding-site modules in the output promoter, and 3 the core promoter modules which define the transcription initiation site in the output promoter. The system has a novel bidirectional architecture that enables generation of compact, yet versatile expression modules for multiple genes with highly diversified expression levels ranging from negligible to very strong using one synthetic transcription factor. In contrast to most existing modular gene expression regulation systems, the present system is independent from externally added compounds. Furthermore, the established system was minimally affected by the several tested growth conditions. These features suggest that it can be highly useful in large scale biotechnology applications.

  14. Pleiohomeotic interacts with the core transcription elongation factor Spt5 to regulate gene expression in Drosophila.

    Directory of Open Access Journals (Sweden)

    Robert Harvey

    Full Text Available The early elongation checkpoint regulated by Positive Transcription Elongation Factor b (P-TEFb is a critical control point for the expression of many genes. Spt5 interacts directly with RNA polymerase II and has an essential role in establishing this checkpoint, and also for further transcript elongation. Here we demonstrate that Drosophila Spt5 interacts both physically and genetically with the Polycomb Group (PcG protein Pleiohomeotic (Pho, and the majority of Pho binding sites overlap with Spt5 binding sites across the genome in S2 cells. Our results indicate that Pho can interact with Spt5 to regulate transcription elongation in a gene specific manner.

  15. ATRX promotes gene expression by facilitating transcriptional elongation through guanine-rich coding regions.

    Science.gov (United States)

    Levy, Michael A; Kernohan, Kristin D; Jiang, Yan; Bérubé, Nathalie G

    2015-04-01

    ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. Overall TERRA levels, as well as DNA methylation and histone modifications at ATRX target genes are not altered and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans.

  16. Translational repression contributes greater noise to gene expression than transcriptional repression.

    Science.gov (United States)

    Komorowski, Michał; Miekisz, Jacek; Kierzek, Andrzej M

    2009-01-01

    Stochastic effects in gene expression may result in different physiological states of individual cells, with consequences for pathogen survival and artificial gene network design. We studied the contributions of a regulatory factor to gene expression noise in four basic mechanisms of negative gene expression control: 1), transcriptional regulation by a protein repressor, 2), translational repression by a protein; 3), transcriptional repression by RNA; and 4), RNA interference with the translation. We investigated a general model of a two-gene network, using the chemical master equation and a moment generating function approach. We compared the expression noise of genes with the same effective transcription and translation initiation rates resulting from the action of different repressors, whereas previous studies compared the noise of genes with the same mean expression level but different initiation rates. Our results show that translational repression results in a higher noise than repression on the promoter level, and that this relationship does not depend on quantitative parameter values. We also show that regulation of protein degradation contributes more noise than regulated degradation of mRNA. These are unexpected results, because previous investigations suggested that translational regulation is more accurate. The relative magnitude of the noise introduced by protein and RNA repressors depends on the protein and mRNA degradation rates, and we derived expressions for the threshold below which the noise introduced by a protein repressor is higher than the noise introduced by an RNA repressor.

  17. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    Science.gov (United States)

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  18. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  19. Transcriptional programs that control expression of the autoimmune regulator gene Aire.

    Science.gov (United States)

    Herzig, Yonatan; Nevo, Shir; Bornstein, Chamutal; Brezis, Miriam R; Ben-Hur, Sharon; Shkedy, Aya; Eisenberg-Bord, Michal; Levi, Ben; Delacher, Michael; Goldfarb, Yael; David, Eyal; Weinberger, Leehee; Viukov, Sergey; Ben-Dor, Shifra; Giraud, Matthieu; Hanna, Jacob H; Breiling, Achim; Lyko, Frank; Amit, Ido; Feuerer, Markus; Abramson, Jakub

    2017-02-01

    Aire is a transcriptional regulator that induces promiscuous expression of thousands of genes encoding tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs that regulate its own expression have remained elusive. Here we comprehensively analyzed both cis-acting and trans-acting regulatory mechanisms and found that the Aire locus was insulated by the global chromatin organizer CTCF and was hypermethylated in cells and tissues that did not express Aire. In mTECs, however, Aire expression was facilitated by concurrent eviction of CTCF, specific demethylation of exon 2 and the proximal promoter, and the coordinated action of several transcription activators, including Irf4, Irf8, Tbx21, Tcf7 and Ctcfl, which acted on mTEC-specific accessible regions in the Aire locus.

  20. Expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp (Ctenopharyngodon idella).

    Science.gov (United States)

    Pei, Yongyan; Lu, Xiaonan; He, Libo; Wang, Hao; Zhang, Aidi; Li, Yongming; Huang, Rong; Liao, Lanjie; Zhu, Zuoyan; Wang, Yaping

    2015-12-01

    Noxa, a pro-apoptotic protein, plays an important role in cell apoptosis. The researches about noxa gene were concentrated in mammalians, whereas the role and transcriptional regulatory mechanism of noxa in fish were still unclear. In this study, the expression pattern and transcriptional regulatory mechanism of noxa gene in grass carp were analyzed. Noxa was constitutively expressed in all the examined tissues but the relative expression level differed. After exposure to grass carp reovirus (GCRV), mRNA expression level of noxa was down-regulated at the early phase whereas up-regulated at the late phase of infection. Luciferase assays showed that the promoter region -867 ∼ +107 of noxa had high activity and the region -678 ∼ -603 was important in the response to GCRV infection. By deleting the predicted transcription factor binding sites, transcription factors FOXO1 and CEBPβ were found important for noxa in response to GCRV infection. Moreover, the noxa promoter was biotin-labeled and incubated with nuclear extracts from GCRV infected cells. Mass spectrometry analysis showed that transcription factors FOXO1 and CEBPβ were also enriched in the combined proteins. Therefore, the results suggested that transcription factors FOXO1 and CEBPβ may play an important role in the regulation of noxa. Our study would provide new insight into the transcriptional regulatory mechanism of noxa in teleost fish.

  1. Transcriptional profiling of host gene expression in chicken embryo lung cells infected with laryngotracheitis virus

    Directory of Open Access Journals (Sweden)

    Li Xianyao

    2010-07-01

    Full Text Available Abstract Background Infection by infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1 causes acute respiratory diseases in chickens often with high mortality. To better understand host-ILTV interactions at the host transcriptional level, a microarray analysis was performed using 4 × 44 K Agilent chicken custom oligo microarrays. Results Microarrays were hybridized using the two color hybridization method with total RNA extracted from ILTV infected chicken embryo lung cells at 0, 1, 3, 5, and 7 days post infection (dpi. Results showed that 789 genes were differentially expressed in response to ILTV infection that include genes involved in the immune system (cytokines, chemokines, MHC, and NF-κB, cell cycle regulation (cyclin B2, CDK1, and CKI3, matrix metalloproteinases (MMPs and cellular metabolism. Differential expression for 20 out of 789 genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR. A bioinformatics tool (Ingenuity Pathway Analysis used to analyze biological functions and pathways on the group of 789 differentially expressed genes revealed that 21 possible gene networks with intermolecular connections among 275 functionally identified genes. These 275 genes were classified into a number of functional groups that included cancer, genetic disorder, cellular growth and proliferation, and cell death. Conclusion The results of this study provide comprehensive knowledge on global gene expression, and biological functionalities of differentially expressed genes in chicken embryo lung cells in response to ILTV infections.

  2. Transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xue-Nong Li; Yan-Qing Ding; Guo-Bing Liu

    2003-01-01

    AIM: To explore the transcriptional gene expression profiles of HGF/SF-met signaling pathway in colorectal carcinoma to understand mechanisms of the signaling pathway at so gene level.METHODS: Total RNA was isolated from human colorectal carcinoma cell line LoVo treated with HGF/SF (80 ng/L)for 48 h. Fluorescent probes were prepared from RNA labeled with cy3-dUTP for the control groups and with cy5-dUTP for the HGF/SF-treated groups through reversetranscription. The probes were mixed and hybridized on the microarray at 60 ℃ for 15-20 h, then the microarray was scanned by laser scanner (GenePix 4000B). The intensity of each spot and ratios of Cy5/Cy3 were analyzed and finally the differentially expressed genes were selected by GenePix Pro 3.0 software. 6 differential expression genes (3 up-regulated genes and 3 down-regulated genes) were selected randomly and analyzed by β-actin semiquantitative RT-PCR.RESULTS: The fluorescent intensities of built-in negative control spots were less than 200, and the fluorescent intensities of positive control spots were more than 5000.Of the 4004 human genes analyzed by microarray, 129 genes (holding 3.22 % of the investigated genes) revealed differential expression in HGF/SF-treated groups compared with the control groups, of which 61 genes were up-regulated (holding 1.52 % of the investigated genes) and 68 genes were down-regulated (holding 1.70 % of the investigated genes), which supplied abundant information about target genes of HGF/SF-met signaling.CONCLUSION: HGF/SF-met signaling may up-regulate oncogenes, signal transduction genes, apoptosis-related genes, metastasis related genes, and down-regulate a number of genes. The complexity of HGF/SF-met signaling to control the gene expression is revealed as a whole by the gene chip technology.

  3. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-08-01

    Full Text Available Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1–8 from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases.

  4. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  5. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications.

  6. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  7. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  8. Gastrointestinal Fibroblasts Have Specialized, Diverse Transcriptional Phenotypes: A Comprehensive Gene Expression Analysis of Human Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Youichi Higuchi

    Full Text Available Fibroblasts are the principal stromal cells that exist in whole organs and play vital roles in many biological processes. Although the functional diversity of fibroblasts has been estimated, a comprehensive analysis of fibroblasts from the whole body has not been performed and their transcriptional diversity has not been sufficiently explored. The aim of this study was to elucidate the transcriptional diversity of human fibroblasts within the whole body.Global gene expression analysis was performed on 63 human primary fibroblasts from 13 organs. Of these, 32 fibroblasts from gastrointestinal organs (gastrointestinal fibroblasts: GIFs were obtained from a pair of 2 anatomical sites: the submucosal layer (submucosal fibroblasts: SMFs and the subperitoneal layer (subperitoneal fibroblasts: SPFs. Using hierarchical clustering analysis, we elucidated identifiable subgroups of fibroblasts and analyzed the transcriptional character of each subgroup.In unsupervised clustering, 2 major clusters that separate GIFs and non-GIFs were observed. Organ- and anatomical site-dependent clusters within GIFs were also observed. The signature genes that discriminated GIFs from non-GIFs, SMFs from SPFs, and the fibroblasts of one organ from another organ consisted of genes associated with transcriptional regulation, signaling ligands, and extracellular matrix remodeling.GIFs are characteristic fibroblasts with specific gene expressions from transcriptional regulation, signaling ligands, and extracellular matrix remodeling related genes. In addition, the anatomical site- and organ-dependent diversity of GIFs was also discovered. These features of GIFs contribute to their specific physiological function and homeostatic maintenance, and create a functional diversity of the gastrointestinal tract.

  9. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  10. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression.

    Science.gov (United States)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.

  11. Expression of a Mutant kcnj2 Gene Transcript in Zebrafish

    OpenAIRE

    2013-01-01

    Long QT 7 syndrome (LQT7, also known as Andersen-Tawil syndrome) is a rare autosomal-dominant disorder that causes cardiac arrhythmias, periodic paralysis, and dysmorphic features. Mutations in the human KCNJ2 gene, which encodes for the subunit of the potassium inwardly-rectifying channel (IK1), have been associated with the disorder. The majority of mutations are considered to be dominant-negative as mutant proteins interact to limit the function of wild type KCNJ2 proteins. Several LQT7 sy...

  12. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  13. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    Directory of Open Access Journals (Sweden)

    Nadine Norton

    Full Text Available Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16. Specifically for lincRNAs, we observed superb Pearson correlation (0.988 between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads. Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol

  14. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John Birger Hjalmar

    2017-01-01

    Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven...... to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  15. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  16. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  17. Identification and expression analysis of alternatively spliced new transcript isoform of Bax gene in mouse.

    Science.gov (United States)

    Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Sarwar, Tarique; Rehman, Sayeed Ur; Tabish, Mohammad

    2017-07-20

    Bax, a pro-apoptotic member of Bcl-2 family regulates apoptosis through homodimerization/heterodimerization with Bcl-2. Bax-α is the only product of the Bax gene that has been extensively studied. Bax-α exists in inactive form and several conformational changes are required during apoptosis to activate it. Here, we have identified a novel transcript variant of Bax gene in mouse which contains alternatively spliced new first exon that is different from the first exon of previously reported transcript. Conceptual translation of new transcript encodes a protein (Bax-α1), having different N-terminus. The existence of the new transcript variant was confirmed by reverse transcriptase-PCR, semi-nested PCR using primers designed for the newly identified transcript variant. The identity of PCR product obtained after semi-nested PCR was confirmed by DNA sequencing. Relative expression of new transcript variant with respect to reported transcript was also studied with the help of real time PCR. The existence of new transcript variant was further supported by the presence of clusters of overlapping ESTs from the database. Bax-α1 possibly displays heterogeneous properties as predicted by post-translational modification analysis tools. The differences in post-translational modifications might play important roles in divergent function of the new isoform. The three dimensional structure was generated by homology modelling to visualize the differences at N termini of known and newly identified variant. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Yunlin Chen

    2013-01-01

    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  19. Identification and transcriptional profiling of differentially expressed genes associated with resistance to Pseudoperonospora cubensis in cucumber.

    Science.gov (United States)

    Li, Jian-Wu; Liu, Jun; Zhang, He; Xie, Cong-Hua

    2011-03-01

    To identify genes induced during Pseudoperonospora cubensis (Berk. and Curk.) Rostov. infection in cucumber (Cucumis sativus L.), the suppression subtractive hybridization (SSH) was performed using mixed cDNAs prepared from cucumber seedlings inoculated with the pathogen as a tester and cDNA from uninfected cucumber seedlings as a driver. A forward subtractive cDNA library (FSL) and a reverse subtractive cDNA library (RSL) were constructed, from which 1,416 and 1,128 recombinant clones were isolated, respectively. Differential screening of the preferentially expressed recombinant clones identified 58 unique expressed sequence tags (ESTs) from FSL and 29 from RSL. The ESTs with significant protein homology were sorted into 13 functional categories involved in nearly the whole process of plant defense such as signal transduction and cell defense, transcription, cell cycle and DNA processing, protein synthesis, protein fate, proteins with binding functions, transport, metabolism and energy. The expressions of twenty-five ESTs by real-time quantitative RT-PCR confirmed that differential gene regulation occurred during P. cubensis infection and inferred that higher and earlier expression of transcription factors and signal transduction associated genes together with ubiquitin/proteasome and polyamine biosynthesis pathways may contribute to the defense response of cucumber to P. cubensis infection. The transcription profiling of selected down-regulated genes revealed that suppression of the genes in reactive oxygen species scavenging system and photosynthesis pathway may inhibit disease development in the host tissue.

  20. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles.

    Science.gov (United States)

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J

    2017-02-15

    Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological

  1. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  2. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements.

    Science.gov (United States)

    Wang, Lu; Rishishwar, Lavanya; Mariño-Ramírez, Leonardo; Jordan, I King

    2016-12-19

    Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5 The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification.

  3. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements

    Science.gov (United States)

    Wang, Lu; Mariño-Ramírez, Leonardo

    2017-01-01

    Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931

  4. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  5. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    Science.gov (United States)

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  6. Gene Expression in Archaea: Studies of Transcriptional Promoters, Messenger RNA Processing, and Five Prime Untranslated Regions in "Methanocaldococcus Jannashchii"

    Science.gov (United States)

    Zhang, Jian

    2009-01-01

    Gene expression in Archaea is less understood than those in Bacteria and Eucarya. In general, three steps are involved in gene expression--transcription, RNA processing, and translation. To expand our knowledge of these processes in Archaea, I have studied transcriptional promoters, messenger RNA processing, and 5'-untranslated regions in…

  7. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models.

    Science.gov (United States)

    Hirose, Osamu; Yoshida, Ryo; Imoto, Seiya; Yamaguchi, Rui; Higuchi, Tomoyuki; Charnock-Jones, D Stephen; Print, Cristin; Miyano, Satoru

    2008-04-01

    Statistical inference of gene networks by using time-course microarray gene expression profiles is an essential step towards understanding the temporal structure of gene regulatory mechanisms. Unfortunately, most of the current studies have been limited to analysing a small number of genes because the length of time-course gene expression profiles is fairly short. One promising approach to overcome such a limitation is to infer gene networks by exploring the potential transcriptional modules which are sets of genes sharing a common function or involved in the same pathway. In this article, we present a novel approach based on the state space model to identify the transcriptional modules and module-based gene networks simultaneously. The state space model has the potential to infer large-scale gene networks, e.g. of order 10(3), from time-course gene expression profiles. Particularly, we succeeded in the identification of a cell cycle system by using the gene expression profiles of Saccharomyces cerevisiae in which the length of the time-course and number of genes were 24 and 4382, respectively. However, when analysing shorter time-course data, e.g. of length 10 or less, the parameter estimations of the state space model often fail due to overfitting. To extend the applicability of the state space model, we provide an approach to use the technical replicates of gene expression profiles, which are often measured in duplicate or triplicate. The use of technical replicates is important for achieving highly-efficient inferences of gene networks with short time-course data. The potential of the proposed method has been demonstrated through the time-course analysis of the gene expression profiles of human umbilical vein endothelial cells (HUVECs) undergoing growth factor deprivation-induced apoptosis. Supplementary Information and the software (TRANS-MNET) are available at http://daweb.ism.ac.jp/~yoshidar/software/ssm/.

  8. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. METHODS: We have...... system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. CONCLUSIONS: By pathway meta-analysis many biological mechanisms beyond major......ABSTRACT: BACKGROUND: Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent...

  9. Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression.

    Science.gov (United States)

    Roussel, Marc R; Zhu, Rui

    2006-12-08

    The quantitative modeling of gene transcription and translation requires a treatment of two key features: stochastic fluctuations due to the limited copy numbers of key molecules (genes, RNA polymerases, ribosomes), and delayed output due to the time required for biopolymer synthesis. Recently proposed algorithms allow for efficient simulations of such systems. However, it is critical to know whether the results of delay stochastic simulations agree with those from more detailed models of the transcription and translation processes. We present a generalization of previous delay stochastic simulation algorithms which allows both for multiple delays and for distributions of delay times. We show that delay stochastic simulations closely approximate simulations of a detailed transcription model except when two-body effects (e.g. collisions between polymerases on a template strand) are important. Finally, we study a delay stochastic model of prokaryotic transcription and translation which reproduces observations from a recent experimental study in which a single gene was expressed under the control of a repressed lac promoter in E. coli cells. This demonstrates our ability to quantitatively model gene expression using these new methods.

  10. Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression

    Science.gov (United States)

    Roussel, Marc R.; Zhu, Rui

    2006-12-01

    The quantitative modeling of gene transcription and translation requires a treatment of two key features: stochastic fluctuations due to the limited copy numbers of key molecules (genes, RNA polymerases, ribosomes), and delayed output due to the time required for biopolymer synthesis. Recently proposed algorithms allow for efficient simulations of such systems. However, it is critical to know whether the results of delay stochastic simulations agree with those from more detailed models of the transcription and translation processes. We present a generalization of previous delay stochastic simulation algorithms which allows both for multiple delays and for distributions of delay times. We show that delay stochastic simulations closely approximate simulations of a detailed transcription model except when two-body effects (e.g. collisions between polymerases on a template strand) are important. Finally, we study a delay stochastic model of prokaryotic transcription and translation which reproduces observations from a recent experimental study in which a single gene was expressed under the control of a repressed lac promoter in E. coli cells. This demonstrates our ability to quantitatively model gene expression using these new methods.

  11. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  12. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Upstream regulatory region and flanking DNA of yellow gene wereisolated and cloned from a Drosophila genomic library. A vector containing yellow gene and regulatory elements was constructed using the recombinant DNA technique. Then this vector was integrated into Drosophila genome by genetic transformation. Using both FLP/FRT and Cre/LoxP site-specific recombination systems, two new yellow alleles were created at the same position in the genome of transgenic flies. Results from genetic and molecular analysis indicated that transcriptional enhancers regulate the developmental expression of the transgene. Furthermore, interactions between new-created yellow alleles were observed. Such interactions can influence markedly the expression of yellow gene during development. This effect may also be a form of enhancer-mediated gene expression.

  13. Plant gene expression in the age of systems biology: integrating transcriptional and post-transcriptional events.

    Science.gov (United States)

    Belostotsky, Dmitry A; Rose, Alan B

    2005-07-01

    The extensive mechanistic and regulatory interconnections between the various events of mRNA biogenesis are now recognized as a fundamental principle of eukaryotic gene expression, yet the specific details of the coupling between the various steps of mRNA biogenesis do differ, and sometimes dramatically, between the different kingdoms. In this review, we emphasize examples where plants must differ in this respect from other eukaryotes, and highlight a recurring trend of recruiting the conserved, versatile functional modules, which have evolved to support the general mRNA biogenesis reactions, for plant-specific functions. We also argue that elucidating the inner workings of the plant 'mRNA factory' is essential for accomplishing the ambitious goal of building the 'virtual plant'.

  14. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  15. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Science.gov (United States)

    Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J

    2007-01-01

    Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of

  16. Transcriptional regulatory network refinement and quantification through kinetic modeling, gene expression microarray data and information theory

    Directory of Open Access Journals (Sweden)

    Tuncay Kagan

    2007-01-01

    Full Text Available Abstract Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the

  17. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  18. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    Science.gov (United States)

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw.

  19. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data

    Directory of Open Access Journals (Sweden)

    Kim Seon-Young

    2006-07-01

    Full Text Available Abstract Background A complete understanding of the regulatory mechanisms of gene expression is the next important issue of genomics. Many bioinformaticians have developed methods and algorithms for predicting transcriptional regulatory mechanisms from sequence, gene expression, and binding data. However, most of these studies involved the use of yeast which has much simpler regulatory networks than human and has many genome wide binding data and gene expression data under diverse conditions. Studies of genome wide transcriptional networks of human genomes currently lag behind those of yeast. Results We report herein a new method that combines gene expression data analysis with promoter analysis to infer transcriptional regulatory elements of human genes. The Z scores from the application of gene set analysis with gene sets of transcription factor binding sites (TFBSs were successfully used to represent the activity of TFBSs in a given microarray data set. A significant correlation between the Z scores of gene sets of TFBSs and individual genes across multiple conditions permitted successful identification of many known human transcriptional regulatory elements of genes as well as the prediction of numerous putative TFBSs of many genes which will constitute a good starting point for further experiments. Using Z scores of gene sets of TFBSs produced better predictions than the use of mRNA levels of a transcription factor itself, suggesting that the Z scores of gene sets of TFBSs better represent diverse mechanisms for changing the activity of transcription factors in the cell. In addition, cis-regulatory modules, combinations of co-acting TFBSs, were readily identified by our analysis. Conclusion By a strategic combination of gene set level analysis of gene expression data sets and promoter analysis, we were able to identify and predict many transcriptional regulatory elements of human genes. We conclude that this approach will aid in decoding

  20. Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.).

    Science.gov (United States)

    Zhai, Lulu; Xu, Liang; Wang, Yan; Zhu, Xianwen; Feng, Haiyang; Li, Chao; Luo, Xiaobo; Everlyne, Muleke M; Liu, Liwang

    2016-02-23

    Embryogenesis is an important component in the life cycle of most plant species. Due to the difficulty in embryo isolation, the global gene expression involved in plant embryogenesis, especially the early events following fertilization are largely unknown in radish. In this study, three cDNA libraries from ovules of radish before and after fertilization were sequenced using the Digital Gene Expression (DGE) tag profiling strategy. A total of 5,777 differentially expressed transcripts were detected based on pairwise comparison in the three libraries (0_DAP, 7_DAP and 15_DAP). Results from Gene Ontology (GO) and pathway enrichment analysis revealed that these differentially expressed genes (DEGs) were implicated in numerous life processes including embryo development and phytohormones biosynthesis. Notably, some genes encoding auxin response factor (ARF ), Leafy cotyledon1 (LEC1) and somatic embryogenesis receptor-like kinase (SERK ) known to be involved in radish embryogenesis were differentially expressed. The expression patterns of 30 genes including LEC1-2, AGL9, LRR, PKL and ARF8-1 were validated by qRT-PCR. Furthermore, the cooperation between miRNA and mRNA may play a pivotal role in the radish embryogenesis process. This is the first report on identification of DEGs profiles related to radish embryogenesis and seed development. These results could facilitate further dissection of the molecular mechanisms underlying embryogenesis and seed development in radish.

  1. The transcription factor TEAD1 represses smooth muscle-specific gene expression by abolishing myocardin function.

    Science.gov (United States)

    Liu, Fang; Wang, Xiaobo; Hu, Guoqing; Wang, Yong; Zhou, Jiliang

    2014-02-07

    The TEAD (transcriptional enhancer activator domain) proteins share an evolutionarily conserved DNA-binding TEA domain, which binds to the MCAT cis-acting regulatory element. Previous studies have shown that TEAD proteins are involved in regulating the expression of smooth muscle α-actin. However, it remains undetermined whether TEAD proteins play a broader role in regulating expression of other genes in vascular smooth muscle cells. In this study, we show that the expression of TEAD1 is significantly induced during smooth muscle cell phenotypic modulation and negatively correlates with smooth muscle-specific gene expression. We further demonstrate that TEAD1 plays a novel role in suppressing expression of smooth muscle-specific genes, including smooth muscle α-actin, by abolishing the promyogenic function of myocardin, a key mediator of smooth muscle differentiation. Mechanistically, we found that TEAD1 competes with myocardin for binding to serum response factor (SRF), resulting in disruption of myocardin and SRF interactions and thereby attenuating expression of smooth muscle-specific genes. This study provides the first evidence demonstrating that TEAD1 is a novel general repressor of smooth muscle-specific gene expression through interfering with myocardin binding to SRF.

  2. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells.

    Science.gov (United States)

    Chen, Shali; Feng, Biao; George, Biju; Chakrabarti, Rana; Chen, Megan; Chakrabarti, Subrata

    2010-01-01

    Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin. Histone H2AX phosphorylation and lysine acetylation were examined for oxidative DNA damage and p300 activation. Screening for transcription factors was performed with the Luminex system. Alterations of selected transcription factors were validated. mRNA expression of p300, endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) and its splice variant EDB(+)FN and FN protein production were analyzed. HUVECs in 25 mmol/l glucose showed increased p300 production accompanied by increased binding of p300 to ET-1 and FN promoters, augmented histone acetylation, H2AX phosphorylation, activation of multiple transcription factors, and increased mRNA expression of vasoactive factors and ECM proteins. p300 overexpression showed a glucose-like effect on the mRNA expression of ET-1, VEGF, and FN. Furthermore, siRNA-mediated p300 blockade or chemical inhibitor of p300 prevented such glucose-induced changes. Similar mRNA upregulation was also seen in the organ culture of vascular tissues, which was prevented by p300 siRNA transfection. Data from these studies suggest that glucose-induced p300 upregulation is an important upstream epigenetic mechanism regulating gene expression of vasoactive factors and ECM proteins in endothelial cells and is a potential therapeutic target for diabetic complications.

  3. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  4. The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes.

    Science.gov (United States)

    Burton, Rachel A; Shirley, Neil J; King, Brendon J; Harvey, Andrew J; Fincher, Geoffrey B

    2004-01-01

    Sequence data from cDNA and genomic clones, coupled with analyses of expressed sequence tag databases, indicate that the CesA (cellulose synthase) gene family from barley (Hordeum vulgare) has at least eight members, which are distributed across the genome. Quantitative polymerase chain reaction has been used to determine the relative abundance of mRNA transcripts for individual HvCesA genes in vegetative and floral tissues, at different stages of development. To ensure accurate expression profiling, geometric averaging of multiple internal control gene transcripts has been applied for the normalization of transcript abundance. Total HvCesA mRNA levels are highest in coleoptiles, roots, and stems and much lower in floral tissues, early developing grain, and in the elongation zone of leaves. In most tissues, HvCesA1, HvCesA2, and HvCesA6 predominate, and their relative abundance is very similar; these genes appear to be coordinately transcribed. A second group, comprising HvCesA4, HvCesA7, and HvCesA8, also appears to be coordinately transcribed, most obviously in maturing stem and root tissues. The HvCesA3 expression pattern does not fall into either of these two groups, and HvCesA5 transcript levels are extremely low in all tissues. Thus, the HvCesA genes fall into two general groups of three genes with respect to mRNA abundance, and the co-expression of the groups identifies their products as candidates for the rosettes that are involved in cellulose biosynthesis at the plasma membrane. Phylogenetic analysis allows the two groups of genes to be linked with orthologous Arabidopsis CesA genes that have been implicated in primary and secondary wall synthesis.

  5. Transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2010-07-01

    Full Text Available (2006). Trends in Microbiology 14: 151-155. Slide 7 © CSIR 2006 www.csir.co.za Evaluation of different genetic backgrounds on peptide secretion during log and stationary phase Berger et al (2009) Applied and Environmental... • Transcriptional analysis Fermentation • Micro-array analysis of global gene expression during transition between exponential and stationary phase • Directed evolution of σD promoter Acknowledgements Maureen Louw Eldie Berger Erika Du Plessis Nolwandle...

  6. Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells

    Science.gov (United States)

    Nishiyama, Akira; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Amano, Tomokazu; Hoang, Hien G.; Binder, Bernard Y.; Tapnio, Richard; Bassey, Uwem; Malinou, Justin N.; Correa-Cerro, Lina S.; Yu, Hong; Xin, Li; Meyers, Emily; Zalzman, Michal; Nakatake, Yuhki; Stagg, Carole; Sharova, Lioudmila; Qian, Yong; Dudekula, Dawood; Sheer, Sarah; Cadet, Jean S.; Hirata, Tetsuya; Yang, Hsih-Te; Goldberg, Ilya; Evans, Michele K.; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2013-01-01

    Networks of transcription factors (TFs) are thought to determine and maintain the identity of cells. Here we systematically repressed each of 100 TFs with shRNA and carried out global gene expression profiling in mouse embryonic stem (ES) cells. Unexpectedly, only the repression of a handful of TFs significantly affected transcriptomes, which changed in two directions/trajectories: one trajectory by the repression of either Pou5f1 or Sox2; the other trajectory by the repression of either Esrrb, Sall4, Nanog, or Tcfap4. The data suggest that the trajectories of gene expression change are already preconfigured by the gene regulatory network and roughly correspond to extraembryonic and embryonic fates of cell differentiation, respectively. These data also indicate the robustness of the pluripotency gene network, as the transient repression of most TFs did not alter the transcriptomes. PMID:23462645

  7. Post-transcriptional regulation of gene expression in neural stem cells.

    Science.gov (United States)

    Kim, Do-Yeon

    2016-06-01

    Expression of each gene can be controlled at several steps during the flow of genetic information from DNA to protein. Tight regulation of gene expression is especially important for stem cells because of their greater ripple effects, compared with terminally differentiated cells. Dysregulation of gene expression arising in stem cells can be perpetuated within the stem cell pool via self-renewal throughout life. In addition, transcript profiles within stem cells can determine the selective advantage or disadvantage of each cell, leading to changes in cell fate, such as a tendency for proliferation, death, and differentiation. The identification of neural stem/progenitor cells (NSPCs) and greater understanding of their cellular physiology have raised the possibility of using NSPCs to replace damaged or injured neurons. However, an accurate grasp of gene expression control must take precedence in order to use NSPCs in therapies for neurological diseases. Recently, accumulating evidence has demonstrated the importance of post-transcriptional regulation in NSPC fate decisions. In this review, we will summarize and discuss the recent findings on key mRNA modulators and their vital roles in NSPC homeostasis. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha

    Science.gov (United States)

    Davison, James M.; Lickwar, Colin R.; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E.; Rawls, John F.

    2017-01-01

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota. PMID:28385711

  9. Chicken ovalbumin upstream promoter transcription factor II regulates renin gene expression.

    Science.gov (United States)

    Mayer, Sandra; Roeser, Marc; Lachmann, Peter; Ishii, Sumiyashi; Suh, Jae Mi; Harlander, Sabine; Desch, Michael; Brunssen, Coy; Morawietz, Henning; Tsai, Sophia Y; Tsai, Ming-Jer; Hohenstein, Bernd; Hugo, Christian; Todorov, Vladimir T

    2012-07-13

    This study aimed to investigate the possible involvement of the orphan nuclear receptor chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) in the regulation of renin gene expression. COUP-TFII colocalized with renin in the juxtaglomerular cells of the kidney, which are the main source of renin in vivo. Protein-DNA binding studies demonstrated that COUP-TFII binds to an imperfect direct repeat COUP-TFII recognition sequence (termed hereafter proxDR) in the proximal renin promoter. Because cAMP signaling plays a central role in the control of the renin gene expression, we suggested that COUP-TFII may modulate this cAMP effect. Accordingly, knockdown of COUP-TFII in the clonal renin-producing cell lines As4.1 and Calu-6 diminished the stimulation of the renin mRNA expression by cAMP agonists. In addition, the mutation of the proxDR element in renin promoter reporter gene constructs abrogated the inducibility by cAMP. The proxDR sequence was found to be necessary for the function of a proximal renin promoter cAMP-response element (CRE). Knockdown of COUP-TFII or cAMP-binding protein (CREB), which is the archetypal transcription factor binding to CRE, decreased the basal renin gene expression. However, the deficiency of COUP-TFII did not further diminish the renin expression when CREB was knocked down. In agreement with the cell culture studies, mutant mice deficient in COUP-TFII have lower renin expression than their control strain. Altogether our data show that COUP-TFII is involved in the control of renin gene expression.

  10. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  11. Comparative transcriptional analysis reveals differential gene expression between Sand Daffodil tissues.

    Science.gov (United States)

    De Felice, Bruna; Manfellotto, Francesco; D'Alessandro, Raffaella; De Castro, Olga; Di Maio, Antonietta; Trifuoggi, Marco

    2013-12-01

    Sand Daffodil (Pancratium maritimum) is a world-wide endangered Amayllidaceae species and represents an important anti-cancer medicinal resource due to alkaloids production. Despite its increasing pharmaceutical importance, there are not molecular resources that can be utilized toward improving genetic traits. In our research, the suppression subtractive hybridization (SSH) method conducted to generate large-scale expressed sequence tags (EST), was designed to identify gene candidates related to the morphological and physiological differences between the two tissues, leaves and bulbs, since lycorine, the main anti-cancer compound, is there synthesized. We focused on identification of transcripts in different tissues from Sand Daffodil using PCR-based suppression SSH to identify genes involved in global pathway control. Sequencing of 2,000 differentially screened clones from the SSH libraries resulted in 136 unigenes. Functional annotation and gene ontology analysis of up-regulated EST libraries showed several known biosynthetic genes and novel transcripts that may be involved in signaling, cellular transport, or metabolism. Real time RT-PCR analysis of a set of 8 candidate genes further confirmed the differential gene expression.

  12. Transcription Factor CREB3L1 Regulates Vasopressin Gene Expression in the Rat Hypothalamus

    Science.gov (United States)

    Greenwood, Mingkwan; Bordieri, Loredana; Greenwood, Michael P.; Rosso Melo, Mariana; Colombari, Debora S. A.; Colombari, Eduardo; Paton, Julian F. R.

    2014-01-01

    Arginine vasopressin (AVP) is a neurohypophysial hormone regulating hydromineral homeostasis. Here we show that the mRNA encoding cAMP responsive element-binding protein-3 like-1 (CREB3L1), a transcription factor of the CREB/activating transcription factor (ATF) family, increases in expression in parallel with AVP expression in supraoptic nuclei (SONs) and paraventicular nuclei (PVNs) of dehydrated (DH) and salt-loaded (SL) rats, compared with euhydrated (EH) controls. In EH animals, CREB3L1 protein is expressed in glial cells, but only at a low level in SON and PVN neurons, whereas robust upregulation in AVP neurons accompanied DH and SL rats. Concomitantly, CREB3L1 is activated by cleavage, with the N-terminal domain translocating from the Golgi, via the cytosol, to the nucleus. We also show that CREB3L1 mRNA levels correlate with AVP transcription level in SONs and PVNs following sodium depletion, and as a consequence of diurnal rhythm in the suprachiasmatic nucleus. We tested the hypothesis that CREB3L1 activates AVP gene transcription. Both full-length and constitutively active forms of CREB3L1 (CREB3L1CA) induce the expression of rat AVP promoter-luciferase reporter constructs, whereas a dominant-negative mutant reduces expression. Rat AVP promoter deletion constructs revealed that CRE-like and G-box sequences in the region between −170 and −120 bp are important for CREB3L1 actions. Direct binding of CREB3L1 to the AVP promoter was shown by chromatin immunoprecipitation both in vitro and in the SON itself. Injection of a lentiviral vector expressing CREB3L1CA into rat SONs and PVNs resulted in increased AVP biosynthesis. We thus identify CREB3L1 as a regulator of AVP transcription in the rat hypothalamus. PMID:24623760

  13. Transcription factor mTEAD-2 is selectively expressed at the beginning of zygotic gene expression in the mouse.

    Science.gov (United States)

    Kaneko, K J; Cullinan, E B; Latham, K E; DePamphilis, M L

    1997-05-01

    mTEF-1 is the prototype of a family of mouse transcription factors that share the same TEA DNA binding domain (mTEAD genes) and are widely expressed in adult tissues. At least one member of this family is expressed at the beginning of mouse development, because mTEAD transcription factor activity was not detected in oocytes, but first appeared at the 2-cell stage in development, concomitant with the onset of zygotic gene expression. Since embryos survive until day 11 in the absence of mTEAD-1 (TEF-1), another family member likely accounts for this activity. Screening an EC cell cDNA library yielded mTEAD-1, 2 and 3 genes. RT-PCR detected RNA from all three of these genes in oocytes, but upon fertilization, mTEAD-1 and 3 mRNAs disappeared. mTEAD-2 mRNA, initially present at approx. 5,000 copies per egg, decreased to approx. 2,000 copies in 2-cell embryos before accumulating to approx. 100,000 copies in blastocysts, consistent with degradation of maternal mTEAD mRNAs followed by selective transcription of mTEAD-2 from the zygotic genome. In situ hybridization did not detect mTEAD RNA in oocytes, and only mTEAD-2 was detected in day-7 embryos. Northern analysis detected all three RNAs at varying levels in day-9 embryos and in various adult tissues. A fourth mTEAD gene, recently cloned from a myotube cDNA library, was not detected by RT-PCR in either oocytes or preimplantation embryos. Together, these results reveal that mTEAD-2 is selectively expressed for the first 7 days of embryonic development, and is therefore most likely responsible for the mTEAD transcription factor activity that appears upon zygotic gene activation.

  14. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  15. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    Science.gov (United States)

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.

  16. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit

    Science.gov (United States)

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription f...

  17. Transcriptional characteristics of gene expression in the midgut of domestic silkworms (Bombyx mori) exposed to phoxim.

    Science.gov (United States)

    Gu, Z Y; Sun, S S; Wang, Y H; Wang, B B; Xie, Y; Ma, L; Wang, J M; Shen, W D; Li, B

    2013-01-01

    Silkworm (Bombyx mori) is not only an economically important insect but also a model system for lepidoptera. As a vital organ of digestion and nutrient absorption, the midgut of insects also serves as the first physiological barrier to chemical pesticides. In this study, microarray was performed to profile the gene expression changes in the midgut of silkworms exposed to phoxim. After 24h of phoxim exposure (4.0μg/mL), 266 genes displayed at least 2.0-fold changes in expression levels. Among them, 192 genes were up-regulated, and 74 genes were down-regulated. The most significant changes were 14.88-fold up-regulation and 23.36-fold down-regulation. According to gene ontology annotation and pathway analysis, differentially expressed genes were mainly classified into different groups based on their potential involvements in detoxification, immunne response, stress response, energy metabolism and transport. Particularly, the transcription levels of detoxification-related genes were up-regulated, such as cytochrome P450s, esterases and glutathione-S-transferase (GST), indicating increased detoxification activity in the midgut. Our study provides new insights into the molecular mechanism of pesticide metabolism in the midgut of insects, which may promote the development of highly efficient insecticides.

  18. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus.

    Science.gov (United States)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus; Nielsen, Henrik Bjørn; Botanga, Christopher J; Thorgrimsen, Stephan; Palma, Kristoffer; Suarez-Rodriguez, Maria Cristina; Sandbech-Clausen, Signe; Lichota, Jacek; Brodersen, Peter; Grasser, Klaus D; Mattsson, Ole; Glazebrook, Jane; Mundy, John; Petersen, Morten

    2008-08-20

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.

  19. Hierarchical Interactions of Homeodomain and Forkhead Transcription Factors in Regulating Odontogenic Gene Expression*

    Science.gov (United States)

    Venugopalan, Shankar R.; Li, Xiao; Amen, Melanie A.; Florez, Sergio; Gutierrez, Diana; Cao, Huojun; Wang, Jianbo; Amendt, Brad A.

    2011-01-01

    FoxJ1 is a forkhead transcription factor expressed in multiple tissues during development and a major regulator of cilia development. FoxJ1−/− mice present with defects in odontogenesis, and we correlate these defects to hierarchical interactions between homeodomain factors Pitx2 and Dlx2 with FoxJ1 in regulating their expression through direct physical interactions. Chromatin immunoprecipitation assays reveal endogenous Pitx2 and Dlx2 binding to the Dlx2 promoter and Dlx2 binding to the FoxJ1 promoter as well as Dlx2 and FoxJ1 binding to the amelogenin promoter. PITX2 activation of the Dlx2 promoter is attenuated by a direct Dlx2 physical interaction with PITX2. Dlx2 autoregulates its promoter, and Dlx2 transcriptionally activates the downstream gene FoxJ1. Dlx2 and FoxJ1 physically interact and synergistically regulate both Dlx2 and FoxJ1 promoters. Dlx2 and FoxJ1 also activate the amelogenin promoter, and amelogenin is required for enamel formation and late stage tooth development. FoxJ1−/− mice maxillary and mandibular incisors are reduced in length and width and have reduced amelogenin expression. FoxJ1−/− mice show a reduced and defective ameloblast layer, revealing a biological effect of these transcription factor hierarchies during tooth morphogenesis. These transcriptional mechanisms may contribute to other developmental processes such as neuronal, pituitary, and heart development. PMID:21504905

  20. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.;

    2010-01-01

    expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials...... of modulatory inputs from the brain correlates with the development of spasticity. Results: Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use......Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence...

  1. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  2. The myostatin gene of Mytilus chilensis evidences a high level of polymorphism and ubiquitous transcript expression.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2014-02-15

    Myostatin (MSTN) is a protein of the Transforming Growth Factor-β (TGF-β) superfamily and plays a crucial role in muscular development for higher vertebrates. However, its biological function in marine invertebrates remains undiscovered. This study characterizes the full-length sequence of the Mytilus chilensis myostatin gene (Mc-MSTN). Furthermore, tissue transcription patterns and putative single nucleotide polymorphisms (SNPs) were also identified. The Mc-MSTN cDNA sequence showed 3528 base pairs (bp), consisting of 161 bp of 5' UTR, 2,110 bp of 3' UTR, and an open reading frame of 1,257 bp encoding for 418 amino acids and with an RXXR proteolytic site and nine cysteine-conserved residues. Gene transcription analysis revealed that the Mc-MSTN has ubiquitous expression among several tissues, with higher expression in the gonads and mantle than in the digestive gland, gills, and hemolymph. Furthermore, high levels of polymorphisms were detected (28 SNPs in 3'-UTR and 9 SNPs in the coding region). Two SNPs were non-synonymous and involved amino acid changes between Glu/Asp and Thr/Ile. Until now, the MSTN gene has been mainly related to muscle growth in marine bivalves. However, the present study suggests a putative biological function not entirely associated to muscle tissue and contributes molecular evidence to the current debate about the function of the MSTN gene in marine invertebrates.

  3. Identification of Sp1 as a Transcription Activator to Regulate Fibroblast Growth Factor 21 Gene Expression

    Directory of Open Access Journals (Sweden)

    Shuqin Chen

    2017-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is a metabolic hormone with multiple beneficial effects on lipid and glucose homeostasis. Previous study demonstrated that FGF21 might be one of the Sp1 target genes. However, the transcriptional role of Sp1 on FGF21 in adipose tissue and liver has not been reported. In this study, we found that the proximal promoter of mouse FGF21 is located between −63 and −20 containing two putative Sp1-binding sites. Sp1 is a mammalian transcription factor involved in the regulation of many genes during physiological and pathological processes. Our study showed that overexpression of Sp1 or suppressing Sp1 expression resulted in increased or reduced FGF21 promoter activity, respectively. Mutation analysis demonstrated that the Sp1-binding site located between −46 and −38 plays a primary role in transcription of FGF21. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis indicated that Sp1 specifically bound to this region. Furthermore, the binding activity of Sp1 was significantly increased in adipose tissues of HFD-induced obese mouse and liver of DEN-treated mouse. Thus, our results demonstrate that Sp1 positively regulates the basal transcription of FGF21 in the liver and adipose tissue and contributes to the obesity-induced FGF21 upregulation in mouse adipose tissue and hepatic FGF21 upregulation in hepatocarcinogenesis.

  4. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  5. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus.

    Science.gov (United States)

    Drost, Derek R; Benedict, Catherine I; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R D B; Yu, Qibin; Dervinis, Christopher; Maia, Jessica M; Yap, John; Miles, Brianna; Kirst, Matias

    2010-05-04

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.

  6. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells.

    Science.gov (United States)

    Janneau, Jean-Louis; Maldonado-Estrada, Juan; Tachdjian, Gérard; Miran, Isabelle; Motté, Nelly; Saulnier, Patrick; Sabourin, Jean-Christophe; Coté, Jean-François; Simon, Bénédicte; Frydman, René; Chaouat, Gérard; Bellet, Dominique

    2002-11-01

    Once initiated, invasion of trophoblast cells must be tightly regulated, particularly in early pregnancy. The mechanisms necessary for the invasion and migration of trophoblast cells are thought to be related to those involved in the invasive and metastatic properties of cancer cells. Quantitative PCR was used to measure, in trophoblast cells, the transcriptional expression profiles of four genes, INSL4, BRMS1, KiSS-1 and KiSS-1R, reported to be implicated in tumor invasion and metastasis. Laser capture microdissection and purification of trophoblast cells demonstrate that, as already known for INSL4, BRMS1, KiSS-1 and KiSS-1R are expressed by the trophoblast subset of placental tissues. Expression profiles of these genes studied in early placentas (7-9 weeks, n=55) and term placentas (n=11) showed that expression levels of BRMS1 are higher in term than in early placentas, while expression levels of KiSS-1R are higher in early than in term placentas. Low levels of expression of BRMS1 were observed in normal pregnancies, in molar pregnancies and in choriocarcinoma cell lines BeWo, JAR and JEG3 while, in striking contrast, the expression levels of INSL4, KiSS-1 and Kiss-1R were increased in both early placentas and molar pregnancies and were reduced in choriocarcinoma cells. These transcriptional expression profiles are in favor of a predominant role of INSL4, KiSS-1 and KiSS-1R in the control of the invasive and migratory properties of trophoblast cells.

  7. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    Science.gov (United States)

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-02-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  8. CHANGES IN ENDOGENOUS GENE TRANSCRIPT AND PROTEIN LEVELS IN MAIZE PLANTS EXPRESSING THE SOYBEAN FERRITIN TRANSGENE

    Directory of Open Access Journals (Sweden)

    Milly N Kanobe

    2013-06-01

    Full Text Available Transgenic agricultural crops with increased nutritive value present prospects for contributing to public health. However, their acceptance is poor in many countries due to the perception that genetic modification may cause unintended effects on expression of native genes in the host plant. Here, we tested effects of soybean ferritin transgene (SoyFer1, M64337 on transcript and protein levels of endogenous genes in maize. Results showed that the transgene was successfully introduced and expressed in the maize seed endosperm. mRNA abundance of seven tested iron homeostasis genes and seed storage protein genes differed significantly between seed samples positive and negative for the transgene. The PCR negative samples had higher zein and total protein content compared to the positive samples. However, PCR positive samples had significantly higher concentrations of calcium, magnesium and iron. We have shown that the soybean ferritin transgene affected the expression of native iron homeostasis genes in the maize plant. These results underscore the importance of taking a holistic approach to the evaluation of transgenic events in target plants, comparing the transgenic plant to the untransformed controls.

  9. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

    Science.gov (United States)

    Michalopoulos, Ioannis; Pavlopoulos, Georgios A; Malatras, Apostolos; Karelas, Alexandros; Kostadima, Myrto-Areti; Schneider, Reinhard; Kossida, Sophia

    2012-06-06

    Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

  10. [Cloning and prokaryotic expression of transcriptional co-activator gene of Clonorchis sinensis and functional analysis of the expressed protein].

    Science.gov (United States)

    Zhang, Yong-li; Yu, Xin-bing; Wu, De; Wu, Zhong-dao; Bi, Hui-xiang

    2005-02-28

    To construct prokaryotic recombinant plasmids of transcriptional co-activator (TC) gene of Clonorchis sinensis, express and purify the recombinant protein and analyze its biological function. A pair of primers was designed according to the known sequence of TC gene. The TC gene fragment was amplified by PCR. After purification and digestion with BamH I and Sal I, the TC gene was connected to the prokaryotic expression vectors, pGEX-4T-1 and pET30a(+). By cloning target gene into these vectors, pGEX-4T-1 and pET30a(+), prokaryotic recombinant plasmids of TC gene were constructed and transferred into E. coli BL21. The positive expressed recombinants were detected by SDS-PAGE and Western blotting. Immobilized metal (Ni2+) chelation affinity chromatography was used to purify His-TC produced by the expression of the recombinant protein pET30a(+)-TC. The recombinant plasmids, pGEX-4T-1-TC and pET30a(+)-TC, were constructed successfully. SDS-PAGE testified that the molecular weight of the recombinant protein was correct. Western blot analysis of GST-TC recombinant protein testified that the recombinant protein could be recognized by immunized rabbit serum, which means the protein is GST-immune active and the clone can express recombinant Clonorchis sinensis antigen. After affinity chromatography of the pET-TC protein, there was only one protein band with expected size on the SDS-PAGE gel. The TC gene was screened from cDNA library of adult Clonorchis sinensis, cloned, expressed and purified. The purified protein of TC gene will be of importance for further research on the biological function of the gene.

  11. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    Science.gov (United States)

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  12. Expression of SNC73, a transcript of the immunoglobulin α-1 gene, in human epithelial carcinomas

    Institute of Scientific and Technical Information of China (English)

    Li-Yi Geng; Shu Zheng; Zheng-Zhen Shi; Qi Dong; Xin-Han Cai; Yan-Ming Zhang; Wei Cao; Jia-Ping Peng; Yong-Ming Fang; Lei Zheng

    2007-01-01

    AIM: To investigate the expression of SNC73, a transcript of the immunoglobulin α-1 gene (IgA1-H chain), in human epithelia-derived tumor cells.METHODS: Total RNAs and cell lysates were prepared from five different human epithelial cell lines derived from lung, stomach, liver, skin, and breast, respectively. RT-PCR and immunoblot analysis of these five cell lines were done. Both RT-PCR and immunochemistry were used to detect the expression of SNC73 in these cell lines. We also examined the expression of SNC73 in normal epithelial cells of colon mucosa by in situ hybridization. RT-PCR and immunoblot analysis were used to determine whether the recombination activating gene1/2 (RAG1 and RAG2) is present. The expression of three immunoglobulin transcription factors, EBF, E2A and Pax5, and the heavy chain of IgA1 and two types of light chains of immunoglobulin (κ and λ) in the aforementioned cell lines were analyzed by RT-PCR and immunochemistry, respectively. All the RT-PCR products were analyzed by sequencing.RESULTS: The results of RT-PCR and immunochemistry showed that both mRNA and protein of SNC73 were expressed in five human epithelia-derived cancer cell lines. These data were further confirmed in the normal epithelial cells of colon mucosa by in situ hybridization. Also, the heavy chain of IgA1 and κ light chain were detected in these cells, but no λ light chain was observed. Both RAG1 and RAG2 were expressed in these human epithelia-derived cancer cell lines and the sequence was identical to that expressed in pre-B and pre-T cells. In addition to RAG1 and RAG2, the mRNA in one of the immunoglobulin transcription factors, EBF, was also detected in these cell lines, and Pax5 was only expressed in SW480 cells, but no expression of E2A was observed in all the five cell lines.CONCLUSION: Immunoglobulin A1 is originally expressed and V(D)J recombination machine is also present in non-lymphoid cells, suggesting that V(D)J recombination machine mediates the

  13. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction.

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H

    2017-01-09

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.

  14. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction

    Science.gov (United States)

    Schmidt, Florian; Gasparoni, Nina; Gasparoni, Gilles; Gianmoena, Kathrin; Cadenas, Cristina; Polansky, Julia K.; Ebert, Peter; Nordström, Karl; Barann, Matthias; Sinha, Anupam; Fröhler, Sebastian; Xiong, Jieyi; Dehghani Amirabad, Azim; Behjati Ardakani, Fatemeh; Hutter, Barbara; Zipprich, Gideon; Felder, Bärbel; Eils, Jürgen; Brors, Benedikt; Chen, Wei; Hengstler, Jan G.; Hamann, Alf; Lengauer, Thomas; Rosenstiel, Philip; Walter, Jörn; Schulz, Marcel H.

    2017-01-01

    The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively. PMID:27899623

  15. HDAC5 Inhibits Hepatic Lipogenic Genes Expression by Attenuating the Transcriptional Activity of Liver X Receptor.

    Science.gov (United States)

    Jia, Hai-Yan; Li, Quan-Zhong; Lv, Li-Fang

    2016-01-01

    Liver X receptor (LXR), a member of the nuclear receptor superfamily, is known to induce the expression of SREBP-1c and ChREBP, two master regulators of hepatic lipogenesis. Histone deacyetylases (HDACs) have been shown to play critical roles in glucose and lipids metabolism. However, the exact role of HDAC5 in lipogenesis remains elusive. mRNA and protein levels of HDAC5 were analyzed by quantitative real-time PCR and Western blots in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. HDAC5 was overexpressed or depleted in HepG2 cells, followed by analysis of cellular triglycerides contents. Quantitative real-time PCR was used to detect the expression levels of lipogenic genes. Luciferase reporter assay was used to determine the regulation of HDAC on the transcriptional activity of LXR. Co-immunoprecipitation experiment was used to determine the interaction between HDAC5 and LXR. We found that mRNA and protein expression levels of hepatic HDAC5 were reduced in high-fat-diet-induced and leptin receptor deficiency-induced obese mice. In vitro studies further demonstrated that knockdown of HDAC5 promoted cellular triglycerides accumulation, accompanied with up-regulation of lipogenic genes. At the molecular level, HDAC5 was shown to interact with LXR, thereby attenuating its transcriptional activity. Overall, our data suggest that hepatic HDAC5 is an important regulator of lipogenesis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  16. Transcription and Splicing Factor TDP-43: Role in Regulation of Gene Expression in Testis.

    Science.gov (United States)

    Reddi, Prabhakara P

    2017-03-01

    TDP-43 (TAR DNA binding Protein of 43 kD) is a transcription factor and RNA-binding protein with diverse functions. We cloned TDP-43 from the mouse testis in a screen for promoter-binding proteins and showed that it functions as a transcriptional repressor. TDP-43 plays a role in maintaining the precise pattern of spatiotemporal expression of the spermatid-specific Acrv1 gene during spermatogenesis by facilitating RNA polymerase II pausing at the promoter. We also showed that TDP-43 plays a partial role in preventing somatic cell expression of the Acrv1 gene by acting as an insulator-binding protein. Since the discovery of a causative link to several neurodegenerative diseases 10 years ago, TDP-43 has emerged as a protein of major human health relevance. Aberrant posttranslational modifications, nuclear exit, and cytoplasmic aggregate formation contribute to loss of neuronal function in patients. Interestingly, aberrant TDP-43 expression has also been reported in the testis and sperm of infertile men. Finally, our unpublished work shows that TDP-43 is indispensable for sperm formation and male fertility. The potential role of TDP-43 in male germ cells and fertility is discussed in this review. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    Science.gov (United States)

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  18. PTRcombiner: mining combinatorial regulation of gene expression from post-transcriptional interaction maps.

    Science.gov (United States)

    Corrado, Gianluca; Tebaldi, Toma; Bertamini, Giulio; Costa, Fabrizio; Quattrone, Alessandro; Viero, Gabriella; Passerini, Andrea

    2014-04-23

    The progress in mapping RNA-protein and RNA-RNA interactions at the transcriptome-wide level paves the way to decipher possible combinatorial patterns embedded in post-transcriptional regulation of gene expression. Here we propose an innovative computational tool to extract clusters of mRNA trans-acting co-regulators (RNA binding proteins and non-coding RNAs) from pairwise interaction annotations. In addition the tool allows to analyze the binding site similarity of co-regulators belonging to the same cluster, given their positional binding information. The tool has been tested on experimental collections of human and yeast interactions, identifying modules that coordinate functionally related messages. This tool is an original attempt to uncover combinatorial patterns using all the post-transcriptional interaction data available so far. PTRcombiner is available at http://disi.unitn.it/~passerini/software/PTRcombiner/.

  19. The evolution of gene expression and binding specificity of the largest transcription factor family in primates.

    Science.gov (United States)

    Kapopoulou, Adamandia; Mathew, Lisha; Wong, Alex; Trono, Didier; Jensen, Jeffrey D

    2016-01-01

    The KRAB-containing zinc finger (KRAB-ZF) proteins represent the largest family of transcription factors (TFs) in humans, yet for the great majority, their function and specific genomic target remain unknown. However, it has been shown that a large fraction of these genes arose from segmental duplications, and that they have expanded in gene and zinc finger number throughout vertebrate evolution. To determine whether this expansion is linked to selective pressures acting on different domains, we have manually curated all KRAB-ZF genes present in the human genome together with their orthologous genes in three closely related species and assessed the evolutionary forces acting at the sequence level as well as on their expression profiles. We provide evidence that KRAB-ZFs can be separated into two categories according to the polymorphism present in their DNA-contacting residues. Those carrying a nonsynonymous single nucleotide polymorphism (SNP) in their DNA-contacting amino acids exhibit significantly reduced expression in all tissues, have emerged in a recent lineage, and seem to be less strongly constrained evolutionarily than those without such a polymorphism. This work provides evidence for a link between age of the TF, as well as polymorphism in their DNA-contacting residues and expression levels-both of which may be jointly affected by selection.

  20. Molecular characterization, gene expression and transcriptional regulation of cytosolic HSP90 genes in the flatfish Senegalese sole (Solea senegalensis Kaup).

    Science.gov (United States)

    Manchado, Manuel; Salas-Leiton, Emilio; Infante, Carlos; Ponce, Marian; Asensio, Esther; Crespo, Aniela; Zuasti, Eugenia; Cañavate, José Pedro

    2008-06-15

    HSP90 proteins are chaperones that play a pivotal role in controlling multiple regulatory pathways such as stress defense, hormone signalling, cell cycle control, cell proliferation and differentiation, and apoptosis. In this study, two cDNAs encoding for cytosolic HSP90, referred to as HSP90AA and HSP90AB, have been sequenced. Main features and sequence identities with other fish and mammals are described. Phylogenetic analysis grouped both genes into two separate clusters with their fish and mammalian counterparts. Expression profiles during larval development and in juvenile tissues were analyzed using a real-time PCR approach. In juvenile fish, HSP90AB was constitutively expressed with lower transcript levels in skeletal muscle. In contrast, HSP90AA was mainly expressed in heart, skeletal muscle and skin. During metamorphosis, HSP90AB mRNA levels did not change whereas HSP90AA transcripts decreased significantly at the beginning of metamorphosis with the lowest mRNA levels at the metamorphosis climax. Due to the role of thyroid hormones (THs) on sole metamorphosis, the transcriptional regulation of HSP90 genes by THs was evaluated. Larvae exposed to the goitrogen thiourea (TU) exhibited higher HSP90AA mRNA levels than untreated control. Moreover, adding exogenous T4 hormone to TU-treated larvae restored the steady-state levels with respect to the untreated control. Unlike HSP90AA, the transcript levels of HSP90AB did not vary under any treatments. The response of both HSP90 genes to thermal stress in post-metamorphic individuals was also studied. A heat shock treatment (+7.9 degrees C for 1 h) rapidly activated HSP90AA (but not HSP90AB) transcription, reaching a peak after 30 min and declining expression levels progressively in the following 24 h. No significant changes in HSP90AA or HSP90AB transcript levels after a cold shock (-10 degrees C for 1 h) were observed. Overall, these results demonstrate that HSP90AA transcription is down-regulated by THs and up

  1. Transcriptional analysis of temporal gene expression in germinating Clostridium difficile 630 endospores.

    Directory of Open Access Journals (Sweden)

    Marcin Dembek

    Full Text Available Clostridium difficile is the leading cause of hospital acquired diarrhoea in industrialised countries. Under conditions that are not favourable for growth, the pathogen produces metabolically dormant endospores via asymmetric cell division. These are extremely resistant to both chemical and physical stress and provide the mechanism by which C. difficile can evade the potentially fatal consequences of exposure to heat, oxygen, alcohol, and certain disinfectants. Spores are the primary infective agent and must germinate to allow for vegetative cell growth and toxin production. While spore germination in Bacillus is well understood, little is known about C. difficile germination and outgrowth. Here we use genome-wide transcriptional analysis to elucidate the temporal gene expression patterns in C. difficile 630 endospore germination. We have optimized methods for large scale production and purification of spores. The germination characteristics of purified spores have been characterized and RNA extraction protocols have been optimized. Gene expression was highly dynamic during germination and outgrowth, and was found to involve a large number of genes. Using this genome-wide, microarray approach we have identified 511 genes that are significantly up- or down-regulated during C. difficile germination (p≤0.01. A number of functional groups of genes appeared to be co-regulated. These included transport, protein synthesis and secretion, motility and chemotaxis as well as cell wall biogenesis. These data give insight into how C. difficile re-establishes its metabolism, re-builds the basic structures of the vegetative cell and resumes growth.

  2. Ethanol induced astaxanthin accumulation and transcriptional expression of carotenogenic genes in Haematococcus pluvialis.

    Science.gov (United States)

    Wen, Zewen; Liu, Zhiyong; Hou, Yuyong; Liu, Chenfeng; Gao, Feng; Zheng, Yubin; Chen, Fangjian

    2015-10-01

    Haematococcus pluvialis is one of the most promising natural sources of astaxanthin. However, inducing the accumulation process has become one of the primary obstacles in astaxanthin production. In this study, the effect of ethanol on astaxanthin accumulation was investigated. The results demonstrated that astaxanthin accumulation occurred with ethanol addition even under low-light conditions. The astaxanthin productivity could reach 11.26 mg L(-1) d(-1) at 3% (v/v) ethanol, which was 2.03 times of that of the control. The transcriptional expression patterns of eight carotenogenic genes were evaluated using real-time PCR. The results showed that ethanol greatly enhanced transcription of the isopentenyl diphosphate (IPP) isomerase genes (ipi-1 and ipi-2), which were responsible for isomerization reaction of IPP and dimethylallyl diphosphate (DMAPP). This finding suggests that ethanol induced astaxanthin biosynthesis was up-regulated mainly by ipi-1 and ipi-2 at transcriptional level, promoting isoprenoid synthesis and substrate supply to carotenoid formation. Thus ethanol has the potential to be used as an effective reagent to induce astaxanthin accumulation in H. pluvialis.

  3. Identification,characterization and expression analysis of transcription factor (CBF) genes in rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    Yunfei CAO; Jiaojiao WANG; Li GUO; Kai XIAO

    2008-01-01

    The acclimation of plants to cold,salt and dehydration is involved in the action of the transcription factor (CBF) cold-response pathway.In this paper,nineteen rice CBF genes,including seven previously released and twelve unpublished novels,were identified and characterized.The multi-members of rice CBFs (OsCBF1 to OsCBF12) were divergent at the nucleotide and amino acid level.Expression analysis shows that five novel rice CBF genes (OsCBF1,OsCBF2,OsCBF3,OsCBF8,and OsCBF9) responded to short-term (1 h or 3 h) stresses of low temperature,salt stress and dehydration.The transcripts of OsCBF2,OsCBF8 and OsCBF9 in the roots were rapidly elevated when the plants were exposed to low temperatures,suggesting that they were possibly involved in low temperature responses in rice plants.Meanwhile,the expression level of OsCBF2 in leaves was enhanced when exposed to salt stress of 1-3 h,implying that OsCBF2 functioned as a transduction component in the salt stress signal cascade.Various expression patterns in OsCBF1,OsCBF2,OsCBF3,OsCBF8,and OsCBF9 under low temperature,salt and drought conditions,together with the different expression patterns between roots and leaves for each of these indicated that every rice CBF gene has unique and non-redundant functions in the response to the abiotic stresses.

  4. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability

    Directory of Open Access Journals (Sweden)

    Gorospe Myriam

    2005-05-01

    Full Text Available Abstract Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Results In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell and nuclear run-on (newly transcribed RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. Conclusion We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems.

  5. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli

    OpenAIRE

    Thomas Esquerré; Marie Bouvier; Catherine Turlan; Carpousis, Agamemnon J.; Laurence Girbal; Muriel Cocaign-Bousquet

    2016-01-01

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype...

  6. Global gene expression analysis and regulation of the principal genes expressed in bovine placenta in relation to the transcription factor AP-2 family

    Directory of Open Access Journals (Sweden)

    Kizaki Keiichiro

    2007-04-01

    Full Text Available Abstract Background Cell-cell communication is an important factor in feto-maternal units during placentogenesis. The placenta produces pivotal hormones and cytokines for communication between cotyledonary villi and the maternal caruncle. Gene expression in bovine placenta throughout pregnancy was comprehensively screened by a cDNA microarray, and we searched for a common transcription factor in a gene cluster that showed increasing expression throughout gestation in cotyledonary villi and caruncle. Methods Placentomal tissues (villi and caruncle were collected from Day 25 to Day 250 of gestation for microarray analysis. Global gene expression profiles were analyzed using the k-means clustering method. A consensus sequence cis-element that may control up-regulated genes in a characteristic cluster was examined in silico. The quantitative expression and localization of a specific transcription factor were investigated in each tissue using quantitative real-time RT-PCR and in situ hybridization. Results The microarray expression profiles were classified into ten clusters. The genes with most markedly increased expression became concentrated in cluster 2 as gestation proceeded. Cluster 2 included placental lactogen (CSH1, pregnancy-associated glycoprotein-1 (PAG1, and sulfotransferase family 1E estrogen-preferring member 1 (SULT1E1, which were mainly detected in giant trophoblast binucleate cells (BNC. Consensus sequence analysis identified transcription factor AP-2 binding sites in some genes in this cluster. Quantitative real-time RT-PCR analysis confirmed that high level expression of transcription factor AP-2 alpha (TFAP2A was common to cluster 2 genes during gestation. In contrast, the expression level of another AP-2 family gene, transcription factor AP-2 beta (TFAP2B, was extremely low over the same period. Another gene of the family, transcription factor AP-2 gamma (TFAP2C, was expressed at medium level compared with TFAP2A and TFAP2B. In

  7. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  8. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  9. Transcription without XPB Establishes a Unified Helicase-Independent Mechanism of Promoter Opening in Eukaryotic Gene Expression.

    Science.gov (United States)

    Alekseev, Sergey; Nagy, Zita; Sandoz, Jérémy; Weiss, Amélie; Egly, Jean-Marc; Le May, Nicolas; Coin, Frederic

    2017-02-02

    Transcription starts with the assembly of pre-initiation complexes on promoters followed by their opening. Current models suggest that class II gene transcription requires ATP and the TFIIH XPB subunit to open a promoter. Here, we observe that XPB depletion surprisingly leaves transcription virtually intact. In contrast, inhibition of XPB ATPase activity affects transcription, revealing that mRNA expression paradoxically accommodates the absence of XPB while being sensitive to the inhibition of its ATPase activity. The XPB-depleted TFIIH complex is recruited to active promoters and contributes to transcription. We finally demonstrate that the XPB ATPase activity is only used to relieve a transcription initiation block imposed by XPB itself. In the absence of this block, transcription initiation can take place without XPB ATPase activity. These results suggest that a helicase is dispensable for mRNA transcription, thereby unifying the mechanism of promoter DNA opening for the three eukaryotic RNA polymerases.

  10. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Yaojing Yue

    Full Text Available Wool fiber diameter (WFD is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3] were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05. The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P < 0.05. The results indicated that expression of NATs and gene transcripts were correlated, suggesting a role in gene regulation. The discovery of these DEGs and NATs could facilitate enhanced selection for super-fine wool sheep through gene-assisted selection or targeted gene manipulation in the future.

  11. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    Directory of Open Access Journals (Sweden)

    Emily L Landeen

    2016-07-01

    Full Text Available The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  12. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    Science.gov (United States)

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution.

  13. Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii during Spawning Migration

    Directory of Open Access Journals (Sweden)

    Jun Cui

    2015-06-01

    Full Text Available Amur ide (Leuciscus waleckii, an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide to interrogate the expression differences between the population that permanently inhabit freshwater in Ganggeng Nor lake (FW and the spawning population that recently migrated from alkaline water into freshwater (SM. A total of 637,234,880 reads were generated, resulting in 53,440 assembled contigs that were used as reference sequences. Comparisons of these transcriptome files revealed 444 unigenes with significant differential expression (p-value ≤ 0.01, fold-change ≥ 2, including 246 genes that were up-regulated in SM and 198 genes that were up-regulated in FW. The gene ontology (GO enrichment analysis and KEGG pathway analysis indicated that the mTOR signaling pathway, Janus kinase-signal transducer and activator of transcription (JAK-STAT signaling pathway, and oxidative phosphorylation were highly likely to affect physiological changes during spawning migration. Overall, this study demonstrates that transcriptome changes played a role in Amur ide spawning migration. These results provide a foundation for further analyses on the physiological and molecular mechanisms underlying Amur ide spawning migration.

  14. Transcriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration

    Science.gov (United States)

    Cui, Jun; Xu, Jian; Zhang, Songhao; Wang, Kai; Jiang, Yanliang; Mahboob, Shahid; Al-Ghanim, Khalid A.; Xu, Peng

    2015-01-01

    Amur ide (Leuciscus waleckii), an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide to interrogate the expression differences between the population that permanently inhabit freshwater in Ganggeng Nor lake (FW) and the spawning population that recently migrated from alkaline water into freshwater (SM). A total of 637,234,880 reads were generated, resulting in 53,440 assembled contigs that were used as reference sequences. Comparisons of these transcriptome files revealed 444 unigenes with significant differential expression (p-value ≤ 0.01, fold-change ≥ 2), including 246 genes that were up-regulated in SM and 198 genes that were up-regulated in FW. The gene ontology (GO) enrichment analysis and KEGG pathway analysis indicated that the mTOR signaling pathway, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, and oxidative phosphorylation were highly likely to affect physiological changes during spawning migration. Overall, this study demonstrates that transcriptome changes played a role in Amur ide spawning migration. These results provide a foundation for further analyses on the physiological and molecular mechanisms underlying Amur ide spawning migration. PMID:26096003

  15. Genetic and physiological activation of osmosensitive gene expression mimics transcriptional signatures of pathogen infection in C. elegans.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Rohlfing

    Full Text Available The soil-dwelling nematode C. elegans is a powerful system for comparative molecular analyses of environmental stress response mechanisms. Infection of worms with bacterial and fungal pathogens causes the activation of well-characterized innate immune transcriptional programs in pathogen-exposed hypodermal and intestinal tissues. However, the pathophysiological events that drive such transcriptional responses are not understood. Here, we show that infection-activated transcriptional responses are, in large part, recapitulated by either physiological or genetic activation of the osmotic stress response. Microarray profiling of wild type worms exposed to non-lethal hypertonicity identified a suite of genes that were also regulated by infection. Expression profiles of five different osmotic stress resistant (osr mutants under isotonic conditions reiterated the wild type transcriptional response to osmotic stress and also showed substantial similarity to infection-induced gene expression under isotonic conditions. Computational, transgenic, and functional approaches revealed that two GATA transcription factors previously implicated in infection-induced transcriptional responses, elt-2 and elt-3, are also essential for coordinated tissue-specific activation of osmosensitive gene expression and promote survival under osmotically stressful conditions. Together, our data suggest infection and osmotic adaptation share previously unappreciated transcriptional similarities which might be controlled via regulation of tissue-specific GATA transcription factors.

  16. GCN5 is essential for IRF-4 gene expression followed by transcriptional activation of Blimp-1 in immature B cells.

    Science.gov (United States)

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-03-01

    During B-cell differentiation, the gene expression of B-cell differentiation-related transcription factors must be strictly controlled by epigenetic mechanisms including histone acetylation and deacetylation, to complete the differentiation pathway. GCN5, one of the most important histone acetyltransferases, is involved in epigenetic events for transcriptional regulation through alterations in the chromatin structure. In this study, by analyzing the homozygous DT40 mutants GCN5(-/-), generated with gene targeting techniques, we found that GCN5 was necessary for transcriptional activation of IRF-4, an essential transcription factor for plasma cell differentiation. GCN5 deficiency caused drastic decreases in both the mRNA and the protein levels of Blimp-1 and IRF-4. The ectopic expression of Blimp-1 and IRF-4 suggests that IRF-4, but not Blimp-1, is the target gene of GCN5 in immature B cells. Moreover, a chromatin immunoprecipitation assay showed that GCN5 bound to the IRF-4 gene around its 5'-flanking region and acetylated H3K9 residues within chromatin surrounding the region in vivo, suggesting that gene expression of IRF-4 is certainly regulated by GCN5. These results reveal that GCN5 is essential for IRF-4 gene expression, followed by transcriptional activation of Blimp-1, and plays a key role in epigenetic regulation of B-cell differentiation.

  17. Mitochondrial transcription termination factor 2 binds to entire mitochondrial DNA and negatively regulates mitochondrial gene expression

    Institute of Scientific and Technical Information of China (English)

    Weiwei Huang; Min Yu; Yang Jiao; Jie Ma; Mingxing Ma; Zehua Wang; Hong Wu; Deyong Tan

    2011-01-01

    Mitochondrial transcription termination factor 2 (mTERF2) is a mitochondriai matrix protein that binds to the mitochondriai DNA.Previous studies have shown that overexpression of mTERF2 can inhibit cell proliferation, but the mechanism has not been well defined so far.This study aimed to present the binding pattern of mTERF2 to the mitochondrial DNA (mtDNA) in vivo, and investigated the biological function of mTERF2 on the replication of mtDNA, mRNA transcription, and protein translation.The mTERF2 binding to entire mtDNA was identified via the chromatin immunoprecipitation analysis.The mtDNA replication efficiency and expression levels of mitochondria genes were significantly inhibited when the mTERF2 was overexpressed in HeLa cells.The inhibition level of mtDNA content was the same with the decreased levels of mRNA and mitochondrial protein expression.Overall, the mTERF2 might be a cell growth inhibitor based on its negative effect on mtDNA replication, which eventually own-regulated all of the oxidative phosphorylation components in the mitochondria that were essential for the cell's energy metabolism.

  18. Interleukin-1 controls the constitutive expression of the Cyp7a1 gene by regulating the expression of Cyp7a1 transcriptional regulators in the mouse liver.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2011-01-01

    Our previous study using interleukin-1α/β-knockout (IL-1-KO) and wild-type (WT) mice demonstrated that IL-1 acts as a positive factor for constitutive gene expression of hepatic cytochrome P4507a1 (Cyp7a1). In this study, to clarify the role of IL-1 in the expression of the hepatic Cyp7a1 gene, we focused on Cyp7a1 transcriptional regulators such as α-fetoprotein transcription factor (FTF), liver X receptor α (LXRα), hepatocyte nuclear factor 4α (HNF4α) and small heterodimer partner (SHP) and examined the effects of IL-1 on their gene expression by real-time reverse-transcription polymerase chain reaction using IL-1-KO and WT mice. We observed no significant differences between sex-matched IL-1-KO and WT mice with regard to gene expression levels of FTF, LXRα, and HNF4α, all of which are positive transcriptional regulators for the Cyp7a1 gene. However, interindividual differences in hepatic FTF and LXRα expression were closely dependent on the gene expression level(s) of hepatic IL-1 and tumor necrosis factor-α (TNF-α), while interindividual differences in hepatic HNF4α were clearly correlated with the expression of IL-1, but not TNF-α. In contrast, the gene expression level of SHP, which is a negative transcriptional regulator of the Cyp7a1 gene through inhibition of FTF function, was higher in IL-1-KO mice than in sex-matched WT mice. These findings demonstrate that, like TNF-α, IL-1 positively controls the gene expression of Cyp7a1 transcriptional upregulators but, in contrast to the previously reported action of TNF-α, IL-1 also acts to downregulate SHP gene expression.

  19. Step into the groove : engineered transcription factors as modulators of gene expression

    NARCIS (Netherlands)

    Visser, A.E.; Verschure, P.J.; Gommans, W.M.; Haisma, H.J.; Rots, M.G.

    2006-01-01

    Increasing knowledge about the influence of dysregulated gene expression in causing numerous diseases opens up new possibilities for the development of innovative therapeutics. In this chapter, we first describe different mechanisms of misregulated gene expression resulting in various pathophysiolog

  20. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  1. Adiabatic reduction of a piecewise deterministic markov model of stochastic gene expression with bursting transcription

    CERN Document Server

    Lei, Jinzhi; Yvinec, Romain; Zhuge, Changjing

    2012-01-01

    This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription. We prove that an adiabatic reduction can be performed in a stochastic slow/fast system with a jump Markov process. In the gene expression model, the production of mRNA (the fast variable) is assumed to follow a compound Poisson process (the phenomena called bursting in molecular biology) and the production of protein (the slow variable) is linear as a function of mRNA. When the dynamics of mRNA is assumed to be faster than the protein dynamics (due to a mRNA degradation rate larger than for the protein) we prove that, with the appropriate scaling, the bursting phenomena can be transmitted to the slow variable. We show that the reduced equation is either a stochastic differential equation with a jump Markov process or a deterministic ordinary differential equation depending on the scaling that is appropriate. These results are significant because adiabatic reduction techniques seem to have not been de...

  2. Involvement of transcriptional enhancers in the regulation of developmental expression of yellow gene

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jilong

    2001-01-01

    [1]Geyer, P. K., Green, M. M., Corces, V. G., Tissue-specific transcriptional enhancers may act on the gene located in the homologous chromosome, EMBO J., 1990, 9(7): 2247.[2]Chen, J. L., Liu, J., Chen, Z. W. et al., Molecular analysis of gene transvection by using Drosophila yellow gene model, Devel. Reprod. Biol., 1998, 7(2): 43.[3]Goldsborough, A. S., Kornberg, T. B., Reduction of transcription by homologue asynapsis in Drosophila imaginal discs, Nature, 1996, 381: 807.[4]Wu, C.- T., Morris, J. R., Transvection and other homology effects, Current Opinion in Genetics & Development, 1999, 9: 237.[5]Pal-Bhadra, M., Bhadra, U., Birchler, J. A., Cosuppression in Drosophila: gene silencing of alcohol dehydrogenase by white-Adh transgenes is polycomb dependent, Cell, 1997, 90: 479.[6]Matzke, M. A., Matzke, A. J. M., Homology-dependent gene silencing in transgenic plants: what does it really tell us? Trends Genet., 1995, 11: 1..[7]Aramayo, R., Metzenberg, R. L., Meiotic transvection in fungi, Cell, 1996, 86: 103.[8]Leiserson, W. M., Bonini, N. M., Benzer, S., Transvection at the eyes absent gene of Drosophila, Genetics, 1994, 138: 1171.[9]Sun, F. L., Dean, W. L., Kelsey, G. et al., Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann Syndrome, Nature, 1997, 389: 809.[10] Morris, J. R., Chen, J. L., Geyer, P. K. et al., Two modes of transvection: enhancer action in trans and by pass of a chromatin insulator in cis, Proc. Natl. Acad. Sci. USA, 1998, 95: 10740.[11] Morris, J. R., Chen, J. L., Filandrinos, S. T. et al., An analysis of transvection at the yellow locus of Drosophila melanogaster, Genetics, 1999, 151: 633.[12] Chen, J. L., Longo, F. J., Expression and localization of DNA topo II during spermatogenesis, Mol. Reprod. Devel., 1996, 45: 61.[13] Rubin, G. M., Spradling, A. C., Genetic transformation of Drosophila with transposable element vectors, Science, 1982, 218: 348.[14] Johnson

  3. Transcriptional expression of type I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben

    2011-01-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic locations. The pathogenesis is much debated, and type I interferons could be involved. The expression of genes of the type I interferon response were profiled by a specific PCR Array...... was suitable for normalization of qRT-PCR studies of eutopic vs. ectopic endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa, and RL95-2, HMBS and HPRT1 were most stably expressed. The interferon-specific PCR Array indicated significantly different expression of the genes BST2, COL16A1, HOXB2......, and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1, and the highly type I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions...

  4. Heat Stress Regulates the Expression of Genes at Transcriptional and Post-Transcriptional Levels, Revealed by RNA-seq in Brachypodium distachyon

    Science.gov (United States)

    Chen, Shoukun; Li, Haifeng

    2017-01-01

    Heat stress greatly affects plant growth/development and influences the output of crops. With the increased occurrence of extreme high temperature, the negative influence on cereal products from heat stress becomes severer and severer. It is urgent to reveal the molecular mechanism in response to heat stress in plants. In this research, we used RNA-seq technology to identify differentially expressed genes (DEGs) in leaves of seedlings, leaves and inflorescences at heading stage of Brachypodium distachyon, one model plant of grasses. Results showed many genes in responding to heat stress. Of them, the expression level of 656 DEGs were altered in three groups of samples treated with high temperature. Gene ontology (GO) analysis showed that the highly enriched DEGs were responsible for heat stress and protein folding. According to KEGG pathway analysis, the DEGs were related mainly to photosynthesis-antenna proteins, the endoplasmic reticulum, and the spliceosome. Additionally, the expression level of 454 transcription factors belonging to 49 gene families was altered, as well as 1,973 splicing events occurred after treatment with high temperature. This research lays a foundation for characterizing the molecular mechanism of heat stress response and identifying key genes for those responses in plants. These findings also clearly show that heat stress regulates the expression of genes not only at transcriptional level, but also at post-transcriptional level. PMID:28119730

  5. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  6. Influence of mRNA decay rates on the computational prediction of transcription rate profiles from gene expression profiles

    Indian Academy of Sciences (India)

    Chi-Fang Chin; Arthur Chun-Chieh Shih; Kuo-Chin Fan

    2007-12-01

    The abundance of an mRNA species depends not only on the transcription rate at which it is produced, but also on its decay rate, which determines how quickly it is degraded. Both transcription rate and decay rate are important factors in regulating gene expression. With the advance of the age of genomics, there are a considerable number of gene expression datasets, in which the expression profiles of tens of thousands of genes are often non-uniformly sampled. Recently, numerous studies have proposed to infer the regulatory networks from expression profiles. Nevertheless, how mRNA decay rates affect the computational prediction of transcription rate profiles from expression profiles has not been well studied. To understand the influences, we present a systematic method based on a gene dynamic regulation model by taking mRNA decay rates, expression profiles and transcription profiles into account. Generally speaking, an expression profile can be regarded as a representation of a biological condition. The rationale behind the concept is that the biological condition is reflected in the changing of gene expression profile. Basically, the biological condition is either associated to the cell cycle or associated to the environmental stresses. The expression profiles of genes that belong to the former, so-called cell cycle data, are characterized by periodicity, whereas the expression profiles of genes that belong to the latter, so-called condition-specific data, are characterized by a steep change after a specific time without periodicity. In this paper, we examine the systematic method on the simulated expression data as well as the real expression data including yeast cell cycle data and condition-specific data (glucose-limitation data). The results indicate that mRNA decay rates do not significantly influence the computational prediction of transcription-rate profiles for cell cycle data. On the contrary, the magnitudes and shapes of transcription-rate profiles for

  7. Whole genome expression profiling shows that BRG1 transcriptionally regulates UV inducible genes and other novel targets in human cells.

    Science.gov (United States)

    Zhang, Ling; Nemzow, Leah; Chen, Hua; Hu, Jennifer J; Gong, Feng

    2014-01-01

    UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.

  8. A robust dual reporter system to visualize and quantify gene expression mediated by transcription activator-like effectors

    Directory of Open Access Journals (Sweden)

    Uhde-Stone Claudia

    2012-08-01

    Full Text Available Abstract Background Transcription activator-like effectors (TALEs are a class of naturally occurring transcription effectors that recognize specific DNA sequences and modulate gene expression. The modularity of TALEs DNA binding domain enables sequence-specific perturbation and offers broad applications in genetic and epigenetic studies. Although the efficient construction of TALEs has been established, robust functional tools to assess their functions remain lacking. Results We established a dual reporter system that was specifically designed for real-time monitoring and quantifying gene expression mediated by TALEs. We validated both sensitivity and specificity of this dual-reporter system in mammalian cells, and demonstrated that this dual reporter system is robust and potentially amenable to high throughput (HTP applications. Conclusion We have designed, constructed and validated a novel dual reporter system for assessing TALE mediated gene regulations. This system offers a robust and easy-to- use tool for real-time monitoring and quantifying gene expression in mammalian cells.

  9. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression

    NARCIS (Netherlands)

    Thurlings, Ingrid; de Bruin, Alain

    2016-01-01

    Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growt

  10. Regulation of Nitrogenase Gene Expression by Transcript Stability in the Cyanobacterium Anabaena variabilis

    OpenAIRE

    Pratte, Brenda S.; Thiel, Teresa

    2014-01-01

    The nitrogenase gene cluster in cyanobacteria has been thought to comprise multiple operons; however, in Anabaena variabilis, the promoter for the first gene in the cluster, nifB1, appeared to be the primary promoter for the entire nif cluster. The structural genes nifHDK1 were the most abundant transcripts; however, their abundance was not controlled by an independent nifH1 promoter, but rather, by RNA processing, which produced a very stable nifH1 transcript and a moderately stable nifD1 tr...

  11. Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats.

    Science.gov (United States)

    Nishio, Y; Kashiwagi, A; Taki, H; Shinozaki, K; Maeno, Y; Kojima, H; Maegawa, H; Haneda, M; Hidaka, H; Yasuda, H; Horiike, K; Kikkawa, R

    1998-08-01

    Gene regulation in the cardiovascular tissues of diabetic subjects has been reported to be altered. To examine abnormal activities in transcription factors as a possible cause of this altered gene regulation, we studied the activity of two redox-sensitive transcription factors--nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1)--and the change in the mRNA content of heme oxygenase-1, which is regulated by these transcription factors in the cardiac tissues of rats with streptozotocin-induced diabetes. Increased activity of NF-kappaB and AP-1 but not nuclear transcription-activating factor, as determined by an electrophoretic mobility shift assay, was found in the hearts of 4-week diabetic rats. Glycemic control by a subcutaneous injection of insulin prevented these diabetes-induced changes in transcription factor activity. In accordance with these changes, the mRNA content of heme oxygenase-1 was increased fourfold in 4-week diabetic rats and threefold in 24-week diabetic rats as compared with control rats (P oxidative stress is involved in the activation of the transcription factors NF-kappaB and AP-1 in the cardiac tissues of diabetic rats, and that these abnormal activities of transcription factors could be associated with the altered gene regulation observed in the cardiovascular tissues of diabetic rats.

  12. Gene Expression Patterns Define Key Transcriptional Events InCell-Cycle Regulation By cAMP And Protein Kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon; Kanter, Joan R.; Prabhakar, Shyam; Salomonis, Nathan; Vranizan, Karen; Dubchak Inna,; Conklin, Bruce R.; Insel, Paul A.

    2005-06-01

    Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrest of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.

  13. Laser Microdissection Unravels Cell-Type-Specific Transcription in Arbuscular Mycorrhizal Roots, Including CAAT-Box Transcription Factor Gene Expression Correlating with Fungal Contact and Spread1[W

    Science.gov (United States)

    Hogekamp, Claudia; Arndt, Damaris; Pereira, Patrícia A.; Becker, Jörg D.; Hohnjec, Natalija; Küster, Helge

    2011-01-01

    Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis. PMID:22034628

  14. Sumoylation of bZIP transcription factor NRL modulates target gene expression during photoreceptor differentiation.

    Science.gov (United States)

    Roger, Jerome E; Nellissery, Jacob; Kim, Douglas S; Swaroop, Anand

    2010-08-13

    Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl(-/-) mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl(-/-) phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis.

  15. Sumoylation of bZIP Transcription Factor NRL Modulates Target Gene Expression during Photoreceptor Differentiation*

    Science.gov (United States)

    Roger, Jerome E.; Nellissery, Jacob; Kim, Douglas S.; Swaroop, Anand

    2010-01-01

    Development of rod photoreceptors in the mammalian retina is critically dependent on the basic motif-leucine zipper transcription factor NRL (neural retina leucine zipper). In the absence of NRL, photoreceptor precursors in mouse retina produce only cones that primarily express S-opsin. Conversely, ectopic expression of NRL in post-mitotic precursors leads to a rod-only retina. To explore the role of signaling molecules in modulating NRL function, we identified putative sites of post-translational modification in the NRL protein by in silico analysis. Here, we demonstrate the sumoylation of NRL in vivo and in vitro, with two small ubiquitin-like modifier (SUMO) molecules attached to the Lys-20 residue. NRL-K20R and NRL-K20R/K24R sumoylation mutants show reduced transcriptional activation of Nr2e3 and rhodopsin promoters (two direct targets of NRL) in reporter assays when compared with wild-type NRL. Consistent with this, in vivo electroporation of the NRL-K20R/K24R mutant into newborn Nrl−/− mouse retina leads to reduced Nr2e3 activation and only a partial rescue of the Nrl−/− phenotype in contrast to the wild-type NRL that is able to convert cones to rod photoreceptors. Although PIAS3 (protein inhibitor of activated STAT3), an E3-SUMO ligase implicated in photoreceptor differentiation, can be immunoprecipitated with NRL, there appears to be redundancy in E3 ligases, and PIAS3 does not seem to be essential for NRL sumoylation. Our studies suggest an important role of sumoylation in fine-tuning the activity of NRL and thereby incorporating yet another layer of control in gene regulatory networks involved in photoreceptor development and homeostasis. PMID:20551322

  16. Regulation of tissue-specific expression of alternative peripheral myelin protein-22 (PMP22) gene transcripts by two promoters

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.I.; Schoener-Scott, R.; Lupski, J.R. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Mutations affecting the peripheral myelin protein-22 (PMP22) gene have been shown to be associated with inherited peripheral neuropathies. We have cloned and characterized the human PMP22 gene which spans approximately 40 kilobases and contains four coding exons. Towards developing gene therapy regimens for the associated peripheral neuropathies, we have initiated detailed analysis of the 5{prime} flanking region of the PMP22 gene and identified two alternatively transcribed, but untranslated exons. Mapping of separate PMP22 mRNA transcription initiation sites to each of these exons indicates that PMP22 expression is regulated by two alternatively used promoters. Both putative promoter sequences demonstrated the ability to drive expression of reporter genes in transfection experiments. Furthermore, the structure of the 5{prime} portion of the PMP22 gene appears to be identical in rat and human, supporting the biological significance of the observed arrangement of regulatory regions. The relative expression of the alternative PMP22 transcripts is tissue-specific and high levels of the exon 1A-containing transcript are tightly coupled to myelin formation. In contrast, exon 1B-containing transcripts are predominant in non-neural tissues and in growth-arrested primary fibroblasts. The observed regulation of the PMP22 by a complex molecular mechanism is consistent with the proposed dual role of PMP22 in neural and non-neural tissue.

  17. Histone deacetylases regulate gonadotropin-releasing hormone I gene expression via modulating Otx2-driven transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Lu Gan

    Full Text Available BACKGROUND: Precise coordination of the hypothalamic-pituitary-gonadal axis orchestrates the normal reproductive function. As a central regulator, the appropriate synthesis and secretion of gonadotropin-releasing hormone I (GnRH-I from the hypothalamus is essential for the coordination. Recently, emerging evidence indicates that histone deacetylases (HDACs play an important role in maintaining normal reproductive function. In this study, we identify the potential effects of HDACs on Gnrh1 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of HDACs activities by trichostatin A (TSA and valproic acid (VPA promptly and dramatically repressed transcription of Gnrh1 gene in the mouse immortalized mature GnRH neuronal cells GT1-7. The suppression was connected with a specific region of Gnrh1 gene promoter, which contains two consensus Otx2 binding sites. Otx2 has been known to activate the basal and also enhancer-driven transcription of Gnrh1 gene. The transcriptional activity of Otx2 is negatively modulated by Grg4, a member of the Groucho-related-gene (Grg family. In the present study, the expression of Otx2 was downregulated by TSA and VPA in GT1-7 cells, accompanied with the opposite changes of Grg4 expression. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the DNA-binding activity of Otx2 to Gnrh1 gene was suppressed by TSA and VPA. Overexpression of Otx2 partly abolished the TSA- and VPA-induced downregulation of Gnrh1 gene expression. CONCLUSIONS/SIGNIFICANCE: Our data indicate that HDAC inhibitors downregulate Gnrh1 gene expression via repressing Otx2-driven transcriptional activity. This study should provide an insight for our understanding on the effects of HDACs in the reproductive system and suggests that HDACs could be potential novel targets for the therapy of GnRH-related diseases.

  18. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    Science.gov (United States)

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  19. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  20. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania.

    Directory of Open Access Journals (Sweden)

    Frédéric Bringaud

    2007-09-01

    Full Text Available Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis, Trypanosoma brucei (sleeping sickness, and Trypanosoma cruzi (Chagas disease. Analysis of their recently completed genomes confirmed the presence of non-long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements--LmSIDER1 (785 copies and LmSIDER2 (1,073 copies--that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are approximately 70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3'-untranslated regions (3'UTRs of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3'UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function.

  1. The stress-regulated transcription factor CHOP promotes hepatic inflammatory gene expression, fibrosis, and oncogenesis.

    Directory of Open Access Journals (Sweden)

    Diane DeZwaan-McCabe

    Full Text Available Viral hepatitis, obesity, and alcoholism all represent major risk factors for hepatocellular carcinoma (HCC. Although these conditions also lead to integrated stress response (ISR or unfolded protein response (UPR activation, the extent to which these stress pathways influence the pathogenesis of HCC has not been tested. Here we provide multiple lines of evidence demonstrating that the ISR-regulated transcription factor CHOP promotes liver cancer. We show that CHOP expression is up-regulated in liver tumors in human HCC and two mouse models thereof. Chop-null mice are resistant to chemical hepatocarcinogenesis, and these mice exhibit attenuation of both apoptosis and cellular proliferation. Chop-null mice are also resistant to fibrosis, which is a key risk factor for HCC. Global gene expression profiling suggests that deletion of CHOP reduces the levels of basal inflammatory signaling in the liver. Our results are consistent with a model whereby CHOP contributes to hepatic carcinogenesis by promoting inflammation, fibrosis, cell death, and compensatory proliferation. They implicate CHOP as a common contributing factor in the development of HCC in a variety of chronic liver diseases.

  2. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    Energy Technology Data Exchange (ETDEWEB)

    Millette, R. L.; Klaiber, R.

    1980-06-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with (355)methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units.

  3. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise.

    Science.gov (United States)

    Pilegaard, H; Ordway, G A; Saltin, B; Neufer, P D

    2000-10-01

    Exercise training elicits a number of adaptive changes in skeletal muscle that result in an improved metabolic efficiency. The molecular mechanisms mediating the cellular adaptations to exercise training in human skeletal muscle are unknown. To test the hypothesis that recovery from exercise is associated with transcriptional activation of specific genes, six untrained male subjects completed 60-90 min of exhaustive one-legged knee extensor exercise for five consecutive days. On day 5, nuclei were isolated from biopsies of the vastus lateralis muscle of the untrained and the trained leg before exercise and from the trained leg immediately after exercise and after 15 min, 1 h, 2 h, and 4 h of recovery. Transcriptional activity of the uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase 4 (PDK4), and heme oxygenase-1 (HO-1) genes (relative to beta-actin) increased by three- to sevenfold in response to exercise, peaking after 1-2 h of recovery. Increases in mRNA levels followed changes in transcription, peaking between 2 and 4 h after exercise. Lipoprotein lipase and carnitine pamitoyltransferase I gene transcription and mRNA levels showed similar but less dramatic induction patterns, with increases ranging from two- to threefold. In a separate study, a single 4-h bout of cycling exercise (n = 4) elicited from 5 to >20-fold increases in UCP3, PDK4, and HO-1 transcription, suggesting that activation of these genes may be related to the duration or intensity of exercise. These data demonstrate that exercise induces transient increases in transcription of metabolic genes in human skeletal muscle. Moreover, the findings suggest that the cumulative effects of transient increases in transcription during recovery from consecutive bouts of exercise may represent the underlying kinetic basis for the cellular adaptations associated with exercise training.

  4. Exploring Differentially Expressed Genes and Natural Antisense Transcripts in Sheep (Ovis aries) Skin with Different Wool Fiber Diameters by Digital Gene Expression Profiling.

    Science.gov (United States)

    Yue, Yaojing; Guo, Tingting; Liu, Jianbin; Guo, Jian; Yuan, Chao; Feng, Ruilin; Niu, Chune; Sun, Xiaoping; Yang, Bohui

    2015-01-01

    Wool fiber diameter (WFD) is the most important economic trait of wool. However, the genes specifically controlling WFD remain elusive. In this study, the expression profiles of skin from two groups of Gansu Alpine merino sheep with different WFD (a super-fine wool group [FD = 18.0 ± 0.5 μm, n=3] and a fine wool group [FD=23.0 ± 0.5 μm, n=3]) were analyzed using next-generation sequencing-based digital gene expression profiling. A total of 40 significant differentially expressed genes (DEGs) were detected, including 9 up-regulated genes and 31 down-regulated genes. Further expression profile analysis of natural antisense transcripts (NATs) showed that more than 30% of the genes presented in sheep skin expression profiles had NATs. A total of 7 NATs with significant differential expression were detected, and all were down-regulated. Among of 40 DEGs, 3 DEGs (AQP8, Bos d2, and SPRR) had significant NATs which were all significantly down-regulated in the super-fine wool group. In total of DEGs and NATs were summarized as 3 main GO categories and 38 subcategories. Among the molecular functions, cellular components and biological processes categories, binding, cell part and metabolic process were the most dominant subcategories, respectively. However, no significant enrichment of GO terms was found (corrected P-value >0.05). The pathways that were significantly enriched with significant DEGs and NATs were mainly the lipoic acid metabolism, bile secretion, salivary secretion and ribosome and phenylalanine metabolism pathways (P sheep through gene-assisted selection or targeted gene manipulation in the future.

  5. Adipocyte expression of PU.1 transcription factor causes insulin resistance through upregulation of inflammatory cytokine gene expression and ROS production.

    Science.gov (United States)

    Lin, Ligen; Pang, Weijun; Chen, Keyun; Wang, Fei; Gengler, Jon; Sun, Yuxiang; Tong, Qiang

    2012-06-15

    We have reported previously that ETS family transcription factor PU.1 is expressed in mature adipocytes of white adipose tissue. PU.1 expression is increased greatly in mouse models of genetic or diet-induced obesity. Here, we show that PU.1 expression is increased only in visceral but not subcutaneous adipose tissues of obese mice, and the adipocytes are responsible for this increase in PU.1 expression. To further address PU.1's physiological function in mature adipocytes, PU.1 was knocked down in 3T3-L1 cells using retroviral-mediated expression of PU.1-targeting shRNA. Consistent with previous findings that PU.1 regulates its target genes, such as NADPH oxidase subunits and proinflammatory cytokines in myeloid cells, the mRNA levels of proinflammatory cytokines (TNFα, IL-1β, and IL-6) and cytosolic components of NADPH oxidase (p47phox and p40phox) were downregulated significantly in PU.1-silenced adipocytes. NADPH oxidase is a main source for reactive oxygen species (ROS) generation. Indeed, silencing PU.1 suppressed NADPH oxidase activity and attenuated ROS in basal or hydrogen peroxide-treated adipocytes. Silencing PU.1 in adipocytes suppressed JNK1 activation and IRS-1 phosphorylation at Ser(307). Consequently, PU.1 knockdown improved insulin signaling and increased glucose uptake in basal and insulin-stimulated conditions. Furthermore, knocking down PU.1 suppressed basal lipolysis but activated stimulated lipolysis. Collectively, these findings indicate that obesity induces PU.1 expression in adipocytes to upregulate the production of ROS and proinflammatory cytokines, both of which lead to JNK1 activation, insulin resistance, and dysregulation of lipolysis. Therefore, PU.1 might be a mediator for obesity-induced adipose inflammation and insulin resistance.

  6. Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations

    NARCIS (Netherlands)

    Flück, Martin; Däpp, Christoph; Schmutz, Silvia; Wit, Ernst; Hoppeler, Hans

    2005-01-01

    Reprogramming of gene expression has been recognized as a main instructive modality for the adjustments of tissues to various kinds of stress. The recent application of gene expression profiling has provided a powerful tool to elucidate the molecular pathways underlying such tissue remodeling. Howev

  7. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data

    OpenAIRE

    Recchia, A; Wit, E; Vinciotti, V; Kellam, P

    2008-01-01

    One of the main aims of system biology is to understand the structure and dynamics of genomic systems. A computational approach, facilitated by new technologies for high-throughput quantitative experimental data, is put forward to investigate the regulatory system of dynamic interaction among genes in Kaposi's sarcoma-associated herpesvirus network after induction of lytic replication. A reconstruction of transcription factor activity and gene-regulatory kinetics using data from a time-course...

  8. A Brassica exon array for whole-transcript gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Christopher G Love

    Full Text Available Affymetrix GeneChip® arrays are used widely to study transcriptional changes in response to developmental and environmental stimuli. GeneChip® arrays comprise multiple 25-mer oligonucleotide probes per gene and retain certain advantages over direct sequencing. For plants, there are several public GeneChip® arrays whose probes are localised primarily in 3' exons. Plant whole-transcript (WT GeneChip® arrays are not yet publicly available, although WT resolution is needed to study complex crop genomes such as Brassica, which are typified by segmental duplications containing paralogous genes and/or allopolyploidy. Available sequence data were sampled from the Brassica A and C genomes, and 142,997 gene models identified. The assembled gene models were then used to establish a comprehensive public WT exon array for transcriptomics studies. The Affymetrix GeneChip® Brassica Exon 1.0 ST Array is a 5 µM feature size array, containing 2.4 million 25-base oligonucleotide probes representing 135,201 gene models, with 15 probes per gene distributed among exons. Discrimination of the gene models was based on an E-value cut-off of 1E(-5, with ≤98% sequence identity. The 135 k Brassica Exon Array was validated by quantifying transcriptome differences between leaf and root tissue from a reference Brassica rapa line (R-o-18, and categorisation by Gene Ontologies (GO based on gene orthology with Arabidopsis thaliana. Technical validation involved comparison of the exon array with a 60-mer array platform using the same starting RNA samples. The 135 k Brassica Exon Array is a robust platform. All data relating to the array design and probe identities are available in the public domain and are curated within the BrassEnsembl genome viewer at http://www.brassica.info/BrassEnsembl/index.html.

  9. Transcriptional Analysis of the Genetic Element pSSVx: Differential and Temporal Regulation of Gene Expression Reveals Correlation between Transcription and Replication

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Cannio, Raffaele; Prato, Santina

    2007-01-01

    long transcriptional unit comprised the genes for the plasmid copy number control protein ORF60 (CopG), ORF91, and the replication protein ORF892 (RepA). We propose that a termination readthrough mechanism might be responsible for the formation of more than one RNA species from a single 5' end......pSSVx from Sulfolobus islandicus strain REY15/4 is a hybrid between a plasmid and a fusellovirus. A systematic study performed by a combination of Northern blot analysis, primer extension, and reverse transcriptase PCR revealed the presence of nine major transcripts whose expression...... was differentially and temporally regulated over the growth cycle of S. islandicus. The map positions of the RNAs as well as the clockwise and the anticlockwise directions of their transcription were determined. Some genes were clustered and appeared to be transcribed as polycistronic messengers, among which one...

  10. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  11. Transcription coactivators p300 and CBP are necessary for photoreceptor-specific chromatin organization and gene expression.

    Directory of Open Access Journals (Sweden)

    Anne K Hennig

    Full Text Available Rod and cone photoreceptor neurons in the mammalian retina possess specialized cellular architecture and functional features for converting light to a neuronal signal. Establishing and maintaining these characteristics requires appropriate expression of a specific set of genes, which is tightly regulated by a network of photoreceptor transcription factors centered on the cone-rod homeobox protein CRX. CRX recruits transcription coactivators p300 and CBP to acetylate promoter-bound histones and activate transcription of target genes. To further elucidate the role of these two coactivators, we conditionally knocked out Ep300 and/or CrebBP in differentiating rods or cones, using opsin-driven Cre recombinase. Knockout of either factor alone exerted minimal effects, but loss of both factors severely disrupted target cell morphology and function: the unique nuclear chromatin organization seen in mouse rods was reversed, accompanied by redistribution of nuclear territories associated with repressive and active histone marks. Transcription of many genes including CRX targets was severely impaired, correlating with reduced histone H3/H4 acetylation (the products of p300/CBP on target gene promoters. Interestingly, the presence of a single wild-type allele of either coactivator prevented many of these defects, with Ep300 more effective than Cbp. These results suggest that p300 and CBP play essential roles in maintaining photoreceptor-specific structure, function and gene expression.

  12. WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma.

    Science.gov (United States)

    Sun, Yuting; Bell, Jessica L; Carter, Daniel; Gherardi, Samuele; Poulos, Rebecca C; Milazzo, Giorgio; Wong, Jason W H; Al-Awar, Rima; Tee, Andrew E; Liu, Pei Y; Liu, Bing; Atmadibrata, Bernard; Wong, Matthew; Trahair, Toby; Zhao, Quan; Shohet, Jason M; Haupt, Ygal; Schulte, Johannes H; Brown, Peter J; Arrowsmith, Cheryl H; Vedadi, Masoud; MacKenzie, Karen L; Hüttelmaier, Stefan; Perini, Giovanni; Marshall, Glenn M; Braithwaite, Antony; Liu, Tao

    2015-12-01

    MYCN gene amplification in neuroblastoma drives a gene expression program that correlates strongly with aggressive disease. Mechanistically, trimethylation of histone H3 lysine 4 (H3K4) at target gene promoters is a strict prerequisite for this transcriptional program to be enacted. WDR5 is a histone H3K4 presenter that has been found to have an essential role in H3K4 trimethylation. For this reason, in this study, we investigated the relationship between WDR5-mediated H3K4 trimethylation and N-Myc transcriptional programs in neuroblastoma cells. N-Myc upregulated WDR5 expression in neuroblastoma cells. Gene expression analysis revealed that WDR5 target genes included those with MYC-binding elements at promoters such as MDM2. We showed that WDR5 could form a protein complex at the MDM2 promoter with N-Myc, but not p53, leading to histone H3K4 trimethylation and activation of MDM2 transcription. RNAi-mediated attenuation of WDR5 upregulated expression of wild-type but not mutant p53, an effect associated with growth inhibition and apoptosis. Similarly, a small-molecule antagonist of WDR5 reduced N-Myc/WDR5 complex formation, N-Myc target gene expression, and cell growth in neuroblastoma cells. In MYCN-transgenic mice, WDR5 was overexpressed in precancerous ganglion and neuroblastoma cells compared with normal ganglion cells. Clinically, elevated levels of WDR5 in neuroblastoma specimens were an independent predictor of poor overall survival. Overall, our results identify WDR5 as a key cofactor for N-Myc-regulated transcriptional activation and tumorigenesis and as a novel therapeutic target for MYCN-amplified neuroblastomas.

  13. Regulation of gene expression at the beginning of mammalian development and the TEAD family of transcription factors.

    Science.gov (United States)

    Kaneko, K J; DePamphilis, M L

    1998-01-01

    In mouse development, transcription is first detected in late 1-cell embryos, but translation of newly synthesized transcripts does not begin until the 2-cell stage. Thus, the onset of zygotic gene expression (ZGE) is regulated at the level of both transcription and translation. Chromatin-mediated repression is established after formation of a 2-cell embryo, concurrent with the developmental acquisition of enhancer function. The most effective enhancer in cleavage stage mouse embryos depends on DNA binding sites for TEF-1, the prototype for a family of transcription factors that share the same TEA DNA binding domain. Mice contain at least four, and perhaps five, genes with the same TEA DNA binding domain (mTEAD genes). Since mTEAD-2 is the only one expressed during the first 7 days of mouse development, it is most likely responsible for the TEAD transcription factor activity that first appears at the beginning of ZGE. All four mTEAD genes are expressed at later embryonic stages and in adult tissues; virtually every tissue expresses at least one family member, consistent with a critical role for TEAD proteins in either cell proliferation or differentiation. The 72-amino acid TEA DNA binding domains in mTEAD-2, 3, and 4 are approximately 99% homologous to the same domain in mTEAD-1, and all four proteins bind specifically to the same DNA sequences in vitro with a Kd value of 16-38 nM DNA. Since TEAD proteins appear to be involved in both activation and repression of different genes and do not appear to be functionally redundant, differential activity of TEAD proteins must result either from association with other proteins or from differential sensitivity to chromatin-packaged DNA binding sites.

  14. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts.

    Science.gov (United States)

    Hernandez, Arturo; Fiering, Steven; Martinez, Elena; Galton, Valerie Anne; St Germain, Donald

    2002-11-01

    The mouse Dio3 gene codes for the type 3 iodothyronine deiodinase (D3), a conserved selenocysteine-containing enzyme that inactivates thyroid hormones and is highly expressed during early development. The mouse Dio3 gene and its human homolog map to chromosomal regions that are known to contain imprinted genes. We assessed the allelic expression of the Dio3 using a mouse model in which the gene had been inactivated by the introduction of a critical mutation in the selenocysteine codon. We compared Dio3 gene expression in fetuses that were either wild type or heterozygous (+/-Dio3) for the mutation. D3 enzymatic activities in the head, limbs, liver and body of heterozygous fetuses (E14 to E18) that inherited the mutation from the mother were no different from those found in their wild type littermates. However, D3 activities in heterozygous animals that inherited the mutation from the father were only 18 to 28% of the activities of their wild type littermates in these same tissues. No detectable activity was found in fetuses homozygous for the mutation indicating full inactivation of the enzyme. Northern analysis of mRNA from E15 fetuses showed that the Dio3 mRNA transcripts generated from the paternal allele were at least 5 times more abundant than the transcripts originated from the maternal allele. We conclude that the Dio3 gene is subject to genomic imprinting and preferentially expressed from the paternal allele in the mouse fetus. We also identified a gene that is transcribed antisense from the Dio3 locus. The Dio3 gene likely belongs to the same cluster of imprinted genes detected in mouse chromosome 12 and human chromosome 14 and should be considered as a candidate gene that might play a role in the phenotypic abnormalities associated with uniparental disomy of those chromosomes, a condition in which gene expression is altered due to abnormal genomic imprinting.

  15. Transcriptional Activity of HTLV-I Tax Influences the Expression of Marker Genes Associated with Cellular Transformation

    Directory of Open Access Journals (Sweden)

    Francene J. Lemoine

    2001-01-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I has been identified as the etiologic agent of adult T cell leukemia (ATL. HTLV-I encodes a transcriptional regulatory protein, Tax, which also functions as the viral transforming protein. Through interactions with a number of cellular transcription factors Tax can modulate cellular gene expression. Since the majority of Tax-responsive cellular genes are important regulators of cellular proliferation, the transactivating functions of Tax appear to be necessary for cellular transformation by HTLV-I. Gaining a complete understanding of the broad range of genes regulated by Tax, the temporal pattern of their expression, and their effects on cell function may identify early markers of disease progression mediated by this virus.

  16. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivem L.)

    Institute of Scientific and Technical Information of China (English)

    Hualing Wu; Zhongfu Ni; Yingyin Yao; Ganggang Guo; Qixin Sun

    2008-01-01

    WRKY proteins are involved in various physiological processes, including biotic and abiotic stress responses, hormone responses and development. However, no systematic identification, expression and function analysis of WRKY genes in wheat were reported. In this study, we isolated 15 wheat cDNAs with complete open reading frame (ORF) encoding putative WRKY proteins using in silico cloning. Phylogenetic analysis indicated that the 15 wheat WRKY genes belonged to three major WRKY groups. Expression analysis revealed that most genes expressed drastically in leaf, except TaWRKY10 which expressed in crown intensively. Four genes were strongly up-regulated with the senescence of leaves. Eight genes were responsive to low temperature, high temperature, NaCl or PEG treatment. Moreover, differential expression patterns were also observed between wheat hybrid and its parents, and some genes were more responsive to PEG treatment in the hybrid. These results demonstrated that wheat WRKY genes are involved in leaf senescing and abiotic stresses. And the changed expression of these WRKY genes in hybrid might contribute to the heterosis by improving the stress tolerance in hybrids.

  17. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    Science.gov (United States)

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize.

  18. Verification of reference genes for relative quantification of gene expression by real-time reverse transcription PCR in the pig.

    Science.gov (United States)

    Svobodová, Katerina; Bílek, Karel; Knoll, Ales

    2008-01-01

    The aim of this study was to develop a set of reliable reference genes for quantification of mRNA expression in the pig. The mRNA expression stability in pig tissues was studied for 4 genes: EEF1A1, GAPDH, HPRT1 and TOP2B. The level of expression was characterized by Ct values for each gene and each tissue. By using the geNorm algorithm, the stability of the reference genes was determined in the diaphragm, heart, kidney, liver, lungs, longissimus muscle, and spleen. On the basis of this information, suitable reference genes can be selected for mRNA expression studies in relevant pig tissues.

  19. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P.

    Science.gov (United States)

    Bruce, W; Folkerts, O; Garnaat, C; Crasta, O; Roth, B; Bowen, B

    2000-01-01

    To determine the scope of gene expression controlled by the maize transcription factors C1/R and P, which are responsible for activating flavonoid synthesis, we used GeneCalling, an open-ended, gel-based, mRNA-profiling technology, to analyze cell suspension lines of the maize inbred Black Mexican Sweet (BMS) that harbored estradiol-inducible versions of these factors. BMS cells were transformed with a continually expressed estrogen receptor/maize C1 activator domain fusion gene (ER-C1) and either a fusion of C1 and R (CRC), P, or luciferase genes regulated by a promoter containing four repeats of an estrogen receptor binding site. Increasing amounts of luciferase activity, anthocyanins, and flavan-4-ols were detected in the respective cell lines after the addition of estradiol. The expression of both known and novel genes was detected simultaneously in these BMS lines by profiling the mRNA isolated from replicate samples at 0, 6, and 24 hr after estradiol treatment. Numerous cDNA fragments were identified that showed a twofold or greater difference in abundance at 6 and 24 hr than at 0 hr. The cDNA fragments from the known flavonoid genes, except chalcone isomerase (chi1), were induced in the CRC-expressing line after hormone induction, whereas only the chalcone synthase (c2) and flavanone/dihydroflavonol reductase (a1) genes were induced in the P-expressing line, as was expected. Many novel cDNA fragments were also induced or repressed by lines expressing CRC alone, P alone, or both transcription factors in unique temporal patterns. The temporal differences and the evidence of repression indicate a more diverse set of regulatory controls by CRC or P than originally expected. GeneCalling analysis was successful in detecting members of complex metabolic pathways and uncovering novel genes that were either coincidentally regulated or directly involved in such pathways.

  20. Circadian rhythms of fetal liver transcription persist in the absence of canonical circadian clock gene expression rhythms in vivo.

    Directory of Open Access Journals (Sweden)

    Chengwei Li

    Full Text Available The cellular circadian clock and systemic cues drive rhythmicity in the transcriptome of adult peripheral tissues. However, the oscillating status of the circadian clocks in fetal tissues, and their response to maternal cues, are less clear. Most clock genes do not cycle in fetal livers from mice and rats, although tissue level rhythms rapidly emerge when fetal mouse liver explants are cultured in vitro. Thus, in the fetal mouse liver, the circadian clock does not oscillate at the cellular level (but is induced to oscillate in culture. To gain a comprehensive overview of the clock status in the fetal liver during late gestation, we performed microarray analyses on fetal liver tissues. In the fetal liver we did not observe circadian rhythms of clock gene expression or many other transcripts known to be rhythmically expressed in the adult liver. Nevertheless, JTK_CYCLE analysis identified some transcripts in the fetal liver that were rhythmically expressed, albeit at low amplitudes. Upon data filtering by coefficient of variation, the expression levels for transcripts related to pancreatic exocrine enzymes and zymogen secretion were found to undergo synchronized daily fluctuations at high amplitudes. These results suggest that maternal cues influence the fetal liver, despite the fact that we did not detect circadian rhythms of canonical clock gene expression in the fetal liver. These results raise important questions on the role of the circadian clock, or lack thereof, during ontogeny.

  1. The transcriptional response in human umbilical vein endothelial cells exposed to insulin: a dynamic gene expression approach.

    Directory of Open Access Journals (Sweden)

    Barbara Di Camillo

    Full Text Available BACKGROUND: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin resistance. METHODOLOGY AND PRINCIPAL FINDINGS: The transcriptional response of endothelial cells in the 440 minutes following insulin stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as differentially expressed based on their treated minus control profile, thus allowing the detection of even small but systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding. Pathway-based enrichment analysis revealed "Electron Transport Chain" significantly enriched. Results were validated on genes belonging to "Electron Transport Chain" pathway, using quantitative RT-PCR. CONCLUSIONS: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates cellular proliferation

  2. Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed.

    Science.gov (United States)

    Baud, Sébastien; Kelemen, Zsolt; Thévenin, Johanne; Boulard, Céline; Blanchet, Sandrine; To, Alexandra; Payre, Manon; Berger, Nathalie; Effroy-Cuzzi, Delphine; Franco-Zorrilla, Jose Manuel; Godoy, Marta; Solano, Roberto; Thevenon, Emmanuel; Parcy, François; Lepiniec, Loïc; Dubreucq, Bertrand

    2016-06-01

    In Arabidopsis (Arabidopsis thaliana), transcriptional control of seed maturation involves three related regulators with a B3 domain, namely LEAFY COTYLEDON2 (LEC2), ABSCISIC ACID INSENSITIVE3 (ABI3), and FUSCA3 (ABI3/FUS3/LEC2 [AFLs]). Although genetic analyses have demonstrated partially overlapping functions of these regulators, the underlying molecular mechanisms remained elusive. The results presented here confirmed that the three proteins bind RY DNA elements (with a 5'-CATG-3' core sequence) but with different specificities for flanking nucleotides. In planta as in the moss Physcomitrella patens protoplasts, the presence of RY-like (RYL) elements is necessary but not sufficient for the regulation of the OLEOSIN1 (OLE1) promoter by the B3 AFLs. G box-like domains, located in the vicinity of the RYL elements, also are required for proper activation of the promoter, suggesting that several proteins are involved. Consistent with this idea, LEC2 and ABI3 showed synergistic effects on the activation of the OLE1 promoter. What is more, LEC1 (a homolog of the NF-YB subunit of the CCAAT-binding complex) further enhanced the activation of this target promoter in the presence of LEC2 and ABI3. Finally, recombinant LEC1 and LEC2 proteins produced in Arabidopsis protoplasts could form a ternary complex with NF-YC2 in vitro, providing a molecular explanation for their functional interactions. Taken together, these results allow us to propose a molecular model for the transcriptional regulation of seed genes by the L-AFL proteins, based on the formation of regulatory multiprotein complexes between NF-YBs, which carry a specific aspartate-55 residue, and B3 transcription factors.

  3. Transcriptional profiling of epidermal keratinocytes: comparison of genes expressed in skin, cultured keratinocytes, and reconstituted epidermis, using large DNA microarrays.

    Science.gov (United States)

    Gazel, Alix; Ramphal, Patricia; Rosdy, Martin; De Wever, Bart; Tornier, Carine; Hosein, Nadia; Lee, Brian; Tomic-Canic, Marjana; Blumenberg, Miroslav

    2003-12-01

    Epidermal keratinocytes are complex cells that create a unique three-dimensional (3-D) structure, differentiate through a multistage process, and respond to extracellular stimuli from nearby cells. Consequently, keratinocytes express many genes, i.e., have a relatively large "transcriptome." To determine which of the expressed genes are innate to keratinocytes, which are specific for the differentiation and 3-D architecture, and which are induced by other cell types, we compared the transcriptomes of skin from human subjects, differentiating 3-D reconstituted epidermis, cultured keratinocytes, and nonkeratinocyte cell types. Using large oligonucleotide microarrays, we analyzed five or more replicates of each, which yielded statistically consistent data and allowed identification of the differentially expressed genes. Epidermal keratinocytes, unlike other cells, express many proteases and protease inhibitors and genes that protect from UV light. Skin specifically expresses a higher number of receptors, secreted proteins, and transcription factors, perhaps influenced by the presence of nonkeratinocyte cell types. Surprisingly, mitochondrial proteins were significantly suppressed in skin, suggesting a low metabolic rate. Three-dimensional samples, skin and reconstituted epidermis, are similar to each other, expressing epidermal differentiation markers. Cultured keratinocytes express many cell-cycle and DNA replication genes, as well as integrins and extracellular matrix proteins. These results define innate, architecture-specific, and cell-type-regulated genes in epidermis.

  4. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang

    2009-01-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  5. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  6. Gene expression analysis of canonical Wnt pathway transcriptional regulators during early morphogenesis of the facial region in the mouse embryo.

    Science.gov (United States)

    Vendrell, Victor; Summerhurst, Kristen; Sharpe, James; Davidson, Duncan; Murphy, Paula

    2009-06-01

    Structures and features of the face, throat and neck are formed from a series of branchial arches that grow out along the ventrolateral aspect of the embryonic head. Multiple signalling pathways have been implicated in patterning interactions that lead to species-specific growth and differentiation within the branchial region that sculpt these features. A direct role for Wnt signalling in particular has been shown. The spatial and temporal distribution of Wnt pathway components contributes to the operation of the signalling system. We present the precise distribution of gene expression of canonical Wnt pathway transcriptional regulators, Tcf1, Lef1, Tcf3, Tcf4 and beta-catenin between embryonic day (E) 9.5 and 11.5. In situ hybridization combined with Optical Projection Tomography was used to record and compare distribution of transcripts in 3D within the developing branchial arches. This shows widespread yet very specific expression of the gene set indicating that all genes contribute to proper patterning of the region. Tcf1 and Lef1 are more prominent in rostral arches, particularly at later ages, and Tcf3 and Tcf4 are in general expressed more deeply (medial/endodermal aspect) in the arches than Tcf1 and Lef1. Comparison with Wnt canonical pathway readout patterns shows that the relationship between the expression of individual transcription factors and activation of the pathway is not simple, indicating complexity and flexibility in the signalling system.

  7. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.......Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient...... in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal...

  8. The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Casas, C; Aldea, M; Espinet, C; Gallego, C; Gil, R; Herrero, E

    1997-06-15

    High-affinity iron uptake in Saccharomyces cerevisiae involves the extracytoplasmic reduction of ferric ions by FRE1 and FRE2 reductases. Ferrous ions are then transported across the plasma membrane through the FET3 oxidase-FTR1 permease complex. Expression of the high-affinity iron uptake genes is induced upon iron deprivation. We demonstrate that AFT1 is differentially involved in such regulation. Aft1 protein is required for maintaining detectable non-induced level of FET3 expression and for induction of FRE2 in iron starvation conditions. On the contrary, FRE1 mRNA induction is normal in the absence of Aft1, although the existence of AFT1 point mutations causing constitutive expression of FRE1 (Yamaguchi-Iwai et al., EMBO J. 14: 1231-1239, 1995) indicates that Aft1 may also participate in FRE1 expression in a dispensable way. The alterations in the basal levels of expression of the high-affinity iron uptake genes may explain why the AFT1 mutant is unable to grow on respirable carbon sources. Overexpression of AFT1 leads to growth arrest of the G1 stage of the cell cycle. Aft1 is a transcriptional activator that would be part of the different transcriptional complexes interacting with the promoter of the high-affinity iron uptake genes. Aft1 displays phosphorylation modifications depending on the growth stage of the cells, and it might link induction of genes for iron uptake to other metabolically dominant requirement for cell growth.

  9. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  10. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  11. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression.

    Science.gov (United States)

    Normanno, Davide; Dahan, Maxime; Darzacq, Xavier

    2012-06-01

    Precise expression of specific genes in time and space is at the basis of cellular viability as well as correct development of organisms. Understanding the mechanisms of gene regulation is fundamental and still one of the great challenges for biology. Gene expression is regulated also by specific transcription factors that recognize and bind to specific DNA sequences. Transcription factors dynamics, and especially the way they sample the nucleoplasmic space during the search for their specific target in the genome, are a key aspect for regulation and it has been puzzling researchers for forty years. The scope of this review is to give a state-of-the-art perspective over the intra-nuclear mobility and the target search mechanisms of specific transcription factors at the molecular level. Going through the seminal biochemical experiments that have raised the first questions about target localization and the theoretical grounds concerning target search processes, we describe the most recent experimental achievements and current challenges in understanding transcription factors dynamics and interactions with DNA using in vitro assays as well as in live prokaryotic and eukaryotic cells. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1.

    Science.gov (United States)

    Bovy, Arnaud; de Vos, Ric; Kemper, Mark; Schijlen, Elio; Almenar Pertejo, Maria; Muir, Shelagh; Collins, Geoff; Robinson, Sue; Verhoeyen, Martine; Hughes, Steve; Santos-Buelga, Celestino; van Tunen, Arjen

    2002-10-01

    Flavonoids are a group of polyphenolic plant secondary metabolites important for plant biology and human nutrition. In particular flavonols are potent antioxidants, and their dietary intake is correlated with a reduced risk of cardiovascular diseases. Tomato fruit contain only in their peel small amounts of flavonoids, mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. To increase flavonoid levels in tomato, we expressed the maize transcription factor genes LC and C1 in the fruit of genetically modified tomato plants. Expression of both genes was required and sufficient to upregulate the flavonoid pathway in tomato fruit flesh, a tissue that normally does not produce any flavonoids. These fruit accumulated high levels of the flavonol kaempferol and, to a lesser extent, the flavanone naringenin in their flesh. All flavonoids detected were present as glycosides. Anthocyanins, previously reported to accumulate upon LC expression in several plant species, were present in LC/C1 tomato leaves but could not be detected in ripe LC/C1 fruit. RNA expression analysis of ripening fruit revealed that, with the exception of chalcone isomerase, all of the structural genes required for the production of kaempferol-type flavonols and pelargonidin-type anthocyanins were induced strongly by the LC/C1 transcription factors. Expression of the genes encoding flavanone-3'-hydroxylase and flavanone-3'5'-hydroxylase, which are required for the modification of B-ring hydroxylation patterns, was not affected by LC/C1. Comparison of flavonoid profiles and gene expression data between tomato leaves and fruit indicates that the absence of anthocyanins in LC/C1 fruit is attributable primarily to an insufficient expression of the gene encoding flavanone-3'5'-hydroxylase, in combination with a strong preference of the tomato dihydroflavonol reductase enzyme to use the flavanone-3'5'-hydroxylase reaction product dihydromyricetin as a substrate.

  13. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  14. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni;

    2009-01-01

    to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...... Saccharomyces and distant Ascomycetes. Transcriptome data were further used to evaluate the high osmolarity glycerol pathway. All the components of this pathway present in yeast have orthologues in the three Aspergilli studied and its gene expression response suggested that this pathway functions as in S...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...

  15. Integration of Known Transcription Factor Binding Site Information and Gene Expression Data to Advance from Co-Expression to Co-Regulation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The common approach to find co-regulated genes is to cluster genes based on gene expression. However, due to the limited information present in any dataset, genes in the same cluster might be co-expressed but not necessarily co-regulated. In this paper, we propose to integrate known transcription factor binding site informa tion and gene expression data into a single clustering scheme. This scheme will find clusters of co-regulated genes that are not only expressed similarly under the measured conditions, but also share a regulatory structure that may explain their common regulation. We demonstrate the utility of this approach on a microarray dataset of yeast grown under different nutrient and oxygen limitations. Our in tegrated clustering method not only unravels many regulatory modules that are consistent with current biological knowledge, but also provides a more profound understanding of the underlying process. The added value of our approach, compared with the clustering solely based on gene expression, is its ability to uncover clusters of genes that are involved in more specific biological processes and are evidently regulated by a set of transcription factors.

  16. Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts

    OpenAIRE

    Salma eBalazadeh; Nils eJaspert; Muhammad eArif; Bernd eMueller-Roeber; Veronica Graciela Maurino

    2013-01-01

    Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here,...

  17. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei.

  18. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  19. Cystatin D locates in the nucleus at sites of active transcription and modulates gene and protein expression.

    Science.gov (United States)

    Ferrer-Mayorga, Gemma; Alvarez-Díaz, Silvia; Valle, Noelia; De Las Rivas, Javier; Mendes, Marta; Barderas, Rodrigo; Canals, Francesc; Tapia, Olga; Casal, J Ignacio; Lafarga, Miguel; Muñoz, Alberto

    2015-10-30

    Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.

  20. Identification and evaluation of suitable reference genes for gene expression studies in the whitefly Bemisia tabaci (Asia I) by reverse transcription quantitative realtime PCR.

    Science.gov (United States)

    Collins, Carl; Patel, Mitulkumar V; Colvin, John; Bailey, David; Seal, Susan

    2014-05-02

    This study presents a reliable method for performing reverse transcription quantitative realtime PCR (RT-qPCR) to measure gene expression in the whitefly Bemisia tabaci (Asia I) (Gennadius) (Hemiptera: Aleyrodidae), utilising suitable reference genes for data normalisation. We identified orthologs of commonly used reference genes (actin (ACT), cyclophilin 1 (CYP1), elongation factor 1α (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein L13a (RPL13A), and α-tubulin (TUB1A)), measured the levels of their transcripts by RT-qPCR during development and in response to thermal stress, and evaluated their suitability as endogenous controls using geNorm, BestKeeper, and NormFinder programs. Overall, TUB1A, RPL13A, and CYP1 were the most stable reference genes during B. tabaci development, and TUB1A, GAPDH, and RPL13A were the most stable reference genes in the context of thermal stress. An analysis of the effects of reference gene choice on the transcript profile of a developmentally-regulated gene encoding vitellogenin demonstrated the importance of selecting the correct endogenous controls for RT-qPCR studies. We propose the use of TUB1A, RPL13A, and CYP1 as endogenous controls for transcript profiling studies of B. tabaci development, whereas the combination of TUB1A, GAPDH, and RPL13A should be employed for studies into thermal stress. The data pre- sented here will assist future transcript profiling studies in whiteflies.

  1. Identification and Evaluation of Suitable Reference Genes for Gene Expression Studies in the Whitefly Bemisia tabaci (Asia I) by Reverse Transcription Quantitative Real-Time PCR

    Science.gov (United States)

    Collins, Carl; Patel, Mitulkumar V.; Colvin, John; Bailey, David; Seal, Susan

    2014-01-01

    This study presents a reliable method for performing reverse transcription quantitative real-time PCR (RT-qPCR) to measure gene expression in the whitefly Bemisia tabaci (Asia I) (Gennadius) (Hemiptera: Aleyrodidae), utilising suitable reference genes for data normalisation. We identified orthologs of commonly used reference genes (actin (ACT), cyclophilin 1 (CYP1), elongation factor 1α (EF1A), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ribosomal protein L13a (RPL13A), and α-tubulin (TUB1A)), measured the levels of their transcripts by RT-qPCR during development and in response to thermal stress, and evaluated their suitability as endogenous controls using geNorm, BestKeeper, and NormFinder programs. Overall, TUB1A, RPL13A, and CYP1 were the most stable reference genes during B. tabaci development, and TUB1A, GAPDH, and RPL13A were the most stable reference genes in the context of thermal stress. An analysis of the effects of reference gene choice on the transcript profile of a developmentally-regulated gene encoding vitellogenin demonstrated the importance of selecting the correct endogenous controls for RT-qPCR studies. We propose the use of TUB1A, RPL13A, and CYP1 as endogenous controls for transcript profiling studies of B. tabaci development, whereas the combination of TUB1A, GAPDH, and RPL13A should be employed for studies into thermal stress. The data presented here will assist future transcript profiling studies in whiteflies. PMID:25373210

  2. Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression

    Directory of Open Access Journals (Sweden)

    Daphne Ezer

    2014-07-01

    Full Text Available The organization of binding sites in cis-regulatory elements (CREs can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites and spatial organization (distance between sites and overall distance from transcription start sites of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

  3. Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression.

    Science.gov (United States)

    Ezer, Daphne; Zabet, Nicolae Radu; Adryan, Boris

    2014-07-01

    The organization of binding sites in cis-regulatory elements (CREs) can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites) and spatial organization (distance between sites and overall distance from transcription start sites) of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

  4. Characterization of CRTAM gene promoter: AP-1 transcription factor control its expression in human T CD8 lymphocytes.

    Science.gov (United States)

    Valle-Rios, Ricardo; Patiño-Lopez, Genaro; Medina-Contreras, Oscar; Canche-Pool, Elsy; Recillas-Targa, Felix; Lopez-Bayghen, Esther; Zlotnik, Albert; Ortiz-Navarrete, Vianney

    2009-10-01

    Class-I MHC-restricted T-cell associated molecule (CRTAM) is a member of the Nectin-like adhesion molecule family. It is rapidly induced in NK, NKT and CD8(+) T cells. Interaction with its ligand Nectin-like 2 results in increased secretion of IFN-gamma by activated CD8(+) T lymphocytes. Through sequential bioinformatic analyses of the upstream region of the human CRTAM gene, we detected cis-elements potentially important for CRTAM gene transcription. Analyzing 2kb upstream from the ATG translation codon by mutation analysis in conjunction with luciferase reporter assays, electrophoretic mobility shify assay (EMSA) and supershift assays, we identified an AP-1 binding site, located at 1.4kb from the ATG translation codon of CRTAM gene as an essential element for CRTAM expression in activated but not resting human CD8(+) T cells. CRTAM expression was reduced in activated CD8(+) T cells treated with the JNK inhibitor SP600125, indicating that CRTAM expression is driven by the JNK-AP-1 signaling pathway. This study represents the first CRTAM gene promoter analysis in human T cells and indicates that AP-1 is a positive transcriptional regulator of this gene, a likely important finding because CRTAM has recently been shown to play a role in IFN-gamma and IL-17 production and T cell proliferation.

  5. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    Science.gov (United States)

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  6. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  7. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  8. Expression of a novel alternative transcript of the novel retinal pigment epithelial cell gene NORPEG in human testes

    Institute of Scientific and Technical Information of China (English)

    Wa Yuan; Ying Zheng; Ran Huo; Li Lu; Xiao-Yan Huang; Lan-Lan Yin; Jian-Min Li; Zuo-Min Zhou; Jia-Hao Sha

    2005-01-01

    Aim: To identify a novel alternative transcript of the novel retinal pigment epithelial cell gene (NORPEG) expressed in the human testis. Methods: A human testis cDNA microarray was established and hybridized with cDNA probes from human fetal testes, adult testes and human spermatozoa. Differentially expressed clones were sequenced and analyzed. One of these clones was a short transcript of NORPEG which we proceeded to analyze by RT-PCR.Results: The novel short alternative transcript of NORPEG was isolated and named sNORPEG. It was 3486 bp in length and contained a 2952-bp open reading frame, encoding a 110.4-kDa protein of 983 amino acids. Amino acid sequence analysis showed that the sNORPEG protein contains six ankyrin repeats and two coiled-coil domains. It shares a high homology with the NORPEG and ankycorbin proteins in both its sequence and motifs. Blasting the human genome database localized sNORPEG to human chromosome 5p13.2-13.3. Expression profiles showed that sNORPEG was expressed in human fetal testes, adult testes and spermatozoa. Moreover, sNORPEG was found to be ubiquitously expressed in human tissues. Conclusion: sNORPEG is expressed in different developmental stages of the testis and encodes a protein that may have roles in human testis development and spermatogenesis.

  9. ESTROGEN REGULATION OF LRP16 GENE EXPRESSION INVOLVES SP1 TRANSCRIPTION FACTOR

    Institute of Scientific and Technical Information of China (English)

    SI Yi-ling; HAN Wei-dong; ZhAO Ya-li; LI Qi; HAO Hao-jie; SONG Hai-jing; MU Yi-ming; YU Li

    2006-01-01

    Objective: To investigate the role of Sp1 as transcription factor required for transactivation of LRP16 gene by estrogen. Methods: Specific antibodies of Erα and Sp1 were used to precipitate the target DNA/protein complexes of MCF-7 cells at different time points after estrogen treatment (Chromatin immunoprecipitation assay), the promoter region of LRP16 gene was amplified by semi-nested polymerase chain reaction (snPCR). Small interfering RNA (siRNA) against Sp1 was transiently cotransfected with LRP16-Luc (containing the region from -213bp to -126bp of LRP16 gene promoter) in MCF-7 cells. The luciferase activities were measured by dual-luciferase assay. Results: The results of chromatin immunoprecipitation assay showed that Sp1 protein directly bound to the -213bp to -126bp region of LRP16 gene, and Erα could enhance the affinity of Sp1 to DNA. Sp1-siRNA specifically decreased the transactivation of LRP16-Luc by 17β-estradiol to 70-80%. Conclusion: The estrogen-induced transactivation of the human LRP16 gene was mediated by Sp1 protein. Moreover, the interactions of ER(/Sp1 functional complex with LRP16 promoter DNA were required for enhanced LRP16 gene transactivation.

  10. Negative Regulation of DsbA-L Gene Expression by the Transcription Factor Sp1

    OpenAIRE

    Fang, Qichen; Yang, Wenjing; Li, Huating; Hu, Wenxiu; Chen, Lihui; Jiang, Shan; Dong, Kun; Song, Qianqian; Wang, Chen; Chen, Shuo; LIU, FENG; Jia, Weiping

    2014-01-01

    Disulfide-bond A oxidoreductase-like protein (DsbA-L) possesses beneficial effects such as promoting adiponectin multimerization and stability, increasing insulin sensitivity, and enhancing energy metabolism. The expression level of DsbA-L is negatively correlated with obesity in mice and humans, but the underlying mechanisms remain unknown. To address this question, we generated reporter gene constructs containing the promoter sequence of the mouse DsbA-L gene. Deletion analysis showed that ...

  11. Differential expression of cellulose synthase (CesA) gene transcripts in potato as revealed by QRT-PCR.

    Science.gov (United States)

    Obembe, Olawole O; Jacobsen, Evert; Vincken, Jean-Paul; Visser, Richard G F

    2009-01-01

    Two transgenic potato lines, csr2-1 and csr4-8 that contained two different antisense cellulose synthase (CesA) genes, csr2 and csr4, respectively were crossed. The aim, amongst others, was to investigate the possibility of generating double transformants to validate a hypothetical presence of the proteins of the two CesA genes in the same cellulose synthase enzyme complex. SYBR-Green quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) assays were carried out on four CesA gene transcripts (CesA1, 2, 3, and 4) in the wild type genetic background, and on the two antisense CesA gene transcripts (CesA2 and 4) in the progeny resulting from the cross between the two transgenic potato lines. The quantitative RT-PCR analyses revealed different expression patterns of the two CesA genes. The CesA2 mRNA was shown to be relatively more abundant than CesA4 mRNA, regardless of the genetic background, suggesting that the two proteins are not present in the same enzyme complex.

  12. Involvement of multiple transcription factors for metal-induced spy gene expression in Escherichia coli.

    Science.gov (United States)

    Yamamoto, Kaneyoshi; Ogasawara, Hiroshi; Ishihama, Akira

    2008-01-20

    Bacteria are directly exposed to metals in environment. To maintain the intracellular metal homeostasis, Escherichia coli contain a number of gene regulation systems, each for response to a specific metal. A periplasmic protein Spy of E. coli was found to be induced upon short-exposure to copper ion in CpxAR-dependent manner. Transcription of the spy gene was also induced by long-exposure to zinc ion. This induction, however, depended on another two-component system BaeSR. Using DNase-I footprinting assay, we identified two BaeR-binding regions on the spy promoter with a direct repeat of the BaeR-box sequence, TCTNCANAA. The zinc-responsive BaeR-binding sites were separated from copper-responsive CpxR-binding site, implying that the spy promoter responds to two species of metal independently through different using sensor-response regulator systems. Since BaeSR-dependent zinc response requires longer time, the induction of spy gene transcription by external zinc may include multiple steps such as through sensing the zinc-induced envelope disorder by BaeSR.

  13. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    Directory of Open Access Journals (Sweden)

    Heather E Wheeler

    2009-10-01

    Full Text Available Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR using combined data from the Baltimore Longitudinal Study of Aging (BLSA and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20 with kidney aging (uncorrected p = 3.6 x 10(-5, empirical p = 0.01 that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

  14. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    Science.gov (United States)

    Wheeler, Heather E; Metter, E Jeffrey; Tanaka, Toshiko; Absher, Devin; Higgins, John; Zahn, Jacob M; Wilhelmy, Julie; Davis, Ronald W; Singleton, Andrew; Myers, Richard M; Ferrucci, Luigi; Kim, Stuart K

    2009-10-01

    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6 x 10(-5), empirical p = 0.01) that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

  15. Identification of differentially expressed genes associated with flower color in peach using genome-wide transcriptional analysis.

    Science.gov (United States)

    Zhou, Y; Wu, X X; Zhang, Z; Gao, Z H

    2015-05-11

    Flower color is an important trait of the ornamental peach (Prunus persica L.). However, the mechanism responsible for the different colors that appear in the same genotype remains unclear. In this study, red samples showed higher anthocyanins content (0.122 ± 0.009 mg/g), which was significantly different from that in white samples (0.066 ± 0.010 mg/g). Similarly to carotenoids content, red extract (0.058 ± 0.004 mg/L) was significantly higher in white extract (0.015 ± 0.004 mg/L). We estimated gene expression using Illumina sequencing technology in libraries from white and red flower buds. A total of 3,599,960 and 3,464,141 tags were sequenced from the 2 libraries, respectively. Moreover, we identified 106 significantly differentially expressed genes between the 2 libraries. Among these, 78 and 28 represented transcripts with a higher or lower abundance of more than 2-fold than in the white flower library, respectively. GO annotation indicated that highly ranked genes were involved in the pigment biosynthetic process. Expression patterns of 11 genes were verified using quantitative reverse transcription-polymerase chain reaction assays. The results suggest that hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase, 2-oxoglutarate-dependent dioxygenase, isoflavone reductase, riboflavin kinase, zeta-carotene desaturase, and ATP binding cassette transporter may be associated with the flower color formation. Our results may be useful for scientists focusing on Prunus persica floral development and biotechnology.

  16. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Directory of Open Access Journals (Sweden)

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  17. Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood

    Science.gov (United States)

    Cattane, Nadia; Minelli, Alessandra; Milanesi, Elena; Maj, Carlo; Bignotti, Stefano; Bortolomasi, Marco; Chiavetto, Luisella Bocchio; Gennarelli, Massimo

    2015-01-01

    Background Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders. Methods A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR) in fibroblasts and analyzed in a sample of peripheral blood cell (PBC) RNA from patients (n = 25) and controls (n = 22). To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD) (n = 16; n = 21, respectively) and Bipolar Disorder (BD) patients (n = 15; n = 20, respectively). Results Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4) were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD. Conclusions Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses. PMID:25658856

  18. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  19. Transcription of the Escherichia coli dcw cluster: evidence for distal upstream transcripts being involved in the expression of the downstream ftsZ gene.

    Science.gov (United States)

    de la Fuente, A; Palacios, P; Vicente, M

    2001-01-01

    Escherichia coli strains VIP596 and VIP597 have been constructed to compare the amount of transcription of the ftsZ gene derived from proximal promoters in the ddlB-ftsZ region with that originating in the upstream regions of the dcw cluster. Both strains have in common a beta-galactosidase reporter fusion located at the ddlB locus, but differ in that VIP597 has a transcription terminator Omega interposon located downstream from lacZ. In addition, these strains have the ddlB, ftsQ, ftsA and ftsZ genes under the control of the IPTG-inducible promoter P(tac), allowing to control artificially ftsZ expression for normal cell division to take place. When beta-galactosidase activity was measured in VIP596 and VIP597 and compared to the levels measured in strain VIP407, in which the lacZ reporter fusion is located in the ftsZ gene, they were found to account for nearly 66% of the total transcription entering into ftsZ. This result indicates that the reduction in ftsZ transcription observed when the promoters in the ddlB-ftsA region are disconnected from the upstream sequences of the dcw cluster (as observed by Flärdh et al., Mol. Microbiol. 30 (1998) 305-316) in strain VIP490) is the direct consequence of the interruption in the transcription originated upstream and not due to the effect of such sequences on the promoters proximal to ftsZ.

  20. Growth Rate of and Gene Expression in Bradyrhizobium diazoefficiens USDA110 due to a Mutation in blr7984, a TetR Family Transcriptional Regulator Gene.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Honma, Haruna; Nakagome, Mariko; Nagata, Maki; Yamaya-Ito, Hiroko; Sano, Yoshiaki; Hiraoka, Norina; Ikemi, Takaaki; Suzuki, Akihiro; Okazaki, Shin; Minamisawa, Kiwamu; Yokoyama, Tadashi

    2016-09-29

    Previous transcriptome analyses have suggested that a gene cluster including a transcriptional regulator (blr7984) of the tetracycline repressor family was markedly down-regulated in symbiosis. Since blr7984 is annotated to be the transcriptional repressor, we hypothesized that it is involved in the repression of genes in the genomic cluster including blr7984 in symbiotic bacteroids. In order to examine the function and involvement of the blr7984 gene in differentiation into bacteroids, we compared the free-living growth/symbiotic phenotype and gene expression between a blr7984-knockout mutant and the wild-type strain of Bradyrhizobium diazoefficiens USDA110. The mutant transiently increased the cell growth rate under free-living conditions and nodule numbers over those with the wild-type strain USDA110. The expression of three genes adjacent to the disrupted blr7984 gene was strongly up-regulated in the mutant in free-living and symbiotic cells. The mutant also induced the expression of genes for glutathione S-transferase, cytochrome c oxidases, ABC transporters, PTS sugar transport systems, and flagella synthesis under free-living conditions. bll7983 encoding glutathione S-transferase was up-regulated the most by the blr7984 disruption. Since redox regulation by glutathione is known to be involved in cell division in prokaryotes and eukaryotes, the strong expression of glutathione S-transferase encoded by the bll7983 gene may have caused redox changes in mutant cells, which resulted in higher rates of cell division.

  1. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    Science.gov (United States)

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  2. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors.

    Science.gov (United States)

    Zhang, Yunfei; Charvat, Robert A; Kim, Seong K; O'Callaghan, Dennis J

    2014-01-20

    The UL4 gene is conserved within the genome of defective interfering particles of equine herpesvirus type 1 (EHV-1) that mediate persistent infection. Here, we show that the UL4 protein inhibits EHV-1 reporter gene expression by decreasing the level of transcribed mRNA. The UL4 protein did not bind any gene class of EHV-1 promoters in electromobility or chromatin immunoprecipitation assays, but directly interacted with the TATA box-binding protein (TBP) and the carboxy-terminal domain of RNA polymerase II both in vitro (GST-pulldown assays) and in infected cells (coimmunoprecipitation analyses). Microarray analyses of the expression of the 78 EHV-1 genes revealed that viral late genes important for virion assembly displayed enhanced expression in cells infected with UL4-null virus as compared to wild-type or UL4-restored EHV-1. Quantitative PCR analyses showed that viral DNA replication was not retarded in cells infected with the UL4-null virus as compared to wild-type EHV-1.

  3. Polycistronic strategy for cyanobacterial expression vector construction: Co-transcription of a human gene and a selective marker gene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yukun; SHI Dingji; ZHAO Feifei; YU Meimin; RU Binggen

    2005-01-01

    A polycistronic expression vector, pKGA-NTF1, was constructed for the cyanobacterium. Within this vector, the spectinomycin/streptomycin resistance gene (aadA) facilitated the selection of transformants when co-transcribed with favorite genes. A natural glnA gene was selected as the platform to introduce the plasmid into a neutral site of the Synechococcus sp. PCC 7002 chromosome. Function of the vector was demonstrated by the insertion of a modified human Trefoil factor 3 gene (NTF1 ) to upstream of the aadA gene and by the analyses of the transformed strains. Antibiotics resistance assays showed that the dicistronic expression cassette conferred high spectinomycin resistance to both the E. coli cells and the Synechococcus cells. PCR analysis and Western-blot analysis were carried out to confirm the integration and expression of the NTF1 gene, respectively. Through simple molecular manipulations, the artificial polycistronic structure described here can be conveniently used to express other favorable genes or operons in cyanobacteria, and to study the cyanobacterial gene expression as well.

  4. Stochastic modeling for the expression of a gene regulated by competing transcription factors.

    Directory of Open Access Journals (Sweden)

    Hsih-Te Yang

    Full Text Available It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data.

  5. A model of estrogen-related gene expression reveals non-linear effects in transcriptional response to tamoxifen

    Directory of Open Access Journals (Sweden)

    Lebedeva Galina

    2012-11-01

    Full Text Available Abstract Background Estrogen receptors alpha (ER are implicated in many types of female cancers, and are the common target for anti-cancer therapy using selective estrogen receptor modulators (SERMs, such as tamoxifen. However, cell-type specific and patient-to-patient variability in response to SERMs (from suppression to stimulation of cancer growth, as well as frequent emergence of drug resistance, represents a serious problem. The molecular processes behind mixed effects of SERMs remain poorly understood, and this strongly motivates application of systems approaches. In this work, we aimed to establish a mathematical model of ER-dependent gene expression to explore potential mechanisms underlying the variable actions of SERMs. Results We developed an equilibrium model of ER binding with 17β-estradiol, tamoxifen and DNA, and linked it to a simple ODE model of ER-induced gene expression. The model was parameterised on the broad range of literature available experimental data, and provided a plausible mechanistic explanation for the dual agonism/antagonism action of tamoxifen in the reference cell line used for model calibration. To extend our conclusions to other cell types we ran global sensitivity analysis and explored model behaviour in the wide range of biologically plausible parameter values, including those found in cancer cells. Our findings suggest that transcriptional response to tamoxifen is controlled in a complex non-linear way by several key parameters, including ER expression level, hormone concentration, amount of ER-responsive genes and the capacity of ER-tamoxifen complexes to stimulate transcription (e.g. by recruiting co-regulators of transcription. The model revealed non-monotonic dependence of ER-induced transcriptional response on the expression level of ER, that was confirmed experimentally in four variants of the MCF-7 breast cancer cell line. Conclusions We established a minimal mechanistic model of ER-dependent gene

  6. Identifying modules of coexpressed transcript units and their organization of Saccharopolyspora erythraea from time series gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Xiao Chang

    Full Text Available BACKGROUND: The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. METHODOLOGY/PRINCIPAL FINDINGS: In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A, and secondary metabolism is induced when the growth is slowed down (phase B. Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. CONCLUSIONS: This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies

  7. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    Full Text Available Fragaria vesca (2n = 2x = 14, the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb. It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW and red (Ruegen, RG fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2% had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs, including MYB (putative MYB86 and MYB39, WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  8. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Science.gov (United States)

    Zhang, Yuchao; Li, Weijia; Dou, Yujuan; Zhang, Junxiang; Jiang, Guihua; Miao, Lixiang; Han, Guofen; Liu, Yuexue; Li, He; Zhang, Zhihong

    2015-01-01

    Fragaria vesca (2n = 2x = 14), the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb). It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW) and red (Ruegen, RG) fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2%) had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs), including MYB (putative MYB86 and MYB39), WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  9. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison

    Directory of Open Access Journals (Sweden)

    Saville Barry J

    2007-09-01

    Full Text Available Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521 and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs; among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database, while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping. Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1 substantial sequence information has been provided for U. maydis genome annotation; 2 new genes were identified through the discovery of 619

  10. Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2011-07-01

    Full Text Available Abstract Post-transcriptional regulation of HIV-1 gene expression is mediated by interactions between viral transcripts and viral/cellular proteins. For HIV-1, post-transcriptional nuclear control allows for the export of intron-containing RNAs which are normally retained in the nucleus. Specific signals on the viral RNAs, such as instability sequences (INS and Rev responsive element (RRE, are binding sites for viral and cellular factors that serve to regulate RNA-export. The HIV-1 encoded viral Rev protein binds to the RRE found on unspliced and incompletely spliced viral RNAs. Binding by Rev directs the export of these RNAs from the nucleus to the cytoplasm. Previously, Rev co-factors have been found to include cellular factors such as CRM1, DDX3, PIMT and others. In this work, the nuclear matrix protein Matrin 3 is shown to bind Rev/RRE-containing viral RNA. This binding interaction stabilizes unspliced and partially spliced HIV-1 transcripts leading to increased cytoplasmic expression of these viral RNAs.

  11. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis.

    Science.gov (United States)

    Tang, Guirong; Wang, Ying; Luo, Li

    2014-09-01

    Rhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in several Rhizobium species. However, the regulation of their expression is not well understood. Here, Sinorhizobium meliloti LsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of the lrp3-lpsCDE operon. An lsrB in-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of the lrp3 operon. Analysis of the transcriptional start sites of the lrp3 and lpsCDE gene suggested that they constitute one operon. The expression of lsrB was positively autoregulated. The promoter region of lrp3 was specifically precipitated by anti-LsrB antibodies in vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB protein in vitro. These new findings suggest that S. meliloti LsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.

  12. Imaging brain gene expression profiles by antipsychotics: region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol.

    Science.gov (United States)

    de Bartolomeis, Andrea; Marmo, Federica; Buonaguro, Elisabetta Filomena; Rossi, Rodolfo; Tomasetti, Carmine; Iasevoli, Felice

    2013-11-01

    Induction of motor disorders is considered the clinical landmark differentiating typical from atypical antipsychotics, and has been mainly correlated to dopamine D2 receptors blockade in striatum. This view is challenged by benzamides, such as amisulpride, which display low liability for motor side effects despite being D2/D3 receptors high-affinity blocking agents. These effects have been explained with the prominent presynaptic action of amisulpride or with the fast dissociation at D2 receptors, but there is scarce information on the effects of amisulpride on postsynaptic signaling. We carried out a molecular imaging study of gene expression after acute administration of haloperidol (0.8 mg/kg), amisulpride (10 or 35 mg/kg), or vehicle, focusing on postsynaptic genes that are key regulators of synaptic plasticity, such as Arc, c-fos, Zif-268, Norbin, Homer. The last one has been associated to schizophrenia both in clinical and preclinical studies, and is differentially induced by antipsychotics with different D2 receptors affinity. Topography of gene expression revealed that amisulpride, unlike haloperidol, triggers transcripts expression peak in medial striatal regions. Correlation analysis of gene expression revealed a prevalent correlated gene induction within motor corticostriatal regions by haloperidol and a more balanced gene induction within limbic and motor corticostriatal regions by amisulpride. Despite the selective dopaminergic profile of both compounds, our results demonstrated a differential modulation of postsynaptic molecules by amisulpride and haloperidol, the former impacting preferentially medial regions of striatum whereas the latter inducing strong gene expression in lateral regions. Thus, we provided a possible molecular profile of amisulpride, putatively explaining its "atypical atypicality".

  13. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  14. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression.

    Science.gov (United States)

    Wu, J; Miller, B L

    1997-10-01

    The Stunted protein (StuAp) is a member of a family of transcription factors that regulate fungal development and cell cycle progression. Regulated stuA gene expression is required for correct cell pattern formation during asexual reproduction (conidiation) and for initiation of the sexual reproductive cycle in Aspergillus nidulans. Transcriptional initiation from two different promoters yields overlapping mRNAs (stuA alpha and stuAbeta) that upon translation yield the same protein. Here we show that multiple regulatory mechanisms interact to control (i) developmental competence-dependent expression of both transcripts and (ii) induction-dependent expression of stuA alpha, but not stuAbeta, by the conidiation-specific Bristle (BrlAp) transcriptional activator. Quantitative levels of both mRNAs are further modulated by (i) an activator(s) located at a far-upstream upstream activation sequence, (ii) feedback regulation by StuAp, and (iii) positive translational regulation that requires the peptide product of a micro-open reading frame unique to the stuA alpha mRNA 5' untranslated region. Gradients in stuA alpha expression were most important for correct cell and tissue type development. Threshold requirements were as follows: metula-phialide differentiation < ascosporogenesis < cleistothecial shell-Hülle cell differentiation. Altered stuA expression affected conidiophore morphology and conidial yields quantitatively but did not alter the temporal development of cell types or conidiophore density. By contrast, the sexual cycle showed both temporal delay and quantitative reduction in the number of cleistothecial initials but normal morphogenesis of tissue types.

  15. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Science.gov (United States)

    Dang, Wan-Tai; Xu, Dan; Xie, Wen-Guang; Zhou, Jing-Guo

    2015-01-01

    A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1) played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases); nonacute phase (NAP: 52 cases)] and healthy controls (HC: 30 cases) by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes. PMID:26557856

  16. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Directory of Open Access Journals (Sweden)

    Wan-Tai Dang

    2015-01-01

    Full Text Available A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1 played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases; nonacute phase (NAP: 52 cases] and healthy controls (HC: 30 cases by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  17. Mutations of t-complex testis expressed gene 5 transcripts in the testis of sterile t-haplotype mutant mouse

    Institute of Scientific and Technical Information of China (English)

    Yibing Han; Xue-Xiong Song; Huai-Liang Feng; Che-Kwok Cheung; Po-Mui Lam; Chi-Chiu Wang; Christophe John Haines

    2008-01-01

    Aim: To determine the possible roles of the t-complex testis expressed gene 5 (Tctex5) on sperm functions, the full-length sequence of mRNA was studied and compared in the testis between the normal wild-type and the sterile t-haplotype mutant mice. Methods: We applied rapid amplification of cDNA ends, Northern blot and reverse tran-scription polymerase chain reaction to analyze the full length of Tctex5 mRNAs isolated from testes of the wild-type and the t-haplotype mice. Reverse transcription polymerase chain reaction was used to semi-quantitatively compare expression of Tctex5 transcripts in the 16 tissues and 9.5 day stage embryos in the wild-type mice. E-translation was applied to estimate the amino acid sequences. Results: One long and one short transcript of Tctex5 mRNA were discovered in mouse testis of wild-type (Tctex5long-+ and Tctex5short-+) and t-haplotype(Tctex5long-t and Tctex5short-t)mice,respectively. Being enhanced only in the testis, Tctex5long-t had 17 point mutations and one 15-bp-deletion in the exon 1 region, comparing with the Tctex5long-+, whereas the Tctex5short-t was similar to the Tctex5short-+. The short isoforms of Tctex5 rnRNAs in the two models encoded exactly the same peptides, but the long isoforms did not. The estimated peptide encoded by Tctex5long-t had significant mutations on putative sites of phosphorylation and PP1 binding.Conclusion: We established that mutations that occur in the Tctex5 long transcript of the t-haplotype mice are important for normal sperm function, whereas the short transcript of Tctex5 might have a conserved function among different tissues.

  18. Identification of mutations, gene expression changes and fusion transcripts by whole transcriptome RNAseq in docetaxel resistant prostate cancer cells.

    Science.gov (United States)

    Ma, Yuanjun; Miao, Yali; Peng, Zhuochun; Sandgren, Johanna; De Ståhl, Teresita Díaz; Huss, Mikael; Lennartsson, Lena; Liu, Yanling; Nistér, Monica; Nilsson, Sten; Li, Chunde

    2016-01-01

    Docetaxel has been the standard first-line therapy in metastatic castration resistant prostate cancer. The survival benefit is, however, limited by either primary or acquired resistance. In this study, Du145 prostate cancer cells were converted to docetaxel-resistant cells Du145-R and Du145-RB by in vitro culturing. Next generation RNAseq was employed to analyze these cell lines. Forty-two genes were identified to have acquired mutations after the resistance development, of which thirty-four were found to have mutations in published sequencing studies using prostate cancer samples from patients. Fourteen novel and 2 previously known fusion genes were inferred from the RNA-seq data, and 13 of these were validated by RT-PCR and/or re-sequencing. Four in-frame fusion transcripts could be transcribed into fusion proteins in stably transfected HEK293 cells, including MYH9-EIF3D and LDLR-RPL31P11, which were specific identified or up-regulated in the docetaxel resistant DU145 cells. A panel of 615 gene transcripts was identified to have significantly changed expression profile in the docetaxel resistant cells. These transcriptional changes have potential for further study as predictive biomarkers and as targets of docetaxel treatment.

  19. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression.

    Science.gov (United States)

    Kagale, Sateesh; Rozwadowski, Kevin

    2011-02-01

    Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif-mediated transcriptional repression is emerging as one of the principal mechanisms of plant gene regulation. The EAR motif, defined by the consensus sequence patterns of either LxLxL or DLNxxP, is the most predominant form of transcriptional repression motif so far identified in plants. Additionally, this active repression motif is highly conserved in transcriptional regulators known to function as negative regulators in a broad range of developmental and physiological processes across evolutionarily diverse plant species. Recent discoveries of co-repressors interacting with EAR motifs, such as TOPLESS (TPL) and AtSAP18, have begun to unravel the mechanisms of EAR motif-mediated repression. The demonstration of genetic interaction between mutants of TPL and AtHDA19, co-complex formation between TPL-related 1 (TPR1) and AtHDA19, as well as direct physical interaction between AtSAP18 and AtHDA19 support a model where EAR repressors, via recruitment of chromatin remodeling factors, facilitate epigenetic regulation of gene expression. Here, we discuss the biological significance of EAR-mediated gene regulation in the broader context of plant biology and present literature evidence in support of a model for EAR motif-mediated repression via the recruitment and action of chromatin modifiers. Additionally, we discuss the possible influences of phosphorylation and ubiquitination on the function and turnover of EAR repressors.

  20. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  1. Gene expression profiling identifies a set of transcripts that are up-regulated inhuman testicular seminoma.

    Science.gov (United States)

    Yamada, Shigeyuki; Kohu, Kazuyoshi; Ishii, Tomohiko; Ishidoya, Shigeto; Ishidoya, Shigeru; Hiramatsu, Masayoshi; Kanto, Satoru; Fukuzaki, Atsushi; Adachi, Yutsu; Endoh, Mareyuki; Moriya, Takuya; Sasaki, Hiroki; Satake, Masanobu; Arai, Yoichi

    2004-10-31

    Seminoma constitutes one subtype of human testicular germ cell tumors and is uniformly composed of cells that are morphologically similar to the primordial germ cells and/or the cells in the carcinoma in situ. We performed a genome-wide exploration of the genes that are specifically up-regulated in seminoma by oligonucleotide-based microarray analysis. This revealed 106 genes that are significantly and consistently up-regulated in the seminomas compared to the adjacent normal tissues of the testes. The microarray data were validated by semi-quantitative RT-PCR analysis. Of the 106 genes, 42 mapped to a small number of specific chromosomal regions, namely, 1q21, 2p23, 6p21-22, 7p14-15, 12pll, 12p13, 12q13-14 and 22q12-13. This list of up-regulated genes may be useful in identifying the causative oncogene(s) and/or the origin of seminoma. Furthermore, immunohistochemical analysis revealed that the seminoma cells specifically expressed the six gene products that were selected randomly from the list. These proteins include CCND2 and DNMT3A and may be useful as molecular pathological markers of seminoma.

  2. Identification of several soybean cytosolic glutamine synthetase transcripts highly or specifically expressed in nodules: expression studies using one of the corresponding genes in transgenic Lotus corniculatus.

    Science.gov (United States)

    Marsolier, M C; Debrosses, G; Hirel, B

    1995-01-01

    A DNA fragment containing sequences hybridizing to the 5' region of GS15, a gene encoding soybean cytosolic glutamine synthetase, was isolated from a soybean genomic library. Mapping and partial sequence analysis of the genomic clone revealed that it encodes a cytosolic GS gene, GS21, which is different from GS15. In parallel, a number of cDNA clones encoding cytosolic GS were isolated using the coding region of pGS20 as a probe (pGS20 is a cDNA clone which corresponds to a transcript of the GS15 gene). Two new full-length cDNAs designated pGS34 and pGS38 were isolated and sequenced. In the 5' non-coding region a strong homology was found between the two clones and the GS21 gene. However, none of these sequences were identical, which suggests that there are at least three members in this group of genes. In order to determine their relative levels of transcription, specific sequences from pGS34, pGS38 and GS21 were used in an RNAse protection assay. This experiment clearly showed that GS21 and the gene encoding pGS38 are specifically expressed in young or mature nodules, whereas the gene encoding pGS34 is highly transcribed in nodules and constitutively expressed at a lower level in other soybean organs. In order to further analyse the molecular mechanisms controlling GS21 transcription, different fragments of the promoter region were fused to the Escherichia coli reporter gene encoding beta-glucuronidase (GUS) and the constructs were introduced into Lotus corniculatus via Agrobacterium rhizogenes-mediated transformation. Analysis of GUS activity showed that the GS21 promoter-GUS constructs were expressed in the vasculature of all vegetative organs. This result is discussed in relation to species-specific metabolic and developmental characteristics of soybean and Lotus.

  3. Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts

    Directory of Open Access Journals (Sweden)

    Salma eBalazadeh

    2012-11-01

    Full Text Available Glycolate oxidase (GO catalyses the oxidation of glycolate to glyoxylate, thereby consuming O2 and producing H2O2. In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants were used to assess the expressional behaviour of reactive oxygen species (ROS-responsive genes and transcription factors (TFs after metabolic induction of H2O2 formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H2O2 in chloroplasts we used quantitative real-time PCR (qRT-PCR to test the expression of 187 ROS-responsive genes and 1,880 TFs after transferring GO and wild-type plants grown at high CO2 levels to ambient CO2 concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H2O2 production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H2O2 may originate in the chloroplast. The TF profiling indicated an upregulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2.

  4. Expression of ROS-responsive genes and transcription factors after metabolic formation of H(2)O(2) in chloroplasts.

    Science.gov (United States)

    Balazadeh, Salma; Jaspert, Nils; Arif, Muhammad; Mueller-Roeber, Bernd; Maurino, Veronica G

    2012-01-01

    Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O(2) and producing H(2)O(2). In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H(2)O(2) formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H(2)O(2) in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO(2) levels to ambient CO(2) concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H(2)O(2) production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H(2)O(2) may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H(2)O(2).

  5. Rapid screening of innate immune gene expression in zebrafish using reverse transcription - multiplex ligation-dependent probe amplification

    Directory of Open Access Journals (Sweden)

    Spaink Herman P

    2011-06-01

    Full Text Available Abstract Background With the zebrafish increasingly being used in immunology and infectious disease research, there is a need for efficient molecular tools to evaluate immune gene expression in this model species. RT-MLPA (reverse transcription - multiplex ligation-dependent probe amplification provides a sensitive and reproducible method, in which fluorescently labelled amplification products of unique lengths are produced for a defined set of target transcripts. The method employs oligonucleotide probes that anneal to adjacent sites on a target sequence and are then joined by a heat-stable ligase. Subsequently, multiplex PCR with universal primers gives rise to amplicons that can be analyzed with standard sequencing equipment and relative quantification software. Allowing the simultaneous quantification of around 40 selected markers in a one-tube assay, RT-MLPA is highly useful for high-throughput screening applications. Findings We employed a dual-colour RT-MLPA probe design for chemical synthesis of probe pairs for 34 genes involved in Toll-like receptor signalling, transcriptional activation of the immune response, cytokine and chemokine production, and antimicrobial defence. In addition, six probe pairs were included for reference genes unaffected by infections in zebrafish. First, we established assay conditions for adult zebrafish infected with different strains of Mycobacterium marinum causing acute and chronic disease. Addition of competitor oligonucleotides was required to achieve peak heights in a similar range for genes with different expression levels. For subsequent analysis of embryonic samples it was necessary to adjust the amounts of competitor oligonucleotides, as the expression levels of several genes differed to a large extent between adult and embryonic tissues. Assay conditions established for one-day-old Salmonella typhimurium-infected embryos could be transferred without further adjustment to five-day-old M. marinum

  6. A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators.

    Science.gov (United States)

    Hurst, Laurence D; Sachenkova, Oxana; Daub, Carsten; Forrest, Alistair R R; Huminiecki, Lukasz

    2014-07-31

    Conventional wisdom holds that, owing to the dominance of features such as chromatin level control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of the wrong parameters. Here we address this issue through integration of two exceptional resources: ENCODE data on transcription factor binding and the FANTOM5 high-resolution expression atlas. Consistent with the notion that in eukaryotes most transcription factors are activating, the number of transcription factors binding a promoter is a strong predictor of expression breadth. In addition, evolutionarily young duplicates have fewer transcription factor binders and narrower expression. Nonetheless, we find several binders and cooperative sets that are disproportionately associated with broad expression, indicating that models more complex than simple correlations should hold more predictive power. Indeed, a machine learning approach improves fit to the data compared with a simple correlation. Machine learning could at best moderately predict tissue of expression of tissue specific genes. We find robust evidence that some expression parameters and paralog expression divergence are strongly predictable with knowledge of transcription factor binding repertoire. While some cooperative complexes can be identified, consistent with the notion that most eukaryotic transcription factors are activating, a simple predictor, the number of binding transcription factors found on a promoter, is a robust predictor of expression breadth.

  7. Lupin nad9 and nad6 genes and their expression: 5' termini of the nad9 gene transcripts differentiate lupin species.

    Science.gov (United States)

    Rurek, Michał; Nuc, Katarzyna; Raczyńska, Katarzyna Dorota; Augustyniak, Halina

    2003-10-02

    The mitochondrial nad9 and nad6 genes were analyzed in four lupin species: Lupinus luteus, Lupinus angustifolius, Lupinus albus and Lupinus mutabilis. The nucleotide sequence of these genes confirmed their high conservation, however, higher number of nucleotide substitution was observed in the L. albus genes. Southern hybridizations confirmed the presence of single copy number of these genes in L. luteus, L. albus and L. angustifolius. The expression of nad9 and nad6 genes was analyzed by Northern in different tissue types of analyzed lupin species. Transcription analyses of the two nad genes displayed single predominant mRNA species of about 0.6 kb in L. luteus and L. angustifolius. The L. albus transcripts were larger in size. The nad9 and nad6 transcripts were modified by RNA editing at 8 and 11 positions, in L. luteus and L. angustifolius, respectively. The gene order, rps3-rpl16-nad9, found in Arabidopsis thaliana is also conserved in L. luteus and L. angustifolius mitochondria. L. luteus and L. angustifolius showed some variability in the sequence of the nad9 promoter region. The last feature along with the differences observed in nad9 mRNA 5' termini of two lupins differentiate L. luteus and L. angustifolius species.

  8. Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5.

    Science.gov (United States)

    Alberdi, Maria; Iglesias, Marcos; Tejedor, Sonia; Merino, Ramón; López-Rodríguez, Cristina; Aramburu, Jose

    2017-01-01

    Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts. Here we have used mice with a conditional deletion of Nfat5 in mature T lymphocytes to explore osmostress-dependent and -independent functions of this factor. In vitro experiments with CD4 T cells stimulated in hyperosmotic medium showed that NFAT5 enhanced the expression of IL-2 and the Th17-associated gene products RORγt and IL-23R. By contrast, NFAT5-deficient CD4 T cells activated in vivo by anti-CD3 antibody exhibited a different activation profile and were skewed towards enhanced interferon γ (IFNγ) and IL-17 expression and attenuated Treg responses. Using a model of experimental colitis, we observed that mice lacking NFAT5 in T cells exhibited exacerbated intestinal colitis and enhanced expression of IFNγ in draining lymph nodes and colon. These results show that NFAT5 can modulate different T-cell responses depending on stress conditions and stimulatory context.

  9. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism

    Science.gov (United States)

    Objectives: Newcastle disease virus (NDV), a member of the Paramxoviridae family, has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU...

  10. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism

    Science.gov (United States)

    Newcastle disease virus (NDV) has been developed as a vector to express foreign genes for vaccine and gene therapy purposes. The foreign genes are usually inserted into a non-coding region of the NDV genome as an independent transcription unit (ITU). Based on the well-accepted “stop-start” transcr...

  11. Two mechanisms for putrescine-dependent transcriptional expression of the putrescine aminotransferase gene, ygjG, in Escherichia coli.

    Science.gov (United States)

    Kim, Young-Sik; Shin, Hyun-Chul; Lee, Jong-Ho

    2014-09-01

    In this study, on evaluating the physiological function and mechanism of putrescine, we found that putrescine supplementation (1 mM) increases transcription of the putrescine aminotransferase gene, ygjG. Putrescine-dependent expression was confirmed by measuring β-galactosidase activity and with reverse transcription-polymerase chain reaction. To understand the role of putrescine in ygjG expression, we genetically characterized and found that a knockout mutation in an alternative sigma factor, rpoS, abolished putrescine-dependent ygjG-lacZ expression. In the rpoS mutant, RpoS overexpression complemented the mutant phenotype. However, RpoS overexpression induced ygjG-lacZ expression with putrescine supplementation but not without supplementation. We also found that the loss of putrescine-dependent ygjG-lacZ expression induced by rpoS was completely restored under nitrogen-starvation conditions. The putrescine-dependent expression of ygjG-lacZ under this condition was clearly dependent on another alternative sigma factor, rpoN, and its cognate activator ntrC. These results show that rpoS is required for putrescine-dependent ygjG-lacZ expression, but the effect of putrescine on this expression is not caused by simple modulation of RpoS synthesis. Putrescine-dependent expression of ygjG-lacZ was controlled by at least two sigma factors: rpoS under excess nitrogen conditions and rpoN under nitrogen-starvation conditions. These results suggest that putrescine plays an important role in the nitrogen regulation system.

  12. CluGene: A Bioinformatics Framework for the Identification of Co-Localized, Co-Expressed and Co-Regulated Genes Aimed at the Investigation of Transcriptional Regulatory Networks from High-Throughput Expression Data.

    Directory of Open Access Journals (Sweden)

    Tania Dottorini

    Full Text Available The full understanding of the mechanisms underlying transcriptional regulatory networks requires unravelling of complex causal relationships. Genome high-throughput technologies produce a huge amount of information pertaining gene expression and regulation; however, the complexity of the available data is often overwhelming and tools are needed to extract and organize the relevant information. This work starts from the assumption that the observation of co-occurrent events (in particular co-localization, co-expression and co-regulation may provide a powerful starting point to begin unravelling transcriptional regulatory networks. Co-expressed genes often imply shared functional pathways; co-expressed and functionally related genes are often co-localized, too; moreover, co-expressed and co-localized genes are also potential targets for co-regulation; finally, co-regulation seems more frequent for genes mapped to proximal chromosome regions. Despite the recognized importance of analysing co-occurrent events, no bioinformatics solution allowing the simultaneous analysis of co-expression, co-localization and co-regulation is currently available. Our work resulted in developing and valuating CluGene, a software providing tools to analyze multiple types of co-occurrences within a single interactive environment allowing the interactive investigation of combined co-expression, co-localization and co-regulation of genes. The use of CluGene will enhance the power of testing hypothesis and experimental approaches aimed at unravelling transcriptional regulatory networks. The software is freely available at http://bioinfolab.unipg.it/.

  13. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense.

  14. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression

    National Research Council Canada - National Science Library

    Ament, Seth A; Wang, Ying; Chen, Chieh-Chun; Blatti, Charles A; Hong, Feng; Liang, Zhengzheng S; Negre, Nicolas; White, Kevin P; Rodriguez-Zas, Sandra L; Mizzen, Craig A; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E

    2012-01-01

    ... (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone...

  15. Identification of a core set of 58 gene transcripts with broad and specific expression in the microvasculature.

    Science.gov (United States)

    Wallgard, Elisabet; Larsson, Erik; He, Liqun; Hellström, Mats; Armulik, Annika; Nisancioglu, Maya H; Genove, Guillem; Lindahl, Per; Betsholtz, Christer

    2008-08-01

    Pathological angiogenesis is an integral component of many diseases. Antiangiogenesis and vascular targeting are therefore promising new therapeutic principles. However, few endothelial-specific putative drug targets have been identified, and information is still limited about endothelial-specific molecular processes. Here we aimed at determining the endothelial cell-specific core transcriptome in vivo. Analysis of publicly available microarray data identified a mixed vascular/lung cluster of 132 genes that correlated with known endothelial markers. Filtering against kidney glomerular/nonglomerular and brain vascular/nonvascular microarray profiles separated contaminating lung markers, leaving 58 genes with broad and specific microvascular expression. More than half of these have not previously been linked to endothelial functions or studied in detail before. The endothelial cell-specific expression of a selected subset of these, Eltd1, Gpr116, Ramp2, Slc9a3r2, Slc43a3, Rasip1, and NM_023516, was confirmed by real-time quantitative polymerase chain reaction and/or immunohistochemistry. We have used a combination of publicly available and own microarray data to identify 58 gene transcripts with broad yet specific expression in microvascular endothelium. Most of these have unknown functions, but many of them are predicted to be cell surface expressed or implicated in cell signaling processes and should therefore be explored as putative microvascular drug targets.

  16. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi

    OpenAIRE

    Coradetti, Samuel T.; Craig, James P.; Xiong, Yi; Shock, Teresa; Tian, Chaoguang; Glass, N. Louise

    2012-01-01

    Rational engineering of filamentous fungi for improved cellulase production is hampered by our incomplete knowledge of transcriptional regulatory networks. We therefore used the model filamentous fungus Neurospora crassa to search for uncharacterized transcription factors associated with cellulose deconstruction. A screen of a N. crassa transcription factor deletion collection identified two uncharacterized zinc binuclear cluster transcription factors (clr-1 and clr-2) that were required for ...

  17. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression

    Directory of Open Access Journals (Sweden)

    Konu Ozlen

    2008-12-01

    Full Text Available Abstract Background SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. Methods Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. Results Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. Conclusion The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and

  18. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Aquino-Ferreira Roseli

    2010-02-01

    Full Text Available Abstract Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

  20. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.

    Science.gov (United States)

    Jan, P S; Stein, T; Hehl, S; Lisowsky, T

    1999-08-01

    The basal mitochondrial transcription apparatus of Saccharomyces cerevisiae consists of the core enzyme for mitochondrial RNA polymerase and the specificity factor. The core enzyme is homologous to those of bacteriophages T3, T7 and SP6 whereas the specificity factor shows similarities with bacterial sigma factors. Recently it was shown that the bacteriophage-type core enzyme is widespread among the eukaryotic lineage and a common picture for the mitochondrial transcription apparatus in eukaryotic cells is now emerging. In contrast to the situation for the core enzyme, the gene for the specificity factor has only been identified from S. cerevisiae and more recently from two other yeast species. As the specificity factor is the key component for initiation of transcription at the mitochondrial promoter we wanted to study in more detail gene expression, regulation, and the function of the promoter of the nuclear MTF1 gene. For this purpose the messenger RNA level for scMTF1 was investigated under a large number of different growth conditions and thereby exhibited a very low, but regulated and carbon source-dependent, expression. Deletion experiments identify the minimal promoter for functional complementation in yeast. To evaluate the functional conservation of the promoter elements the homologous MTF1 gene from the closely related yeast Saccharomyces douglasii was isolated and tested in heterologous complementation experiments. In spite of a highly conserved protein sequence these studies demonstrate that at low-copy number sdMTF1 is not able to substitute for scMTF1 in S. cerevisiae. Promoter exchange experiments with MTF1 from S. cerevisiae and S. douglasii demonstrate that differences in gene expression are responsible for the failure in heterologous complementation. This finding prompted us to compare the promoter regions of MTF1 from four different yeast species. For this purpose the sequences of the 5' regions from S. douglasii, S. kluyveri and Kluyveromyces

  1. Transcription factor Ctip2 controls epidermal lipid metabolism and regulates expression of genes involved in sphingolipid biosynthesis during skin development

    Science.gov (United States)

    Wang, Zhixing; Kirkwood, Jay S.; Taylor, Alan W.; Stevens, Jan F.; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2012-01-01

    The stratum corneum is composed of protein-enriched corneocytes embedded in an intercellular matrix of nonpolar lipids organized as lamellar layers and give rise to epidermal permeability barrier (EPB). EPB defects play an important role in the pathophysiology of skin diseases such as eczema. The transcriptional control of skin lipid metabolism is poorly understood. We have discovered that mouse lacking a transcription factor COUP-TF interacting protein 2 (Ctip2) exhibit EPB defects including altered keratinocyte terminal differentiation, delayed skin barrier development and interrupted neutral lipid distribution in the epidermis. We adapted herein a targeted lipidomic approach using mass spectrometry, and have determined that Ctip2−/− mice (germline deletion of Ctip2 gene) display altered composition of major epidermal lipids such as ceramides and sphingomyelins compared to wildtype at different stages of skin development. Interestingly, expressions of several genes involved in skin sphingolipid biosynthesis and metabolism were altered in mutant skin. Ctip2 was found to be recruited to the promoter region of a subset of those genes, suggesting their possible direct regulation by Ctip2. Our results confirm an important role of Ctip2 in regulating skin lipid metabolism and indicate that profiling of epidermal sphingolipid could be useful for designing effective strategies to improve barrier dysfunctions. PMID:23096701

  2. Retinoic acid regulates CD1d gene expression at the transcriptional level in human and rodent monocytic cells.

    Science.gov (United States)

    Chen, Qiuyan; Ross, A Catharine

    2007-04-01

    CD1d belongs to a group of nonclassical antigen-presenting molecules that present glycolipid antigens and thereby activate natural killer T (NKT) cells, a subset of bifunctional T cells. Little is known so far regarding the expression and physiologic regulation of CD1d. Here we show that all-trans-retinoic acid (RA), the active metabolite of vitamin A, rapidly (1 hr after treatment) increases CD1d mRNA in human and rodent monocytic cells at a physiologic dose (10 nM). The induction is RA specific and RA receptor (RAR) dependent-RA and an RARalpha agonist, Am580, both had a pronounced positive effect, whereas the addition of RARalpha antagonist partially blocked the increase in CD1d mRNA induced by RA and Am580. The induction was also completely blocked by the presence of actinomycin D. A putative RA-response element was identified in the distal 5' flanking region of the CD1d gene, which binds nuclear retinoid receptors and was responsive to RA in both gel mobility shift assay and transient transfection assay in THP-1 cells. These results further confirmed the transcriptional regulation of RA in CD1d gene expression. Moreover, RA significantly increased alpha-galactosylceramide-induced spleen cell proliferation. These studies together provide evidence for a previously unknown mechanism of CD1d gene expression regulation by RA and suggest that RA is a significant modulator of NKT cell activation.

  3. Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101.

    Directory of Open Access Journals (Sweden)

    Ji Miao

    Full Text Available Reticuloendotheliosis virus (REV, a member of the Gammaretrovirus genus in the Retroviridae family, causes an immunosuppressive, oncogenic and runting-stunting syndrome in multiple avian hosts. To better understand the host interactions at the transcriptional level, microarray data analysis was performed in chicken embryo fibroblast cells at 1, 3, 5, and 7 days after infection with REV. This study identified 1,785 differentially expressed genes that were classified into several functional groups including signal transduction, immune response, biological adhesion and endocytosis. Significant differences were mainly observed in the expression of genes involved in the immune response, especially during the later post-infection time points. These results revealed that differentially expressed genes IL6, STAT1, MyD88, TLRs, NF-κB, IRF-7, and ISGs play important roles in the pathogenicity of REV infection. Our study is the first to use microarray analysis to investigate REV, and these findings provide insights into the underlying mechanisms of the host antiviral response and the molecular basis of viral pathogenesis.

  4. Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium

    Directory of Open Access Journals (Sweden)

    Aiping eSong

    2016-02-01

    Full Text Available The family of DNA binding with one finger (DOF transcription factors is plant specific, and these proteins contain a highly conserved domain (DOF domain of 50-52 amino acids that includes a C2C2-type zinc finger motif at the N-terminus that is known to function in a number of plant processes. Here, we characterized 20 DOF genes in the important ornamental species chrysanthemum (Chrysanthemum morifolium based on transcriptomic sequences. Phylogenetic analysis identified one pair of putative orthologous proteins in Arabidopsis and chrysanthemum and six pairs of paralogous proteins in chrysanthemum. Conserved motifs in the DOF proteins shared by Arabidopsis and chrysanthemum were analysed using MEME. Bioinformatics analysis revealed that 13 CmDOFs could be targeted by 16 miRNA families. Moreover, we used 5’ RLM-RACE to map the cleavage sites in CmDOF3, 15 and 21. The expression of these 20 genes in response to phytohormone treatments and abiotic stresses was characterized, and the expression patterns of six pairs of paralogous CmDOF genes were found to completely differ from one another, except for CmDOF6 and CmDOF7. This work will promote our research of the various functions of DOF gene family members in plant hormone and stress responses.

  5. Manipulation of DET1 expression in tomato results in photomorphogenic phenotypes caused by post-transcriptional gene silencing

    Science.gov (United States)

    Davuluri, Ganga Rao; van Tuinen, Ageeth; Mustilli, Anna Chiara; Manfredonia, Alessandro; Newman, Robert; Burgess, Diane; Brummell, David A.; King, Stephen R.; Palys, Joe; Uhlig, John; Pennings, Henk M. J.; Bowler, Chris

    2013-01-01

    Summary The tomato HIGH PIGMENT-2 gene encodes an orthologue of the Arabidopsis nuclear protein DE-ETIOLATED 1 (DET1). From genetic analyses it has been proposed that DET1 is a negative regulator of light signal transduction, and recent results indicate that it may control light-regulated gene expression at the level of chromatin remodelling. To gain further understanding about the function of DET1 during plant development, we generated a range of overexpression constructs and introduced them into tomato. Unexpectedly, we only observed phenotypes characteristic of DET1 inactivation, i.e. hyper-responsiveness to light. Molecular analysis indicated in all cases that these phenotypes were a result of suppression of endogenous DET1 expression, due to post-transcriptional gene silencing. DET1 silencing was often lethal when it occurred at relatively early stages of plant development, whereas light hyper-responsive phenotypes were obtained when silencing occurred later on. The appearance of phenotypes correlated with the generation of siRNAs but not DNA hypermethylation, and was most efficient when using constructs with mutations in the DET1 coding sequence or with constructs containing only the 3′-terminal portion of the gene. These results indicate an important function for DET1 throughout plant development and demonstrate that silencing of DET1 in fruits results in increased carotenoids, which may have biotechnological potential. PMID:15469492

  6. Sf-PHB2, A new transcription factor, Drives WSSV Ie1 Gene Expression via a 12-bp DNA Element

    Directory of Open Access Journals (Sweden)

    Ma Guoda

    2012-09-01

    Full Text Available Abstract Background The WSSV immediate early gene ie1 is highly expressed throughout viral infection cycle and may play a central role in initiating viral replication during infection. Results Here, a detailed characterization of the ie1 promoter was performed using deletion and mutation analyses to elucidate the role of the individual promoter motifs. Three results were obtained: 1 the ie1 promoter is a classical eukaryotic promoter that contains the initiator element (Inr and TATA box responsible for the basal promoter activity; 2 mutation or truncation of a predicted Sp1 site decreased the level of promoter activity by about 3-fold, indicating that the Sp1 site is an important cis-element of the promoter; and 3 truncation of a 12-bp sequence that resides at -78/-67 of the ie1 promoter decreased the level of promoter activity by about 14-fold, indicating that the 12-bp motif is a critical upstream element of the ie1 promoter for binding of a strong transcription factor to drive the ie1 gene expression in the cells. Further, the 12-bp DNA binding protein was purified from the nuclear proteins of Sf9 cells using DNA affinity chromatography, and was identified as a homologue of the prohibitin2 protein (named as Sf-PHB2 using mass spectrometry. Furthermore, the DNA binding activity of Sf-PHB2 was verified using a super shift analysis. Conclusion These results support that the Sf-PHB2 is a novel transcription factor that drives WSSV ie1 gene expression by binding to the 12-bp DNA element.

  7. Genome-wide integration on transcription factors, histone acetylation and gene expression reveals genes co-regulated by histone modification patterns.

    Directory of Open Access Journals (Sweden)

    Yayoi Natsume-Kitatani

    Full Text Available N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs, which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (http://www.mathworks.com/, is available from the supporting page for this paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm.

  8. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes

    OpenAIRE

    Merianne Alkio; Uwe Jonas; Myriam Declercq; Steven van Nocker; Moritz Knoche

    2014-01-01

    The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., ‘Regina’), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes...

  9. Transcription factor T-bet in Atlantic salmon: Characterization and gene expression in mucosal tissues during Aeromonas salmonicida infection

    Directory of Open Access Journals (Sweden)

    Jaya eKumari

    2015-07-01

    Full Text Available The T-box transcription factor T-bet is expressed in a number of hematopoietic cell types in mammals and plays an essential role in the lineage determination of Th1 T-helper cells and is considered as an essential feature for both innate and adaptive immune responses in higher vertebrates. In the present study, we have identified and characterized the full-length Atlantic salmon T-bet cDNA (3502 bp. The putative primary structure of the polypeptide deduced from the cDNA sequence contained 612 aa, which possessed a T-box DNA binding domain. Phylogenetic study and gene synteny revealed it is a homologue to mammalian T-bet. Quantitative PCR analysis of different tissues in healthy fish showed that salmon T-bet gene was highly expressed in spleen, followed by head kidney, and was expressed in intestine, skin, and liver at lower levels. Moreover, the time dependent expression profile of T-bet, interferon gamma (IFNγ, interleukin-22 (IL-22, and NKEF (Natural killer enhancement factor in mucosal tissues during waterborne infection with live Aeromonas salmonicida, indicated the involvement of T-bet in mucosal immune response in Atlantic salmon.

  10. Transcription Factor T-Bet in Atlantic Salmon: Characterization and Gene Expression in Mucosal Tissues during Aeromonas Salmonicida Infection.

    Science.gov (United States)

    Kumari, Jaya; Zhang, Zuobing; Swain, Trilochan; Chi, Heng; Niu, Cuijuan; Bøgwald, Jarl; Dalmo, Roy Ambli

    2015-01-01

    The T-box transcription factor T-bet is expressed in a number of hematopoietic cell types in mammals and plays an essential role in the lineage determination of Th1 T-helper cells and is considered as an essential feature for both innate and adaptive immune responses in higher vertebrates. In the present study, we have identified and characterized the full-length Atlantic salmon T-bet cDNA (3502 bp). The putative primary structure of the polypeptide deduced from the cDNA sequence contained 612 aa, which possessed a T-box DNA binding domain. Phylogenetic study and gene synteny revealed it is as a homolog to mammalian T-bet. Quantitative PCR analysis of different tissues in healthy fish showed that salmon T-bet gene was highly expressed in spleen, followed by head kidney, and was expressed in intestine, skin, and liver at lower levels. Moreover, the time-dependent expression profile of T-bet, interferon gamma (IFNγ), interleukin-22 (IL-22), and natural killer enhancement factor in mucosal tissues during water-borne infection with live Aeromonas salmonicida, indicated the involvement of T-bet in mucosal immune response in Atlantic salmon.

  11. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  12. A WRKY Transcription Factor Recruits the SYG1-Like Protein SHB1 to Activate Gene Expression and Seed Cavity Enlargement

    Science.gov (United States)

    Kang, Xiaojun; Li, Wei; Zhou, Yun; Ni, Min

    2013-01-01

    Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. SHORT HYPOCOTYL UNDER BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement. PMID:23505389

  13. Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants.

    Science.gov (United States)

    Bond, Donna M; Albert, Nick W; Lee, Robyn H; Gillard, Gareth B; Brown, Chris M; Hellens, Roger P; Macknight, Richard C

    2016-01-01

    Transcription factors (TFs) coordinate precise gene expression patterns that give rise to distinct phenotypic outputs. The identification of genes and transcriptional networks regulated by a TF often requires stable transformation and expression changes in plant cells. However, the production of stable transformants can be slow and laborious with no guarantee of success. Furthermore, transgenic plants overexpressing a TF of interest can present pleiotropic phenotypes and/or result in a high number of indirect gene expression changes. Therefore, fast, efficient, high-throughput methods for assaying TF function are needed. Agroinfiltration is a simple plant biology method that allows transient gene expression. It is a rapid and powerful tool for the functional characterisation of TF genes in planta. High throughput RNA sequencing is now a widely used method for analysing gene expression profiles (transcriptomes). By coupling TF agroinfiltration with RNA sequencing (named here as Infiltration-RNAseq), gene expression networks and gene function can be identified within a few weeks rather than many months. As a proof of concept, we agroinfiltrated Medicago truncatula leaves with M. truncatula LEGUME ANTHOCYANIN PRODUCITION 1 (MtLAP1), a MYB transcription factor involved in the regulation of the anthocyanin pathway, and assessed the resulting transcriptome. Leaves infiltrated with MtLAP1 turned red indicating the production of anthocyanin pigment. Consistent with this, genes encoding enzymes in the anthocyanin biosynthetic pathway, and known transcriptional activators and repressors of the anthocyanin biosynthetic pathway, were upregulated. A novel observation was the induction of a R3-MYB transcriptional repressor that likely provides transcriptional feedback inhibition to prevent the deleterious effects of excess anthocyanins on photosynthesis. Infiltration-RNAseq is a fast and convenient method for profiling TF-mediated gene expression changes. We utilised this method

  14. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions.

    Science.gov (United States)

    Cassan-Wang, Hua; Soler, Marçal; Yu, Hong; Camargo, Eduardo Leal O; Carocha, Victor; Ladouce, Nathalie; Savelli, Bruno; Paiva, Jorge A P; Leplé, Jean-Charles; Grima-Pettenati, Jacqueline

    2012-12-01

    Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.

  15. [Regulations of berberine on gene expression of BMP4 transcriptional pathways to improve visceral white adipose tissues insulin resistance in type 2 diabetic hamsters].

    Science.gov (United States)

    Li, Guo-Sheng; Liu, Xu-Han; Li, Xin-Yu; Gao, Zheng-Nan; Huang, Lan; Liu, Ya-Li

    2016-02-01

    To study the effects of berberine on the gene mRNA expressions of BMP4 transcriptional pathways and brown/white adipose tissue conversion transcriptional pathways in visceral white adipose tissues(VWAT) in type 2 diabetic hamsters and explore the relevant mechanisms. The obese insulin-resistant hamster model were induced by using high-fat diet, and then the type 2 diabetic hamster model was created through injection with low-dose streptozotocin in the obese insulin-resistant hamster model. After the modeling, the hamsters were randomly divided into normal control, obese insulin-resistant, type 2 diabetic and berberine-treated diabetic groups. After the nine-week treatment, real-time quantitative PCR was used to measure the changes in gene mRNA expressions of VWAT BMP4 transcriptional pathways, brown/white adipose tissue conversion transcriptional pathways and their target genes in different groups. The results showed that the gene mRNA expressions of BMP4, BMPRⅡ, BMPRlA, Smad1, Smad5, Smad8, p38/MAPK, ATF2, PRDM16, C/EBPβ, PGC1α, PPARγ and brown adipose tissue-specific genes was decreased and that of Smad6, Smurf1 and white adipose tissue-specific genes was increased in VWAT of model hamsters. Treatment with berberine regulated BMP4 transcriptional pathways and brown adipose tissue transcriptional pathways and induced the gene mRNA expression of brown adipose tissue-specific genes in VWAT to develop browning gene phenotype of white adipose tissues, and then improved fat-induced insulin resistance. These findings indicated that BMP4 transcriptional pathways involved in the formation of fat-induced visceral white adipose tissues insulin resistance (FIVWATIR) and the browning molecular mechanism of white adipose tissues induced by berberine. Copyright© by the Chinese Pharmaceutical Association.

  16. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2017-09-01

    Full Text Available Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red (‘Hongyang’, or yellow (‘Jinnong-2’, or green (‘Hayward’ flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the ‘Jinnong-2’ fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of ‘Hongyang’ fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the ‘Hongyang’ fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT. At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR, anthocyanidin synthase (NtANS and NtUFGT. For basic helix-loop-helix proteins (bHLHs and WD-repeat proteins (WD40s, expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.

  17. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  18. An activator of transcription regulates phage TP901-1 late gene expression

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Pedersen, Margit; Hammer, Karin

    2001-01-01

    to activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group...... bp contains both the promoter and the region necessary for activation by ORF29. The transcriptional start site of the promoter was identified by primer extension to position 13073 on the TP901-1 genome, thus located 87 bp downstream of orf29 in a 580-bp intergenic region between orf29 and orf30....... Furthermore, the region located -85 to -61 bp upstream of the start site was shown to be necessary for promoter activity. During infection, the transcript arising from the late promoter is fully induced at 40 min postinfection, and our results suggest that a certain level of ORF29 must he reached in order...

  19. Members of the CREB/ATF and AP1 family of transcription factors are involved in the regulation of SOX18 gene expression

    Directory of Open Access Journals (Sweden)

    Petrović Isidora

    2011-01-01

    Full Text Available The SOX18 transcription factor plays an important role in endothelial cell specification, angiogenesis and atherogenesis. By profiling transcription factor interactions (TranSignal TM TF Protein Array we identified several transcription factors implicated in angiogenesis that have the ability to bind to the SOX18 optimal promoter region in vitro. In this report we focused our attention on distinct transcription factors identified by the array as belonging to AP-1 and CREB/ATF protein families. In particular, we analyzed the effects of CREB, JunB, c-Jun and ATF3 on SOX18 gene expression. Functional analysis revealed that CREB acts as a repressor, while JunB, c-Jun and ATF3 act as activators of SOX18 promoter activity. Our findings indicate that a transcriptional network that includes CREB, JunB, c-Jun and ATF3 could be involved in angiogenesis-related transcriptional regulation of the SOX18 gene.

  20. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    Science.gov (United States)

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions.

  1. HoxA-11 and FOXO1A cooperate to regulate decidual prolactin expression: towards inferring the core transcriptional regulators of decidual genes.

    Directory of Open Access Journals (Sweden)

    Vincent J Lynch

    Full Text Available BACKGROUND: During the menstrual cycle, the ovarian steroid hormones estrogen and progesterone control a dramatic transcriptional reprogramming of endometrial stromal cells (ESCs leading to a receptive state for blastocyst implantation and the establishment of pregnancy. A key marker gene of this decidualization process is the prolactin gene. Several transcriptional regulators have been identified that are essential for decidualization of ESCs, including the Hox genes HoxA-10 and HoxA-11, and the forkhead box gene FOXO1A. While previous studies have identified downstream target genes for HoxA-10 and FOXO1A, the role of HoxA-11 in decidualization has not been investigated. Here, we show that HoxA-11 is required for prolactin expression in decidualized ESC. While HoxA-11 alone is a repressor on the decidual prolactin promoter, it turns into an activator when combined with FOXO1A. Conversely, HoxA-10, which has been previously shown to associate with FOXO1A to upregulate decidual IGFBP-1 expression, is unable to upregulate PRL expression when co-expressed with FOXO1A. By co-immunoprecipitation and chromatin immunoprecipitation, we demonstrate physical association of HoxA-11 and FOXO1A, and binding of both factors to an enhancer region (-395 to -148 relative to the PRL transcriptional start site of the decidual prolactin promoter. Because FOXO1A is induced upon decidualization, it serves to assemble a decidual-specific transcriptional complex including HoxA-11. These data highlight cooperativity between numerous transcription factors to upregulate PRL in differentiating ESC, and suggest that this core set of transcription factors physically and functionally interact to drive the expression of a gene battery upregulated in differentiated ESC. In addition, the functional non-equivalence of HoxA-11 and HoxA-10 with respect to PRL regulation suggests that these transcription factors regulate distinct sets of target genes during decidualization.

  2. The Drosophila Translational Control Element (TCE is required for high-level transcription of many genes that are specifically expressed in testes.

    Directory of Open Access Journals (Sweden)

    Rebeccah J Katzenberger

    Full Text Available To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE. The TCE functions in the 5' untranslated region of Mst(3CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and

  3. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells.

    Science.gov (United States)

    Boczek, Tomasz; Lisek, Malwina; Ferenc, Bozena; Zylinska, Ludmila

    2017-04-01

    Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca(2+) signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca(2+) signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca(2+) transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  5. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity.

    Science.gov (United States)

    Borlak, J; Thum, T

    2002-12-01

    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas.

  6. Structure and functions of transcriptional coactivators p300/CBP and their roles in regulation of interleukin gene expression

    Institute of Scientific and Technical Information of China (English)

    SHAO Yangguang; ZHANG Guoping; LU Jun; HUANG Baiqu

    2004-01-01

    p300/CBP are versatile transcriptional coacti-vators that participate in many physiological processes, including cell cycle control, differentiation and apoptosis. p300/CBP possess histone acetyltransferase (HAT) activity and they are involved in transcriptional regulation by acetylating histone and nonhistone proteins. Moreover, they act as protein bridges connecting specific transcription factors to the basal transcription machinery and provide a scaffold to integrate multiple transcription cofactors. Several studies suggest that p300/CBP may serve as tumor suppressors since mutations or translocations in p300/Cbp genes have been observed in a number of cancers. Furthermore, in many neurodegenerative diseases, inhibition of p300/CBP function may be one of the underlying causes of cytotoxicity. Several studies have demonstrated that p300/CBP are implicated in the regulation of many interleukin genes. This review focuses on the structures and functions of p300/CBP and their roles in the regulation of interleukin genes based on the work performed in our laboratory.

  7. Integrated microRNA, gene expression and transcription factors signature in papillary thyroid cancer with lymph node metastasis

    Directory of Open Access Journals (Sweden)

    Nurul-Syakima Ab Mutalib

    2016-06-01

    Full Text Available Background. Papillary thyroid carcinoma (PTC is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19–24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives. We reanalyzed The Cancer Genome Atlas (TCGA datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P versus lymph node negative (LNN PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results. PTC patients with LNM (PTC LNM-P have a significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN (Log-rank Mantel Cox test, p = 0.0049. We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found four significant enrichment pathways potentially involved in metastasis to the lymph nodes, namely oxidative phosphorylation (OxPhos, cell adhesion molecules (CAMs, leukocyte transendothelial migration and cytokine–cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E−06 involving

  8. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  9. Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein

    Science.gov (United States)

    Neumann, Paul; Patel, Tarun B.

    2017-01-01

    Receptor Tyrosine Kinase (RTK) signaling plays a major role in tumorigenesis and normal development. Sprouty2 (Spry2) attenuates RTK signaling and inhibits processes such as angiogenesis, cell proliferation, migration and survival, which are all upregulated in tumors. Indeed in cancers of the liver, lung, prostate and breast, Spry2 protein levels are markedly decreased correlating with poor patient prognosis and shorter survival. Thus, it is important to understand how expression of Spry2 is regulated. While prior studies have focused on the post-translation regulation of Spry2, very few studies have focused on the transcriptional regulation of SPRY2 gene. Here, we demonstrate that in the human hepatoma cell line, Hep3B, the transcription of SPRY2 is inhibited by the transcription regulating hypoxia inducible factors (HIFs). HIFs are composed of an oxygen regulated alpha subunit (HIF1α or HIF2α) and a beta subunit (HIF1β). Intriguingly, silencing of HIF1α and HIF2α elevates SPRY2 mRNA and protein levels suggesting HIFs reduce the transcription of the SPRY2 promoter. In silico analysis identified ten hypoxia response elements (HREs) in the proximal promoter and first intron of SPRY2. Using chromatin immunoprecipitation (ChIP), we show that HIF1α/2α bind near the putative HREs in the proximal promoter and intron of SPRY2. Our studies demonstrated that not only is the SPRY2 promoter methylated, but silencing HIF1α/2α reduced the methylation. ChIP assays also showed DNA methyltransferase1 (DNMT1) binding to the proximal promoter and first intron of SPRY2 and silencing HIF1α/2α decreased this association. Additionally, silencing of DNMT1 mimicked the HIF1α/2α silencing-mediated increase in SPRY2 mRNA and protein. While simultaneous silencing of HIF1α/2α and DNMT1 increased SPRY2 mRNA a little more, the increase was not additive suggesting a common mechanism by which DNMT1 and HIF1α/2α regulate SPRY2 transcription. Together these data suggest that the

  10. Expressions of transcription factors Smad4 and NF-κB in preeclampsia placenta tissue and exploration of its relationship with expressions of apoptotic and invasive genes

    Institute of Scientific and Technical Information of China (English)

    Li Xia

    2015-01-01

    Objective:To study the expressions of transcription factors Smad4 and NF-κB in preeclampsia placenta tissue and its relationship with expressions of apoptotic and invasive genes.Methods:50 cases of preeclampsia puerperal women and 50 cases of normal puerperal women treated and gave birth in our hospital from May 2012 to May 2014 were chosen for study. Placenta tissue was collected and PCR method was used to detect mRNA contents of Smad4, NF-κB, Fas, FasL, Caspase-3, Caspase-8, Bax, MMP2, MMP9, IL-24 and RECK; immunohistochemical method was used to detect positive expressions of Smad4 and NF-κB.Results: Compared with normal placenta tissue, mRNA contents and immunohistochemical positive staining rates of Smad4 and NF-κB in preeclampsia placenta were all higher; contents of Fas, FasL, Caspase-3, Caspase-8, Bax, IL-24 and RECK of Smad-positive group and NF-κB-positive group were higher than those of Smad-negative group and NF-κB-negative group respectively; MMP2 and MMP9 contents were lower than those of Smad-negative group and NF-κB-negative group respectively.Conclusion: Smad4 and NF-κB expressions in preeclampsia placenta abnormally increase and may regulate the expressions of apoptotic genes and invasive genes to be involved in the occurrence of the disease.

  11. The HSV-1 Latency-Associated Transcript Functions to Repress Latent Phase Lytic Gene Expression and Suppress Virus Reactivation from Latently Infected Neurons.

    Science.gov (United States)

    Nicoll, Michael P; Hann, William; Shivkumar, Maitreyi; Harman, Laura E R; Connor, Viv; Coleman, Heather M; Proença, João T; Efstathiou, Stacey

    2016-04-01

    Herpes simplex virus 1 (HSV-1) establishes life-long latent infection within sensory neurons, during which viral lytic gene expression is silenced. The only highly expressed viral gene product during latent infection is the latency-associated transcript (LAT), a non-protein coding RNA that has been strongly implicated in the epigenetic regulation of HSV-1 gene expression. We have investigated LAT-mediated control of latent gene expression using chromatin immunoprecipitation analyses and LAT-negative viruses engineered to express firefly luciferase or β-galactosidase from a heterologous lytic promoter. Whilst we were unable to determine a significant effect of LAT expression upon heterochromatin enrichment on latent HSV-1 genomes, we show that reporter gene expression from latent HSV-1 genomes occurs at a greater frequency in the absence of LAT. Furthermore, using luciferase reporter viruses we have observed that HSV-1 gene expression decreases during long-term latent infection, with a most marked effect during LAT-negative virus infection. Finally, using a fluorescent mouse model of infection to isolate and culture single latently infected neurons, we also show that reactivation occurs at a greater frequency from cultures harbouring LAT-negative HSV-1. Together, our data suggest that the HSV-1 LAT RNA represses HSV-1 gene expression in small populations of neurons within the mouse TG, a phenomenon that directly impacts upon the frequency of reactivation and the maintenance of the transcriptionally active latent reservoir.

  12. The Neuronal-Specific SGK1.1 (SGK1_v2 Kinase as a Transcriptional Modulator of BAG4, Brox, and PPP1CB Genes Expression

    Directory of Open Access Journals (Sweden)

    Rebeca González-Fernández

    2015-04-01

    Full Text Available The Serum- and Glucocorticoid-induced Kinase 1, SGK1, exhibits a broad range of cellular functions that include regulation of the number of ion channels in plasma membrane and modulation of signaling pathways of cell survival. This diversity of functions is made possible by various regulatory processes acting upon the SGK1 gene, giving rise to various isoforms: SGK1_v1–5, each with distinct properties and distinct aminotermini that serve to target proteins to different subcellular compartments. Among cellular effects of SGK1 expression is to indirectly modulate gene transcription by phosphorylating transcriptional factors of the FOXO family. Here we examined if SGK1.1 (SGK1_v2; NM_001143676, which associates primarily to the plasma membrane, is also able to regulate gene expression. Using a differential gene expression approach we identified six genes upregulated by SGK1.1 in HeLa cells. Further analysis of transcript and protein levels validated two genes: BCL2-associated athanogene 4 (BAG-4 and Brox. The results indicate that SGK1.1 regulates gene transcription upon a different set of genes some of which participate in cell survival pathways (BAG-4 and others in intracellular vesicular traffic (Brox.

  13. The Neuronal-Specific SGK1.1 (SGK1_v2) Kinase as a Transcriptional Modulator of BAG4, Brox, and PPP1CB Genes Expression

    Science.gov (United States)

    González-Fernández, Rebeca; Ávila, Julio; Arteaga, María F.; Canessa, Cecilia M.; Martín-Vasallo, Pablo

    2015-01-01

    The Serum- and Glucocorticoid-induced Kinase 1, SGK1, exhibits a broad range of cellular functions that include regulation of the number of ion channels in plasma membrane and modulation of signaling pathways of cell survival. This diversity of functions is made possible by various regulatory processes acting upon the SGK1 gene, giving rise to various isoforms: SGK1_v1–5, each with distinct properties and distinct aminotermini that serve to target proteins to different subcellular compartments. Among cellular effects of SGK1 expression is to indirectly modulate gene transcription by phosphorylating transcriptional factors of the FOXO family. Here we examined if SGK1.1 (SGK1_v2; NM_001143676), which associates primarily to the plasma membrane, is also able to regulate gene expression. Using a differential gene expression approach we identified six genes upregulated by SGK1.1 in HeLa cells. Further analysis of transcript and protein levels validated two genes: BCL2-associated athanogene 4 (BAG-4) and Brox. The results indicate that SGK1.1 regulates gene transcription upon a different set of genes some of which participate in cell survival pathways (BAG-4) and others in intracellular vesicular traffic (Brox). PMID:25849655

  14. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data

    National Research Council Canada - National Science Library

    Giorgos Minas; Hiroshi Momiji; Dafyd J Jenkins; Maria J Costa; David A Rand; Barbel Finkenstadt

    2017-01-01

    ...) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA...

  15. Transcriptional repression of Caveolin-1 (CAV1) gene expression by GATA-6 in bladder smooth muscle hypertrophy in mice and human beings.

    Science.gov (United States)

    Boopathi, Ettickan; Gomes, Cristiano Mendes; Goldfarb, Robert; John, Mary; Srinivasan, Vittala Gopal; Alanzi, Jaber; Malkowicz, S Bruce; Kathuria, Hasmeena; Zderic, Stephen A; Wein, Alan J; Chacko, Samuel

    2011-05-01

    Hypertrophy occurs in urinary bladder wall smooth muscle (BSM) in men with partial bladder outlet obstruction (PBOO) caused by benign prostatic hyperplasia (BPH) and in animal models of PBOO. Hypertrophied BSM from the rabbit model exhibits down-regulation of caveolin-1, a structural and functional protein of caveolae that function as signaling platforms to mediate interaction between receptor proteins and adaptor and effector molecules to regulate signal generation, amplification, and diversification. Caveolin-1 expression is diminished in PBOO-induced BSM hypertrophy in mice and in men with BPH. The proximal promoter of the human and mouse caveolin-1 (CAV1) gene was characterized, and it was observed that the transcription factor GATA-6 binds this promoter, causing reduced expression of caveolin-1. Furthermore, caveolin-1 expression levels inversely correlate with the abundance of GATA-6 in BSM hypertrophy in mice and human beings. Silencing of GATA6 gene expression up-regulates caveolin-1 expression, whereas overexpression of GATA-6 protein sustains the transcriptional repression of caveolin-1 in bladder smooth muscle cells. Together, these data suggest that GATA-6 acts as a transcriptional repressor of CAV1 gene expression in PBOO-induced BSM hypertrophy in men and mice. GATA-6-induced transcriptional repression represents a new regulatory mechanism of CAV1 gene expression in pathologic BSM, and may serve as a target for new therapy for BPH-induced bladder dysfunction in aging men.

  16. Transcription factor AP1 binds the functional region of the promoter and regulates gene expression of human PPARdelta in LoVo cell.

    Science.gov (United States)

    Jiang, Xiaogang; Yang, Xudong; Han, Yan; Lu, Shemin

    2013-12-01

    Peroxisome proliferator-activated receptor δ gene (PPARδ) is correlated with carcinogenesis of colorectal cancer, but the regulation of its gene transcription remains unclear. We herein report that AP1 binds the promoter and regulates PPARδ gene expression. With a luciferase reporter system, we identified a functional promoter region of 30 bp of PPARδ gene by deletion and electrophoretic mobility shift assays (EMSA). Using site-directed mutagenesis and decoy analyses, we demonstrated that AP1 bound the functional transcriptional factor binding site in a region extending from -176 to -73 of the PPARδ promoter, which was confirmed using EMSA and supershift assays. Consequently, inhibition of the AP1 binding site led to decreased PPARδ mRNA. Our study demonstrated that AP1 is the transcriptional factor that contributes to PPARδ expression in LoVo cells.

  17. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES ce

  18. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Science.gov (United States)

    Liao, Yong-Ling; Shen, Yong-Bao; Chang, Jie; Zhang, Wei-Wei; Cheng, Shui-Yuan; Xu, Feng

    2015-01-01

    WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter. PMID:26351628

  19. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Yong-Ling Liao

    2015-01-01

    Full Text Available WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.

  20. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available The anterior cruciate ligament (ACL is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1 injured ACL tears and controls, and (2 ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  1. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Science.gov (United States)

    Leal, Mariana Ferreira; Astur, Diego Costa; Debieux, Pedro; Arliani, Gustavo Gonçalves; Silveira Franciozi, Carlos Eduardo; Loyola, Leonor Casilla; Andreoli, Carlos Vicente; Smith, Marília Cardoso; Pochini, Alberto de Castro; Ejnisman, Benno; Cohen, Moises

    2015-01-01

    The anterior cruciate ligament (ACL) is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP) by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury) and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1) injured ACL tears and controls, and (2) ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  2. Over-expression of a subgroup 4 R2R3 type MYB transcription factor gene from Leucaena leucocephala reduces lignin content in transgenic tobacco.

    Science.gov (United States)

    Omer, Sumita; Kumar, Santosh; Khan, Bashir M

    2013-01-01

    KEY MESSAGE : LlMYB1 , a subgroup 4 R2R3-type MYB transcription factor gene from Leucaena leucocephala appears to be a repressor of lignin biosynthesis pathway by regulating the transcription of general phenylpropanoid pathway genes. R2R3MYB transcription factors are known to play a wide role in regulating the phenylpropanoid pathway in plants. In this study, we report isolation, cloning and characterization of an R2R3MYB transcription factor gene (LlMYB1) from an economically important tree species, Leucaena leucocephala. LlMYB1 consists of 705 bp coding sequence corresponding to 235 amino acids. Sequence alignment revealed that the N-terminal (MYB) domain of the gene shares up to 95 % similarity with subgroup 4 (Sg4) members of R2R3Myb gene family functionally known to be lignin repressors. Highly divergent C-terminal region of the gene carried an ERF-associated amphiphilic repression (EAR) motif, another characteristic of the Sg4. The gene was phylogenetically grouped closest with AmMYB308, a known repressor of monolignol biosynthetic pathway genes. Spatio-temporal expression studies at different ages of seedlings using quantitative real-time PCR (QRT-PCR) showed highest transcript level of the gene in 10 day old stem tissues. Over-expression of the gene in transgenic tobacco showed statistically significant decline in the transcript levels of the general phenylpropanoid pathway genes and reduction in lignin content. Our study suggests that LlMYB1 might be playing the role of a repressor of lignin biosynthesis in L. leucocephala.

  3. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus

    OpenAIRE

    Drost, Derek R.; Benedict, Catherine I.; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R. D. B.; Yu, Qibin; Dervinis, Christopher; Jessica M Maia; Yap, John; Miles, Brianna; Kirst, Matias

    2010-01-01

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leav...

  4. Identification of novel breast cancer-associated transcripts by UniGene database mining and gene expression analysis in normal and malignant cells.

    Science.gov (United States)

    Laversin, Stéphanie A-S; Phatak, Vinaya M; Powe, Des G; Li, Geng; Miles, Amanda K; Hughes, David C; Ball, Graham R; Ellis, Ian O; Gritzapis, Angelos D; Missitzis, Ioannis; McArdle, Stéphanie E B; Rees, Robert C

    2013-03-01

    Breast cancer is a heterogeneous and complex disease. Although the use of tumor biomarkers has improved individualized breast cancer care, i.e., assessment of risk, diagnosis, prognosis, and prediction of treatment outcome, new markers are required to further improve patient clinical management. In the present study, a search for novel breast cancer-associated genes was performed by mining the UniGene database for expressed sequence tags (ESTs) originating from human normal breast, breast cancer tissue, or breast cancer cell lines. Two hundred and twenty-eight distinct breast-associated UniGene Clusters (BUC1-228) matched the search criteria. Four BUC ESTs (BUC6, BUC9, BUC10, and BUC11) were subsequently selected for extensive in silico database searches, and in vitro analyses through sequencing and RT-PCR based assays on well-characterized cell lines and tissues of normal and cancerous origin. BUC6, BUC9, BUC10, and BUC11 are clustered on 10p11.21-12.1 and showed no homology to any known RNAs. Overall, expression of the four BUC transcripts was high in normal breast and testis tissue, and in some breast cancers; in contrast, BUC was low in other normal tissues, peripheral blood mononuclear cells (PBMCs), and other cancer cell lines. Results to-date suggest that BUC11 and BUC9 translate to protein and BUC11 cytoplasmic and nuclear protein expression was detected in a large cohort of breast cancer samples using immunohistochemistry. This study demonstrates the discovery and expression analysis of a tissue-restricted novel transcript set which is strongly expressed in breast tissue and their application as clinical cancer biomarkers clearly warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  5. Wilms' tumor suppressor gene (WT1) suppresses apoptosis by transcriptionally downregulating BAX expression in immature rat granulosa cells

    National Research Council Canada - National Science Library

    Park, Minji; Choi, Yuri; Choi, Hyeonhae; Roh, Jaesook

    2014-01-01

    The important role of WT1 in early folliculogenesis was evident from its restricted expression pattern in immature follicles and from its involvement in transcriptional control of inhibin-α and FSH receptor...

  6. Transcription Factor T-Bet in Atlantic Salmon: Characterization and Gene Expression in Mucosal Tissues during Aeromonas Salmonicida Infection

    National Research Council Canada - National Science Library

    Kumari, Jaya; Zhang, Zuobing; Swain, Trilochan; Chi, Heng; Niu, Cuijuan; Bøgwald, Jarl; Dalmo, Roy Ambli

    2015-01-01

    The T-box transcription factor T-bet is expressed in a number of hematopoietic cell types in mammals and plays an essential role in the lineage determination of Th1 T-helper cells and is considered...

  7. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    Science.gov (United States)

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  8. Resveratrol increases anti-aging Klotho gene expression via the activating transcription factor 3/c-Jun complex-mediated signaling pathway.

    Science.gov (United States)

    Hsu, Shih-Che; Huang, Shih-Ming; Chen, Ann; Sun, Chiao-Yin; Lin, Shih-Hua; Chen, Jin-Shuen; Liu, Shu-Ting; Hsu, Yu-Juei

    2014-08-01

    The Klotho gene functions as an aging suppressor gene. Evidence from animal models suggests that induction of Klotho expression may be a potential treatment for age-associated diseases. However, the molecular mechanism involved in regulating renal Klotho gene expression remains unclear. In this study, we determined that resveratrol, a natural polyphenol, induced renal Klotho expression both in vivo and in vitro. In the mouse kidney, resveratrol administration markedly increased both Klotho mRNA and protein expression. In resveratrol-treated NRK-52E cells, increased Klotho expression was accompanied by the upregulation and nuclear translocation of activating transcription factor 3 (ATF3) and c-Jun. ATF3 or c-Jun overexpression enhanced the transcriptional activation of Klotho. Conversely, resveratrol-induced Klotho expression was attenuated in the presence of dominant-negative ATF3 or c-Jun. Coimmunoprecipitation and a chromatin immunoprecipitation assay revealed that ATF3 physically interacted with c-Jun and that the ATF3/c-Jun complex directly bound to the Klotho promoter through ATF3- and AP-1-binding elements. c-Jun cotransfection augmented the effects of ATF3 on Klotho transcription in vitro. Although Sirtuin 1 mRNA expression was induced by resveratrol and involved in regulating Klotho mRNA expression, it was not the primary cause for the aforementioned ATF3/c-Jun pathway. In summary, resveratrol enhances the renal expression of the anti-aging Klotho gene, and the transcriptional factors ATF3 and c-Jun functionally interact and coordinately regulate the resveratrol-mediated transcriptional activation of Klotho.

  9. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    Science.gov (United States)

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  10. Unique role of SRSF2 in transcription activation and diverse functions of the SR and hnRNP proteins in gene expression regulation.

    Science.gov (United States)

    Mo, Sudong; Ji, Xiong; Fu, Xiang-Dong

    2013-01-01

    Transcription pause release from gene promoters has been recognized to be a critical point for transcriptional regulation in higher eukaryotes. Recent studies suggest that regulatory RNAs are extensively involved in transcriptional control, which may enlist various RNA binding proteins. We recently showed a key role of SRSF2, a member of the SR family of splicing regulators, in binding to promoter-associated small RNA to mediate transcription pause release, a regulatory strategy akin to the function of the HIV Tat protein via binding to the TAR element in nascent RNA to activate transcription. In this report, we further dissect the structural requirement for SRSF2 to function as a transcription activator and extend the analysis to multiple SR and hnRNP proteins by using the MS2 tethering strategy. Our results reveal that SRSF2 is a unique SR protein that activates transcription in a position-dependent manner while three other SR proteins enhance translation in a position-independent fashion. In contrast, multiple hnRNP proteins appear to negatively influence mRNA levels, especially when tethered in the gene body. These findings suggest broad participation of RNA binding proteins in diverse aspects of regulated gene expression at both the transcriptional and posttranscriptional levels in mammalian cells.

  11. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  12. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data

    NARCIS (Netherlands)

    Recchia, A.; Wit, E.; Vinciotti, V.; Kellam, P.

    2008-01-01

    One of the main aims of system biology is to understand the structure and dynamics of genomic systems. A computational approach, facilitated by new technologies for high-throughput quantitative experimental data, is put forward to investigate the regulatory system of dynamic interaction among genes

  13. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data

    NARCIS (Netherlands)

    Recchia, A.; Wit, E.; Vinciotti, V.; Kellam, P.

    2008-01-01

    One of the main aims of system biology is to understand the structure and dynamics of genomic systems. A computational approach, facilitated by new technologies for high-throughput quantitative experimental data, is put forward to investigate the regulatory system of dynamic interaction among genes

  14. Myc post-transcriptionally induces HIF1 protein and target gene expression in normal and cancer cells

    Science.gov (United States)

    Doe, Megan R.; Ascano, Janice; Kaur, Mandeep; Cole, Michael D.

    2012-01-01

    c-Myc is frequently overexpressed in tumors and plays an important role in the regulation of cancer metabolism. Hypoxia-inducible factor-1 (HIF1), the master regulator of the hypoxic response, enhances tumorigenesis and influences metabolism via upregulation of the glycolytic pathway and suppression of mitochondrial respiration. Together, deregulated Myc and HIF1 cooperate to lend metabolic advantages to proliferating cancer cells and contribute to the Warburg Effect. Here we show that overexpression of Myc significantly stabilizes the alpha subunit of HIF1 (HIF1alpha) under normoxic conditions and enhances HIF1alpha accumulation under hypoxic conditions in cells. Post-transcriptional regulation of HIF1α by Myc led to the induction of HIF1α gene targets. Normoxic HIF1α protein expression was also dependent on Myc. Functionally; HIF1α expression was required for Myc-induced anchorage-independent growth and cell proliferation. Myc-dependent stabilization of HIF1α involved either disruption of binding to the VHL complex or post-translational protein modifications. Taken together, our findings uncover a previously uncharacterized regulatory relationship between Myc and HIF1 that has important implications for cancer metabolism and development. PMID:22186139

  15. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  16. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Science.gov (United States)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  17. Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles.

    Science.gov (United States)

    Lainšček, Duško; Lebar, Tina; Jerala, Roman

    2017-02-26

    Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators.

  18. Heterologous expression of plant virus genes that suppress post-transcriptional gene silencing results in suppression of RNA interference in Drosophila cells

    Directory of Open Access Journals (Sweden)

    Canto Tomas

    2004-08-01

    Full Text Available Abstract Background RNA interference (RNAi in animals and post-transcriptional gene silencing (PTGS in plants are related phenomena whose functions include the developmental regulation of gene expression and protection from transposable elements and viruses. Plant viruses respond by expressing suppressor proteins that interfere with the PTGS system. Results Here we demonstrate that both transient and constitutive expression of the Tobacco etch virus HC-Pro silencing suppressor protein, which inhibits the maintenance of PTGS in plants, prevents dsRNA-induced RNAi of a lacZ gene in cultured Drosophila cells. Northern blot analysis of the RNA present in Drosophila cells showed that HC-Pro prevented degradation of lacZ RNA during RNAi but that there was accumulation of the short (23nt RNA species associated with RNAi. A mutant HC-Pro that does not suppress PTGS in plants also does not affect RNAi in Drosophila. Similarly, the Cucumber mosaic virus 2b protein, which inhibits the systemic spread of PTGS in plants, does not suppress RNAi in Drosophila cells. In addition, we have used the Drosophila system to demonstrate that the 16K cysteine-rich protein of Tobacco rattle virus, which previously had no known function, is a silencing suppressor protein. Conclusion These results indicate that at least part of the process of RNAi in Drosophila and PTGS in plants is conserved, and that plant virus silencing suppressor proteins may be useful tools to investigate the mechanism of RNAi.

  19. Expression of Shigella flexneri gluQ-rs gene is linked to dksA and controlled by a transcriptional terminator

    Directory of Open Access Journals (Sweden)

    Caballero Valeria C

    2012-10-01

    Full Text Available Abstract Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.

  20. pBaSysBioll : an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis

    NARCIS (Netherlands)

    Botella, Eric; Fogg, Mark; Jules, Matthieu; Piersma, Sjouke; Doherty, Geoff; Hansen, Annette; Denham, Emma. L.; Le Chat, Ludovic; Veiga, Patrick; Bailey, Kirra; Lewis, Peter J.; van Dijl, Jan Maarten; Aymerich, Stephane; Wilkinson, Anthony J.; Devine, Kevin M.

    Plasmid pBaSysBioll was constructed for high-throughput analysis of gene expression in Bacillus subtilis. It is an integrative plasmid with a ligation-independent cloning (LIC) site, allowing the generation of transcriptional gfpmut3 fusions with desired promoters. Integration is by a Campbell-type

  1. pBaSysBioll : an integrative plasmid generating gfp transcriptional fusions for high-throughput analysis of gene expression in Bacillus subtilis

    NARCIS (Netherlands)

    Botella, Eric; Fogg, Mark; Jules, Matthieu; Piersma, Sjouke; Doherty, Geoff; Hansen, Annette; Denham, Emma. L.; Le Chat, Ludovic; Veiga, Patrick; Bailey, Kirra; Lewis, Peter J.; van Dijl, Jan Maarten; Aymerich, Stephane; Wilkinson, Anthony J.; Devine, Kevin M.

    2010-01-01

    Plasmid pBaSysBioll was constructed for high-throughput analysis of gene expression in Bacillus subtilis. It is an integrative plasmid with a ligation-independent cloning (LIC) site, allowing the generation of transcriptional gfpmut3 fusions with desired promoters. Integration is by a Campbell-type

  2. USE OF GENE EXPRESSION ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT DOSE RESPONSE TO DISTINGUISH AMONG STRUCTURAL HOMOLOGUES OF MX

    Science.gov (United States)

    We recently described a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. In this analysis, we characterized changes in global gene expressio...

  3. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  4. Novel subtractive transcription-based amplification of mRNA (STAR method and its application in search of rare and differentially expressed genes in AD brains

    Directory of Open Access Journals (Sweden)

    Walker P Roy

    2006-11-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR, is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. Results Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner. Conclusion The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD.

  5. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts.

    Science.gov (United States)

    Su, M W; Suzuki, H R; Bieker, J J; Solursh, M; Ramirez, F

    1991-10-01

    The pattern of type II collagen expression during Xenopus laevis embryogenesis has been established after isolating specific cDNA and genomic clones. Evidence is presented suggesting that in X. laevis there are two transcriptionally active copies of the type II procollagen gene. Both genes are activated at the beginning of neurula stage and steady-state mRNA levels progressively increase thereafter. Initially, the transcripts are localized to notochord, somites, and the dorsal region of the lateral plate mesoderm. At later stages of development and parallel to increased mRNA accumulation, collagen expression becomes progressively more confined to chondrogenic regions of the tadpole. During the early period of mRNA accumulation, there is also a transient pattern of expression in localized sites that will later not undergo chondrogenesis, such as the floor plate in the ventral neural tube. At later times and coincident with the appearance of chondrogenic tissues in the developing embryo, expression of the procollagen genes is characterized by the production of an additional, alternatively spliced transcript. The alternatively spliced sequences encode the cysteine-rich globular domain in the NH2-propeptide of the type II procollagen chain. Immunohistochemical analyses with a type II collagen monoclonal antibody documented the deposition of the protein in the extracellular matrix of the developing embryo. Type II collagen expression is therefore temporally regulated by tissue-specific transcription and splicing factors directing the synthesis of distinct molecular forms of the precursor protein in the developing Xenopus embryo.

  6. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  7. The RosR transcription factor is required for gene expression dynamics in response to extreme oxidative stress in a hypersaline-adapted archaeon

    Directory of Open Access Journals (Sweden)

    Sharma Kriti

    2012-07-01

    Full Text Available Abstract Background Previous work has shown that the hypersaline-adapted archaeon, Halobacterium salinarum NRC-1, is highly resistant to oxidative stress caused by exposure to hydrogen peroxide, UV, and gamma radiation. Dynamic alteration of the gene regulatory network (GRN has been implicated in such resistance. However, the molecular functions of transcription regulatory proteins involved in this response remain unknown. Results Here we have reanalyzed several existing GRN and systems biology datasets for H. salinarum to identify and characterize a novel winged helix-turn-helix transcription factor, VNG0258H, as a regulator required for reactive oxygen species resistance in this organism. This protein appears to be unique to the haloarchaea at the primary sequence level. High throughput quantitative growth assays in a deletion mutant strain implicate VNG0258H in extreme oxidative stress resistance. According to time course gene expression analyses, this transcription factor is required for the appropriate dynamic response of nearly 300 genes to reactive oxygen species damage from paraquat and hydrogen peroxide. These genes are predicted to function in repair of oxidative damage to proteins and DNA. In vivo DNA binding assays demonstrate that VNG0258H binds DNA to mediate gene regulation. Conclusions Together these results suggest that VNG0258H is a novel archaeal transcription factor that regulates gene expression to enable adaptation to the extremely oxidative, hypersaline niche of H. salinarum. We have therefore renamed VNG0258H as RosR, for reactive oxygen species regulator.

  8. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer

    Directory of Open Access Journals (Sweden)

    Brett Adina

    2008-07-01

    Full Text Available Abstract Background Gene expression analyses have led to a better understanding of growth control of prostate cancer cells. We and others have identified the presence of several zinc finger transcription factors in the neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer transcriptome. One of the transcription factors (TFs identified in the prostate cancer epithelial cells was the Wilms tumor gene (WT1. To rapidly identify coordinately expressed prostate cancer growth control genes that may be regulated by WT1, we used an in silico approach. Results Evolutionary conserved transcription factor binding sites (TFBS recognized by WT1, EGR1, SP1, SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes from eight mammalian species. To test the relationship between sequence conservation and function, chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin immunoprecipitation (ChIP. Multiple putative TFBS in gene promoters of placental mammals were found to be shared with those in human gene promoters and some were conserved between genomes that diverged about 170 million years ago (i.e., primates and marsupials, therefore implicating these sites as candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related peptidase 3 (KLK3 gene commonly known as the prostate specific antigen (PSA gene. This analysis located several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen receptor (AR and vascular endothelial growth factor (VEGF, known to be transcriptionally regulated by WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP. Conclusion Overall, this targeted approach rapidly identified

  9. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine.

    Science.gov (United States)

    Dai, Ru; Ge, Hui; Howard, Susanne; Qiu, Wenping

    2012-12-01

    Stilbenic compounds are natural phytoalexins that have antimicrobial activities in plant defense against pathogens. Stilbene synthase (STS) is the key enzyme that catalyzes the biosynthesis of stilbenic compounds. Grapevine genome contains a family of preliminarily annotated 35 STS genes, the regulation of each STS gene needs to be studied to define their roles. In this study, we selected eight STS genes, STS8, STS27/31, STS16/22, STS13/17/23, and applied quantitative polymerase chain reaction (qPCR) to characterize their transcriptional expression profiles in leaf tissues upon infection by the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr. Their transcripts were also compared in young and old leaves as well as in the berry skin at five developmental stages in Vitis vinifera 'Cabernet Sauvignon' and Vitis aestivalis 'Norton'. The results showed that transcripts of selected STS genes increased significantly in Cabernet Sauvignon leaves at 24 and 48 h post inoculation with PM spores and remained unchanged in Norton leaves in response to the PM infection. Transcripts of STS8, STS27/31 and STS13/17/23 were more abundant in the old leaves of Norton than in Cabernet Sauvignon. STS genes showed lower expression levels in young leaves than in old leaves. Transcript levels of the eight STS genes increased drastically in the berry skin of Cabernet Sauvignon and Norton post véraison. In addition, the content of trans-resveratrol in the berry skin rapidly increased post véraison and reached the highest level at harvest. These assays demonstrated that individual STS genes are regulated differentially in response to PM infection and during development in the two grape varieties. The present study yields basic knowledge for further investigation of the regulation and function of each STS gene in grapevine and provides experimental evidences for the functional annotation of the STS gene family in the grapevine genome.

  10. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation

    Science.gov (United States)

    Yue, Yanan; Liu, Jianzhao; He, Chuan

    2015-01-01

    N6-methyladenosine (m6A) is the most prevalent and internal modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, although its functional relevance remained a mystery for decades. This modification is installed by the m6A methylation “writers” and can be reversed by demethylases that serve as “erasers.” In this review, we mainly summarize recent progress in the study of the m6A mRNA methylation machineries across eukaryotes and discuss their newly uncovered biological functions. The broad roles of m6A in regulating cell fates and embryonic development highlight the existence of another layer of epigenetic regulation at the RNA level, where mRNA is subjected to chemical modifications that affect protein expression. PMID:26159994

  11. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress.

    Science.gov (United States)

    Yoshida, Takuya; Fujita, Yasunari; Maruyama, Kyonoshin; Mogami, Junro; Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Under osmotic stress conditions such as drought and high salinity, the plant hormone abscisic acid (ABA) plays important roles in stress-responsive gene expression mainly through three bZIP transcription factors, AREB1/ABF2, AREB2/ABF4 and ABF3, which are activated by SNF1-related kinase 2s (SnRK2s) such as SRK2D/SnRK2.2, SRK2E/SnRK2.6 and SRK2I/SnRK2.3 (SRK2D/E/I). However, since the three AREB/ABFs are crucial, but not exclusive, for the SnRK2-mediated gene expression, transcriptional pathways governed by SRK2D/E/I are not fully understood. Here, we show that a bZIP transcription factor, ABF1, is a functional homolog of AREB1, AREB2 and ABF3 in ABA-dependent gene expression in Arabidopsis. Despite lower expression levels of ABF1 than those of the three AREB/ABFs, the areb1 areb2 abf3 abf1 mutant plants displayed increased sensitivity to drought and decreased sensitivity to ABA in primary root growth compared with the areb1 areb2 abf3 mutant. Genome-wide transcriptome analyses revealed that expression of downstream genes of SRK2D/E/I, which include many genes functioning in osmotic stress responses and tolerance such as transcription factors and LEA proteins, was mostly impaired in the quadruple mutant. Thus, these results indicate that the four AREB/ABFs are the predominant transcription factors downstream of SRK2D/E/I in ABA signalling in response to osmotic stress during vegetative growth.

  12. Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNA accumulation

    OpenAIRE

    Shanmugapriya, Gnanasekaran; Das, Sudhanshu Sekhar; Veluthambi, Karuppannan

    2015-01-01

    Mungbean yellow mosaic virus (MYMV) is a bipartite begomovirus that infects many pulse crops such as blackgram, mungbean, mothbean, Frenchbean, and soybean. We tested the efficacy of the transgenically expressed intron-spliced hairpin RNA gene of the transcriptional activator protein (hpTrAP) in reducing MYMV DNA accumulation. Tobacco plants transformed with the MYMV hpTrAP gene accumulated 21–22 nt siRNA. Leaf discs of the transgenic plants, agroinoculated with the partial dimers of MYMV, di...

  13. Crosstalk in gene expression: coupling and co-regulation of rDNA transcription, pre-ribosome assembly and pre-rRNA processing.

    Science.gov (United States)

    Granneman, Sander; Baserga, Susan J

    2005-06-01

    Ribosomes, the large RNPs that translate mRNA into protein in the cytoplasm of eukaryotic cells, are synthesized in a subcompartment of the nucleus, the nucleolus. There, transcription by Pol I yields a pre-rRNA which is modified, cleaved and assembled with ribosomal proteins to make functional ribosomes. Previously, rRNA transcription and pre-rRNA cleavage in eukaryotes were considered to be separable steps in gene expression. However, recent findings suggest that these two steps in gene expression can be concurrent and are co-regulated. Unexpectedly, optimal rDNA transcription requires the presence of a defined subset of components of the pre-rRNA processing machinery.

  14. ASGR1 and ASGR2, the Genes that Encode the Asialoglycoprotein Receptor (Ashwell Receptor, Are Expressed in Peripheral Blood Monocytes and Show Interindividual Differences in Transcript Profile

    Directory of Open Access Journals (Sweden)

    Rebecca Louise Harris

    2012-01-01

    Full Text Available Background. The asialoglycoprotein receptor (ASGPR is a hepatic receptor that mediates removal of potentially hazardous glycoconjugates from blood in health and disease. The receptor comprises two proteins, asialoglycoprotein receptor 1 and 2 (ASGR1 and ASGR2, encoded by the genes ASGR1 and ASGR2. Design and Methods. Using reverse transcription amplification (RT-PCR, expression of ASGR1 and ASGR2 was investigated in human peripheral blood monocytes. Results. Monocytes were found to express ASGR1 and ASGR2 transcripts. Correctly spliced transcript variants encoding different isoforms of ASGR1 and ASGR2 were present in monocytes. The profile of transcript variants from both ASGR1 and ASGR2 differed among individuals. Transcript expression levels were compared with the hepatocyte cell line HepG2 which produces high levels of ASGPR. Monocyte transcripts were 4 to 6 orders of magnitude less than in HepG2 but nonetheless readily detectable using standard RT-PCR. The monocyte cell line THP1 gave similar results to monocytes harvested from peripheral blood, indicating it may provide a suitable model system for studying ASGPR function in this cell type. Conclusions. Monocytes transcribe and correctly process transcripts encoding the constituent proteins of the ASGPR. Monocytes may therefore represent a mobile pool of the receptor, capable of reaching sites remote from the liver.

  15. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  16. Efficient use of artificial micro-RNA to downregulate the expression of genes at the post-transcriptional level in Arabidopsis thaliana.

    Science.gov (United States)

    Ud-Din, A; Rauf, M; Ghafoor, S; Khattak, M N K; Hameed, M W; Shah, H; Jan, S; Muhammad, K; Rehman, A; Inamullah

    2016-04-07

    Micro-RNAs are cellular components regulating gene expression at the post-transcription level. In the present study, artificial micro-RNAs were used to decrease the transcript level of two genes, AtExpA8 (encoding an expansin) and AHL25 (encoding an AT-hook motif nuclear localized protein) in Arabidopsis thaliana. The backbone of the Arabidopsis endogenous MIR319a micro-RNA was used in a site-directed mutagenesis approach for the generation of artificial micro-RNAs targeting two genes. The recombinant cassettes were expressed under the control of the CaMV 35S promoter in individual A. thaliana plants. Transgenic lines of the third generation were tested by isolating total RNA and by subsequent cDNA synthesis using oligo-dT18 primers and mRNAs as templates. The expression of the two target genes was checked through quantitative real-time polymerase chain reaction to confirm reduced transcript levels for AtExpA8 and AHL25. Downregulation of AtExpA8 resulted in the formation of short hypocotyls compared with those of the wild-type control in response to low pH and high salt concentration. This technology could be used to prevent the expression of exogenous and invading genes posing a threat to the normal cellular physiology of the host plant.

  17. Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Shieh, Jia-Ching; Cheng, Yu-Che; Su, Mao-Chang; Moore, Michael; Choo, Yen; Klug, Aaron

    2007-08-15

    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5' UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity.

  18. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression*

    Science.gov (United States)

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.

    2012-01-01

    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  19. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  20. Functional analysis of genes differentially expressed in the Drosophila wing disc: role of transcripts enriched in the wing region.

    Science.gov (United States)

    Jacobsen, Thomas L; Cain, Donna; Paul, Litty; Justiniano, Steven; Alli, Anwar; Mullins, Jeremi S; Wang, Chun Ping; Butchar, Jon P; Simcox, Amanda

    2006-12-01

    Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes.

  1. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells.

    Science.gov (United States)

    Miles, Wayne O; Korenjak, Michael; Griffiths, Lyra M; Dyer, Michael A; Provero, Paolo; Dyson, Nicholas J

    2014-10-01

    Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).

  2. Transgenic tobacco plants expressing siRNA targeted against the Mungbean yellow mosaic virus transcriptional activator protein gene efficiently block the viral DNA accumulation.

    Science.gov (United States)

    Shanmugapriya, Gnanasekaran; Das, Sudhanshu Sekhar; Veluthambi, Karuppannan

    2015-06-01

    Mungbean yellow mosaic virus (MYMV) is a bipartite begomovirus that infects many pulse crops such as blackgram, mungbean, mothbean, Frenchbean, and soybean. We tested the efficacy of the transgenically expressed intron-spliced hairpin RNA gene of the transcriptional activator protein (hpTrAP) in reducing MYMV DNA accumulation. Tobacco plants transformed with the MYMV hpTrAP gene accumulated 21-22 nt siRNA. Leaf discs of the transgenic plants, agroinoculated with the partial dimers of MYMV, displayed pronounced reduction in MYMV DNA accumulation. Thus, silencing of the TrAP gene, a suppressor of gene silencing, emerged as an effective strategy to control MYMV.

  3. Mixed molecular motor traffic on nucleic acid tracks: models of transcriptional interference and regulation of gene expression

    CERN Document Server

    Bameta, Tripti; Ghanti, Dipanwita; Ghosh, Soumendu

    2015-01-01

    RNA polymerase (RNAP) is molecular machine that polymerizes a RNA molecule, a linear heteropolymer, using a single stranded DNA (ssDNA) as the corresponding template; the sequence of monomers of the RNA is dictated by that of monomers on the ssDNA template. While polymerizing a RNA, the RNAP walks step-by-step on the ssDNA template in a specific direction. Thus, a RNAP can be regarded also as a molecular motor and the sites of start and stop of its walk on the DNA mark the two ends of the genetic message that it transcribes into RNA. Interference of transcription of two overlapping genes is believed to regulate the levels of their expression, i.e., the overall rate of the corresponding RNA synthesis, through suppressive effect of one on the other. Here we model this process as a mixed traffic of two groups of RNAP motors that are characterized by two distinct pairs of start and stop sites. Each group polymerizes identical copies of a RNA while the RNAs polymerized by the two groups are different. These models...

  4. Mixed molecular motor traffic on nucleic acid tracks: models of transcriptional interference and regulation of gene expression

    CERN Document Server

    Ghosh, Soumendu; Ghanti, Dipanwita; Chowdhury, Debashish

    2015-01-01

    While polymerizing a RNA molecule, a RNA polymerase (RNAP) walks step-by-step on the corresponding single-stranded DNA (ssDNA) template in a specific direction. Thus, a RNAP can be regarded as a molecular motor for which the ssDNA template serves as the track. The sites of start and stop of its walk on the DNA mark the two ends of the genetic message that it transcribes into RNA. Interference of transcription of two overlapping genes can strongly influence the levels of their expression, i.e., the overall rate of the synthesis of the corresponding full-length RNA molecules, through suppressive effect of one on the other. Here we model this process as a mixed traffic of two groups of RNAP motors that are characterized by two distinct pairs of on- and off-ramps. Each group polymerizes identical copies of a RNA while the RNAs polymerized by the two groups are different. These models, which may also be viewed as two interfering totally asymmetric simple exclusion processes, account for all modes of transcriptiona...

  5. The SOX11 transcription factor is a critical regulator of basal-like breast cancer growth, invasion, and basal-like gene expression.

    Science.gov (United States)

    Shepherd, Jonathan H; Uray, Ivan P; Mazumdar, Abhijit; Tsimelzon, Anna; Savage, Michelle; Hilsenbeck, Susan G; Brown, Powel H

    2016-03-15

    Basal-like breast cancers (BLBCs) are aggressive breast cancers associated with poor survival. Defining the key drivers of BLBC growth will allow identification of molecules for targeted therapy. In this study, we performed a primary screen integrating multiple assays that compare transcription factor expression and activity in BLBC and non-BLBC at the RNA, DNA, and protein levels. This integrated screen identified 33 transcription factors that were elevated in BLBC in multiple assays comparing mRNA expression, DNA cis-element sequences, or protein DNA-binding activity. In a secondary screen to identify transcription factors critical for BLBC cell growth, 8 of the 33 candidate transcription factors (TFs) were found to be necessary for growth in at least two of three BLBC cell lines. Of these 8 transcription factors, SOX11 was the only transcription factor required for BLBC growth, but not for growth of non-BLBC cells. Our studies demonstrate that SOX11 is a critical regulator of multiple BLBC phenotypes, including growth, migration, invasion, and expression of signature BLBC genes. High SOX11 expression was also found to be an independent prognostic indicator of poor survival in women with breast cancer. These results identify SOX11 as a potential target for the treatment of BLBC, the most aggressive form of breast cancer.

  6. Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Scott M Maddox

    Full Text Available Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.

  7. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes.

    Science.gov (United States)

    Kanai, Tamotsu; Akerboom, Jasper; Takedomi, Shogo; van de Werken, Harmen J G; Blombach, Fabian; van der Oost, John; Murakami, Taira; Atomi, Haruyuki; Imanaka, Tadayuki

    2007-11-16

    We identified a novel regulator, Thermococcales glycolytic regulator (Tgr), functioning as both an activator and a repressor of transcription in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tgr (TK1769) displays similarity (28% identical) to Pyrococcus furiosus TrmB (PF1743), a transcriptional repressor regulating the trehalose/maltose ATP-binding cassette transporter genes, but is more closely related (67%) to a TrmB paralog in P. furiosus (PF0124). Growth of a tgr disruption strain (Deltatgr) displayed a significant decrease in growth rate under gluconeogenic conditions compared with the wild-type strain, whereas comparable growth rates were observed under glycolytic conditions. A whole genome microarray analysis revealed that transcript levels of almost all genes related to glycolysis and maltodextrin metabolism were at relatively high levels in the Deltatgr mutant even under gluconeogenic conditions. The Deltatgr mutant also displayed defects in the transcriptional activation of gluconeogenic genes under these conditions, indicating that Tgr functions as both an activator and a repressor. Genes regulated by Tgr contain a previously identified sequence motif, the Thermococcales glycolytic motif (TGM). The TGM was positioned upstream of the Transcription factor B-responsive element (BRE)/TATA sequence in gluconeogenic promoters and downstream of it in glycolytic promoters. Electrophoretic mobility shift assay indicated that recombinant Tgr protein specifically binds to promoter regions containing a TGM. Tgr was released from the DNA when maltotriose was added, suggesting that this sugar is most likely the physiological effector. Our results strongly suggest that Tgr is a global transcriptional regulator that simultaneously controls, in response to sugar availability, both glycolytic and gluconeogenic metabolism in T. kodakaraensis via its direct binding to the TGM.

  8. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function.

    Science.gov (United States)

    Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi

    2016-12-09

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α's function in the oxidative energy metabolism of skeletal muscles. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 15-deoxy-Delta12,14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription.

    Science.gov (United States)

    Su, Rong-Ying; Chi, Kwan-Hwa; Huang, Duen-Yi; Tai, Ming-Hui; Lin, Wan-Wan

    2008-10-01

    Although 15-deoxy-Delta(12,14)-prostaglandin J(2) (15dPGJ(2)) was reported to up-regulate death receptor 5 (DR5) protein expression and sensitize TRAIL-induced cytotoxicity, its action mechanism remains unclear. Using HCT116 colon cancer cells, we found that sensitization of TRAIL-induced cytotoxicity by 15dPGJ(2) resulted from up-regulation of DR5 via gene transcription but was not associated with PPAR-gamma activation. Moreover, 15dPGJ(2) induced GRP78, XBP1, and C/EBP homologous transcription factor (CHOP) expression in HCT116 cells, confirming that 15dPGJ(2) is an endoplasmic reticulum stress inducer. Knockdown of the CHOP gene by siRNA attenuated DR5 up-regulation and the sensitized cytotoxicity in colon cancer HCT116 and SW480. With deletion plasmids of DR5 promoters, we found that the CHOP-binding site was involved in activating the DR5 gene by 15dPGJ(2). A mechanistic study showed the contributions of reactive oxygen species (ROS) and intracellular calcium in CHOP and DR5 gene up-regulation. 15dPGJ(2) was also found to induce DR5 in two prostate cancer cell lines, LNCaP and PC3. Although in LNCaP DR5 up-regulation was accompanied by CHOP expression by 15dPGJ(2), no significant increase in CHOP expression or DR5 promoter activity was observed in PC3 cells. Intriguingly, 15dPGJ(2) induced ROS and calcium production in PC3 cells. This inability to induce CHOP was not due to the p53-null in PC3 cells, as similar extents of increase in CHOP protein were found due to 15dPGJ(2) in both wild-type and p53-null HCT116 cells. In summary, the effect of up-regulation of DR5 by 15dPGJ(2) in colon cancer cells is independent of PPAR-gamma and p53 but relies on CHOP induction through gene transcription involving ROS and calcium.

  10. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis.

    Science.gov (United States)

    Moignard, Victoria; Macaulay, Iain C; Swiers, Gemma; Buettner, Florian; Schütte, Judith; Calero-Nieto, Fernando J; Kinston, Sarah; Joshi, Anagha; Hannah, Rebecca; Theis, Fabian J; Jacobsen, Sten Eirik; de Bruijn, Marella F; Göttgens, Berthold

    2013-04-01

    Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

  11. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  12. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color.

    Science.gov (United States)

    Ballester, Ana-Rosa; Molthoff, Jos; de Vos, Ric; Hekkert, Bas te Lintel; Orzaez, Diego; Fernández-Moreno, Josefina-Patricia; Tripodi, Pasquale; Grandillo, Silvana; Martin, Cathie; Heldens, Jos; Ykema, Marieke; Granell, Antonio; Bovy, Arnaud

    2010-01-01

    The color of tomato fruit is mainly determined by carotenoids and flavonoids. Phenotypic analysis of an introgression line (IL) population derived from a cross between Solanum lycopersicum 'Moneyberg' and the wild species Solanum chmielewskii revealed three ILs with a pink fruit color. These lines had a homozygous S. chmielewskii introgression on the short arm of chromosome 1, consistent with the position of the y (yellow) mutation known to result in colorless epidermis, and hence pink-colored fruit, when combined with a red flesh. Metabolic analysis showed that pink fruit lack the ripening-dependent accumulation of the yellow-colored flavonoid naringenin chalcone in the fruit peel, while carotenoid levels are not affected. The expression of all genes encoding biosynthetic enzymes involved in the production of the flavonol rutin from naringenin chalcone was down-regulated in pink fruit, suggesting that the candidate gene underlying the pink phenotype encodes a regulatory protein such as a transcription factor rather than a biosynthetic enzyme. Of 26 MYB and basic helix-loop-helix transcription factors putatively involved in regulating transcription of genes in the phenylpropanoid and/or flavonoid pathway, only the expression level of the MYB12 gene correlated well with the decrease in the expression of structural flavonoid genes in peel samples of pink- and red-fruited genotypes during ripening. Genetic mapping and segregation analysis showed that MYB12 is located on chromosome 1 and segregates perfectly with the characteristic pink fruit color. Virus-induced gene silencing of SlMYB12 resulted in a decrease in the accumulation of naringenin chalcone, a phenotype consistent with the pink-colored tomato fruit of IL1b. In conclusion, biochemical and molecular data, gene mapping, segregation analysis, and virus-induced gene silencing experiments demonstrate that the MYB12 transcription factor plays an important role in regulating the flavonoid pathway in tomato fruit

  13. Gene Expression in Chicken Reveals Correlation with Structural Genomic Features and Conserved Patterns of Transcription in the Terrestrial Vertebrates

    NARCIS (Netherlands)

    Nie, H.; Crooijmans, R.P.M.A.; Lammers, A.; Schothorst, van E.M.; Keijer, J.; Neerincx, P.; Leunissen, J.A.M.; Megens, H.J.W.C.; Groenen, M.A.M.

    2010-01-01

    Background - The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, thi

  14. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-Jun.

    Science.gov (United States)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Myeloidcell—lineage and premylocytic—stage—specific—expression of the mouse myeloperoxidase gene is controlled at initiation as well as elongation levels of transcription

    Institute of Scientific and Technical Information of China (English)

    ZHUJINGDE

    1999-01-01

    The myeloperoxidase (MPO) is an important microbicidal protein present at high concentration in the primary granule of mature granulocyte and its expression is regulated in both myeloidcell-lineage and premyelocytic-stagespecific manners.A better understanding of the underlying control mechanisms should provide insights into the temporal and co-ordinate regulation of the gene expression during granulopoiesis.We have identified its promoter by mapping the start(s) of transcription using various molecular approaches together with demonstrating the promoter function of the relevant DNA segment in a transient transfection reporter assay.Besides the major start of transcription mapped at G residue,11 nucleotide upstream of the 3' end of exon 0,the usage of that is specific to the MPO expressing cell lines,we have shown that irrespective of the MPO-expression status of the hematopoietic cells,transcription occurs broadly within a two kb region upstream of the 5' proximity of the gene,and is largely terminated in intron 2.These data support a model of the premyelocytic-stage-specific MPO expression,the control of which is operated at initiation as well as elongation levels of transcription.

  16. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  17. Developmental gonadal expression of the transcription factor SET and its target gene, P450c17 (17alpha-hydroxylase/c17,20 lyase).

    Science.gov (United States)

    Zhang, P; Compagnone, N A; Fiore, C; Vigne, J L; Culp, P; Musci, T J; Mellon, S H

    2001-10-01

    Cytochrome P450c17 catalyzes the 17alpha-hydroxylase/17,20 lyase activity needed for sex steroid synthesis. We recently characterized the nuclear phosphoprotein SET as a novel transcriptional regulator that binds to the -447/-399 region of the rat P450c17 gene, along with the transcription factors COUP-TF II, NGF-IB, and SF-1. Gel shift studies localized SET binding to nucleotides -410/-402. We have shown that SET activates transcription of the rat P450c17 gene in neuronal precursor cells and now show that it also activates transcription from the -418/-399 region of the rat P450c17 gene in mouse Leydig MA-10 cells. Studying the ontogenic expression of SET and P450c17 in the rodent gonad, we found that SET expression preceded P450c17 expression in the embryonic genital ridge, suggesting that SET may be important for initiating P450c17 expression in this region. Expression of SET also preceded P450c17 expression in the testis and ovary, and its expression was much greater during embryogenesis than in the adult gonad. In the adult rat testis, P450c17 was expressed only in Leydig cells, while SET was expressed in Leydig cells and in spermatocytes. In the adult rat ovary, P450c17 was expressed only in theca cells, while SET was expressed in theca cells and also in oocytes. Because SET is expressed early in development in the genital ridge and in the testis and ovary, and because SET has many functions in addition to its activity as a transcription factor, we determined whether SET acts a transcription factor in oocytes. The SET protein was detected by Western blots in Xenopus oocytes from stages II through VI and in mature oocytes. Using extracts of Xenopus oocytes in gel shift assays, we detected a protein that bound to the -418/-399 region of the rat P450c17 gene, to which SET binds. Nuclear injection of either a -418/-399TK32LUC wildtype reporter construct or a construct containing a mutant SET site into Xenopus oocytes from stages III through VI resulted in

  18. Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver.

    Science.gov (United States)

    Fusakio, Michael E; Willy, Jeffrey A; Wang, Yongping; Mirek, Emily T; Al Baghdadi, Rana J T; Adams, Christopher M; Anthony, Tracy G; Wek, Ronald C

    2016-05-01

    Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.

  19. Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals.

    Science.gov (United States)

    D'Onofrio, C; Colantuoni, V; Cortese, R

    1985-08-01

    Human plasma retinol binding protein (RBP) is coded by a single gene and is specifically synthesized in the liver. We have characterized a lambda clone, from a human DNA library, carrying the gene coding for plasma RBP. Southern blot analysis and DNA sequencing show that the gene is composed of six exons and five introns. Primer elongation and S1 mapping experiments allowed the definition of the initiation of transcription and the identification of the putative promoter. The 5'-flanking region of the RBP gene was fused upstream to the coding sequence of the bacterial enzyme chloramphenicol acetyl transferase (CAT): the chimeric gene was introduced, by calcium phosphate precipitation, into the human hepatoma cell line Hep G2 and into HeLa cells. Efficient expression of CAT was obtained only in Hep G2. Primer elongation analysis of the RNA extracted from transfected Hep G2 showed that initiation of transcription of the transfected chimeric gene occurs at a position identical to that of the natural gene. Transcriptional analysis of Bal31 deletions from the 3' end of the RBP 5'-flanking DNA allowed the identification of the RBP gene promoter.

  20. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes.

    Science.gov (United States)

    Alkio, Merianne; Jonas, Uwe; Declercq, Myriam; Van Nocker, Steven; Knoche, Moritz

    2014-01-01

    The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., 'Regina'), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.

  1. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  2. Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions

    DEFF Research Database (Denmark)

    Nielsen, K. K.; Boye, Mette

    2005-01-01

    The aims of the present investigation were to develop and test a sensitive and reproducible method for the study of gene expression in the porcine lung pathogen Actinobacillus pleuropneumoniae by real-time quantitative reverse transcription (RT)-PCR and to evaluate a number of suitable internal...... up-regulation under iron-restricted conditions compared to bacteria grown in medium with sufficient iron. The observed expression patterns of the genes of interest were consistent with previous observations. This study therefore lends further support to the use of real-time quantitative RT...

  3. The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability

    DEFF Research Database (Denmark)

    Schachtschabel, Doreen; Arentshorst, Mark; Nitsche, Benjamin M

    2013-01-01

    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression...... of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis...

  4. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  5. Genome-wide Functional Analysis of CREB/Long-Term Memory-Dependent Transcription Reveals Distinct Basal and Memory Gene Expression Programs

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.

    2014-01-01

    SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510

  6. Genome-wide functional analysis of CREB/long-term memory-dependent transcription reveals distinct basal and memory gene expression programs.

    Science.gov (United States)

    Lakhina, Vanisha; Arey, Rachel N; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T

    2015-01-21

    Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components.

  7. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara Agata;

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...

  8. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH.

    Directory of Open Access Journals (Sweden)

    Jagannath Misra

    Full Text Available The orphan nuclear receptor estrogen-related receptor-γ (ERRγ is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER stress response. cAMP responsive element-binding protein H (CREBH is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP, whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions.

  9. Featured Article: Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis.

    Science.gov (United States)

    Maasalu, Katre; Laius, Ott; Zhytnik, Lidiia; Kõks, Sulev; Prans, Ele; Reimann, Ene; Märtson, Aare

    2017-01-01

    Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(-4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers.

  10. The Clock Protein CCA1 and the bZIP Transcription Factor HY5 Physically Interact to Regulate Gene Expression in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Christos Andronis; Simon Barak; Stephen M.Knowles; Shoji Sugano; Elaine M.Tobin

    2008-01-01

    The circadian clock regulates the expression of an array of Arabidopsis genes such as those encoding the LIGHT-HARVESTING CHLOROPHYLL A/B (Lhcb) proteins. We have previously studied the promoters of two of these Arabidopsis genes-Lhcb1*1 and Lhcb1*3-and identified a sequence that binds the clock protein CIRCADIAN CLOCK ASSOCIATED 1 (CCA1). This sequence, designated CCAl-binding site (CBS), is necessary for phytochrome and circadian responsiveness of these genes. In close proximity to this sequence, there exists a G-box core element that has been shown to bind the bZIP transcription factor HY5 in other light-regulated plant promoters. In the present study, we examined the importance of the interaction of transcription factors binding the CBS and the G-box core element in the control of normal circadian rhythmic expression of Lhcb genes. Our results show that HY5 is able to specifically bind the G-box element in the Lhcb promoters and that CCA1 can alter the binding activity of HY5. We further show that CCA1 and HY5 can physically interact and that they can act synergistically on transcription in a yeast reporter gene assay. An absence of HY5 leads to a shorter period of Lhcb1*1 circadian expression but does not affect the circadian expression of CATALASE3 (CAT3), whose promoter lacks a G-box element. Our results suggest that interaction of the HY5 and CCA1 proteins on Lhcb promoters is necessary for normal circadian expression of the Lhcb genes.

  11. Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication.

    Science.gov (United States)

    Roseman, N A; Hruby, D E

    1987-05-01

    A vaccinia virus (VV) gene required for DNA replication has been mapped to the left side of the 16-kilobase (kb) VV HindIII D DNA fragment by marker rescue of a DNA- temperature-sensitive mutant, ts17, using cloned fragments of the viral genome. The region of VV DNA containing the ts17 locus (3.6 kb) was sequenced. This nucleotide sequence contains one complete open reading frame (ORF) and two incomplete ORFs reading from left to right. Analysis of this region at early times revealed that transcription from the incomplete upstream ORF terminates coincidentally with the complete ORF encoding the ts17 gene product, which is directly downstream. The predicted proteins encoded by this region correlate well with polypeptides mapped by in vitro translation of hybrid-selected early mRNA. The nucleotide sequences of a 1.3-kb BglII fragment derived from ts17 and from two ts17 revertants were also determined, and the nature of the ts17 mutation was identified. S1 nuclease protection studies were carried out to determine the 5' and 3' ends of the transcripts and to examine the kinetics of expression of the ts17 gene during viral infection. The ts17 transcript is present at both early and late times postinfection, indicating that this gene is constitutively expressed. Surprisingly, the transcriptional start throughout infection occurs at the proposed late regulatory element TAA, which immediately precedes the putative initiation codon ATG. Although the biological activity of the ts17-encoded polypeptide was not identified, it was noted that in ts17-infected cells, expression of a nonlinked VV immediate-early gene (thymidine kinase) was deregulated at the nonpermissive temperature. This result may indicate that the ts17 gene product is functionally required at an early step of the VV replicative cycle.

  12. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  13. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare WRKY transcription factor family reveals putatively retained functions between monocots and dicots

    Directory of Open Access Journals (Sweden)

    Jansson Christer

    2008-04-01

    Full Text Available Abstract Background WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare, three different WRKY proteins have been characterized so far as regulators in sucrose signaling, pathogen defense, and in response to cold and drought. However, their phylogenetic relationship remained unresolved. Results In this study, we used available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY genes. According to their structural features, the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. Conclusion HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in monocot and dicot species.

  14. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  15. A dinucleotide deletion in the ankyrin promoter alters gene expression, transcription initiation and TFIID complex formation in hereditary spherocytosis

    OpenAIRE

    Gallagher, Patrick G.; Nilson, Douglas G.; Wong, Clara; Weisbein, Jessica L.; Garrett-Beal, Lisa J.; Eber, Stephan W.; Bodine, David M.

    2017-01-01

    Ankyrin defects are the most common cause of hereditary spherocytosis (HS). In some HS patients, mutations in the ankyrin promoter have been hypothesized to lead to decreased ankyrin mRNA synthesis. The ankyrin erythroid promoter is a member of the most common class of mammalian promoters which lack conserved TATA, initiator or other promoter cis elements and have high G+C content, functional Sp1 binding sites and multiple transcription initiation sites. We identified a novel ankyrin gene pro...

  16. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Che J. Ngwa

    2017-07-01

    Full Text Available Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA. TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry

  17. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Ngwa, Che J; Kiesow, Meike J; Papst, Olga; Orchard, Lindsey M; Filarsky, Michael; Rosinski, Alina N; Voss, Till S; Llinás, Manuel; Pradel, Gabriele

    2017-01-01

    Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1

  18. Increased expression of X-linked genes in mammals is associated with a higher stability of transcripts and an increased ribosome density.

    Science.gov (United States)

    Faucillion, Marie-Line; Larsson, Jan

    2015-03-18

    Mammalian sex chromosomes evolved from the degeneration of one homolog of a pair of ancestral autosomes, the proto-Y. This resulted in a gene dose imbalance that is believed to be restored (partially or fully) through upregulation of gene expression from the single active X-chromosome in both sexes by a dosage compensatory mechanism. We analyzed multiple genome-wide RNA stability data sets and found significantly longer average half-lives for X-chromosome transcripts than for autosomal transcripts in various human cell lines, both male and female, and in mice. Analysis of ribosome profiling data shows that ribosome density is higher on X-chromosome transcripts than on autosomal transcripts in both humans and mice, suggesting that the higher stability is causally linked to a higher translation rate. Our results and observations are in accordance with a dosage compensatory upregulation of expressed X-linked genes. We therefore propose that differential mRNA stability and translation rates of the autosomes and sex chromosomes contribute to an evolutionarily conserved dosage compensation mechanism in mammals.

  19. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  20. Transcriptional enhancer from milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, Gerald F. (Ballwin, MO); Schmidhauser, Christian T. (Berkeley, CA); Bissell, Mina J. (Berkeley, CA)

    1999-01-01

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  1. Transcriptional enhancer from milk protein genes

    Energy Technology Data Exchange (ETDEWEB)

    Casperson, G.F.; Schmidhauser, C.T.; Bissell, M.J.

    1999-12-21

    The invention relates to novel enhancer nucleotide sequences which stimulate transcription of heterologous DNA in cells in culture. The enhancers are derived from major milk protein genes by the process of deletion mapping and functional analysis. The invention also relates to expression vectors containing the novel enhancers.

  2. Linking Hematopoietic Differentiation to Co-Expressed Sets of Pluripotency-Associated and Imprinted Genes and to Regulatory microRNA-Transcription Factor Motifs

    Science.gov (United States)

    Hamed, Mohamed; Trumm, Johannes; Spaniol, Christian; Sethi, Riccha; Irhimeh, Mohammad R.; Fuellen, Georg; Paulsen, Martina

    2017-01-01

    Maintenance of cell pluripotency, differentiation, and reprogramming are regulated by complex gene regulatory networks (GRNs) including monoallelically-expressed imprinted genes. Besides transcriptional control, epigenetic modifications and microRNAs contribute to cellular differentiation. As a model system for studying the capacity of cells to preserve their pluripotency state and the onset of differentiation and subsequent specialization, murine hematopoiesis was used and compared to embryonic stem cells (ESCs) as a control. Using published microarray data, the expression profiles of two sets of genes, pluripotent and imprinted, were compared to a third set of known hematopoietic genes. We found that more than half of the pluripotent and imprinted genes are clearly upregulated in ESCs but subsequently repressed during hematopoiesis. The remaining genes were either upregulated in hematopoietic progenitors or in differentiated blood cells. The three gene sets each consist of three similarly behaving gene groups with similar expression profiles in various lineages of the hematopoietic system as well as in ESCs. To explain this co-regulation behavior, we explored the transcriptional and post-transcriptional mechanisms of pluripotent and imprinted genes and their regulator/target miRNAs in six different hematopoietic lineages. Therewith, lineage-specific transcription factor (TF)-miRNA regulatory networks were generated and their topologies and functional impacts during hematopoiesis were analyzed. This led to the identification of TF-miRNA co-regulatory motifs, for which we validated the contribution to the cellular development of the corresponding lineage in terms of statistical significance and relevance to biological evidence. This analysis also identified key miRNAs and TFs/genes that might play important roles in the derived lineage networks. These molecular associations suggest new aspects of the cellular regulation of the onset of cellular differentiation and

  3. Effect of dihydrofolate reductase gene knock-down on the expression of heart and neural crest derivatives expressed transcript 2 in zebrafish cardiac development

    Institute of Scientific and Technical Information of China (English)

    SUN Shu-na; GUI Yong-hao; WANG Yue-xiang; QIAN Lin-xi; JIANG Qiu; LIU Dong; SONG Hou-yan

    2007-01-01

    Background Folic acid is very important for embryonic development and dihydrofolate reductase is one of the key enzymes in the process of folic acid performing its biological function. Therefore, the dysfunction of dihydrofolate reductase can inhibit the function of folic acid and finally cause the developmental malformations. In this study, we observed the abnormal cardiac phenotypes in dihydrofolate reductase (DHFR) gene knock-down zebrafish embryos,investigated the effect of DHFR on the expression of heart and neural crest derivatives expressed transcript 2 (HAND2)and explored the possible mechanism of DHFR knock-down inducing zebrafish cardiac malformations.Methods Morpholino oligonucleotides were microinjected into fertilized eggs to knock down the functions of DHFR or HAND2. Full length of HAND2 mRNA which was transcribed in vitro was microinjected into fertilized eggs to overexpress HAND2. The cardiac morphologies, the heart rates and the ventricular shortening fraction were observed and recorded under the microscope at 48 hours post fertilization. Whole-mount in situ hybridization and real-time PCR were performed to detect HAND2 expression.Results DHFR or HAND2 knock-down caused the cardiac malformation in zebrafish. The expression of HAND2 was obviously reduced in DHFR knock-down embryos (P<0.05). Microinjecting HAND2 mRNA into fertilized eggs can induce HAND2 overexpression. HAND2 overexpression rescued the cardiac malformation phenotypes of DHFR knock-down embryos.Conclusions DHFR plays a crucial role in cardiac development. The down-regulation of HAND2 caused by DHFR knock-down is the possible mechanism of DHFR knock-down inducing the cardiac malformation.

  4. Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing.

    Directory of Open Access Journals (Sweden)

    Malcolm Fisher

    Full Text Available Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.

  5. Forced FOG1 expression in erythroleukemia cells: Induction of erythroid genes and repression of myelo-lymphoid transcription factor PU.1.

    Science.gov (United States)

    Fujiwara, Tohru; Sasaki, Katsuyuki; Saito, Kei; Hatta, Shunsuke; Ichikawa, Satoshi; Kobayashi, Masahiro; Okitsu, Yoko; Fukuhara, Noriko; Onishi, Yasushi; Harigae, Hideo

    2017-02-16

    The transcription factor GATA-1-interacting protein Friend of GATA-1 (FOG1) is essential for proper transcriptional activation and repression of GATA-1 target genes; yet, the mechanisms by which FOG1 exerts its activating and repressing functions remain unknown. Forced FOG1 expression in human K562 erythroleukemia cells induced the expression of erythroid genes (SLC4A1, globins) but repressed that of GATA-2 and PU.1. A quantitative chromatin immunoprecipitation (ChIP) analysis demonstrated increased GATA-1 chromatin occupancy at both FOG1-activated as well as FOG1-repressed gene loci. However, while TAL1 chromatin occupancy was significantly increased at FOG1-activated gene loci, it was significantly decreased at FOG1-repressed gene loci. When FOG1 was overexpressed in TAL1-knocked down K562 cells, FOG1-mediated activation of HBA, HBG, and SLC4A1 was significantly compromised by TAL1 knockdown, suggesting that FOG1 may require TAL1 to activate GATA-1 target genes. Promoter analysis and quantitative ChIP analysis demonstrated that FOG1-mediated transcriptional repression of PU.1 would be mediated through a GATA-binding element located at its promoter, accompanied by significantly decreased H3 acetylation at lysine 4 and 9 (K4 and K9) as well as H3K4 trimethylation. Our results provide important mechanistic insight into the role of FOG1 in the regulation of GATA-1-regulated genes and suggest that FOG1 has an important role in inducing cells to differentiate toward the erythroid lineage rather than the myelo-lymphoid one by repressing the expression of PU.1.

  6. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice

    Science.gov (United States)

    Liang, Ying; Liu, Yue; Hou, Bailing; Zhang, Wei; Liu, Ming; Sun, Yu-E; Gu, Xiaoping

    2016-01-01

    Background cAMP response element binding protein (CREB)-dependent gene expression plays an important role in central sensitization. CREB-regulated transcription coactivator 1 (CRTC1) dramatically increases CREB-mediated transcriptional activity. Brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, and miRNA-212/132, which are highly CREB responsive, function downstream from CREB/CRTC1 to mediate activity-dependent synaptic plasticity and in turn loops back to amplify CREB/CRTC1 signaling. This study aimed to investigate the role of spinal CRTC1 in the maintenance of bone cancer pain using an RNA interference method. Results Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeNCrlVr mice to induce bone cancer pain. Western blotting was applied to examine the expression of spinal phospho-Ser133 CREB and CRTC1. We further investigated effects of repeated intrathecal administration with Adenoviruses expressing CRTC1-small interfering RNA (siRNA) on nociceptive behaviors and on the upregulation of CREB/CRTC1-target genes associated with bone cancer pain. Inoculation of osteosarcoma cells induced progressive mechanical allodynia and spontaneous pain, and resulted in upregulation of spinal p-CREB and CRTC1. Repeated intrathecal administration with Adenoviruses expressing CRTC1-siRNA attenuated bone cancer–evoked pain behaviors, and reduced CREB/CRTC1-target genes expression in spinal cord, including BDNF, NR2B, and miR-212/132. Conclusions Upregulation of CRTC1 enhancing CREB-dependent gene transcription in spinal cord may play an important role in bone cancer pain. Inhibition of spinal CRTC1 expression reduced bone cancer pain. Interruption to the positive feedback circuit between CREB/CRTC1 and its targets may contribute to the analgesic effects. These findings may provide further insight into the mechanisms and treatment of bone cancer pain. PMID:27060162

  7. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    Science.gov (United States)

    Cusick, Kathleen D; Fitzgerald, Lisa A; Cockrell, Allison L; Biffinger, Justin C

    2015-01-01

    The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR) is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1) aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2) anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3) aerobic growth with different heating methods: gyrA, gap, gyrB; (4) all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT) values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute quantification

  8. Selection and Evaluation of Reference Genes for Reverse Transcription-Quantitative PCR Expression Studies in a Thermophilic Bacterium Grown under Different Culture Conditions.

    Directory of Open Access Journals (Sweden)

    Kathleen D Cusick

    Full Text Available The phylum Deinococcus-Thermus is a deeply-branching lineage of bacteria widely recognized as one of the most extremophilic. Members of the Thermus genus are of major interest due to both their bioremediation and biotechnology potentials. However, the molecular mechanisms associated with these key metabolic pathways remain unknown. Reverse-transcription quantitative PCR (RT-qPCR is a high-throughput means of studying the expression of a large suite of genes over time and under different conditions. The selection of a stably-expressed reference gene is critical when using relative quantification methods, as target gene expression is normalized to expression of the reference gene. However, little information exists as to reference gene selection in extremophiles. This study evaluated 11 candidate reference genes for use with the thermophile Thermus scotoductus when grown under different culture conditions. Based on the combined stability values from BestKeeper and NormFinder software packages, the following are the most appropriate reference genes when comparing: (1 aerobic and anaerobic growth: TSC_c19900, polA2, gyrA, gyrB; (2 anaerobic growth with varied electron acceptors: TSC_c19900, infA, pfk, gyrA, gyrB; (3 aerobic growth with different heating methods: gyrA, gap, gyrB; (4 all conditions mentioned above: gap, gyrA, gyrB. The commonly-employed rpoC does not serve as a reliable reference gene in thermophiles, due to its expression instability across all culture conditions tested here. As extremophiles exhibit a tendency for polyploidy, absolute quantification was employed to determine the ratio of transcript to gene copy number in a subset of the genes. A strong negative correlation was found to exist between ratio and threshold cycle (CT values, demonstrating that CT changes reflect transcript copy number, and not gene copy number, fluctuations. Even with the potential for polyploidy in extremophiles, the results obtained via absolute

  9. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.

  10. Alternative transcriptional initiation and alternative use of polyadenylation signals in the alphaB-crystallin gene expressed in different chicken tissues.