WorldWideScience

Sample records for gene transcripts expressed

  1. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  2. Sequential Logic Model Deciphers Dynamic Transcriptional Control of Gene Expressions

    Science.gov (United States)

    Yeo, Zhen Xuan; Wong, Sum Thai; Arjunan, Satya Nanda Vel; Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar; Giuliani, Alessandro; Tsuchiya, Masa

    2007-01-01

    Background Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. Methodology Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM) is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. Principal Findings SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin) during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. Conclusions/Significance The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet providing rich biological

  3. Sequential logic model deciphers dynamic transcriptional control of gene expressions.

    Directory of Open Access Journals (Sweden)

    Zhen Xuan Yeo

    Full Text Available BACKGROUND: Cellular signaling involves a sequence of events from ligand binding to membrane receptors through transcription factors activation and the induction of mRNA expression. The transcriptional-regulatory system plays a pivotal role in the control of gene expression. A novel computational approach to the study of gene regulation circuits is presented here. METHODOLOGY: Based on the concept of finite state machine, which provides a discrete view of gene regulation, a novel sequential logic model (SLM is developed to decipher control mechanisms of dynamic transcriptional regulation of gene expressions. The SLM technique is also used to systematically analyze the dynamic function of transcriptional inputs, the dependency and cooperativity, such as synergy effect, among the binding sites with respect to when, how much and how fast the gene of interest is expressed. PRINCIPAL FINDINGS: SLM is verified by a set of well studied expression data on endo16 of Strongylocentrotus purpuratus (sea urchin during the embryonic midgut development. A dynamic regulatory mechanism for endo16 expression controlled by three binding sites, UI, R and Otx is identified and demonstrated to be consistent with experimental findings. Furthermore, we show that during transition from specification to differentiation in wild type endo16 expression profile, SLM reveals three binary activities are not sufficient to explain the transcriptional regulation of endo16 expression and additional activities of binding sites are required. Further analyses suggest detailed mechanism of R switch activity where indirect dependency occurs in between UI activity and R switch during specification to differentiation stage. CONCLUSIONS/SIGNIFICANCE: The sequential logic formalism allows for a simplification of regulation network dynamics going from a continuous to a discrete representation of gene activation in time. In effect our SLM is non-parametric and model-independent, yet

  4. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  5. Cooperative binding of transcription factors promotes bimodal gene expression response.

    Directory of Open Access Journals (Sweden)

    Pablo S Gutierrez

    Full Text Available In the present work we extend and analyze the scope of our recently proposed stochastic model for transcriptional regulation, which considers an arbitrarily complex cis-regulatory system using only elementary reactions. Previously, we determined the role of cooperativity on the intrinsic fluctuations of gene expression for activating transcriptional switches, by means of master equation formalism and computer simulation. This model allowed us to distinguish between two cooperative binding mechanisms and, even though the mean expression levels were not affected differently by the acting mechanism, we showed that the associated fluctuations were different. In the present generalized model we include other regulatory functions in addition to those associated to an activator switch. Namely, we introduce repressive regulatory functions and two theoretical mechanisms that account for the biphasic response that some cis-regulatory systems show to the transcription factor concentration. We have also extended our previous master equation formalism in order to include protein production by stochastic translation of mRNA. Furthermore, we examine the graded/binary scenarios in the context of the interaction energy between transcription factors. In this sense, this is the first report to show that the cooperative binding of transcription factors to DNA promotes the "all-or-none" phenomenon observed in eukaryotic systems. In addition, we confirm that gene expression fluctuation levels associated with one of two cooperative binding mechanism never exceed the fluctuation levels of the other.

  6. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  7. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  8. Predictive modelling of gene expression from transcriptional regulatory elements.

    Science.gov (United States)

    Budden, David M; Hurley, Daniel G; Crampin, Edmund J

    2015-07-01

    Predictive modelling of gene expression provides a powerful framework for exploring the regulatory logic underpinning transcriptional regulation. Recent studies have demonstrated the utility of such models in identifying dysregulation of gene and miRNA expression associated with abnormal patterns of transcription factor (TF) binding or nucleosomal histone modifications (HMs). Despite the growing popularity of such approaches, a comparative review of the various modelling algorithms and feature extraction methods is lacking. We define and compare three methods of quantifying pairwise gene-TF/HM interactions and discuss their suitability for integrating the heterogeneous chromatin immunoprecipitation (ChIP)-seq binding patterns exhibited by TFs and HMs. We then construct log-linear and ϵ-support vector regression models from various mouse embryonic stem cell (mESC) and human lymphoblastoid (GM12878) data sets, considering both ChIP-seq- and position weight matrix- (PWM)-derived in silico TF-binding. The two algorithms are evaluated both in terms of their modelling prediction accuracy and ability to identify the established regulatory roles of individual TFs and HMs. Our results demonstrate that TF-binding and HMs are highly predictive of gene expression as measured by mRNA transcript abundance, irrespective of algorithm or cell type selection and considering both ChIP-seq and PWM-derived TF-binding. As we encourage other researchers to explore and develop these results, our framework is implemented using open-source software and made available as a preconfigured bootable virtual environment. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. The transcriptional repressor DREAM is involved in thyroid gene expression

    International Nuclear Information System (INIS)

    D'Andrea, Barbara; Di Palma, Tina; Mascia, Anna; Motti, Maria Letizia; Viglietto, Giuseppe; Nitsch, Lucio; Zannini, Mariastella

    2005-01-01

    Downstream regulatory element antagonistic modulator (DREAM) was originally identified in neuroendocrine cells as a calcium-binding protein that specifically binds to downstream regulatory elements (DRE) on DNA, and represses transcription of its target genes. To explore the possibility that DREAM may regulate the endocrine activity of the thyroid gland, we analyzed its mRNA expression in undifferentiated and differentiated thyroid cells. We demonstrated that DREAM is expressed in the normal thyroid tissue as well as in differentiated thyroid cells in culture while it is absent in FRT poorly differentiated cells. In the present work, we also show that DREAM specifically binds to DRE sites identified in the 5' untranslated region (UTR) of the thyroid-specific transcription factors Pax8 and TTF-2/FoxE1 in a calcium-dependent manner. By gel retardation assays we demonstrated that thapsigargin treatment increases the binding of DREAM to the DRE sequences present in Pax8 and TTF-2/Foxe1 5' UTRs, and this correlates with a significant reduction of the expression of these genes. Interestingly, in poorly differentiated thyroid cells overexpression of exogenous DREAM strongly inhibits Pax8 expression. Moreover, we provide evidence that a mutated form of DREAM unable to bind Ca 2+ interferes with thyroid cell proliferation. Therefore, we propose that in thyroid cells DREAM is a mediator of the calcium-signaling pathway and it is involved in the regulation of thyroid cell function

  10. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    Science.gov (United States)

    Fang, Xin; Sastry, Anand; Mih, Nathan; Kim, Donghyuk; Tan, Justin; Lloyd, Colton J.; Gao, Ye; Yang, Laurence; Palsson, Bernhard O.

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN—probably the best characterized TRN—several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predict gene expression using this TRN; and (iii) how robust is our understanding of the TRN? First, we reconstructed a high-confidence TRN (hiTRN) consisting of 147 transcription factors (TFs) regulating 1,538 transcription units (TUs) encoding 1,764 genes. The 3,797 high-confidence regulatory interactions were collected from published, validated chromatin immunoprecipitation (ChIP) data and RegulonDB. For 21 different TF knockouts, up to 63% of the differentially expressed genes in the hiTRN were traced to the knocked-out TF through regulatory cascades. Second, we trained supervised machine learning algorithms to predict the expression of 1,364 TUs given TF activities using 441 samples. The algorithms accurately predicted condition-specific expression for 86% (1,174 of 1,364) of the TUs, while 193 TUs (14%) were predicted better than random TRNs. Third, we identified 10 regulatory modules whose definitions were robust against changes to the TRN or expression compendium. Using surrogate variable analysis, we also identified three unmodeled factors that systematically influenced gene expression. Our computational workflow comprehensively characterizes the predictive capabilities and systems-level functions of an organism’s TRN from disparate data types. PMID:28874552

  11. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  12. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    Science.gov (United States)

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  13. Post-transcriptional trafficking and regulation of neuronal gene expression.

    Science.gov (United States)

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  14. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  15. Transcription factor binding site enrichment analysis predicts drivers of altered gene expression in nonalcoholic steatohepatitis

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Chaput, A.L.; Novák, Petr; Cherrington, N.J.; Smith, C.L.

    2016-01-01

    Roč. 122, December 15 (2016), s. 62-71 ISSN 0006-2952 Institutional support: RVO:60077344 Keywords : Transcription factor * Liver * Gene expression * Bioinformatics Subject RIV: CE - Biochemistry Impact factor: 4.581, year: 2016

  16. Transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans

    CSIR Research Space (South Africa)

    Crampton, Michael C

    2010-07-01

    Full Text Available This presentation focused on the transcriptional analysis of heterologous gene expression using the endogenous sD promoter from Bacillus halodurans. It concludes to a successful implementation of a high throughput mRNA sandwich hybridisation...

  17. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    Science.gov (United States)

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  18. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell.

    NARCIS (Netherlands)

    Berthoumieux, S.; Jong, H. de; Baptist, G.; Pinel, C.; Ranquet, C.; Ropers, D.; Geiselmann, J.

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these

  19. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  20. Transcription Factors Encoded on Core and Accessory Chromosomes of Fusarium oxysporum Induce Expression of Effector Genes

    Science.gov (United States)

    van der Does, H. Charlotte; Schmidt, Sarah M.; Langereis, Léon; Hughes, Timothy R.

    2016-01-01

    Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called ‘effectors’. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the ‘pathogenicity’ chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol

  1. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    Science.gov (United States)

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2007-06-01

    Full Text Available Abstract Background The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.

  3. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    López-Barragán María J

    2011-11-01

    Full Text Available Abstract Background It has been shown that nearly a quarter of the initial predicted gene models in the Plasmodium falciparum genome contain errors. Although there have been efforts to obtain complete cDNA sequences to correct the errors, the coverage of cDNA sequences on the predicted genes is still incomplete, and many gene models for those expressed in sexual or mosquito stages have not been validated. Antisense transcripts have widely been reported in P. falciparum; however, the extent and pattern of antisense transcripts in different developmental stages remain largely unknown. Results We have sequenced seven bidirectional libraries from ring, early and late trophozoite, schizont, gametocyte II, gametocyte V, and ookinete, and four strand-specific libraries from late trophozoite, schizont, gametocyte II, and gametocyte V of the 3D7 parasites. Alignment of the cDNA sequences to the 3D7 reference genome revealed stage-specific antisense transcripts and novel intron-exon splicing junctions. Sequencing of strand-specific cDNA libraries suggested that more genes are expressed in one direction in gametocyte than in schizont. Alternatively spliced genes, antisense transcripts, and stage-specific expressed genes were also characterized. Conclusions It is necessary to continue to sequence cDNA from different developmental stages, particularly those of non-erythrocytic stages. The presence of antisense transcripts in some gametocyte and ookinete genes suggests that these antisense RNA may play an important role in gene expression regulation and parasite development. Future gene expression studies should make use of directional cDNA libraries. Antisense transcripts may partly explain the observed discrepancy between levels of mRNA and protein expression.

  4. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  5. Cryptic Transcription and Early Termination in the Control of Gene Expression

    Directory of Open Access Journals (Sweden)

    Jessie Colin

    2011-01-01

    Full Text Available Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs. CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.

  6. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  7. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  8. Tumoral Environment Triggers Transcript Anomalies in Established Tumors: Induction of Altered Gene Expression and of Aberrant, Truncated and B2 Repeat-Containing Gene Transcripts

    Directory of Open Access Journals (Sweden)

    Pieter Rottiers

    1999-12-01

    Full Text Available In addition to eugenetic changes, cancerous cells exhibit extensive modifications in the expression levels of a variety of genes. The phenotypic switch observed after inoculation of T lymphoma cells into syngenic mice illustrates the active participation of tumoral environment in the induction of an aberrant gene expression pattern. To further substantiate this contribution, we performed polymerase chain reaction (PCR-based subtraction suppression hybridization (SSH to identify genes that are differentially expressed in tumor-derived EL4/13.3 cells compared to the same cells isolated from cultures. Besides a number of unknown genes, the subtracted library contained several known genes that have been reported to be expressed at increased levels in tumors and/or to contribute to carcinogenesis. Apart from clones representing translated transcripts, the subtracted library also contained a high number of clones representing B2 repeat elements, viz. short interspersed repetitive elements that are transcribed by RNA polymerase III. Northern blotting confirmed the induction of B2 transcripts in tumor tissue and also revealed induction of chimeric, B2 repeat-containing mRNA. The appearance of chimeric transcripts was accompanied by aberrant, shorter-than-full-length transcripts, specifically from upregulated genes. Accordingly, in addition to altered gene expression, tumoral environmental triggers constitute a potent mechanism to create an epigenetic diversity in cancers by inducing extensive transcript anomalies.

  9. The strategy of fusion genes construction determines efficient expression of introduced transcription factors.

    Science.gov (United States)

    Adamus, Tomasz; Konieczny, Paweł; Sekuła, Małgorzata; Sułkowski, Maciej; Majka, Marcin

    2014-01-01

    The main goal in gene therapy and biomedical research is an efficient transcription factors (TFs) delivery system. SNAIL, a zinc finger transcription factor, is strongly involved in tumor, what makes its signaling pathways an interesting research subject. The necessity of tracking activation of intracellular pathways has prompted fluorescent proteins usage as localization markers. Advanced molecular cloning techniques allow to generate fusion proteins from fluorescent markers and transcription factors. Depending on fusion strategy, the protein expression levels and nuclear transport ability are significantly different. The P2A self-cleavage motif through its cleavage ability allows two single proteins to be simultaneously expressed. The aim of this study was to compare two strategies for introducing a pair of genes using expression vector system. We have examined GFP and SNAI1 gene fusions by comprising common nucleotide polylinker (multiple cloning site) or P2A motif in between them, resulting in one fusion or two independent protein expressions respectively. In each case transgene expression levels and translation efficiency as well as nuclear localization of expressed protein have been analyzed. Our data showed that usage of P2A motif provides more effective nuclear transport of SNAIL transcription factor than conventional genes linker. At the same time the fluorescent marker spreads evenly in subcellular space.

  10. Multiple post-transcriptional regulatory mechanisms in ferritin gene expression

    International Nuclear Information System (INIS)

    Mattia, E.; Den Blaauwen, J.; Van Renswoude, J.; Ashwell, G.

    1989-01-01

    The authors have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. They show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations of total ferritin heavy (H) and light (L) subunit mRNAs rise 2- to 5-fold and 2- to 3-fold, respectively, over the control values, while the amount of the protein increases 10- to 30-fold. The hemin-induced increment in ferritin subunit mRNA is not prevented by deferoxamine, suggesting that it is not directly mediated by chelatable iron. In vitro nuclear transcription analyses performed on nuclei isolated from control cells and cells grown in the presence of hemin indicate that the rates of synthesis of H- and L-subunit mRNAs remain constant. They conclude that iron-induced ferritin biosynthesis is governed by multiple post-transcriptional regulatory mechanisms. They propose that exposure of cells to iron leads to stabilization of ferritin mRNAs, in addition to activation and translation of stored H-and L-subunit mRNAs

  11. Laccase Gene Family in Cerrena sp. HYB07: Sequences, Heterologous Expression and Transcriptional Analysis

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2016-08-01

    Full Text Available Laccases are a class of multi-copper oxidases with industrial potential. In this study, eight laccases (Lac1–8 from Cerrena sp. strain HYB07, a white-rot fungus with high laccase yields, were analyzed. The laccases showed moderate identities to each other as well as with other fungal laccases and were predicted to have high redox potentials except for Lac6. Selected laccase isozymes were heterologously expressed in the yeast Pichia pastoris, and different enzymatic properties were observed. Transcription of the eight laccase genes was differentially regulated during submerged and solid state fermentation, as shown by quantitative real-time polymerase chain reaction and validated reference genes. During 6-day submerged fermentation, Lac7 and 2 were successively the predominantly expressed laccase gene, accounting for over 95% of all laccase transcripts. Interestingly, accompanying Lac7 downregulation, Lac2 transcription was drastically upregulated on days 3 and 5 to 9958-fold of the level on day 1. Consistent with high mRNA abundance, Lac2 and 7, but not other laccases, were identified in the fermentation broth by LC-MS/MS. In solid state fermentation, less dramatic differences in transcript abundance were observed, and Lac3, 7 and 8 were more highly expressed than other laccase genes. Elucidating the properties and expression profiles of the laccase gene family will facilitate understanding, production and commercialization of the fungal strain and its laccases.

  12. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    Science.gov (United States)

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    Science.gov (United States)

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  14. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  15. Transcriptional organization of the DNA region controlling expression of the K99 gene cluster.

    Science.gov (United States)

    Roosendaal, B; Damoiseaux, J; Jordi, W; de Graaf, F K

    1989-01-01

    The transcriptional organization of the K99 gene cluster was investigated in two ways. First, the DNA region, containing the transcriptional signals was analyzed using a transcription vector system with Escherichia coli galactokinase (GalK) as assayable marker and second, an in vitro transcription system was employed. A detailed analysis of the transcription signals revealed that a strong promoter PA and a moderate promoter PB are located upstream of fanA and fanB, respectively. No promoter activity was detected in the intercistronic region between fanB and fanC. Factor-dependent terminators of transcription were detected and are probably located in the intercistronic region between fanA and fanB (T1), and between fanB and fanC (T2). A third terminator (T3) was observed between fanC and fanD and has an efficiency of 90%. Analysis of the regulatory region in an in vitro transcription system confirmed the location of the respective transcription signals. A model for the transcriptional organization of the K99 cluster is presented. Indications were obtained that the trans-acting regulatory polypeptides FanA and FanB both function as anti-terminators. A model for the regulation of expression of the K99 gene cluster is postulated.

  16. Regulation of expression of two LY-6 family genes by intron retention and transcription induced chimerism

    Directory of Open Access Journals (Sweden)

    Mallya Meera

    2008-09-01

    Full Text Available Abstract Background Regulation of the expression of particular genes can rely on mechanisms that are different from classical transcriptional and translational control. The LY6G5B and LY6G6D genes encode LY-6 domain proteins, whose expression seems to be regulated in an original fashion, consisting of an intron retention event which generates, through an early premature stop codon, a non-coding transcript, preventing expression in most cell lines and tissues. Results The MHC LY-6 non-coding transcripts have shown to be stable and very abundant in the cell, and not subject to Nonsense Mediated Decay (NMD. This retention event appears not to be solely dependent on intron features, because in the case of LY6G5B, when the intron is inserted in the artificial context of a luciferase expression plasmid, it is fully spliced but strongly stabilises the resulting luciferase transcript. In addition, by quantitative PCR we found that the retained and spliced forms are differentially expressed in tissues indicating an active regulation of the non-coding transcript. EST database analysis revealed that these genes have an alternative expression pathway with the formation of Transcription Induced Chimeras (TIC. This data was confirmed by RT-PCR, revealing the presence of different transcripts that would encode the chimeric proteins CSNKβ-LY6G5B and G6F-LY6G6D, in which the LY-6 domain would join to a kinase domain and an Ig-like domain, respectively. Conclusion In conclusion, the LY6G5B and LY6G6D intron-retained transcripts are not subjected to NMD and are more abundant than the properly spliced forms. In addition, these genes form chimeric transcripts with their neighbouring same orientation 5' genes. Of interest is the fact that the 5' genes (CSNKβ or G6F undergo differential splicing only in the context of the chimera (CSNKβ-LY6G5B or G6F-LY6G6C and not on their own.

  17. Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Deniaud

    Full Text Available BACKGROUND: The ubiquitous transcription factor Sp1 regulates the expression of a vast number of genes involved in many cellular functions ranging from differentiation to proliferation and apoptosis. Sp1 expression levels show a dramatic increase during transformation and this could play a critical role for tumour development or maintenance. Although Sp1 deregulation might be beneficial for tumour cells, its overexpression induces apoptosis of untransformed cells. Here we further characterised the functional and transcriptional responses of untransformed cells following Sp1 overexpression. METHODOLOGY AND PRINCIPAL FINDINGS: We made use of wild-type and DNA-binding-deficient Sp1 to demonstrate that the induction of apoptosis by Sp1 is dependent on its capacity to bind DNA. Genome-wide expression profiling identified genes involved in cancer, cell death and cell cycle as being enriched among differentially expressed genes following Sp1 overexpression. In silico search to determine the presence of Sp1 binding sites in the promoter region of modulated genes was conducted. Genes that contained Sp1 binding sites in their promoters were enriched among down-regulated genes. The endogenous sp1 gene is one of the most down-regulated suggesting a negative feedback loop induced by overexpressed Sp1. In contrast, genes containing Sp1 binding sites in their promoters were not enriched among up-regulated genes. These results suggest that the transcriptional response involves both direct Sp1-driven transcription and indirect mechanisms. Finally, we show that Sp1 overexpression led to a modified expression of G1/S transition regulatory genes such as the down-regulation of cyclin D2 and the up-regulation of cyclin G2 and cdkn2c/p18 expression. The biological significance of these modifications was confirmed by showing that the cells accumulated in the G1 phase of the cell cycle before the onset of apoptosis. CONCLUSION: This study shows that the binding to DNA

  18. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    Science.gov (United States)

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional

  19. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  20. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John

    2017-01-01

    to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  1. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  2. Transcriptional expression of type I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis

    DEFF Research Database (Denmark)

    Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben

    2011-01-01

    Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic locations. The pathogenesis is much debated, and type I interferons could be involved. The expression of genes of the type I interferon response were profiled by a specific PCR Array...... of RNA obtained from ectopic and eutopic endometrium collected from 9 endometriosis patients and 9 healthy control women. Transcriptional expression levels of selected interferon-regulated and housekeeping genes were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably...... expressed housekeeping genes for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven housekeeping genes were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP, and YWHAZ expression...

  3. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Yunlin Chen

    2013-01-01

    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  4. Gene expression analysis of WRKY transcription factors in Arabidopsis thaliana cell cultures during a parabolic flight

    Science.gov (United States)

    Babbick, Maren; Barjaktarović, Žarko; Hampp, Ruediger

    Plants sense gravity by specialized cells (statocytes) and adjust growth and development accordingly. It has, however, also been shown that plant cells which are not part of specialized tissues are also able to sense gravitational forces. Therefore we used undifferentiated, homogeneous cell cultures of Arabidopsis thaliana (cv. Columbia) in order to identify early alterations in gene expression as a response to altered gravitational field strengths. In this contribution we report on cell cultures exposed to parabolic flights (approximately 20 sec of microgravity). For this short-term exposure study, we specifically checked for genes at the beginning of signal transduction chains, such as those coding for transcription factors (TFs). TFs are small proteins that regulate expression of their target genes by binding to specific promoter sequences. Our main focus were members of the so-called WRKY TF family. WRKY TFs are known to be involved in various physiological processes like senescence and pathogen defense. By quantifying transcriptional changes of these genes by real-time RT-PCR, we wanted to find out, how gene expression is affected by both hyperand microgravity conditions during a parabolic flight. For this purpose Arabidopsis thaliana callus cultures were metabolically quenched by the injection of RNAlater at the end of the microgravity-phase of each parabola. The data we present will show how fast changes in amounts of transcripts will occur, and to what degree the expression profiles are comparable with data obtained from exposures to hypergravity and simulated microgravity.

  5. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    International Nuclear Information System (INIS)

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun

    2005-01-01

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor κB (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 -/- progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation

  6. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    LENUS (Irish Health Repository)

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  7. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  8. Reference genes for gene expression analysis by real-time reverse transcription polymerase chain reaction of renal cell carcinoma.

    Science.gov (United States)

    Bjerregaard, Henriette; Pedersen, Shona; Kristensen, Søren Risom; Marcussen, Niels

    2011-12-01

    Differentiation between malignant renal cell carcinoma and benign oncocytoma is of great importance to choose the optimal treatment. Accurate preoperative diagnosis of renal tumor is therefore crucial; however, existing imaging techniques and histologic examinations are incapable of providing an optimal differentiation profile. Analysis of gene expression of molecular markers is a new possibility but relies on appropriate standardization to compare different samples. The aim of this study was to identify stably expressed reference genes suitable for the normalization of results extracted from gene expression analysis of renal tumors. Expression levels of 8 potential reference genes (ATP5J, HMBS, HPRT1, PPIA, TBP, 18S, GAPDH, and POLR2A) were examined by real-time reverse transcription polymerase chain reaction in tumor and normal tissue from removed kidneys from 13 patients with renal cell carcinoma and 5 patients with oncocytoma. The expression levels of genes were compared by gene stability value M, average gene stability M, pairwise variation V, and coefficient of variation CV. More candidates were not suitable for the purpose, but a combination of HMBS, PPIA, ATP5J, and TBP was found to be the best combination with an average gene stability value M of 0.9 and a CV of 0.4 in the 18 tumors and normal tissues. A combination of 4 genes, HMBS, PPIA, ATP5J, and TBP, is a possible reference in renal tumor gene expression analysis by reverse transcription polymerase chain reaction. A combination of four genes, HMBS, PPIA, ATP5J and TBP, being stably expressed in tissues from RCC is possible reference genes for gene expression analysis.

  9. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    International Nuclear Information System (INIS)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben A

    2008-01-01

    Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent studies. Besides classification of outcome, these global expression patterns may reflect biological mechanisms involved in metastasis of breast cancer. Our purpose has been to investigate pathways and transcription factors involved in metastasis by use of gene expression data sets. We have analyzed 8 publicly available gene expression data sets. A global approach, 'gene set enrichment analysis' as well as an approach focusing on a subset of significantly differently regulated genes, GenMAPP, has been applied to rank pathway gene sets according to differential regulation in metastasizing tumors compared to non-metastasizing tumors. Meta-analysis has been used to determine overrepresentation of pathways and transcription factors targets, concordant deregulated in metastasizing breast tumors, in several data sets. The major findings are up-regulation of cell cycle pathways and a metabolic shift towards glucose metabolism reflected in several pathways in metastasizing tumors. Growth factor pathways seem to play dual roles; EGF and PDGF pathways are decreased, while VEGF and sex-hormone pathways are increased in tumors that metastasize. Furthermore, migration, proteasome, immune system, angiogenesis, DNA repair and several signal transduction pathways are associated to metastasis. Finally several transcription factors e.g. E2F, NFY, and YY1 are identified as being involved in metastasis. By pathway meta-analysis many biological mechanisms beyond major characteristics such as proliferation are identified. Transcription factor analysis identifies a number of key factors that support central pathways. Several previously proposed treatment targets are identified and several new pathways that may

  10. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    Science.gov (United States)

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  11. Undifferentiated embryonic cell transcription factor 1 regulates ESC chromatin organization and gene expression

    DEFF Research Database (Denmark)

    Kooistra, Susanne M; van den Boom, Vincent; Thummer, Rajkumar P

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES...... cell chromatin structure. Using chromatin immunoprecipitation-on-chip analysis, we identified >1,700 UTF1 target genes that significantly overlap with previously identified Nanog, Oct4, Klf-4, c-Myc, and Rex1 targets. Gene expression profiling showed that UTF1 knock down results in increased expression...... of a large set of genes, including a significant number of UTF1 targets. UTF1 knock down (KD) ES cells are, irrespective of the increased expression of several self-renewal genes, Leukemia inhibitory factor (LIF) dependent. However, UTF1 KD ES cells are perturbed in their differentiation in response...

  12. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    International Nuclear Information System (INIS)

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-01-01

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic β-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  13. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  14. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  15. Identification of upstream transcription factors (TFs) for expression signature genes in breast cancer.

    Science.gov (United States)

    Zang, Hongyan; Li, Ning; Pan, Yuling; Hao, Jingguang

    2017-03-01

    Breast cancer is a common malignancy among women with a rising incidence. Our intention was to detect transcription factors (TFs) for deeper understanding of the underlying mechanisms of breast cancer. Integrated analysis of gene expression datasets of breast cancer was performed. Then, functional annotation of differentially expressed genes (DEGs) was conducted, including Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Furthermore, TFs were identified and a global transcriptional regulatory network was constructed. Seven publically available GEO datasets were obtained, and a set of 1196 DEGs were identified (460 up-regulated and 736 down-regulated). Functional annotation results showed that cell cycle was the most significantly enriched pathway, which was consistent with the fact that cell cycle is closely related to various tumors. Fifty-three differentially expressed TFs were identified, and the regulatory networks consisted of 817 TF-target interactions between 46 TFs and 602 DEGs in the context of breast cancer. Top 10 TFs covering the most downstream DEGs were SOX10, NFATC2, ZNF354C, ARID3A, BRCA1, FOXO3, GATA3, ZEB1, HOXA5 and EGR1. The transcriptional regulatory networks could enable a better understanding of regulatory mechanisms of breast cancer pathology and provide an opportunity for the development of potential therapy.

  16. The FOUR LIPS and MYB88 transcription factor genes are widely expressed in Arabidopsis thaliana during development.

    Science.gov (United States)

    Lei, Qin; Lee, EunKyoung; Keerthisinghe, Sandra; Lai, Lien; Li, Meng; Lucas, Jessica R; Wen, Xiaohong; Ren, Xiaolin; Sack, Fred D

    2015-09-01

    The FOUR LIPS (FLP) and MYB88 transcription factors, which are closely related in structure and function, control the development of stomata, as well as entry into megasporogenesis in Arabidopsis thaliana. However, other locations where these transcription factors are expressed are poorly described. Documenting additional locations where these genes are expressed might define new functions for these genes. Expression patterns were examined throughout vegetative and reproductive development. The expression from two transcriptional-reporter fusions were visualized with either β-glucuronidase (GUS) or green fluorescence protein (GFP). Both flp and myb88 genes were expressed in many, previously unreported locations, consistent with the possibility of additional functions for FLP and MYB88. Moreover, expression domains especially of FLP display sharp cutoffs or boundaries. In addition to stomatal and reproductive development, FLP and MYB88, which are R2R3 MYB transcription factor genes, are expressed in many locations in cells, tissues, and organs. © 2015 Botanical Society of America.

  17. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  18. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  19. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  20. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    Directory of Open Access Journals (Sweden)

    Lee Yeon-Su

    2010-05-01

    Full Text Available Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. Methods We assessed the suitability of six possible reference genes, beta-actin (ACTB, glyceraldehydes-3-phosphate dehydrogenase (GAPDH, hypoxanthine phosphoribosyl transferase 1 (HPRT1, beta-2-microglobulin (B2M, ribosomal subunit L29 (RPL29 and 18S ribosomal RNA (18S rRNA in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. Results This RT-qPCR study showed that there are statistically significant (p Conclusion This study validated RPL29 and RPL29-B2M as the best single reference genes and combination, for RT-qPCR analysis of 'all stomach tissues', and B2M and B2M-GAPDH as the best single reference gene and combination, for 'stomach cancer cell lines'. Use of these validated reference genes should provide more exact interpretation of differential gene expressions at transcription level in stomach cancer.

  1. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR

    International Nuclear Information System (INIS)

    Rho, Hyun-Wook; Lee, Byoung-Chan; Choi, Eun-Seok; Choi, Il-Ju; Lee, Yeon-Su; Goh, Sung-Ho

    2010-01-01

    Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a powerful method for the analysis of gene expression. Target gene expression levels are usually normalized to a consistently expressed reference gene also known as internal standard, in the same sample. However, much effort has not been expended thus far in the search for reference genes suitable for the study of stomach cancer using RT-qPCR, although selection of optimal reference genes is critical for interpretation of results. We assessed the suitability of six possible reference genes, beta-actin (ACTB), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), hypoxanthine phosphoribosyl transferase 1 (HPRT1), beta-2-microglobulin (B2M), ribosomal subunit L29 (RPL29) and 18S ribosomal RNA (18S rRNA) in 20 normal and tumor stomach tissue pairs of stomach cancer patients and 6 stomach cancer cell lines, by RT-qPCR. Employing expression stability analyses using NormFinder and geNorm algorithms we determined the order of performance of these reference genes and their variation values. This RT-qPCR study showed that there are statistically significant (p < 0.05) differences in the expression levels of HPRT1 and 18S rRNA in 'normal-' versus 'tumor stomach tissues'. The stability analyses by geNorm suggest B2M-GAPDH, as best reference gene combination for 'stomach cancer cell lines'; RPL29-HPRT1, for 'all stomach tissues'; and ACTB-18S rRNA, for 'all stomach cell lines and tissues'. NormFinder also identified B2M as the best reference gene for 'stomach cancer cell lines', RPL29-B2M for 'all stomach tissues', and 18S rRNA-ACTB for 'all stomach cell lines and tissues'. The comparisons of normalized expression of the target gene, GPNMB, showed different interpretation of target gene expression depend on best single reference gene or combination. This study validated RPL29 and RPL29-B2M as the best single reference

  2. Global transcriptional regulatory network for Escherichia coli robustly connects gene expression to transcription factor activities

    DEFF Research Database (Denmark)

    Fang, Xin; Sastry, Anand; Mih, Nathan

    2017-01-01

    Transcriptional regulatory networks (TRNs) have been studied intensely for >25 y. Yet, even for the Escherichia coli TRN-probably the best characterized TRN-several questions remain. Here, we address three questions: (i) How complete is our knowledge of the E. coli TRN; (ii) how well can we predi...

  3. Transcriptional regulation of human RANK ligand gene expression by E2F1

    International Nuclear Information System (INIS)

    Hu Yan; Sun Meng; Nadiminty, Nagalakshmi; Lou Wei; Pinder, Elaine; Gao, Allen C.

    2008-01-01

    Receptor activator of nuclear factor kappa B ligand (RANKL) is a critical osteoclastogenic factor involved in the regulation of bone resorption, immune function, the development of mammary gland and cardiovascular system. To understand the transcriptional regulation of RANKL, we amplified and characterized a 1890 bp 5'-flanking sequence of human RANKL gene (-1782 bp to +108 bp relative to the transcription start site). Using a series of deletion mutations of the 1890 bp RANKL promoter, we identified a 72 bp region (-172 to -100 bp) mediating RANKL basal transcriptional activity. Sequence analysis revealed a putative E2F binding site within this 72 bp region in the human RANKL promoter. Overexpression of E2F1 increased RANKL promoter activity, while down-regulation of E2F1 expression by small interfering RNA decreased RANKL promoter activity. RT-PCR and enzyme linked immunosorbent assays (ELISA) further demonstrated that E2F1 induced the expression of RANKL. Electrophoretic gel mobility shift assays (EMSA) and antibody competition assays confirmed that E2F1 proteins bind to the consensus E2F binding site in the RANKL promoter. Mutation of the E2F consensus binding site in the RANKL promoter profoundly reduced the basal promoter activity and abolished the transcriptional modulation of RANKL by E2F1. These results suggest that E2F1 plays an important role in regulating RANKL transcription through binding to the E2F consensus binding site

  4. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.

    Science.gov (United States)

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong

    2009-07-10

    SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.

  5. Temporal dynamics and transcriptional control using single-cell gene expression analysis.

    Science.gov (United States)

    Kouno, Tsukasa; de Hoon, Michiel; Mar, Jessica C; Tomaru, Yasuhiro; Kawano, Mitsuoki; Carninci, Piero; Suzuki, Harukazu; Hayashizaki, Yoshihide; Shin, Jay W

    2013-01-01

    Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.

  6. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian; MacPherson, Cameron R; Essack, Magbubah; Kaur, Mandeep; Schaefer, Ulf; Suzuki, Harukazu; Hayashizaki, Yoshihide; Bajic, Vladimir B.

    2009-01-01

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  7. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  8. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  9. Uncovering transcriptional regulation of glycerol metabolism in Aspergilli through genome-wide gene expression data anlysis

    DEFF Research Database (Denmark)

    Salazar, Margarita Pena; Vongsangnak, Wanwipa; Panagiotou, Gianni

    2009-01-01

    Glycerol is catabolized by a wide range of microorganisms including Aspergillus species. To identify the transcriptional regulation of glycerol metabolism in Aspergillus, we analyzed data from triplicate batch fermentations of three different Aspergilli (Aspergillus nidulans, Aspergillus oryzae...... and Aspergillus niger) with glucose and glycerol as carbon sources. Protein comparisons and cross-analysis with gene expression data of all three species resulted in the identification of 88 genes having a conserved response across the three Aspergilli. A promoter analysis of the up-regulated genes led...... to the identification of a conserved binding site for a putative regulator to be 5′-TGCGGGGA-3′, a binding site that is similar to the binding site for Adr1 in yeast and humans. We show that this Adr1 consensus binding sequence was over-represented on promoter regions of several genes in A. nidulans, A. oryzae and A...

  10. MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression.

    Science.gov (United States)

    Xu, Meixiang; Cross, Courtney E; Speidel, Jordan T; Abdel-Rahman, Sherif Z

    2016-10-01

    The O 6 -methylguanine-DNA methyltransferase (MGMT) protein removes O 6 -alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity. In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively. Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system. The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

  11. Osteoblast-specific transcription factor Osterix increases vitamin D receptor gene expression in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    Full Text Available Osterix (Osx is an osteoblast-specific transcription factor required for osteoblast differentiation from mesenchymal stem cells. In Osx knock-out mice, no bone formation occurs. The vitamin D receptor (VDR is a member of the nuclear hormone receptor superfamily that regulates target gene transcription to ensure appropriate control of calcium homeostasis and bone development. Here, we provide several lines of evidence that show that the VDR gene is a target for transcriptional regulation by Osx in osteoblasts. For example, calvaria obtained from Osx-null embryos displayed dramatic reductions in VDR expression compared to wild-type calvaria. Stable overexpression of Osx stimulated VDR expression in C2C12 mesenchymal cells. Inhibition of Osx expression by siRNA led to downregulation of VDR. In contrast, Osx levels remained unchanged in osteoblasts in VDR-null mice. Mechanistic approaches using transient transfection assays showed that Osx directly activated a 1 kb fragment of the VDR promoter in a dose-dependent manner. To define the region of the VDR promoter that was responsive to Osx, a series of VDR promoter deletion mutants were examined and the minimal Osx-responsive region was refined to the proximal 120 bp of the VDR promoter. Additional point mutants were used to identify two GC-rich regions that were responsible for VDR promoter activation by Osx. Chromatin immunoprecipitation assays demonstrated that endogenous Osx was associated with the native VDR promoter in primary osteoblasts in vivo. Cumulatively, these data strongly support a direct regulatory role for Osx in VDR gene expression. They further provide new insight into potential mechanisms and pathways that Osx controls in osteoblasts and during the process of osteoblastic cell differentiation.

  12. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  13. Conservation of transcription factor binding events predicts gene expression across species

    Science.gov (United States)

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to function, defined as expression of the target genes. We show that (i) there is a significantly higher degree of conservation of TFBEs when the target gene is expressed in both species; (ii) there is increased conservation of binding events for groups of TFs compared to individual TFs; and (iii) conserved TFBEs have a greater impact on the expression of their target genes than non-conserved ones. These results link conservation of structural elements (TFBEs) to conservation of function (gene expression) and suggest a higher degree of functional conservation than implied by previous studies. PMID:21622661

  14. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  15. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  16. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data.

    Directory of Open Access Journals (Sweden)

    Evi Berchtold

    Full Text Available Several methods predict activity changes of transcription factors (TFs from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score, which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score.

  17. Transcriptional coactivator NT-PGC-1α promotes gluconeogenic gene expression and enhances hepatic gluconeogenesis.

    Science.gov (United States)

    Chang, Ji Suk; Jun, Hee-Jin; Park, Minsung

    2016-10-01

    The transcriptional coactivator PGC-1α plays a central role in hepatic gluconeogenesis. We previously reported that alternative splicing of the PGC-1α gene produces an additional transcript encoding the truncated protein NT-PGC-1α NT-PGC-1α is co-expressed with PGC-1α and highly induced by fasting in the liver. NT-PGC-1α regulates tissue-specific metabolism, but its role in the liver has not been investigated. Thus, the objective of this study was to determine the role of hepatic NT-PGC-1α in the regulation of gluconeogenesis. Adenovirus-mediated expression of NT-PGC-1α in primary hepatocytes strongly stimulated the expression of key gluconeogenic enzyme genes (PEPCK and G6Pase), leading to increased glucose production. To further understand NT-PGC-1α function in hepatic gluconeogenesis in vivo, we took advantage of a previously reported FL-PGC-1α -/- mouse line that lacks full-length PGC-1α (FL-PGC-1α) but retains a slightly shorter and functionally equivalent form of NT-PGC-1α (NT-PGC-1α 254 ). In FL-PGC-1α -/- mice, NT-PGC-1α 254 was induced by fasting in the liver and recruited to the promoters of PEPCK and G6Pase genes. The enrichment of NT-PGC-1α 254 at the promoters was closely associated with fasting-induced increase in PEPCK and G6Pase gene expression and efficient production of glucose from pyruvate during a pyruvate tolerance test in FL-PGC-1α -/- mice. Moreover, FL-PGC-1α -/- primary hepatocytes showed a significant increase in gluconeogenic gene expression and glucose production after treatment with dexamethasone and forskolin, suggesting that NT-PGC-1α 254 is sufficient to stimulate the gluconeogenic program in the absence of FL-PGC-1α Collectively, our findings highlight the role of hepatic NT-PGC-1α in stimulating gluconeogenic gene expression and glucose production. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  19. Evidence for an indirect transcriptional regulation of glucose-6-phosphatase gene expression by liver X receptors

    International Nuclear Information System (INIS)

    Grempler, Rolf; Guenther, Susanne; Steffensen, Knut R.; Nilsson, Maria; Barthel, Andreas; Schmoll, Dieter; Walther, Reinhard

    2005-01-01

    Liver X receptor (LXR) paralogues α and β (LXRα and LXRβ) are members of the nuclear hormone receptor family and have oxysterols as endogenous ligands. LXR activation reduces hepatic glucose production in vivo through the inhibition of transcription of the key gluconeogenic enzymes phosphoenolpyruvate carboxykinase and glucose-6-phosphatase (G6Pase). In the present study, we investigated the molecular mechanisms involved in the regulation of G6Pase gene expression by LXR. Both T0901317, a synthetic LXR agonist, and the adenoviral overexpression of either LXRα or LXRβ suppressed G6Pase gene expression in H4IIE hepatoma cells. However, compared to the suppression of G6Pase expression seen by insulin, the decrease of G6Pase mRNA by LXR activation was delayed and was blocked by cycloheximide, an inhibitor of protein synthesis. These observations, together with the absence of a conserved LXR-binding element within the G6Pase promoter, suggest an indirect inhibition of G6Pase gene expression by liver X receptors

  20. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  1. Transcription factor organic cation transporter 1 (OCT-1 affects the expression of porcine Klotho (KL gene

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-07-01

    Full Text Available Klotho (KL, originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp as the porcine KL core promoter. MARC0022311SNP (A or G in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1, which was confirmed using electrophoretic mobility shift assays (EMSA and chromatin immune-precipitation (ChIP. Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1.

  2. A community resource for high-throughput quantitative RT-PCR analysis of transcription factor gene expression in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Redman Julia C

    2008-07-01

    Full Text Available Abstract Background Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs, which are arguably the most important class of regulatory proteins. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is the most sensitive method currently available for transcript quantification, and one that can be scaled up to analyze transcripts of thousands of genes in parallel. Thus, qRT-PCR is an ideal method to tackle the problem of TF transcript quantification in Medicago and other plants. Results We established a bioinformatics pipeline to identify putative TF genes in Medicago truncatula and to design gene-specific oligonucleotide primers for qRT-PCR analysis of TF transcripts. We validated the efficacy and gene-specificity of over 1000 TF primer pairs and utilized these to identify sets of organ-enhanced TF genes that may play important roles in organ development or differentiation in this species. This community resource will be developed further as more genome sequence becomes available, with the ultimate goal of producing validated, gene-specific primers for all Medicago TF genes. Conclusion High-throughput qRT-PCR using a 384-well plate format enables rapid, flexible, and sensitive quantification of all predicted Medicago transcription factor mRNAs. This resource has been utilized recently by several groups in Europe, Australia, and the USA, and we expect that it will become the 'gold-standard' for TF transcript profiling in Medicago truncatula.

  3. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  4. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    Directory of Open Access Journals (Sweden)

    Mi Zhao

    Full Text Available We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  5. A Homeodomain Transcription Factor Gene, PfMSX, Activates Expression of Pif Gene in the Pearl Oyster Pinctada fucata

    Science.gov (United States)

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5′ flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster. PMID:25099698

  6. A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata.

    Science.gov (United States)

    Zhao, Mi; He, Maoxian; Huang, Xiande; Wang, Qi

    2014-01-01

    We reported pearl oyster Pinctada fucata cDNA and genomic characterization of a new homeobox-containing protein, PfMSX. The PfMSX gene encodes a transcription factor that was localized to the nucleus. Analyses of PfMSX mRNA in tissues and developmental stages showed high expressions in mantle or D-shaped larvae. In electrophoretic mobility shift assays (EMSAs) PfMSX binded to MSX consensus binding sites in the 5' flanking region of the Pif promoter. In co-transfection experiment PfMSX transactivated reporter constructs containing Pif promoter sequences, and mutation of the MSX-binding sites attenuated transactivation. A knockdown experiment using PfMSX dsRNA showed decreased Pif mRNA and unregular crystallization of the nacreous layer using scanning electron microscopy. Our results suggested that PfMSX was a conserved homeodomain transcription factor gene, which can activate Pif gene expression through MSX binding site, and was then involved in the mineralization process in pearl oyster Pinctada fucata. Our data provided important clues about mechanisms regulating biomineralization in pearl oyster.

  7. Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, J.; Spriggs, D.; Imamura, K.; Stone, R.; Luebbers, R.; Kufe, D.

    1989-01-01

    The treatment of human HL-60 promyelocytic leukemia cells with 12-0 tetradecanoylphorbol-13-acetate (TPA) is associated with induction of tumor necrosis factor (TNF) transcripts. The study reported here has examined TPA-induced signaling mechanisms responsible for the regulation of TNF gene expression in these cells. Run-on assays demonstrated that TPA increases TNS mRNA levels by transcriptional activation of this gene. The induction of TNF transcripts by TPA was inhibited by the isoquinolinesulfonamide derivative H7 but not by HA1004, suggesting that this effect of TPA is mediated by activation of protein kinase C. TPA treatment also resulted in increased arachidonic acid release. Moreover, inhibitors of phospholipase, A/sub 2/ blocked both the increase in arachidonic acid release and the induction of TNF transcripts. These findings suggest that TPA induces TNF gene expression through the formation of arachidonic acid metabolites. Although indomethacin had no detectable effect on this induction of TNF transcripts, ketoconazole, an inhibitor of 5-lipoxygenase, blocked TPA-induced increases in TNF mRNA levels. Moreover, TNF mRNA levels were increased by the 5-lipoxygenase metabolite leukotriene B/sub 4/. In contrast, the cyclooxygenase metabolite prostaglandin E/sub 2/ inhibited the induction of TNF transcripts by TPA. Taken together, these results suggest that TPA induces TNF gene expression through the arachidonic acid cascade and that the level of TNF transcripts is regulated by metabolites of the pathway, leukotriene B/sub 4/ and prostaglandin E/sub 2/.

  8. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.

    Science.gov (United States)

    Oloriz, María I; Gil, Víctor; Rojas, Luis; Portal, Orelvis; Izquierdo, Yovanny; Jiménez, Elio; Höfte, Monica

    2012-05-01

    Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.

  9. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes.

    Science.gov (United States)

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2015-02-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNA(Leu) and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Step into the groove : engineered transcription factors as modulators of gene expression

    NARCIS (Netherlands)

    Visser, A.E.; Verschure, P.J.; Gommans, W.M.; Haisma, H.J.; Rots, M.G.

    2006-01-01

    Increasing knowledge about the influence of dysregulated gene expression in causing numerous diseases opens up new possibilities for the development of innovative therapeutics. In this chapter, we first describe different mechanisms of misregulated gene expression resulting in various

  11. Manganese Superoxide Dismutase Gene Expression Is Induced by Nanog and Oct4, Essential Pluripotent Stem Cells’ Transcription Factors

    Science.gov (United States)

    Solari, Claudia; Vázquez Echegaray, Camila; Cosentino, María Soledad; Petrone, María Victoria; Waisman, Ariel; Luzzani, Carlos; Francia, Marcos; Villodre, Emilly; Lenz, Guido; Miriuka, Santiago; Barañao, Lino; Guberman, Alejandra

    2015-01-01

    Pluripotent stem cells possess complex systems that protect them from oxidative stress and ensure genomic stability, vital for their role in development. Even though it has been reported that antioxidant activity diminishes along stem cell differentiation, little is known about the transcriptional regulation of the involved genes. The reported modulation of some of these genes led us to hypothesize that some of them could be regulated by the transcription factors critical for self-renewal and pluripotency in embryonic stem cells (ESCs) and in induced pluripotent stem cells (iPSCs). In this work, we studied the expression profile of multiple genes involved in antioxidant defense systems in both ESCs and iPSCs. We found that Manganese superoxide dismutase gene (Mn-Sod/Sod2) was repressed during diverse differentiation protocols showing an expression pattern similar to Nanog gene. Moreover, Sod2 promoter activity was induced by Oct4 and Nanog when we performed a transactivation assay using two different reporter constructions. Finally, we studied Sod2 gene regulation by modulating the expression of Oct4 and Nanog in ESCs by shRNAs and found that downregulation of any of them reduced Sod2 expression. Our results indicate that pluripotency transcription factors positively modulate Sod2 gene transcription. PMID:26642061

  12. tortuga refines Notch pathway gene expression in the zebrafish presomitic mesoderm at the post-transcriptional level.

    Science.gov (United States)

    Dill, Kariena K; Amacher, Sharon L

    2005-11-15

    We have identified the zebrafish tortuga (tor) gene by an ENU-induced mutation that disrupts the presomitic mesoderm (PSM) expression of Notch pathway genes. In tor mutants, Notch pathway gene expression persists in regions of the PSM where expression is normally off in wild type embryos. The expression of hairy/Enhancer of split-related 1 (her1) is affected first, followed by the delta genes deltaC and deltaD, and finally, by another hairy/Enhancer of split-related gene, her7. In situ hybridization with intron-specific probes for her1 and deltaC indicates that transcriptional bursts of expression are normal in tor mutants, suggesting that tor normally functions to refine her1 and deltaC message levels downstream of transcription. Despite the striking defects in Notch pathway gene expression, somite boundaries form normally in tor mutant embryos, although somitic mesoderm defects are apparent later, when cells mature to form muscle fibers. Thus, while the function of Notch pathway genes is required for proper somite formation, the tor mutant phenotype suggests that precise oscillations of Notch pathway transcripts are not essential for establishing segmental pattern in the presomitic mesoderm.

  13. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan

    2014-01-01

    Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in iden......-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients....

  14. DNA methylation alters transcriptional rates of differentially expressed genes and contributes to pathophysiology in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Pili Zhang

    2017-04-01

    Full Text Available Objective: Overnutrition can alter gene expression patterns through epigenetic mechanisms that may persist through generations. However, it is less clear if overnutrition, for example a high fat diet, modifies epigenetic control of gene expression in adults, or by what molecular mechanisms, or if such mechanisms contribute to the pathology of the metabolic syndrome. Here we test the hypothesis that a high fat diet alters hepatic DNA methylation, transcription and gene expression patterns, and explore the contribution of such changes to the pathophysiology of obesity. Methods: RNA-seq and targeted high-throughput bisulfite DNA sequencing were used to undertake a systematic analysis of the hepatic response to a high fat diet. RT-PCR, chromatin immunoprecipitation and in vivo knockdown of an identified driver gene, Phlda1, were used to validate the results. Results: A high fat diet resulted in the hypermethylation and decreased transcription and expression of Phlda1 and several other genes. A subnetwork of genes associated with Phlda1 was identified from an existing Bayesian gene network that contained numerous hepatic regulatory genes involved in lipid and body weight homeostasis. Hepatic-specific depletion of Phlda1 in mice decreased expression of the genes in the subnetwork, and led to increased oil droplet size in standard chow-fed mice, an early indicator of steatosis, validating the contribution of this gene to the phenotype. Conclusions: We conclude that a high fat diet alters the epigenetics and transcriptional activity of key hepatic genes controlling lipid homeostasis, contributing to the pathophysiology of obesity. Author Video: Author Video Watch what authors say about their articles Keywords: DNA methylation, RNA-seq, Transcription, High fat diet, Liver, Phlda1

  15. Biological data warehousing system for identifying transcriptional regulatory sites from gene expressions of microarray data.

    Science.gov (United States)

    Tsou, Ann-Ping; Sun, Yi-Ming; Liu, Chia-Lin; Huang, Hsien-Da; Horng, Jorng-Tzong; Tsai, Meng-Feng; Liu, Baw-Juine

    2006-07-01

    Identification of transcriptional regulatory sites plays an important role in the investigation of gene regulation. For this propose, we designed and implemented a data warehouse to integrate multiple heterogeneous biological data sources with data types such as text-file, XML, image, MySQL database model, and Oracle database model. The utility of the biological data warehouse in predicting transcriptional regulatory sites of coregulated genes was explored using a synexpression group derived from a microarray study. Both of the binding sites of known transcription factors and predicted over-represented (OR) oligonucleotides were demonstrated for the gene group. The potential biological roles of both known nucleotides and one OR nucleotide were demonstrated using bioassays. Therefore, the results from the wet-lab experiments reinforce the power and utility of the data warehouse as an approach to the genome-wide search for important transcription regulatory elements that are the key to many complex biological systems.

  16. Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells

    OpenAIRE

    Zhou Qing; Plath Kathrin; Fan Guoping; Mason Mike J; Horvath Steve

    2009-01-01

    Abstract Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we...

  17. Transcriptional regulation of the grape cytochrome P450 monooxygenase gene CYP736B expression in response to Xylella fastidiosa infection

    Directory of Open Access Journals (Sweden)

    Walker M Andrew

    2010-07-01

    Full Text Available Abstract Background Plant cytochrome P450 monooxygenases (CYP mediate synthesis and metabolism of many physiologically important primary and secondary compounds that are related to plant defense against a range of pathogenic microbes and insects. To determine if cytochrome P450 monooxygenases are involved in defense response to Xylella fastidiosa (Xf infection, we investigated expression and regulatory mechanisms of the cytochrome P450 monooxygenase CYP736B gene in both disease resistant and susceptible grapevines. Results Cloning of genomic DNA and cDNA revealed that the CYP736B gene was composed of two exons and one intron with GT as a donor site and AG as an acceptor site. CYP736B transcript was up-regulated in PD-resistant plants and down-regulated in PD-susceptible plants 6 weeks after Xf inoculation. However, CYP736B expression was very low in stem tissues at all evaluated time points. 5'RACE and 3'RACE sequence analyses revealed that there were three candidate transcription start sites (TSS in the upstream region and three candidate polyadenylation (PolyA sites in the downstream region of CYP736B. Usage frequencies of each transcription initiation site and each polyadenylation site varied depending on plant genotype, developmental stage, tissue, and treatment. These results demonstrate that expression of CYP736B is regulated developmentally and in response to Xf infection at both transcriptional and post-transcriptional levels. Multiple transcription start and polyadenylation sites contribute to regulation of CYP736B expression. Conclusions This report provides evidence that the cytochrome P450 monooxygenase CYP736B gene is involved in defense response at a specific stage of Xf infection in grapevines; multiple transcription initiation and polyadenylation sites exist for CYP736B in grapevine; and coordinative and selective use of transcription initiation and polyadenylation sites play an important role in regulation of CYP736B expression

  18. Gene expression of herpes simplex virus. II. Uv radiological analysis of viral transcription units

    International Nuclear Information System (INIS)

    Millette, R. L.; Klaiber, R.

    1980-01-01

    The transcriptional organization of the genome of herpes simplex virus type 1 was analyzed by measuring the sensitivity of viral polypeptide synthesis to uv irradiation of the infecting virus. Herpes simplex virus type 1 was irradiated with various doses of uv light and used to infect xeroderma pigmentosum fibroblasts. Immediate early transcription units were analyzed by having cycloheximide present throughout the period of infection, removing the drug at 8 h postinfection, and pulse-labeling proteins with [355]methionine. Delayed early transcription units were analyzed in similar studies by having 9-beta-D-arabinofuranosyladenine present during the experiment to block replication of the input irradiated genome. The results indicate that none of the immediate early genes analyzed can be cotranscribed, whereas some of the delayed early genes might be cotranscribed. No evidence was found for the existence of large, multigene transcription units

  19. Fat mass and obesity associated gene (FTO expression is regulated negatively by the transcription factor Foxa2.

    Directory of Open Access Journals (Sweden)

    Jianjin Guo

    Full Text Available Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. To investigate the transcriptional regulation of FTO expression, we created 5'-deletion constructs of the FTO promoter to determine which transcription factors are most relevant to FTO expression. The presence of an activation region at -201/+34 was confirmed by luciferase activity analysis. A potential Foxa2 (called HNF-3β binding site and an upstream stimulatory factor (USF-binding site was identified in the -100 bp fragment upstream of the transcription start site (TSS. Furthermore, using mutagenesis, we identified the Foxa2 binding sequence (-26/-14 as a negative regulatory element to the activity of the human FTO promoter. The USF binding site did not affect the FTO promoter activity. Chromatin immunoprecipitation (ChIP assays were performed to confirm Foxa2 binding to the FTO promoter. Overexpression of Foxa2 in HEK 293 cells significantly down-regulated FTO promoter activity and expression. Conversely, knockdown of Foxa2 by siRNA significantly up-regulated FTO expression. These findings suggest that Foxa2 negatively regulates the basal transcription and expression of the human FTO gene.

  20. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania.

    Directory of Open Access Journals (Sweden)

    Frédéric Bringaud

    2007-09-01

    Full Text Available Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis, Trypanosoma brucei (sleeping sickness, and Trypanosoma cruzi (Chagas disease. Analysis of their recently completed genomes confirmed the presence of non-long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements--LmSIDER1 (785 copies and LmSIDER2 (1,073 copies--that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are approximately 70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3'-untranslated regions (3'UTRs of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3'UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function.

  1. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Saveliev, Alexei; Zhu, Fan; Yuan, Yan

    2002-08-01

    Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.

  2. Epigenetic control of virulence gene expression in Pseudomonas aeruginosa by a LysR-type transcription regulator.

    Directory of Open Access Journals (Sweden)

    Keith H Turner

    2009-12-01

    Full Text Available Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR (bistable expression regulator, which encodes a LysR-type transcription regulator, controls this switch. In particular, using DNA microarrays, quantitative RT-PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic switch that controls virulence gene expression in P. aeruginosa.

  3. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei.

    Science.gov (United States)

    Cao, Yanli; Zheng, Fanglin; Wang, Lei; Zhao, Guolei; Chen, Guanjun; Zhang, Weixin; Liu, Weifeng

    2017-07-01

    Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei. © 2017 John Wiley & Sons Ltd.

  4. Transcriptional profiling in human HaCaT keratinocytes in response to kaempferol and identification of potential transcription factors for regulating differential gene expression

    Science.gov (United States)

    Kang, Byung Young; Lee, Ki-Hwan; Lee, Yong Sung; Hong, Il; Lee, Mi-Ock; Min, Daejin; Chang, Ihseop; Hwang, Jae Sung; Park, Jun Seong; Kim, Duck Hee

    2008-01-01

    Kaempferol is the major flavonol in green tea and exhibits many biomedically useful properties such as antioxidative, cytoprotective and anti-apoptotic activities. To elucidate its effects on the skin, we investigated the transcriptional profiles of kaempferol-treated HaCaT cells using cDNA microarray analysis and identified 147 transcripts that exhibited significant changes in expression. Of these, 18 were up-regulated and 129 were down-regulated. These transcripts were then classified into 12 categories according to their functional roles: cell adhesion/cytoskeleton, cell cycle, redox homeostasis, immune/defense responses, metabolism, protein biosynthesis/modification, intracellular transport, RNA processing, DNA modification/ replication, regulation of transcription, signal transduction and transport. We then analyzed the promoter sequences of differentially-regulated genes and identified over-represented regulatory sites and candidate transcription factors (TFs) for gene regulation by kaempferol. These included c-REL, SAP-1, Ahr-ARNT, Nrf-2, Elk-1, SPI-B, NF-κB and p65. In addition, we validated the microarray results and promoter analyses using conventional methods such as real-time PCR and ELISA-based transcription factor assay. Our microarray analysis has provided useful information for determining the genetic regulatory network affected by kaempferol, and this approach will be useful for elucidating gene-phytochemical interactions. PMID:18446059

  5. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments.

    Science.gov (United States)

    Liu, Juanxu; Li, Jingyu; Wang, Huinan; Fu, Zhaodi; Liu, Juan; Yu, Yixun

    2011-01-01

    Ethylene-responsive element-binding factor (ERF) genes constitute one of the largest transcription factor gene families in plants. In Arabidopsis and rice, only a few ERF genes have been characterized so far. Flower senescence is associated with increased ethylene production in many flowers. However, the characterization of ERF genes in flower senescence has not been reported. In this study, 13 ERF cDNAs were cloned from petunia. Based on the sequence characterization, these PhERFs could be classified into four of the 12 known ERF families. Their predicted amino acid sequences exhibited similarities to ERFs from other plant species. Expression analyses of PhERF mRNAs were performed in corollas and gynoecia of petunia flower. The 13 PhERF genes displayed differential expression patterns and levels during natural flower senescence. Exogenous ethylene accelerates the transcription of the various PhERF genes, and silver thiosulphate (STS) decreased the transcription of several PhERF genes in corollas and gynoecia. PhERF genes of group VII showed a strong association with the rise in ethylene production in both petals and gynoecia, and might be associated particularly with flower senescence in petunia. The effect of sugar, methyl jasmonate, and the plant hormones abscisic acid, salicylic acid, and 6-benzyladenine in regulating the different PhERF transcripts was investigated. Functional nuclear localization signal analyses of two PhERF proteins (PhERF2 and PhERF3) were carried out using fluorescence microscopy. These results supported a role for petunia PhERF genes in transcriptional regulation of petunia flower senescence processes.

  6. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology.

    Science.gov (United States)

    Xu, Yue; Li, Song Feng; Parish, Roger W

    2017-07-01

    Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles.

    Science.gov (United States)

    Cronn, Richard; Dolan, Peter C; Jogdeo, Sanjuro; Wegrzyn, Jill L; Neale, David B; St Clair, J Bradley; Denver, Dee R

    2017-07-24

    Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 10 9 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably

  8. Transcriptional profiling of protein expression related genes of Pichia pastoris under simulated microgravity.

    Directory of Open Access Journals (Sweden)

    Feng Qi

    Full Text Available The physiological responses and transcription profiling of Pichia pastoris GS115 to simulated microgravity (SMG were substantially changed compared with normal gravity (NG control. We previously reported that the recombinant P. pastoris grew faster under SMG than NG during methanol induction phase and the efficiencies of recombinant enzyme production and secretion were enhanced under SMG, which was considered as the consequence of changed transcriptional levels of some key genes. In this work, transcriptiome profiling of P. pastoris cultured under SMG and NG conditions at exponential and stationary phases were determined using next-generation sequencing (NGS technologies. Four categories of 141 genes function as methanol utilization, protein chaperone, RNA polymerase and protein transportation or secretion classified according to Gene Ontology (GO were chosen to be analyzed on the basis of NGS results. And 80 significantly changed genes were weighted and estimated by Cluster 3.0. It was found that most genes of methanol metabolism (85% of 20 genes and protein transportation or secretion (82.2% of 45 genes were significantly up-regulated under SMG. Furthermore the quantity and fold change of up-regulated genes in exponential phase of each category were higher than those of stationary phase. The results indicate that the up-regulated genes of methanol metabolism and protein transportation or secretion mainly contribute to enhanced production and secretion of the recombinant protein under SMG.

  9. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  10. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  11. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors

    Science.gov (United States)

    Spiro, Stephen

    2012-01-01

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N2O). N2O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N2O as a substrate, which is the respiratory N2O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N2O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N2O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed. PMID:22451107

  12. Nitrous oxide production and consumption: regulation of gene expression by gas-sensitive transcription factors.

    Science.gov (United States)

    Spiro, Stephen

    2012-05-05

    Several biochemical mechanisms contribute to the biological generation of nitrous oxide (N(2)O). N(2)O generating enzymes include the respiratory nitric oxide (NO) reductase, an enzyme from the flavo-diiron family, and flavohaemoglobin. On the other hand, there is only one enzyme that is known to use N(2)O as a substrate, which is the respiratory N(2)O reductase typically found in bacteria capable of denitrification (the respiratory reduction of nitrate and nitrite to dinitrogen). This article will briefly review the properties of the enzymes that make and consume N(2)O, together with the accessory proteins that have roles in the assembly and maturation of those enzymes. The expression of the genes encoding the enzymes that produce and consume N(2)O is regulated by environmental signals (typically oxygen and NO) acting through regulatory proteins, which, either directly or indirectly, control the frequency of transcription initiation. The roles and mechanisms of these proteins, and the structures of the regulatory networks in which they participate will also be reviewed.

  13. Holocarboxylase Synthetase: A Moonlighting Transcriptional Coregulator of Gene Expression and a Cytosolic Regulator of Biotin Utilization.

    Science.gov (United States)

    León-Del-Río, Alfonso; Valadez-Graham, Viviana; Gravel, Roy A

    2017-08-21

    The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.

  14. Mammalian transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes and are predicted to act as transcriptional activator hubs.

    Science.gov (United States)

    Joshi, Anagha

    2014-12-30

    Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.

  15. WRKY transcription factors involved in PR-1 gene expression in Arabidopsis

    NARCIS (Netherlands)

    Hussain, Rana Muhammad Fraz

    2012-01-01

    Salicylic acid (SA) is involved in mediating defense against biotrophic pathogens. The current knowledge of the SA-mediated signaling pathway and its effect on the transcriptional regulation of defense responses are reviewed in this thesis. PR-1 is a marker gene for systemic acquired resistance

  16. Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii

    CERN Document Server

    Durnford Dion, G; McKim, Sarah M; Sarchfield, Michelle L

    2003-01-01

    To compensate for increases in photon flux density (PFD), photosynthetic organisms possess mechanisms for reversibly modulating their photosynthetic apparatus to minimize photodamage. The photoacclimation response in Chlamydomonas reinhardtii was assessed following a 10-fold increase in PFD over 24h. In addition to a 50% reduction in the amount of chlorophyll and light-harvesting complexes (LHC) per cell, the expression of genes encoding polypeptides of the light-harvesting antenna were also affected. The abundance of Lhcb (a LHCH gene), Lhcb4 (a CP29-like gene), and Lhca (a LHCI gene) transcripts were reduced by 65 to 80%, within 1-2 h; however, the RNA levels of all three genes recovered to their low-light (LL) concentrations within 6-8 h. To determine the role of transcript turnover in this transient decline in abundance, the stability of all transcripts was measured. Although there was no change in the Lhcb or Lhca transcript turnover time, the Lhcb4 mRNA stability decreased 2.5-fold immediately following...

  17. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  18. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  19. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: factors that affect differential hdcA expression

    DEFF Research Database (Denmark)

    Calles-Enríquez, Marina; Hjort, Benjamin Benn; Andersen, Pia Skov

    2010-01-01

    to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended...... with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible...... acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high...

  20. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    International Nuclear Information System (INIS)

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A.

    2005-01-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes

  1. Correlating Gene-specific DNA Methylation Changes with Expression and Transcriptional Activity of Astrocytic KCNJ10 (Kir4.1).

    Science.gov (United States)

    Nwaobi, Sinifunanya E; Olsen, Michelle L

    2015-09-26

    DNA methylation serves to regulate gene expression through the covalent attachment of a methyl group onto the C5 position of a cytosine in a cytosine-guanine dinucleotide. While DNA methylation provides long-lasting and stable changes in gene expression, patterns and levels of DNA methylation are also subject to change based on a variety of signals and stimuli. As such, DNA methylation functions as a powerful and dynamic regulator of gene expression. The study of neuroepigenetics has revealed a variety of physiological and pathological states that are associated with both global and gene-specific changes in DNA methylation. Specifically, striking correlations between changes in gene expression and DNA methylation exist in neuropsychiatric and neurodegenerative disorders, during synaptic plasticity, and following CNS injury. However, as the field of neuroepigenetics continues to expand its understanding of the role of DNA methylation in CNS physiology, delineating causal relationships in regards to changes in gene expression and DNA methylation are essential. Moreover, in regards to the larger field of neuroscience, the presence of vast region and cell-specific differences requires techniques that address these variances when studying the transcriptome, proteome, and epigenome. Here we describe FACS sorting of cortical astrocytes that allows for subsequent examination of a both RNA transcription and DNA methylation. Furthermore, we detail a technique to examine DNA methylation, methylation sensitive high resolution melt analysis (MS-HRMA) as well as a luciferase promoter assay. Through the use of these combined techniques one is able to not only explore correlative changes between DNA methylation and gene expression, but also directly assess if changes in the DNA methylation status of a given gene region are sufficient to affect transcriptional activity.

  2. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression

    International Nuclear Information System (INIS)

    Rosenfeld, M.G.; Glass, C.K.; Adler, S.; Crenshaw, E.B. III; He, X.; Lira, S.A.; Elsholtz, H.P.; Mangalam, H.J.; Holloway, J.M.; Nelson, C.; Albert, V.R.; Ingraham, H.A.

    1988-01-01

    Accurate, regulated initiation of mRNA transcription by RNA polymerase II is dependent on the actions of a variety of positive and negative trans-acting factors that bind cis-acting promoter and enhancer elements. These transcription factors may exert their actions in a tissue-specific manner or function under control of plasma membrane or intracellular ligand-dependent receptors. A major goal in the authors' laboratory has been to identify the molecular mechanisms responsible for the serial activation of hormone-encoding genes in the pituitary during development and the positive and negative regulation of their transcription. The anterior pituitary gland contains phenotypically distinct cell types, each of which expresses unique trophic hormones: adrenocorticotropic hormone, thyroid-stimulating hormone, prolactin, growth hormone, and follicle-stimulating hormone/luteinizing hormone. The structurally related prolactin and growth hormone genes are expressed in lactotrophs and somatotrophs, respectively, with their expression virtually limited to the pituitary gland. The reported transient coexpression of these two structurally related neuroendocrine genes raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s)

  3. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  4. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    Science.gov (United States)

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  5. Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells

    International Nuclear Information System (INIS)

    Chen, Jie; Li, Jian-Liang; Chen, Zirong; Griffin, James D.; Wu, Lizi

    2015-01-01

    Mucoepidermoid carcinoma (MEC) arises from multiple organs and accounts for the most common types of salivary gland malignancies. Currently, patients with unresectable and metastatic MEC have poor long-term clinical outcomes and no targeted therapies are available. The majority of MEC tumors contain a t(11;19) chromosomal translocation that fuses two genes, CRTC1 and MAML2, to generate the chimeric protein CRTC1-MAML2. CRTC1-MAML2 displays transforming activity in vitro and is required for human MEC cell growth and survival, partially due to its ability to constitutively activate CREB-mediated transcription. Consequently, CRTC1-MAML2 is implicated as a major etiologic molecular event and a therapeutic target for MEC. However, the molecular mechanisms underlying CRTC1-MAML2 oncogenic action in MEC have not yet been systematically analyzed. Elucidation of the CRTC1-MAML2-regulated transcriptional program and its underlying mechanisms will provide important insights into MEC pathogenesis that are essential for the development of targeted therapeutics. Transcriptional profiling was performed on human MEC cells with the depletion of endogenous CRTC1-MAML2 fusion or its interacting partner CREB via shRNA-mediated gene knockdown. A subset of target genes was validated via real-time RT-PCR assays. CRTC1-MAML2-perturbed molecular pathways in MEC were identified through pathway analyses. Finally, comparative analysis of CRTC1-MAML2-regulated and CREB-regulated transcriptional profiles was carried out to assess the contribution of CREB in mediating CRTC1-MAML2-induced transcription. A total of 808 differentially expressed genes were identified in human MEC cells after CRTC1-MAML2 knockdown and a subset of known and novel fusion target genes was confirmed by real-time RT-PCR. Pathway Analysis revealed that CRTC1-MAML2-regulated genes were associated with network functions that are important for cell growth, proliferation, survival, migration, and metabolism. Comparison of CRTC

  6. Two alternatively spliced GPR39 transcripts in seabream: molecular cloning, genomic organization, and regulation of gene expression by metabolic signals.

    Science.gov (United States)

    Zhang, Yong; Liu, Yun; Huang, Xigui; Liu, Xiaochun; Jiao, Baowei; Meng, Zining; Zhu, Pei; Li, Shuisheng; Lin, Haoran; Cheng, Christopher H K

    2008-12-01

    Two GPR39 transcripts, designated as sbGPR39-1a and sbGPR39-1b, were identified in black seabream (Acanthopagrus schlegeli). The deduced amino acid (aa) sequence of sbGPR39-1a contains 423 residues with seven putative transmembrane (TM) domains. On the other hand, sbGPR39-1b contains 284 aa residues with only five putative TM domains. Northern blot analysis confirmed the presence of two GPR39 transcripts in the seabream intestine, stomach, and liver. Apart from seabream, the presence of two GPR39 transcripts was also found to exist in a number of teleosts (zebrafish and pufferfish) and mammals (human and mouse). Analysis of the GPR39 gene structure in different species suggests that the two GPR39 transcripts are generated by alternative splicing. When the seabream receptors were expressed in cultured HEK293 cells, Zn(2)(+) could trigger sbGPR39-1a signaling through the serum response element pathway, but no such functionality could be detected for the sbGPR39-1b receptor. The two receptors were found to be differentially expressed in seabream tissues. sbGPR39-1a is predominantly expressed in the gastrointestinal tract. On the other hand, sbGPR39-1b is widely expressed in most central and peripheral tissues except muscle and ovary. The expression of sbGPR39-1a in the intestine and the expression of sbGPR39-1b in the hypothalamus were decreased significantly during food deprivation in seabream. On the contrary, the expression of the GH secretagogue receptors (sbGHSR-1a and sbGHSR-1b) was significantly increased in the hypothalamus of the food-deprived seabream. The reciprocal regulatory patterns of expression of these two genes suggest that both of them are involved in controlling the physiological response of the organism during starvation.

  7. Gene expression analysis of early stage endometrial cancersreveals unique transcripts associated with grade and histologybut not depth of invasion

    Directory of Open Access Journals (Sweden)

    John eRisinger

    2013-06-01

    Full Text Available Endometrial cancer is the most common gynecologic malignancy in the United States but it remains poorly understood at the molecular level. This investigation was conducted to specifically assess whether gene expression changes underlie the clinical and pathologic factors traditionally used for determining treatment regimens in women with stage I endometrial cancer. These include the effect of tumor grade, depth of myometrial invasion and histotype. We utilized oligonucleotide microarrays to assess the transcript expression profile in epithelial glandular cells laser microdissected from 79 endometrioid and 12 serous stage I endometrial cancers with a heterogeneous distribution of grade and depth of myometrial invasion, along with 12 normal post-menopausal endometrial samples. Unsupervised multidimensional scaling analyses revealed that serous and endometrioid stage I cancers have similar transcript expression patterns when compared to normal controls where 900 transcripts were identified to be differentially expressed by at least 4-fold (univariate t-test, p <0.001 between the cancers and normal endometrium. This analysis also identified transcript expression differences between serous and endometrioid cancers and tumor grade, but no apparent differences were identified as a function of depth of myometrial invasion. Four genes were validated by quantitative PCR on an independent set of cancer and normal endometrium samples. These findings indicate that unique gene expression profiles are associated with histologic type and grade, but not myometrial invasion among early stage endometrial cancers. These data provide a comprehensive perspective on the molecular alterations associated with stage I endometrial cancer, particularly those subtypes that have the worst prognosis.

  8. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Science.gov (United States)

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  9. Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis).

    Science.gov (United States)

    Pan, Feng; Wang, Yue; Liu, Huanglong; Wu, Min; Chu, Wenyuan; Chen, Danmei; Xiang, Yan

    2017-06-27

    The SQUAMOSA promoter binding protein-like (SPL) proteins are plant-specific transcription factors (TFs) that function in a variety of developmental processes including growth, flower development, and signal transduction. SPL proteins are encoded by a gene family, and these genes have been characterized in two model grass species, Zea mays and Oryza sativa. The SPL gene family has not been well studied in moso bamboo (Phyllostachys edulis), a woody grass species. We identified 32 putative PeSPL genes in the P. edulis genome. Phylogenetic analysis arranged the PeSPL protein sequences in eight groups. Similarly, phylogenetic analysis of the SBP-like and SBP proteins from rice and maize clustered them into eight groups analogous to those from P. edulis. Furthermore, the deduced PeSPL proteins in each group contained very similar conserved sequence motifs. Our analyses indicate that the PeSPL genes experienced a large-scale duplication event ~15 million years ago (MYA), and that divergence between the PeSPL and OsSPL genes occurred 34 MYA. The stress-response expression profiles and tissue-specificity of the putative PeSPL gene promoter regions showed that SPL genes in moso bamboo have potential biological functions in stress resistance as well as in growth and development. We therefore examined PeSPL gene expression in response to different plant hormone and drought (polyethylene glycol-6000; PEG) treatments to mimic biotic and abiotic stresses. Expression of three (PeSPL10, -12, -17), six (PeSPL1, -10, -12, -17, -20, -31), and nine (PeSPL5, -8, -9, -14, -15, -19, -20, -31, -32) genes remained relatively stable after treating with salicylic acid (SA), gibberellic acid (GA), and PEG, respectively, while the expression patterns of other genes changed. In addition, analysis of tissue-specific expression of the moso bamboo SPL genes during development showed differences in their spatiotemporal expression patterns, and many were expressed at high levels in flowers and

  10. Predicting spatial and temporal gene expression using an integrative model of transcription factor occupancy and chromatin state.

    Directory of Open Access Journals (Sweden)

    Bartek Wilczynski

    Full Text Available Precise patterns of spatial and temporal gene expression are central to metazoan complexity and act as a driving force for embryonic development. While there has been substantial progress in dissecting and predicting cis-regulatory activity, our understanding of how information from multiple enhancer elements converge to regulate a gene's expression remains elusive. This is in large part due to the number of different biological processes involved in mediating regulation as well as limited availability of experimental measurements for many of them. Here, we used a Bayesian approach to model diverse experimental regulatory data, leading to accurate predictions of both spatial and temporal aspects of gene expression. We integrated whole-embryo information on transcription factor recruitment to multiple cis-regulatory modules, insulator binding and histone modification status in the vicinity of individual gene loci, at a genome-wide scale during Drosophila development. The model uses Bayesian networks to represent the relation between transcription factor occupancy and enhancer activity in specific tissues and stages. All parameters are optimized in an Expectation Maximization procedure providing a model capable of predicting tissue- and stage-specific activity of new, previously unassayed genes. Performing the optimization with subsets of input data demonstrated that neither enhancer occupancy nor chromatin state alone can explain all gene expression patterns, but taken together allow for accurate predictions of spatio-temporal activity. Model predictions were validated using the expression patterns of more than 600 genes recently made available by the BDGP consortium, demonstrating an average 15-fold enrichment of genes expressed in the predicted tissue over a naïve model. We further validated the model by experimentally testing the expression of 20 predicted target genes of unknown expression, resulting in an accuracy of 95% for temporal

  11. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.

    Science.gov (United States)

    He, Ronglin; Ma, Lijuan; Li, Chen; Jia, Wendi; Li, Demao; Zhang, Dongyuan; Chen, Shulin

    2014-12-01

    Fungi grow over a relatively wide pH range and adapt to extracellular pH through a genetic regulatory system mediated by a key component PacC, which is a pH transcription regulator. The cellulase production of the filamentous fungi Trichoderma reesei is sensitive to ambient pH. To investigate the connection between cellulase expression regulation and ambient pH, an ortholog of Aspergillus nidulans pacC, Trpac1, was identified and functionally characterized using a target gene deletion strategy. Deleting Trpac1 dramatically increased the cellulase production and the transcription levels of the major cellulase genes at neutral pH, which suggested Trpac1 is involved in the regulation of cellulase production. It was further observed that the expression levels of transcription factors xyr1 and ace2 also increased in the ΔTrpac1 mutant at neutral pH. In addition, the ΔTrpac1 mutant exhibited conidiation defects under neutral and alkaline pH. These results implied that Trpac1 in involved in growth and development process and cellulase gene expression in T. reesei. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the severe virulence defect of MogR-negative bacteria is due to overexpression of FlaA. Specifically, overproduction of FlaA in MogR-negative bacteria caused pleiotropic defects in bacterial division (chaining phenotype, intracellular spread, and virulence in mice. DNA binding and microarray analyses revealed that MogR represses transcription of all known flagellar motility genes by binding directly to a minimum of two TTTT-N(5-AAAA recognition sites positioned within promoter regions such that RNA polymerase binding is occluded. Analysis of MogR protein levels demonstrated that modulation of MogR repression activity confers the temperature-specificity to flagellar motility gene expression. Epistasis analysis revealed that MogR repression of transcription is antagonized in a temperature-dependent manner by the DegU response regulator and that DegU further regulates FlaA levels through a posttranscriptional mechanism. These studies provide the first known example to our knowledge of a transcriptional repressor functioning as a master regulator controlling nonhierarchal expression of flagellar motility genes.

  13. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  14. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  15. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  16. Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq.

    Science.gov (United States)

    Hu, Ming; Zhu, Yu; Taylor, Jeremy M G; Liu, Jun S; Qin, Zhaohui S

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful new technology for mapping and quantifying transcriptomes using ultra high-throughput next-generation sequencing technologies. Using deep sequencing, gene expression levels of all transcripts including novel ones can be quantified digitally. Although extremely promising, the massive amounts of data generated by RNA-Seq, substantial biases and uncertainty in short read alignment pose challenges for data analysis. In particular, large base-specific variation and between-base dependence make simple approaches, such as those that use averaging to normalize RNA-Seq data and quantify gene expressions, ineffective. In this study, we propose a Poisson mixed-effects (POME) model to characterize base-level read coverage within each transcript. The underlying expression level is included as a key parameter in this model. Since the proposed model is capable of incorporating base-specific variation as well as between-base dependence that affect read coverage profile throughout the transcript, it can lead to improved quantification of the true underlying expression level. POME can be freely downloaded at http://www.stat.purdue.edu/~yuzhu/pome.html. yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary data are available at Bioinformatics online.

  17. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family.

    Science.gov (United States)

    Pearce, Stephen; Huttly, Alison K; Prosser, Ian M; Li, Yi-dan; Vaughan, Simon P; Gallova, Barbora; Patil, Archana; Coghill, Jane A; Dubcovsky, Jorge; Hedden, Peter; Phillips, Andrew L

    2015-06-05

    The gibberellin (GA) pathway plays a central role in the regulation of plant development, with the 2-oxoglutarate-dependent dioxygenases (2-ODDs: GA20ox, GA3ox, GA2ox) that catalyse the later steps in the biosynthetic pathway of particularly importance in regulating bioactive GA levels. Although GA has important impacts on crop yield and quality, our understanding of the regulation of GA biosynthesis during wheat and barley development remains limited. In this study we identified or assembled genes encoding the GA 2-ODDs of wheat, barley and Brachypodium distachyon and characterised the wheat genes by heterologous expression and transcript analysis. The wheat, barley and Brachypodium genomes each contain orthologous copies of the GA20ox, GA3ox and GA2ox genes identified in rice, with the exception of OsGA3ox1 and OsGA2ox5 which are absent in these species. Some additional paralogs of 2-ODD genes were identified: notably, a novel gene in the wheat B genome related to GA3ox2 was shown to encode a GA 1-oxidase, named as TaGA1ox-B1. This enzyme is likely to be responsible for the abundant 1β-hydroxylated GAs present in developing wheat grains. We also identified a related gene in barley, located in a syntenic position to TaGA1ox-B1, that encodes a GA 3,18-dihydroxylase which similarly accounts for the accumulation of unusual GAs in barley grains. Transcript analysis showed that some paralogs of the different classes of 2-ODD were expressed mainly in a single tissue or at specific developmental stages. In particular, TaGA20ox3, TaGA1ox1, TaGA3ox3 and TaGA2ox7 were predominantly expressed in developing grain. More detailed analysis of grain-specific gene expression showed that while the transcripts of biosynthetic genes were most abundant in the endosperm, genes encoding inactivation and signalling components were more highly expressed in the seed coat and pericarp. The comprehensive expression and functional characterisation of the multigene families encoding the 2-ODD

  18. B-chromosome effects on Hsp70 gene expression does not occur at transcriptional level in the grasshopper Eyprepocnemis plorans.

    Science.gov (United States)

    Navarro-Domínguez, Beatriz; Cabrero, Josefa; Camacho, Juan Pedro M; López-León, María Dolores

    2016-10-01

    As intragenomic parasites, B chromosomes can elicit stress in the host genome, thus inducing a response for host adaptation to this kind of continuous parasitism. In the grasshopper Eyprepocnemis plorans, B-chromosome presence has been previously associated with a decrease in the amount of the heat-shock protein 70 (HSP70). To investigate whether this effect is already apparent at transcriptional level, we analyze the expression levels of the Hsp70 gene in gonads and somatic tissues of males and females with and without B chromosomes from two populations, where the predominant B chromosome variants (B2 and B24) exhibit different levels of parasitism, by means of quantitative real-time PCR (qPCR) on complementary DNA (cDNA). The results revealed the absence of significant differences for Hsp70 transcripts associated with B-chromosome presence in virtually all samples. This indicates that the decrease in HSP70 protein levels, formerly reported in this species, may not be a consequence of transcriptional down-regulation of Hsp70 genes, but the result of post-transcriptional regulation. These results will help to design future studies oriented to identifying factors modulating Hsp70 expression, and will also contribute to uncover the biological role of B chromosomes in eukaryotic genomes.

  19. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora.

    Science.gov (United States)

    Pöggeler, S

    2000-06-01

    In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.

  20. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle

    Directory of Open Access Journals (Sweden)

    Velleman Sandra G

    2011-03-01

    Full Text Available Abstract Background Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. Understanding these developmental changes in agriculturally important species is essential to the production of high quality meat products. For example, consumer demand for lean, inexpensive meat products has driven the turkey industry to unprecedented production through intensive genetic selection. However, achievements of increased body weight and muscle mass have been countered by an increased incidence of myopathies and meat quality defects. In a previous study, we developed and validated a turkey skeletal muscle-specific microarray as a tool for functional genomics studies. The goals of the current study were to utilize this microarray to elucidate functional pathways of genes responsible for key events in turkey skeletal muscle development and to compare differences in gene expression between two genetic lines of turkeys. To achieve these goals, skeletal muscle samples were collected at three critical stages in muscle development: 18d embryo (hyperplasia, 1d post-hatch (shift from myoblast-mediated growth to satellite cell-modulated growth by hypertrophy, and 16wk (market age from two genetic lines: a randombred control line (RBC2 maintained without selection pressure, and a line (F selected from the RBC2 line for increased 16wk body weight. Array hybridizations were performed in two experiments: Experiment 1 directly compared the developmental stages within genetic line, while Experiment 2 directly compared the two lines within each developmental stage. Results A total of 3474 genes were differentially expressed (false discovery rate; FDR Conclusions The current study identified gene pathways and uncovered novel genes important in turkey muscle growth and development. Future experiments will focus further on several of these candidate genes and the expression and mechanism of action of

  1. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    Directory of Open Access Journals (Sweden)

    Zhichun Zhang

    Full Text Available Mutation of distal-less homeobox 3 (DLX3 is responsible for human tricho-dento-osseous syndrome (TDO with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  2. The Drosophila Translational Control Element (TCE) is required for high-level transcription of many genes that are specifically expressed in testes.

    Science.gov (United States)

    Katzenberger, Rebeccah J; Rach, Elizabeth A; Anderson, Ashley K; Ohler, Uwe; Wassarman, David A

    2012-01-01

    To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE). The TCE functions in the 5' untranslated region of Mst(3)CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp) genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID) subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and understanding the

  3. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Science.gov (United States)

    Omori, Yoshihiro; Katoh, Kimiko; Sato, Shigeru; Muranishi, Yuki; Chaya, Taro; Onishi, Akishi; Minami, Takashi; Fujikado, Takashi; Furukawa, Takahisa

    2011-01-01

    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  4. Analysis of transcriptional regulatory pathways of photoreceptor genes by expression profiling of the Otx2-deficient retina.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Omori

    Full Text Available In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease.

  5. Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer

    DEFF Research Database (Denmark)

    Thomassen, Mads; Tan, Qihua; Kruse, Torben

    2008-01-01

    ABSTRACT: BACKGROUND: Metastasis is believed to progress in several steps including different pathways but the determination and understanding of these mechanisms is still fragmentary. Microarray analysis of gene expression patterns in breast tumors has been used to predict outcome in recent stud...

  6. Stochastic modeling for the expression of a gene regulated by competing transcription factors.

    Directory of Open Access Journals (Sweden)

    Hsih-Te Yang

    Full Text Available It is widely accepted that gene expression regulation is a stochastic event. The common approach for its computer simulation requires detailed information on the interactions of individual molecules, which is often not available for the analyses of biological experiments. As an alternative approach, we employed a more intuitive model to simulate the experimental result, the Markov-chain model, in which a gene is regulated by activators and repressors, which bind the same site in a mutually exclusive manner. Our stochastic simulation in the presence of both activators and repressors predicted a Hill-coefficient of the dose-response curve closer to the experimentally observed value than the calculated value based on the simple additive effects of activators alone and repressors alone. The simulation also reproduced the heterogeneity of gene expression levels among individual cells observed by Fluorescence Activated Cell Sorting analysis. Therefore, our approach may help to apply stochastic simulations to broader experimental data.

  7. Identifying modules of coexpressed transcript units and their organization of Saccharopolyspora erythraea from time series gene expression profiles.

    Directory of Open Access Journals (Sweden)

    Xiao Chang

    Full Text Available BACKGROUND: The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. METHODOLOGY/PRINCIPAL FINDINGS: In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A, and secondary metabolism is induced when the growth is slowed down (phase B. Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. CONCLUSIONS: This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies

  8. Identifying modules of coexpressed transcript units and their organization of Saccharopolyspora erythraea from time series gene expression profiles.

    Science.gov (United States)

    Chang, Xiao; Liu, Shuai; Yu, Yong-Tao; Li, Yi-Xue; Li, Yuan-Yuan

    2010-08-12

    The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic microorganisms.

  9. Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of Fragaria vesca.

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    Full Text Available Fragaria vesca (2n = 2x = 14, the woodland strawberry, is a perennial herbaceous plant with a small sequenced genome (240 Mb. It is commonly used as a genetic model plant for the Fragaria genus and the Rosaceae family. Fruit skin color is one of the most important traits for both the commercial and esthetic value of strawberry. Anthocyanins are the most prominent pigments in strawberry that bring red, pink, white, and yellow hues to the fruits in which they accumulate. In this study, we conducted a de novo assembly of the fruit transcriptome of woodland strawberry and compared the gene expression profiles with yellow (Yellow Wonder, YW and red (Ruegen, RG fruits. De novo assembly yielded 75,426 unigenes, 21.3% of which were longer than 1,000 bp. Among the high-quality unique sequences, 45,387 (60.2% had at least one significant match to an existing gene model. A total of 595 genes, representing 0.79% of total unigenes, were differentially expressed in YW and RG. Among them, 224 genes were up-regulated and 371 genes were down-regulated in the fruit of YW. Particularly, some flavonoid biosynthetic pathway genes, including C4H, CHS, CHI, F3H, DFR and ANS, as well as some transcription factors (TFs, including MYB (putative MYB86 and MYB39, WDR and MADS, were down-regulated in YW fruit, concurrent with a reduction in anthocyanin accumulation in the yellow pigment phenotype, whereas a putative transcription repressor MYB1R was up-regulated in YW fruit. The altered expression levels of the genes encoding flavonoid biosynthetic enzymes and TFs were confirmed by quantitative RT-PCR. Our study provides important insights into the molecular mechanisms underlying the yellow pigment phenotype in F. vesca.

  10. Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses.

    Science.gov (United States)

    Gim, Jeong-An; Ayarpadikannan, Selvam; Eo, Jungwoo; Kwon, Yun-Jeong; Choi, Yuri; Lee, Hak-Kyo; Park, Kyung-Do; Yang, Young Mok; Cho, Byung-Wook; Kim, Heui-Soo

    2014-08-15

    Physical exercise induces gene expression changes that trigger glucose metabolism pathways in organisms. In the present study, we monitored the expression levels of LDHA (lactate dehydrogenase) and GYS1 (glycogen synthase 1) in the blood, to confirm the roles of these genes in exercise physiology. LDHA and GYS1 are related to glucose metabolism and fatigue recovery, and these processes could elicit economically important traits in racehorses. We collected blood samples from three retired thoroughbred racehorses, pre-exercise and immediately after 30 min of exercise. We extracted total RNA and small RNA (≤ 200 nucleotide-long) from the blood, and assessed the expression levels of LDHA, GYS1, and microRNAs (miRNAs), by using qRT-PCR. We showed that LDHA and GYS1 were down-regulated, whereas eca-miR-33a and miR-17 were up-regulated, after exercise. We used sequences from the 3' UTR of LDHA and GYS1, containing eca-miR-33a and miR-17 binding sites, to observe the down-regulation activity of each gene expression. We observed that the two miRNAs, namely, eca-miR-33a and miR-17, inhibited LDHA and GYS1 expression via binding to the 3' UTR sequences of each gene. Our results indicate that eca-miR-33a and miR-17 play important roles in the glucose metabolism pathway. In addition, our findings provide a basis for further investigation of the exercise metabolism of racehorses. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison

    Directory of Open Access Journals (Sweden)

    Saville Barry J

    2007-09-01

    Full Text Available Abstract Background Ustilago maydis is the basidiomycete fungus responsible for common smut of corn and is a model organism for the study of fungal phytopathogenesis. To aid in the annotation of the genome sequence of this organism, several expressed sequence tag (EST libraries were generated from a variety of U. maydis cell types. In addition to utility in the context of gene identification and structure annotation, the ESTs were analyzed to identify differentially abundant transcripts and to detect evidence of alternative splicing and anti-sense transcription. Results Four cDNA libraries were constructed using RNA isolated from U. maydis diploid teliospores (U. maydis strains 518 × 521 and haploid cells of strain 521 grown under nutrient rich, carbon starved, and nitrogen starved conditions. Using the genome sequence as a scaffold, the 15,901 ESTs were assembled into 6,101 contiguous expressed sequences (contigs; among these, 5,482 corresponded to predicted genes in the MUMDB (MIPS Ustilago maydis database, while 619 aligned to regions of the genome not yet designated as genes in MUMDB. A comparison of EST abundance identified numerous genes that may be regulated in a cell type or starvation-specific manner. The transcriptional response to nitrogen starvation was assessed using RT-qPCR. The results of this suggest that there may be cross-talk between the nitrogen and carbon signalling pathways in U. maydis. Bioinformatic analysis identified numerous examples of alternative splicing and anti-sense transcription. While intron retention was the predominant form of alternative splicing in U. maydis, other varieties were also evident (e.g. exon skipping. Selected instances of both alternative splicing and anti-sense transcription were independently confirmed using RT-PCR. Conclusion Through this work: 1 substantial sequence information has been provided for U. maydis genome annotation; 2 new genes were identified through the discovery of 619

  12. Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.).

    Science.gov (United States)

    Galeano, Esteban; Vasconcelos, Tarcísio Sales; Ramiro, Daniel Alves; De Martin, Valentina de Fátima; Carrer, Helaine

    2014-07-22

    Teak (Tectona grandis L.f.) is currently the preferred choice of the timber trade for fabrication of woody products due to its extraordinary qualities and is widely grown around the world. Gene expression studies are essential to explore wood formation of vascular plants, and quantitative real-time reverse transcription PCR (qRT-PCR) is a sensitive technique employed for quantifying gene expression levels. One or more appropriate reference genes are crucial to accurately compare mRNA transcripts through different tissues/organs and experimental conditions. Despite being the focus of some genetic studies, a lack of molecular information has hindered genetic exploration of teak. To date, qRT-PCR reference genes have not been identified and validated for teak. Identification and cloning of nine commonly used qRT-PCR reference genes from teak, including ribosomal protein 60s (rp60s), clathrin adaptor complexes medium subunit family (Cac), actin (Act), histone 3 (His3), sand family (Sand), β-Tubulin (Β-Tub), ubiquitin (Ubq), elongation factor 1-α (Ef-1α), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Expression profiles of these genes were evaluated by qRT-PCR in six tissue and organ samples (leaf, flower, seedling, root, stem and branch secondary xylem) of teak. Appropriate gene cloning and sequencing, primer specificity and amplification efficiency was verified for each gene. Their stability as reference genes was validated by NormFinder, BestKeeper, geNorm and Delta Ct programs. Results obtained from all programs showed that TgUbq and TgEf-1α are the most stable genes to use as qRT-PCR reference genes and TgAct is the most unstable gene in teak. The relative expression of the teak cinnamyl alcohol dehydrogenase (TgCAD) gene in lignified tissues at different ages was assessed by qRT-PCR, using TgUbq and TgEf-1α as internal controls. These analyses exposed a consistent expression pattern with both reference genes. This study proposes a first broad

  13. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    Directory of Open Access Journals (Sweden)

    Claudio Sette

    2011-04-01

    Full Text Available Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology.

  14. Morphological correlates of genital HPV infection: Viral replication, transcription and gene expression

    International Nuclear Information System (INIS)

    Crum, C.P.; Friedman, D.; Nuovo, G.; Silverstein, S.J.

    1987-01-01

    Current studies indicate a strong correlation between specific morphological changes and the presence of certain HPV strains in precancerous squamous epithelium of the cervix, vulva and vagina. HPV type 16 is the most commonly detected HPV type in cervical lesions in our experience, and 85% of these lesions exhibit some morphological features associated with aneuploid epithelium (CIN). However, over 50% of these lesions containing HPV 16 DNA exhibit, in addition, foci of epithelium indistinguishable from condyloma, although in our experience, only one HPV type(16) is detected in the majority of these lesions. DNA-DNA in situ hybridization analysis of these lesions containing HPV 16 DNA has demonstrated nucleic acids in areas resembling both condyloma and CIN, with the greatest concentration in mature cells containing cytoplasmic maturation. Ten percent of lesions containing HPV 16 produce detectable capsid antigens, and we have confirmed the presence of these antigens in the same areas which hybridize in-situ for HPV DNA. Recent studies using biotin and S-35 labeled RNa probes constructed in GEM-1 vectors indicate that early HPV genes are expressed primarily in the upper (more mature) regions of the neoplastic epithelium. Thus maturation appears to exert a positive influence on a variety of HPV functions in neoplastic epithelium, including DNA replication, early and late gene expression. It is possible that patterns of gene expression may vary between lesions associated with different HPV types or different morphologies. This possibility is being explored

  15. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  16. Affected pathways and transcriptional regulators in gene expression response to an ultra-marathon trail: Global and independent activity approaches.

    Directory of Open Access Journals (Sweden)

    Maria Maqueda

    Full Text Available Gene expression (GE analyses on blood samples from marathon and half-marathon runners have reported significant impacts on the immune and inflammatory systems. An ultra-marathon trail (UMT represents a greater effort due to its more testing conditions. For the first time, we report the genome-wide GE profiling in a group of 16 runners participating in an 82 km UMT competition. We quantified their differential GE profile before and after the race using HuGene2.0st microarrays (Affymetrix Inc., California, US. The results obtained were decomposed by means of an independent component analysis (ICA targeting independent expression modes. We observed significant differences in the expression levels of 5,084 protein coding genes resulting in an overrepresentation of 14% of the human biological pathways from the Kyoto Encyclopedia of Genes and Genomes database. These were mainly clustered on terms related with protein synthesis repression, altered immune system and infectious diseases related mechanisms. In a second analysis, 27 out of the 196 transcriptional regulators (TRs included in the Open Regulatory Annotation database were overrepresented. Among these TRs, we identified transcription factors from the hypoxia-inducible factors (HIF family EPAS1 (p< 0.01 and HIF1A (p<0.001, and others jointly described in the gluconeogenesis program such as HNF4 (p< 0.001, EGR1 (p<0.001, CEBPA (p< 0.001 and a highly specific TR, YY1 (p<0.01. The five independent components, obtained from ICA, further revealed a down-regulation of 10 genes distributed in the complex I, III and V from the electron transport chain. This mitochondrial activity reduction is compatible with HIF-1 system activation. The vascular endothelial growth factor (VEGF pathway, known to be regulated by HIF, also emerged (p<0.05. Additionally, and related to the brain rewarding circuit, the endocannabinoid signalling pathway was overrepresented (p<0.05.

  17. Detection of canine cytokine gene expression by reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Pinelli, E; van der Kaaij, S Y; Slappendel, R; Fragio, C; Ruitenberg, E J; Bernadina, W; Rutten, V P

    1999-08-02

    Further characterization of the canine immune system will greatly benefit from the availability of tools to detect canine cytokines. Our interest concerns the study on the role of cytokines in canine visceral leishmaniasis. For this purpose, we have designed specific primers using previously published sequences for the detection of canine IL-2, IFN-gamma and IL10 mRNA by reverse transcription-polymerase chain reaction (RT-PCR). For IL-4, we have cloned and sequenced this cytokine gene, and developed canine-specific primers. To control for sample-to-sample variation in the quantity of mRNA and variation in the RT and PCR reactions, the mRNA levels of glyceraldehyde-3-phosphate dehydrogenase (G3PDH), a housekeeping gene, were determined in parallel. Primers to amplify G3PDH were designed from consensus sequences obtained from the Genbank database. The mRNA levels of the cytokines mentioned here were detected from ConA-stimulated peripheral mononuclear cells derived from Leishmania-infected dogs. A different pattern of cytokine production among infected animals was found.

  18. Expression profile and distribution of Efhc1 gene transcript during rodent brain development.

    Science.gov (United States)

    Conte, Fábio F; Ribeiro, Patrícia A O; Marchesini, Rafael B; Pascoal, Vinícius D B; Silva, Joelcimar M; Oliveira, Amanda R; Gilioli, Rovílson; Sbragia, Lourenço; Bittencourt, Jackson C; Lopes-Cendes, Iscia

    2009-09-01

    One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.

  19. Ubiquitin-conjugating enzyme E2-like gene associated to pathogen response in Concholepas concholepas: SNP identification and transcription expression.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Aguilar-Espinoza, Andrea; Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2012-10-01

    Ubiquitin-conjugated E2 enzyme (UBE2) is one of the main components of the proteasome degradation cascade. Previous studies have shown an increase of expression levels in individuals challenged to some pathogen organism such as virus and bacteria. The study was to characterize the immune response of UBE2 gene in the gastropod Concholepas concholepas through expression analysis and single nucleotide polymorphisms (SNP) discovery. Hence, UBE2 was identified from a cDNA library by 454 pyrosequencing, while SNP identification and validation were performed using De novo assembly and high resolution melting analysis. Challenge trials with Vibrio anguillarum was carried out to evaluate the relative transcript abundance of UBE2 gene from two to thirty-three hours post-treatment. The results showed a partial UBE2 sequence of 889 base pair (bp) with a partial coding region of 291 bp. SNP variation (A/C) was observed at the 546th position. Individuals challenged by V. anguillarum showed an overexpression of the UBE2 gene, the expression being significantly higher in homozygous individuals (AA) than (CC) or heterozygous individuals (A/C). This study contributes useful information relating to the UBE2 gene and its association with innate immune response in marine invertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Transcription and replication result in distinct epigenetic marks following repression of early gene expression

    OpenAIRE

    Kallestad, Les; Woods, Emily; Christensen, Kendra; Gefroh, Amanda; Balakrishnan, Lata; Milavetz, Barry

    2013-01-01

    Simian Virus 40 (SV40) early transcription is repressed when the product of early transcription, T-antigen, binds to its cognate regulatory sequence, Site I, in the promoter of the SV40 minichromosome. Because SV40 minichromosomes undergo replication and transcription potentially repression could occur during active transcription or during DNA replication. Since repression is frequently epigenetically marked by the introduction of specific forms of methylated histone H3, we characterized th...

  2. Transcriptional Profiling Identifies Location-Specific and Breed-Specific Differentially Expressed Genes in Embryonic Myogenesis in Anas Platyrhynchos.

    Directory of Open Access Journals (Sweden)

    Rong-Ping Zhang

    Full Text Available Skeletal muscle growth and development are highly orchestrated processes involving significant changes in gene expressions. Differences in the location-specific and breed-specific genes and pathways involved have important implications for meat productions and meat quality. Here, RNA-Seq was performed to identify differences in the muscle deposition between two muscle locations and two duck breeds for functional genomics studies. To achieve those goals, skeletal muscle samples were collected from the leg muscle (LM and the pectoral muscle (PM of two genetically different duck breeds, Heiwu duck (H and Peking duck (P, at embryonic 15 days. Functional genomics studies were performed in two experiments: Experiment 1 directly compared the location-specific genes between PM and LM, and Experiment 2 compared the two breeds (H and P at the same developmental stage (embryonic 15 days. Almost 13 million clean reads were generated using Illumina technology (Novogene, Beijing, China on each library, and more than 70% of the reads mapped to the Peking duck (Anas platyrhynchos genome. A total of 168 genes were differentially expressed between the two locations analyzed in Experiment 1, whereas only 8 genes were differentially expressed when comparing the same location between two breeds in Experiment 2. Gene Ontology (GO and the Kyoto Encyclopedia of Genes and Genomes pathways (KEGG were used to functionally annotate DEGs (differentially expression genes. The DEGs identified in Experiment 1 were mainly involved in focal adhesion, the PI3K-Akt signaling pathway and ECM-receptor interaction pathways (corrected P-value<0.05. In Experiment 2, the DEGs were associated with only the ribosome signaling pathway (corrected P-value<0.05. In addition, quantitative real-time PCR was used to confirm 15 of the differentially expressed genes originally detected by RNA-Seq. A comparative transcript analysis of the leg and pectoral muscles of two duck breeds not only

  3. Transcriptional Elongation Factor Elongin A Regulates Retinoic Acid-Induced Gene Expression during Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Takashi Yasukawa

    2012-11-01

    Full Text Available Elongin A increases the rate of RNA polymerase II (pol II transcript elongation by suppressing transient pausing by the enzyme. Elongin A also acts as a component of a cullin-RING ligase that can target stalled pol II for ubiquitylation and proteasome-dependent degradation. It is not known whether these activities of Elongin A are functionally interdependent in vivo. Here, we demonstrate that Elongin A-deficient (Elongin A−/− embryos exhibit abnormalities in the formation of both cranial and spinal nerves and that Elongin A−/− embryonic stem cells (ESCs show a markedly decreased capacity to differentiate into neurons. Moreover, we identify Elongin A mutations that selectively inactivate one or the other of the aforementioned activities and show that mutants that retain the elongation stimulatory, but not pol II ubiquitylation, activity of Elongin A rescue neuronal differentiation and support retinoic acid-induced upregulation of a subset of neurogenesis-related genes in Elongin A−/− ESCs.

  4. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the α 2 type XI collagen gene

    International Nuclear Information System (INIS)

    Kubo, Takahiro; Matsui, Yoshito; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-01-01

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the α 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains

  6. Transcriptional profiling reveals the expression of novel genes in response to various stimuli in the human dermatophyte Trichophyton rubrum

    Directory of Open Access Journals (Sweden)

    Aquino-Ferreira Roseli

    2010-02-01

    Full Text Available Abstract Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs.

  7. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Harvey Mario

    2010-01-01

    Full Text Available Abstract Background UDP-glucuronosyltransferase 1A1 (UGT1A1 is a pivotal enzyme involved in metabolism of SN-38, the active metabolite of irinotecan commonly used to treat metastatic colorectal cancer. We previously demonstrated aberrant methylation of specific CpG dinucleotides in UGT1A1-negative cells, and revealed that methylation state of the UGT1A1 5'-flanking sequence is negatively correlated with gene transcription. Interestingly, one of these CpG dinucleotides (CpG -4 is found close to a HNF1 response element (HRE, known to be involved in activation of UGT1A1 gene expression, and within an upstream stimulating factor (USF binding site. Results Gel retardation assays revealed that methylation of CpG-4 directly affect the interaction of USF1/2 with its cognate sequence without altering the binding for HNF1-alpha. Luciferase assays sustained a role for USF1/2 and HNF1-alpha in UGT1A1 regulation in colon cancer cells. Based on the differential expression profiles of HNF1A gene in colon cell lines, we also assessed whether methylation affects its expression. In agreement with the presence of CpG islands in the HNF1A promoter, treatments of UGT1A1-negative HCT116 colon cancer cells with a DNA methyltransferase inhibitor restore HNF1A gene expression, as observed for UGT1A1. Conclusions This study reveals that basal UGT1A1 expression in colon cells is positively regulated by HNF1-alpha and USF, and negatively regulated by DNA methylation. Besides, DNA methylation of HNF1A could also play an important role in regulating additional cellular drug metabolism and transporter pathways. This process may contribute to determine local inactivation of drugs such as the anticancer agent SN-38 by glucuronidation and define tumoral response.

  8. Transcriptional Profiling of Host Gene Expression in Chicken Embryo Fibroblasts Infected with Reticuloendotheliosis Virus Strain HA1101.

    Directory of Open Access Journals (Sweden)

    Ji Miao

    Full Text Available Reticuloendotheliosis virus (REV, a member of the Gammaretrovirus genus in the Retroviridae family, causes an immunosuppressive, oncogenic and runting-stunting syndrome in multiple avian hosts. To better understand the host interactions at the transcriptional level, microarray data analysis was performed in chicken embryo fibroblast cells at 1, 3, 5, and 7 days after infection with REV. This study identified 1,785 differentially expressed genes that were classified into several functional groups including signal transduction, immune response, biological adhesion and endocytosis. Significant differences were mainly observed in the expression of genes involved in the immune response, especially during the later post-infection time points. These results revealed that differentially expressed genes IL6, STAT1, MyD88, TLRs, NF-κB, IRF-7, and ISGs play important roles in the pathogenicity of REV infection. Our study is the first to use microarray analysis to investigate REV, and these findings provide insights into the underlying mechanisms of the host antiviral response and the molecular basis of viral pathogenesis.

  9. Comparison of reverse transcription-quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis.

    Science.gov (United States)

    Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A

    2012-08-15

    Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The Arabidopsis Transcription Factor AtTCP15 Regulates Endoreduplication by Modulating Expression of Key Cell-cycle Genes

    Institute of Scientific and Technical Information of China (English)

    Zi-Yu Li; Bin Li; Ai-Wu Dong

    2012-01-01

    Plant cells frequently undergo endoreduplication,a modified cell cycle in which genome is repeatedly replicated without cytokinesis.As the key step to achieve final size and function for cells,endoreduplication is prevalent during plant development.However,mechanisms to control the balance between endoreduplication and mitotic cell division are still poorly understood.Here,we show that the Arabidopsis TCP (CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF)-family transcription factor gene AtTCP15 is expressed in trichomes,as well as in rapidly dividing and vascular tissues.Expression of AtTCP15SRDX,AtTCP15 fused with a SRDX repressor domain,induces extra endoreduplication in trichomes and cotyledon cells in transgenic Arabidopsis.On the contrary,overexpression of AtTCP15 suppresses endoreduplication in trichomes and other examined cells.Misregulation of AtTCP15 affects the expression of several important genes involved in cell-cycle regulation.AtTCP15 protein binds directly to the promoter regions of CYCA2;3 and RETINOBLASTOMA-RELATED (RBR) genes,which play key roles in endoreduplication.Taken together,AtTCP15 plays an important role in regulating endoreduplication during Arabidopsis development.

  11. Transcriptional Profiling of Saccharomyces cerevisiae Reveals the Impact of Variation of a Single Transcription Factor on Differential Gene Expression in 4NQO, Fermentable, and Nonfermentable Carbon Sources

    Directory of Open Access Journals (Sweden)

    Xiaoqing Rong-Mullins

    2018-02-01

    Full Text Available Cellular metabolism can change the potency of a chemical’s tumorigenicity. 4-nitroquinoline-1-oxide (4NQO is a tumorigenic drug widely used on animal models for cancer research. Polymorphisms of the transcription factor Yrr1 confer different levels of resistance to 4NQO in Saccharomyces cerevisiae. To study how different Yrr1 alleles regulate gene expression leading to resistance, transcriptomes of three isogenic S. cerevisiae strains carrying different Yrr1 alleles were profiled via RNA sequencing (RNA-Seq and chromatin immunoprecipitation coupled with sequencing (ChIP-Seq in the presence and absence of 4NQO. In response to 4NQO, all alleles of Yrr1 drove the expression of SNQ2 (a multidrug transporter, which was highest in the presence of 4NQO resistance-conferring alleles, and overexpression of SNQ2 alone was sufficient to overcome 4NQO-sensitive growth. Using shape metrics to refine the ChIP-Seq peaks, Yrr1 strongly associated with three loci including SNQ2. In addition to a known Yrr1 target SNG1, Yrr1 also bound upstream of RPL35B; however, overexpression of these genes did not confer 4NQO resistance. RNA-Seq data also implicated nucleotide synthesis pathways including the de novo purine pathway, and the ribonuclease reductase pathways were downregulated in response to 4NQO. Conversion of a 4NQO-sensitive allele to a 4NQO-resistant allele by a single point mutation mimicked the 4NQO-resistant allele in phenotype, and while the 4NQO resistant allele increased the expression of the ADE genes in the de novo purine biosynthetic pathway, the mutant Yrr1 increased expression of ADE genes even in the absence of 4NQO. These same ADE genes were only increased in the wild-type alleles in the presence of 4NQO, indicating that the point mutation activated Yrr1 to upregulate a pathway normally only activated in response to stress. The various Yrr1 alleles also influenced growth on different carbon sources by altering the function of the mitochondria

  12. AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting.

    Science.gov (United States)

    Velada, Isabel; Grzebelus, Dariusz; Lousa, Diana; M Soares, Cláudio; Santos Macedo, Elisete; Peixe, Augusto; Arnholdt-Schmitt, Birgit; G Cardoso, Hélia

    2018-02-17

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar "Galega vulgar". The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

  13. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  14. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  15. Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae using reverse-transcription quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Miao Yuan

    Full Text Available The brown planthopper (BPH, Nilaparvata lugens (Hemiptera, Delphacidae, is one of the most important rice pests. Abundant genetic studies on BPH have been conducted using reverse-transcription quantitative real-time PCR (qRT-PCR. Using qRT-PCR, the expression levels of target genes are calculated on the basis of endogenous controls. These genes need to be appropriately selected by experimentally assessing whether they are stably expressed under different conditions. However, such studies on potential reference genes in N. lugens are lacking. In this paper, we presented a systematic exploration of eight candidate reference genes in N. lugens, namely, actin 1 (ACT, muscle actin (MACT, ribosomal protein S11 (RPS11, ribosomal protein S15e (RPS15, alpha 2-tubulin (TUB, elongation factor 1 delta (EF, 18S ribosomal RNA (18S, and arginine kinase (AK and used four alternative methods (BestKeeper, geNorm, NormFinder, and the delta Ct method to evaluate the suitability of these genes as endogenous controls. We examined their expression levels among different experimental factors (developmental stage, body part, geographic population, temperature variation, pesticide exposure, diet change, and starvation following the MIQE (Minimum Information for publication of Quantitative real time PCR Experiments guidelines. Based on the results of RefFinder, which integrates four currently available major software programs to compare and rank the tested candidate reference genes, RPS15, RPS11, and TUB were found to be the most suitable reference genes in different developmental stages, body parts, and geographic populations, respectively. RPS15 was the most suitable gene under different temperature and diet conditions, while RPS11 was the most suitable gene under different pesticide exposure and starvation conditions. This work sheds light on establishing a standardized qRT-PCR procedure in N. lugens, and serves as a starting point for screening for reference genes for

  16. Multiplex reverse transcription polymerase chain reaction to study the expression of virulence and stress response genes in Staphylococcus aureus.

    Science.gov (United States)

    Shrihari, Rohinishree Yadahalli; Singh, Negi Pradeep

    2012-02-01

    Staphylococcus aureus survives well in different stress conditions. The ability of this organism to adapt to various stresses is the result of a complex regulatory response, which is attributed to regulation of multiple genes. The aims of the present study were (1) to develop a multiplex PCR for the detection of genes which are involved in stress adaptation (asp23, dnaK, and groEL); alternative sigma factor (sigB) and virulence determination (entB and spa) and (2) to study the expression of these genes during stress conditions for S. aureus culture collection strains (FRI 722 and ATCC 6538) and S. aureus food isolates at mRNA level using multiplex reverse transcription polymerase chain reaction (RT-PCR). During heat shock treatment groEL, dnaK, asp23, sodA, entB, spa, and sigB genes were up regulated up to 2.58, 2.07, 2.76, 2.55, 3.55, 2.71, and 2.62- folds, respectively, whereas in acid shock treatment, sodA and groEL were up regulated; dnaK was downregulated; and entB and sigB genes were not expressed in food isolates. Multiplex PCR assay standardized in this study offers an inexpensive alternative to uniplex PCR for detection of various virulence and stress response genes. This study is relevant to rapid and accurate detection of potential pathogenic S. aureus in foods. © 2012 Institute of Food Technologists®

  17. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages.

    Science.gov (United States)

    Rand, Thomas G; Dipenta, J; Robbins, C; Miller, J D

    2011-04-25

    The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung

  18. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  19. Expression Differences of Pigment Structural Genes and Transcription Factors Explain Flesh Coloration in Three Contrasting Kiwifruit Cultivars

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2017-09-01

    Full Text Available Fruits of kiwifruit cultivars (Actinidia chinensis and A. deliciosa generally have green or yellow flesh when ripe. A small number of genotypes have red flesh but this coloration is usually restricted to the inner pericarp. Three kiwifruit cultivars having red (‘Hongyang’, or yellow (‘Jinnong-2’, or green (‘Hayward’ flesh were investigated for their color characteristics and pigment contents during development and ripening. The results show the yellow of the ‘Jinnong-2’ fruit is due to the combined effects of chlorophyll degradation and of beta-carotene accumulation. The red inner pericarps of ‘Hongyang’ fruit are due to anthocyanin accumulation. Expression differences of the pathway genes in the inner pericarps of the three different kiwifruits suggest that stay-green (SGR controls the degradation of chlorophylls, while lycopene beta-cyclase (LCY-β controls the biosynthesis of beta-carotene. The abundance of anthocyanin in the inner pericarps of the ‘Hongyang’ fruit is the results of high expressions of UDP flavonoid glycosyltransferases (UFGT. At the same time, expressions of anthocyanin transcription factors show that AcMYBF110 expression parallels changes in anthocyanin concentration, so seems to be a key R2R3 MYB, regulating anthocyanin biosynthesis. Further, transient color assays reveal that AcMYBF110 can autonomously induce anthocyanin accumulation in Nicotiana tabacum leaves by activating the transcription of dihydroflavonol 4-reductase (NtDFR, anthocyanidin synthase (NtANS and NtUFGT. For basic helix-loop-helix proteins (bHLHs and WD-repeat proteins (WD40s, expression differences show these may depend on AcMYBF110 forming a MYB-bHLH-WD40 complex to regulate anthocyanin biosynthesis, instead of it having a direct involvement.

  20. An activator of transcription regulates phage TP901-1 late gene expression

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Pedersen, Margit; Hammer, Karin

    2001-01-01

    bp contains both the promoter and the region necessary for activation by ORF29. The transcriptional start site of the promoter was identified by primer extension to position 13073 on the TP901-1 genome, thus located 87 bp downstream of orf29 in a 580-bp intergenic region between orf29 and orf30....... Furthermore, the region located -85 to -61 bp upstream of the start site was shown to be necessary for promoter activity. During infection, the transcript arising from the late promoter is fully induced at 40 min postinfection, and our results suggest that a certain level of ORF29 must he reached in order...... to activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group...

  1. Assessment of differential expression of oncogenes in adenocarcinoma of stomach with fluorescent labeling and simultaneous amplification of gene transcripts

    International Nuclear Information System (INIS)

    Rajcevic, U.; Hudler, P.; Komel, R.; Mijovski, G.; Gorjanc, G.; Kovac, M.; Hoelzl, G.; Repse, S.; Juvan, R.; Huber, C.G.

    2007-01-01

    Background. Gastric cancer is one of the leading malignancies with a poor prognosis and low survival rates. Although the mechanisms underlying its development are still unknown, there is a consensus that genetic instability, inactivation of tumor suppressor genes and over-expression of oncogenes are involved in the early and late stages of gastric carcinogenesis. In the present study we wanted to display differential expression of seven oncogenes, namely CCNE1, EGF, ERBB3, FGF4, HRG1, HGFR and TDGF1. Patients and methods. We employed a method based on the multiplex reverse transcription polymerase chain (RT-PCR) method with a fluorescence detection. Results. More than half of patients (74.3%) out of total 74 with gastric adenocarcinoma had over-expressed at least one oncogene, with the exception of FGF4, which was expressed in tumor tissue of less than one third of patients. 56.8% of the patients patients showed over-expression of two or more oncogenes. Conclusions. Patients with precancerous lesions had elevated levels of TDGF1 or cripto-1 (64.9%) and CCNE1 (57.1%), suggesting that they could be used as markers for an early detection of malignant changes in stomach. Finally, the fluorescent multiplex RT-PCR method could be of value for rapid assessment of oncogene mRNA levels in small samples of tumor or precancerous biopsies. (author)

  2. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    Science.gov (United States)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  3. Reliable gene expression analysis by reverse transcription-quantitative PCR: reporting and minimizing the uncertainty in data accuracy.

    Science.gov (United States)

    Remans, Tony; Keunen, Els; Bex, Geert Jan; Smeets, Karen; Vangronsveld, Jaco; Cuypers, Ann

    2014-10-01

    Reverse transcription-quantitative PCR (RT-qPCR) has been widely adopted to measure differences in mRNA levels; however, biological and technical variation strongly affects the accuracy of the reported differences. RT-qPCR specialists have warned that, unless researchers minimize this variability, they may report inaccurate differences and draw incorrect biological conclusions. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines describe procedures for conducting and reporting RT-qPCR experiments. The MIQE guidelines enable others to judge the reliability of reported results; however, a recent literature survey found low adherence to these guidelines. Additionally, even experiments that use appropriate procedures remain subject to individual variation that statistical methods cannot correct. For example, since ideal reference genes do not exist, the widely used method of normalizing RT-qPCR data to reference genes generates background noise that affects the accuracy of measured changes in mRNA levels. However, current RT-qPCR data reporting styles ignore this source of variation. In this commentary, we direct researchers to appropriate procedures, outline a method to present the remaining uncertainty in data accuracy, and propose an intuitive way to select reference genes to minimize uncertainty. Reporting the uncertainty in data accuracy also serves for quality assessment, enabling researchers and peer reviewers to confidently evaluate the reliability of gene expression data. © 2014 American Society of Plant Biologists. All rights reserved.

  4. The Drosophila Translational Control Element (TCE is required for high-level transcription of many genes that are specifically expressed in testes.

    Directory of Open Access Journals (Sweden)

    Rebeccah J Katzenberger

    Full Text Available To investigate the importance of core promoter elements for tissue-specific transcription of RNA polymerase II genes, we examined testis-specific transcription in Drosophila melanogaster. Bioinformatic analyses of core promoter sequences from 190 genes that are specifically expressed in testes identified a 10 bp A/T-rich motif that is identical to the translational control element (TCE. The TCE functions in the 5' untranslated region of Mst(3CGP mRNAs to repress translation, and it also functions in a heterologous gene to regulate transcription. We found that among genes with focused initiation patterns, the TCE is significantly enriched in core promoters of genes that are specifically expressed in testes but not in core promoters of genes that are specifically expressed in other tissues. The TCE is variably located in core promoters and is conserved in melanogaster subgroup species, but conservation dramatically drops in more distant species. In transgenic flies, short (300-400 bp genomic regions containing a TCE directed testis-specific transcription of a reporter gene. Mutation of the TCE significantly reduced but did not abolish reporter gene transcription indicating that the TCE is important but not essential for transcription activation. Finally, mutation of testis-specific TFIID (tTFIID subunits significantly reduced the transcription of a subset of endogenous TCE-containing but not TCE-lacking genes, suggesting that tTFIID activity is limited to TCE-containing genes but that tTFIID is not an obligatory regulator of TCE-containing genes. Thus, the TCE is a core promoter element in a subset of genes that are specifically expressed in testes. Furthermore, the TCE regulates transcription in the context of short genomic regions, from variable locations in the core promoter, and both dependently and independently of tTFIID. These findings set the stage for determining the mechanism by which the TCE regulates testis-specific transcription and

  5. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    . Conclusions: Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides...... NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time...

  6. Transcriptome analysis of paired primary colorectal carcinoma and liver metastases reveals fusion transcripts and similar gene expression profiles in primary carcinoma and liver metastases

    International Nuclear Information System (INIS)

    Lee, Ja-Rang; Kwon, Chae Hwa; Choi, Yuri; Park, Hye Ji; Kim, Hyun Sung; Jo, Hong-Jae; Oh, Nahmgun; Park, Do Youn

    2016-01-01

    Despite the clinical significance of liver metastases, the difference between molecular and cellular changes in primary colorectal cancers (CRC) and matched liver metastases is poorly understood. In order to compare gene expression patterns and identify fusion genes in these two types of tumors, we performed high-throughput transcriptome sequencing of five sets of quadruple-matched tissues (primary CRC, liver metastases, normal colon, and liver). The gene expression patterns in normal colon and liver were successfully distinguished from those in CRCs; however, RNA sequencing revealed that the gene expression between primary CRCs and their matched liver metastases is highly similar. We identified 1895 genes that were differentially expressed in the primary carcinoma and liver metastases, than that in the normal colon tissues. A major proportion of the transcripts, identified by gene expression profiling as significantly enriched in the primary carcinoma and metastases, belonged to gene ontology categories involved in the cell cycle, mitosis, and cell division. Furthermore, we identified gene fusion events in primary carcinoma and metastases, and the fusion transcripts were experimentally confirmed. Among these, a chimeric transcript resulting from the fusion of RNF43 and SUPT4H1 was found to occur frequently in primary colorectal carcinoma. In addition, knockdown of the expression of this RNF43-SUPT4H1 chimeric transcript was found to have a growth-inhibitory effect in colorectal cancer cells. The present study reports a high concordance of gene expression in the primary carcinoma and liver metastases, and reveals potential new targets, such as fusion genes, against primary and metastatic colorectal carcinoma. The online version of this article (doi:10.1186/s12885-016-2596-3) contains supplementary material, which is available to authorized users

  7. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  8. In situ reverse transcription-PCR for monitoring gene expression in individual Methanosarcina mazei S-6 cells

    DEFF Research Database (Denmark)

    Lange, Marianne; Tolker-Nielsen, Tim; Molin, Søren

    2000-01-01

    An in situ reverse transcription-PCR protocol for detecting specific mRNA in Methanosarcina mazei S-6 is described. This method allowed us to detect heat shock-induced increases in the intracellular levels of the transcript of the universal stress gene dnaK. The cell walls of paraformaldehyde...

  9. Undifferentiated Embryonic Cell Transcription Factor 1 Regulates ESC Chromatin Organization and Gene Expression

    NARCIS (Netherlands)

    Kooistra, Susanne M.; van den Boom, Vincent; Thummer, Rajkumar P.; Johannes, Frank; Wardenaar, Rene; Tesson, Bruno M.; Veenhoff, Liesbeth M.; Fusetti, Fabrizia; O'Neill, Laura P.; Turner, Bryan M.; de Haan, Gerald; Eggen, Bart J. L.; O’Neill, Laura P.

    2010-01-01

    Previous reports showed that embryonic stem (ES) cells contain hyperdynamic and globally transcribed chromatin-properties that are important for ES cell pluripotency and differentiation. Here, we demonstrate a role for undifferentiated embryonic cell transcription factor 1 (UTF1) in regulating ES

  10. Identification of Suitable Reference Genes for Investigating Gene Expression in Anterior Cruciate Ligament Injury by Using Reverse Transcription-Quantitative PCR.

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Leal

    Full Text Available The anterior cruciate ligament (ACL is one of the most frequently injured structures during high-impact sporting activities. Gene expression analysis may be a useful tool for understanding ACL tears and healing failure. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR has emerged as an effective method for such studies. However, this technique requires the use of suitable reference genes for data normalization. Here, we evaluated the suitability of six reference genes (18S, ACTB, B2M, GAPDH, HPRT1, and TBP by using ACL samples of 39 individuals with ACL tears (20 with isolated ACL tears and 19 with ACL tear and combined meniscal injury and of 13 controls. The stability of the candidate reference genes was determined by using the NormFinder, geNorm, BestKeeper DataAssist, and RefFinder software packages and the comparative ΔCt method. ACTB was the best single reference gene and ACTB+TBP was the best gene pair. The GenEx software showed that the accumulated standard deviation is reduced when a larger number of reference genes is used for gene expression normalization. However, the use of a single reference gene may not be suitable. To identify the optimal combination of reference genes, we evaluated the expression of FN1 and PLOD1. We observed that at least 3 reference genes should be used. ACTB+HPRT1+18S is the best trio for the analyses involving isolated ACL tears and controls. Conversely, ACTB+TBP+18S is the best trio for the analyses involving (1 injured ACL tears and controls, and (2 ACL tears of patients with meniscal tears and controls. Therefore, if the gene expression study aims to compare non-injured ACL, isolated ACL tears and ACL tears from patients with meniscal tear as three independent groups ACTB+TBP+18S+HPRT1 should be used. In conclusion, 3 or more genes should be used as reference genes for analysis of ACL samples of individuals with and without ACL tears.

  11. Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba

    Directory of Open Access Journals (Sweden)

    Yong-Ling Liao

    2015-01-01

    Full Text Available WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5′-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.

  12. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis.

    Science.gov (United States)

    van Doorn, Remco; Dijkman, Remco; Vermeer, Maarten H; Out-Luiting, Jacoba J; van der Raaij-Helmer, Elisabeth M H; Willemze, Rein; Tensen, Cornelis P

    2004-08-15

    Sézary syndrome (Sz) is a malignancy of CD4+ memory skin-homing T cells and presents with erythroderma, lymphadenopathy, and peripheral blood involvement. To gain more insight into the molecular features of Sz, oligonucleotide array analysis was performed comparing gene expression patterns of CD4+ T cells from peripheral blood of patients with Sz with those of patients with erythroderma secondary to dermatitis and healthy controls. Using unsupervised hierarchical clustering gene, expression patterns of T cells from patients with Sz were classified separately from those of benign T cells. One hundred twenty-three genes were identified as significantly differentially expressed and had an average fold change exceeding 2. T cells from patients with Sz demonstrated decreased expression of the following hematopoietic malignancy-linked tumor suppressor genes: TGF-beta receptor II, Mxi1, Riz1, CREB-binding protein, BCL11a, STAT4, and Forkhead Box O1A. Moreover, the tyrosine kinase receptor EphA4 and the potentially oncogenic transcription factor Twist were highly and selectively expressed in T cells of patients with Sz. High expression of EphA4 and Twist was also observed in lesional skin biopsy specimens of a subset of patients with cutaneous T cell lymphomas related to Sz, whereas their expression was nearly undetectable in benign T cells or in skin lesions of patients with inflammatory dermatoses. Detection of EphA4 and Twist may be used in the molecular diagnosis of Sz and related cutaneous T-cell lymphomas. Furthermore, the membrane-bound EphA4 receptor may serve as a target for directed therapeutic intervention.

  13. Transcriptional regulation of human IL-5 gene expression by ionizing radiation in jurkat T cells

    Energy Technology Data Exchange (ETDEWEB)

    Lu-Hesselmann, J.; Messer, G.; Kind, P.; Peter, R.U. [Munich Univ., Ludwig-Maximilians (Germany). Dept. of Dermatology; Lu-Hesselmann, J.; Van Beuningen, D.; Peter, R.U. [Federal Armed Forces Medical Academy, Munich (Germany). Institute of Radiobiology

    1997-03-01

    In this study, is performed the functional characterization of the human IL-5 gene promoter in response to ionizing radiation and demonstrated the negative regulatory effects of NF-ATp DNA-binding at position from -117 to -97 bp within the human IL-5 gene promoter. (N.C.)

  14. Conservation of transcription factor binding events predicts gene expression across species

    OpenAIRE

    Hemberg, Martin; Kreiman, Gabriel

    2011-01-01

    Recent technological advances have made it possible to determine the genome-wide binding sites of transcription factors (TFs). Comparisons across species have suggested a relatively low degree of evolutionary conservation of experimentally defined TF binding events (TFBEs). Using binding data for six different TFs in hepatocytes and embryonic stem cells from human and mouse, we demonstrate that evolutionary conservation of TFBEs within orthologous proximal promoters is closely linked to funct...

  15. Differential effects of metal contamination on the transcript expression of immune- and stress-response genes in the Sydney Rock oyster, Saccostrea glomerata

    International Nuclear Information System (INIS)

    Taylor, Daisy A.; Thompson, Emma L.; Nair, Sham V.; Raftos, David A.

    2013-01-01

    Environmental contamination by metals is a serious threat to the biological sustainability of coastal ecosystems. Our current understanding of the potential biological effects of metals in these ecosystems is limited. This study tested the transcriptional expression of immune- and stress-response genes in Sydney Rock oysters (Saccostrea glomerata). Oysters were exposed to four metals (cadmium, copper, lead and zinc) commonly associated with anthropogenic pollution in coastal waterways. Seven target genes (superoxide dismutase, ferritin, ficolin, defensin, HSP70, HSP90 and metallothionein) were selected. Quantitative (real-time) PCR analyses of the transcript expression of these genes showed that each of the different metals elicited unique transcriptional profiles. Significant changes in transcription were found for 18 of the 28 combinations tested (4 metals × 7 genes). Of these, 16 reflected down-regulation of gene transcription. HSP90 was the only gene significantly up-regulated by metal contamination (cadmium and zinc only), while defensin expression was significantly down-regulated by exposure to all four metals. This inhibition could have a significant negative effect on the oyster immune system, promoting susceptibility to opportunistic infections and disease. -- Highlights: ► Oysters were exposed to Cd, Cu, Pb or Zn, all commonly associated with coastal pollution. ► qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to these metals. ► qPCR showed that each of the different metals elicited unique transcriptional profiles. ► The genes identified have the potential to lead to increased disease susceptibility in oysters. -- qPCR identified significant down-regulation in stress- and immune-response genes in oysters exposed to metals, which could lead to increased disease susceptibility

  16. Transcription activator-like effector-mediated regulation of gene expression based on the inducible packaging and delivery via designed extracellular vesicles

    International Nuclear Information System (INIS)

    Lainšček, Duško; Lebar, Tina; Jerala, Roman

    2017-01-01

    Transcription activator-like effector (TALE) proteins present a powerful tool for genome editing and engineering, enabling introduction of site-specific mutations, gene knockouts or regulation of the transcription levels of selected genes. TALE nucleases or TALE-based transcription regulators are introduced into mammalian cells mainly via delivery of the coding genes. Here we report an extracellular vesicle-mediated delivery of TALE transcription regulators and their ability to upregulate the reporter gene in target cells. Designed transcriptional activator TALE-VP16 fused to the appropriate dimerization domain was enriched as a cargo protein within extracellular vesicles produced by mammalian HEK293 cells stimulated by Ca-ionophore and using blue light- or rapamycin-inducible dimerization systems. Blue light illumination or rapamycin increased the amount of the TALE-VP16 activator in extracellular vesicles and their addition to the target cells resulted in an increased expression of the reporter gene upon addition of extracellular vesicles to the target cells. This technology therefore represents an efficient delivery for the TALE-based transcriptional regulators. - Highlights: • Inducible dimerization enriched cargo proteins within extracellular vesicles (EV). • Farnesylation surpassed LAMP-1 fusion proteins for the EV packing. • Extracellular vesicles were able to deliver TALE regulators to mammalian cells. • TALE mediated transcriptional activation was achieved by designed EV.

  17. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  18. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  19. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    International Nuclear Information System (INIS)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-01-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  20. Computational inference of replication and transcription activator regulator activity in herpesvirus from gene expression data

    NARCIS (Netherlands)

    Recchia, A.; Wit, E.; Vinciotti, V.; Kellam, P.

    One of the main aims of system biology is to understand the structure and dynamics of genomic systems. A computational approach, facilitated by new technologies for high-throughput quantitative experimental data, is put forward to investigate the regulatory system of dynamic interaction among genes

  1. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  2. ACE inhibition modifies exercise-induced pro-angiogenic and mitochondrial gene transcript expression

    NARCIS (Netherlands)

    van Ginkel, S.; Ruoss, S.; Valdivieso, P.; Degens, H.; Waldron, S.; de Haan, Arnold; Flück, M.

    2016-01-01

    Skeletal muscle responds to endurance exercise with an improvement of biochemical pathways that support substrate supply and oxygen-dependent metabolism. This is reflected by enhanced expression of associated factors after exercise and is specifically modulated by tissue perfusion and oxygenation.

  3. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800)

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; Fang, X.; Ho, A.; Li, J.; Yan, X.; Tu, B.; Li, Ch.; Li, J.; Yao, M.; Li, X.

    2017-01-01

    Roč. 101, č. 19 (2017), s. 7303-7316 ISSN 0175-7598 Institutional support: RVO:60077344 Keywords : Methanosarcina barkeri * substrate regimes * diversity * co-expression * ecological strategies Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 3.420, year: 2016

  4. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  5. Transcription factor ZBED6 mediates IGF2 gene expression by regulating promoter activity and DNA methylation in myoblasts

    Science.gov (United States)

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were up regulated during C2C12 differentiation. The IGF2 expression levels wer...

  6. A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.

    Science.gov (United States)

    Sameith, Katrin; Amini, Saman; Groot Koerkamp, Marian J A; van Leenen, Dik; Brok, Mariel; Brabers, Nathalie; Lijnzaad, Philip; van Hooff, Sander R; Benschop, Joris J; Lenstra, Tineke L; Apweiler, Eva; van Wageningen, Sake; Snel, Berend; Holstege, Frank C P; Kemmeren, Patrick

    2015-12-23

    Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.

  7. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2014-01-01

    The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.

  8. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, C.N.; Worton, R.G. [Univ. of Toronto and the Hospital for Sick Children, Ontario (Canada)

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  9. USE OF GENE EXPRESSION ANALYSIS INCORPORATING OPERON-TRANSCRIPTIONAL COUPLING AND TOXICANT DOSE RESPONSE TO DISTINGUISH AMONG STRUCTURAL HOMOLOGUES OF MX

    Science.gov (United States)

    We recently described a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. In this analysis, we characterized changes in global gene expressio...

  10. Gene Expression Profiling Reveals a Massive, Aneuploidy-Dependent Transcriptional Deregulation and Distinct Differences between Lymph Node–Negative and Lymph Node–Positive Colon Carcinomas

    Science.gov (United States)

    Grade, Marian; Hörmann, Patrick; Becker, Sandra; Hummon, Amanda B.; Wangsa, Danny; Varma, Sudhir; Simon, Richard; Liersch, Torsten; Becker, Heinz; Difilippantonio, Michael J.; Ghadimi, B. Michael; Ried, Thomas

    2016-01-01

    To characterize patterns of global transcriptional deregulation in primary colon carcinomas, we did gene expression profiling of 73 tumors [Unio Internationale Contra Cancrum stage II (n = 33) and stage III (n = 40)] using oligonucleotide microarrays. For 30 of the tumors, expression profiles were compared with those from matched normal mucosa samples. We identified a set of 1,950 genes with highly significant deregulation between tumors and mucosa samples (P 5-fold average expression difference between normal colon mucosa and carcinomas, including up-regulation of MYC and of HMGA1, a putative oncogene. Furthermore, we identified 68 genes that were significantly differentially expressed between lymph node–negative and lymph node–positive tumors (P deregulated genes were validated using quantitative real-time reverse transcription-PCR in >40 tumor and normal mucosa samples with good concordance between the techniques. Finally, we established a relationship between specific genomic imbalances, which were mapped for 32 of the analyzed colon tumors by comparative genomic hybridization, and alterations of global transcriptional activity. Previously, we had conducted a similar analysis of primary rectal carcinomas. The systematic comparison of colon and rectal carcinomas revealed a significant overlap of genomic imbalances and transcriptional deregulation, including activation of the Wnt/β-catenin signaling cascade, suggesting similar pathogenic pathways. PMID:17210682

  11. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  12. Novel subtractive transcription-based amplification of mRNA (STAR method and its application in search of rare and differentially expressed genes in AD brains

    Directory of Open Access Journals (Sweden)

    Walker P Roy

    2006-11-01

    Full Text Available Abstract Background Alzheimer's disease (AD is a complex disorder that involves multiple biological processes. Many genes implicated in these processes may be present in low abundance in the human brain. DNA microarray analysis identifies changed genes that are expressed at high or moderate levels. Complementary to this approach, we described here a novel technology designed specifically to isolate rare and novel genes previously undetectable by other methods. We have used this method to identify differentially expressed genes in brains affected by AD. Our method, termed Subtractive Transcription-based Amplification of mRNA (STAR, is a combination of subtractive RNA/DNA hybridization and RNA amplification, which allows the removal of non-differentially expressed transcripts and the linear amplification of the differentially expressed genes. Results Using the STAR technology we have identified over 800 differentially expressed sequences in AD brains, both up- and down- regulated, compared to age-matched controls. Over 55% of the sequences represent genes of unknown function and roughly half of them were novel and rare discoveries in the human brain. The expression changes of nearly 80 unique genes were further confirmed by qRT-PCR and the association of additional genes with AD and/or neurodegeneration was established using an in-house literature mining tool (LitMiner. Conclusion The STAR process significantly amplifies unique and rare sequences relative to abundant housekeeping genes and, as a consequence, identifies genes not previously linked to AD. This method also offers new opportunities to study the subtle changes in gene expression that potentially contribute to the development and/or progression of AD.

  13. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L. in response to fungal pathogens and hormone treatments

    Directory of Open Access Journals (Sweden)

    Deyholos Michael K

    2009-06-01

    Full Text Available Abstract Background Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L., no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. Results In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP and we observed the fluorescent green signals in the nucleus only. The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR. Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h. We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA, and cytokinin (6-benzylaminopurine, BAP and the defense signaling molecules jasmonic acid (JA, salicylic acid (SA, and ethylene (ET. We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in

  14. Transient Co-Expression of Post-Transcriptional Gene Silencing Suppressors for Increased in Planta Expression of a Recombinant Anthrax Receptor Fusion Protein

    Directory of Open Access Journals (Sweden)

    Kittipong Rattanaporn

    2011-08-01

    Full Text Available Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin, CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA domain of human capillary morphogenesis 2 (CMG2, an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG. We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS: p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI, with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  15. Transient co-expression of post-transcriptional gene silencing suppressors for increased in planta expression of a recombinant anthrax receptor fusion protein.

    Science.gov (United States)

    Arzola, Lucas; Chen, Junxing; Rattanaporn, Kittipong; Maclean, James M; McDonald, Karen A

    2011-01-01

    Potential epidemics of infectious diseases and the constant threat of bioterrorism demand rapid, scalable, and cost-efficient manufacturing of therapeutic proteins. Molecular farming of tobacco plants provides an alternative for the recombinant production of therapeutics. We have developed a transient production platform that uses Agrobacterium infiltration of Nicotiana benthamiana plants to express a novel anthrax receptor decoy protein (immunoadhesin), CMG2-Fc. This chimeric fusion protein, designed to protect against the deadly anthrax toxins, is composed of the von Willebrand factor A (VWA) domain of human capillary morphogenesis 2 (CMG2), an effective anthrax toxin receptor, and the Fc region of human immunoglobulin G (IgG). We evaluated, in N. benthamiana intact plants and detached leaves, the expression of CMG2-Fc under the control of the constitutive CaMV 35S promoter, and the co-expression of CMG2-Fc with nine different viral suppressors of post-transcriptional gene silencing (PTGS): p1, p10, p19, p21, p24, p25, p38, 2b, and HCPro. Overall, transient CMG2-Fc expression was higher on intact plants than detached leaves. Maximum expression was observed with p1 co-expression at 3.5 days post-infiltration (DPI), with a level of 0.56 g CMG2-Fc per kg of leaf fresh weight and 1.5% of the total soluble protein, a ten-fold increase in expression when compared to absence of suppression. Co-expression with the p25 PTGS suppressor also significantly increased the CMG2-Fc expression level after just 3.5 DPI.

  16. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine.

    Science.gov (United States)

    Dai, Ru; Ge, Hui; Howard, Susanne; Qiu, Wenping

    2012-12-01

    Stilbenic compounds are natural phytoalexins that have antimicrobial activities in plant defense against pathogens. Stilbene synthase (STS) is the key enzyme that catalyzes the biosynthesis of stilbenic compounds. Grapevine genome contains a family of preliminarily annotated 35 STS genes, the regulation of each STS gene needs to be studied to define their roles. In this study, we selected eight STS genes, STS8, STS27/31, STS16/22, STS13/17/23, and applied quantitative polymerase chain reaction (qPCR) to characterize their transcriptional expression profiles in leaf tissues upon infection by the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr. Their transcripts were also compared in young and old leaves as well as in the berry skin at five developmental stages in Vitis vinifera 'Cabernet Sauvignon' and Vitis aestivalis 'Norton'. The results showed that transcripts of selected STS genes increased significantly in Cabernet Sauvignon leaves at 24 and 48 h post inoculation with PM spores and remained unchanged in Norton leaves in response to the PM infection. Transcripts of STS8, STS27/31 and STS13/17/23 were more abundant in the old leaves of Norton than in Cabernet Sauvignon. STS genes showed lower expression levels in young leaves than in old leaves. Transcript levels of the eight STS genes increased drastically in the berry skin of Cabernet Sauvignon and Norton post véraison. In addition, the content of trans-resveratrol in the berry skin rapidly increased post véraison and reached the highest level at harvest. These assays demonstrated that individual STS genes are regulated differentially in response to PM infection and during development in the two grape varieties. The present study yields basic knowledge for further investigation of the regulation and function of each STS gene in grapevine and provides experimental evidences for the functional annotation of the STS gene family in the grapevine genome. Copyright © 2012 Elsevier Ireland Ltd. All

  17. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  18. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    Directory of Open Access Journals (Sweden)

    Arainga Mariluz

    2012-03-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G or reduced (TaxS240P transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting

  19. Altered AKT1 and MAPK1 Gene Expression on Peripheral Blood Mononuclear Cells and Correlation with T-Helper-Transcription Factors in Systemic Lupus Erythematosus Patients

    Directory of Open Access Journals (Sweden)

    Sonia Garcia-Rodriguez

    2012-01-01

    Full Text Available Kinases have been implicated in the immunopathological mechanisms of Systemic Lupus Erythematosus (SLE. v-akt murine-thymoma viral-oncogene-homolog 1 (AKT1 and mitogen-activated-protein-kinase 1 (MAPK1 gene expressions in peripheral mononuclear cells from thirteen SLE patients with inactive or mild disease were evaluated using quantitative real-time reverse-transcription polymerase-chain-reaction and analyzed whether there was any correlation with T-helper (Th transcription factors (TF gene expression, cytokines, and S100A8/S100A9-(Calprotectin. Age- and gender-matched thirteen healthy controls were examined. AKT1 and MAPK1 expressions were upregulated in SLE patients and correlated with Th17-(Retinoic acid-related orphan receptor (ROR-C, T-regulatory-(Treg-(Transforming Growth Factor Beta (TGFB-2, and Th2-(interleukin (IL-5-related genes. MAPK1 expression correlated with Th1-(IL-12A, T-box TF-(T-bet, Th2-(GATA binding protein-(GATA-3, and IL-10 expressions. IL-10 expression was increased and correlated with plasma Tumor Necrosis Factor (TNF-α and Th0-(IL-2, Th1-(IL-12A, T-bet, GATA3, Treg-(Forkhead/winged-helix transcription factor- (FOXP-3, and IL-6 expressions. FOXP3 expression, FOXP3/RORC, and FOXP3/GATA3 expression ratios were increased. Plasma IL-1β, IL-12(p70, Interferon-(IFN-γ, and IL-6 cytokines were augmented. Plasma IL-1β, IL-6, IL-2, IFN-γ, TNF-α, IL-10, and IL-13 correlated with C-reactive protein, respectively. Increased Calprotectin correlated with neutrophils. Conclusion, SLE patients presented a systemic immunoinflammatory activity, augmented AKT1 and MAPK1 expressions, proinflammatory cytokines, and Calprotectin, together with increased expression of Treg-related genes, suggesting a regulatory feedback opposing the inflammatory activity.

  20. Post-transcriptional mending of gene sequences: looking under the hood of mitochondrial gene expression in diplonemids

    Czech Academy of Sciences Publication Activity Database

    Valach, M.; Moreira, S.; Faktorová, Drahomíra; Lukeš, Julius; Burger, G.

    2016-01-01

    Roč. 13, č. 12 (2016), s. 1204-1211 ISSN 1547-6286 R&D Projects: GA ČR GA15-21974S Institutional support: RVO:60077344 Keywords : Cryptic genes * gene fragmentation * trans-splicing * RNA editing * multipartite mtDNA * diplonemids Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.900, year: 2016

  1. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells.

    Science.gov (United States)

    Miles, Wayne O; Korenjak, Michael; Griffiths, Lyra M; Dyer, Michael A; Provero, Paolo; Dyson, Nicholas J

    2014-10-01

    Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE). © 2014 The Authors.

  2. Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs

    NARCIS (Netherlands)

    Huisman, Christian; van der Wijst, Monique G. P.; Falahi, Fahimeh; Overkamp, Juul; Karsten, Gellert; Terpstra, Martijn M.; Kok, Klaas; van der Zee, Ate G. J.; Schuuring, Ed; Wisman, G. Bea A.; Rots, Marianne G.

    2015-01-01

    Epigenetic silencing of tumor suppressor genes (TSGs) is considered a significant event in the progression of cancer. For example, EPB41L3, a potential biomarker in cervical cancer, is often silenced by cancer-specific promoter methylation. Artificial transcription factors (ATFs) are unique tools to

  3. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development.

    Science.gov (United States)

    Schmouth, Jean-François; Arenillas, David; Corso-Díaz, Ximena; Xie, Yuan-Yun; Bohacec, Slavita; Banks, Kathleen G; Bonaguro, Russell J; Wong, Siaw H; Jones, Steven J M; Marra, Marco A; Simpson, Elizabeth M; Wasserman, Wyeth W

    2015-07-24

    Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development.

  4. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression.

    Science.gov (United States)

    Kidokoro, Satoshi; Watanabe, Keitaro; Ohori, Teppei; Moriwaki, Takashi; Maruyama, Kyonoshin; Mizoi, Junya; Myint Phyu Sin Htwe, Nang; Fujita, Yasunari; Sekita, Sachiko; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-02-01

    Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. [Cloning, expression and transcriptional analysis of biotin carboxyl carrier protein gene (accA) from Amycolatopsis mediterranei U32 ].

    Science.gov (United States)

    Lu, Jie; Yao, Yufeng; Jiang, Weihong; Jiao, Ruishen

    2003-02-01

    Acetyl CoA carboxylase (EC 6.4.1.2, ACC) catalyzes the ATP-dependent carboxylation of acetyl CoA to yield malonyl CoA, which is the first committed step in fatty acid synthesis. A pair of degenerate PCR primers were designed according to the conserved amino acid sequence of AccA from M. tuberculosis and S. coelicolor. The product of the PCR amplification, a DNA fragment of 250bp was used as a probe for screening the U32 genomic cosmid library and its gene, accA, coding the biotinylated protein subunit of acetyl CoA carboxylase, was successfully cloned from U32. The accA ORF encodes a 598-amino-acid protein with the calculated molecular mass of 63.7kD, with 70.1% of G + C content. A typical Streptomyces RBS sequence, AGGAGG, was found at the - 6 position upstream of the start codon GTG. Analysis of the deduced amino acid sequence showed the presence of biotin-binding site and putative ATP-bicarbonate interaction region, which suggested the U32 AccA may act as a biotin carboxylase as well as a biotin carrier protein. Gene accA was then cloned into the pET28 (b) vector and expressed solubly in E. coli BL21 (DE3) by 0.1 mmol/L IPTG induction. Western blot confirmed the covalent binding of biotin with AccA. Northern blot analyzed transcriptional regulation of accA by 5 different nitrogen sources.

  6. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    Science.gov (United States)

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  7. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network.

    Science.gov (United States)

    José-Edwards, Diana S; Kerner, Pierre; Kugler, Jamie E; Deng, Wei; Jiang, Di; Di Gregorio, Anna

    2011-07-01

    The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like, and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates. Copyright © 2011 Wiley-Liss, Inc.

  8. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts.

    Science.gov (United States)

    Viñuelas, José; Kaneko, Gaël; Coulon, Antoine; Vallin, Elodie; Morin, Valérie; Mejia-Pous, Camila; Kupiec, Jean-Jacques; Beslon, Guillaume; Gandrillon, Olivier

    2013-02-25

    A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.

  9. Extensive neuroadaptive changes in cortical gene-transcript expressions of the glutamate system in response to repeated intermittent MDMA administration in adolescent rats

    Directory of Open Access Journals (Sweden)

    Malki Rana

    2008-04-01

    Full Text Available Abstract Background Many studies have focused on the implication of the serotonin and dopamine systems in neuroadaptive responses to the recreational drug 3,4-methylenedioxy-metamphetamine (MDMA. Less attention has been given to the major excitatory neurotransmitter glutamate known to be implicated in schizophrenia and drug addiction. The aim of the present study was to investigate the effect of repeated intermittent MDMA administration upon gene-transcript expression of the glutamate transporters (EAAT1, EAAT2-1, EAAT2-2, the glutamate receptor subunits of AMPA (GluR1, GluR2, GluR3, the glutamate receptor subunits of NMDA (NR1, NR2A and NR2B, as well as metabotropic glutamate receptors (mGluR1, mGluR2, mGluR3, mGluR5 in six different brain regions. Adolescent male Sprague Dawley rats received MDMA at the doses of 3 × 1 and 3 × 5 mg/kg/day, or 3× vehicle 3 hours apart, every 7th day for 4 weeks. The gene-transcript levels were assessed using real-time PCR validated with a range of housekeeping genes. Results The findings showed pronounced enhancements in gene-transcript expression of GluR2, mGluR1, mGluR5, NR1, NR2A, NR2B, EAAT1, and EAAT2-2 in the cortex at bregma +1.6. In the caudate putamen, mRNA levels of GluR3, NR2A, and NR2B receptor subunits were significantly increased. In contrast, the gene-transcript expression of GluR1 was reduced in the hippocampus. In the hypothalamus, there was a significant increase of GluR1, GluR3, mGluR1, and mGluR3 gene-transcript expressions. Conclusion Repeated intermittent MDMA administration induces neuroadaptive changes in gene-transcript expressions of glutamatergic NMDA and AMPA receptor subunits, metabotropic receptors and transporters in regions of the brain regulating reward-related associative learning, cognition, and memory and neuro-endocrine functions.

  10. Dataset on differential gene expression analysis for splenic transcriptome profiling and the transcripts related to six immune pathways in grass carp

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2017-02-01

    Full Text Available The data presented in this paper are related to the research article entitled “Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella” (Li et al. 2016 [1]. Please refer to this article for interpretation of the data. Data provided in this submission are comprised of the expression levels of unigenes, significantly differentially expressed genes(DEGs, significant enrichment GO term and KEGG pathway of DEGs, and information of the transcripts assigned to six immune pathways.

  11. The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability

    DEFF Research Database (Denmark)

    Schachtschabel, Doreen; Arentshorst, Mark; Nitsche, Benjamin M

    2013-01-01

    The Tup1-Cyc8 (Ssn6) complex is a well characterized and conserved general transcriptional repressor complex in eukaryotic cells. Here, we report the identification of the Tup1 (TupA) homolog in the filamentous fungus Aspergillus niger in a genetic screen for mutants with a constitutive expression...... of the agsA gene. The agsA gene encodes a putative alpha-glucan synthase, which is induced in response to cell wall stress in A. niger. Apart from the constitutive expression of agsA, the selected mutant was also found to produce an unknown pigment at high temperatures. Complementation analysis...

  12. Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China.

    Science.gov (United States)

    Wang, Jing; Dong, Hailiang; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    The relative gene expression of hydrazine oxidoreductase encoding gene (hzo) for anaerobic ammonium oxidizing bacteria (anammox) and ammonia monooxygenase encoding gene (amoA) for both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in Sanjiang Plain soybean and rice paddy soils of Northeast China was investigated by using real-time reverse-transcriptional quantitative PCR. Metabolically active populations of anammox, AOA, and AOB in rice paddy soils were evident by the presence and successful quantification of hzo mRNA and amoA mRNA genes. The expression ratio of amoA gene for both AOA and AOB varied between soybean soils and different rice paddy soils while the expression of hzo gene for anammox was detectable only in rice paddy soils by showing a diverse relative expression ratio in each soil sample. Gene expression of both archaeal and bacterial amoA genes in rice paddy soils differed among the three sampling depths, but that of hzo was not. Both archaeal and bacterial amoA genes showed an increase trend of expression level with continuation of rice paddy cultivation, but the low expression ratio of hzo gene indicated a relatively small contribution of anammox in overall removal of inorganic nitrogen through N2 even under anoxic and high nitrogen input in agriculture. Bacterial amoA gene from two soybean fields and three rice paddy fields were also analyzed for community composition by denaturing gradient gel electrophoresis fingerprint. Community shift was observed between soybean and paddy fields and within each of them. The consistent occurrence of three bands 5, 6, and 7 in all samples showed their high adaptability for both arid cultivation and continuous rice paddy cultivation. Our data suggest that AOA and AOB are playing a more important role in nitrogen transformation in agricultural soils in oxic or anoxic environment and anammox bacteria may also contribute but in a less extent to N transformation in these agricultural soils

  13. Deletion of the transcriptional coactivator PGC1α in skeletal muscles is associated with reduced expression of genes related to oxidative muscle function

    International Nuclear Information System (INIS)

    Hatazawa, Yukino; Minami, Kimiko; Yoshimura, Ryoji; Onishi, Takumi; Manio, Mark Christian; Inoue, Kazuo; Sawada, Naoki; Suzuki, Osamu; Miura, Shinji; Kamei, Yasutomi

    2016-01-01

    The expression of the transcriptional coactivator PGC1α is increased in skeletal muscles during exercise. Previously, we showed that increased PGC1α leads to prolonged exercise performance (the duration for which running can be continued) and, at the same time, increases the expression of branched-chain amino acid (BCAA) metabolism-related enzymes and genes that are involved in supplying substrates for the TCA cycle. We recently created mice with PGC1α knockout specifically in the skeletal muscles (PGC1α KO mice), which show decreased mitochondrial content. In this study, global gene expression (microarray) analysis was performed in the skeletal muscles of PGC1α KO mice compared with that of wild-type control mice. As a result, decreased expression of genes involved in the TCA cycle, oxidative phosphorylation, and BCAA metabolism were observed. Compared with previously obtained microarray data on PGC1α-overexpressing transgenic mice, each gene showed the completely opposite direction of expression change. Bioinformatic analysis of the promoter region of genes with decreased expression in PGC1α KO mice predicted the involvement of several transcription factors, including a nuclear receptor, ERR, in their regulation. As PGC1α KO microarray data in this study show opposing findings to the PGC1α transgenic data, a loss-of-function experiment, as well as a gain-of-function experiment, revealed PGC1α’s function in the oxidative energy metabolism of skeletal muscles. - Highlights: • Microarray analysis was performed in the skeletal muscle of PGC1α KO mice. • Expression of genes in the oxidative energy metabolism was decreased. • Bioinformatic analysis of promoter region of the genes predicted involvement of ERR. • PGC1α KO microarray data in this study show the mirror image of transgenic data.

  14. Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2004-02-01

    Full Text Available Abstract Background Gene expression is regulated mainly by transcription factors (TFs that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS using position weight matrices (PWMs that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions. Results We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster, we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI. Conclusion Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1 those that show TFBS clustered in promoters associated with CGI, and (2 those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in

  15. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    Energy Technology Data Exchange (ETDEWEB)

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  16. The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA.

    Science.gov (United States)

    Schuster-Gossler, K; Bilinski, P; Sado, T; Ferguson-Smith, A; Gossler, A

    1998-06-01

    We have isolated a novel mouse gene (Gtl2) from the site of a gene trap integration (Gtl2lacZ) that gave rise to developmentally regulated lacZ expression, and a dominant parental-origin-dependent phenotype. Heterozygous Gtl2lacZ mice that inherited the transgene from the father showed a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype was strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. Gtl2 expression is highly similar to the beta-galactosidase staining pattern, and is down-regulated but not abolished in mice carrying the Gtl2lacZ insertion. In early postimplantation embryos, Gtl2 is expressed in the visceral yolk sac and embryonic ectoderm. During subsequent development and organogenesis, Gtl2 transcripts are abundant in the paraxial mesoderm closely correlated with myogenic differentiation, in parts of the central nervous system, and in the epithelial ducts of developing excretory organs. The Gtl2 gene gives rise to various differentially spliced transcripts, which contain multiple small open reading frames (ORF). However, none of the ATG codons of these ORFs is in the context of a strong Kozak consensus sequence for initiation of translation, suggesting that Gtl2 might function as an RNA. Nuclear Gtl2 RNA was detected in a temporally and spatially regulated manner, and partially processed Gtl2 transcripts were readily detected in Northern blot hybridizations of polyadenylated RNA, suggesting that primary Gtl2 transcripts are differently processed in various cell types during development. Gtl2 transcript levels are present in parthenogenic embryos but may be reduced, consistent with the pattern of inheritance of the Gtl2lacZ phenotype.

  17. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  18. Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ cell tumors

    DEFF Research Database (Denmark)

    Salonen, Jonna; Rajpert-De Meyts, E; Mannisto, Susanna

    2010-01-01

    Testicular germ cell cancer is the most common malignancy among young males. The pre-invasive precursor, carcinoma in situ testis (CIS), presumably originates from arrested and transformed fetal gonocytes. Given that GATA transcription factors have essential roles in embryonic and testicular deve...... development, we explored the expression of GATA-4, GATA-6, cofactor friend of GATA (FOG)-2, and downstream target genes during human testis development and addressed the question whether changes in this pathway may contribute to germ cell neoplasms....

  19. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene

    International Nuclear Information System (INIS)

    Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.

    1996-01-01

    UVA radiation is the major component of the UV solar spectrum that reaches the earth, and the therapeutic application of UVA radiation is increasing in medicine. Analysis of the cellular effects of UVA radiation has revealed that exposure of human cells to UVA radiation at physiological doses leads to increased gene expression and that this UVA response is primarily mediated through the generation of singlet oxygen. In this study, the mechanisms by which UVA radiation induces transcriptional activation of the human intercellular adhesion molecule 1 (ICAM-1) were examined. UVA radiation was capable of inducing activation of the human ICAM-1 promoter and increasing OCAM-1 mRNA and protein expression. These UVA radiation effects were inhibited by singlet oxygen quenchers, augmented by enhancement of singlet oxygen life-time, and mimicked in unirradiated cells by a singlet oxygen-generating system. UVA radiation as well as singlet oxygen-induced ICAM-1 promoter activation required activation of the transcription factor AP-2. Accordingly, both stimuli activated AP-2, and deletion of the putative AP-2-binding site abrogated ICAM-1 promoter activation in this system. This study identified the AP-2 site as the UVA radiation- and singlet oxygen-responsive element of the human ICAM-1 gene. The capacity of UVA radiation and/or singlet oxygen to induce human gene expression through activation of AP-2 indicates a previously unrecognized role of this transcription factor in the mammalian stress response. 38 refs., 3 figs., 3 tabs

  20. CCAAT/Enhancer-Binding Protein α Is a Crucial Regulator of Human Fat Mass and Obesity Associated Gene Transcription and Expression

    Directory of Open Access Journals (Sweden)

    Wei Ren

    2014-01-01

    Full Text Available Several susceptibility loci have been reported associated with obesity and T2DM in GWAS. Fat mass and obesity associated gene (FTO is the first gene associated with body mass index (BMI and risk for diabetes in diverse patient populations. FTO is highly expressed in the brain and pancreas, and is involved in regulating dietary intake and energy expenditure. While much is known about the epigenetic mutations contributing to obesity and T2DM, less is certain with the expression regulation of FTO gene. In this study, a highly conserved canonical C/EBPα binding site was located around position −45~−54 bp relative to the human FTO gene transcriptional start site. Site-directed mutagenesis of the putative C/EBPα binding sites decreased FTO promoter activity. Overexpression and RNAi studies also indicated that C/EBPα was required for the expression of FTO. Chromatin immunoprecipitation (ChIP experiment was carried out and the result shows direct binding of C/EBPα to the putative binding regions in the FTO promoter. Collectively, our data suggest that C/EBPα may act as a positive regulator binding to FTO promoter and consequently, activates the gene transcription.

  1. Co-expression of the transcription factors CEH-14 and TTX-1 regulates AFD neuron-specific genes gcy-8 and gcy-18 in C. elegans.

    Science.gov (United States)

    Kagoshima, Hiroshi; Kohara, Yuji

    2015-03-15

    A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    Science.gov (United States)

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  4. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Matthewman, Colette; Podzimska-Sroka, Dagmara

    2016-01-01

    -expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling......The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005...... pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein-DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence...

  5. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    Wilson, M.S.; Bakermans, C.; Madsen, E.L.

    1999-01-01

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  6. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis.

    Science.gov (United States)

    Kim, June-Sik; Mizoi, Junya; Yoshida, Takuya; Fujita, Yasunari; Nakajima, Jun; Ohori, Teppei; Todaka, Daisuke; Nakashima, Kazuo; Hirayama, Takashi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-01

    In plants, osmotic stress-responsive transcriptional regulation depends mainly on two major classes of cis-acting elements found in the promoter regions of stress-inducible genes: ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs). ABRE has been shown to perceive ABA-mediated osmotic stress signals, whereas DRE is known to be involved in an ABA-independent pathway. Previously, we reported that the transcription factor DRE-BINDING PROTEIN 2A (DREB2A) regulates DRE-mediated transcription of target genes under osmotic stress conditions in Arabidopsis (Arabidopsis thaliana). However, the transcriptional regulation of DREB2A itself remains largely uncharacterized. To elucidate the transcriptional mechanism associated with the DREB2A gene under osmotic stress conditions, we generated a series of truncated and base-substituted variants of the DREB2A promoter and evaluated their transcriptional activities individually. We found that both ABRE and coupling element 3 (CE3)-like sequences located approximately -100 bp from the transcriptional initiation site are necessary for the dehydration-responsive expression of DREB2A. Coupling our transient expression analyses with yeast one-hybrid and chromatin immunoprecipitation (ChIP) assays indicated that the ABRE-BINDING PROTEIN 1 (AREB1), AREB2 and ABRE-BINDING FACTOR 3 (ABF3) bZIP transcription factors can bind to and activate the DREB2A promoter in an ABRE-dependent manner. Exogenous ABA application induced only a modest accumulation of the DREB2A transcript when compared with the osmotic stress treatment. However, the osmotic stress-induced DREB2A expression was found to be markedly impaired in several ABA-deficient and ABA-insensitive mutants. These results suggest that in addition to an ABA-independent pathway, the ABA-dependent pathway plays a positive role in the osmotic stress-responsive expression of DREB2A.

  7. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    Directory of Open Access Journals (Sweden)

    Sansavini Silviero

    2010-10-01

    Full Text Available Abstract Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies, we utilized both homologous and heterologous (tomato microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization

  8. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    Science.gov (United States)

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as

  9. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    Science.gov (United States)

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process

  10. Heme-dependent up-regulation of the α-globin gene expression by transcriptional repressor Bach1 in erythroid cells

    International Nuclear Information System (INIS)

    Tahara, Tsuyoshi; Sun Jiying; Igarashi, Kazuhiko; Taketani, Shigeru

    2004-01-01

    The transcriptional factor Bach1 forms a heterodimer with small Maf family, and functions as a repressor of the Maf recognition element (MARE) in vivo. To investigate the involvement of Bach1 in the heme-dependent regulation of the expression of the α-globin gene, human erythroleukemia K562 cells were cultured with succinylacetone (SA), a heme biosynthetic inhibitor, and the level of α-globin mRNA was examined. A decrease of α-globin mRNA was observed in SA-treated cells, which was restored by the addition of hemin. The heme-dependent expression of α-globin occurred at the transcriptional level since the expression of human α-globin gene promoter-reporter gene containing hypersensitive site-40 (HS-40) was decreased when K562 cells were cultured with SA. Hemin treatment restored the decrease of the promoter activity by SA. The regulation of the HS-40 activity by heme was dependent on the NF-E2/AP-1 (NA) site, which is similar to MARE. The NA site-binding activity of Bach1 in K562 increased upon SA-treatment, and the increase was diminished by the addition of hemin. The transient expression of Bach1 and mutated Bach1 lacking CP motifs suppressed the HS-40 activity, and cancellation of the repressor activity by hemin was observed when wild-type Bach1 was expressed. The expression of NF-E2 strengthened the restoration of the Bach1-effect by hemin. Interestingly, nuclear localization of Bach1 increased when cells were treated with SA, while hemin induced the nuclear export of Bach1. These results indicated that heme plays an important role in the induction of α-globin gene expression through disrupting the interaction of Bach1 and the NA site in HS-40 enhancer in erythroid cells

  11. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  12. DNA hypomethylation of a transcription factor binding site within the promoter of a gout risk gene NRBP1 upregulates its expression by inhibition of TFAP2A binding.

    Science.gov (United States)

    Zhu, Zaihua; Meng, Weida; Liu, Peiru; Zhu, Xiaoxia; Liu, Yun; Zou, Hejian

    2017-01-01

    Genome-wide association studies (GWASs) have identified dozens of loci associated with gout, but for most cases, the risk genes and the underlying molecular mechanisms contributing to these associations are unknown. This study sought to understand the molecular mechanism of a common genetic variant, rs780093, in the development of gout, both in vitro and in vivo. Nuclear receptor binding protein 1 ( NRBP1 ), as a gout risk gene, and its regulatory region, 72 bp upstream of the transcription start site, designated as B1, were identified through integrative analyses of genome-wide genotype and DNA methylation data. We observed elevated NRBP1 expression in human peripheral blood mononuclear cells (PBMCs) from gout patients. In vitro luciferase reporter and protein pulldown assay results showed that DNA methylation could increase the binding of the transcription factor TFAP2A to B1, leading to suppressed gene expression. There results were further confirmed by in vivo bisulfite pyrosequencing showing that hypomethylation on B1 is associated with increased NRBP1 expression in gout patients. Hypomethylation at the promoter region of NRBP1 reduces the binding of TFAP2A and thus leads to elevated NRBP1 expression, which might contribute to the development of gout.

  13. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Sasivarevic, Damir; Hadi Sohi, Sina

    2016-01-01

    Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet...

  14. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus.

    Directory of Open Access Journals (Sweden)

    Wei Chi

    Full Text Available The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus. How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male from the rice field eel to investigate changes in transcriptional level during the sex reversal process.Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes. These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary.This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.

  15. The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability.

    Directory of Open Access Journals (Sweden)

    Catarina Pimentel

    Full Text Available The budding yeast Saccharomyces cerevisiae has developed several mechanisms to avoid either the drastic consequences of iron deprivation or the toxic effects of iron excess. In this work, we analysed the global gene expression changes occurring in yeast cells undergoing iron overload. Several genes directly or indirectly involved in iron homeostasis showed altered expression and the relevance of these changes are discussed. Microarray analyses were also performed to identify new targets of the iron responsive factor Yap5. Besides the iron vacuolar transporter CCC1, Yap5 also controls the expression of glutaredoxin GRX4, previously known to be involved in the regulation of Aft1 nuclear localization. Consistently, we show that in the absence of Yap5 Aft1 nuclear exclusion is slightly impaired. These studies provide further evidence that cells control iron homeostasis by using multiple pathways.

  16. Differential Gene Expression and Aging

    Directory of Open Access Journals (Sweden)

    Laurent Seroude

    2002-01-01

    Full Text Available It has been established that an intricate program of gene expression controls progression through the different stages in development. The equally complex biological phenomenon known as aging is genetically determined and environmentally modulated. This review focuses on the genetic component of aging, with a special emphasis on differential gene expression. At least two genetic pathways regulating organism longevity act by modifying gene expression. Many genes are also subjected to age-dependent transcriptional regulation. Some age-related gene expression changes are prevented by caloric restriction, the most robust intervention that slows down the aging process. Manipulating the expression of some age-regulated genes can extend an organism's life span. Remarkably, the activity of many transcription regulatory elements is linked to physiological age as opposed to chronological age, indicating that orderly and tightly controlled regulatory pathways are active during aging.

  17. Alternative Oxidase Transcription Factors AOD2 and AOD5 of Neurospora crassa Control the Expression of Genes Involved in Energy Production and Metabolism.

    Science.gov (United States)

    Qi, Zhigang; Smith, Kristina M; Bredeweg, Erin L; Bosnjak, Natasa; Freitag, Michael; Nargang, Frank E

    2017-02-09

    In Neurospora crassa , blocking the function of the standard mitochondrial electron transport chain results in the induction of an alternative oxidase (AOX). AOX transfers electrons directly from ubiquinol to molecular oxygen. AOX serves as a model of retrograde regulation since it is encoded by a nuclear gene that is regulated in response to signals from mitochondria. The N. crassa transcription factors AOD2 and AOD5 are necessary for the expression of the AOX gene. To gain insight into the mechanism by which these factors function, and to determine if they have roles in the expression of additional genes in N. crassa , we constructed strains expressing only tagged versions of the proteins. Cell fractionation experiments showed that both proteins are localized to the nucleus under both AOX inducing and noninducing conditions. Furthermore, chromatin immunoprecipitation and high throughput sequencing (ChIP-seq) analysis revealed that the proteins are bound to the promoter region of the AOX gene under both conditions. ChIP-seq also showed that the transcription factors bind to the upstream regions of a number of genes that are involved in energy production and metabolism. Dependence on AOD2 and AOD5 for the expression of several of these genes was verified by quantitative PCR. The majority of ChIP-seq peaks observed were enriched for both AOD2 and AOD5. However, we also observed occasional sites where one factor appeared to bind preferentially. The most striking of these was a conserved sequence that bound large amounts of AOD2 but little AOD5. This sequence was found within a 310 bp repeat unit that occurs at several locations in the genome. Copyright © 2017 Qi et al.

  18. Integration analysis of microRNA and mRNA paired expression profiling identifies deregulated microRNA-transcription factor-gene regulatory networks in ovarian endometriosis.

    Science.gov (United States)

    Zhao, Luyang; Gu, Chenglei; Ye, Mingxia; Zhang, Zhe; Li, Li'an; Fan, Wensheng; Meng, Yuanguang

    2018-01-22

    The etiology and pathophysiology of endometriosis remain unclear. Accumulating evidence suggests that aberrant microRNA (miRNA) and transcription factor (TF) expression may be involved in the pathogenesis and development of endometriosis. This study therefore aims to survey the key miRNAs, TFs and genes and further understand the mechanism of endometriosis. Paired expression profiling of miRNA and mRNA in ectopic endometria compared with eutopic endometria were determined by high-throughput sequencing techniques in eight patients with ovarian endometriosis. Binary interactions and circuits among the miRNAs, TFs, and corresponding genes were identified by the Pearson correlation coefficients. miRNA-TF-gene regulatory networks were constructed using bioinformatic methods. Eleven selected miRNAs and TFs were validated by quantitative reverse transcription-polymerase chain reaction in 22 patients. Overall, 107 differentially expressed miRNAs and 6112 differentially expressed mRNAs were identified by comparing the sequencing of the ectopic endometrium group and the eutopic endometrium group. The miRNA-TF-gene regulatory network consists of 22 miRNAs, 12 TFs and 430 corresponding genes. Specifically, some key regulators from the miR-449 and miR-34b/c cluster, miR-200 family, miR-106a-363 cluster, miR-182/183, FOX family, GATA family, and E2F family as well as CEBPA, SOX9 and HNF4A were suggested to play vital regulatory roles in the pathogenesis of endometriosis. Integration analysis of the miRNA and mRNA expression profiles presents a unique insight into the regulatory network of this enigmatic disorder and possibly provides clues regarding replacement therapy for endometriosis.

  19. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P; Khan, Sohail R; Futcher, Bruce; Leatherwood, Janet K

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  20. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    Science.gov (United States)

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the “unspliced” signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression. PMID:22238674

  1. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.

  2. Time-course gene expression data on the transcriptional effects of Aminaphtone on ECV304 endothelial cells

    Directory of Open Access Journals (Sweden)

    Giulia Salazar

    2016-09-01

    Full Text Available We previously showed that Aminaphtone, a drug used in the treatment of chronic venous insufficiency, modulates several vasoactive factors, such as endothelin-1 and adhesion molecules. Here, we provide data of time-course experiments about the effects of Aminaphtone on gene expression at the genome-wide level in human endothelial cells undergoing cytokine stimulation in vitro. ECV-304 endothelial cells were incubated with interleukin-1β (IL-1β in the presence or absence of Aminaphtone for 1, 3, and 6 h. Gene expression profiles were analyzed by microarray. This article contains complete data on the genes significantly modulated by the drug over time. The data are supplemental to our original research article reporting detailed analysis of the actions of Aminaphtone on IL-1β stimulated endothelial cells at the molecular level, ''Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells'' (Salazar et al., 2016 [1]. Chemical compound studied in this article: Aminaphtone (PubChem CID: 84621, Keywords: Endothelial cells, Transcriptome, Inflammation, Vasoactive drug

  3. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5α, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  4. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    Science.gov (United States)

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization.

  5. Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology

    Science.gov (United States)

    Pócsi, István; Miskei, Márton; Karányi, Zsolt; Emri, Tamás; Ayoubi, Patricia; Pusztahelyi, Tünde; Balla, György; Prade, Rolf A

    2005-01-01

    Background In addition to their cytotoxic nature, reactive oxygen species (ROS) are also signal molecules in diverse cellular processes in eukaryotic organisms. Linking genome-wide transcriptional changes to cellular physiology in oxidative stress-exposed Aspergillus nidulans cultures provides the opportunity to estimate the sizes of peroxide (O22-), superoxide (O2•-) and glutathione/glutathione disulphide (GSH/GSSG) redox imbalance responses. Results Genome-wide transcriptional changes triggered by diamide, H2O2 and menadione in A. nidulans vegetative tissues were recorded using DNA microarrays containing 3533 unique PCR-amplified probes. Evaluation of LOESS-normalized data indicated that 2499 gene probes were affected by at least one stress-inducing agent. The stress induced by diamide and H2O2 were pulse-like, with recovery after 1 h exposure time while no recovery was observed with menadione. The distribution of stress-responsive gene probes among major physiological functional categories was approximately the same for each agent. The gene group sizes solely responsive to changes in intracellular O22-, O2•- concentrations or to GSH/GSSG redox imbalance were estimated at 7.7, 32.6 and 13.0 %, respectively. Gene groups responsive to diamide, H2O2 and menadione treatments and gene groups influenced by GSH/GSSG, O22- and O2•- were only partly overlapping with distinct enrichment profiles within functional categories. Changes in the GSH/GSSG redox state influenced expression of genes coding for PBS2 like MAPK kinase homologue, PSK2 kinase homologue, AtfA transcription factor, and many elements of ubiquitin tagging, cell division cycle regulators, translation machinery proteins, defense and stress proteins, transport proteins as well as many enzymes of the primary and secondary metabolisms. Meanwhile, a separate set of genes encoding transport proteins, CpcA and JlbA amino acid starvation-responsive transcription factors, and some elements of sexual development

  6. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza1

    Science.gov (United States)

    Rich, Mélanie K.

    2015-01-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) GIBBERELLIC ACID INSENSITIVE, REPRESSOR of GIBBERELLIC ACID INSENSITIVE, and SCARECROW (GRAS)-type transcription factor, ATYPICAL ARBUSCULE (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of REQUIRED FOR ARBUSCULAR MYCORRHIZA1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. PMID:25971550

  7. The Petunia GRAS Transcription Factor ATA/RAM1 Regulates Symbiotic Gene Expression and Fungal Morphogenesis in Arbuscular Mycorrhiza.

    Science.gov (United States)

    Rich, Mélanie K; Schorderet, Martine; Bapaume, Laure; Falquet, Laurent; Morel, Patrice; Vandenbussche, Michiel; Reinhardt, Didier

    2015-07-01

    Arbuscular mycorrhiza (AM) is a mutual symbiosis that involves a complex symbiotic interface over which nutrients are exchanged between the plant host and the AM fungus. Dozens of genes in the host are required for the establishment and functioning of the interaction, among them nutrient transporters that mediate the uptake of mineral nutrients delivered by the fungal arbuscules. We have isolated in a genetic mutant screen a petunia (Petunia hybrida) Gibberellic Acid Insensitive, Repressor of Gibberellic Acid Insensitive, and Scarecrow (GRAS)-type transcription factor, Atypical Arbuscule (ATA), that acts as the central regulator of AM-related genes and is required for the morphogenesis of arbuscules. Forced mycorrhizal inoculations from neighboring wild-type plants revealed an additional role of ATA in restricting mycorrhizal colonization of the root meristem. The lack of ATA, which represents the ortholog of Required For Arbuscular Mycorrhiza1 in Medicago truncatula, renders the interaction completely ineffective, hence demonstrating the central role of AM-related genes for arbuscule development and function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors.

    Science.gov (United States)

    Ahuja, Richa; Kumar, Vijay

    2017-07-01

    RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation. © 2017 Federation of European Biochemical Societies.

  9. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles

    OpenAIRE

    Cronn, Richard; Dolan, Peter C.; Jogdeo, Sanjuro; Wegrzyn, Jill L.; Neale, David B.; St. Clair, J. Bradley; Denver, Dee R.

    2017-01-01

    Background Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) n...

  10. Transcription Through The Eye Of A Needle: Daily And Annual Cycles Of Gene Expression Variation In Douglas-Fir Needles

    OpenAIRE

    Dolan, Peter; Cronn, Richard; Denver, Dee; Clair, J.; Neale, David; Wegrzyn, Jill; Jogdeo, Sanjuro

    2017-01-01

    Background: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal rhythms and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii)...

  11. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  12. Activation of anthocyanin biosynthesis by expression of the radish R2R3-MYB transcription factor gene RsMYB1.

    Science.gov (United States)

    Lim, Sun-Hyung; Song, Ji-Hye; Kim, Da-Hye; Kim, Jae Kwang; Lee, Jong-Yeol; Kim, Young-Mi; Ha, Sun-Hwa

    2016-03-01

    RsMYB1, a MYB TF of red radish origin, was characterized as a positive regulator to transcriptionally activate the anthocyanin biosynthetic machinery by itself in Arabidopsis and tobacco plants. Anthocyanins, providing the bright red-orange to blue-violet colors, are flavonoid-derived pigments with strong antioxidant activity that have benefits for human health. We isolated RsMYB1, which encodes an R2R3-MYB transcription factor (TF), from red radish plants (Raphanus sativus L.) that accumulate high levels of anthocyanins. RsMYB1 shows higher expression in red radish than in common white radish, in both leaves and roots, at different growth stages. Consistent with RsMYB1 function as an anthocyanin-promoting TF, red radishes showed higher expression of all six anthocyanin biosynthetic and two anthocyanin regulatory genes. Transient expression of RsMYB1 in tobacco showed that RsMYB1 is a positive regulator of anthocyanin production with better efficiency than the basic helix-loop-helix (bHLH) TF gene B-Peru. Also, the synergistic effect of RsMYB1 with B-Peru was larger than the effect of the MYB TF gene mPAP1D with B-peru. Arabidopsis plants stably expressing RsMYB1 produced red pigmentation throughout the plant, accompanied by up-regulation of the six structural and two regulatory genes for anthocyanin production. This broad transcriptional activation of anthocyanin biosynthetic machinery in Arabidopsis included up-regulation of TRANSPARENT TESTA8, which encodes a bHLH TF. These results suggest that overexpression of RsMYB1 promotes anthocyanin production by triggering the expression of endogenous bHLH genes as potential binding partners for RsMYB1. In addition, RsMYB1-overexpressing Arabidopsis plants had a higher antioxidant capacity than did non-transgenic control plants. Taken together, RsMYB1 is an actively positive regulator for anthocyanins biosynthesis in radish plants and it might be one of the best targets for anthocyanin production by single gene

  13. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  14. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  15. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    Science.gov (United States)

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  16. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    Directory of Open Access Journals (Sweden)

    Ying eZhao

    2015-06-01

    Full Text Available Metasequoiaglyptostroboidies is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as5-to-7years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  17. Alteration of runt-related transcription factor 3 gene expression and biologic behavior of esophageal carcinoma TE-1 cells after 5-azacytidine intervention.

    Science.gov (United States)

    Wang, Shuai; Liu, Hong; Akhtar, Javed; Chen, Hua-Xia; Wang, Zhou

    2013-01-01

    5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at 50 μM had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

  18. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage

    Directory of Open Access Journals (Sweden)

    Pia C. Svendsen

    2015-12-01

    Full Text Available The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg and repressed by Decapentaplegic (Dpp. Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.

  19. Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice.

    Science.gov (United States)

    Sharma, Niharika; Dang, Trang Minh; Singh, Namrata; Ruzicic, Slobodan; Mueller-Roeber, Bernd; Baumann, Ute; Heuer, Sigrid

    2018-01-08

    Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which

  20. The gene expression profile of resistant and susceptible Bombyx mori strains reveals cypovirus-associated variations in host gene transcript levels.

    Science.gov (United States)

    Guo, Rui; Wang, Simei; Xue, Renyu; Cao, Guangli; Hu, Xiaolong; Huang, Moli; Zhang, Yangqi; Lu, Yahong; Zhu, Liyuan; Chen, Fei; Liang, Zi; Kuang, Sulan; Gong, Chengliang

    2015-06-01

    High-throughput paired-end RNA sequencing (RNA-Seq) was performed to investigate the gene expression profile of a susceptible Bombyx mori strain, Lan5, and a resistant B. mori strain, Ou17, which were both orally infected with B. mori cypovirus (BmCPV) in the midgut. There were 330 and 218 up-regulated genes, while there were 147 and 260 down-regulated genes in the Lan5 and Ou17 strains, respectively. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment for differentially expressed genes (DEGs) were carried out. Moreover, gene interaction network (STRING) analyses were performed to analyze the relationships among the shared DEGs. Some of these genes were related and formed a large network, in which the genes for B. mori cuticular protein RR-2 motif 123 (BmCPR123) and the gene for B. mori DNA replication licensing factor Mcm2-like (BmMCM2) were key genes among the common up-regulated DEGs, whereas the gene for B. mori heat shock protein 20.1 (Bmhsp20.1) was the central gene among the shared down-regulated DEGs between Lan5 vs Lan5-CPV and Ou17 vs Ou17-CPV. These findings established a comprehensive database of genes that are differentially expressed in response to BmCPV infection between silkworm strains that differed in resistance to BmCPV and implied that these DEGs might be involved in B. mori immune responses against BmCPV infection.

  1. Ectopic Expression of the Grape Hyacinth (Muscari armeniacum R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco

    Directory of Open Access Journals (Sweden)

    Kaili Chen

    2017-06-01

    Full Text Available Anthocyanins are responsible for the different colors of ornamental plants. Grape hyacinth (Muscari armeniacum, a monocot plant with bulbous flowers, is popular for its fascinating blue color. In the present study, we functionally characterized an R2R3-MYB transcription factor gene MaAN2 from M. armeniacum. Our results indicated that MaAN2 participates in controlling anthocyanin biosynthesis. Sequence alignment and phylogenetic analysis suggested that MaAN2 belonged to the R2R3-MYB family AN2 subgroup. The anthocyanin accumulation of grape hyacinth flowers was positively correlated with the expression of MaAN2. And the transcriptional expression of MaAN2 was also consistent with that of M. armeniacum dihydroflavonol 4-reductase (MaDFR and M. armeniacum anthocyanidin synthase (MaANS in flowers. A dual luciferase transient expression assay indicated that when MaAN2 was co-inflitrated with Arabidopsis thaliana TRANSPARENT TESTA8 (AtTT8, it strongly activated the promoters of MaDFR and MaANS, but not the promoters of M. armeniacum chalcone synthase (MaCHS, M. armeniacum chalcone isomerase (MaCHI, and M. armeniacum flavanone 3-hydroxylase (MaF3H. Bimolecular fluorescence complementation assay confirmed that MaAN2 interacted with AtTT8 in vivo. The ectopic expression of MaAN2 in Nicotiana tabacum resulted in obvious red coloration of the leaves and much redder flowers. Almost all anthocyanin biosynthetic genes were remarkably upregulated in the leaves and flowers of the transgenic tobacco, and NtAn1a and NtAn1b (two basic helix–loop–helix anthocyanin regulatory genes were highly expressed in the transformed leaves, compared to the empty vector transformants. Collectively, our results suggest that MaAN2 plays a role in anthocyanin biosynthesis.

  2. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    Science.gov (United States)

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome.

    Science.gov (United States)

    Plummer, J T; Evgrafov, O V; Bergman, M Y; Friez, M; Haiman, C A; Levitt, P; Aldinger, K A

    2013-10-22

    Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C 'low activity' allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5' promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C 'low activity' allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.

  4. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment.

    Science.gov (United States)

    Miller, J D; Sun, M; Gilyan, A; Roy, J; Rand, T G

    2010-01-05

    Few metabolites from fungi found indoors have been tested for inflammatory mediators endpoints in primary cultures of alveolar macrophages or in vivo. In this study, mice were intratracheally instilled with a single dose comprising 4x10(-5)moletoxin/kg lung wt dose of either atranone C, brevianamide, cladosporin, mycophenolic acid, neoechinulin A & B, sterigmatocystin or TMC-120A. These toxins are from fungi common on damp building materials. The dose used was comparable to the estimated doses of possible human exposure. Hematoxylin and eosin (H&E) histology and Alcian Blue/Periodic Acid Schiff (AB/PAS) histochemistry were used to evaluate lungs for time course (4h and 12h post-exposure (PE)) inflammatory and toxic changes. Reverse-transcription (RT)-PCR based arrays were also employed to evaluate time course inflammation-associated gene transcription in lung tissues of the different toxins. Immunohistochemistry (IHC) was used to probe MIP-2 and Tnf-alpha protein expression in treatment lungs to determine whether responses correspond with gene transcription data. Both histology and histochemistry revealed that toxin exposed lungs at 12h PE showed evidence of inflammation. H&E revealed that bronchioli were lined with irregularly thickened and sometimes sloughing epithelium and bronchiolar spaces supported infiltration of leukocytes, cellular and mucus-like debris while alveolar spaces supported swollen macrophages and modest amorphous debris accumulations. All toxin-instilled lungs exhibited copious mucus production and alveolar macrophages with red stained cytoplasm on bronchiolar surfaces, especially at 12h PE. Array analysis of 83 inflammation-associated genes extracted from lung tissue demonstrated a number of patterns, compared to controls. 82 genes assayed at 4h PE and 75 genes at 12h PE were significantly altered (por =1.5-fold or cladosporin, atranone C and TMC-120. The results further confirm the inflammatory nature of metabolites/toxins from such fungi can

  5. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Science.gov (United States)

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping

  6. Effects of ethinylestradiol and of an environmentally relevant mixture of xenoestrogens on steroidogenic gene expression and specific transcription factors in zebrafish

    International Nuclear Information System (INIS)

    Urbatzka, R.; Rocha, E.; Reis, B.; Cruzeiro, C.; Monteiro, R.A.F.; Rocha, M.J.

    2012-01-01

    In natural environments fish are exposed to endocrine disrupting compounds (EDCs) present at low concentrations and with different modes of actions. Here, adult zebrafish of both sexes were exposed for 21 days to an estrogenic mixture (Mix) of eleven EDCs previously quantified in Douro River estuary (Portugal) and to 100 ng/L 17α-ethinylestradiol (EE2) as positive control. Vitellogenin mRNA and HSI in males confirmed both exposure regimes as physiologically active. Potential candidates for estrogenic disturbance of steroidogenesis were identified (StAR, 17β-HSD1, cyp19a1), but Mix only affected cyp19a1 in females. Significant differences in the response of FSHβ, cypa19a2, 20β-HSD were observed between EE2 and Mix. Mtf-1 and tfap2c transcription factor binding sites were discovered in the putative promoter regions and corresponding transcription factors were found to be differentially expressed in response to Mix and EE2. The results suggest that “non-classical effects” of estrogenic EDC in fish are mediated via transcription factors. - Highlights: ► Zebrafish were exposed to an estrogenic mixture (Mix) and to EE2 as positive control. ► Both exposure regimes were confirmed as physiologically active. ► Different disturbances on steroidogenesis were observed in males and females. ► A male gene expression pattern suggested a differential interference of Mix and EE2. ► Non-classical effects of Mix seem to be mediated via transcription factors. - An estrogenic mixture revealed different effects on specific transcription factors than EE2, probably due to multiple modes of actions of the chosen compounds.

  7. Gene expression and yeast two-hybrid studies of transcription factors mediating drought stress response in root tissues of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomic assisted breeding in chickpea has been effective in providing a yield advantage of up to 24 %, thus having a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR was used to study the differential gene expression of selected TFs, identified from large-scale gene expression analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant, ICC 1882 (sensitive, JG 11 (elite and JG 11+ (introgression line were used for the study. Subsequently, a candidate single repeat MYB gene (1R-MYB that was remarkably induced in the drought tolerant genotypes under drought stress was cloned and subjected to Y2H analysis by screening a root cDNA library. The protein-protein interaction study identified three interacting peptides, a galactinol-sucrose galactosyltransferase 2, a CBL (Calcineurin B-like-interacting serine/threonine-protein kinase 25 and an ABA responsive 17-like, which were confirmed by the co-transformation of candidate plasmids in yeast. These findings provide preliminary insights into the ability of 1R-MYB TF to co-regulate drought tolerance mechanism in chickpea roots.

  8. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR RNA.

    Directory of Open Access Journals (Sweden)

    Matthew S Lalonde

    2011-05-01

    Full Text Available The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50 ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (- strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.

  9. Ginger extract modulates Pb-induced hepatic oxidative stress and expression of antioxidant gene transcripts in rat liver.

    Science.gov (United States)

    Mohamed, Omnia Ismail; El-Nahas, Abeer Fekry; El-Sayed, Yasser Said; Ashry, Khaled Mohamed

    2016-07-01

    Spices and herbs are recognized sources of natural antioxidants that can protect from oxidative stress, thus play an important role in chemoprevention of liver diseases. Ginger is used worldwide primarily as a spicy condiment. This study evaluated the ability of ginger extract (GE) to ameliorate oxidative-hepatic toxicity induced by lead acetate (PbAc) in rats. Five groups of animals were used: group I kept as control; groups II, IV, and V received PbAc (1 ppm in drinking water daily for 6 weeks, and kept for an additional 2 weeks without PbAc exposure); group III treated orally with GE (350 mg/kg body weight, 4 d per week) for 6 weeks; group IV (protective) received GE for 2 weeks before and simultaneously with PbAc; and group V (treatment) received GE for 2 weeks after PbAc exposure. GC-MS analysis of GE revealed its content of gingerol (7.09%), quercetin (3.20%), dl-limonene (0.96%), and zingiberene (0.18%). Treatment of PbAc-treated rats with GE has no effect on hepatic Pb concentrations. However, it maintained serum aspartate aminotransferase level, increased hepatic glutathione (157%), glutathione S-transferase (GST) (228%), glutathione peroxidase (GPx) (138%) and catalase (CAT) (112%) levels, and reduced hepatic malondialdehyde (80%). Co-treatment of PbAc group with GE upregulated mRNA expression of antioxidant genes: GST-α1 (1.4-fold), GPx1 (1.8-fold), and CAT (8-fold), while post-treatment with GE upregulated only mRNA expression of GPx1 (1.5-fold). GE has an antioxidant protective efficacy against PbAc-induced hepatotoxicity, which appears more effective than its therapeutic application. However, the changes in antioxidant gene expression were not reflected at the protein level.

  10. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III1

    International Nuclear Information System (INIS)

    Dexheimer, Thomas S.; Carey, Steven S.; Zuohe, Song; Gokhale, Vijay M.; Hu, Xiaohui; Murata, Lauren B.; Maes, Estelle M.; Weichsel, Andrzej; Sun, Daekyu; Meuillet, Emmanuelle J.; Montfort, William R.; Hurley, Laurence H.

    2009-01-01

    The formation of G-quadruplex structures within the nuclease hypersensitive element (NHE) III 1 region of the c-myc promoter and the ability of these structures to repress c-myc transcription have been well established. However, just how these extremely stable DNA secondary structures are transformed to activate c-myc transcription is still unknown. NM23-H2/nucleoside diphosphate kinase B has been recognized as an activator of c-myc transcription via interactions with the NHE III 1 region of the c-myc gene promoter. Through the use of RNA interference, we confirmed the transcriptional regulatory role of NM23-H2. In addition, we find that further purification of NM23-H2 results in loss of the previously identified DNA strand cleavage activity, but retention of its DNA binding activity. NM23-H2 binds to both single-stranded guanine- and cytosine-rich strands of the c-myc NHE III 1 and, to a lesser extent, to a random single-stranded DNA template. However, it does not bind to or cleave the NHE III 1 in duplex form. Significantly, potassium ions and compounds that stabilize the G-quadruplex and i-motif structures have an inhibitory effect on NM23-H2 DNA-binding activity. Mutation of Arg 88 to Ala 88 (R88A) reduced both DNA and nucleotide binding but had minimal effect on the NM23-H2 crystal structure. On the basis of these data and molecular modeling studies, we have proposed a stepwise trapping-out of the NHE III 1 region in a single-stranded form, thus allowing single-stranded transcription factors to bind and activate c-myc transcription. Furthermore, this model provides a rationale for how the stabilization of the G-quadruplex or i-motif structures formed within the c-myc gene promoter region can inhibit NM23-H2 from activating c-myc gene expression.

  11. Positive- and negative-acting regulatory elements contribute to the tissue-specific expression of INNER NO OUTER, a YABBY-type transcription factor gene in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Simon Marissa K

    2012-11-01

    Full Text Available Abstract Background The INNER NO OUTER (INO gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern. Results Significant redundancy in activity between different regions of the INO promoter is demonstrated. For specific regulatory elements, multimerization or the addition of the cauliflower mosaic virus 35S general enhancer was able to activate expression of reporter gene constructs that were otherwise incapable of expression on their own. A new promoter element, POS6, is defined and is shown to include sufficient positive regulatory information to reproduce the endogenous pattern of expression in ovules, but other promoter regions are necessary to fully suppress expression outside of ovules. The full-length INO promoter, but not any of the INO promoter deletions tested, is able to act as an enhancer-blocking insulator to prevent the ectopic activation of expression by the 35S enhancer. Sequence conservation between the promoter regions of Arabidopsis thaliana, Brassica oleracea and Brassica rapa aligns closely with the functional definition of the POS6 and POS9 regions, and with a defined INO minimal promoter. The B. oleracea INO promoter is sufficient to promote a similar pattern and level of reporter gene expression in Arabidopsis to that observed for the Arabidopsis promoter. Conclusions At least two independent regions of the INO promoter contain sufficient regulatory information to direct the specific pattern but not the level of INO gene expression. These regulatory regions act in a partially redundant manner to promote the expression in a specific pattern in the ovule and

  12. Genome-Wide Analysis of the AP2/ERF Transcription Factors Family and the Expression Patterns of DREB Genes in Moso Bamboo (Phyllostachys edulis.

    Directory of Open Access Journals (Sweden)

    Huili Wu

    Full Text Available The AP2/ERF transcription factor family, one of the largest families unique to plants, performs a significant role in terms of regulation of growth and development, and responses to biotic and abiotic stresses. Moso bamboo (Phyllostachys edulis is a fast-growing non-timber forest species with the highest ecological, economic and social values of all bamboos in Asia. The draft genome of moso bamboo and the available genomes of other plants provide great opportunities to research global information on the AP2/ERF family in moso bamboo. In total, 116 AP2/ERF transcription factors were identified in moso bamboo. The phylogeny analyses indicated that the 116 AP2/ERF genes could be divided into three subfamilies: AP2, RAV and ERF; and the ERF subfamily genes were divided into 11 groups. The gene structures, exons/introns and conserved motifs of the PeAP2/ERF genes were analyzed. Analysis of the evolutionary patterns and divergence showed the PeAP2/ERF genes underwent a large-scale event around 15 million years ago (MYA and the division time of AP2/ERF family genes between rice and moso bamboo was 15-23 MYA. We surveyed the putative promoter regions of the PeDREBs and showed that largely stress-related cis-elements existed in these genes. Further analysis of expression patterns of PeDREBs revealed that the most were strongly induced by drought, low-temperature and/or high salinity stresses in roots and, in contrast, most PeDREB genes had negative functions in leaves under the same respective stresses. In this study there were two main interesting points: there were fewer members of the PeDREB subfamily in moso bamboo than in other plants and there were differences in DREB gene expression profiles between leaves and roots triggered in response to abiotic stress. The information produced from this study may be valuable in overcoming challenges in cultivating moso bamboo.

  13. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress.

    Science.gov (United States)

    Solís-Guzmán, María Gloria; Argüello-Astorga, Gerardo; López-Bucio, José; Ruiz-Herrera, León Francisco; López-Meza, Joel Edmundo; Sánchez-Calderón, Lenin; Carreón-Abud, Yazmín; Martínez-Trujillo, Miguel

    2017-11-01

    Sucrose is synthesized from UDP-Glc and Fru-6-phosphate via the activity of sucrose-phosphate synthase (SPS) enzymes, which produce Suc-6-phosphate. Suc-6-phosphate is rapidly dephosphorylated by phosphatases to produce Suc and inorganic phosphate. Arabidopsis has four sps genes encoding SPS enzymes. Of these enzymes, AtSPS1F and AtSPS2F have been grouped with other dicotyledonous SPS enzymes, while AtSPS3F and AtSPS4F are included in groups with both dicotyledonous and monocotyledonous SPS enzymes. In this work, we generated Arabidopsis thaliana transformants containing the promoter region of each sps gene fused to gfp::uidA reporter genes. A detailed characterization of expression conferred by the sps promoters in organs and tissues was performed. We observed expression of AtSPS1F, AtSPS2F and AtSPS3F in the columella roots of the plants that support sucrose synthesis. Hence, these findings support the idea that sucrose synthesis occurs in the columella cells, and suggests that sucrose has a role in this tissue. In addition, the expression of AtSPS4F was identified in embryos and suggests its participation in this developmental stage. Quantitative transcriptional analysis of A. thaliana plants grown in media with different osmotic potential showed that AtSPS2F and AtSPS4F respond to osmotic stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    Science.gov (United States)

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  15. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  16. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells

    Directory of Open Access Journals (Sweden)

    Jeron Andreas

    2012-12-01

    Full Text Available Abstract Background The transcription factor (TF forkhead box P3 (FOXP3 is constitutively expressed at high levels in naturally occurring CD4+CD25+ regulatory T cells (nTregs. It is not only the most accepted marker for that cell population but is also considered lineage determinative. Chromatin immunoprecipitation (ChIP of TFs in combination with genomic tiling microarray analysis (ChIP-on-chip has been shown to be an appropriate tool for identifying FOXP3 transcription factor binding sites (TFBSs on a genome-wide scale. In combination with microarray expression analysis, the ChIP-on-chip technique allows identification of direct FOXP3 target genes. Results ChIP-on-chip analysis of the human FOXP3 expressed in resting and PMA/ionomycin–stimulated Jurkat T cells revealed several thousand putative FOXP3 binding sites and demonstrated the importance of intronic regions for FOXP3 binding. The analysis of expression data showed that the stimulation-dependent down-regulation of IL-22 was correlated with direct FOXP3 binding in the IL-22 promoter region. This association was confirmed by real-time PCR analysis of ChIP-DNA. The corresponding ChIP-region also contained a matching FOXP3 consensus sequence. Conclusions Knowledge of the general distribution patterns of FOXP3 TFBSs in the human genome under resting and activated conditions will contribute to a better understanding of this TF and its influence on direct target genes, as well as its importance for the phenotype and function of Tregs. Moreover, FOXP3-dependent repression of Th17-related IL-22 may be relevant to an understanding of the phenomenon of Treg/Th17 cell plasticity.

  17. Rationally designed, heterologous S. cerevisiae transcripts expose novel expression determinants

    Science.gov (United States)

    Ben-Yehezkel, Tuval; Atar, Shimshi; Zur, Hadas; Diament, Alon; Goz, Eli; Marx, Tzipy; Cohen, Rafael; Dana, Alexandra; Feldman, Anna; Shapiro, Ehud; Tuller, Tamir

    2015-01-01

    Deducing generic causal relations between RNA transcript features and protein expression profiles from endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of the effect of 5′ transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 5′UTR can have a dramatic effect of up to 15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides downstream from the ORF 5′end can modulate protein levels up to 160%–300%. We demonstrate that the correlation between protein levels and folding energy increases with the significance of the level of selection of the latter in endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to translation regulation. Our measured protein abundance correlates notably(correlation up to r = 0.62 (p=0.0013)) with mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct manner. This report provides an improved understanding of transcript evolution, design principles of gene expression regulation, and suggests simple

  18. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers

    Science.gov (United States)

    Gao, Xuefei; Tsang, Jason C.H.; Gaba, Fortis; Wu, Donghai; Lu, Liming; Liu, Pentao

    2014-01-01

    The transcription activator–like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR) associated protein (Cas9) utlilize distinct molecular mechanisms in targeting site recognition. The two proteins can be modified to carry additional functional domains to regulate expression of genomic loci in mammalian cells. In this study, we have compared the two systems in activation and suppression of the Oct4 and Nanog loci by targeting their enhancers. Although both are able to efficiently activate the luciferase reporters, the CRISPR/dCas9 system is much less potent in activating the endogenous loci and in the application of reprogramming somatic cells to iPS cells. Nevertheless, repression by CRISPR/dCas9 is comparable to or even better than TALE repressors. We demonstrated that dCas9 protein binding results in significant physical interference to binding of native transcription factors at enhancer, less efficient active histone markers induction or recruitment of activating complexes in gene activation. This study thus highlighted the merits and drawbacks of transcription regulation by each system. A combined approach of TALEs and CRISPR/dCas9 should provide an optimized solution to regulate genomic loci and to study genetic elements such as enhancers in biological processes including somatic cell reprogramming and guided differentiation. PMID:25223790

  19. Immunohistochemical expression of Ets-related gene-transcriptional factor in adenocarcinoma prostate and its correlation with Gleason score

    Directory of Open Access Journals (Sweden)

    Rahul Mannan

    2016-01-01

    Full Text Available Background: Prostate carcinoma is the second leading cause of cancer-related deaths in males worldwide. The burden is expected to grow 1.7 million new cases and 499,000 new deaths by 2030. In developing countries such as India, prostate carcinoma will show an increase by 140% in the next few years. Although the diagnosis of prostate carcinoma can usually be made on histological features, now a days many immunohistochemical (IHC markers are used to distinguish it from benign mimickers as well as in predicting prognosis and treatment. Out of these markers, Ets-related gene (ERG product is a proto-oncogene which participates in chromosomal translocations and is frequently over expressed in prostate carcinoma which harbors ERG-transmembrane protease, serine 2 fusion. Materials and Methods: Fifty cases of carcinoma prostate diagnosed in needle biopsies and prostatic chips, in the Department of Pathology of a tertiary care teaching hospital in Punjab, India, were included in the present study. The slides were observed under the light microscope, and Gleason scoring was done using the 2005 International Society of Urological Pathology modified Gleason system. IHC study for ERG expression was done on all the cases, for which anti-ERG monoclonal rabbit clone antibody EP111 (Dako, Denmark was used. Lymphocytes and endothelial cells were taken as in built positive controls for staining. The intensity of ERG positivity was scored as no staining (0, weak staining (+1, moderate staining (+2 and intense staining (+3. The H score was then calculated by multiplying the intensity of the stain with the percentage (0-100 of the cells showing that staining intensity. The H-score has a range of 0-300. The relationship between IHC expression and clinico-pathological parameters was compared and analyzed using Chi-square test. P < 0.05 was considered statistically significant. Results: Majority of patients included in the study were in the age group of 61-80 (84% of the

  20. Immunohistochemical expression of Ets-related gene-transcriptional factor in adenocarcinoma prostate and its correlation with Gleason score.

    Science.gov (United States)

    Mannan, Rahul; Bhasin, Tejinder Singh; Manjari, Mridu; Singh, Gagandeep; Bhatia, Puneet Kaur; Sharma, Sonam

    2016-01-01

    Prostate carcinoma is the second leading cause of cancer-related deaths in males worldwide. The burden is expected to grow 1.7 million new cases and 499,000 new deaths by 2030. In developing countries such as India, prostate carcinoma will show an increase by 140% in the next few years. Although the diagnosis of prostate carcinoma can usually be made on histological features, now a days many immunohistochemical (IHC) markers are used to distinguish it from benign mimickers as well as in predicting prognosis and treatment. Out of these markers, Ets-related gene (ERG product) is a proto-oncogene which participates in chromosomal translocations and is frequently over expressed in prostate carcinoma which harbors ERG-transmembrane protease, serine 2 fusion. Fifty cases of carcinoma prostate diagnosed in needle biopsies and prostatic chips, in the Department of Pathology of a tertiary care teaching hospital in Punjab, India, were included in the present study. The slides were observed under the light microscope, and Gleason scoring was done using the 2005 International Society of Urological Pathology modified Gleason system. IHC study for ERG expression was done on all the cases, for which anti-ERG monoclonal rabbit clone antibody EP111 (Dako, Denmark) was used. Lymphocytes and endothelial cells were taken as in built positive controls for staining. The intensity of ERG positivity was scored as no staining (0), weak staining (+1), moderate staining (+2) and intense staining (+3). The H score was then calculated by multiplying the intensity of the stain with the percentage (0-100) of the cells showing that staining intensity. The H-score has a range of 0-300. The relationship between IHC expression and clinico-pathological parameters was compared and analyzed using Chi-square test. P < 0.05 was considered statistically significant. Majority of patients included in the study were in the age group of 61-80 (84% of the total). When ERG expression was studied with age

  1. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C₂H₂ zinc finger transcription factor.

    Science.gov (United States)

    Rai, Avinash Chandra; Singh, Major; Shah, Kavita

    2013-01-01

    Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C₂H₂ zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T₀ tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T₂ generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H₂O₂ level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Heterochromatin protein 1 (HP1a positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lucia Piacentini

    2009-10-01

    Full Text Available Heterochromatin Protein 1 (HP1a is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases methylate the histone H3 at lysine 9 (H3K9me, creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA-immunoprecipitation on microarrays, and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms

  3. MADS-box gene evolution - structure and transcription patterns

    DEFF Research Database (Denmark)

    Johansen, Bo; Pedersen, Louise Buchholt; Skipper, Martin

    2002-01-01

    Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs......Mads-box genes, ABC model, Evolution, Phylogeny, Transcription patterns, Gene structure, Conserved motifs...

  4. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes.

    Science.gov (United States)

    Grenier, D; Morin, M-P; Fournier-Larente, J; Chen, H

    2016-06-01

    Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

    Science.gov (United States)

    Lousa, Diana; M. Soares, Cláudio; Santos Macedo, Elisete; Arnholdt-Schmitt, Birgit

    2018-01-01

    Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars. PMID:29462998

  6. Oxygen-Dependent Transcriptional Regulator Hap1p Limits Glucose Uptake by Repressing the Expression of the Major Glucose Transporter Gene RAG1 in Kluyveromyces lactis▿

    Science.gov (United States)

    Bao, Wei-Guo; Guiard, Bernard; Fang, Zi-An; Donnini, Claudia; Gervais, Michel; Passos, Flavia M. Lopes; Ferrero, Iliana; Fukuhara, Hiroshi; Bolotin-Fukuhara, Monique

    2008-01-01

    The HAP1 (CYP1) gene product of Saccharomyces cerevisiae is known to regulate the transcription of many genes in response to oxygen availability. This response varies according to yeast species, probably reflecting the specific nature of their oxidative metabolism. It is suspected that a difference in the interaction of Hap1p with its target genes may explain some of the species-related variation in oxygen responses. As opposed to the fermentative S. cerevisiae, Kluyveromyces lactis is an aerobic yeast species which shows different oxygen responses. We examined the role of the HAP1-equivalent gene (KlHAP1) in K. lactis. KlHap1p showed a number of sequence features and some gene targets (such as KlCYC1) in common with its S. cerevisiae counterpart, and KlHAP1 was capable of complementing the hap1 mutation. However, the KlHAP1 disruptant showed temperature-sensitive growth on glucose, especially at low glucose concentrations. At normal temperature, 28°C, the mutant grew well, the colony size being even greater than that of the wild type. The most striking observation was that KlHap1p repressed the expression of the major glucose transporter gene RAG1 and reduced the glucose uptake rate. This suggested an involvement of KlHap1p in the regulation of glycolytic flux through the glucose transport system. The ΔKlhap1 mutant showed an increased ability to produce ethanol during aerobic growth, indicating a possible transformation of its physiological property to Crabtree positivity or partial Crabtree positivity. Dual roles of KlHap1p in activating respiration and repressing fermentation may be seen as a basis of the Crabtree-negative physiology of K. lactis. PMID:18806211

  7. The "fourth dimension" of gene transcription.

    Science.gov (United States)

    O'Malley, Bert W

    2009-05-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators.

  8. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  9. Increased expression of interleukin-6 (IL-6) gene transcript in relation to IL-6 promoter hypomethylation in gingival tissue from patients with chronic periodontitis.

    Science.gov (United States)

    Kobayashi, Tetsuo; Ishida, Kohei; Yoshie, Hiromasa

    2016-09-01

    DNA methylation of the cytokine genes may play a role in the pathogenesis of periodontitis. The aim of this study is to evaluate whether the alteration of interleukin-6 (IL-6) gene promoter methylation in the gingival tissue (GT) and peripheral blood (PB) is unique to chronic periodontitis (CP). DNA isolated from the GT and PB of 25 patients with (CP) and 20 healthy controls (H) was modified with sodium bisulfite and analyzed for IL-6 promoter methylation with direct sequencing. The levels of IL-6 mRNA and serum IL-6 protein were evaluated by a quantitative reverse transcription polymerase chain reaction and an enzyme-linked immunosorbent assay. The CP group showed that the overall methylation rates of IL-6 promoter that contained 19 cytosine-guanine dinucleotide (CpG) motifs were significantly decreased in GT in comparison to PB (p<0.001), which was significantly negatively correlated with the probing depth (p=0.003). The GT and PB of the H group displayed similar overall methylation rates. No significant difference was observed in the methylation rates at each CpG in GT in comparison to the PB in both groups. The levels of IL-6 mRNA in the GT and PB and serum IL-6 of the two groups were comparable. The ratio of IL-6 mRNA in the GT relative to the PB was significantly higher in the CP group than in the H group (p=0.03). The increased expression of IL-6 gene transcription may be related to IL-6 promoter hypomethylation in the GT from CP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The POU homeodomain transcription factor POUM2 and broad complex isoform 2 transcription factor induced by 20-hydroxyecdysone collaboratively regulate vitellogenin gene expression and egg formation in the silkworm Bombyx mori.

    Science.gov (United States)

    Lin, Y; Liu, H; Yang, C; Gu, J; Shen, G; Zhang, H; Chen, E; Han, C; Zhang, Y; Xu, Y; Wu, J; Xia, Q

    2017-10-01

    Vitellogenin (Vg) is a source of nutrition for embryo development. Our previous study showed that the silkworm (Bombyx mori) transcription factor broad complex isoform 2 (BmBrC-Z2) regulates gene expression of the Vg gene (BmVg) by induction with 20-hydroxyecdysone (20E). However, the mechanism by which 20E regulates BmVg expression was not clarified. In this study, cell transfection experiments showed that the BmVg promoter containing the POU homeodomain transcription factor POUM2 (POUM2) and BrC-Z2 cis-response elements (CREs) showed a more significant response to 20E than that harbouring only the BrC-Z2 or POUM2 CRE. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that BmPOUM2 could bind to the POUM2 CRE of the BmVg promoter. Over-expression of BmPOUM2 and BmBrC-Z2 in B. mori embryo-derived cell line (BmE) could enhance the activity of the BmVg promoter carrying both the POUM2 and BrC-Z2 CREs following 20E induction. Quantitative PCR and immunofluorescence histochemistry showed that the expression pattern and tissue localization of BmPOUM2 correspond to those of BmVg. Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that BmPOUM2 interacts only with BmBrC-Z2 to regulate BmVg expression. Down-regulation of BmPOUM2 in female silkworm by RNA interference significantly reduced BmVg expression, leading to abnormal egg formation. In summary, these results indicate that BmPOUM2 binds only to BmBrC-Z2 to collaboratively regulate BmVg expression by 20E induction to control vitellogenesis and egg formation in the silkworm. Moreover, these findings suggest that homeodomain protein POUM2 plays a novel role in regulating insect vitellogenesis. © 2017 The Royal Entomological Society.

  11. Transcription factor VdCmr1 is required for pigment production, protection from UV irradiation, and regulates expression of melanin biosynthetic genes in Verticillium dahliae.

    Science.gov (United States)

    Wang, Yonglin; Hu, Xiaoping; Fang, Yulin; Anchieta, Amy; Goldman, Polly H; Hernandez, Gustavo; Klosterman, Steven J

    2018-04-01

    Verticillium dahliae is a soilborne fungus that causes vascular wilt diseases on numerous plant species worldwide. The production of darkly melanized microsclerotia is crucial in the disease cycle of V. dahliae, as these structures allow for long-term survival in soil. Previously, transcriptomic and genomic analysis identified a cluster of genes in V. dahliae that encodes some dihydroxynaphthalene (DHN) melanin biosynthetic pathway homologues found in related fungi. In this study, we explored the roles of cluster-specific transcription factor VdCmr1, as well as two other genes within the cluster encoding a polyketide synthase (VdPKS1) and a laccase (VdLac1), enzymes at initial and endpoint steps in DHN melanin production. The results revealed that VdCmr1 and VdPKS1 are required for melanin production, but neither is required for microsclerotia production. None of the three genes were required for pathogenesis on tobacco and lettuce. Exposure of ΔVdCmr1 and wild-type strains to UV irradiation, or to high temperature (40 °C), revealed an approx. 50 % reduction of survival in the ΔVdCmr1 strain, relative to the wild-type strain, in response to either condition. Expression profiles revealed that expression of some melanin biosynthetic genes are in part dependent on VdCmr1. Combined data indicate VdCmr1 is a key regulator of melanin biosynthesis, and that via regulation of melanogenesis, VdCmr1 affects survival of V. dahliae in response to abiotic threats. We conclude with a model showing regulation of VdCmr1 by a high osmolarity glycerol response (Hog)-type MAP kinase pathway.

  12. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  13. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  14. Is gene transcription involved in seed dry after-ripening?

    Directory of Open Access Journals (Sweden)

    Patrice Meimoun

    Full Text Available Orthodox seeds are living organisms that survive anhydrobiosis and may display dormancy, an inability to germinate at harvest. Seed germination potential can be acquired during a prolonged period of dry storage called after-ripening. The aim of this work was to determine if gene transcription is an underlying regulatory mechanism for dormancy alleviation during after-ripening. To identify changes in gene transcription strictly associated with the acquisition of germination potential but not with storage, we used seed storage at low relative humidity that maintains dormancy as control. Transcriptome profiling was performed using DNA microarray to compare change in gene transcript abundance between dormant (D, after-ripened non-dormant (ND and after-ripened dormant seeds (control, C. Quantitative real-time polymerase chain reaction (qPCR was used to confirm gene expression. Comparison between D and ND showed the differential expression of 115 probesets at cut-off values of two-fold change (p<0.05. Comparisons between both D and C with ND in transcript abundance showed that only 13 transcripts, among 115, could be specific to dormancy alleviation. qPCR confirms the expression pattern of these transcripts but without significant variation between conditions. Here we show that sunflower seed dormancy alleviation in the dry state is not related to regulated changes in gene expression.

  15. Global transcriptional analysis of psoriatic skin and blood confirms known disease-associated pathways and highlights novel genomic "hot spots" for differentially expressed genes.

    Science.gov (United States)

    Coda, Alvin B; Icen, Murat; Smith, Jason R; Sinha, Animesh A

    2012-07-01

    There are major gaps in our knowledge regarding the exact mechanisms and genetic basis of psoriasis. To investigate the pathogenesis of psoriasis, gene expression in 10 skin (5 lesional, 5 nonlesional) and 11 blood (6 psoriatic, 5 nonpsoriatic) samples were examined using Affymetrix HG-U95A microarrays. We detected 535 (425 upregulated, 110 downregulated) DEGs in lesional skin at 1% false discovery rate (FDR). Combining nine microarray studies comparing lesional and nonlesional psoriatic skin, 34.5% of dysregulated genes were overlapped in multiple studies. We further identified 20 skin and 2 blood associated transcriptional "hot spots" at specified genomic locations. At 5% FDR, 11.8% skin and 10.4% blood DEGs in our study mapped to one of the 12 PSORS loci. DEGs that overlap with PSORS loci may offer prioritized targets for downstream genetic fine mapping studies. Novel DEG "hot spots" may provide new targets for defining susceptibility loci in future studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Functional Profiling of Transcription Factor Genes in Neurospora crassa

    Directory of Open Access Journals (Sweden)

    Alexander J. Carrillo

    2017-09-01

    Full Text Available Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa. We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6 binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed, followed by asexual sporulation (38%, and the various stages of sexual development (19%. Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated.

  17. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  18. GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Guillaume Jannot

    2016-12-01

    Full Text Available MicroRNAs and Argonaute form the microRNA induced silencing complex or miRISC that recruits GW182, causing mRNA degradation and/or translational repression. Despite the clear conservation and molecular significance, it is unknown if miRISC-GW182 interaction is essential for gene silencing during animal development. Using Caenorhabditis elegans to explore this question, we examined the relationship and effect on gene silencing between the GW182 orthologs, AIN-1 and AIN-2, and the microRNA-specific Argonaute, ALG-1. Homology modeling based on human Argonaute structures indicated that ALG-1 possesses conserved Tryptophan-binding Pockets required for GW182 binding. We show in vitro and in vivo that their mutations severely altered the association with AIN-1 and AIN-2. ALG-1 tryptophan-binding pockets mutant animals retained microRNA-binding and processing ability, but were deficient in reporter silencing activity. Interestingly, the ALG-1 tryptophan-binding pockets mutant phenocopied the loss of alg-1 in worms during larval stages, yet was sufficient to rescue embryonic lethality, indicating the dispensability of AINs association with the miRISC at this developmental stage. The dispensability of AINs in miRNA regulation is further demonstrated by the capacity of ALG-1 tryptophan-binding pockets mutant to regulate a target of the embryonic mir-35 microRNA family. Thus, our results demonstrate that the microRNA pathway can act independently of GW182 proteins during C. elegans embryogenesis.

  19. Cancer-type dependent expression of CK2 transcripts.

    Directory of Open Access Journals (Sweden)

    Melissa M J Chua

    Full Text Available A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical, and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma. Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer. We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett's esophagus. We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.

  20. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling

    DEFF Research Database (Denmark)

    Basse, Astrid L.; Dixen, Karen; Yadav, Rachita

    2015-01-01

    abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose...

  1. A Novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors

    NARCIS (Netherlands)

    van Verk, Marcel C|info:eu-repo/dai/nl/327618671; Pappaioannou, Dimitri; Neeleman, Lyda; Bol, John F; Linthorst, Huub J M

    PR-1a is a salicylic acid-inducible defense gene of tobacco (Nicotiana tabacum). One-hybrid screens identified a novel tobacco WRKY transcription factor (NtWRKY12) with specific binding sites in the PR-1a promoter at positions -564 (box WK(1)) and -859 (box WK(2)). NtWRKY12 belongs to the class of

  2. Scaling proprioceptor gene transcription by retrograde NT3 signaling.

    Directory of Open Access Journals (Sweden)

    Jun Lee

    Full Text Available Cell-type specific intrinsic programs instruct neuronal subpopulations before target-derived factors influence later neuronal maturation. Retrograde neurotrophin signaling controls neuronal survival and maturation of dorsal root ganglion (DRG sensory neurons, but how these potent signaling pathways intersect with transcriptional programs established at earlier developmental stages remains poorly understood. Here we determine the consequences of genetic alternation of NT3 signaling on genome-wide transcription programs in proprioceptors, an important sensory neuron subpopulation involved in motor reflex behavior. We find that the expression of many proprioceptor-enriched genes is dramatically altered by genetic NT3 elimination, independent of survival-related activities. Combinatorial analysis of gene expression profiles with proprioceptors isolated from mice expressing surplus muscular NT3 identifies an anticorrelated gene set with transcriptional levels scaled in opposite directions. Voluntary running experiments in adult mice further demonstrate the maintenance of transcriptional adjustability of genes expressed by DRG neurons, pointing to life-long gene expression plasticity in sensory neurons.

  3. In silico analysis and gene expression of TgNAC01 transcription factor involved in xylogenesis and abiotic stress in Tectona grandis.

    Directory of Open Access Journals (Sweden)

    Vladimir Camel Paucar

    2017-09-01

    Full Text Available Secondary xylem is the most abundant component of plant biomass. Therefore, knowing the genes that regulate its formation would help to design strategies for wood genetic improvement. Thus, the objective of this work was to perform computational analysis of the primary and secondary structure of the TgNAC01 transcription factor (FT of Tectona grandis, and to evaluate its evolutionary history, conserved domains and gene expression in lignified tissues of 12 and 60 years. For this, an ion-electron interaction potential (IEP was evaluated using the information-spectrum method (IEM using the R-Project and SFAPS library, followed by structural modeling using the MODELLER software and visualized by PyMol program. In addition, the analysis of multiple sequence alignment and phylogeny was performed using Bioedit and MrBayes software, respectively. We also evaluated the qRT-PCR levels of TgNAC01. As results, it was found that TgNAC01 maintains a twisted antiparallel β-sheet structure, which is compacted against an α-helix in the N-terminal region, having three α-helix domains and seven folded β-domains. Also, through the IEM, it was demonstrated that it has about five biological functions, and mutations on amino acids with higher IEP, which leads to evolutions on genetic regulation networks. Finally, the FT TgNAC01 plays an esential role in the organization and development of the parts that make up the sapwood, such as the radial cells of the cambial zone, the vessels, fibers and the growth rings.

  4. Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions

    DEFF Research Database (Denmark)

    Nielsen, K. K.; Boye, Mette

    2005-01-01

    up-regulation under iron-restricted conditions compared to bacteria grown in medium with sufficient iron. The observed expression patterns of the genes of interest were consistent with previous observations. This study therefore lends further support to the use of real-time quantitative RT...... controls, as such controls have not been defined yet for this bacterium. Bacterial gene expression was studied during in vitro exponential and early stationary growth in medium with and without sufficient iron, respectively. First, the stability of expression of five genes, the glyA, tpiA, pykA, rec......F, and rhoAP genes involved in basic housekeeping, was evaluated on the basis of the mean pairwise variation. All the housekeeping genes included were stably expressed under the conditions investigated and consequently were included in the normalization procedure. Next, the geometric mean of the internal...

  5. Mapping the transcription start points of the Staphylococcus aureus eap, emp, and vwb promoters reveals a conserved octanucleotide sequence that is essential for expression of these genes.

    Science.gov (United States)

    Harraghy, Niamh; Homerova, Dagmar; Herrmann, Mathias; Kormanec, Jan

    2008-01-01

    Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.

  6. Effect of growth conditions on expression of the acid phosphatase (cyx-appA) operon and the appY gene, which encodes a transcriptional activator of Escherichia coli

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Atlung, Tove

    1996-01-01

    The expression and transcriptional regulation of the Escherichia coli cyx-appA operon and the appY gene has been investigated during different environmental conditions using single copy transcriptional lacZ fusions. The cyx-appA operon encodes acid phosphatase and a putative cytochrome oxidase...... of the cyx-appA operon. The nitrate repression was partially dependent on NarL. A high expression of the operon was obtained in glucose medium supplemented with formate, where E.coli obtains energy by fermentation. The formate induction was independent of the fhlA gene product. The results presented...... in this paper indicate a clear difference in the regulation of the cyx-appA operon compared to the cyd operon, encoding the cytochrome d oxidase complex. The results suggest that cytochrome x oxidase has a function at even more oxygen limiting conditions than cytochrome d oxidase. The expression of the app...

  7. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    Science.gov (United States)

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  8. A computational profiling of changes in gene expression and transcription factors induced by vFLIP K13 in primary effusion lymphoma.

    Directory of Open Access Journals (Sweden)

    Vasu Punj

    Full Text Available Infection with Kaposi's sarcoma associated herpesvirus (KSHV has been linked to the development of primary effusion lymphoma (PEL, a rare lymphoproliferative disorder that is characterized by loss of expression of most B cell markers and effusions in the body cavities. This unique clinical presentation of PEL has been attributed to their distinctive plasmablastic gene expression profile that shows overexpression of genes involved in inflammation, adhesion and invasion. KSHV-encoded latent protein vFLIP K13 has been previously shown to promote the survival and proliferation of PEL cells. In this study, we employed gene array analysis to characterize the effect of K13 on global gene expression in PEL-derived BCBL1 cells, which express negligible K13 endogenously. We demonstrate that K13 upregulates the expression of a number of NF-κB responsive genes involved in cytokine signaling, cell death, adhesion, inflammation and immune response, including two NF-κB subunits involved in the alternate NF-κB pathway, RELB and NFKB2. In contrast, CD19, a B cell marker, was one of the genes downregulated by K13. A comparison with K13-induced genes in human vascular endothelial cells revealed that although there was a considerable overlap among the genes induced by K13 in the two cell types, chemokines genes were preferentially induced in HUVEC with few exceptions, such as RANTES/CCL5, which was induced in both cell types. Functional studies confirmed that K13 activated the RANTES/CCL5 promoter through the NF-κB pathway. Taken collectively, our results suggest that K13 may contribute to the unique gene expression profile, immunophenotype and clinical presentation that are characteristics of KSHV-associated PEL.

  9. A comparative expression analysis of gene transcripts in brain tissue of non-transgenic and GH-transgenic zebrafish (Danio rerio using a DDRT-PCR approach

    Directory of Open Access Journals (Sweden)

    Fernanda A. Alves-Costa

    2012-06-01

    Full Text Available The presence of higher level of exogenous growth hormone (GH in transgenic animals could lead to several physiological alterations. A GH transgenic zebrafish (Danio rerio line was compared to nontransgenic (NT samples of the species through a DDRT-PCR approach, with the goal of identifying candidate differentially expressed transcripts in brain tissues that could be involved in GH overexpression. Densitometric analyses of two selected amplification products, p300 and ADCY2, pointed to a significant lower gene expression in the transgenic zebrafish (104.02 ± 57.71; 224.10 ± 91.73 when compared to NT samples (249.75 ± 30.08; 342.95 ± 65.19. The present data indicate that p300 and ADCY2 are involved in a regulation system for GH when high circulating levels of this hormone are found in zebrafishes.A presença de níveis mais elevados do hormônio de crescimento (GH em animais transgênicos poderia levar a várias alterações fisiológicas. Uma linhagem transgênica de paulistinha (Danio rerio para o GH foi comparada com amostras não transgênicas (NT desta espécie, através de uma abordagem de DDRT-PCR, com o objetivo de identificar transcritos candidatos diferencialmente expressos em tecido cerebral que poderiam estar envolvidos na superexpressão de GH. Análises densitométricas de dois produtos de amplificação selecionados, p300 e ADCY2, apontaram uma expressão gênica significativamente menor nas amostras transgênicas de paulistinha (104.02 ± 57.71; 224.10 ± 91.73, quando comparadas com as amostras NT (249.75 ± 30.08; 342.95±65.19. Os presentes dados indicam que p300 e ADCY2 estão envolvidos em um sistema de regulação do GH, quando altos níveis circulantes desse hormônio são encontrados em paulistinha.

  10. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    Science.gov (United States)

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids

  11. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    International Nuclear Information System (INIS)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R.

    2014-01-01

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  12. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  13. Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization

    Energy Technology Data Exchange (ETDEWEB)

    Klähn, Stephan; Baumgartner, Desirée; Pfreundt, Ulrike; Voigt, Karsten; Schön, Verena; Steglich, Claudia; Hess, Wolfgang R., E-mail: wolfgang.hess@biologie.uni-freiburg.de [Genetics and Experimental Bioinformatics, Institute of Biology 3, Faculty of Biology, University of Freiburg, Freiburg (Germany)

    2014-07-14

    In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl–acyl carrier protein reductase and aldehyde deformylating oxygenase. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short-chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado) and sll0209 (aar), which give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313, and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in cyanobacteria.

  14. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  15. Gene Expression Omnibus (GEO)

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene Expression Omnibus is a public functional genomics data repository supporting MIAME-compliant submissions of array- and sequence-based data. Tools are provided...

  16. Gene transcripts as potential diagnostic markers for allergic contact dermatitis

    DEFF Research Database (Denmark)

    Hansen, Malene Barré; Skov, Lone; Menné, Torkil

    2005-01-01

    The standard procedure for diagnosing allergic contact dermatitis is to perform a patch test. Because this has several disadvantages, the development of a new in vitro test system would be of immense value. Gene transcripts that distinguish allergics from non-allergics may have the potential...... widely available. The 26 differentially expressed genes identified in this study may potentially function as diagnostic markers for contact sensitivity....

  17. The functional landscape of mouse gene expression

    Directory of Open Access Journals (Sweden)

    Zhang Wen

    2004-12-01

    Full Text Available Abstract Background Large-scale quantitative analysis of transcriptional co-expression has been used to dissect regulatory networks and to predict the functions of new genes discovered by genome sequencing in model organisms such as yeast. Although the idea that tissue-specific expression is indicative of gene function in mammals is widely accepted, it has not been objectively tested nor compared with the related but distinct strategy of correlating gene co-expression as a means to predict gene function. Results We generated microarray expression data for nearly 40,000 known and predicted mRNAs in 55 mouse tissues, using custom-built oligonucleotide arrays. We show that quantitative transcriptional co-expression is a powerful predictor of gene function. Hundreds of functional categories, as defined by Gene Ontology 'Biological Processes', are associated with characteristic expression patterns across all tissues, including categories that bear no overt relationship to the tissue of origin. In contrast, simple tissue-specific restriction of expression is a poor predictor of which genes are in which functional categories. As an example, the highly conserved mouse gene PWP1 is widely expressed across different tissues but is co-expressed with many RNA-processing genes; we show that the uncharacterized yeast homolog of PWP1 is required for rRNA biogenesis. Conclusions We conclude that 'functional genomics' strategies based on quantitative transcriptional co-expression will be as fruitful in mammals as they have been in simpler organisms, and that transcriptional control of mammalian physiology is more modular than is generally appreciated. Our data and analyses provide a public resource for mammalian functional genomics.

  18. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  19. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Morooka, Nobukatsu, E-mail: amorooka@gunma-u.ac.jp [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Ueguri, Kei [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Yee, Karen Kar Lye [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan); Human Resources Cultivation Center, Gunma University, 1-5-1 Tenjin-cho, Kiryushi, Gunma, 376-8515 (Japan); Yanase, Toshihiko [Department of Endocrinology and Diabetes Mellitus, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka, 814-0180 (Japan); Sato, Takashi [Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, 371-8512 (Japan)

    2016-09-02

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  20. Androgen-androgen receptor system improves chronic inflammatory conditions by suppressing monocyte chemoattractant protein-1 gene expression in adipocytes via transcriptional regulation

    International Nuclear Information System (INIS)

    Morooka, Nobukatsu; Ueguri, Kei; Yee, Karen Kar Lye; Yanase, Toshihiko; Sato, Takashi

    2016-01-01

    Age-related decreases in sex hormones are closely related to chronic inflammation in obesity and metabolic diseases. Particularly, the molecular basis of androgen activity in regulating inflammation and controlling metabolism remains largely unknown. Obese adipocytes secrete monocyte chemoattractant protein-1 (MCP-1), a key chemokine that promotes the infiltration of monocytes/macrophages into adipose tissue, thereby leading to metabolic disorders. Here, we studied the role of androgen-androgen receptor (AR) action in regulating MCP-1 expression in adipose tissue. We observed the induction of Mcp-1 expression in 3T3-L1 adipocytes co-cultured with RAW264.7 macrophages. Additionally, Mcp-1 expression was upregulated by culturing in conditioned medium derived from inflammatory macrophages (M1-Mφ) containing tumor necrosis factor-alpha (TNF-α). We found that sex hormones downregulated TNF-α-induced Mcp-1 and interleukin (Il)-6 expression in 3T3-L1 adipocytes. Furthermore, luciferase-reporter analysis indicated that MCP-1 promoter activity was predominantly suppressed by dihydrotestosterone (DHT)-AR interactions through functional canonical nuclear factor-kappa B (NF-κB) sites, whereas non-canonical NF-κB site containing important flanking sequences exhibited minor contributions to DHT-AR transcriptional repression. These findings suggested that androgen-AR suppressed obesity-induced chronic inflammation in adipose tissue. - Highlights: • DHT, non-aromatizable androgen suppresses Mcp-1 expression in adipocytes. • Mcp-1 transcription was negatively regulated by DHT-AR action. • DHT-AR selectively regulates Mcp-1 transcription through distinct NF-κB sites.

  1. Characterization of GPR101 transcript structure and expression patterns

    OpenAIRE

    Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F.; Larco, Darwin O.; Palmeira, Leonor; Faucz, Fabio R.; Thiry, Albert; Leal, Letícia F.; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M.; Villa, Chiara; Wu, T. John; Stojilkovic, Stanko S.

    2016-01-01

    We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. GPR101 transcripts were characterized in human tissues by 5’-RACE and RNAseq, while the putative promoter was bioinformatically predicte...

  2. Genome-Wide Analyses of the NAC Transcription Factor Gene Family in Pepper (Capsicum annuum L.: Chromosome Location, Phylogeny, Structure, Expression Patterns, Cis-Elements in the Promoter, and Interaction Network

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2018-03-01

    Full Text Available The NAM, ATAF1/2, and CUC2 (NAC transcription factors form a large plant-specific gene family, which is involved in the regulation of tissue development in response to biotic and abiotic stress. To date, there have been no comprehensive studies investigating chromosomal location, gene structure, gene phylogeny, conserved motifs, or gene expression of NAC in pepper (Capsicum annuum L.. The recent release of the complete genome sequence of pepper allowed us to perform a genome-wide investigation of Capsicum annuum L. NAC (CaNAC proteins. In the present study, a comprehensive analysis of the CaNAC gene family in pepper was performed, and a total of 104 CaNAC genes were identified. Genome mapping analysis revealed that CaNAC genes were enriched on four chromosomes (chromosomes 1, 2, 3, and 6. In addition, phylogenetic analysis of the NAC domains from pepper, potato, Arabidopsis, and rice showed that CaNAC genes could be clustered into three groups (I, II, and III. Group III, which contained 24 CaNAC genes, was exclusive to the Solanaceae plant family. Gene structure and protein motif analyses showed that these genes were relatively conserved within each subgroup. The number of introns in CaNAC genes varied from 0 to 8, with 83 (78.9% of CaNAC genes containing two or less introns. Promoter analysis confirmed that CaNAC genes are involved in pepper growth, development, and biotic or abiotic stress responses. Further, the expression of 22 selected CaNAC genes in response to seven different biotic and abiotic stresses [salt, heat shock, drought, Phytophthora capsici, abscisic acid, salicylic acid (SA, and methyl jasmonate (MeJA] was evaluated by quantitative RT-PCR to determine their stress-related expression patterns. Several putative stress-responsive CaNAC genes, including CaNAC72 and CaNAC27, which are orthologs of the known stress-responsive Arabidopsis gene ANAC055 and potato gene StNAC30, respectively, were highly regulated by treatment with

  3. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  4. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6.

    Science.gov (United States)

    Liu, Wan-Ju; Reece-Hoyes, John S; Walhout, Albertha J M; Eisenmann, David M

    2014-05-13

    Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo. We used the yeast one-hybrid (Y1H) method to screen for factors that bound to 13 fragments from the lin-39 region: twelve fragments contained sequences conserved between C. elegans and two other nematode species, while one fragment was known to drive reporter gene expression in the early embryo in cells that generate the VPCs. Sixteen transcription factors that bind to eight lin-39 genomic fragments were identified in yeast, and we characterized several factors by verifying their physical interactions in vitro, and showing that reduction of their function leads to alterations in lin-39 levels and lin-39::GFP reporter expression in vivo. Three factors, the orphan nuclear hormone receptor NHR-43, the hypodermal fate regulator LIN-26, and the GATA factor ELT-6 positively regulate lin-39 expression in the embryonic precursors to the VPCs. In particular, ELT-6 interacts with an enhancer that drives GFP expression in the early embryo, and the ELT-6 site we identified is necessary for proper embryonic expression. These three factors, along with the factors ZTF-17, BED-3 and TBX-9, also positively regulate lin-39 expression in the larval VPCs. These results significantly expand the number of factors known to directly bind and regulate lin-39 expression, identify the first factors required for lin-39 expression in the embryo, and hint at a

  5. Differential binding of Lef1 and Msx1/2 transcription factors to Dkk1 CNEs correlates with reporter gene expression in vivo.

    Directory of Open Access Journals (Sweden)

    Oliver Lieven

    Full Text Available Besides the active Wnt signalling itself, the extracellular inhibition by Dkk1 is important for various embryonic developmental processes, such as optic vesicle differentiation and facial outgrowth. Although a feedback crosstalk of the active Wnt/β-catenin signaling and Dkk1 regulation has been suggested, the control of Dkk1 transcription by the Tcf/Lef1 mediated Wnt signalling and its connection to additional signalling factors has not been elucidated in vivo. Here, we used a combination of transgenic mouse approaches and biochemical analyses to unravel the direct Dkk1 transcriptional regulation via Tcf/Lefs. By using site directed mutagenesis, we tested several conserved Tcf/Lef1 binding sites within Dkk1 conserved non-coding elements (CNEs and found that these are required for tissue specific reporter expression. In addition a conserved Msx1/2 binding site is required for retinal reporter expression and Msx2 but not Msx1 binds its conserved binding site within CNE195 in the optic cups. Within craniofacial expression domains, Lef1 interferes with Dkk1 directly via two conserved Tcf/Lef1 binding sites in the craniofacial enhancer CNE114, both of which are required for the general craniofacial Dkk1 reporter activation. Furthermore, these Tcf/Lef1 sites are commonly bound in the whisker hair bud mesenchyme but specifically Tcf/Lef1 (no. 2 is required for mandibular activation and repression of maxillar Dkk1 activation. Lastly, we tested the Tcf/Lef1 binding capacities of the Dkk1 promoter and found that although Lef1 binds the Dkk1 promoter, these sites are not sufficient for tissue specific Dkk1 activation. Together, we here present the importance of conserved Tcf/Lef1 and Msx1/2 sites that are required for differential Dkk1 transcriptional reporter activation in vivo. This requirement directly correlates with Lef1 and Msx1/2 interaction with these genomic loci.

  6. Determinants of human adipose tissue gene expression

    DEFF Research Database (Denmark)

    Viguerie, Nathalie; Montastier, Emilie; Maoret, Jean-José

    2012-01-01

    weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong...... interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index...... on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently...

  7. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  8. Cloning and characterization of two duplicated interleukin-17A/F2 genes in common carp (Cyprinus carpio L.): Transcripts expression and bioactivity of recombinant IL-17A/F2.

    Science.gov (United States)

    Li, Hongxia; Yu, Juhua; Li, Jianlin; Tang, Yongkai; Yu, Fan; Zhou, Jie; Yu, Wenjuan

    2016-04-01

    Interleukin-17 (IL-17) plays an important role in inflammation and host defense in mammals. In this study, we identified two duplicated IL-17A/F2 genes in the common carp (Cyprinus carpio) (ccIL-17A/F2a and ccIL-17A/F2b), putative encoded proteins contain 140 amino acids (aa) with conserved IL-17 family motifs. Expression analysis revealed high constitutive expression of ccIL-17A/F2s in mucosal tissues, including gill, skin and intestine, their expression could be induced by Aeromonas hydrophila, suggesting a potential role in mucosal immunity. Recombinant ccIL-17A/F2a protein (rccIL-17A/F2a) produced in Escherichia coli could induce the expression of proinflammatory cytokines (IL-1β) and the antimicrobial peptides S100A1, S100A10a and S100A10b in the primary kidney in a dose- and time-dependent manner. Above findings suggest that ccIL-17A/F2 plays an important role in both proinflammatory and innate immunity. Two duplicated ccIL-17A/F2s showed different expression level with ccIL-17A/F2a higher than b, comparison of two 5' regulatory regions indicated the length from anticipated promoter to transcriptional start site (TSS) and putative transcription factor binding site (TFBS) were different. Promoter activity of ccIL-17A/F2a was 2.5 times of ccIL-17A/F2b which consistent with expression results of two genes. These suggest mutations in 5'regulatory region contributed to the differentiation of duplicated genes. To our knowledge, this is the first report to analyze 5'regulatory region of piscine IL-17 family genes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Baltic salmon (Salmo salar) yolk-sac fry mortality is associated with disturbances in the function of hypoxia-inducible transcription factor (HIF-1α) and consecutive gene expression

    International Nuclear Information System (INIS)

    Vuori, Kristiina A.M.; Soitamo, Arto; Vuorinen, Pekka J.; Nikinmaa, Mikko

    2004-01-01

    Baltic salmon (Salmo salar) suffer from abnormally high yolk-sac fry mortality designated as M74-syndrome. In 1990s, 25-80% of salmon females, which ascended rivers to spawn, produced yolk-sac fry suffering from the syndrome. Symptoms of M74-affected fry include neurological disturbances, impaired vascular development and abnormal haemorrhages. The latter symptoms are observed in mammalian embryos if the function of hypoxia inducible transcription factor (HIF-1α), its dimerization partner aryl hydrocarbon nuclear translocator (ARNT) or target gene vascular endothelial growth factor (VEGF) is disturbed. To study the possible involvement of HIF-1α and its target gene VEGF in the development of the syndrome, we collected healthy and M74-affected wild Baltic salmon yolk-sac fry and analyzed HIF-1α mRNA and protein expression, HIF-1α DNA-binding, target gene VEGF protein expression, and blood vessel density in both groups at different stages of yolk-sac fry development. In addition, since Baltic salmon females contain organochlorine contaminants, which have been suggested to be the cause of M74 syndrome via the aryl hydrocarbon receptor (AhR)-dependent gene expression pathway, we studied AhR protein expression, AhR DNA-binding and target gene CYP1A protein expression. Since the parents of both healthy and M74-affected wild fry will have experienced the organochlorine load from the Baltic Sea, hatchery-reared fry were included in the studies as an additional control. The results show that the vascular defects observed in fry suffering from M74 are associated with reduced DNA-binding activity of HIF-1α and subsequent downregulation of its target gene vascular endothelial growth factor (VEGF). In addition, also AhR function is decreased in diseased fry making it unlikely that symptoms of M74-affected fry would be caused by an upregulation of xenobiotically induced AhR-dependent gene expression pathway

  10. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  11. Repression of Meiotic Genes by Antisense Transcription and by Fkh2 Transcription Factor in Schizosaccharomyces pombe

    OpenAIRE

    Chen, Huei-Mei; Rosebrock, Adam P.; Khan, Sohail R.; Futcher, Bruce; Leatherwood, Janet K.

    2012-01-01

    In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription ...

  12. Transcriptional control in the segmentation gene network of Drosophila.

    Directory of Open Access Journals (Sweden)

    Mark D Schroeder

    2004-09-01

    Full Text Available The segmentation gene network of Drosophila consists of maternal and zygotic factors that generate, by transcriptional (cross- regulation, expression patterns of increasing complexity along the anterior-posterior axis of the embryo. Using known binding site information for maternal and zygotic gap transcription factors, the computer algorithm Ahab recovers known segmentation control elements (modules with excellent success and predicts many novel modules within the network and genome-wide. We show that novel module predictions are highly enriched in the network and typically clustered proximal to the promoter, not only upstream, but also in intronic space and downstream. When placed upstream of a reporter gene, they consistently drive patterned blastoderm expression, in most cases faithfully producing one or more pattern elements of the endogenous gene. Moreover, we demonstrate for the entire set of known and newly validated modules that Ahab's prediction of binding sites correlates well with the expression patterns produced by the modules, revealing basic rules governing their composition. Specifically, we show that maternal factors consistently act as activators and that gap factors act as repressors, except for the bimodal factor Hunchback. Our data suggest a simple context-dependent rule for its switch from repressive to activating function. Overall, the composition of modules appears well fitted to the spatiotemporal distribution of their positive and negative input factors. Finally, by comparing Ahab predictions with different categories of transcription factor input, we confirm the global regulatory structure of the segmentation gene network, but find odd skipped behaving like a primary pair-rule gene. The study expands our knowledge of the segmentation gene network by increasing the number of experimentally tested modules by 50%. For the first time, the entire set of validated modules is analyzed for binding site composition under a

  13. Gene-Transformation-Induced Changes in Chemical Functional Group Features and Molecular Structure Conformation in Alfalfa Plants Co-Expressing Lc-bHLH and C1-MYB Transcriptive Flavanoid Regulatory Genes: Effects of Single-Gene and Two-Gene Insertion.

    Science.gov (United States)

    Heendeniya, Ravindra G; Yu, Peiqiang

    2017-03-20

    Alfalfa ( Medicago sativa L.) genotypes transformed with Lc-bHLH and Lc transcription genes were developed with the intention of stimulating proanthocyanidin synthesis in the aerial parts of the plant. To our knowledge, there are no studies on the effect of single-gene and two-gene transformation on chemical functional groups and molecular structure changes in these plants. The objective of this study was to use advanced molecular spectroscopy with multivariate chemometrics to determine chemical functional group intensity and molecular structure changes in alfalfa plants when co-expressing Lc-bHLH and C1-MYB transcriptive flavanoid regulatory genes in comparison with non-transgenic (NT) and AC Grazeland (ACGL) genotypes. The results showed that compared to NT genotype, the presence of double genes ( Lc and C1 ) increased ratios of both the area and peak height of protein structural Amide I/II and the height ratio of α-helix to β-sheet. In carbohydrate-related spectral analysis, the double gene-transformed alfalfa genotypes exhibited lower peak heights at 1370, 1240, 1153, and 1020 cm -1 compared to the NT genotype. Furthermore, the effect of double gene transformation on carbohydrate molecular structure was clearly revealed in the principal component analysis of the spectra. In conclusion, single or double transformation of Lc and C1 genes resulted in changing functional groups and molecular structure related to proteins and carbohydrates compared to the NT alfalfa genotype. The current study provided molecular structural information on the transgenic alfalfa plants and provided an insight into the impact of transgenes on protein and carbohydrate properties and their molecular structure's changes.

  14. Gene expression at each stage of the life cycle of spore-forming bacteria: different sensitivity of transcription to antibiotics which act on DNA gyrase.

    Science.gov (United States)

    Matsuda, M; Kameyama, T

    1985-01-01

    Effects of antibiotics acting on DNA gyrase, novobiocin and nalidixic acid on RNA synthesis during germination, vegetative growth and sporulation of Bacillus subtilis were examined. These drugs were relatively ineffective in inhibiting RNA synthesis of phase Gm 1 (5-15 min) during germination but effective in those of Gm 2 (15-40 min) and Gm 3 (40-60 min) during germination (Matsuda and Kameyama 1980). No distinguishable inhibitory effects of RNA synthesis in B. subtilis NOVr1TT mutant could be detected by novobiocin. RNA synthesis of Gm 2 and Gm 3 of this mutant was inhibited by nalidixic acid. When novobiocin was added to exponential vegetative cell or sporulating cell culture at T0 and T1 stage, the rate of RNA synthesis was inhibited by 80% for 5 min following addition of the drug. However, RNA synthesis after T2 of sporulation became resistant toward novobiocin, as was the case at an early stage of germination. RNA profiles from transcripts synthesized on administration of NOV suggested that the suppression of the synthesis of 23S and 16S rRNA is relatively greater than 4 to 5S RNA at the middle stage of germination and at vegetative growth stage in the presence of NOV. Our present data suggest that DNA gyrase is involved in the regulation of gene transcription during middle and late phases of germination, vegetative growth and T0 and T1 of sporulation. The transcription during early phase of germination and sporulation after T2 may proceed independently of this enzyme.

  15. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse.

    Science.gov (United States)

    Gao, Xin; Oei, Maria S; Ovitt, Catherine E; Sincan, Murat; Melvin, James E

    2018-04-01

    RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.

  16. Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner.

    Directory of Open Access Journals (Sweden)

    Alejandro Pereira-Santana

    Full Text Available Sugarcane is one of the most important crops worldwide and is a key plant for the global production of sucrose. Sugarcane cultivation is severely affected by drought stress and it is considered as the major limiting factor for their productivity. In recent years, this plant has been subjected to intensive research focused on improving its resilience against water scarcity; particularly the molecular mechanisms in response to drought stress have become an underlying issue for its improvement. To better understand water stress and the molecular mechanisms we performed a de novo transcriptomic assembly of sugarcane (var. Mex 69-290. A total of 16 libraries were sequenced in a 2x100 bp configuration on a HiSeq-Illumina platform. A total of 536 and 750 genes were differentially up-regulated along with the stress treatments for leave and root tissues respectively, while 1093 and 531 genes were differentially down-regulated in leaves and roots respectively. Gene Ontology functional analysis showed that genes related to response of water deprivation, heat, abscisic acid, and flavonoid biosynthesis were enriched during stress treatment in our study. The reliability of the observed expression patterns was confirmed by RT-qPCR. Additionally, several physiological parameters of sugarcane were significantly affected due to stress imposition. The results of this study may help identify useful target genes and provide tissue-specific data set of genes that are differentially expressed in response to osmotic stress, as well as a complete analysis of the main groups is significantly enriched under this condition. This study provides a useful benchmark for improving drought tolerance in sugarcane and other economically important grass species.

  17. Control of Gene Expression in Leptospira spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira interrogans Virulence.

    Science.gov (United States)

    Pappas, Christopher J; Picardeau, Mathieu

    2015-11-01

    Leptospirosis is a zoonotic disease that affects ∼1 million people annually, with a mortality rate of >10%. Currently, there is an absence of effective genetic manipulation tools for targeted mutagenesis in pathogenic leptospires. Transcription activator-like effectors (TALEs) are a recently described group of repressors that modify transcriptional activity in prokaryotic and eukaryotic cells by directly binding to a targeted sequence within the host genome. To determine the applicability of TALEs within Leptospira spp., two TALE constructs were designed. First, a constitutively expressed TALE gene specific for the lacO-like region upstream of bgaL was trans inserted in the saprophyte Leptospira biflexa (the TALEβgal strain). Reverse transcriptase PCR (RT-PCR) analysis and enzymatic assays demonstrated that BgaL was not expressed in the TALEβgal strain. Second, to study the role of LigA and LigB in pathogenesis, a constitutively expressed TALE gene with specificity for the homologous promoter regions of ligA and ligB was cis inserted into the pathogen Leptospira interrogans (TALElig). LigA and LigB expression was studied by using three independent clones: TALElig1, TALElig2, and TALElig3. Immunoblot analysis of osmotically induced TALElig clones demonstrated 2- to 9-fold reductions in the expression levels of LigA and LigB, with the highest reductions being noted for TALElig1 and TALElig2, which were avirulent in vivo and nonrecoverable from animal tissues. This study reconfirms galactosidase activity in the saprophyte and suggests a role for LigA and LigB in pathogenesis. Collectively, this study demonstrates that TALEs are effective at reducing the expression of targeted genes within saprophytic and pathogenic strains of Leptospira spp., providing an additional genetic manipulation tool for this genus. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Transcriptional delay stabilizes bistable gene networks.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Ott, William; Josić, Krešimir; Bennett, Matthew R

    2013-08-02

    Transcriptional delay can significantly impact the dynamics of gene networks. Here we examine how such delay affects bistable systems. We investigate several stochastic models of bistable gene networks and find that increasing delay dramatically increases the mean residence times near stable states. To explain this, we introduce a non-Markovian, analytically tractable reduced model. The model shows that stabilization is the consequence of an increased number of failed transitions between stable states. Each of the bistable systems that we simulate behaves in this manner.

  19. Postnatal changes of gene expression for tissue inhibitors of metalloproteinase-1 and -2 and cystatins S and C, in rat submandibular gland demonstrated by quantitative reverse transcription-polymerase chain reaction.

    Science.gov (United States)

    Nishiura, T; Abe, K

    1999-01-01

    The rat submandibular gland is not fully developed at birth and definitive differentiation takes place postnatally. The steady-state mRNA expression for the four proteinase inhibitor molecules, tissue inhibitors of metalloproteinase (TIMP)-1 and -2, and cystatins S and C, and for a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), in rat submandibular glands was measured by quantitative competitive reverse transcription-polymerase chain reaction (RT-PCR) at different stages of postnatal development. The gene-expression patterns of TIMP-1 and -2 relative to G3PDH were similar to each other. The TIMP-2 and cystatin C genes were more highly expressed than those of TIMP-1 and cystatin S at all stages. Moreover, the gene expressions of TIMP-1 and -2, and of cystatins S and C, were predominant between 1 and 7, and 7 and 12 weeks of age, respectively, and coincided developmentally with the regression of terminal tubule cells and the differentiation of granular convoluted tubule cells, respectively. Quantitative competitive RT-PCR allowed accurate measurement of small changes in the steady-state concentrations of these proteinase-inhibitor mRNA molecules.

  20. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  1. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  2. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  3. Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats

    International Nuclear Information System (INIS)

    Walters, M.W.; Bjork, J.A.; Wallace, K.B.

    2009-01-01

    Perfluorooctanoic acid (PFOA), used in the production of non-stick surface compounds, exhibits a worldwide distribution in the serum of humans and wildlife. In rodents PFOA transactivates PPARα and PPARγ nuclear receptors and increases mitochondrial DNA (mtDNA) copy number, which may be critical to the altered metabolic state of affected animals. A key regulator of mitochondrial biogenesis and transcription of mitochondrial genes is the PPARγ coactivator-1α (Pgc-1α) protein. The purpose of this study was to determine if Pgc-1α is implicated in the stimulation of mitochondrial biogenesis that occurs following the treatment of rats with PFOA. Livers from adult male Sprague-Dawley rats that received a 30 mg/kg daily oral dose of PFOA for 28 days were used for all experiments. Analysis of mitochondrial replication and transcription was performed by real time PCR, and proteins were detected using western blotting. PFOA treatment caused a transcriptional activation of the mitochondrial biogenesis pathway leading to a doubling of mtDNA copy number. Further, transcription of OXPHOS genes encoded by mtDNA was 3-4 times greater than that of nuclear encoded genes, suggestive of a preferential induction of mtDNA transcription. Western blot analysis revealed an increase in Pgc-1α, unchanged Tfam and decreased Cox II and Cox IV subunit protein expression. We conclude that PFOA treatment in rats induces mitochondrial biogenesis at the transcriptional level with a preferential stimulation of mtDNA transcription and that this occurs by way of activation of the Pgc-1α pathway. Implication of the Pgc-1α pathway is consistent with PPARγ transactivation by PFOA and reveals new understanding and possibly new critical targets for assessing or averting the associated metabolic disease.

  4. cis sequence effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jacobs Kevin

    2007-08-01

    Full Text Available Abstract Background Sequence and transcriptional variability within and between individuals are typically studied independently. The joint analysis of sequence and gene expression variation (genetical genomics provides insight into the role of linked sequence variation in the regulation of gene expression. We investigated the role of sequence variation in cis on gene expression (cis sequence effects in a group of genes commonly studied in cancer research in lymphoblastoid cell lines. We estimated the proportion of genes exhibiting cis sequence effects and the proportion of gene expression variation explained by cis sequence effects using three different analytical approaches, and compared our results to the literature. Results We generated gene expression profiling data at N = 697 candidate genes from N = 30 lymphoblastoid cell lines for this study and used available candidate gene resequencing data at N = 552 candidate genes to identify N = 30 candidate genes with sufficient variance in both datasets for the investigation of cis sequence effects. We used two additive models and the haplotype phylogeny scanning approach of Templeton (Tree Scanning to evaluate association between individual SNPs, all SNPs at a gene, and diplotypes, with log-transformed gene expression. SNPs and diplotypes at eight candidate genes exhibited statistically significant (p cis sequence effects in our study, respectively. Conclusion Based on analysis of our results and the extant literature, one in four genes exhibits significant cis sequence effects, and for these genes, about 30% of gene expression variation is accounted for by cis sequence variation. Despite diverse experimental approaches, the presence or absence of significant cis sequence effects is largely supported by previously published studies.

  5. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  6. Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Mohammadreza Semnani

    2017-09-01

    Full Text Available The cuprizone multiple sclerosis (MS animal model is characteristic for toxic demyelination and represents a reversible demyelination and remyelination system. It has been shown that green tea epigallocatechin-3-gallate (EGCG might be effective in improving the symptoms and pathological conditions associated with autoimmune inflammatory diseases in several animal models. In this study the effects of EGCG on proteolipid protein (PLP and oligodendrocyte transcription factor 1 (Olig1 expression in the cerebral cortex of a murine model of cuprizone-induced demyelination was investigated. C57BL/6 mice were treated with cuprizone for six weeks in order to induce demyelination. Immediately after the cessation of cuprizone the animals were divided into 6 groups (n = 10 for each group. The first two groups were injected intraperitoneally (IP with EGCG in the amount of 50 mg/kg/daily body weight for 2 and 4 weeks. The second two groups (SHAM were injected IP with phosphate-buffered saline (PBS for 2 and 4 weeks, and the third two groups were left without injection as controls. After two and four weeks the mice were killed and the cerebral cortex was collected and the expression of Plp and Olig1 was studied by real-time PCR. The results showed significant increases in PLP and Olig1 expression in the EGCG-treated groups as compared to the SHAM and control groups (p < 0.0001. It is concluded that EGCG increases PLP and Olig1 expression in the cerebral cortex of a mouse model of MS induced by cuprizone.

  7. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  8. The Transcriptional Repressor, MtrR, of the mtrCDE Efflux Pump Operon of Neisseria gonorrhoeae Can Also Serve as an Activator of “off Target” Gene (glnE Expression

    Directory of Open Access Journals (Sweden)

    Paul J. T. Johnson

    2015-06-01

    Full Text Available MtrR is a well-characterized repressor of the Neisseria gonorrhoeae mtrCDE efflux pump operon. However, results from a previous transcriptional profiling study suggested that MtrR also represses or activates expression of at least sixty genes outside of the mtr locus. Evidence that MtrR can directly repress so-called “off target” genes has previously been reported; in particular, MtrR was shown to directly repress glnA, which encodes glutamine synthetase. In contrast, evidence for the ability of MtrR to directly activate expression of gonococcal genes has been lacking; herein, we provide such evidence. We now report that MtrR has the ability to directly activate expression of glnE, which encodes the dual functional adenyltransferase/deadenylase enzyme GlnE that modifies GlnA resulting in regulation of its role in glutamine biosynthesis. With its capacity to repress expression of glnA, the results presented herein emphasize the diverse and often opposing regulatory properties of MtrR that likely contributes to the overall physiology and metabolism of N. gonorrhoeae.

  9. Yes-associated protein and WW-containing transcription regulator 1 regulate the expression of sex-determining genes in Sertoli cells, but their inactivation does not cause sex reversal.

    Science.gov (United States)

    Levasseur, Adrien; Paquet, Marilène; Boerboom, Derek; Boyer, Alexandre

    2017-07-01

    Yes-associated protein (YAP) and WW-containing transcription regulator 1 (WWTR1) are two functionally redundant transcriptional regulators that are downstream effectors of the Hippo signaling pathway, and that act as major regulators of cell growth and differentiation. To elucidate their role in Sertoli cells, primary Sertoli cell culture from Yapflox/flox; Wwtr1flox/flox animals were infected with a Cre recombinase-expressing adenovirus. Concomitant inactivation of Yap and Wwtr1 resulted in a decrease in the mRNA levels of the male sex differentiation genes Dhh, Dmrt1, Sox9, and Wt1, whereas those of genes involved in female differentiation (Wnt4, Rspo1, and Foxl2) were induced. SOX9, FOXL2, and WNT4 proteins were regulated in the same manner as their mRNAs in response to loss of YAP and WWTR1. To further characterize the role of YAP and WWTR1 in Sertoli cells, we generated a mouse model (Yapflox/flox; Wwtr1flox/flox; Amhcre/+) in which Yap and Wwtr1 were conditionally deleted in Sertoli cells. An increase in the number of apoptotic cells was observed in the seminiferous tubules of 4 dpp mutant mice, leading to a reduction in testis weights and a decrease in the number of Sertoli cells in adult animals. Gene expression analyses of testes from 4 dpp Yapflox/flox; Wwtr1flox/flox; Amhcre/+ mice showed that Sertoli cell differentiation is initially altered, as Dhh, Dmrt1, and Sox9 mRNA levels were downregulated, whereas Wnt4 mRNA levels were increased. However, expression of these genes was not changed in older animals. Together, these results suggest a novel role of the Hippo signaling pathway in the mechanisms of sex differentiation. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  11. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  12. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  13. Regulation of gene expression in protozoa parasites.

    Science.gov (United States)

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  14. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  15. Transcriptional analysis of exopolysaccharides biosynthesis gene clusters in Lactobacillus plantarum.

    Science.gov (United States)

    Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia

    2016-04-01

    Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.

  16. Relative expression of the products of glyoxylate bypass operon: contributions of transcription and translation.

    OpenAIRE

    Chung, T; Resnik, E; Stueland, C; LaPorte, D C

    1993-01-01

    Although the genes of the aceBAK operon are expressed from the same promoter, the relative cellular levels of their products are approximately 0.3:1:0.003. Gene and operon fusions with lacZ were constructed to characterize this differential expression. The upshift in expression between aceB and aceA resulted from differences in translational efficiency. In contrast, inefficient translation and premature transcriptional termination contributed to the downshift in expression between aceA and ac...

  17. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    Directory of Open Access Journals (Sweden)

    Shuchi eSmita

    2015-12-01

    Full Text Available MYB transcription factor (TF is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by top down and guide gene approaches. More than 50% of OsMYBs were strongly correlated under fifty experimental conditions with 51 hub genes via top down approach. Further, clusters were identified using Markov Clustering (MCL. To maximize the clustering performance, parameter evaluation of the MCL inflation score (I was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by guide gene approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  18. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn

    2013-01-01

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  19. Overexpression of a wheat (Triticum aestivum L.) bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs.

    Science.gov (United States)

    Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili

    2018-03-01

    The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.

  20. Associating transcription factors and conserved RNA structures with gene regulation in the human brain

    DEFF Research Database (Denmark)

    Hecker, Nikolai; Seemann, Stefan E.; Silahtaroglu, Asli

    2017-01-01

    Anatomical subdivisions of the human brain can be associated with different neuronal functions. This functional diversification is reflected by differences in gene expression. By analyzing post-mortem gene expression data from the Allen Brain Atlas, we investigated the impact of transcription fac...

  1. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Valéria Mafra

    Full Text Available Real-time reverse transcription PCR (RT-qPCR has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus. We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family and GAPC2 (GAPDH was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin, TUB (tubulin and CtP (cathepsin were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein, GAPC2 and UPL7 (ubiquitin protein ligase 7 to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress.

  2. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    Science.gov (United States)

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  3. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize.

    Science.gov (United States)

    Wei, Kai-Fa; Chen, Juan; Chen, Yan-Feng; Wu, Ling-Juan; Xie, Dao-Xin

    2012-04-01

    The WRKY transcription factors function in plant growth and development, and response to the biotic and abiotic stresses. Although many studies have focused on the functional identification of the WRKY transcription factors, much less is known about molecular phylogenetic and global expression analysis of the complete WRKY family in maize. In this study, we identified 136 WRKY proteins coded by 119 genes in the B73 inbred line from the complete genome and named them in an orderly manner. Then, a comprehensive phylogenetic analysis of five species was performed to explore the origin and evolutionary patterns of these WRKY genes, and the result showed that gene duplication is the major driving force for the origin of new groups and subgroups and functional divergence during evolution. Chromosomal location analysis of maize WRKY genes indicated that 20 gene clusters are distributed unevenly in the genome. Microarray-based expression analysis has revealed that 131 WRKY transcripts encoded by 116 genes may participate in the regulation of maize growth and development. Among them, 102 transcripts are stably expressed with a coefficient of variation (CV) value of WRKY genes with the CV value of >15% are further analysed to discover new organ- or tissue-specific genes. In addition, microarray analyses of transcriptional responses to drought stress and fungal infection showed that maize WRKY proteins are involved in stress responses. All these results contribute to a deep probing into the roles of WRKY transcription factors in maize growth and development and stress tolerance.

  4. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    2011-01-01

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  5. An ex vivo evaluation of the efficacy of andrographolide in modulating differential expression of transcription factors and target genes in periodontal cells and its potential role in treating periodontal diseases.

    Science.gov (United States)

    Ambili R; Janam, Prasanthila; Saneesh Babu, P S; Prasad, Manu; Vinod, D; Anil Kumar, P R; Kumary, T V; Asha Nair, S; Radhakrishna Pillai, M

    2017-01-20

    Andrographolide is a herbal extract traditionally used in South Asian countries for treating inflammatory diseases. To evaluate the efficacy of andrographolide in management of periodontal disease which is a highly prevalent oral disease. Periodontal ligament fibroblasts (PDLF) were cultured from healthy and diseased periodontium using explant culture methods. The safe dose of AG was determined using MTT assay. LPS (lipopolysaccharide) of the most important periodontopathogen, P gingivalis was used to activate NF-κB and STAT3 in PDLF. The efficacy of AG in inhibiting NF-κB and STAT3 was analyzed using immunofluorescence. Down regulation of expression of target genes of these transcription factors related to inflammation and bone resorption were analyzed using real time PCR. AG up to the concentration of 25μM was found to be safe as determined by MTT assay. Statistically significant activation of NF-κB and STAT3 in cultured PDLF was observed in diseased group compared to healthy controls before and after LPS challenge. 5μM AG pretreatment significantly inhibited activation of NF-κB and STAT3 and down regulated expression of inflammatory and bone resorptive genes in cultured PDLF. The findings of the present study propose the adjunctive use of a novel herbal drug andrographolide as a promising host modulation agent for periodontal therapy by inhibiting NF-κB and STAT3 activation and inhibition of inflammation and bone resorption related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

    Science.gov (United States)

    de Souza, Wagner Rodrigo; Maitan-Alfenas, Gabriela Piccolo; de Gouvêa, Paula Fagundes; Brown, Neil Andrew; Savoldi, Marcela; Battaglia, Evy; Goldman, Maria Helena S; de Vries, Ronald P; Goldman, Gustavo Henrique

    2013-11-01

    The interest in the conversion of plant biomass to renewable fuels such as bioethanol has led to an increased investigation into the processes regulating biomass saccharification. The filamentous fungus Aspergillus niger is an important microorganism capable of producing a wide variety of plant biomass degrading enzymes. In A. niger the transcriptional activator XlnR and its close homolog, AraR, controls the main (hemi-)cellulolytic system responsible for plant polysaccharide degradation. Sugarcane is used worldwide as a feedstock for sugar and ethanol production, while the lignocellulosic residual bagasse can be used in different industrial applications, including ethanol production. The use of pentose sugars from hemicelluloses represents an opportunity to further increase production efficiencies. In the present study, we describe a global gene expression analysis of A. niger XlnR- and AraR-deficient mutant strains, grown on a D-xylose/L-arabinose monosaccharide mixture and steam-exploded sugarcane bagasse. Different gene sets of CAZy enzymes and sugar transporters were shown to be individually or dually regulated by XlnR and AraR, with XlnR appearing to be the major regulator on complex polysaccharides. Our study contributes to understanding of the complex regulatory mechanisms responsible for plant polysaccharide-degrading gene expression, and opens new possibilities for the engineering of fungi able to produce more efficient enzymatic cocktails to be used in biofuel production. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Rat Models of Cardiovascular Disease Demonstrate Distinctive Pulmonary Gene Expressions for Vascular Response Genes: Impact of Ozone Exposure

    Science.gov (United States)

    Comparative gene expression profiling of multiple tissues from rat strains with genetic predisposition to diverse cardiovascular diseases (CVD) can help decode the transcriptional program that governs organ-specific functions. We examined expressions of CVD genes in the lungs of ...

  8. Changes in gene expression during male meiosis in Petunia hybrida.

    Science.gov (United States)

    Cnudde, Filip; Hedatale, Veena; de Jong, Hans; Pierson, Elisabeth S; Rainey, Daphne Y; Zabeau, Marc; Weterings, Koen; Gerats, Tom; Peters, Janny L

    2006-01-01

    We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

  9. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  10. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  11. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  12. Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available BACKGROUND: Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1, glycolysis (HLF, mitochondrial transcription (TFB2M, adipogenesis (PIAS1, neuronal development (TLX3, immune function (IRF1 and vasculogenesis (SOX17, within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal to 30 months post natal (adulthood for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. CONCLUSIONS/SIGNIFICANCE: The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo

  13. The “Fourth Dimension” of Gene Transcription

    Science.gov (United States)

    O'Malley, Bert W.

    2009-01-01

    The three dimensions of space provide our relationship to position on the earth, but the fourth dimension of time has an equally profound influence on our lives. Everything from light and sound to weather and biology operate on the principle of measurable temporal periodicity. Consequently, a wide variety of time clocks affect all aspects of our existence. The annual (and biannual) cycles of activity, metabolism, and mating, the monthly physiological clocks of women and men, and the 24-h diurnal rhythms of humans are prime examples. Should it be surprising to us that the fourth dimension also impinges upon gene expression and that the genome itself is regulated by the fastest running of all biological clocks? Recent evidence substantiates the existence of such a ubiquitin-dependent transcriptional clock that is based upon the activation and destruction of transcriptional coactivators. PMID:19221049

  14. Analysis of gene expression in normal and neoplastic human testis: new roles of RNA

    DEFF Research Database (Denmark)

    Novotny, G W; Nielsen, J E; Sonne, Si Brask

    2007-01-01

    Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined with reg......Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined...

  15. Human papillomavirus gene expression

    International Nuclear Information System (INIS)

    Chow, L.T.; Hirochika, H.; Nasseri, M.; Stoler, M.H.; Wolinsky, S.M.; Chin, M.T.; Hirochika, R.; Arvan, D.S.; Broker, T.R.

    1987-01-01

    To determine the role of tissue differentiation on expression of each of the papillomavirus mRNA species identified by electron microscopy, the authors prepared exon-specific RNA probes that could distinguish the alternatively spliced mRNA species. Radioactively labeled single-stranded RNA probes were generated from a dual promoter vector system and individually hybridized to adjacent serial sections of formalin-fixed, paraffin-embedded biopsies of condylomata. Autoradiography showed that each of the message species had a characteristic tissue distribution and relative abundance. The authors have characterized a portion of the regulatory network of the HPVs by showing that the E2 ORF encodes a trans-acting enhancer-stimulating protein, as it does in BPV-1 (Spalholz et al. 1985). The HPV-11 enhancer was mapped to a 150-bp tract near the 3' end of the URR. Portions of this region are duplicated in some aggressive strains of HPV-6 (Boshart and zur Hausen 1986; Rando et al. 1986). To test the possible biological relevance of these duplications, they cloned tandem arrays of the enhancer and demonstrated, using a chloramphenicol acetyltransferase (CAT) assay, that they led to dramatically increased transcription proportional to copy number. Using the CAT assays, the authors found that the E2 proteins of several papillomavirus types can cross-stimulate the enhancers of most other types. This suggests that prior infection of a tissue with one papillomavirus type may provide a helper effect for superinfection and might account fo the HPV-6/HPV-16 coinfections in condylomata that they have observed

  16. WRKY transcription factor genes in wild rice Oryza nivara.

    Science.gov (United States)

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. RNA polymerase II mediated transcription from the polymerase III promoters in short hairpin RNA expression vector

    International Nuclear Information System (INIS)

    Rumi, Mohammad; Ishihara, Shunji; Aziz, Monowar; Kazumori, Hideaki; Ishimura, Norihisa; Yuki, Takafumi; Kadota, Chikara; Kadowaki, Yasunori; Kinoshita, Yoshikazu

    2006-01-01

    RNA polymerase III promoters of human ribonuclease P RNA component H1, human U6, and mouse U6 small nuclear RNA genes are commonly used in short hairpin RNA (shRNA) expression vectors due their precise initiation and termination sites. During transient transfection of shRNA vectors, we observed that H1 or U6 promoters also express longer transcripts enough to express several reporter genes including firefly luciferase, green fluorescent protein EGFP, and red fluorescent protein JRed. Expression of such longer transcripts was augmented by upstream RNA polymerase II enhancers and completely inhibited by downstream polyA signal sequences. Moreover, the transcription of firefly luciferase from human H1 promoter was sensitive to RNA polymerase II inhibitor α-amanitin. Our findings suggest that commonly used polymerase III promoters in shRNA vectors are also prone to RNA polymerase II mediated transcription, which may have negative impacts on their targeted use

  18. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  19. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  20. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  1. The transcription factor AtMYB75/PAP1 regulates the expression of flavonoid biosynthesis genes in transgenic hop (Humulus lupulus L.)

    Czech Academy of Sciences Publication Activity Database

    Gatica-Arias, A.; Farag, M.A.; Häntzschel, K.R.; Matoušek, Jaroslav; Weber, G.

    2012-01-01

    Roč. 65, 7-8 (2012), s. 103-111 ISSN 1866-5195 R&D Projects: GA ČR GA521/08/0740 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:60077344 Keywords : metabolic engineering * Humulus lupulus L. * transcription factors * flavonoid biosynthesis Subject RIV: EB - Genetic s ; Molecular Biology

  2. Mediator and Cohesin Connect Gene Expression and Chromatin Architecture

    Science.gov (United States)

    Kagey, Michael H.; Newman, Jamie J.; Bilodeau, Steve; Zhan, Ye; Orlando, David A.; van Berkum, Nynke L.; Ebmeier, Christopher C.; Goossens, Jesse; Rahl, Peter B.; Levine, Stuart S.; Taatjes, Dylan J.; Dekker, Job; Young, Richard A.

    2010-01-01

    Summary Transcription factors control cell specific gene expression programs through interactions with diverse coactivators and the transcription apparatus. Gene activation may involve DNA loop formation between enhancer-bound transcription factors and the transcription apparatus at the core promoter, but this process is not well understood. We report here that Mediator and Cohesin physically and functionally connect the enhancers and core promoters of active genes in embryonic stem cells. Mediator, a transcriptional coactivator, forms a complex with Cohesin, which can form rings that connect two DNA segments. The Cohesin loading factor Nipbl is associated with Mediator/Cohesin complexes, providing a means to load Cohesin at promoters. DNA looping is observed between the enhancers and promoters occupied by Mediator and Cohesin. Mediator and Cohesin occupy different promoters in different cells, thus generating cell-type specific DNA loops linked to the gene expression program of each cell. PMID:20720539

  3. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression

    DEFF Research Database (Denmark)

    Cano, A; Pérez-Moreno, M A; Rodrigo, I

    2000-01-01

    The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas......, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt...

  4. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological varia