WorldWideScience

Sample records for gene therapy combined

  1. Synergistic nanomedicine by combined gene and photothermal therapy.

    Science.gov (United States)

    Kim, Jinhwan; Kim, Jihoon; Jeong, Cherlhyun; Kim, Won Jong

    2016-03-01

    To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.

  2. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene.

    Science.gov (United States)

    Pandit, Aridaman; de Boer, Rob J

    2015-12-17

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART is gene therapy that targets the CCR5 co-receptor and creates a population of genetically modified host cells that are less susceptible to viral infection. With generic mathematical models we show that gene therapy that only targets the CCR5 co-receptor fails to suppress HIV-1 (which is in agreement with current data). We predict that the same gene therapy can be markedly improved if it is combined with a suicide gene that is only expressed upon HIV-1 infection.

  3. Gene therapy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    2005147 CNHK200-hA-a gene-viral therapeutic system and its antitumor effect on lung cancer. WANG Wei-guo(王伟国),et al. Viral & Gene Ther Center, Eastern Hepatobilli Surg Instit 2nd Milit Univ, Shanghai 200438. Chin J Oncol,2005:27(2):69-72. Objective: To develop a novel vector system, which combines the advantages of the gene therapy,

  4. Combination therapy of murine liver cancer with IL-12 gene and HSV-TK gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To investigate the synergistic anti-tumor effects of murine IL-12 gene and HSV-TK gene therapy in mice bearing liver cancer. Methods: Mouse liver cancer MM45T. Li (H-2d) cells were transfected with retroviral vector containing IL-12 gene or HSV-TK gene insert. Gene-modified liver cancer cells, MM45T. Li/IL-12 and MM45T. Li/TK, with stable expression of IL-12 and TK were obtained. Balb/c mice were inoculated subcutaneously with 2′ 105 MM45T. Li cells. When the tumor reached a size of 0.5-1.0 cm, a mixture of MM45T.Li/TK cells and 60Co-irradiated MM45T. Li/IL-12 cell were injected intratumoraly. Ganciclovir (GCV) was injected ip (40 mg.kg-1.d-1) for 10 days. Intratumoral injection of 60Co-irradiated MM45T. Li/IL-12 cells was repeated twice in one week apart. Mice with distant tumors were treated according to the same protocol. CTL activity of spleen cells was measured by 51Cr-release assay and phenotype of tumor infiltrating lymphocytes by immunohistochemical staining. Results: In mice treated with MM45T. Li/IL-12 or MM45T. Li/TK+GCV individually led to moderate reduction in tumor growth, but neither could eradicate the tumor completely, while in 60% of mice treated with a mixture of MM45T. Li/IL-12 and MM45T. Li/TK cells plus GCV, complete tumor regression was observed, with no tumor recurrence for two months. The growth of distant tumor was also inhibited significantly in mice similarly treated. Most of the mice received combined gene therapy plus GCV had abundant CD4+, CD8+T lymphocyte infiltration. Their CTL activity was significantly higher than in mice received single gene therapy. Conclusion Combination therapy with IL-12 gene and HSV-TK gene plus GCV is effective for mouse liver cancer.

  5. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres.

    Science.gov (United States)

    Meng, Ying; Wang, Shanshan; Li, Chengyi; Qian, Min; Yan, Xueying; Yao, Shuangchao; Peng, Xiyue; Wang, Yi; Huang, Rongqin

    2016-09-01

    Combining controllable photothermal therapy and efficacious gene therapy in a single platform holds great promise in cancer therapy due to the enhanced combined therapeutic effects. Herein, polyethyleneimine-grafted oxidized mesoporous carbon nanospheres (OP) were developed for combined photothermal combined gene therapy in vitro and in vivo. The synthesized OP was characterized to have three dimensional spherical structure with uniformed diameter, ordered mesopores with graphitic domains, high water dispersion with zeta potential of +22 mV, and good biocompatibility. Consequently, OP was exploited as the photothermal convertor with strong NIR absorption and the gene vector via electrostatic interaction, which therefore cannot only deliver the therapeutic gene (pING4) to tumors for gene therapy, but also can eliminate the tumors by photothermal ablation. Moreover, the improved gene therapy accompanied by the NIR photothermally enhanced gene release was also well achieved based on OP. The excellent combined therapeutic effects demonstrated in vitro and in vivo suggested the OP's potential for cancer therapy.

  6. Combining gene therapy and fetal hemoglobin induction for treatment of β-thalassemia.

    Science.gov (United States)

    Breda, Laura; Rivella, Stefano; Zuccato, Cristina; Gambari, Roberto

    2013-06-01

    β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to a low or absent production of adult hemoglobin (HbA). Two major therapeutic approaches have recently been proposed: gene therapy and induction of fetal hemoglobin (HbF) with the objective of achieving clinically relevant levels of Hbs. The objective of this article is to describe the development of therapeutic strategies based on a combination of gene therapy and induction of HbFs. An increase of β-globin gene expression in β-thalassemia cells can be achieved by gene therapy, although de novo production of clinically relevant levels of adult Hb may be difficult to obtain. On the other hand, an increased production of HbF is beneficial in β-thalassemia. The combination of gene therapy and HbF induction appears to be a pertinent strategy to achieve clinically relevant results.

  7. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency.

    OpenAIRE

    Montiel-Equihua, C. A.; Thrasher, A. J.; Gaspar, H B

    2009-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. P...

  8. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    Science.gov (United States)

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  9. Gene Therapy for RAG-deficient Severe Combined Immunodeficiency

    NARCIS (Netherlands)

    K. Pike (Karin)

    2007-01-01

    textabstractSevere combined immunodeficiency (SCID) is a rare class of primary, inherited, immunodeficiency causing infants to suffer from persistent diarrhea, opportunistic infections and a failure to thrive. RAG proteins play a crucial role in the initiation of V(D)J recombination of immun

  10. Gene Therapy for RAG-deficient Severe Combined Immunodeficiency

    NARCIS (Netherlands)

    K. Pike (Karin)

    2007-01-01

    textabstractSevere combined immunodeficiency (SCID) is a rare class of primary, inherited, immunodeficiency causing infants to suffer from persistent diarrhea, opportunistic infections and a failure to thrive. RAG proteins play a crucial role in the initiation of V(D)J recombination of immun

  11. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  12. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Science.gov (United States)

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2010-01-01

    The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID) and especially adenosine deaminase (ADA)-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID. PMID:24198507

  13. Combined anti-tumor necrosis factor-α therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    Directory of Open Access Journals (Sweden)

    Carl K Edwards

    2012-12-01

    Full Text Available Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable" RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a DMARD and an anti-TNF-α agent (infliximab or etanercept to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N=122, unstable DMARD patients (N=18, stable DMARD patients (N=26, and stable patients on combination therapy (N=20. Expression of 13 genes was very low or undetectable in all study groups. Compared to healthy controls, patients with unstable RA on DMARDs exhibited increased expression of 25 genes, stable DMARD patients exhibited increased expression of 14 genes and decreased expression of five genes, and combined therapy patients exhibited increased expression of six genes and decreased expression of 10 genes. These findings demonstrate that active RA is associated with increased expression of circulating inflammatory markers whereas increases in inflammatory gene expression are diminished in patients with stable disease on either DMARD or anti-TNF-α therapy. Furthermore, combination DMARD and anti-TNF-α therapy is associated with greater reductions in circulating inflammatory gene expression compared to DMARD therapy alone. These results suggest that assessment of peripheral blood gene expression may prove useful to monitor disease progression and response to therapy.

  14. Expanding the therapeutic index of radiation therapy by combining in situ gene therapy in the treatment of prostate cancer.

    Science.gov (United States)

    Tetzlaff, Michael T; Teh, Bin S; Timme, Terry L; Fujita, Tetsuo; Satoh, Takefumi; Tabata, Ken-Ichi; Mai, Wei-Yuan; Vlachaki, Maria T; Amato, Robert J; Kadmon, Dov; Miles, Brian J; Ayala, Gustavo; Wheeler, Thomas M; Aguilar-Cordova, Estuardo; Thompson, Timothy C; Butler, E Brian

    2006-02-01

    The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.

  15. Development of gene therapy: potential in severe combined immunodeficiency due to adenosine deaminase deficiency

    Directory of Open Access Journals (Sweden)

    Claudia A Montiel-Equihua

    2009-12-01

    Full Text Available Claudia A Montiel-Equihua, Adrian J Thrasher, H Bobby GasparCentre for Immunodeficiency, Molecular Immunology Unit, UCL Institute of Child Health, London, UKAbstract: The history of stem cell gene therapy is strongly linked to the development of gene therapy for severe combined immunodeficiencies (SCID and especially adenosine deaminase (ADA-deficient SCID. Here we discuss the developments achieved in over two decades of clinical and laboratory research that led to the establishment of a protocol for the autologous transplant of retroviral vector-mediated gene-modified hematopoietic stem cells, which has proved to be both successful and, to date, safe. Patients in trials in three different countries have shown long-term immunological and metabolic correction. Nevertheless, improvements to the safety profile of viral vectors are underway and will undoubtedly reinforce the position of stem cell gene therapy as a treatment option for ADA-SCID.Keywords: adenosine deaminase, severe combined immunodeficiency, gene therapy, hematopoietic stem cell, retrovirus, clinical trial

  16. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.

    Science.gov (United States)

    De Ravin, Suk See; Wu, Xiaolin; Moir, Susan; Anaya-O'Brien, Sandra; Kwatemaa, Nana; Littel, Patricia; Theobald, Narda; Choi, Uimook; Su, Ling; Marquesen, Martha; Hilligoss, Dianne; Lee, Janet; Buckner, Clarissa M; Zarember, Kol A; O'Connor, Geraldine; McVicar, Daniel; Kuhns, Douglas; Throm, Robert E; Zhou, Sheng; Notarangelo, Luigi D; Hanson, I Celine; Cowan, Mort J; Kang, Elizabeth; Hadigan, Coleen; Meagher, Michael; Gray, John T; Sorrentino, Brian P; Malech, Harry L

    2016-04-20

    X-linked severe combined immunodeficiency (SCID-X1) is a profound deficiency of T, B, and natural killer (NK) cell immunity caused by mutations inIL2RGencoding the common chain (γc) of several interleukin receptors. Gamma-retroviral (γRV) gene therapy of SCID-X1 infants without conditioning restores T cell immunity without B or NK cell correction, but similar treatment fails in older SCID-X1 children. We used a lentiviral gene therapy approach to treat five SCID-X1 patients with persistent immune dysfunction despite haploidentical hematopoietic stem cell (HSC) transplant in infancy. Follow-up data from two older patients demonstrate that lentiviral vector γc transduced autologous HSC gene therapy after nonmyeloablative busulfan conditioning achieves selective expansion of gene-marked T, NK, and B cells, which is associated with sustained restoration of humoral responses to immunization and clinical improvement at 2 to 3 years after treatment. Similar gene marking levels have been achieved in three younger patients, albeit with only 6 to 9 months of follow-up. Lentiviral gene therapy with reduced-intensity conditioning appears safe and can restore humoral immune function to posthaploidentical transplant older patients with SCID-X1.

  17. Efficacy of Gene Therapy for X-Linked Severe Combined Immunodeficiency

    Science.gov (United States)

    Hacein-Bey-Abina, Salima; Hauer, Julia; Lim, Annick; Picard, Capucine; Wang, Gary P.; Berry, Charles C.; Martinache, Chantal; Rieux-Laucat, Frédéric; Latour, Sylvain; Belohradsky, Bernd H.; Leiva, Lily; Sorensen, Ricardo; Debré, Marianne; Casanova, Jean Laurent; Blanche, Stephane; Durandy, Anne; Bushman, Frederic D.; Fischer, Alain; Cavazzana-Calvo, Marina

    2010-01-01

    BACKGROUND The outcomes of gene therapy to correct congenital immunodeficiencies are unknown. We reviewed long-term outcomes after gene therapy in nine patients with X-linked severe combined immunodeficiency (SCID-X1), which is characterized by the absence of the cytokine receptor common γ chain. METHODS The nine patients, who lacked an HLA-identical donor, underwent ex vivo retrovirus-mediated transfer of γ chain to autologous CD34+ bone marrow cells between 1999 and 2002. We assessed clinical events and immune function on long-term follow-up. RESULTS Eight patients were alive after a median follow-up period of 9 years (range, 8 to 11). Gene therapy was initially successful at correcting immune dysfunction in eight of the nine patients. However, acute leukemia developed in four patients, and one died. Transduced T cells were detected for up to 10.7 years after gene therapy. Seven patients, including the three survivors of leukemia, had sustained immune reconstitution; three patients required immunoglobulin-replacement therapy. Sustained thymopoiesis was established by the persistent presence of naive T cells, even after chemotherapy in three patients. The T-cell–receptor repertoire was diverse in all patients. Transduced B cells were not detected. Correction of the immunodeficiency improved the patients’ health. CONCLUSIONS After nearly 10 years of follow-up, gene therapy was shown to have corrected the immunodeficiency associated with SCID-X1. Gene therapy may be an option for patients who do not have an HLA-identical donor for hematopoietic stem-cell transplantation and for whom the risks are deemed acceptable. This treatment is associated with a risk of acute leukemia. (Funded by INSERM and others.) PMID:20660403

  18. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-Lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  19. Gene therapy model of X-linked severe combined immunodeficiency using a modified foamy virus vector.

    Directory of Open Access Journals (Sweden)

    Satoshi Horino

    Full Text Available X-linked severe combined immunodeficiency (SCID-X1 is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc gene, and characterized by a complete defect of T and natural killer (NK cells. Gene therapy for SCID-X1 using conventional retroviral (RV vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1.

  20. Gene Therapy Model of X-linked Severe Combined Immunodeficiency Using a Modified Foamy Virus Vector

    Science.gov (United States)

    Horino, Satoshi; Uchiyama, Toru; So, Takanori; Nagashima, Hiroyuki; Sun, Shu-lan; Sato, Miki; Asao, Atsuko; Haji, Yoichi; Sasahara, Yoji; Candotti, Fabio; Tsuchiya, Shigeru; Kure, Shigeo; Sugamura, Kazuo; Ishii, Naoto

    2013-01-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited genetic immunodeficiency associated with mutations in the common cytokine receptor γ chain (γc) gene, and characterized by a complete defect of T and natural killer (NK) cells. Gene therapy for SCID-X1 using conventional retroviral (RV) vectors carrying the γc gene results in the successful reconstitution of T cell immunity. However, the high incidence of vector-mediated T cell leukemia, caused by vector insertion near or within cancer-related genes has been a serious problem. In this study, we established a gene therapy model of mouse SCID-X1 using a modified foamy virus (FV) vector expressing human γc. Analysis of vector integration in a human T cell line demonstrated that the FV vector integration sites were significantly less likely to be located within or near transcriptional start sites than RV vector integration sites. To evaluate the therapeutic efficacy, bone marrow cells from γc-knockout (γc-KO) mice were infected with the FV vector and transplanted into γc-KO mice. Transplantation of the FV-treated cells resulted in the successful reconstitution of functionally active T and B cells. These data suggest that FV vectors can be effective and may be safer than conventional RV vectors for gene therapy for SCID-X1. PMID:23990961

  1. Combined use of transmyocardial stents with gene therapy in the treatment of acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    王永武

    2006-01-01

    Objective To determine the efficacy of combined use of transmyocardial stent with gene therapy to treat acute myocardial infarction in porcine model. Methods 24 Chinese mini swines have been devided into 4 groups randomly: group myocardial infarction (group MI n1 = 6), group transmyocardial stent (group ST n2 = 6) , group vascular endothelial growth factor (group VEGF n3 = 6) , group transmyocardial stent and VEGF (group ST + VEGF n4 = 6). In group MI,acute myocardial infarc-

  2. Effective gene-viral therapy for telomerase-positive cancers by selective replicative-competent adenovirus combining with endostatin gene

    Institute of Scientific and Technical Information of China (English)

    Zhang Q; Liu C; Jiang M; Fang G; Liu X; Wu M; Qian Q; Nie M; Sham J; Su C; Xue H; Chua D; Wang W; Cui Z; Liu Y

    2005-01-01

    Gene-viral therapy, which uses replication-selective transgene-expressing viruses to manage tumors, can exploit the virtues of gene therapy and virotherapy and overcome the limitations of conventional gene therapy. Using a human telomerase reverse transcriptase-targeted replicative adenovirus as an antiangiogenic gene transfer vector to target new angiogenesis and making use of its unrestrained proliferation are completely new concepts in tumor management. CNHK300-mE is a selective replication transgene-expressing adenovirus constructed to carry mouse endostatin gene therapeutically. Infection with CNHK300-mE was associated with selective replication of the adenovirus and production of mouse endostatin in telomerase-positive cancer cells. Endostatin secreted from a human gastric cell line, SGC-7901, infected with CNHK300-mE was significantly higher than that infected with nonreplicative adenovirus Ad-mE in vitro (800±94.7 ng/ml versus 132.9±9.9 ng/ml) and in vivo (610±42 ng/ml versus 126 +/- 13 ng/ml). Embryonic chorioallantoic membrane assay showed that the mouse endostatin secreted by CNHK300-mE inhibited angiogenesis efficiently and also induced distortion of pre-existing vasculature. CNHK300-mE exhibited a superior suppression of xenografts in nude mice compared with CNHK300 and Ad-mE. In summary, we provided a more efficient gene-viral therapy strategy by combining oncolysis with antiangiogenesis.

  3. Gene Therapy

    Science.gov (United States)

    ... or improve your body's ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Researchers are still studying how and ...

  4. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.

    Science.gov (United States)

    Curtin, James F; King, Gwendalyn D; Candolfi, Marianela; Greeno, Remy B; Kroeger, Kurt M; Lowenstein, Pedro R; Castro, Maria G

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important

  5. Gene Therapy for X-Linked Severe Combined Immunodeficiency: Where Do We Stand?

    Science.gov (United States)

    Cavazzana, Marina; Six, Emmanuelle; Lagresle-Peyrou, Chantal; André-Schmutz, Isabelle; Hacein-Bey-Abina, Salima

    2016-01-01

    More than 20 years ago, X-linked severe combined immunodeficiency (SCID-X1) appeared to be the best condition to test the feasibility of hematopoietic stem cell gene therapy. The seminal SCID-X1 clinical studies, based on first-generation gammaretroviral vectors, demonstrated good long-term immune reconstitution in most treated patients despite the occurrence of vector-related leukemia in a few of them. This gene therapy has successfully enabled correction of the T cell defect. Natural killer and B cell defects were only partially restored, most likely due to the absence of a conditioning regimen. The success of these pioneering trials paved the way for the extension of gene-based treatment to many other diseases of the hematopoietic system, but the unfortunate serious adverse events led to extensive investigations to define the retrovirus integration profiles. This review puts into perspective the clinical experience of gene therapy for SCID-X1, with the development and implementation of new generations of safer vectors such as self-inactivating gammaretroviral or lentiviral vectors as well as major advances in integrome knowledge. PMID:26790362

  6. Gene Therapy.

    Science.gov (United States)

    Thorne, Barb; Takeya, Ryan; Vitelli, Francesca; Swanson, Xin

    2017-03-14

    Gene therapy refers to a rapidly growing field of medicine in which genes are introduced into the body to treat or prevent diseases. Although a variety of methods can be used to deliver the genetic materials into the target cells and tissues, modified viral vectors represent one of the more common delivery routes because of its transduction efficiency for therapeutic genes. Since the introduction of gene therapy concept in the 1970s, the field has advanced considerably with notable clinical successes being demonstrated in many clinical indications in which no standard treatment options are currently available. It is anticipated that the clinical success the field observed in recent years can drive requirements for more scalable, robust, cost effective, and regulatory-compliant manufacturing processes. This review provides a brief overview of the current manufacturing technologies for viral vectors production, drawing attention to the common upstream and downstream production process platform that is applicable across various classes of viral vectors and their unique manufacturing challenges as compared to other biologics. In addition, a case study of an industry-scale cGMP production of an AAV-based gene therapy product performed at 2,000 L-scale is presented. The experience and lessons learned from this largest viral gene therapy vector production run conducted to date as discussed and highlighted in this review should contribute to future development of commercial viable scalable processes for vial gene therapies.

  7. Combination Gene Therapy for Liver Metastasis of Colon Carcinoma in vivo

    Science.gov (United States)

    Chen, Shu-Hsai; Chen, X. H. Li; Wang, Yibin; Kosai, Ken-Ichiro; Finegold, Milton J.; Rich, Susan S.

    1995-03-01

    The efficacy of combination therapy with a "suicide gene" and a cytokine gene to treat metastatic colon carcinoma in the liver was investigated. Tumor in the liver was generated by intrahepatic injection of a colon carcinoma cell line (MCA-26) in syngeneic BALB/c mice. Recombinant adenoviral vectors containing various control and therapeutic genes were injected directly into the solid tumors, followed by treatment with ganciclovir. While the tumors continued to grow in all animals treated with a control vector or a mouse interleukin 2 vector, those treated with a herpes simplex virus thymidine kinase vector, with or without the coadministration of the mouse interleukin 2 vector, exhibited dramatic necrosis and regression. However, only animals treated with both vectors developed an effective systemic antitumoral immunity against challenges of tumorigenic doses of parental tumor cells inoculated at distant sites. The antitumoral immunity was associated with the presence of MCA-26 tumor-specific cytolytic CD8^+ T lymphocytes. The results suggest that combination suicide and cytokine gene therapy in vivo can be a powerful approach for treatment of metastatic colon carcinoma in the liver.

  8. Gene Therapy Studies in a Canine Model of X-Linked Severe Combined Immunodeficiency

    Science.gov (United States)

    De Ravin, Suk See; Malech, Harry L.; Sorrentino, Brian P.; Burtner, Christopher; Kiem, Hans-Peter

    2015-01-01

    Abstract Since the occurrence of T cell leukemias in the original human γ-retroviral gene therapy trials for X-linked severe combined immunodeficiency (XSCID), considerable effort has been devoted to developing safer vectors. This review summarizes gene therapy studies performed in a canine model of XSCID to evaluate the efficacy of γ-retroviral, lentiviral, and foamy viral vectors for treating XSCID and a novel method of vector delivery. These studies demonstrate that durable T cell reconstitution and thymopoiesis with no evidence of any serious adverse events and, in contrast to the human XSCID patients, sustained marking in myeloid cells and B cells with reconstitution of normal humoral immune function can be achieved for up to 5 years without any pretreatment conditioning. The presence of sustained levels of gene-marked T cells, B cells, and more importantly myeloid cells for almost 5 years is highly suggestive of transduction of either multipotent hematopoietic stem cells or very primitive committed progenitors. PMID:25603151

  9. EFFECTS OF p53 GENE THERAPY COMBINED WITH CYCLOOXYGENASE-2 INHIBITOR ON CYCLOOXYGENASE-2 GENE EXPRESSION AND GROWTH INHIBITION OF HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    WANG Zhao-Xia; LU Bin-Bin; WANG Teng; YIN Yong-Mei; DE Wei; SHU Yong-Qian

    2007-01-01

    Background Gene therapy by adenovirus-mediated wild-type p53 gene transfer has been shown to inhibit lung cancer growth in vitro, in animal models, and in human clinical trials. The antitumor effect of selective cyclooxygenase (COX)-2 inhibitors has been demonstrated in preclinical studies. However, no information is available on the effects of p53 gene therapy combined with selective COX-2 inhibitor on COX-2 gene expression and growth inhibition of human lung cancer cells. Methods We evaluated the effects of recombinant adenovirus-p53 (Ad-p53) gene therapy combined with selective COX-2 inhibitor on the proliferation, apoptosis, cell cycle arrest of human lung adenocarcinoma A549 cell line, and the effects of tumor suppressor exogenous wild type p53 on COX-2 gene expression. Results Ad-p53 gene therapy combined with selective COX-2 inhibitor celecoxib shows significant synergistic inhibition effects on the growth of human lung adenocarcinoma A549 cell line. Exogenous p53 gene can suppress COX-2 gene expression. Conclusions Significant synergistic inhibition effects of A549 cell line by the combined Ad-p53 and selective COX-2 inhibitor celecoxib may be achieved by enhancement of growth inhibition, apoptosis induction and suppression of COX-2 gene expression. This study provides first evidence that the administration of p53 gene therapy in combination with COX-2 inhibitors might be a new clinical strategy for the treatment or prevention of NSCLC.

  10. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene

    NARCIS (Netherlands)

    Pandit, Aridaman; de Boer, Rob J

    2015-01-01

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART

  11. HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene

    NARCIS (Netherlands)

    Pandit, Aridaman; de Boer, Rob J

    2015-01-01

    Highly active antiretroviral therapy (ART) has successfully turned Human immunodeficiency virus type 1 (HIV-1) from a deadly pathogen into a manageable chronic infection. ART is a lifelong therapy which is both expensive and toxic, and HIV can become resistant to it. An alternative to lifelong ART i

  12. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    OpenAIRE

    Curtin, James; King, Gwendalyn; Candolfi, Marianela; Greeno, Remy; Kroeger, Kurt; Lowenstein, Pedro; Castro,Maria

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implem...

  13. Combination Adenovirus-Mediated HSV-tk/GCV and Antisense IGF-1 Gene Therapy for Rat Glioma

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To investigate the effects of combination adenovirus-mediated HSV-tk/GCV system and antisense IGF-1 gene therapy for rat glioma and analyze the mechanism.Methods Using the recombinant adenovirus vector,GCV killing effeciency after combined gene transfer of HSV-tk and antisense IGF-1 was observed in vitro.Rat glioma was treated with HSV-tk/GCV and antisense IGF-1 and the survival rate of rats was observed.Results C6 cells transfected with tk and antisense IGF-1 gene were more sensitive to GCV than that transfected with tk gene alone.The survival of the combination gene therapy group was prolonged significantly and large amounts of CD+4,CD+8 lymphocytes were detected in the tumor tissues.Conclusion Antisense IGF-1 gene may enhance the tumor-killing effects of HSV-tk/GCV.

  14. A brief introduction to combined stem cell/gene therapy%干细胞/基因联合治疗

    Institute of Scientific and Technical Information of China (English)

    章静波

    2012-01-01

    细胞治疗与基因治疗的相互交融形成了更行之有效的干细胞/基因联合治疗,本文简要介绍干细胞/基因联合治疗中常用的细胞类型、各种载体以及它们的优缺点;例举了迄今已报道有成效的某些人类疾病的治疗或动物实验治疗的结果.此外,指出干细胞/基因联合治疗中可能遇到的致瘤性问题及其对策.%The merge of cell therapy with gene therapy forms a more effective combined stem cell therapy/ gene therapy. An introduction to combined stem cell therapy/gene therapy is made in this minireview briefly, including the often used cell types, vectors and their advantages and disadvantages. Examples of some diseases in human being or in animals which have been treated with combined stem cell therapy/gene therapy successfully are given also. It is pointed out that carcinogenesis might occur during the treatment and how to overcome such problems.

  15. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering.

    Science.gov (United States)

    Busuttil, Francesca; Rahim, Ahad A; Phillips, James B

    2017-02-15

    Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.

  16. Potential benefits of combining cytosine deaminase/5-fluorocytosine gene therapy and irradiation for prostate cancer. Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Hiroaki; Koshida, Kiyoshi; Yokoyama, Kunihiko; Mizokami, Atsushi; Namiki, Mikio [Kanazawa Univ. (Japan). School of Medicine

    2002-10-01

    The purpose of this study was to investigate the potential of combining cytosine deaminase/5-fluorocytosine (CD/5-FC) gene therapy and radiation therapy (either external beam radiation or radioimmunotherapy [RIT]), for the treatment of prostate cancer. Tumor xenografts of CD-transduced LNCaP cells grown in the testes of severe combined immunodeficiency (SCID) mice were used to evaluate antitumor effect. The mice were injected intraperitoneally with 500 mg/kg of 5-FC, or with 5, 15 or 30 mg/kg of 5-fluorouracil (5-FU), for 9 days. The tumors were treated with fractionated radiation at a dose of 1 or 3 Gy/day for 3 days, or I-131 labelled anti-prostate specific antigen (anti-PSA) monoclonal antibody (mAb) administration at a subtherapeutic dose of 20 or 80 {mu}Ci. Intratumoral and serum concentrations of 5-FU were measured using high performance liquid chromatography. Mice treated with CD/5-FC gene therapy presented a significant tumor growth inhibition comparable to that obtained with 15 mg/kg, 5-FU systemic administration without marked weight loss. Treatment with CD/5-FC gene therapy resulted in higher tumor but lower serum concentrations of 5-FU than treatment with systemic 5-FU chemotherapy. An additive antitumor effect was obtained when CD/5-FC therapy was combined with 1 Gy irradiation, which by itself did not produce a significant antitumor effect. However, the efficacy of CD/5-FC therapy was not enhanced when combined with RIT, probably due to poor accumulation of the mAb as the tumor/blood ratio never exceeded 1. These findings indicate that CD/5-FC gene therapy for prostate cancer may function with enhanced antitumor effect when combined with external beam radiation. However, combining CD/5-FC gene therapy and RIT using an anti-PSA mAb may not be effective because of insufficient accumulation of the mAb at the target tumors. (author)

  17. Gene therapy for brain tumors.

    Science.gov (United States)

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  18. Combating oncogene activation associated with retrovirus-mediated gene therapy of X-linked severe combined immunodeficiency

    Directory of Open Access Journals (Sweden)

    B.E. Strauss

    2007-05-01

    Full Text Available A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

  19. Adeno-associated virus mediated endostatin gene therapy in combination with topoisomerase inhibitor effectively controls liver tumor in mouse model

    Institute of Scientific and Technical Information of China (English)

    Sung Yi Hong; Myun Hee Lee; Kyung Sup Kim; Hyun Cheol Jung; Jae Kyung Roh; Woo Jin Hyung; Sung Hoon Noh; Seung Ho Choi

    2004-01-01

    AIM: rAAV mediated endostatin gene therapy has been examined as a new method for treating cancer. However,a sustained and high protein delivery is required to achieve the desired therapeutic effects. We evaluated the impact of topoisomerase inhibitors in rAAV delivered endostatin gene therapy in a liver tumor model.METHODS: rAAV containing endostatin expression cassettes were transduced into hepatoma cell lines. To test whether the topoisomerase inhibitor pretreatment increased the expression of endostatin, Western blotting and ELISA were performed. The biologic activity of endostatin was confirmed by endothelial cell proliferation and tube formation assays.The anti-tumor effects of the rAAV-endostatin vector combined with a topoisomerase inhibitor, etoposide, were evaluated in a mouse liver tumor model.RESULTS: Topoisomerase inhibitors, including camptothecin and etoposide, were found to increase the endostatin expression level in vitro. The over-expressed endostatin,as a result of pretreatment with a topoisomerase inhibitor,was also biologically active. In animal experiments, the combined therapy of topoisomerase inhibitor, etoposide with the rAAV-endostatin vector had the best tumorsuppressive effect and tumor foci were barely observed in livers of the treated mice. Pretreatment with an etoposide increased the level of endostatin in the liver and serum of rAAV-endostatin treated mice. Finally, the mice treated with rAAV-endostatin in combination with etoposide showed the longest survival among the experimental models.CONCLUSION: rAAV delivered endostatin gene therapy in combination with a topoisomerase inhibitor pretreatment is an effective modality for anticancer gene therapy.

  20. Gene therapy in periodontics

    Directory of Open Access Journals (Sweden)

    Anirban Chatterjee

    2013-01-01

    Full Text Available GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person′s genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is ′the use of genes as medicine′. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  1. Gene therapy in periodontics.

    Science.gov (United States)

    Chatterjee, Anirban; Singh, Nidhi; Saluja, Mini

    2013-03-01

    GENES are made of DNA - the code of life. They are made up of two types of base pair from different number of hydrogen bonds AT, GC which can be turned into instruction. Everyone inherits genes from their parents and passes them on in turn to their children. Every person's genes are different, and the changes in sequence determine the inherited differences between each of us. Some changes, usually in a single gene, may cause serious diseases. Gene therapy is 'the use of genes as medicine'. It involves the transfer of a therapeutic or working gene copy into specific cells of an individual in order to repair a faulty gene copy. Thus it may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. It has a promising era in the field of periodontics. Gene therapy has been used as a mode of tissue engineering in periodontics. The tissue engineering approach reconstructs the natural target tissue by combining four elements namely: Scaffold, signaling molecules, cells and blood supply and thus can help in the reconstruction of damaged periodontium including cementum, gingival, periodontal ligament and bone.

  2. Combined anti-tumor necrosis factor-alpha therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone

    NARCIS (Netherlands)

    Edwards, C.K., 3rd; Green, J.S.; Volk, H.D.; Schiff, M.; Kotzin, B.L.; Mitsuya, H.; Kawaguchi, T.; Sakata, K.M.; Cheronis, J.; Trollinger, D.; Bankaitis-Davis, D.; Dinarello, C.A.; Norris, D.A.; Bevilacqua, M.P.; Fujita, M.; Burmester, G.R.

    2012-01-01

    Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA) may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs) or anti-TNF-alpha therapy

  3. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  4. Exogenous p16 gene therapy combined with X-ray irradiation suppresses the growth of human glioma cells

    Institute of Scientific and Technical Information of China (English)

    Hongbing Ma; Zhengli Di; Minghua Bai; Hongtao Ren; Zongfang Li

    2011-01-01

    In this study, we infected human glioma U251 cells with a replication-defective recombinant adeno-virus carrying the p16 gene. This adenovirus constructed was able to transfect exogenous p16 into the human glioma cells efficiently, and direct a high level of p16 protein expression. Tumor-inhibition experiments demonstrated that treatment with the adenovirus-p16 significantly inhibited the growth of glioma cells in vitro as well as the in vivo development of tumors in nude mice bearing a brain glioma. The combination of adenovirus-p16 gene treatment and X-ray irradiation resulted in a greater inhibition of tumor growth. Adenovirus-mediated p16 gene therapy conferred a significant antitumor effect against human glioma cells both in vitro and in vivo, and that there was a synergistic effect when X-ray irradiation was also used.

  5. Principles of gene therapy

    OpenAIRE

    Mammen Biju; Ramakrishnan T; Sudhakar Uma; Vijayalakshmi

    2007-01-01

    Genes are specific sequences of bases that encode instructions to make proteins. When genes are altered so that encoded proteins are unable to carry out their normal functions, genetic disorders can result. Gene therapy is designed to introduce genetic material into cells to compensate for abnormal genes or to make a beneficial protein. This article reviews the fundamentals in gene therapy and its various modes of administration with an insight into the role of gene therapy in Periodontics an...

  6. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    Science.gov (United States)

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients.

  7. In vitro and in vivo effect of 5-FC combined gene therapy with TNF-α and CD suicide gene on human laryngeal carcinoma cell line Hep-2.

    Science.gov (United States)

    Chai, Li-Ping; Wang, Zhang-Feng; Liang, Wei-Ying; Chen, Lei; Chen, Dan; Wang, An-Xun; Zhang, Zhao-Qiang

    2013-01-01

    This study was aimed to investigate the effect of combined cancer gene therapy with exogenous tumor necrosis factor-alpha (TNF-α) and cytosine deaminase (CD) suicide gene on laryngeal carcinoma cell line Hep-2 in vitro and in vivo. Transfection of the recombinant eukaryotic vectors of pcDNA3.1 (+) containing TNF-α and/or CD into Hep-2 cells resulted in expression of TNF-α and/or CD gene in vitro. The significant increase in apoptotic Hep-2 cells and decrease of Hep-2 cell proliferation were observed using 5-FC treatment combined with TNF-a expression by CD/5-FC suicide system. Moreover, bystander effect was also observed in the TNF-α and CD gene co-expression group. Laryngeal squamous cell carcinoma (LSCC) mice model was established by using BALB/c mice which different transfected Hep-2 cells with pcDNA3.1 (+) containing TNF-α and/or CD were applied subcutaneously. So these mice are divided into four groups, namely, (1)Hep-2/TIC group; (2)Hep-2/CD group; (3)Hep-2/TNF-α group; (4)Hep-2/0 group. At day 29 after cell inoculation, volume of grafted tumor had significant difference between each two of them (P<0.05). These results showed that the products of combined CD and TNF-α genes inhibited the growth of transplanted LSCC in mice model. So by our observed parameters and many others results, we hypothesized that 5-FC combined gene therapy with TNF-αand CD suicide gene should be an effective treatment on Laryngeal carcinoma.

  8. Lefunomide in combination therapy

    NARCIS (Netherlands)

    Kalden, J.R.; Smolen, J.S.; Emery, P.; Riel, P.L.C.M. van; Dougados, M.; Strand, C.V.; Breedveld, F.C.

    2004-01-01

    In most studies of disease modifying antirheumatic drug therapy, in combination with either leflunomide or biological agents, patients are given an additional agent after they have failed treatment with methotrexate (MTX). This review of clinical studies shows that leflunomide is clinically efficaci

  9. 自杀基因联合细胞因子的癌症治疗%Combined therapy of suicide gene and cytokine gene for cancer

    Institute of Scientific and Technical Information of China (English)

    王红孝; 袁家英; 张建华; 潘伯荣

    2004-01-01

    @@ INTRODUCTION The transfer of suicide genes into tumor cells is currently being used in a variety of clinical gene therapy trials for the treatment of cancer, and suicide gene therapy is the transduction of a gene that transforms a non-toxic into a toxic substance[1].

  10. Effect of combined VEGF165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia.

    Science.gov (United States)

    Hu, Guo-Jie; Feng, Yu-Gong; Lu, Wen-Peng; Li, Huan-Ting; Xie, Hong-Wei; Li, Shi-Fang

    2016-12-16

    OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF165-SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF165-SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF165-SDF-1 vector mediated coexpression of VEGF165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after cerebral

  11. Cochlear Gene Therapy

    OpenAIRE

    2012-01-01

    The purpose of this review is to highlight recent advances in cochlear gene therapy over the past several years. Cochlear gene therapy has undergone tremendous advances over the past decade. Beginning with some groundbreaking work in 2005 documenting hair cell regeneration using virallymediated delivery of the mouse atonal 1 gene, gene therapy is now being explored as a possible treatment for a variety of causes of hearing loss.

  12. Correction of murine rag2 severe combined immunodeficiency by lentiviral gene therapy using a codon-optimized RAG2 therapeutic transgene

    NARCIS (Netherlands)

    N.P. van Til (Niek); H. de Boer (Helen); N. Mashamba (Nomusa); A. Wabik (Agnieszka); M.W. Huston (Marshall W.); T.P. Visser (Trudi); R.J. Fontana (Robert); P.L. Poliani (Pietro); B. Cassani (Barbara); F. Zhang (Fang); A.J. Thrasher (Adrian); A. Anna (Villa); G. Wagemaker (Gerard)

    2012-01-01

    textabstractRecombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We

  13. Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells.

    Science.gov (United States)

    Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N

    2010-05-01

    The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.

  14. Placental gene therapy

    OpenAIRE

    David, A. L.; Ashcroft, R

    2009-01-01

    Gene therapy uses genetic material as a drug delivery vehicle to express therapeutic proteins. Placental gene therapy may be useful for correction of two important obstetric conditions, foetal growth restriction and pre-eclampsia in which there is a failure of the physiological trophoblast remodelling of the uterine spiral arteries in early pregnancy. The patient in this scenario is the foetus. Placental gene therapy might be justifiable when: there is reasonable certainty that the foetus wil...

  15. History of gene therapy.

    Science.gov (United States)

    Wirth, Thomas; Parker, Nigel; Ylä-Herttuala, Seppo

    2013-08-10

    Two decades after the initial gene therapy trials and more than 1700 approved clinical trials worldwide we not only have gained much new information and knowledge regarding gene therapy in general, but also learned to understand the concern that has persisted in society. Despite the setbacks gene therapy has faced, success stories have increasingly emerged. Examples for these are the positive recommendation for a gene therapy product (Glybera) by the EMA for approval in the European Union and the positive trials for the treatment of ADA deficiency, SCID-X1 and adrenoleukodystrophy. Nevertheless, our knowledge continues to grow and during the course of time more safety data has become available that helps us to develop better gene therapy approaches. Also, with the increased understanding of molecular medicine, we have been able to develop more specific and efficient gene transfer vectors which are now producing clinical results. In this review, we will take a historical view and highlight some of the milestones that had an important impact on the development of gene therapy. We will also discuss briefly the safety and ethical aspects of gene therapy and address some concerns that have been connected with gene therapy as an important therapeutic modality.

  16. Combined gene therapy of endostatin and interleukin 12 with polyvinylpyrrolidone induces a potent antitumor effect on hepatoma

    Institute of Scientific and Technical Information of China (English)

    Pei-Yuan Li; Ju-Sheng Lin; Zuo-Hua Feng; Yu-Fei He; He-Jun Zhou; Xin Ma; Xiao-Kun Cai; De-An Tian

    2004-01-01

    AIM: To study the antitumor effect of combined gene therapy of endostatin and interleukin 12 (IL-12) with polyvinylpyrrolidone (PVP) on mouse transplanted hepatoma.METHODS: Mouse endostatin eukaryotic plasmid (pSecES)with a mouse Igκ signal sequence inside and mouse IL-12 eukaryotic plasmid (pmIL-12) were transfected into BHK-21 cells respectively. Endostatin and IL-12 were assayed by ELISA from the supernant and used to culture endothelial cells and spleen lymphocytes individually. Proliferation of the latter was evaluated by MTT. H22 cells were inoculated into the leg musde of mouse, which was injected intratumorally with pSecES/PVP, pmIL-12/PVP or pSecES+pmIL-12/PVP repeatedly. Tumor weight, serum endostatin and serum IL-12 were assayed. Tumor infiltrating lymphocytes, tumor microvessel density and apoptosis of tumor cells were also displayed by HE staining, CD31 staining and TUNEL.RESULTS: Endostatin and IL-12 were secreted after transfection, which could inhibit the proliferation of endothelial cells or promote the proliferation of spleen lymphocytes.Tumor growth was highly inhibited by 91.8% after injection of pSecES+pmIL-12/PVP accompanied by higher serum endostatin and IL-12, more infiltrating lymphocytes, fewer tumor vessels and more apoptosis cells compared with injection of pSecES/PVP, pmIL-12/PVP or vector/PVP.CONCLUSION: Mouse endostatin gene and IL-12 gene can be expressed after intratumoral injection with PVP.Angiogenesis of hepatoma can be inhibited synergisticly,lymphocytes can be activated to infiltrate, and tumor cells are induced to apoptosis. Hepatoma can be highly inhibited or eradiated.

  17. p53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: One-year follow-up

    Institute of Scientific and Technical Information of China (English)

    Yong-Song Guan; Yuan Liu; Qing He; Xiao Li; Lin Yang; Ying Hu; Zi La

    2011-01-01

    the survival rates are significantly higher for p53 treatment group than for control group (P = 0.0002). CONCLUSION: The rAd-p53 gene therapy in combination with TACE is a safe and effective treatment modality for advanced HCC.

  18. Combined therapy using suicide gef gene and paclitaxel enhances growth inhibition of multicellular tumour spheroids of A-549 human lung cancer cells.

    Science.gov (United States)

    Prados, Jose; Melguizo, Consolacion; Rama, Ana; Ortiz, Raul; Boulaiz, Houria; Rodriguez-Serrano, Fernando; Caba, Octavio; Rodriguez-Herva, Jose Juan; Ramos, Juan Luis; Aranega, Antonia

    2008-07-01

    The low efficiency of conventional therapies in achieving long-term survival of lung cancer patients calls for development of novel options. The potential use of combined gene therapy is under intensive study. One approach uses the expression of genes encoding cytotoxic proteins that affect cellular viability. The gef gene from E. coli, identified as a member of a gene family encoding homologous cell-killing functions, encodes for a membrane protein with a toxic domain which leads to a decrease in the rate of tumour cell growth. To improve the antitumoral effect of the paclitaxel in lung cancer cells, we investigated a combined suicide gene therapy using this drug and gef gene in vitro, using A-549 lung cancer cells in culture and forming multicellular tumour spheroids (MTS). Our results showed that gef expression in A-549 cells led to an ultrastructural changes, including dilated mitochondria with clear matrices and disrupted cristae and cell surface alterations such as reduction in length and number of microvilli and cytoplasmic membrane evaginations. The use of paclitaxel in A-549 lung cancer cells transfected with gef gene enhanced the chemotherapeutic effect of this drug. Volume analyses showed an 87.4% decrease in the A-549 MTS growth after 96 h in comparison with control MTS. This inhibition was greater than that obtained using the gene therapy or chemotherapy alone. In conclusion, gef gene has a cytotoxic effect in lung cancer cells and enhances cell growth inhibition when used with paclitaxel. These results indicate that this combined therapy may be of potential therapeutic value in lung cancer.

  19. B Cell Function in Severe Combined Immunodeficiency after Stem Cell or Gene Therapy: A Review

    Science.gov (United States)

    Buckley, Rebecca H.

    2010-01-01

    While bone marrow transplantation has resulted in life-saving T cell reconstitution in infants with severe combined immunodeficiency (SCID), correction of B cell function has been more problematic. This review examines B cell reconstitution results presented in 19 reports from the United States and Europe on post-transplantation immune reconstitution in SCID over the past two decades. The analysis considered whether pre-transplantation conditioning regimens were used, the overall survival rate, the percentage with donor B cell chimerism, the percentage with B cell function, and the percentage of survivors requiring immunoglobulin (IG) replacement. The survival rates were higher at those Centers that did not use pre-transplant conditioning or post-transplantation graft-versus-host disease prophylaxis. The percentage of survivors with B cell chimerism and/or function was higher and the percentage requiring IG replacement was lower at those Centers that used pre-transplant conditioning. However there were substantial numbers of patients requiring IG replacement at all Centers. Thus, pre-transplant conditioning does not guarantee that B cell function will develop. Since most infants with SCID either present with serious infections or are diagnosed as newborns, one must decide whether there is justification for using agents that compromise innate immunity and have intrinsic toxicities to gain B cell immune reconstitution. PMID:20371393

  20. Ex Vivo γ-Retroviral Gene Therapy of Dogs with X-linked Severe Combined Immunodeficiency and the Development of a Thymic T Cell Lymphoma

    Science.gov (United States)

    Kennedy, Douglas R.; Hartnett, Brian J.; Kennedy, Jeffrey S.; Vernau, William; Moore, Peter F.; O’Malley, Thomas; Burkly, Linda C.; Henthorn, Paula S.; Felsburg, Peter J.

    2011-01-01

    We have previously shown that in vivo γ-retroviral gene therapy of dogs with X-linked severe combined immunodeficiency (XSCID) results in sustained T cell reconstitution and sustained marking in myeloid and B cells for up to 4 years with no evidence of any serious adverse effects. The purpose of this study was to determine whether ex vivo γ-retroviral gene therapy of XSCID dogs results in a similar outcome. Eight of 12 XSCID dogs treated with an average of dose of 5.8 × 106 transduced CD34+ cells/kg successfully engrafted producing normal numbers of gene-corrected CD45RA+ (naïve) T cells. However, this was followed by a steady decrease in CD45RA+ T cells, T cell diversity, and thymic output as measured by T cell receptor excision circles (TRECs) resulting in a T cell lymphopenia. None of the dogs survived past 11 months post treatment. At necropsy, few gene-corrected thymocytes were observed correlating with the TREC levels and one of the dogs was diagnosed with a thymic T cell lymphoma that was attributed to the gene therapy. This study highlights the outcome differences between the ex vivo and in vivo approach to γ-retroviral gene therapy and is the first to document a serious adverse event following gene therapy in a canine model of a human genetic disease. PMID:21536334

  1. Approaches for skeletal gene therapy.

    Science.gov (United States)

    Niyibizi, Christopher; Wallach, Corey J; Mi, Zhibao; Robbins, Paul D

    2002-01-01

    The role of gene therapy in the treatment of musculoskeletal disorders continues to be an active area of research. As the etiology of many musculoskeletal diseases becomes increasingly understood, advances in cellular and gene therapy maybe applied to their potential treatment This review focuses on current investigational strategies to treat osteogenesis imperfecta (OI). OI is a varied group of genetic disorders that result in the diminished integrity of connective tissues as a result of alterations in the genes that encode for either the pro alpha1 or pro alpha2 component of type I collagen. Because most forms of OI result from dominant negative mutations, isolated gene replacement therapy is not a logical treatment option. The combined use of genetic manipulation and cellular transplantation, however, may provide a means to overcome this obstacle. This article describes the recent laboratory and clinical advances in cell therapy, highlights potential techniques being investigated to suppress the expression of the mutant allele with antisense gene therapy, and attempts to deliver collagen genes to bone cells. The challenges that the investigators face in their quest for the skeletal gene therapy are also discussed.

  2. Polymorphism in interleukin-7 receptor [alpha] gene is associated with faster CD4+ T-cell recovery after initiation of combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Hartling, Hans Jakob; Thørner, Lise W; Erikstrup, Christian;

    2014-01-01

    OBJECTIVES: To investigate single-nucleotide polymorphisms (SNPs) in the gene encoding interleukin-7 receptor α (IL7RA) as predictors for CD4⁺ T-cell change after initiation of combination antiretroviral therapy (cART) in HIV-infected whites. DESIGN: SNPs in IL7RA were determined in the Danish HIV...

  3. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  4. Gene therapy: An overview

    Directory of Open Access Journals (Sweden)

    Sudip Indu

    2013-01-01

    Full Text Available Gene therapy "the use of genes as medicine" involves the transfer of a therapeutic or working copy of a gene into specific cells of an individual in order to repair a faulty gene copy. The technique may be used to replace a faulty gene, or to introduce a new gene whose function is to cure or to favorably modify the clinical course of a condition. The objective of gene therapy is to introduce new genetic material into target cells while causing no damage to the surrounding healthy cells and tissues, hence the treatment related morbidity is decreased. The delivery system includes a vector that delivers a therapeutic gene into the patient′s target cell. Functional proteins are created from the therapeutic gene causing the cell to return to a normal stage. The vectors used in gene therapy can be viral and non-viral. Gene therapy, an emerging field of biomedicine, is still at infancy and much research remains to be done before this approach to the treatment of condition will realize its full potential.

  5. Gene Therapy of Cancerous Diseases

    OpenAIRE

    Valenčáková, A.; Dziaková, A.; Hatalová, E.

    2015-01-01

    Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purp...

  6. Gene therapy for hemophilia.

    Science.gov (United States)

    Hortelano, G; Chang, P L

    2000-01-01

    Hemophilia A and B are X-linked genetic disorders caused by deficiency of the coagulation factors VIII and IX, respectively. Because of the health hazards and costs of current product replacement therapy, much effort is devoted to the development of gene therapy for these disorders. Approaches to gene therapy for the hemophilias include: ex vivo gene therapy in which cells from the intended recipients are explanted, genetically modified to secrete Factor VIII or IX, and reimplanted into the donor; in vivo gene therapy in which Factor VIII or IX encoding vectors are directly injected into the recipient; and non-autologous gene therapy in which universal cell lines engineered to secrete Factor VIII or IX are enclosed in immuno-protective devices before implantation into recipients. Research into these approaches is aided by the many murine and canine models available. While problems of achieving high and sustained levels of factor delivery, and issues related to efficacy, safety and cost are still to be resolved, progress in gene therapy for the hemophilias has been encouraging and is likely to reach human clinical trial in the foreseeable future.

  7. Gene therapy in ophthalmology.

    Science.gov (United States)

    Uthra, Satagopan; Kumaramanickavel, Govindasamy

    2009-09-01

    It has been more than a year since ophthalmologists and scientists under Dr. Robin Ali's team at the Moorsfield Eye Hospital and the Institute of Ophthalmology, University College London, successfully treated patients with a severely blinding disease, Leber's congenital amaurosis (LCA) using gene therapy. This success does not look to be transient, and this achievement in gene replacement therapy clinical trial for LCA has instilled hope in numerous families with patients suffering from this and similar retinal degenerative diseases, for whom restoration of lost vision has remained a distant dream so far. The encouragement that this success has given is expected to also lead to start of clinical trials for other blinding ocular diseases for which gene therapy experiments at the laboratory and animal levels have been successful. This article reviews the various studies that have led to the understanding of gene therapy outcomes in human ocular diseases and attempts to provide a brief sketch of successful clinical trials.

  8. Phoenix rising: gene therapy makes a comeback

    Institute of Scientific and Technical Information of China (English)

    Maria P.Limberis

    2012-01-01

    Despite the first application of gene therapy in 1990,gene therapy has until recently failed to meet the huge expectations set forth by researchers,clinicians,and patients,thus dampening enthusiasm for an imminent cure for many life-threatening genetic diseases.Nonetheless,in recent years we have witnessed a strong comeback for gene therapy,with clinical successes in young and adult subjects suffering from inherited forms of blindness or from X-linked severe combined immunodeficiency disease.In this review,various gene therapy vectors progressing into clinical development and pivotal advances in gene therapy trials will be discussed.

  9. Gene therapy for hemophilia.

    Science.gov (United States)

    Chuah, M K; Evens, H; VandenDriessche, T

    2013-06-01

    Hemophilia A and B are X-linked monogenic disorders resulting from deficiencies of factor VIII and FIX, respectively. Purified clotting factor concentrates are currently intravenously administered to treat hemophilia, but this treatment is non-curative. Therefore, gene-based therapies for hemophilia have been developed to achieve sustained high levels of clotting factor expression to correct the clinical phenotype. Over the past two decades, different types of viral and non-viral gene delivery systems have been explored for hemophilia gene therapy research with a variety of target cells, particularly hepatocytes, hematopoietic stem cells, skeletal muscle cells, and endothelial cells. Lentiviral and adeno-associated virus (AAV)-based vectors are among the most promising vectors for hemophilia gene therapy. In preclinical hemophilia A and B animal models, the bleeding phenotype was corrected with these vectors. Some of these promising preclinical results prompted clinical translation to patients suffering from a severe hemophilic phenotype. These patients receiving gene therapy with AAV vectors showed long-term expression of therapeutic FIX levels, which is a major step forwards in this field. Nevertheless, the levels were insufficient to prevent trauma or injury-induced bleeding episodes. Another challenge that remains is the possible immune destruction of gene-modified cells by effector T cells, which are directed against the AAV vector antigens. It is therefore important to continuously improve the current gene therapy approaches to ultimately establish a real cure for hemophilia. © 2013 International Society on Thrombosis and Haemostasis.

  10. Immunotherapy and gene therapy.

    Science.gov (United States)

    Simpson, Elizabeth

    2004-02-01

    The Immunotherapy and Gene Therapy meeting of the Academy of Medical Sciences reviewed the state-of-the-art and translational prospects for therapeutic interventions aimed at killing tumor cells, correcting genetic defects and developing vaccines for chronic infections. Crucial basic science concepts and information about dendritic cells, the structure and function of T-cell receptors, and manipulation of the immune response by cytokine antagonists and peptides were presented. This information underpins vaccine design and delivery, as well as attempts to immunomodulate autoimmune disease. Results from studies using anticancer DNA vaccines, which include appropriate signals for both the innate and adaptive immune response, were presented in several talks. The vaccines incorporated helper epitopes and cancer target epitopes such as immunoglobulin idiotypes (for lymphomas and myelomas), melanoma-associated antigens (for melanoma and other solid tumors) and minor histocompatibility antigens (for leukemia). The results of using vaccines employing similar principles and designed to reduce viral load in HIV/AIDS patients were also presented. The introduction of suicide genes incorporating the bacterial enzyme nitroreductase gene (ntr) targeted at tumor cells prior to administration of the prodrug CB-1954, converted by ntr into a toxic alkylating agent, was discussed against the background of clinical trials and improved suicide gene design. The introduction into hematopoietic stem cells of missing genes for the common gamma-chain, deficiency of which causes severe combined immunodeficiency (SCID), used similar retroviral transduction. The outcome of treating six SCID patients in the UK, and ten in France was successful immune reconstitution in the majority of patients, but in two of the French cases a complication of lymphoproliferative disease due to insertional mutagenesis was observed. The adoptive transfer of T-cells specific for minor histocompatibility antigens (for

  11. A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction.

    Science.gov (United States)

    Zuccato, Cristina; Breda, Laura; Salvatori, Francesca; Breveglieri, Giulia; Gardenghi, Sara; Bianchi, Nicoletta; Brognara, Eleonora; Lampronti, Ilaria; Borgatti, Monica; Rivella, Stefano; Gambari, Roberto

    2012-08-01

    Gene therapy might fall short in achieving a complete reversion of the β-thalassemic phenotype due to current limitations in vector design and myeloablative regimen. Following gene transfer, all or a large proportion of erythroid cells might express suboptimal levels of β-globin, impairing the therapeutic potential of the treatment. Our aim was to evaluate whether, in absence of complete reversion of the β-globin phenotype upon gene transfer, it is possible to use fetal hemoglobin induction to eliminate the residual α-globin aggregates and achieve normal levels of hemoglobin. Transgenic K562 cell lines and erythroid precursor cells from β(0)39-thalassemia patients were employed. Gene therapy was performed with the lentiviral vector T9W. Induction of fetal hemoglobin was obtained using mithramycin. Levels of mRNA and hemoglobins were determined by qRT-PCR and HPLC. First, we analyzed the effect of mithramycin on K562 transgenic cell lines harboring different copies of a lentiviral vector carrying the human β-globin gene, showing that γ-globin mRNA expression and HbF production can be induced in the presence of high levels of β-globin gene expression and HbA accumulation. We then treated erythroid progenitor cells from β-thalassemic patients with T9W, which expresses the human β-globin gene and mithramycin separately or in combination. When transduction with our lentiviral vector is insufficient to completely eliminate the unpaired α-globin chains, combination of β-globin gene transfer therapy together with fetal hemoglobin induction might be very efficacious to remove the excess of α-globin proteins in thalassemic erythroid progenitor cells.

  12. MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of Gene Therapy Combined with Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2012-09-01

    the observed enhancement are not well understood. It is thought mainly due to the nonthermal effects of ultrasound —mechanical streaming and cavitation ...AD ________________ Award Number: W81XWH-08-1-0469 TITLE: MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of (Enter title of award...Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER Gene Therapy Combined with Androgen Deprivation and Radiotherapy W81XWH-08-1-0469 for Prostate

  13. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.

    Science.gov (United States)

    Howe, Steven J; Mansour, Marc R; Schwarzwaelder, Kerstin; Bartholomae, Cynthia; Hubank, Michael; Kempski, Helena; Brugman, Martijn H; Pike-Overzet, Karin; Chatters, Stephen J; de Ridder, Dick; Gilmour, Kimberly C; Adams, Stuart; Thornhill, Susannah I; Parsley, Kathryn L; Staal, Frank J T; Gale, Rosemary E; Linch, David C; Bayford, Jinhua; Brown, Lucie; Quaye, Michelle; Kinnon, Christine; Ancliff, Philip; Webb, David K; Schmidt, Manfred; von Kalle, Christof; Gaspar, H Bobby; Thrasher, Adrian J

    2008-09-01

    X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.

  14. Delivery Systems in Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    Liu Hu; Anas El-Aneed; Cui Guohui

    2005-01-01

    1 Gene therapy Gene therapy includes the treatment of both genetically based and infectious diseases by introducing genetic materials which have therapeutic effects[1~3]. In its simplest terms, a wild type gene (which is non-functional in the cell leading to disease development) is introduced into the somatic cell lacking this gene to restore the normal gene function in this cell. Many gene therapy strategies, however, utilize genes to destroy specific cells.

  15. Gene therapy in ophthalmology

    Directory of Open Access Journals (Sweden)

    Satagopan Uthra

    2009-01-01

    Full Text Available It has been more than a year since ophthalmologists and scientists under Dr. Robin Ali′s team at the Moorsfield Eye Hospital and the Institute of Ophthalmology, University College London, successfully treated patients with a severely blinding disease, Leber′s congenital amaurosis (LCA using gene therapy. This success does not look to be transient, and this achievement in gene replacement therapy clinical trial for LCA has instilled hope in numerous families with patients suffering from this and similar retinal degenerative diseases, for whom restoration of lost vision has remained a distant dream so far. The encouragement that this success has given is expected to also lead to start of clinical trials for other blinding ocular diseases for which gene therapy experiments at the laboratory and animal levels have been successful. This article reviews the various studies that have led to the understanding of gene therapy outcomes in human ocular diseases and attempts to provide a brief sketch of successful clinical trials.

  16. Gene therapy for skin diseases.

    Science.gov (United States)

    Gorell, Emily; Nguyen, Ngon; Lane, Alfred; Siprashvili, Zurab

    2014-04-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene therapy widely available clinically.

  17. Gene Therapy for Bone Engineering

    Directory of Open Access Journals (Sweden)

    Elizabeth eRosado Balmayor

    2015-02-01

    Full Text Available Bone has an intrinsic healing capacity that may be exceeded when the fracture gap is too big or unstable. In that moment, osteogenic measures needs to be taken by physicians. It is important to combine cells, scaffolds and growth factors and the correct mechanical conditions. Growth factors are clinically administered as recombinant proteins. They are, however, expensive and needed in high supraphysiological doses. Moreover, their half-life is short when administered to the fracture. Therefore, gene therapy may be an alternative. Cells can constantly produce the protein of interest in the correct folding, with the physiological glycosylation and in the needed amounts. Genes can be delivered in vivo or ex vivo by viral or non-viral methods. Adenovirus is mostly used. For the non-viral methods, hydrogels and recently sonoporation seem to be promising means. This review will give an overview of recent advancements in gene therapy approaches for bone regeneration strategies.

  18. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer.

    Science.gov (United States)

    Ortiz, Raúl; Prados, José; Melguizo, Consolación; Arias, José L; Ruiz, M Adolfina; Alvarez, Pablo J; Caba, Octavio; Luque, Raquel; Segura, Ana; Aránega, Antonia

    2012-01-01

    This work aimed to develop a new therapeutic approach to increase the efficacy of 5-fluorouracil (5-FU) in the treatment of advanced or recurrent colon cancer. 5-FU-loaded biodegradable poly(ε-caprolactone) nanoparticles (PCL NPs) were combined with the cytotoxic suicide gene E (combined therapy). The SW480 human cancer cell line was used to assay the combined therapeutic strategy. This cell line was established from a primary adenocarcinoma of the colon and is characterized by an intrinsically high resistance to apoptosis that correlates with its resistance to 5-FU. 5-FU was absorbed into the matrix of the PCL NPs during synthesis using the interfacial polymer disposition method. The antitumor activity of gene E from the phage ϕX174 was tested by generating a stable clone (SW480/12/E). In addition, the localization of E protein and its activity in mitochondria were analyzed. We found that the incorporation of 5-FU into PCL NPs (which show no cytotoxicity alone), significantly improved the drug's anticancer activity, reducing the proliferation rate of colon cancer cells by up to 40-fold when compared with the nonincorporated drug alone. Furthermore, E gene expression sensitized colon cancer cells to the cytotoxic action of the 5-FU-based nanomedicine. Our findings demonstrate that despite the inherent resistance of SW480 to apoptosis, E gene activity is mediated by an apoptotic phenomenon that includes modulation of caspase-9 and caspase-3 expression and intense mitochondrial damage. Finally, a strongly synergistic antiproliferative effect was observed in colon cancer cells when E gene expression was combined with the activity of the 5-FU-loaded PCL NPs, thereby indicating the potential therapeutic value of the combined therapy.

  19. Evaluation of radiation effects against C6 glioma in combination with vaccinia virus-p53 gene therapy

    Science.gov (United States)

    Gridley, D. S.; Andres, M. L.; Li, J.; Timiryasova, T.; Chen, B.; Fodor, I.; Nelson, G. A. (Principal Investigator)

    1998-01-01

    The primary objective of this study was to evaluate the antitumor effects of recombinant vaccinia virus-p53 (rVV-p53) in combination with radiation therapy against the C6 rat glioma, a p53 deficient tumor that is relatively radioresistant. VV-LIVP, the parental virus (Lister strain), was used as a control. Localized treatment of subcutaneous C6 tumors in athymic mice with either rVV-p53 or VV-LIVP together with tumor irradiation resulted in low tumor incidence and significantly slower tumor progression compared to the agents given as single modalities. Assays of blood and spleen indicated that immune system activation may account, at least partly, for the enhance tumor inhibition seen with combined treatment. No overt signs of treatment-related toxicity were noted.

  20. Gene therapy for mucopolysaccharidosis

    Science.gov (United States)

    Ponder, Katherine P; Haskins, Mark E

    2012-01-01

    Mucopolysaccharidoses (MPS) are due to deficiencies in activities of lysosomal enzymes that degrade glycosaminoglycans. Some attempts at gene therapy for MPS in animal models have involved intravenous injection of vectors derived from an adeno-associated virus (AAV), adenovirus, retrovirus or a plasmid, which primarily results in expression in liver and secretion of the relevant enzyme into blood. Most vectors can correct disease in liver and spleen, although correction in other organs including the brain requires high enzyme activity in the blood. Alternative approaches are to transduce hematopoietic stem cells, or to inject a vector locally into difficult-to-reach sites such as the brain. Gene therapy holds great promise for providing a long-lasting therapeutic effect for MPS if safety issues can be resolved. PMID:17727324

  1. Gene Therapy for Skin Diseases

    OpenAIRE

    2014-01-01

    The skin possesses qualities that make it desirable for gene therapy, and studies have focused on gene therapy for multiple cutaneous diseases. Gene therapy uses a vector to introduce genetic material into cells to alter gene expression, negating a pathological process. This can be accomplished with a variety of viral vectors or nonviral administrations. Although results are promising, there are several potential pitfalls that must be addressed to improve the safety profile to make gene thera...

  2. Combination therapy and evaluation of therapeutic effect in hepatocellular carcinoma cell using triple reporter genes; containing for NIS, HSV1-sr39tk and GFP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You La; Lee, Yong Jin; Ahn, Sohn Joo; Ahn, Byeong Cheol; Lee, Sang Woo; Yoo, Jeong Soo; Lee, Jae Tae [Kyungpook National University, Daegu (Korea, Republic of)

    2007-07-01

    To identify therapeutic effect after combine Sodium Iodine Symporter (NIS) and Mutant Herpes-simplex virus type 1 sr39tk (HSV1-sr39tk) expression in hepatocellular carcinoma cell, we transfected triple gene and investigated the properties of these gene ability in hepatocellular carcinoma cell line. After making vector with gene encoding a fusion protein comprised of HSV1-sr39tk and green florescence protein (GFP), to make triple reporter genes NIS gene was further fused to the vector using IRES vector. The vector expressing triple reporter gene was transfected to the Huh-7 cell line using liposome. Functions of hNIS and HSV1-sr39tk expression were confirmed by radio iodine uptake with and without perchlorate and [3H]-penciclovir (3-H PCV) uptake, respectively. To evaluate therapeutic effect in vitro, GCV and I-131 was treated in Huh-7/NTG cell and dual therapy performed. An animal imaging acquired using Optix and microPET in vivo. I-125 uptake was increased up to 100-fold compare to that of non-transfected cells. The transfected cell accumulated H-3 PCV up to 53 times higher at 2 hour than that of non-transfected cells. With fluorescence microscopy, green fluorescence was detected in the transfected cell. In cytotoxic studies, the cell viability of Huh-7/NTG cell was decreased to 41 % of control cell at 10ug/ml GCV concentrations. The survival rate of the Huh-7/NTG cell treated with I-131 decreased up to 16%. In I-131 and GCV dual therapy, Huh-7/NTG cell survival rate decreased up to 4%. In animal studies, Huh-7/NTG tumors showed higher uptake of 18F-FHBG and I-124 than Huh-7 tumors. GFP signal is also higher in Huh-7/NTG tumor than control. We successfully constructed a vector with delivery two therapeutic genes and one reporter gene and transfected the vector to a Huh-7 cell. The hepatocellular carcinoma cell transfected with the vector can be treated with GCV and I-131. The effect of dual gene therapy could be easily assessed by the optical reporter gene imaging.

  3. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    Science.gov (United States)

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  4. [Antilipemic agents in combined therapy].

    Science.gov (United States)

    Márk, László; Császár, Albert

    2002-08-25

    In the prevention of coronary heart disease the aim to achieve the target cholesterol and triglyceride levels and the maximal risk reduction leads to the combination of lipid lowering agents. The importance of the combination is supported by the fact that in monotherapy use of the high dose of the drugs, the lipid lowering effect is modest and the side effects are more frequent. The combined therapy is expected to be used more frequently despite the fact, that the improperly applied combination could have serious unfavourable effects. The authors review the advantages and drawbacks of the fibrate-statin combination, which could be used in the most frequent lipid abnormality, the high cholesterol and high triglyceride level, when the combination of micronized fenofibrate and fluvastatin is recommended. Beside the co-administration of other lipid lowering drugs (nicotine acid and resins), it is discussed the combination of statins and fibrates with a new, cholesterol absorption inhibitor, ezetimibe, a well tolerated drug with advantageous safety profile. Considering further metabolic risks the combination of lipid lowering drugs with glitazones, hormone replacement therapy, homocysteine reducing agents is as well highlighted.

  5. The Effect of Gene Variants on Levonorgestrel Pharmacokinetics When Combined With Antiretroviral Therapy Containing Efavirenz or Nevirapine.

    Science.gov (United States)

    Neary, M; Lamorde, M; Olagunju, A; Darin, K M; Merry, C; Byakika-Kibwika, P; Back, D J; Siccardi, M; Owen, A; Scarsi, K K

    2017-09-01

    Reduced levonorgestrel concentrations from the levonorgestrel contraceptive implant was previously seen when given concomitantly with efavirenz. We sought to assess whether single nucleotide polymorphisms (SNPs) in genes involved in efavirenz and nevirapine metabolism were linked to these changes in levonorgestrel concentration. SNPs in CYP2B6, CYP2A6, NR1I2, and NR1I3 were analyzed. Associations of participant demographics and genotype with levonorgestrel pharmacokinetics were evaluated in HIV-positive women using the levonorgestrel implant plus efavirenz- or nevirapine-based antiretroviral therapy (ART), in comparison to ART-naïve women using multivariate linear regression. Efavirenz group: CYP2B6 516G>T was associated with lower levonorgestrel log10 Cmax and log10 AUC. CYP2B6 15582C>T was associated with lower log10 AUC. Nevirapine group: CYP2B6 516G>T was associated with higher log10 Cmax and lower log10 Cmin . Pharmacogenetic variations influenced subdermal levonorgestrel pharmacokinetics in HIV-positive women, indicating that the magnitude of the interaction with non-nucleoside reverse transcriptase inhibitors (NNRTIs) is influenced by host genetics. © 2017 American Society for Clinical Pharmacology and Therapeutics.

  6. Alphaviruses in Gene Therapy

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2009-04-01

    Full Text Available Alphaviruses are enveloped single stranded RNA viruses, which as gene therapy vectors provide high-level transient gene expression. Semliki Forest virus (SFV, Sindbis virus (SIN and Venezuelan Equine Encephalitis (VEE virus have been engineered as efficient replication-deficient and -competent expression vectors. Alphavirus vectors have frequently been used as vehicles for tumor vaccine generation. Moreover, SFV and SIN vectors have been applied for intratumoral injections in animals implanted with tumor xenografts. SIN vectors have demonstrated natural tumor targeting, which might permit systemic vector administration. Another approach for systemic delivery of SFV has been to encapsulate replication-deficient viral particles in liposomes, which can provide passive targeting to tumors and allow repeated administration without host immune responses. This approach has demonstrated safe delivery of encapsulated SFV particles to melanoma and kidney carcinoma patients in a phase I trial. Finally, the prominent neurotropism of alphaviruses make them attractive for the treatment of CNS-related diseases.

  7. Gene therapy of liver cancer

    Institute of Scientific and Technical Information of China (English)

    Ruben Hernandez-Alcoceba; Bruno Sangro; Jesus Prieto

    2006-01-01

    The application of gene transfer technologies to the treatment of cancer has led to the development of new experimental approaches like gene directed enzyme/prodrug therapy (GDEPT), inhibition of oncogenes and restoration of tumor-suppressor genes. In addition,gene therapy has a big impact on other fields like cancer immunotherapy, anti-angiogenic therapy and virotherapy.These strategies are being evaluated for the treatment of primary and metastatic liver cancer and some of them have reached clinical phases. We present a review on the basis and the actual status of gene therapy approaches applied to liver cancer.

  8. Suppression of human breast tumors in NOD/SCID mice by CD44 shRNA gene therapy combined with doxorubicin treatment

    Directory of Open Access Journals (Sweden)

    Pham PV

    2012-05-01

    significantly decreased by 4.38-fold compared with that of the control group.Conclusion: These results support a new strategy for breast cancer treatment by combining gene therapy with chemotherapy.Keywords: breast cancer, breast cancer stem cells, CD44, doxorubicin, gene therapy

  9. Gene therapy on demand: site specific regulation of gene therapy.

    Science.gov (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  10. Gene therapy in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Xu Chang-tai; Guo Xue-gang; Pan Bo-rong

    2003-01-01

    @@ 1 Introduction We have reviewed the gene therapy in gastrointestinal diseases[1]. Gastric cancer is common in China[2~20] ,and its early diagnosis andtreatment are still difficult up to now[13~36]. The expression of anexogenous gene introduced by gene therapy into patients with gliomascan be monitored non- invasively by positron- emission tomography[4]. In recent years, gene study in cancer is a hotspot, and great progress hasbeen achieved[33~41].

  11. Gene therapy for prostate cancer.

    LENUS (Irish Health Repository)

    Tangney, Mark

    2012-01-31

    Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor\\'s vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or

  12. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.

    Directory of Open Access Journals (Sweden)

    Kwon Joong Yong

    Full Text Available To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab, gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array, 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73, cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1, and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73. This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex, suggesting cross-talk between DNA damage repair and the spindle damage response.

  13. Single agent- and combination treatment with two targeted suicide gene therapy systems is effective in chemoresistant small cell lung cancer cells

    DEFF Research Database (Denmark)

    Michaelsen, Signe R; Christensen, Camilla L; Sehested, Maxwell

    2012-01-01

    Transcriptional targeted suicide gene (SG) therapy driven by the insulinoma-associated 1 (INSM1) promoter makes it possible to target suicide toxin production and cytotoxicity exclusively to small cell lung cancer (SCLC) cells and tumors. It remains to be determined whether acquired chemoresistan......, as observed in the majority of SCLC patients, desensitizes SCLC cells to INSM1 promoter-driven SG therapy....

  14. Nanoparticles for retinal gene therapy.

    Science.gov (United States)

    Conley, Shannon M; Naash, Muna I

    2010-09-01

    Ocular gene therapy is becoming a well-established field. Viral gene therapies for the treatment of Leber's congentinal amaurosis (LCA) are in clinical trials, and many other gene therapy approaches are being rapidly developed for application to diverse ophthalmic pathologies. Of late, development of non-viral gene therapies has been an area of intense focus and one technology, polymer-compacted DNA nanoparticles, is especially promising. However, development of pharmaceutically and clinically viable therapeutics depends not only on having an effective and safe vector but also on a practical treatment strategy. Inherited retinal pathologies are caused by mutations in over 220 genes, some of which contain over 200 individual disease-causing mutations, which are individually very rare. This review will focus on both the progress and future of nanoparticles and also on what will be required to make them relevant ocular pharmaceutics. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Optimazation of antibiotic therapy in patients with chronic pyelonephritis combined with pancreatic diabetes of the 2 type by evaluation of the expression of plasmid resistance genes

    Directory of Open Access Journals (Sweden)

    Ольга Игоревна Чуб

    2015-07-01

    Full Text Available The resistance caused by the transfer of resistance genes among the uropathogenes with a help of plasmids in the treatment of chronic pyelonephritis (CP combined with pancreatic diabetes (PD of the 2 type increased last years. The aim of research was an optimization of methods of differentiated prescription of antibiotic therapy (ABT for patients with CP and contaminant PD of the 2 type depending on expression of plasmid-induced genic mechanisms of antibiotic resistance.Methods. There were examined 105 patients with chronic pyelonephritis, 73 of them – against the background of PD of the 2 type. The sensitivity of isolated cultures to antibiotics was carried out by the disco-diffuse method of Bauer-Kirbi on the medium of Hinton-Muller using commercial discs. The study of plasmid-induced mechanisms of resistance was carried out by the method of polymerase chain reaction (PCR.Results. Detectability of plasmid-induced mechanisms in patients with CP and PD of the 2 type is 31,5 %. Β-lactamase of extended spectrum (βLES – were the most diffuse detected genes. The highest inhibitory activity against the strains with plasmid genes was shown by meropenem, fosfomicyn, nitroxolinum, 4th generation of cephalosporins and the 3th generation of fluoroquinolones. According to received results it was elaborated an algorithm of differentiated prescription of ABT for patients with CP and PD of the 2 type depending on expression of plasmid-induced resistance genes.Conclusions. There was studied the prevalence of plasmid-induced resistance mechanisms and elaborated the methods for increase an efficiency of empirical ABT for patients with CP and contaminant PD of the 2 type. 

  16. The human norepinephrine transporter in combination with C-11-m-hydroxyephedrine as a reporter gene/reporter probe for PET of gene therapy

    NARCIS (Netherlands)

    Buursma, A.R.; Beerens, Antoine; de Vries, E.F J; van Waarde, Aaren; Rots, Marianne; Hospers, G.A.P.; Vaalburg, W.; Haisma, H.J.

    2005-01-01

    Although the herpes simplex virus thymidine kinase gene has been frequently applied as a reporter gene for monitoring gene transfection in animals, it has some intrinsic limitations for use in humans. In our search for a reporter gene that lacks these limitations, we have evaluated the feasibility o

  17. Gene therapy for gastric diseases.

    OpenAIRE

    Fumoto, Shintaro; Nishi, Junya; Nakamura, Junzo; Nishida, Koyo

    2008-01-01

    Gene therapy for gastric cancer and gastric ulcer is a rationalized strategy since various genes correlate with these diseases. Since gene expressions in non-target tissues/cells cause side effects, a selective gene delivery system targeted to the stomach and/or cancer must be developed. The route of vector transfer (direct injection, systemic, intraperitoneal, gastric serosal surface and oral administration) is an important issue which can determine efficacy and safety. Strategies for cancer...

  18. Strategies in Gene Therapy for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Mariano S. Viapiano

    2013-10-01

    Full Text Available Glioblastoma (GBM is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  19. Strategies in Gene Therapy for Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatkowska, Aneta; Nandhu, Mohan S.; Behera, Prajna; Chiocca, E. Antonio; Viapiano, Mariano S., E-mail: mviapiano@partners.org [Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2013-10-22

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.

  20. Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFNα Combined with Chemotherapy.

    Science.gov (United States)

    Sterman, Daniel H; Alley, Evan; Stevenson, James P; Friedberg, Joseph; Metzger, Susan; Recio, Adri; Moon, Edmund K; Haas, Andrew R; Vachani, Anil; Katz, Sharyn I; Sun, Jing; Heitjan, Daniel F; Hwang, Wei-Ting; Litzky, Leslie; Yearley, Jennifer H; Tan, Kay See; Papasavvas, Emmanouil; Kennedy, Paul; Montaner, Luis J; Cengel, Keith A; Simone, Charles B; Culligan, Melissa; Langer, Corey J; Albelda, Steven M

    2016-08-01

    "In situ vaccination" using immunogene therapy has the ability to induce polyclonal antitumor responses directed by the patient's immune system. Patients with unresectable malignant pleural mesothelioma (MPM) received two intrapleural doses of a replication-defective adenoviral vector containing the human IFNα2b gene (Ad.IFN) concomitant with a 14-day course of celecoxib followed by chemotherapy. Primary outcomes were safety, toxicity, and objective response rate; secondary outcomes included progression-free and overall survival. Biocorrelates on blood and tumor were measured. Forty subjects were treated: 18 received first-line pemetrexed-based chemotherapy, 22 received second-line chemotherapy with pemetrexed (n = 7) or gemcitabine (n = 15). Treatment was generally well tolerated. The overall response rate was 25%, and the disease control rate was 88%. Median overall survival (MOS) for all patients with epithelial histology was 21 months versus 7 months for patients with nonepithelial histology. MOS in the first-line cohort was 12.5 months, whereas MOS for the second-line cohort was 21.5 months, with 32% of patients alive at 2 years. No biologic parameters were found to correlate with response, including numbers of activated blood T cells or NK cells, regulatory T cells in blood, peak levels of IFNα in blood or pleural fluid, induction of antitumor antibodies, nor an immune-gene signature in pretreatment biopsies. The combination of intrapleural Ad.IFN, celecoxib, and chemotherapy proved safe in patients with MPM. OS rate was significantly higher than historical controls in the second-line group. Results of this study support proceeding with a multicenter randomized clinical trial of chemo-immunogene therapy versus standard chemotherapy alone. Clin Cancer Res; 22(15); 3791-800. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Correction of Murine Rag2 Severe Combined Immunodeficiency by Lentiviral Gene Therapy Using a Codon-optimized RAG2 Therapeutic Transgene

    Science.gov (United States)

    van Til, Niek P; de Boer, Helen; Mashamba, Nomusa; Wabik, Agnieszka; Huston, Marshall; Visser, Trudi P; Fontana, Elena; Poliani, Pietro Luigi; Cassani, Barbara; Zhang, Fang; Thrasher, Adrian J; Villa, Anna; Wagemaker, Gerard

    2012-01-01

    Recombination activating gene 2 (RAG2) deficiency results in severe combined immunodeficiency (SCID) with complete lack of T and B lymphocytes. Initial gammaretroviral gene therapy trials for other types of SCID proved effective, but also revealed the necessity of safe vector design. We report the development of lentiviral vectors with the spleen focus forming virus (SF) promoter driving codon-optimized human RAG2 (RAG2co), which improved phenotype amelioration compared to native RAG2 in Rag2−/− mice. With the RAG2co therapeutic transgene, T-cell receptor (TCR) and immunoglobulin repertoire, T-cell mitogen responses, plasma immunoglobulin levels and T-cell dependent and independent specific antibody responses were restored. However, the thymus double positive T-cell population remained subnormal, possibly due to the SF virus derived element being sensitive to methylation/silencing in the thymus, which was prevented by replacing the SF promoter by the previously reported silencing resistant element (ubiquitous chromatin opening element (UCOE)), and also improved B-cell reconstitution to eventually near normal levels. Weak cellular promoters were effective in T-cell reconstitution, but deficient in B-cell reconstitution. We conclude that immune functions are corrected in Rag2−/− mice by genetic modification of stem cells using the UCOE driven codon-optimized RAG2, providing a valid optional vector for clinical implementation. PMID:22692499

  2. Combination therapies in iron chelation

    Directory of Open Access Journals (Sweden)

    Raffaella Origa

    2014-12-01

    Full Text Available The availability of oral iron chelators and new non-invasive methods for early detection and treatment of iron overload, have significantly improved the life expectancy and quality of life of patients with b thalassemia major. However, monotherapy is not effective in all patients for a variety of reasons. We analyzed the most relevant reports recently published on alternating or combined chelation therapies in thalassemia major with special attention to safety aspects and to their effects in terms of reduction of iron overload in different organs, improvement of complications, and survival. When adverse effects, such as gastrointestinal upset with deferasirox or infusional site reactions with deferoxamine are not tolerable and organ iron is in an acceptable range, alternating use of two chelators (drugs taken sequentially on different days, but not taken on the same day together may be a winning choice. The association deferiprone and deferoxamine should be the first choice in case of heart failure and when dangerously high levels of cardiac iron exist. Further research regarding the safety and efficacy of the most appealing combination treatment, deferiprone and deferasirox, is needed before recommendations for routine clinical practice can be made.

  3. Small RNA combination therapy for lung cancer

    Science.gov (United States)

    Xue, Wen; Dahlman, James E.; Tammela, Tuomas; Khan, Omar F.; Sood, Sabina; Dave, Apeksha; Cai, Wenxin; Chirino, Leilani M.; Yang, Gillian R.; Bronson, Roderick; Crowley, Denise G.; Sahay, Gaurav; Schroeder, Avi; Langer, Robert; Anderson, Daniel G.; Jacks, Tyler

    2014-01-01

    MicroRNAs (miRNAs) and siRNAs have enormous potential as cancer therapeutics, but their effective delivery to most solid tumors has been difficult. Here, we show that a new lung-targeting nanoparticle is capable of delivering miRNA mimics and siRNAs to lung adenocarcinoma cells in vitro and to tumors in a genetically engineered mouse model of lung cancer based on activation of oncogenic Kirsten rat sarcoma viral oncogene homolog (Kras) and loss of p53 function. Therapeutic delivery of miR-34a, a p53-regulated tumor suppressor miRNA, restored miR-34a levels in lung tumors, specifically down-regulated miR-34a target genes, and slowed tumor growth. The delivery of siRNAs targeting Kras reduced Kras gene expression and MAPK signaling, increased apoptosis, and inhibited tumor growth. The combination of miR-34a and siRNA targeting Kras improved therapeutic responses over those observed with either small RNA alone, leading to tumor regression. Furthermore, nanoparticle-mediated small RNA delivery plus conventional, cisplatin-based chemotherapy prolonged survival in this model compared with chemotherapy alone. These findings demonstrate that RNA combination therapy is possible in an autochthonous model of lung cancer and provide preclinical support for the use of small RNA therapies in patients who have cancer. PMID:25114235

  4. Journey from Jumping Genes to Gene Therapy.

    Science.gov (United States)

    Whartenby, Katharine A

    2015-01-01

    Gene therapy for cancer is a still evolving approach that resulted from a long history of studies into genetic modification of organisms. The fascination with manipulating gene products has spanned hundreds if not thousands of years, beginning with observations of the hereditary nature of traits in plants and culminating to date in the alteration of genetic makeup in humans via modern technology. From early discoveries noting the potential for natural mobility of genetic material to the culmination of clinical trials in a variety of disease, gene transfer has had an eventful and sometimes tumultuous course. Within the present review is a brief history of the biology of gene transfer, how it came to be applied to genetic diseases, and its early applications to cancer therapies. Some of the different types of methods used to modify cells, the theories behind the approaches, and some of the limitations encountered along the way are reviewed.

  5. Gene therapy in the cornea.

    Science.gov (United States)

    Mohan, Rajiv R; Sharma, Ajay; Netto, Marcelo V; Sinha, Sunilima; Wilson, Steven E

    2005-09-01

    Technological advances in the field of gene therapy has prompted more than three hundred phase I and phase II gene-based clinical trials for the treatment of cancer, AIDS, macular degeneration, cardiovascular, and other monogenic diseases. Besides treating diseases, gene transfer technology has been utilized for the development of preventive and therapeutic vaccines for malaria, tuberculosis, hepatitis A, B and C viruses, AIDS, and influenza. The potential therapeutic applications of gene transfer technology are enormous. The cornea is an excellent candidate for gene therapy because of its accessibility and immune-privileged nature. In the last two decades, various viral vectors, such as adeno, adeno-associated, retro, lenti, and herpes simplex, as well as non-viral methods, were examined for introducing DNA into corneal cells in vitro, in vivo and ex vivo. Most of these studies used fluorescent or non-fluorescent marker genes to track the level and duration of transgene expression in corneal cells. However, limited studies were directed to evaluate prospects of gene-based interventions for corneal diseases or disorders such as allograft rejection, laser-induced post-operative haze, herpes simplex keratitis, and wound healing in animal models. We will review the successes and obstacles impeding gene therapy approaches used for delivering genes into the cornea.

  6. Delivery systems for gene therapy

    Directory of Open Access Journals (Sweden)

    Shrikant Mali

    2013-01-01

    Full Text Available The structure of DNA was unraveled by Watson and Crick in 1953, and two decades later Arber, Nathans and Smith discovered DNA restriction enzymes, which led to the rapid growth in the field of recombinant DNA technology. From expressing cloned genes in bacteria to expressing foreign DNA in transgenic animals, DNA is now slated to be used as a therapeutic agent to replace defective genes in patients suffering from genetic disorders or to kill tumor cells in cancer patients. Gene therapy provides modern medicine with new perspectives that were unthinkable two decades ago. Progress in molecular biology and especially, molecular medicine is now changing the basics of clinical medicine. A variety of viral and non-viral possibilities are available for basic and clinical research. This review summarizes the delivery routes and methods for gene transfer used in gene therapy.

  7. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  8. Progress on treatment of tumor using suicide gene combined with other therapies%自杀基因联合其他疗法治疗肿瘤的研究进展

    Institute of Scientific and Technical Information of China (English)

    邹源

    2013-01-01

    Gene therapy for tumor has made remarkable achievement after years of efforts.Among many strategies of cancer gene therapy,the suicide gene therapy is developing rapidly.It is potentially a clinical application as a gene therapy for tumor.However,there are also many limitations when using suicide therapy alone,such as low transfection efficiency; weak capability in inducing immune response; lack of tissue specificity; easy to cause tumor drug resistance; dependence on tumor cell types.Therefore,suicide gene therapy in combination with other tumor therapies or with other suicide gene therapy has been the promising approaches.This review introduces these strategies and relevant research development.%肿瘤的基因治疗经多年研究已取得了许多令人瞩目的成就,其中自杀基因疗法的发展尤为迅速,是一种颇具临床应用前景的基因治疗策略.但是自杀基因治疗的单独应用仍有不少局限性,如转染效率低、诱导免疫反应能力弱、缺乏组织特异性、易引起肿瘤耐药性、对肿瘤细胞类型有依赖等.所以,研究自杀基因与其他肿瘤疗法的联合应用以及不同自杀基因之间协同作用以寻求更有效的抗肿瘤效应已逐渐成为非常有前景的治疗手段.本文就近几年自杀基因联合其他疗法治疗肿瘤的研究进展作综述.

  9. Gene therapy in ocular diseases

    Directory of Open Access Journals (Sweden)

    Singh Vijay

    2002-01-01

    Full Text Available Gene therapy is a novel form of drug delivery that enlists the synthetic machinery of the patient′s cells to produce a therapeutic agent. Genes may be delivered into cells in vitro or in vivo utilising viral or non-viral vectors. Recent technical advances have led to the demonstration of the molecular basis of various ocular diseases. Ocular disorders with the greatest potential for benefit of gene therapy include hereditary diseases such as retinitis pigmentosa, tumours such as retinoblastoma or melanoma, and acquired proliferative and neovascular retinal disorders. Gene transfer into ocular tissues has been demonstrated with growing functional success and may develop into a new therapeutic tool for clinical ophthalmology in future.

  10. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    ChengQian; JesusPrieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies, induction of anti-tumor immunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have been demonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment. Cellular & Molecular Immunology. 2004;1(2):105-111.

  11. Gene Therapy of Cancer: Induction of Anti-Tumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Cheng Qian; Jesus Prieto

    2004-01-01

    Many malignancies lack satisfactory treatment and new therapeutic options are urgently needed. Gene therapy is a new modality to treat both inherited and acquired diseases based on the transfer of genetic material to the tissues. Different gene therapy strategies against cancers have been developed. A considerable number of preclinical studies indicate that a great variety of cancers are amenable to gene therapy. Among these strategies,induction of anti-tumorimmunity is the most promising approach. Gene therapy with cytokines has reached unprecedented success in preclinical models of cancer. Synergistic rather than additive effects have beendemonstrated by combination of gene transfer of cytokines/chemokines, costimulatory molecules or adoptive cell therapy. Recent progress in vector technology and in imaging techniques allowing in vivo assessment of gene expression will facilitate the development of clinical applications of gene therapy, a procedure which may have a notorious impact in the management of cancers lacking effective treatment.

  12. [Genetic basis of head and neck cancers and gene therapy].

    Science.gov (United States)

    Özel, Halil Erdem; Özkırış, Mahmut; Gencer, Zeliha Kapusuz; Saydam, Levent

    2013-01-01

    Surgery and combinations of traditional treatments are not successful enough particularly for advanced stage head and neck cancer. The major disadvantages of chemotherapy and radiation therapy are the lack of specificity for the target tissue and toxicity to the patient. As a result, gene therapy may offer a more specific approach. The aim of gene therapy is to present therapeutic genes into cancer cells which selectively eliminate malignant cells with no systemic toxicity to the patient. This article reviews the genetic basis of head and neck cancers and important concepts in cancer gene therapy: (i) inhibition of oncogenes; (ii) tumor suppressor gene replacement; (iii) regulation of immune response against malignant cells; (iv) genetic prodrug activation; and (v) antiangiogenic gene therapy. Currently, gene therapy is not sufficient to replace the traditional treatments of head and neck cancers, however there is no doubt that it will have an important role in the near future.

  13. Progress in Chimeric Vector and Chimeric Gene Based Cardiovascular Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    HU Chun-Song; YOON Young-sup; ISNER Jeffrey M.; LOSORDO Douglas W.

    2003-01-01

    Gene therapy for cardiovascular diseases has developed from preliminary animal experiments to clinical trials. However, vectors and target genes used currently in gene therapy are mainly focused on viral, nonviral vector and single target gene or monogene. Each vector system has a series of advantages and limitations. Chimeric vectors which combine the advantages of viral and nonviral vector,chimeric target genes which combine two or more target genes and novel gene delivery modes are being developed. In this article, we summarized the progress in chimeric vectors and chimeric genes based cardiovascular gene therapy, which including proliferative or occlusive vascular diseases such as atheroslerosis and restenosis, hypertonic vascular disease such as hypertension and cardiac diseases such as myocardium ischemia, dilated cardiomyopathy and heart failure, even heart transplantation. The development of chimeric vector, chimeric gene and their cardiovascular gene therapy is promising.

  14. Combined Pharmacologic Therapy in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Shen, Yang; Gray, Dona L; Martinez, Dorothy S

    2017-03-01

    Antiresorptive agents for treating postmenopausal osteoporosis include selective estrogen receptor modulator (SERM), bisphosphonates and denoumab. Teriparatide is the only Food and Drug Administration-approved anabolic agent. Synergistic effects of combining teriparatide with an antiresorptive agent have been proposed and studied. This article reviews the trial designs and the outcomes of combination therapies. Results of the combination therapy for teriparatide and bisphosphonates were mixed; while small increases of bone density were observed in the combination therapy of teriparatide and estrogen/SERM and that of teriparatide and denosumab. Those clinical studies were limited by small sample sizes and lack of fracture outcomes.

  15. Gene therapy for inherited retinal degenerations.

    Science.gov (United States)

    Dalkara, Deniz; Sahel, José-Alain

    2014-03-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Progress over the past decade has moved proof-of-concept gene therapies from bench to bedside. The remarkable success in safety and efficacy, in the phase I/II clinical trials for the form of the severe childhood-onset blindness, Leber's Congenital Amaurosis (LCA) type II (due to mutations in the RPE65 gene) generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was due to combining the favorable features of both the retina as a target organ and adeno-associated virus (AAV) as a vector. The retina offers several advantages for gene therapy approaches. It is an anatomically defined structure that is readily accessible for therapy and has some degree of immune privilege, making it suitable for application of viral vectors. AAV, on the other hand, is a non-pathogenic helper dependent virus that has little immunogenicity. This viral vector transduces quiescent cells efficiently and thanks to its small size diffuses well in the interneural matrix, making it suitable for applications in neural tissue. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases. This article will discuss what are some of the most imminent targets for such therapies and what are the challenges that we face in moving these therapies to the clinic. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Ethics of Gene Therapy Debated.

    Science.gov (United States)

    Borman, Stu

    1991-01-01

    Presented are the highlights of a press conference featuring biomedical ethicist LeRoy Walters of Georgetown University and attorney Andrew Kimbrell of the Foundation on Economic Trends. The opposing points of view of these two speakers serve to outline the pros and cons of the gene therapy issue. (CW)

  17. Gene therapy and respiratory neuroplasticity.

    Science.gov (United States)

    Mantilla, Carlos B

    2017-01-01

    Breathing is a life-sustaining behavior that in mammals is accomplished by activation of dedicated muscles responsible for inspiratory and expiratory forces acting on the lung and chest wall. Motor control is exerted by specialized pools of motoneurons in the medulla and spinal cord innervated by projections from multiple centers primarily in the brainstem that act in concert to generate both the rhythm and pattern of ventilation. Perturbations that prevent the accomplishment of the full range of motor behaviors by respiratory muscles commonly result in significant morbidity and increased mortality. Recent developments in gene therapy and novel targeting strategies have contributed to deeper understanding of the organization of respiratory motor systems. Gene therapy has received widespread attention and substantial progress has been made in recent years with the advent of improved tools for vector design. Genes can be delivered via a variety of plasmids, synthetic or viral vectors and cell therapies. In recent years, adeno-associated viruses (AAV) have become one of the most commonly used vector systems, primarily because of the extensive characterization conducted to date and the versatility in targeting strategies. Recent studies highlight the power of using AAV to selectively and effectively transduce respiratory motoneurons and muscle fibers with promising therapeutic effects. This brief review summarizes current evidence for the use of gene therapy in respiratory disorders with a primary focus on interventions that address motor control and neuroplasticity, including regeneration, in the respiratory system.

  18. Ribozyme uses in retinal gene therapy.

    Science.gov (United States)

    Hauswirth, W W; Lewin, A S

    2000-11-01

    In this chapter we discuss the design, delivery and preclinical testing of mutation-specific ribozymes for the treatment of dominantly inherited retinal disease. We focus particular attention on the initial screening of ribozymes in vitro, because the activity of RNA enzymes in cell-free systems can be used to predict their suitability for animal experiments. Current techniques for delivering genes of interest to cells of the retina using viral vectors are then briefly surveyed emphasizing vector properties that best match to the needs of a ribozyme-based therapy. Using these considerations, analysis of ribozyme gene therapy for an autosomal dominant RP-like disease in a rodent model is outlined emphasizing the desirability of combining biochemical, morphological and electrophysiological measures of therapy. Finally, we describe alternative, perhaps more general, ribozyme approaches that have yet to be tested in the context of retinal disease.

  19. Treating Immunodeficiency through HSC Gene Therapy.

    Science.gov (United States)

    Booth, Claire; Gaspar, H Bobby; Thrasher, Adrian J

    2016-04-01

    Haematopoietic stem cell (HSC) gene therapy has been successfully employed as a therapeutic option to treat specific inherited immune deficiencies, including severe combined immune deficiencies (SCID) over the past two decades. Initial clinical trials using first-generation gamma-retroviral vectors to transfer corrective DNA demonstrated clinical benefit for patients, but were associated with leukemogenesis in a number of cases. Safer vectors have since been developed, affording comparable efficacy with an improved biosafety profile. These vectors are now in Phase I/II clinical trials for a number of immune disorders with more preclinical studies underway. Targeted gene editing allowing precise DNA correction via platforms such as ZFNs, TALENs and CRISPR/Cas9 may now offer promising strategies to improve the safety and efficacy of gene therapy in the future.

  20. Gene therapy: implications for craniofacial regeneration.

    Science.gov (United States)

    Scheller, Erica L; Villa-Diaz, Luis G; Krebsbach, Paul H

    2012-01-01

    Gene therapy in the craniofacial region provides a unique tool for delivery of DNA to coordinate protein production in both time and space. The drive to bring this technology to the clinic is derived from the fact that more than 85% of the global population may at one time require repair or replacement of a craniofacial structure. This need ranges from mild tooth decay and tooth loss to temporomandibular joint disorders and large-scale reconstructive surgery. Our ability to insert foreign DNA into a host cell has been developing since the early uses of gene therapy to alter bacterial properties for waste cleanup in the 1980s followed by successful human clinical trials in the 1990s to treat severe combined immunodeficiency. In the past 20 years, the emerging field of craniofacial tissue engineering has adopted these techniques to enhance regeneration of mineralized tissues, salivary gland, and periodontium and to reduce tumor burden of head and neck squamous cell carcinoma. Studies are currently pursuing research on both biomaterial-mediated gene delivery and more clinically efficacious, although potentially more hazardous, viral methods. Although hundreds of gene therapy clinical trials have taken place in the past 20 years, we must still work to ensure an ideal safety profile for each gene and delivery method combination. With adequate genotoxicity testing, we can expect gene therapy to augment protein delivery strategies and potentially allow for tissue-specific targeting, delivery of multiple signals, and increased spatial and temporal control with the goal of natural tissue replacement in the craniofacial complex.

  1. Approach of combined cancer gene therapy and radiation: response of promoters to ionizing radiation; Approche de therapie genique anti-cancereuse combinee a l'irradiation: etude de la reponse de promoteurs aux radiations ionisantes

    Energy Technology Data Exchange (ETDEWEB)

    Anstett, A

    2005-09-15

    Gene therapy is an emerging cancer treatment modality. We are interested in developing a radiation-inducible gene therapy system to sensitize the tumor vasculature to the effects of ionizing radiation (IR) treatment. An expression system based on irradiation-inducible promoters will drive the expression of anti-tumor genes in the tumor vasculature. Solid tumors are dependent on angio genesis, a process in which new blood vessels are formed from the pre-existing vasculature. Vascular endothelial cells are un transformed and genetically stable, thus avoiding the problem of resistance to the treatments. Vascular endothelial cells may therefore represent a suitable target for this therapeutic gene therapy strategy.The identification of IR-inducible promoters native to endothelial cells was performed by gene expression profiling using cDNA micro array technology. We describe the genes modified by clinically relevant doses of IR. The extension to high doses aimed at studying the effects of total radiation delivery to the tumor. The radio-inductiveness of the genes selected for promoter study was confirmed by RT-PCR. Analysis of the activity of promoters in response to IR was also assessed in a reporter plasmid. We found that authentic promoters cloned onto a plasmid are not suitable for cancer gene therapy due to their low induction after IR. In contrast, synthetic promoters containing repeated sequence-specific binding sites for IR-activated transcription factors such as NF-{kappa}B are potential candidates for gene therapy. The activity of five tandemly repeated TGGGGACTTTCCGC elements for NF-{kappa}B binding in a luciferase reporter was increased in a dose-dependent manner. Interestingly, the response to fractionated low doses was improved in comparison to the total single dose. Thus, we put present evidence that a synthetic promoter for NF-{kappa}B specific binding may have application in the radio-therapeutic treatment of cancer. (author)

  2. Experimental evolution of resistance to artemisinin combination therapy results in amplification of the mdr1 gene in a rodent malaria parasite.

    Directory of Open Access Journals (Sweden)

    Louise A Rodrigues

    Full Text Available BACKGROUND: Lacking suitable alternatives, the control of malaria increasingly depends upon Artemisinin Combination Treatments (ACT: resistance to these drugs would therefore be disastrous. For ACTs, the biology of resistance to the individual components has been investigated, but experimentally induced resistance to component drugs in combination has not been generated. METHODOLOGY/PRINCIPAL FINDINGS: We have used the rodent malaria parasite Plasmodium chabaudi to select in vivo resistance to the artesunate (ATN+mefloquine (MF version of ACT, through prolonged exposure of parasites to both drugs over many generations. The selection procedure was carried out over twenty-seven consecutive sub-inoculations under increasing ATN+MF doses, after which a genetically stable resistant parasite, AS-ATNMF1, was cloned. AS-ATNMF1 showed increased resistance to ATN+MF treatment and to artesunate or mefloquine administered separately. Investigation of candidate genes revealed an mdr1 duplication in the resistant parasites and increased levels of mdr1 transcripts and protein. There were no point mutations in the atpase6 or ubp1genes. CONCLUSION: Resistance to ACTs may evolve even when the two drugs within the combination are taken simultaneously and amplification of the mdr1 gene may contribute to this phenotype. However, we propose that other gene(s, as yet unidentified, are likely to be involved.

  3. Gene therapy: X-SCID transgene leukaemogenicity.

    Science.gov (United States)

    Thrasher, Adrian J; Gaspar, H Bobby; Baum, Christopher; Modlich, Ute; Schambach, Axel; Candotti, Fabio; Otsu, Makoto; Sorrentino, Brian; Scobie, Linda; Cameron, Ewan; Blyth, Karen; Neil, Jim; Abina, Salima Hacein-Bey; Cavazzana-Calvo, Marina; Fischer, Alain

    2006-09-21

    Gene therapy has been remarkably effective for the immunological reconstitution of patients with severe combined immune deficiency, but the occurrence of leukaemia in a few patients has stimulated debate about the safety of the procedure and the mechanisms of leukaemogenesis. Woods et al. forced high expression of the corrective therapeutic gene IL2RG, which encodes the gamma-chain of the interleukin-2 receptor, in a mouse model of the disease and found that tumours appeared in a proportion of cases. Here we show that transgenic IL2RG does not necessarily have potent intrinsic oncogenic properties, and argue that the interpretation of this observation with respect to human trials is overstated.

  4. Gene therapy: Myth or reality?

    Science.gov (United States)

    Fischer, Alain

    2016-01-01

    Gene therapy has become a reality, although still a fragile one. Clinical benefit has been achieved over the last 17years in a limited number of medical conditions for which pathophysiological studies determined that they were favorable settings. They include inherited disorders of the immune system, leukodystrophies, possibly hemoglobinopathies, hemophilia B, and retinal dystrophies. Advances in the treatment of B-cell leukemias and lymphomas have also been achieved. Advances in vector development and possible usage of gene editing may lead to significant advances over the next years. Copyright © 2016. Published by Elsevier SAS.

  5. Antagonism between gene therapy and epigenetic therapy on human laryngeal carcinoma tumor-bearing mice

    Institute of Scientific and Technical Information of China (English)

    LIAN Meng; WANG Qi; FANG Ju-gao; WANG Hong; FAN Er-zhong

    2013-01-01

    Background Gene therapy and epigenetic therapy have gained more attention in cancer treatment.However,the effect of a combined treatment of gene therapy and epigenetic therapy on head and neck squamous cell carcinoma have not been studied yet.To study the mechanism and clinical application,human laryngeal carcinoma cell (Hep-2) tumor-bearing mice were used.Methods A xenograft tumor model was established by the subcutaneous inoculation of Hep-2 cells in the right armpit of BALB/c nu/nu mice.The mice with well-formed tumor were randomly divided into six groups.Multisite injections of rAd-p53 and/or 5-aza-dC were used to treat tumor.Tumor growth was monitored by measuring tumor volume and growth rate.p53 and E-cadherin protein levels in tumor tissues were detected by immunohistochemical staining.The mRNA levels were monitored with FQ-PCR.Results Gene therapy was much more effective than single epigenetic therapy and combined therapy.The gene therapy group has the lowest tumor growth rate and the highest expression levels of p53 and E-cadherin.Conclusions The combined treatment of gene and epigenetic therapy is not suggested for treating head and neck carcinoma,because gene therapy shows an antagonistic effect to epigenetic therapy.However,the mechanisms of action are still unclear.

  6. Gene based therapies for kidney regeneration

    NARCIS (Netherlands)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-01-01

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molec

  7. Gene therapy for gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Zhan-Kui Liu

    2003-01-01

    Gastric cancer is common in China, and its early diagnosis and treatment are difficult. In recent years great progress has been achieved in gene therapy, and a wide array of gene therapy systems for gastric cancer has been investigated. The present article deals with the general principles of gene therapy and then focuses on how these principles may be applied to gastric cancer.

  8. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  9. Gene therapy for hemoglobinopathies: progress and challenges.

    Science.gov (United States)

    Dong, Alisa; Rivella, Stefano; Breda, Laura

    2013-04-01

    Hemoglobinopathies are genetic inherited conditions that originate from the lack or malfunction of the hemoglobin (Hb) protein. Sickle cell disease (SCD) and thalassemia are the most common forms of these conditions. The severe anemia combined with complications that arise in the most affected patients raises the necessity for a cure to restore hemoglobin function. The current routine therapies for these conditions, namely transfusion and iron chelation, have significantly improved the quality of life in patients over the years, but still fail to address the underlying cause of the diseases. A curative option, allogeneic bone marrow transplantation is available, but limited by the availability of suitable donors and graft-vs-host disease. Gene therapy offers an alternative approach to cure patients with hemoglobinopathies and aims at the direct recovery of the hemoglobin function via globin gene transfer. In the last 2 decades, gene transfer tools based on lentiviral vector development have been significantly improved and proven curative in several animal models for SCD and thalassemia. As a result, clinical trials are in progress and 1 patient has been successfully treated with this approach. However, there are still frontiers to explore that might improve this approach: the stoichiometry between the transgenic hemoglobin and endogenous hemoglobin with respect to the different globin genetic mutations; donor cell sourcing, such as the use of induced pluripotent stem cells (iPSCs); and the use of safer gene insertion methods to prevent oncogenesis. With this review we will provide insights about (1) the different lentiviral gene therapy approaches in mouse models and human cells; (2) current and planned clinical trials; (3) hurdles to overcome for clinical trials, such as myeloablation toxicity, insertional oncogenesis, and high vector expression; and (4) future perspectives for gene therapy, including safe harbors and iPSCs technology.

  10. Gene therapy for heart failure.

    Science.gov (United States)

    Greenberg, Barry

    2017-04-01

    Novel strategies are needed to treat the growing population of heart failure patients. While new drug and device based therapies have improved outcomes over the past several decades, heart failure patients continue to experience amongst the lowest quality of life of any chronic disease, high likelihood of being hospitalized and marked reduction in survival. Better understanding of many of the basic mechanisms involved in the development of heart failure has helped identify abnormalities that could potentially be targeted by gene transfer. Despite success in experimental animal models, translating gene transfer strategies from the laboratory to the clinic remains at an early stage. This review provides an introduction to gene transfer as a therapy for treating heart failure, describes some of the many factors that need to be addressed in order for it to be successful and discusses some of the recent studies that have been carried out in heart failure patients. Insights from these studies highlight both the enormous promise of gene transfer and the obstacles that still need to be overcome for this treatment approach to be successful. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gene therapy approaches for spinal cord injury

    Science.gov (United States)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide

  12. Advances of gene therapy for primary immunodeficiencies.

    Science.gov (United States)

    Candotti, Fabio

    2016-01-01

    In the recent past, the gene therapy field has witnessed a remarkable series of successes, many of which have involved primary immunodeficiency diseases, such as X-linked severe combined immunodeficiency, adenosine deaminase deficiency, chronic granulomatous disease, and Wiskott-Aldrich syndrome. While such progress has widened the choice of therapeutic options in some specific cases of primary immunodeficiency, much remains to be done to extend the geographical availability of such an advanced approach and to increase the number of diseases that can be targeted. At the same time, emerging technologies are stimulating intensive investigations that may lead to the application of precise genetic editing as the next form of gene therapy for these and other human genetic diseases.

  13. American Society of Gene Therapy - Third Annual Meeting.

    Science.gov (United States)

    Atkinson, E M

    2000-09-01

    The field of gene therapy, delivering genes to directly treat diseases, has had a remarkable year. This is no more evident than in the scope of the third annual meeting of the American Society of Gene Therapy (ASGT). Clear progress has been made in both ex vivo clinical protocols and in vivo administration. The meeting covered every major method of gene delivery, from injection of naked DNA to advanced synthetic gene delivery systems, as well as the major viral-based vectors. The optimism of the society was tempered, however, by the much-publicized death of a patient in a clinical trial at the University of Pennsylvania last year. There was a correspondingly high regulatory presence at the meeting, with several presentations by representatives of the US FDA and National Institutes of Health (NIH). Major clinical advances in gene therapy have been in genetic diseases, including hemophilia, severe combined immunodeficiency, and cystic fibrosis. Therapies are in later-stage clinical trials, and evidence of efficacy has been demonstrated, most notably by the apparent cure of SCID-affected children in Paris by ex vivo gene therapy with cytokine receptor subunit genes. Cancer gene therapy is also making significant headway, with many products entering phase II and III trials. Basic technology development is proceeding in vector targeting, enhancement of gene transfer efficiency, and regulating expression of therapeutic genes. In addition, basic research demonstrates the promise of new combined modes for treating diseases such as muscular dystrophy, lysosomal storage diseases and cardiovascular disease.

  14. Therapeutic efficacy of artemisinin combination therapies and prevalence of S769N mutation in PfATPase6 gene of Plasmodium falciparum in Kolkata, India

    Institute of Scientific and Technical Information of China (English)

    Pabitra Saha; Shrabanee Mullick; Krishnangshu Ray; Ardhendu K Maji; Arindam Naskar; Swagata Ganguly; Sonali Das; Subhasish K Guha; Asit Biswas; Dilip K Bera; Pratip K Kundu; Madhusudan Das

    2013-01-01

    Objective: To study the in vivo efficacy of these two ACTs in the treatment of Plasmodium falciparum (P. falciparum malaria) in Kolkata and to determine the prevalence of mutant S769N codon of the PfATPase6 gene among field isolates of P. falciparum collected from the study area.Methods:A total of 207 P. falciparum positive cases were enrolled randomly in two study arms and followed up for 42 days as per WHO (2009) protocol. A portion of PfATPase6 gene spanning codon S769N was amplified and sequenced by direct sequencing method. Results: It was observed that the efficacy of both the ACT regimens were highly effective in the study area and no mutant S769N was detected from any isolate. Conclusions: The used, combination AS+SP is effective and the other combination AM+LF might be an alternative, if needed.

  15. The New Self-Inactivating Lentiviral Vector for Thalassemia Gene Therapy Combining Two HPFH Activating Elements Corrects Human Thalassemic Hematopoietic Stem Cells

    Science.gov (United States)

    Papanikolaou, Eleni; Georgomanoli, Maria; Stamateris, Evangelos; Panetsos, Fottes; Karagiorga, Markisia; Tsaftaridis, Panagiotis; Graphakos, Stelios

    2012-01-01

    Abstract To address how low titer, variable expression, and gene silencing affect gene therapy vectors for hemoglobinopathies, in a previous study we successfully used the HPFH (hereditary persistence of fetal hemoglobin)-2 enhancer in a series of oncoretroviral vectors. On the basis of these data, we generated a novel insulated self-inactivating (SIN) lentiviral vector, termed GGHI, carrying the Aγ-globin gene with the −117 HPFH point mutation and the HPFH-2 enhancer and exhibiting a pancellular pattern of Aγ-globin gene expression in MEL-585 clones. To assess the eventual clinical feasibility of this vector, GGHI was tested on CD34+ hematopoietic stem cells from nonmobilized peripheral blood or bone marrow from 20 patients with β-thalassemia. Our results show that GGHI increased the production of γ-globin by 32.9% as measured by high-performance liquid chromatography (p=0.001), with a mean vector copy number per cell of 1.1 and a mean transduction efficiency of 40.3%. Transduced populations also exhibited a lower rate of apoptosis and resulted in improvement of erythropoiesis with a higher percentage of orthochromatic erythroblasts. This is the first report of a locus control region (LCR)-free SIN insulated lentiviral vector that can be used to efficiently produce the anticipated therapeutic levels of γ-globin protein in the erythroid progeny of primary human thalassemic hematopoietic stem cells in vitro. PMID:21875313

  16. Advancement and prospects of tumor gene therapy

    Institute of Scientific and Technical Information of China (English)

    Chao Zhang; Qing-Tao Wang; He Liu; Zhen-Zhu Zhang; Wen-Lin Huang

    2011-01-01

    Gene therapy is one of the most attractive fields in tumor therapy. In past decades, significant progress has been achieved. Various approaches, such as viral and non-viral vectors and physical methods, have been developed to make gene delivery safer and more efficient. Several therapeutic strategies have evolved, including gene-based (tumor suppressor genes, suicide genes, antiangiogenic genes, cytokine and oxidative stress-based genes) and RNA-based (antisense oligonucieotides and RNA interference) approaches. In addition, immune response-based strategies (dendritic cell- and T cell-based therapy) are also under investigation in tumor gene therapy. This review highlights the progress and recent developments in gene delivery systems, therapeutic strategies, and possible clinical directions for gene therapy.

  17. [Gene therapy of SCID-X1].

    Science.gov (United States)

    Baum, C; Schambach, A; Modlich, U; Thrasher, A

    2007-12-01

    X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-oncogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.

  18. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    OpenAIRE

    2014-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  19. Gene therapy for vision loss -- recent developments.

    Science.gov (United States)

    Stieger, Knut; Lorenz, Birgit

    2010-11-01

    Retinal gene therapy mediated by adeno-associated virus (AAV) based gene transfer was recently proven to improve photoreceptor function in one form of inherited retinal blinding disorder associated with mutations in the RPE65 gene. Several clinical trials are currently ongoing, and more than 30 patients have been treated to date. Even though only a very limited number of patients will greatly benefit from this still experimental treatment protocol, the technique itself has been shown to be safe and will likely be used in other retinal disorders in the near future. A canine model for achromatopsia has been treated successfully as well as mouse models for different forms of Leber congenital amaurosis (LCA). For patients with autosomal dominant retinitis pigmentosa (adRP), a combined gene knockdown and gene addition therapy is being developed using RNA interference to block mRNA of the mutant allele. For those patients suffering from RP with unknown mutations, an AAV based transfer of bacterial forms of rhodopsin in the central retina might be an option to reactivate residual cones in the future.

  20. Combined interventional therapies of hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jun Qian; Gan-Sheng Feng; Thomas Vogl

    2003-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonmalignancies in the world, responsible for an estimated one million deaths annually. It has a poor prognosis due to its rapid infiltrating growth and complicating liver cirrhosis.Surgical resection, liver transplantation and cryosurgery are considered the best curative options, achieving a high rate of complete response, especially in patients with small HCC and good residual liver function. In nonsurgery, regional interventional therapies have led to a major breakthrough in the management of unresectable HCC, which include transarterial chemoembolization (TACE), percutaneous ethanol injection (PEI), radiofrequency ablation (RFA), microwave coagulation therapy (MCT), laser-induced thermotherapy (LITT), etc. As a result of the technical development of locoregional approaches for HCC during the recent decades,the range of combined interventional therapies has been continuously extended. Most combined multimodal interventional therapies reveal their enormous advantages as compared with any single therapeutic regimen alone,and play more important roles in treating unresectable HCC.

  1. Combination Therapy for Diabetic Macular Edema

    Directory of Open Access Journals (Sweden)

    Dinah Zur

    2012-01-01

    Full Text Available Diabetic macular edema is a main reason for visual loss in diabetic patients. Until recent years, macular laser photocoagulation was the only available therapy. The awareness that inflammation is an important factor in the pathogenetic process of DME gave reason for intravitreal treatment with corticosteroids. The introduction of anti-VEGF drugs brought a revolutionary change in the treatment of DME. This paper will review the important clinical trials with an emphasis on combination therapies.

  2. Curing genetic disease with gene therapy.

    Science.gov (United States)

    Williams, David A

    2014-01-01

    Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile.

  3. Gene therapy for obesity: progress and prospects.

    Science.gov (United States)

    Gao, Mingming; Liu, Dexi

    2014-06-01

    Advances in understanding the molecular basis of obesity and obesity-associated diseases have made gene therapy a vital approach in coping with this world-wide epidemic. Gene therapy for obesity aims to increase or decrease gene product in favor of lipolysis and energy expenditure, leading toward fat reduction and loss of body weight. It involves successful delivery and expression of therapeutic genes in appropriate cells. The ultimate goal of gene therapy is to restore and maintain energy homeostasis. Here we summarize progress made in recent years in identifying genes responsible for obesity and present examples where the gene therapy approach has been applied to treating or preventing obesity. Discussion on advantages and limitations of gene therapy strategies employed is provided. The intent of this review is to inspire further studies toward the development of new strategies for successful treatment of obesity and obesity-associated diseases.

  4. Updates on current advances in gene therapy.

    Science.gov (United States)

    Tani, Jowy; Faustine; Sufian, Jomiany Tani

    2011-03-01

    Gene therapy is the attempt to treat diseases by means of genetic manipulation. Numerous challenges remain to be overcome before it becomes available as a safe and effective treatment option. Retroviruses and adenoviruses are among the most commonly used viral vectors in trials. The retrovirus introduces the gene it carries into the target cell genome while the adenovirus introduces the gene into the target cell nucleus without incorporating it into the target cell genome. Other viral vectors such as adeno-associated viruses, pseudotyped viruses and herpes simplex viruses, are also gaining popularity. Proposed non-viral methods for gene transfer include physical methods and the employment of chemical vectors (lipoplexes, polyplexes and inorganic nanoparticles). Recent studies have investigated potential applications of gene therapy in correcting genetic diseases, treating malignant disorders and for treatment of other diseases. Trials on gene therapy for SCID and Leber's congenital amaurosis have achieved considerable success, but the widely publicized adverse reaction in X-linked SCID patient receiving gene therapy raised concerns for safety profile of gene therapy. For that, several methods of improving safety and efficacy of gene therapy have been proposed. At present, the three main gene therapy strategies for treatment of cancer are application to oncolytic viruses, suicide-gene therapy and gene-based immunotherapy. Gendicine, the first approved anticancer drugs based on the use of gene therapy principle, is based on the use of oncolytic viruses. More evidence for wider clinical applications of gene therapy are expected as more gene therapy studies progress from the preclinical phase to clinical trial.

  5. Gene transfer therapy in vascular diseases.

    Science.gov (United States)

    McKay, M J; Gaballa, M A

    2001-01-01

    Somatic gene therapy of vascular diseases is a promising new field in modern medicine. Recent advancements in gene transfer technology have greatly evolved our understanding of the pathophysiologic role of candidate disease genes. With this knowledge, the expression of selective gene products provides the means to test the therapeutic use of gene therapy in a multitude of medical conditions. In addition, with the completion of genome sequencing programs, gene transfer can be used also to study the biologic function of novel genes in vivo. Novel genes are delivered to targeted tissue via several different vehicles. These vectors include adenoviruses, retroviruses, plasmids, plasmid/liposomes, and oligonucleotides. However, each one of these vectors has inherent limitations. Further investigations into developing delivery systems that not only allow for efficient, targeted gene transfer, but also are stable and nonimmunogenic, will optimize the clinical application of gene therapy in vascular diseases. This review further discusses the available mode of gene delivery and examines six major areas in vascular gene therapy, namely prevention of restenosis, thrombosis, hypertension, atherosclerosis, peripheral vascular disease in congestive heart failure, and ischemia. Although we highlight some of the recent advances in the use of gene therapy in treating vascular disease discovered primarily during the past two years, many excellent studies published during that period are not included in this review due to space limitations. The following is a selective review of practical uses of gene transfer therapy in vascular diseases. This review primarily covers work performed in the last 2 years. For earlier work, the reader may refer to several excellent review articles. For instance, Belalcazer et al. (6) reviewed general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. Gene therapy in restenosis and stimulation of

  6. Gene Therapy In Oral Cancer : An Overview

    OpenAIRE

    2010-01-01

    The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  7. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  8. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  9. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  10. Gene Therapy for Post-Traumatic Osteoarthritis

    Science.gov (United States)

    2015-10-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0498 TITLE: Gene Therapy for Post-Traumatic Osteoarthritis PRINCIPAL INVESTIGATOR: Steven C...COVERED 30Sept 2014 - 29 Sept 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Gene Therapy for Posttraumatic Osteoarthritis 5b. GRANT NUMBER...Osteoarthritis (OA) Gene Therapy Equine Adeno-Associated Virus (AAV) Interleukin-1 Receptor Antagonist (IL-1Ra) Post-traumatic OA (PTOA) Self

  11. Clinical Applications of Gene Therapy for Primary Immunodeficiencies

    OpenAIRE

    2015-01-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott–Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in mor...

  12. Gene based therapies for kidney regeneration.

    Science.gov (United States)

    Janssen, Manoe J; Arcolino, Fanny O; Schoor, Perry; Kok, Robbert Jan; Mastrobattista, Enrico

    2016-11-05

    In this review we provide an overview of the expanding molecular toolbox that is available for gene based therapies and how these therapies can be used for a large variety of kidney diseases. Gene based therapies range from restoring gene function in genetic kidney diseases to steering complex molecular pathways in chronic kidney disorders, and can provide a treatment or cure for diseases that otherwise may not be targeted. This approach involves the delivery of recombinant DNA sequences harboring therapeutic genes to improve cell function and thereby promote kidney regeneration. Depending on the therapy, the recombinant DNA will express a gene that directly plays a role in the function of the cell (gene addition), that regulates the expression of an endogenous gene (gene regulation), or that even changes the DNA sequence of endogenous genes (gene editing). Some interventions involve permanent changes in the genome whereas others are only temporary and leave no trace. Efficient and safe delivery are important steps for all gene based therapies and also depend on the mode of action of the therapeutic gene. Here we provide examples on how the different methods can be used to treat various diseases, which technologies are now emerging (such as gene repair through CRISPR/Cas9) and what the opportunities, perspectives, potential and the limitations of these therapies are for the treatment of kidney diseases.

  13. Gene therapy of primary T cell immunodeficiencies.

    Science.gov (United States)

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2013-08-10

    Gene therapy of severe combined immunodeficiencies has been proven to be effective to provide sustained correction of the T cell immunodeficiencies. This has been achieved for 2 forms of SCID, i.e SCID-X1 (γc deficiency) and adenosine deaminase deficiency. Occurrence of gene toxicity generated by integration of first generation retroviral vectors, as observed in the SCID-X1 trials has led to replace these vectors by self inactivated (SIN) retro(or lenti) viruses that may provide equivalent efficacy with a better safety profile. Results of ongoing clinical studies in SCID as well as in other primary immunodeficiencies, such as the Wiskott Aldrich syndrome, will be thus very informative.

  14. Bone Marrow Gene Therapy for HIV/AIDS.

    Science.gov (United States)

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-07-17

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described.

  15. Gene therapy for primary adaptive immune deficiencies.

    Science.gov (United States)

    Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana-Calvo, Marina

    2011-06-01

    Gene therapy has become an option for the treatment of 2 forms of severe combined immunodeficiency (SCID): X-linked SCID and adenosine deaminase deficiency. The results of clinical trials initiated more than 10 years ago testify to sustained and reproducible correction of the underlying T-cell immunodeficiency. Successful treatment is based on the selective advantage conferred on T-cell precursors through their expression of the therapeutic transgene. However, "first-generation" retroviral vectors also caused leukemia in some patients with X-linked SCID because of the constructs' tendency to insert into active genes (eg, proto-oncogenes) in progenitor cells and transactivate an oncogene through a viral element in the long terminal repeat. These elements have been deleted from the vectors now in use. Together with the use of lentiviral vectors (which are more potent for transducing stem cells), these advances should provide a basis for the safe and effective extension of gene therapy's indications in the field of primary immunodeficiencies. Nevertheless, this extension will have to be proved by examining the results of the ongoing clinical trials.

  16. Gene therapy oversight: lessons for nanobiotechnology.

    Science.gov (United States)

    Wolf, Susan M; Gupta, Rishi; Kohlhepp, Peter

    2009-01-01

    Oversight of human gene transfer research ("gene therapy") presents an important model with potential application to oversight of nanobiology research on human participants. Gene therapy oversight adds centralized federal review at the National Institutes of Health's Office of Biotechnology Activities and its Recombinant DNA Advisory Committee to standard oversight of human subjects research at the researcher's institution (by the Institutional Review Board and, for some research, the Institutional Biosafety Committee) and at the federal level by the Office for Human Research Protections. The Food and Drug Administration's Center for Biologics Evaluation and Research oversees human gene transfer research in parallel, including approval of protocols and regulation of products. This article traces the evolution of this dual oversight system; describes how the system is already addressing nanobiotechnology in gene transfer: evaluates gene therapy oversight based on public opinion, the literature, and preliminary expert elicitation; and offers lessons of the gene therapy oversight experience for oversight of nanobiotechnology.

  17. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes

    Directory of Open Access Journals (Sweden)

    Yadollah Omidi

    2012-09-01

    Full Text Available Introduction: Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub­stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. Methods: Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. Results: Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. Conclusion: Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno­medicines into clinical applications, it is essential 1 to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s; 2 to conduct necessary animal experimental studies to show the “proof of concept” for the proposed genomedicines; 3 to perform an initial clinical investigation; and 4 to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno­medicine development and clinical applications.

  18. Gene Therapy Shows Promise for Aggressive Lymphoma

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163824.html Gene Therapy Shows Promise for Aggressive Lymphoma Over one-third ... TUESDAY, Feb. 28, 2017 (HealthDay News) -- An experimental gene therapy for aggressive non-Hodgkin lymphoma beat back more ...

  19. Gene therapy prospects--intranasal delivery of therapeutic genes.

    Science.gov (United States)

    Podolska, Karolina; Stachurska, Anna; Hajdukiewicz, Karolina; Małecki, Maciej

    2012-01-01

    Gene therapy is recognized to be a novel method for the treatment of various disorders. Gene therapy strategies involve gene manipulation on broad biological processes responsible for the spreading of diseases. Cancer, monogenic diseases, vascular and infectious diseases are the main targets of gene therapy. In order to obtain valuable experimental and clinical results, sufficient gene transfer methods are required. Therapeutic genes can be administered into target tissues via gene carriers commonly defined as vectors. The retroviral, adenoviral and adeno-associated virus based vectors are most frequently used in the clinic. So far, gene preparations may be administered directly into target organs or by intravenous, intramuscular, intratumor or intranasal injections. It is common knowledge that the number of gene therapy clinical trials has rapidly increased. However, some limitations such as transfection efficiency and stable and long-term gene expression are still not resolved. Consequently, great effort is focused on the evaluation of new strategies of gene delivery. There are many expectations associated with intranasal delivery of gene preparations for the treatment of diseases. Intranasal delivery of therapeutic genes is regarded as one of the most promising forms of pulmonary gene therapy research. Gene therapy based on inhalation of gene preparations offers an alternative way for the treatment of patients suffering from such lung diseases as cystic fibrosis, alpha-1-antitrypsin defect, or cancer. Experimental and first clinical trials based on plasmid vectors or recombinant viruses have revealed that gene preparations can effectively deliver therapeutic or marker genes to the cells of the respiratory tract. The noninvasive intranasal delivery of gene preparations or conventional drugs seems to be very encouraging, although basic scientific research still has to continue.

  20. The roles of traditional Chinese medicine in gene therapy.

    Science.gov (United States)

    Ling, Chang-quan; Wang, Li-na; Wang, Yuan; Zhang, Yuan-hui; Yin, Zi-fei; Wang, Meng; Ling, Chen

    2014-03-01

    The field of gene therapy has been increasingly studied in the last four decades, and its clinical application has become a reality in the last 15 years. Traditional Chinese medicine (TCM), an important component of complementary and alternative medicine, has evolved over thousands of years with its own unique system of theories, diagnostics and therapies. TCM is well-known for its various roles in preventing and treating infectious and chronic diseases, and its usage in other modern clinical practice. However, whether TCM can be applied alongside gene therapy is a topic that has not been systematically examined. Here we provide an overview of TCM theories in relation to gene therapy. We believe that TCM theories are congruent with some principles of gene therapy. TCM-derived drugs may also act as gene therapy vehicles, therapeutic genes, synergistic therapeutic treatments, and as co-administrated drugs to reduce side effects. We also discuss in this review some possible approaches to combine TCM and gene therapy.

  1. Pneumonia in immunocompetent patients: combination antibiotic therapy.

    Science.gov (United States)

    Salva, S; Borgatta, B; Rello, J

    2014-04-01

    Pneumonia's burden is still important worldwide not only because of its high incidence and mortality, but also for the elevated costs related to it. Despite the concerted efforts to reduce the incidence of sepsis-related complications, they continue to represent a major human and economic burden. The cornerstone of sepsis management is early appropriate empiric broad spectrum antibiotics, resuscitation, and source control. The association between inappropriate use of antibiotics and increased mortality is the rationale for the use of empiric antibiotic combination therapy in critically ill patients. The aim of this manuscript was to discuss recent literature regarding the management of severe pneumonia, both community-acquired and hospital-acquired/ventilator-associated, in critically ill patients. Use of combination therapy is warranted in severe infections with shock; considerations should be made on the importance of optimal antibiotic administration and adverse reactions, thus providing guidance for a rational use of antibiotics.

  2. Reporter Gene Imaging in Therapy and Diagnosis

    Directory of Open Access Journals (Sweden)

    Pritha Ray, Abhijit De

    2012-01-01

    Full Text Available Noninvasive molecular imaging using reporter genes is a relatively recent field in biomedical imaging that holds great promises for disease diagnosis and therapy. As modern medicine is moving towards personalized medicine, targeted biomolecule based therapies is gaining popularity that requires careful and systematic validation. Reporter genes have emerged as important generalizable tools to overcome the shortcomings of direct evaluation of individual biomolecules and are being applied in various fields such as cell therapy, stem cell therapy, immune therapy, viral gene delivery through optical, radionuclide, magnetic resonance imaging techniques. New approaches to image protein-protein interaction, protein phosphorylation, protein folding that are crucial parameters for theranostic study using reporter genes are being developed. All these new technologies and relevant preclinical and clinical researches will determine the success of early detection and personalized therapy in the future.

  3. [Combination therapy of chronic bacterial prostatitis].

    Science.gov (United States)

    Khryanin, A A; Reshetnikov, O V

    2016-08-01

    The article discusses the possible etiological factors in the development of chronic bacterial prostatitis. The authors presented a comparative long-term analysis of morbidity from non-viral sexually transmitted infections (STIs) in Russia. Against the background of general decline in STIs incidence, a significant percentage of them is made up by urogenital trichomoniasis. The findings substantiated the advantages of combination therapy (ornidazole and ofloxacin) for bacterial urinary tract infections.

  4. Amodiaquine and Ciprofloxacin Combination in Plasmodiasis Therapy

    Directory of Open Access Journals (Sweden)

    Peace Mayen Edwin Ubulom

    2015-01-01

    Full Text Available Objective. The study was designed to determine the efficacy of combined Amodiaquine and Ciprofloxacin in plasmodiasis therapy. Method. The in vivo antiplasmodial effect of different dosage levels of Amodiaquine, Ciprofloxacin, and their combinations against Plasmodium berghei berghei was evaluated using Swiss albino mice. Results. Amodiaquine (a known antiplasmodial agent had a fairly significant antiplasmodial effect reducing the parasites for every 100 red blood cells (RBC from 66 to 16 (75.75% at the tolerable dosage level of 7.5 mg/kg body weight while Ciprofloxacin (an antibiotic known to have antimalarial effect showed an insignificant antiplasmodial effect reducing the parasites for every 100 RBC from 65 to 64 (1.53% at the tolerable dosage level of 10.7 mg/kg body weight. Conversely, the combination therapy of Amodiaquine and Ciprofloxacin had a significant antiplasmodial effect at all the doses administered. The combination of 7.5 mg/kg of Amodiaquine and 12.8 mg/kg of Ciprofloxacin, however, showed the most significant antiplasmodial effect of the doses used reducing the number of parasites per 100 RBC from 60 to 10 (83.33%. Conclusions. Appropriate Amodiaquine and Ciprofloxacin combination will be effective for the treatment of malaria and better than either Amodiaquine or Ciprofloxacin singly at their recommended dosage levels.

  5. Amodiaquine and Ciprofloxacin Combination in Plasmodiasis Therapy.

    Science.gov (United States)

    Ubulom, Peace Mayen Edwin; Udobi, Chinweizu Ejikeme; Madu, Mark Iheukwumere

    2015-01-01

    Objective. The study was designed to determine the efficacy of combined Amodiaquine and Ciprofloxacin in plasmodiasis therapy. Method. The in vivo antiplasmodial effect of different dosage levels of Amodiaquine, Ciprofloxacin, and their combinations against Plasmodium berghei berghei was evaluated using Swiss albino mice. Results. Amodiaquine (a known antiplasmodial agent) had a fairly significant antiplasmodial effect reducing the parasites for every 100 red blood cells (RBC) from 66 to 16 (75.75%) at the tolerable dosage level of 7.5 mg/kg body weight while Ciprofloxacin (an antibiotic known to have antimalarial effect) showed an insignificant antiplasmodial effect reducing the parasites for every 100 RBC from 65 to 64 (1.53%) at the tolerable dosage level of 10.7 mg/kg body weight. Conversely, the combination therapy of Amodiaquine and Ciprofloxacin had a significant antiplasmodial effect at all the doses administered. The combination of 7.5 mg/kg of Amodiaquine and 12.8 mg/kg of Ciprofloxacin, however, showed the most significant antiplasmodial effect of the doses used reducing the number of parasites per 100 RBC from 60 to 10 (83.33%). Conclusions. Appropriate Amodiaquine and Ciprofloxacin combination will be effective for the treatment of malaria and better than either Amodiaquine or Ciprofloxacin singly at their recommended dosage levels.

  6. Gene therapy for stroke: 2006 overview.

    Science.gov (United States)

    Chu, Yi; Miller, Jordan D; Heistad, Donald D

    2007-03-01

    Gene therapy is a promising approach for treatment of stroke and other cerebrovascular diseases, although it may take many years to realize. Gene therapy could occur prior to a stroke (eg, to stabilize atherosclerotic plaques) and/or following a stroke (eg, to prevent vasospasm after subarachnoid hemorrhage or reduce injury to neurons by ischemic insult). We have transferred the gene coding for vasoactive calcitonin gene-related peptide via cerebrospinal fluid, and demonstrated attenuation of vasospasm after SAH. Transfer of neuroprotective genes or small interfering RNA for neurotoxic genes has good potential for ischemic stroke. In this brief report, we review recent developments in experimental gene therapy for stroke. Fundamental advances, including development of safer, more specific gene transfer vectors, are discussed.

  7. Gene therapy for oral squamous cell carcinoma: an overview.

    Science.gov (United States)

    Saraswathi, T R; Kavitha, B; Vijayashree Priyadharsini, J

    2007-01-01

    A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  8. Gene therapy for oral squamous cell carcinoma: An overview

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2007-01-01

    Full Text Available A potential approach to the treatment of genetic disorders is gene therapy. The goal of gene therapy is to introduce therapeutic genetic material into the target cell to exert the intended therapeutic effect. Gene therapy has already shown promising results for the treatment of monogenic disorders such as severe combined immunodeficiency and haemophilia. Now the procedure has been extended to the level of treating malignant conditions such as cancer of the lungs, breast, colon etc. The prevalence of tumours of the larynx and oral cavity has increased in both developed and developing countries. This increase underscores the need for a novel therapeutic modality that would decrease or completely terminate the proliferation of malignant cells. This review highlights various types of gene therapy procedures with respect to oral squamous cell carcinoma.

  9. Pegvisomant and cabergoline combination therapy in acromegaly.

    Science.gov (United States)

    Bernabeu, I; Alvarez-Escolá, C; Paniagua, A E; Lucas, T; Pavón, I; Cabezas-Agrícola, J M; Casanueva, F F; Marazuela, M

    2013-03-01

    Combination with cabergoline may offer additional benefits to acromegalic patients on pegvisomant monotherapy. We evaluated the safety and efficacy profile of this combination and investigated the determinants of response. An observational, retrospective, cross-sectional study. Fourteen acromegalic patients (9 females), who were partially resistant to somatostatin analogs and on pegvisomant monotherapy. Cabergoline was added because of the presence of persistent mildly increased IGF-I. The mean follow-up time was 18.3 ± 10.4 months. The efficacy and safety profile was assessed. The influence of clinical and biochemical characteristics on treatment efficacy was studied. IGF-I levels returned to normal in 4 patients (28%) at the end of the study. In addition, some decline in IGF-I levels was observed in a further 5 patients. The % IGF-I decreased from 158 ± 64% to 124 ± 44% (p = 0.001). The average change in IGF-I was -18 ± 27% (range -67 to +24%). Lower baseline IGF-I (p = 0.007), female gender (p = 0.013), lower body weight (p = 0.031), and higher prolactin (PRL) levels (p = 0.007) were associated with a better response to combination therapy. There were no significant severe adverse events. Significant tumour shrinkage was observed in 1 patient. Combination therapy with pegvisomant and cabergoline could provide better control of IGF-I in some patients with acromegaly. Baseline IGF-I levels, female gender, body weight, and PRL levels affect the response to this combination therapy.

  10. Gene Therapy In Oral Cancer : An Overview

    Directory of Open Access Journals (Sweden)

    Kanaram Choudhary

    2010-07-01

    Full Text Available The treatment and prevention of oral cancer is one of the major hurdles in the field ofcancer. Gene therapy is one of the recent advances in this field to tackle this hurdle with promisingprospects. This overview introduces the reader into the basic idea of gene therapy, types of genetherapy and the various modes of introduction of therapeutic gene into the cancer affected cell.

  11. Adenoviral Vectors for Hemophilia Gene Therapy

    OpenAIRE

    Brunetti-Pierri, N; Ng, Philip

    2013-01-01

    Hemophilia is an inherited blood clotting disorder resulting from deficiency of blood coagulation factors. Current standard of care for hemophilia patients is frequent intravenous infusions of the missing coagulation factor. Gene therapy for hemophilia involves the introduction of a normal copy of the deficient coagulation factor gene thereby potentially offering a definitive cure for the bleeding disorder. A variety of approaches have been pursued for hemophilia gene therapy and this review ...

  12. Recent advances in fetal gene therapy.

    Science.gov (United States)

    Buckley, Suzanne M K; Rahim, Ahad A; Chan, Jerry K Y; David, Anna L; Peebles, Donald M; Coutelle, Charles; Waddingtont, Simon N

    2011-04-01

    Over the first decade of this new millennium gene therapy has demonstrated clear clinical benefits in several diseases for which conventional medicine offers no treatment. Clinical trials of gene therapy for single gene disorders have recruited predominantly young patients since older subjects may have suffered irrevocablepathological changes or may not be available because the disease is lethal relatively early in life. The concept of fetal gene therapy is an extension of this principle in that diseases in which irreversible changes occur at or beforebirth can be prevented by gene supplementation or repair in the fetus or associated maternal tissues. This article ccnsiders the enthusiasm and skepticism held for fetal gene therapy and its potential for clinical application. It coversa spectrum of candidate diseases for fetal gene therapy including Pompe disease, Gaucher disease, thalassemia, congenital protein C deficiency and cystic fibrosis. It outlines successful and not-so-successful examples of fetal gene therapy in animal models. Finally the application and potential of fetal gene transfer as a fundamental research tool for developmental biology and generation of somatic transgenic animals is surveyed.

  13. An overview of gene therapy in head and neck cancer

    OpenAIRE

    2013-01-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction...

  14. Optimal combination of antiangiogenic therapy forhepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The success of sorafenib in prolonging survival of patientswith hepatocellular carcinoma (HCC) makes therapeuticinhibition of angiogenesis a component of treatmentfor HCC. To enhance therapeutic efficacy, overcome drug resistance and reduce toxicity, combination ofantiangiogenic agents with chemotherapy,radiotherapyor other targeted agents were evaluated. Nevertheless,the use of antiangiogenic therapy remains suboptimalregarding dosage, schedule and duration of therapy.The issue is further complicated by combinationantiangiogenesis to other cytotoxic or biologic agents.There is no way to determine which patients are mostlikely respond to a given form of antiangiogenic therapy.Activation of alternative pathways associated with diseaseprogression in patients undergoing antiangiogenictherapy has also been recognized. There is increasingimportance in identifying, validating and standardizingpotential response biomarkers for antiangiogenesistherapy for HCC patients. In this review, biomarkers forantiangiogenesis therapy including systemic, circulating,tissue and imaging ones are summarized. The strengthand deficit of circulating and imaging biomarkerswere further demonstrated by a series of studies inHCC patients receiving radiotherapy with or withoutthalidomide.

  15. Combination therapy in hypertension: An update

    Directory of Open Access Journals (Sweden)

    Kalra Sanjay

    2010-06-01

    Full Text Available Abstract Meticulous control of blood pressure is required in patients with hypertension to produce the maximum reduction in clinical cardiovascular end points, especially in patients with comorbidities like diabetes mellitus where more aggressive blood pressure lowering might be beneficial. Recent clinical trials suggest that the approach of using monotherapy for the control of hypertension is not likely to be successful in most patients. Combination therapy may be theoretically favored by the fact that multiple factors contribute to hypertension, and achieving control of blood pressure with single agent acting through one particular mechanism may not be possible. Regimens can either be fixed dose combinations or drugs added sequentially one after other. Combining the drugs makes them available in a convenient dosing format, lower the dose of individual component, thus, reducing the side effects and improving compliance. Classes of antihypertensive agents which have been commonly used are angiotensin receptor blockers, thiazide diuretics, beta and alpha blockers, calcium antagonists and angiotensin-converting enzyme inhibitors. Thiazide diuretics and calcium channel blockers are effective, as well as combinations that include renin-angiotensin-aldosterone system blockers, in reducing BP. The majority of currently available fixed-dose combinations are diuretic-based. Combinations may be individualized according to the presence of comorbidities like diabetes mellitus, chronic renal failure, heart failure, thyroid disorders and for special population groups like elderly and pregnant females.

  16. The hair follicle as a target for gene therapy.

    Science.gov (United States)

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  17. Gene therapy in India: A focus

    Indian Academy of Sciences (India)

    Sarvani Chodisetty; Everette Jacob Remington Nelson

    2014-06-01

    Gene therapy refers to the treatment of genetic diseases using normal copies of the defective genes. It has the potential to cure any genetic disease with long-lasting therapeutic benefits. It remained an enigma for a long period of time, which was followed by a series of setbacks in the late 1990s. Gene therapy has re-emerged as a therapeutic option with reports of success from recent clinical studies. The United States and Europe has been pioneers in this field for over two decades. Recently, reports of gene therapy have started coming in from Asian countries like China, Japan and Korea. This review focuses on the current status of gene therapy in India.

  18. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  19. Gene therapy in peripheral nerve reconstruction approaches.

    Science.gov (United States)

    Haastert, Kirsten; Grothe, Claudia

    2007-06-01

    Gene transfer to a transected peripheral nerve or avulsed nerve root is discussed to be helpful where neurosurgical peripheral nerve reconstruction alone will not result in full recovery of function. Axonal regeneration is supposed to be facilitated by this new therapeutic approach via delivery of specific regeneration promoting molecules as well as survival proteins for the injured sensory and motor neurons. Therefore gene therapy aims in long-term and site-specific delivery of those neurotrophic factors. This paper reviews methods and perspectives for gene therapy to promote functional recovery of severely injured and thereafter reconstructed peripheral nerves. Experimental in vivo and ex vivo gene therapy approaches are reported by different groups. In vivo gene therapy generally uses direct injection of cDNA vectors to injured peripheral nerves. Ex vivo gene therapy is based on the isolation of autologous cells followed by genetic modification of these cells in vitro and re-transplantation of the modified cells to the patient as part of tissue engineered nerve transplants. Vectors of different origin are published to be suitable for peripheral nerve gene therapy and this review discusses the different strategies with regard to their efficiency in gene transfer, their risks and their potential relevance for clinical application.

  20. Nanocarriers in gene therapy: a review.

    Science.gov (United States)

    Xu, Hongpan; Li, Zhiyang; Si, Jin

    2014-12-01

    With its rapid development in the past few decades, gene therapy has shown potential for use as a standard clinical intervention for the treatment of several conditions, including cancers, infectious diseases, cardiovascular disorders, inner ear disorders, dermatological, ophthalmologic, and neurological pathologies. Current gene therapy is not limited to the delivery of DNA only. Other therapeutic nucleic acid materials such as small interfering RNA, antisense oligonucleotides, or microRNA have also been included into the protocols of gene therapy. The correct choice of vector is a key factor in the success of gene therapy, where both viral and non-viral vectors are commonly used. Viral vectors are associated with some severe side effects (e.g., immunologenicity and carcinogenicity). They show poor target cell specificity, are unable to transfer large-sized genes, and are costly. Therefore, non-viral vectors, especially nanocarriers, have become a realistic alternative to viral vectors for achieving better efficacy in gene therapy. Different types of nanocarriers such as liposomes, metallic and polymeric nanoparticles, dendrimers, gelatins, and quantum dots/rods have been developed, and each shows distinct characteristics. Nevertheless, a variety of new challenges should be properly addressed for ensuring the success of nanocarriers in clinical applications. In this review article, we first discuss the advances and applications of nanocarriers in gene therapy, and then describe the drawbacks and existing challenges of the emerging gene delivery methods based on the use of nanomaterials.

  1. Combination therapy for pain in musculoskeletal diseases

    Directory of Open Access Journals (Sweden)

    Andrei Evgenyevich Karateev

    2012-01-01

    Full Text Available When managing patients with locomotor pathology, serious attention is paid to symptomatic therapy aimed at eliminating the unpleasant manifestations of the disease. At the same time, rational analgesia is of the greatest importance. If acute pain should be arrested, parenteral or tableted formulations of fast-acting analgesics are used for days. Longer analgesic therapy especially for clinically relevant inflammation is based on the use of nonsteroidal anti-inflammatory drugs (NSAID having analgesic and anti-inflammatory effectiveness and good tolerance. The level of analgesia may be increased, by combining NSAID with tramadol and paracetamol. When clinical muscular spasm is implicated in the pathogenesis of chronic pain, it is expedient to prescribe myorelaxants that have an analgesic potential and are able to potentiate the analgesic effect of NSAID.

  2. COMBINATION THERAPY FOR PROSTATE CANCER: CLINICAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Ya. Alekseev

    2014-08-01

    Full Text Available Prostate cancer (PC is one of the urgent problems of modern urological oncology. The incidence of this pathology is steadily growing worldwide. Despite the fact that PSA diagnosis is extensively used and programs for the early detection of this disease are introduced, the rate of dia gnosis of advanced PC forms remains high. Furthermore, a number of aspects of therapy for this disease remain controversial so far. The 7 th Congress of the Russian Society of Urological Oncologists, which dealt with some issues of combination therapy for locally advanced PC, was held in Moscow in October 3 to 5, 2012. The paper covers a number of controversial issues in the management of patients with PC in different clinical situations.

  3. Combination antiretroviral therapy and cancer risk

    DEFF Research Database (Denmark)

    Borges, Álvaro H

    2017-01-01

    PURPOSE OF REVIEW: To review the newest research about the effects of combination antiretroviral therapy (cART) on cancer risk. RECENT FINDINGS: HIV+ persons are at increased risk of cancer. As this risk is higher for malignancies driven by viral and bacterial coinfections, classifying malignancies...... initiation in reducing cancer risk, understand the relationship between long-term cART exposure and cancer incidence and assess whether adjuvant anti-inflammatory therapies can reduce cancer risk during treated HIV infection....... into infection-related and infection-unrelated has been an emerging trend. Cohorts have detected major reductions in the incidence of Kaposi sarcoma and non-Hodgkin lymphoma (NHL) following cART initiation among immunosuppressed HIV+ persons. However, recent randomized data indicate that cART reduces risk...

  4. Combined therapy for diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Saba Al Rashaed

    2013-01-01

    Full Text Available Diabetic macular edema (DME is the main cause of visual impairment in diabetic patients. Macular edema within 1 disk diameter of the fovea is present in 9% of the diabetic population. The management of DME is complex and often multiple treatment approaches are needed. This review demonstrates the benefits of intravitreal triamcinolone, bevacizumab and ranibizumab as adjunctive therapy to macular laser treatment in DME. The published results indicate that intravitreal injections of these agents may have a beneficial effect on macular thickness and visual acuity, independent of the type of macular edema that is present. Therefore, pharmacotherapy could complement focal/grid laser photocoagulation in the management of DME. For this review, we performed a literature search and summarized recent findings regarding combined therapy for DME.

  5. Immuno-gene therapy in hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@Hepatocarcinoma is a disease that threatens human health. To date,the known etiology of hepatocarcinomahas not been narrowed down to just one factor. It is possible that there are their own causes in different areas.Thus, there are no absolute, but relative therapy to cure all kinds of hepatocarcinoma. Presently,there exists other treatment for the hepatocarcinoma which cannot be operated by surgery, such as cryosurgery,photodynamic therapy,immunotherapy,interventional radiotherapy and targeting therapy. With the development of molecular biology ,gene therapy offers new possibilities in the treatment of genetic diseases,tumors,AIDS and other gene defect disease.

  6. Biodegradable nanoparticles for gene therapy technology

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinkhani, Hossein, E-mail: hosseinkhani@mail.ntust.edu.tw; He, Wen-Jie [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Chiang, Chiao-Hsi [School of Pharmacy, National Defense Medical Center (China); Hong, Po-Da [National Taiwan University of Science and Technology (Taiwan Tech), Graduate Institute of Biomedical Engineering (China); Yu, Dah-Shyong [Nanomedicine Research Center, National Defense Medical Center (China); Domb, Abraham J. [The Hebrew University of Jerusalem, Institute of Drug Research, School of Pharmacy, Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis (Israel); Ou, Keng-Liang [College of Oral Medicine, Taipei Medical University, Research Center for Biomedical Devices and Prototyping Production (China)

    2013-07-15

    Rapid propagations in materials technology together with biology have initiated great hopes in the possibility of treating many diseases by gene therapy technology. Viral and non-viral gene carriers are currently applied for gene delivery. Non-viral technology is safe and effective for the delivery of genetic materials to cells and tissues. Non-viral systems are based on plasmid expression containing a gene encoding a therapeutic protein and synthetic biodegradable nanoparticles as a safe carrier of gene. Biodegradable nanoparticles have shown great interest in drug and gene delivery systems as they are easy to be synthesized and have no side effect in cells and tissues. This review provides a critical view of applications of biodegradable nanoparticles on gene therapy technology to enhance the localization of in vitro and in vivo and improve the function of administered genes.

  7. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  8. Infliximab, azathioprine, or combination therapy for Crohn's disease

    DEFF Research Database (Denmark)

    Colombel, Jean Frédéric; Sandborn, William J; Reinisch, Walter

    2010-01-01

    The comparative efficacy and safety of infliximab and azathioprine therapy alone or in combination for Crohn's disease are unknown.......The comparative efficacy and safety of infliximab and azathioprine therapy alone or in combination for Crohn's disease are unknown....

  9. Advances in gene therapy for heart failure.

    Science.gov (United States)

    Fish, Kenneth M; Ishikawa, Kiyotake

    2015-04-01

    Chronic heart failure is expected to increase its social and economic burden as a consequence of improved survival in patients with acute cardiac events. Cardiac gene therapy holds significant promise in heart failure treatment for patients with currently very limited or no treatment options. The introduction of adeno-associated virus (AAV) gene vector changed the paradigm of cardiac gene therapy, and now it is the primary vector of choice for chronic heart failure gene therapy in clinical and preclinical studies. Recently, there has been significant progress towards clinical translation in this field spearheaded by AAV-1 mediated sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) gene therapy targeting chronic advanced heart failure patients. Meanwhile, several independent laboratories are reporting successful gene therapy approaches in clinically relevant large animal models of heart failure and some of these approaches are expected to enter clinical trials in the near future. This review will focus on gene therapy approaches targeting heart failure that is in clinical trials and those close to its initial clinical trial application.

  10. Gene Therapy and Children (For Parents)

    Science.gov (United States)

    ... prone to serious infection), sickle cell anemia, thalassemia, hemophilia, and those with familial hypercholesterolemia (extremely high levels of serum cholesterol). Gene therapy does have risks and limitations. The viruses and ...

  11. Gene Therapy and Children (For Parents)

    Science.gov (United States)

    ... prone to serious infection), sickle cell anemia, thalassemia, hemophilia, and those with familial hypercholesterolemia (extremely high levels of serum cholesterol). Gene therapy does have risks and limitations. The viruses and ...

  12. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... agencies, foundations, biotechnology and pharmaceutical companies. Mission: To advance knowledge, awareness, and education leading to the discovery and clinical application of gene and cell therapies to alleviate human disease. Vision: ASGCT will serve ...

  13. Combination immunotherapy and photodynamic therapy for cancer

    Science.gov (United States)

    Hamblin, Michael R.; Castano, Ana P.; Mroz, Pawel

    2006-02-01

    Cancer is a leading cause of death among modern people largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity towards normal tissue. This is best accomplished by priming the body's immune system to recognize the tumor antigens so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species leading to vascular shutdown and tumor cell death. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, generation of tumor-specific antigens, and induction of heat-shock proteins. Combination regimens using PDT and immunostimulating treatments are likely to even further enhance post-PDT immunity. These immunostimulants are likely to include products derived from pathogenic microorganisms that are effectively recognized by Toll-like receptors and lead to upregulation of transcription factors for cytokines and inflammatory mediators. The following cascade of events causes activation of macrophages, dendritic and natural killer cells. Exogenous cytokine administration can be another way to increase PDT-induced immunity as well as treatment with a low dose of cyclophosphamide that selectively reduces T-regulatory cells. Although so far these combination therapies have only been used in animal models, their use in clinical trials should receive careful consideration.

  14. The Association of Substitutions in the Hepatitis C Virus Subtype 1b Core Gene and IL28B Polymorphisms With the Response to Peg-IFNα-2a/RBV Combination Therapy in Azerbaijani Patients

    Directory of Open Access Journals (Sweden)

    Bokharaei-Salim

    2016-04-01

    Full Text Available Background The hepatitis C virus (HCV infection has been identified as a leading cause of progressive liver diseases worldwide. Despite new treatment strategies, pegylated interferon alfa-2a (Peg-IFNα-2a, in combination with ribavirin (RBV, still represents the gold standard of therapy for hepatitis C in developing countries. Objectives The aim of this study was to investigate the association of substitutions in the HCV subtype 1b (HCV-1b core protein and the rs12979860 polymorphism in the interleukin 28B gene (IL28B with the response to Peg-IFNα-2a/RBV combination therapy in Azerbaijani patients. Patients and Methods A total of fifty-one chronically HCV-1b-infected Azerbaijani patients were enrolled in this cross-sectional study from March 2010 to June 2015. After RNA extraction from pre-treatment plasma, the core region of the HCV genome was amplified using the nested reverse transcription (RT polymerase chain reaction (PCR method, followed by standard sequencing. In addition, genomic DNA was extracted from peripheral blood mononuclear cell (PBMC specimens, and the rs12979860 single nucleotide polymorphism (SNP was identified using a PCR-restriction fragment length polymorphism (PCR-RFLP assay. Results In this study, a significant association was observed between the non-responders and relapsers to antiviral therapy and substitutions in the HCV-1b core region at positions 43 (R43K, P = 0.047, 70 (R70Q, P < 0.001, 91 (M91L, P = 0.037, and 106 (S106N, P = 0.018. Concerning the IL28B polymorphism, the results showed that sustained virological response was significantly associated with homozygous CC patients (P = 0.009 as compared with other genotypes, while homozygous TT subjects were associated with HCV relapse after therapy (P = 0.006. Conclusions The data of the present study suggest that amino acid substitutions at position 43, 70, 91, and 106 in the HCV-1b core protein are correlated with the response to the Peg-IFNα-2a/RBV treatment in

  15. Gene Therapy: Potential, Pros, Cons and Ethics

    Directory of Open Access Journals (Sweden)

    Ananth Nanjunda Rao

    2002-07-01

    Full Text Available Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  16. Strategies in Gene Therapy for Glioblastoma

    OpenAIRE

    2013-01-01

    Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strate...

  17. Gene therapy for primary immunodeficiencies: Part 1.

    Science.gov (United States)

    Cavazzana-Calvo, Marina; Fischer, Alain; Hacein-Bey-Abina, Salima; Aiuti, Alessandro

    2012-10-01

    Over 60 patients affected by SCID due to IL2RG deficiency (SCID-X1) or adenosine deaminase (ADA)-SCID have received hematopoietic stem cell gene therapy in the past 15 years using gammaretroviral vectors, resulting in immune reconstitution and clinical benefit in the majority of them. However, the occurrence of insertional oncogenesis in the SCID-X1 trials has led to the development of new clinical trials based on integrating vectors with improved safety design as well as investigation on new technologies for highly efficient gene targeting and site-specific gene editing. Here we will present the experience and perspectives of gene therapy for SCID-X1 and ADA-SCID and discuss the pros and cons of gene therapy in comparison to allogeneic transplantation.

  18. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  19. Current gene therapy for stomach carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chang-Tai Xu; Lian-Tian Huang; Bo-Rong Pan

    2001-01-01

    astric cancer is common in China [1-42],and its early diagnosis and treatment in advanced stage are difficult [31-50].In recent years ,gene study in cancer is a hotspot ,and great progress has been achieved [41-80] .Cancer gene therapy has shifted from the imagination into the laboratory and clinical trials.

  20. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  1. Clinical applications of gene therapy for primary immunodeficiencies.

    Science.gov (United States)

    Cicalese, Maria Pia; Aiuti, Alessandro

    2015-04-01

    Primary immunodeficiencies (PIDs) have represented a paradigmatic model for successes and pitfalls of hematopoietic stem cells gene therapy. First clinical trials performed with gamma retroviral vectors (γ-RV) for adenosine deaminase severe combined immunodeficiency (ADA-SCID), X-linked SCID (SCID-X1), and Wiskott-Aldrich syndrome (WAS) showed that gene therapy is a valid therapeutic option in patients lacking an HLA-identical donor. No insertional mutagenesis events have been observed in more than 40 ADA-SCID patients treated so far in the context of different clinical trials worldwide, suggesting a favorable risk-benefit ratio for this disease. On the other hand, the occurrence of insertional oncogenesis in SCID-X1, WAS, and chronic granulomatous disease (CGD) RV clinical trials prompted the development of safer vector construct based on self-inactivating (SIN) retroviral or lentiviral vectors (LVs). Here we present the recent results of LV-mediated gene therapy for WAS showing stable multilineage engraftment leading to hematological and immunological improvement, and discuss the differences with respect to the WAS RV trial. We also describe recent clinical results of SCID-X1 gene therapy with SIN γ-RV and the perspectives of targeted genome editing techniques, following early preclinical studies showing promising results in terms of specificity of gene correction. Finally, we provide an overview of the gene therapy approaches for other PIDs and discuss its prospects in relation to the evolving arena of allogeneic transplant.

  2. Gene therapy for rheumatoid arthritis: recent advances.

    Science.gov (United States)

    Woods, James M; Sitabkhan, Yasmin; Koch, Alisa E

    2008-02-01

    The treatment of rheumatoid arthritis (RA) in the last decade has made enormous advances with the use of biological therapies. However, these therapies have serious limitations such as the expense, side-effects, and the requirement for repeated injections, each of which can potentially be obviated by gene therapy. A gene therapy approach for the treatment of RA has the potential to stably deliver a gene product or multiple products in a target-specific, disease-inducible manner. There are many studies investigating gene therapy in RA, the majority of which have been designed to test proof-of-principle in an animal model. With an abundance of animal studies that have established much promise, the field is now at the early stage of moving towards human trials, where patient benefit needs to overshadow associated risks, especially since RA is publicly perceived as a non-life-threatening disease. Here, we provide an overview that focuses on advances in the application of gene therapy to RA over the last five years, including: novel targets and approaches; the viral and non-viral applications most likely to succeed in the clinic; advances in our understanding of the contralateral effect; the latest successes with anti-inflammatory cytokines; and a review of advancements towards clinical trials.

  3. Prospects for retinal gene replacement therapy.

    Science.gov (United States)

    Smith, Alexander J; Bainbridge, James W; Ali, Robin R

    2009-04-01

    Inherited retinal degeneration, which includes conditions such as retinitis pigmentosa and Leber congenital amaurosis (LCA), affects approximately 1/3000 of the population in the Western world. It is characterized by loss of vision and results from mutations in any one of >100 different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Preliminary results from three clinical trials indicate that the treatment of a form of LCA by gene therapy can be safe and effective. Here, we discuss the potential for treating other forms of retinal degeneration by gene therapy, focusing on the gene defects that are likely to be the most amenable to treatment.

  4. Alphavirus vectors for cancer gene therapy (review).

    Science.gov (United States)

    Yamanaka, Ryuya

    2004-04-01

    Alphaviruses have several characteristics that make them attractive as gene therapy vectors such as transient and high-level expression of a heterologous gene. Alphavirus vectors, Semliki Forest virus (SFV), Sindbis virus (SIN) and Venezuelan equine encephalitis virus (VEE) have been developed as gene expression vectors. Alphaviruses are positive-strand RNA viruses that can mediate efficient cytoplasmic gene expression in mammalian cells. The alphavirus RNA replication machinery has been engineered for high level heterologous gene expression. Since an RNA virus vector cannot integrate into chromosomal DNA, concerns about cell transformation are reduced. Alphavirus vectors demonstrate promise for the safe tumor-killing and tumor-specific immune responses. Recombinant alphavirus RNA replicons may facilitate gene therapy of cancer.

  5. An overview of gene therapy in head and neck cancer.

    Science.gov (United States)

    Bali, Amit; Bali, Deepika; Sharma, Ashutosh

    2013-07-01

    Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA) and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  6. Leber's Congenital Amaurosis and Gene Therapy.

    Science.gov (United States)

    Takkar, Brijesh; Bansal, Pooja; Venkatesh, Pradeep

    2017-07-07

    Retinal blindness is an important cause of pediatric visual loss. Leber's congenital amaurosis (LCA) is one of these causes, often wrongly included in the spectrum of retinitis pigmentosa. The disease has become the center of research after initial reports of success in management with gene therapy. This review discusses in brief the clinical presentation and investigative modalities used in LCA. Further, the road to gene discovery and details of currently applied gene therapy are presented. LCA is one of the first successfully managed human diseases and offers an entirely new dimension in ocular therapeutics.

  7. Gene therapy to treat cardiac arrhythmias.

    Science.gov (United States)

    Bongianino, Rossana; Priori, Silvia G

    2015-09-01

    Gene therapy to treat electrical dysfunction of the heart is an appealing strategy because of the limited therapeutic options available to manage the most-severe cardiac arrhythmias, such as ventricular tachycardia, ventricular fibrillation, and asystole. However, cardiac genetic manipulation is challenging, given the complex mechanisms underlying arrhythmias. Nevertheless, the growing understanding of the molecular basis of these diseases, and the development of sophisticated vectors and delivery strategies, are providing researchers with adequate means to target specific genes and pathways involved in disorders of heart rhythm. Data from preclinical studies have demonstrated that gene therapy can be successfully used to modify the arrhythmogenic substrate and prevent life-threatening arrhythmias. Therefore, gene therapy might plausibly become a treatment option for patients with difficult-to-manage acquired arrhythmias and for those with inherited arrhythmias. In this Review, we summarize the preclinical studies into gene therapy for acquired and inherited arrhythmias of the atria or ventricles. We also provide an overview of the technical advances in the design of constructs and viral vectors to increase the efficiency and safety of gene therapy and to improve selective delivery to target organs.

  8. Combination antiretroviral therapy and cancer risk.

    Science.gov (United States)

    Borges, Álvaro H

    2017-01-01

    To review the newest research about the effects of combination antiretroviral therapy (cART) on cancer risk. HIV+ persons are at increased risk of cancer. As this risk is higher for malignancies driven by viral and bacterial coinfections, classifying malignancies into infection-related and infection-unrelated has been an emerging trend. Cohorts have detected major reductions in the incidence of Kaposi sarcoma and non-Hodgkin lymphoma (NHL) following cART initiation among immunosuppressed HIV+ persons. However, recent randomized data indicate that cART reduces risk of Kaposi sarcoma and NHL also during early HIV infection before overt immunosuppression occurs. Long-term effects of cART exposure on cancer risk are not well defined; according to basic and epidemiological research, there might be specific associations of each cART class with distinct patterns of cancer risk. The relationship between cART exposure and cancer risk is complex and nuanced. It is an intriguing fact that, whether initiated during severe immunosuppression or not, cART reduces risk of Kaposi sarcoma and NHL. Further research should identify mediators of the benefit of immediate cART initiation in reducing cancer risk, understand the relationship between long-term cART exposure and cancer incidence and assess whether adjuvant anti-inflammatory therapies can reduce cancer risk during treated HIV infection.

  9. An overview on gene therapy programs.

    Science.gov (United States)

    Romano, Gaetano

    2008-01-01

    The 11th Annual Meeting of the American Society of Gene Therapy focused on clinical trials for the treatment of various pathological conditions, preclinical studies, use of gene transfer technology for genetic immunization purposes and problems related to the improvement of vector design. In this respect, a major emphasis was placed on safety issues, such as insertional mutagenesis and host immune responses to gene delivery systems.

  10. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies.

    Science.gov (United States)

    Ledley, F D; McNamee, L M; Uzdil, V; Morgan, I W

    2014-02-01

    This report examines the commercialization of gene therapy in the context of innovation theories that posit a relationship between the maturation of a technology through its life cycle and prospects for successful product development. We show that the field of gene therapy has matured steadily since the 1980s, with the congruent accumulation of >35 000 papers, >16 000 US patents, >1800 clinical trials and >$4.3 billion in capital investment in gene therapy companies. Gene therapy technologies comprise a series of dissimilar approaches for gene delivery, each of which has introduced a distinct product architecture. Using bibliometric methods, we quantify the maturation of each technology through a characteristic life cycle S-curve, from a Nascent stage, through a Growing stage of exponential advance, toward an Established stage and projected limit. Capital investment in gene therapy is shown to have occurred predominantly in Nascent stage technologies and to be negatively correlated with maturity. Gene therapy technologies are now achieving the level of maturity that innovation research and biotechnology experience suggest may be requisite for efficient product development. Asynchrony between the maturation of gene therapy technologies and capital investment in development-focused business models may have stalled the commercialization of gene therapy.

  11. Gene therapy outpaces haplo for SCID-X1.

    Science.gov (United States)

    Kohn, Donald B

    2015-06-04

    In this issue of Blood, Touzot et al report that autologous gene therapy/hematopoietic stem cell transplantation (HSCT) for infants with X-linked severe combined immune deficiency (SCID-X1) lacking a matched sibling donor may have better outcomes than haploidentical (haplo) HSCT. Because gene therapy represents an autologous transplant, it obviates immune suppression before and after transplant, eliminates risks of graft versus host disease (GVHD), and, as the authors report, led to faster immunological reconstitution after transplant than did haplo transplant.

  12. Non-viral gene therapy for bone tissue engineering.

    Science.gov (United States)

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  13. Employment of Salmonella in Cancer Gene Therapy.

    Science.gov (United States)

    Lee, Che-Hsin

    2016-01-01

    One of the primary limitations of cancer gene therapy is lack of selectivity of the therapeutic gene to tumor cells. Current efforts are focused on discovering and developing tumor-targeting vectors that selectively target only cancer cells but spare normal cells to improve the therapeutic index. The use of preferentially tumor-targeting bacteria as vectors is one of the innovative approaches for the treatment of cancer. This is based on the observation that some obligate or facultative-anaerobic bacteria are capable of multiplying selectively in tumors and inhibiting their growth. In this study, we exploited attenuated Salmonella as a tumoricidal agent and a vector to deliver genes for tumor-targeted gene therapy. Attenuated Salmonella, carrying a eukaryotic expression plasmid encoding an anti-angiogenic gene, was used to evaluate its' ability for tumor targeting and gene delivery in murine tumor models. We also investigated the use of a polymer to modify or shield Salmonella from the pre-existing immune response in the host in order to improve gene delivery to the tumor. These results suggest that tumor-targeted gene therapy using Salmonella carrying a therapeutic gene, which exerts tumoricidal and anti-angiogenic activities, represents a promising strategy for the treatment of tumors.

  14. Experimental Study on Combined Therapy of Double Suicide Gene and Genistein in Prostate Carcinoma%CD-TK双自杀基因联合染料木黄酮治疗前列腺癌的实验研究

    Institute of Scientific and Technical Information of China (English)

    杜跃军; 朱文辉; 梁中锟; 姜耀东; 郑少斌; 谭万龙

    2011-01-01

    目的:研究CD-TK双自杀基因联合染料木黄酮对鼠前列腺癌的体内治疗作用.方法:取鼠前列腺癌细胞RM-1接种于鼠(G57BL/6背郎皮下建立移植瘤模型.将荷瘤鼠随机分为对照组、木黄酮组、TK/CD治疗组及TK/CD+染料小黄酮联合治疗组进行相应处理.实验结束后比较各组肿瘤体积.全部肿瘤标本行常规病理检验及bcl-2免疫组化检测.结果:对照组肿瘤体积为(1 008.73±126.73)mm3.染料木黄酮组肿瘤体积为(359.06±53.17)mm3,双自杀基因组肿瘤体积为(222.60±26.79)mm3,两者联合时肿瘤体积为(25.31±9.24)mm3.双自杀基因组鼠肿瘤体积比染料木黄酮组小(P<0.01),两者联合时肿瘤体积最小(P=0.00).病理切片中显示埘照组几乎未见细胞坏死,而联合用药组肿瘤大片坏死;免疫组化检测肿瘤标本中bcl-2含量显示对照组显强阳性,而联合治疗组仅见微弱阳性.结论:联用染料木黄酮能明显增强CD-TK双自杀基因系统对前列腺癌的治疗作用.%Objective: To investigate the effects of combined therapy of CD-TK double suicide gene and genistein in mouse prostate carcinoma in vivo. Methods: RM-1 cells,a mouse prostate carcinoma cell line,were implanted into the subcutaneous tissue of the back of C57BL/6 mice to establish an animal model of PCa. Then all the mouse with tumors were divided into 4 groups as control group,TK/CD group,genistein group and combined therapy group and treated accordingly. In the end, the tumors volume were measured to evaluate therapeutic effects, routine pathological investigation and immunohistochemical staining of bcl-2 were taken in all the samples.Results: The mean tumor volume was ( 1 008.73 ± 126. 73) mm3 in control group, (359.06 ± 53.17) mm3 in genistein group, (222.60 ± 26.79) mm3 in TK/CD group but only (25.31 ± 9.24) mm3 in combined therapy group. Inhibition of tumor growth and extensive necrosis were observed most significantly in combined therapy group. The

  15. Nonviral gene therapy approaches to hemophilia.

    Science.gov (United States)

    Gómez-Vargas, Andrew; Hortelano, Gonzalo

    2004-04-01

    The goal of hemophilia gene therapy is to obtain long-term therapeutic levels of factor VIII (FVIII) or factor IX (FIX) without stimulating an immune response against the transgene product or the vector. The success of gene therapy is largely dependent on the development of appropriate gene delivery vectors. Both viral vectors and nonviral vectors have been considered for the development of hemophilia gene therapy. In general, viral vectors are far more efficient than nonviral gene delivery approaches and resulted in long-term therapeutic levels of FVIII or FIX in preclinical animal models. However, there are several reasons why a nonviral treatment would still be desirable, particularly because some viral vectors are associated with inflammatory reactions, that render transgene expression transient, or with an increased risk of insertional oncogenesis when random integrating vectors are used. Nonviral vectors may obviate some of these concerns. Since nonviral vectors are typically assembled in cell-free systems from well-defined components, they have significant manufacturing advantages over viral vectors. The continued development of improved nonviral gene delivery approaches offers new perspectives for gene therapy of chronic diseases including hemophilia.

  16. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  17. Current status of haemophilia gene therapy.

    Science.gov (United States)

    High, K H; Nathwani, A; Spencer, T; Lillicrap, D

    2014-05-01

    After many reports of successful gene therapy studies in small and large animal models of haemophilia, we have, at last, seen the first signs of success in human patients. These very encouraging results have been achieved with the use of adeno-associated viral (AAV) vectors in patients with severe haemophilia B. Following on from these initial promising studies, there are now three ongoing trials of AAV-mediated gene transfer in haemophilia B all aiming to express the factor IX gene from the liver. Nevertheless, as discussed in the first section of this article, there are still a number of significant hurdles to overcome if haemophilia B gene therapy is to become more widely available. The second section of this article deals with the challenges relating to factor VIII gene transfer. While the recent results in haemophilia B are extremely encouraging, there is, as yet, no similar data for factor VIII gene therapy. It is widely accepted that this therapeutic target will be significantly more problematic for a variety of reasons including accommodating the larger factor VIII cDNA, achieving adequate levels of transgene expression and preventing the far more frequent complication of antifactor VIII immunity. In the final section of the article, the alternative approach of lentiviral vector-mediated gene transfer is discussed. While AAV-mediated approaches to transgene delivery have led the way in clinical haemophilia gene therapy, there are still a number of potential advantages of using an alternative delivery vehicle including the fact that ex vivo host cell transduction will avoid the likelihood of immune responses to the vector. Overall, these are exciting times for haemophilia gene therapy with the likelihood of further clinical successes in the near future. © 2014 John Wiley & Sons Ltd.

  18. Vectors for gene therapy of skin diseases.

    Science.gov (United States)

    Pfützner, Wolfgang

    2010-08-01

    The success of gene therapy mainly depends on the gene vector (GV) responsible for the efficient transport of genetic information. The qualities of a GV have a profound influence on the method of application, the efficiency of gene transfer in the target tissue, the amount and persistence of gene expression and the potential side effects and safety risks. Clinical gene therapy studies over the past 20 years have contributed to the development and testing of different GV systems, some of which also show great potential for the treatment of skin diseases. In this review the structures, methods of application, characteristics, clinical uses and possibilities for optimization of these GV will be discussed with regard to their cutaneous applications.

  19. Microneedles as a Delivery System for Gene Therapy

    Directory of Open Access Journals (Sweden)

    Wei eChen

    2016-05-01

    Full Text Available Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs, which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy.

  20. Combination therapy in A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Menghui [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China); Wang Jing [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)], E-mail: wangjing_fmmu@yahoo.com.cn; Deng Jinglan; Wang Zhe; Yang Weidong; Li Guoquan; Ren Bingxiu [Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an 710038 (China)

    2010-04-15

    Background and aim: We investigated the anti-tumor effect induced by the combination of the radiotherapeutic agent {sup 131}I-RC-160 and the prodrug 5-FC in human non-small cell lung cancer (NSCLC) A549 cells that were co-expressing the human somatostatin receptor 2 gene (hSSTR2) and E. coli cytosine deaminase gene (CD). Methods: We cloned both hSSTR2 and CD into a bicistronic mammalian expression plasmid and stably transfected it into A549 cells (pCIS-A549 cells). After antibiotic selection, SSTR expression in stable clones was determined by reverse transcription and polymerase chain reaction (RT-PCR), Western blot, flow cytometry and immunofluorescence analyses. To assess the in vivo targeting efficiency of the 'engineered' A549 cells, the cells were subcutaneously injected into nude mice and the biodistribution of {sup 99m}Tc-RC-160 was assessed at different time points. The tumor inhibitory effects of {sup 131}I-RC-160 and/or 5-FC were evaluated by measurement of tumor growth and immunohistochemical analysis. Results: Multiple analyses demonstrated the successful expression of hSSTR2 in A549 cells. In vivo radioimaging revealed specific targeting of RC-160 to the tumors derived from pCIS-A549 cells when compared to those from control A549 cells. The tumor inhibitory rate of pCIS-A549 tumors in the {sup 131}I-RC-160 plus 5-FC-treated group was significantly higher than that in the single agent-treated group, control group and control tumors. Conclusion: Co-expression of the hSSTR2 and CD genes in tumor cells can selectively sensitize these cells to the infra-additive effects of radioisotope-labeled RC-160 and 5-FC in vivo. This approach offers a potential therapeutic strategy for the treatment of lung cancer.

  1. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  2. Recent advances in gene therapy for thalassemia

    Directory of Open Access Journals (Sweden)

    J V Raja

    2012-01-01

    Full Text Available Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  3. Recent advances in gene therapy for thalassemia.

    Science.gov (United States)

    Raja, J V; Rachchh, M A; Gokani, R H

    2012-07-01

    Thalassemias are genetically transmitted disorders. Depending upon whether the genetic defects or deletion lies in transmission of α or β globin chain gene, thalassemias are classified into α and β-thalassemias. Thus, thalassemias could be cured by introducing or correcting a gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer have proved unsuccessful due to limitations of available gene transfer vectors. The present review described the newer approaches to overcome these limitations, includes the introduction of lentiviral vectors. New approaches have also focused on targeting the specific mutation in the globin genes, correcting the DNA sequence or manipulating the development in DNA translocation and splicing to restore globin chain synthesis. This review mainly discusses the gene therapy strategies for the thalassemias, including the use of lentiviral vectors, generation of induced pluripotent stem (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  4. Translational approach for gene therapy in epilepsy

    DEFF Research Database (Denmark)

    Ledri, Litsa Nikitidou; Melin, Esbjörn; Christiansen, Søren H.

    2016-01-01

    Although novel treatment strategies based on the gene therapy approach for epilepsy has been encouraging, there is still a gap in demonstrating a proof-of-concept in a clinically relevant animal model and study design. In the present study, a conceptually novel framework reflecting a plausible...... clinical trial for gene therapy of temporal lobe epilepsy was explored: We investigated (i) whether the post intrahippocampal kainate-induced status epilepticus (SE) model of chronic epilepsy in rats could be clinically relevant; and (ii) whether a translationally designed neuropeptide Y (NPY)/Y2 receptor......-based gene therapy approach targeting only the seizure-generating focus unilaterally can decrease seizure frequency in this chronic model of epilepsy.Our data suggest that the intrahippocampal kainate model resembles the disease development of human chronic mesial temporal lobe epilepsy (mTLE): (i...

  5. Gene Therapy and its applications in Dentistry

    Directory of Open Access Journals (Sweden)

    Sharma Lakhanpal Manisha

    2006-01-01

    Full Text Available This era of advanced technology is marked by progress in identifying and understanding the molecular and cellular cause of a disease. With the conventional methods of treatment failing to render satisfactory results, gene therapy is not only being used for the cure of inherited diseases but also the acquired ones. The broad spectrum of gene therapy includes its application in the treatment of oral cancer and precancerous conditions and lesions, treatment of salivary gland diseases, bone repair, autoimmune diseases, DNA vaccination, etc. The aim of this article is to throw light on the history, methodology, applications and future of gene therapy as it would change the nature and face of dentistry in the coming years.

  6. Advances in imaging gene-directed enzyme prodrug therapy.

    Science.gov (United States)

    Bhaumik, Srabani

    2011-04-01

    Gene-directed enzyme prodrug therapy (GDEPT) is one of the promising alternatives to conventional chemotherapy. Suicide gene therapy based anticancer strategy involves selective introduction of a foreign gene into tumor cells to produce a foreign enzyme that can activate an inert prodrug to its cytotoxic form and cause tumor cell death. In this review, we present three most promising suicide gene/prodrug combinations (1) herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV), (2) cytosine deaminase (CD) from bacteria or yeast with 5-fluorocytodine (5-FC) and (3) bacterial nitroreductase (NTR) with 5-(azaridin-1-yl)-2,4-dinitrobenzamide (CB1954) and discuss how molecular imaging may improve therapy strategies. Current advances in noninvasive imaging technologies can measure vector dose, tumor selectivity, transgene expression and biodistribution of therapeutic gene with the aid of reporter genes and imageable probes from live animal. In this review we will discuss various imaging modalities - Optical, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), and highlight some of the approaches that can advance prodrug cancer therapy from bench to clinic.

  7. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    -blind placebo-controlled trials could not confirm the initial high efficacy of either the growth factor protein or the gene therapy approaches observed in earlier small trials. The clinical studies so far have all been without any gene-related serious adverse events. Future trials will focus on whether...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...

  8. [Gene therapy in the Czech Republic].

    Science.gov (United States)

    Vonka, V

    2003-01-01

    Gene therapy represents one of the most promising applications of molecular biology and genetic engineering in medicine. At present its introduction meets series of problems which are of technical, methodological and ethical nature. Although the research in the field of gene therapy in the Czech Republic is on a good level, there is little hope that its achievements will be tested in clinical trials in the near future. In the Czech Republic a law enabling the use of preparations based on the newest biotechnologies in human medicine is missing. Similarly, a production unit capable of preparing the new gene-based drugs according to the Good Manufactory Praxis is not available and the State Institute for Control of Drugs has not any working group fully qualified for their control. The paper proposes actions aimed at solving the present unfavourable situation. The fact that the interest of clinicians in gene therapy is rapidly growing, and that there are signs of increasing interest of public in its achievements, gives good prospects for the introduction of gene therapy into medical praxis in this country in the not very distant future.

  9. Gene Therapy for Fracture Repair

    Science.gov (United States)

    2007-05-01

    case, the external catheter hub is visible (D), though the internal tubing cannot be visualized by X-Ray. 11 MLV-based vector with BMP-2/4...catheter) injection. Top: A fluoroscope was used to visualize a radio- opaque contrast dye during a percutaneous injection from the lateral aspect...analysis was performed using ImaGene software (BioDiscovery, El Segundo, CA), that used an internal statistical analysis of the signal intensity of

  10. Gene Therapy for Childhood Neurofibromatosis

    Science.gov (United States)

    2014-05-01

    of cells heterozygous for the neurofibromin ( NF1 ) gene. Cells with two functional alleles of NF1 did not support tumor growth. The treatment...objective was therefore to increase the level of expression from the one active copy of NF1 to complement the haploinsufficiency in the cells of the tumor... NF1 ), artificial transcription factor, TALE DNA-binding protein, bacterial delivery vector 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  11. The Use of Viral Vectors in Gene Transfer Therapy

    OpenAIRE

    Dziaková, A.; Valenčáková, A.; Hatalová, E.; J. Kalinová

    2016-01-01

    Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including canc...

  12. Newer Gene Editing Technologies toward HIV Gene Therapy

    OpenAIRE

    2013-01-01

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realist...

  13. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  14. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  15. Chinese Consensus on Combination Therapy of Chronic Hepatitis B

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In May 2011,editorial boards of Chinese Journal of Experimental and Clinical Infectious Diseases (Electronic Edition),Chinese Journal of Liver Diseases (Electronic Edition) and Infection International (Electronic Edition) organized an expert committee to form an expert consensus on antiviral combination therapy of chronic hepatitis B (CHB).The consensus publication promoted and standardized the combination therapy concept of chronic hepatitis B.Clinical evidence of combination therapy for CHB is incomplete.The concept of combination therapy is gradually extended,from combination of antiviral drugs plus antiviral drugs,to antiviral drugs plus hepatoprotective drugs,and antiviral drugs plus immunomodulatory drugs.Therefore,editorial boards once again asked experts to analyze the new clinical evidence,and form the expert consensus on combination therapy of chronic hepatitis B.The formulation of this consensus is according to the principles of evidence-based medicine.Large number of clinical studies of combination therapy is still in progress.This consensus can not fully answer all the problems encountered in the combination therapy of CHB.With the progress of clinical practice of antiviral therapy,and the accumulation of evidence in combination therapy,the expert committee will update the consensus timely.

  16. [Developments in gene delivery vectors for ocular gene therapy].

    Science.gov (United States)

    Khabou, Hanen; Dalkara, Deniz

    2015-05-01

    Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Its remarkable success in safety and efficacy, in clinical trials for Leber's congenital amaurosis (LCA) type II generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was mainly due to the favorable characteristics of the retina as a target organ. The eye offers several advantages as it is readily accessible and has some degree of immune privilege making it suitable for application of viral vectors. The viral vectors most frequently used for retinal gene delivery are lentivirus, adenovirus and adeno-associated virus (AAV). Here we will discuss the use of these viral vectors in retinal gene delivery with a strong focus on favorable properties of AAV. Thanks to its small size, AAV diffuses well in the inter-neural matrix making it suitable for applications in neural retina. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases using AAV as a vector. This article will discuss what are some of the most imminent cellular targets for such therapies and the AAV toolkit that has been built to target these cells successfully. We will also discuss some of the challenges that we face in translating AAV-based gene therapies to the clinic. © 2015 médecine/sciences – Inserm.

  17. Skin gene therapy for acquired and inherited disorders.

    Science.gov (United States)

    Carretero, M; Escámez, M J; Prada, F; Mirones, I; García, M; Holguín, A; Duarte, B; Podhajcer, O; Jorcano, J L; Larcher, F; Del Río, M

    2006-11-01

    The rapid advances associated with the Human Genome Project combined with the development of proteomics technology set the bases to face the challenge of human gene therapy. Different strategies must be evaluated based on the genetic defect to be corrected. Therefore, the re-expression of the normal counterpart should be sufficient to reverse phenotype in single-gene inherited disorders. A growing number of candidate diseases are being evaluated since the ADA deficiency was selected for the first approved human gene therapy trial (Blaese et al., 1995). To cite some of them: sickle cell anemia, hemophilia, inherited immune deficiencies, hyper-cholesterolemia and cystic fibrosis. The approach does not seem to be so straightforward when a polygenic disorder is going to be treated. Many human traits like diabetes, hypertension, inflammatory diseases and cancer, appear to be due to the combined action of several genes and environment. For instance, several wizard gene therapy strategies have recently been proposed for cancer treatment, including the stimulation of the immune system of the patient (Xue et al., 2005), the targeting of particular signalling pathways to selectively kill cancer cells (Westphal and Melchner, 2002) and the modulation of the interactions with the stroma and the vasculature (Liotta, 2001; Liotta and Kohn, 2001).

  18. Clinical adenoviral gene therapy for prostate cancer.

    Science.gov (United States)

    Schenk, Ellen; Essand, Magnus; Bangma, Chris H; Barber, Chris; Behr, Jean-Paul; Briggs, Simon; Carlisle, Robert; Cheng, Wing-Shing; Danielsson, Angelika; Dautzenberg, Iris J C; Dzojic, Helena; Erbacher, Patrick; Fisher, Kerry; Frazier, April; Georgopoulos, Lindsay J; Hoeben, Rob; Kochanek, Stefan; Koppers-Lalic, Daniela; Kraaij, Robert; Kreppel, Florian; Lindholm, Leif; Magnusson, Maria; Maitland, Norman; Neuberg, Patrick; Nilsson, Berith; Ogris, Manfred; Remy, Jean-Serge; Scaife, Michelle; Schooten, Erik; Seymour, Len; Totterman, Thomas; Uil, Taco G; Ulbrich, Karel; Veldhoven-Zweistra, Joke L M; de Vrij, Jeroen; van Weerden, Wytske; Wagner, Ernst; Willemsen, Ralph

    2010-07-01

    Prostate cancer is at present the most common malignancy in men in the Western world. When localized to the prostate, this disease can be treated by curative therapy such as surgery and radiotherapy. However, a substantial number of patients experience a recurrence, resulting in spreading of tumor cells to other parts of the body. In this advanced stage of the disease only palliative treatment is available. Therefore, there is a clear clinical need for new treatment modalities that can, on the one hand, enhance the cure rate of primary therapy for localized prostate cancer and, on the other hand, improve the treatment of metastasized disease. Gene therapy is now being explored in the clinic as a treatment option for the various stages of prostate cancer. Current clinical experiences are based predominantly on trials with adenoviral vectors. As the first of a trilogy of reviews on the state of the art and future prospects of gene therapy in prostate cancer, this review focuses on the clinical experiences and progress of adenovirus-mediated gene therapy for this disease.

  19. Therapeutic Cancer Vaccines in Combination with Conventional Therapy

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Junker, N.; Ellebaek, E.

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...

  20. Therapeutic cancer vaccines in combination with conventional therapy

    DEFF Research Database (Denmark)

    Junker, Niels; Ellebaek, Eva; Svane, Inge Marie

    2010-01-01

    The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination...

  1. Switching on the lights for gene therapy.

    Directory of Open Access Journals (Sweden)

    Alexandra Winkeler

    Full Text Available Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy. To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1 amplicon vectors carrying hormone (mifepristone or antibiotic (tetracycline regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET or bioluminescence (BLI in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.

  2. Gene therapy in glaucoma-3: Therapeutic approaches.

    Science.gov (United States)

    Mahdy, Mohamed Abdel-Monem Soliman

    2010-09-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible.Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucoma and their underlying causes are potentially susceptible to modulation by gene transfer. As genetic defects responsible for glaucoma are identified and the biochemical mechanisms underlying the disease are recognized, new methods of therapy can be developed. Genetic tests are indicated for treatment, diagnosis, prognosis, counseling, and research purposes; however, there is significant overlap among them. One of the important genetic tests for glaucoma is OcuGene. Therefore, it is of utmost importance for the glaucoma specialists to be familiar with and understand the basic molecular mechanisms, genes responsible for glaucoma, and the ways of genetic treatment.Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. METHOD OF LITERATURE SEARCH: The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  3. The gene therapy revolution in ophthalmology

    Science.gov (United States)

    Al-Saikhan, Fahad I.

    2013-01-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber’s Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red–green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable. PMID:24227970

  4. The gene therapy revolution in ophthalmology.

    Science.gov (United States)

    Al-Saikhan, Fahad I

    2013-04-01

    The advances in gene therapy hold significant promise for the treatment of ophthalmic conditions. Several studies using animal models have been published. Animal models on retinitis pigmentosa, Leber's Congenital Amaurosis (LCA), and Stargardt disease have involved the use of adeno-associated virus (AAV) to deliver functional genes into mice and canines. Mice models have been used to show that a mutation in cGMP phosphodiesterase that results in retinitis pigmentosa can be corrected using rAAV vectors. Additionally, rAAV vectors have been successfully used to deliver ribozyme into mice with a subsequent improvement in autosomal dominant retinitis pigmentosa. By using dog models, researchers have made progress in studying X-linked retinitis pigmentosa which results from a RPGR gene mutation. Mouse and canine models have also been used in the study of LCA. The widely studied form of LCA is LCA2, resulting from a mutation in the gene RPE65. Mice and canines that were injected with normal copies of RPE65 gene showed signs such as improved retinal pigment epithelium transduction, visual acuity, and functional recovery. Studies on Stargardt disease have shown that mutations in the ABCA4 gene can be corrected with AAV vectors, or nanoparticles. Gene therapy for the treatment of red-green color blindness was successful in squirrel monkeys. Plans are at an advanced stage to begin clinical trials. Researchers have also proved that CD59 can be used with AMD. Gene therapy is also able to treat primary open angle glaucoma (POAG) in animal models, and studies show it is economically viable.

  5. [Recent advances in gene therapy of uveitis].

    Science.gov (United States)

    Tao, Xue-ying; Yang, Pei-zeng; Lei, Bo

    2013-03-01

    Uveitis is a group of common eye disease and is one of the major causes of blindness worldwide. Corticosteroids and immunosuppressive agents are commonly used for the treatment of uveitis. However, long-term application of these drugs frequently lead to numerous side effects. Recently, with the development of gene transfer techniques, viral vector mediated gene therapy has achieved remarkable success in experimental uveitis. Inhibition of ocular inflammation in animal models is obtained mainly by two ways: first, increase of the expression of different immune modulators including IL-10, IL-1Ra, IL-4 and IFN-alpha, or IL-27p28; secondly, induction of immune tolerance by transferring uveitis related antigens via viral vectors. Uveitis is characterized by long-lasting and recurrent, the unique properties of local administration, long-term effectiveness and minor side effects of gene therapy may provide a novel strategy for the treatment of the devastating uveitis.

  6. Gene therapy for ischemic heart disease.

    Science.gov (United States)

    Malosky, S; Kolansky, D M

    1996-07-01

    Gene therapy techniques are being developed as potential treatments for dyslipidemias, coronary restenosis, and vein graft disease. Retroviral and now adenoviral gene delivery techniques are being studied. A human protocol for the treatment of familial hypercholesterolemia has recently been completed using ex vivo hepatic low-density lipoprotein receptor gene transfer via a retroviral vector. Work in most other areas is currently in the animal model stage. Significant progress has been made in the area of coronary restenosis, particularly in identifying target genes to reduce neointima formation, such as herpesvirus thymidine kinase and the retinoblastoma gene. Work also continues in developing strategies to decrease neointima formation in vein grafts used in coronary bypass surgery and in improving methods of myocardial protection during surgery.

  7. Recent progress in gene therapy for hemophilia.

    Science.gov (United States)

    Chuah, Marinee K; Nair, Nisha; VandenDriessche, Thierry

    2012-06-01

    Hemophilia A and B are X-linked monogenic disorders caused by deficiencies in coagulation factor VIII (FVIII) and factor IX (FIX), respectively. Current treatment for hemophilia involves intravenous infusion of clotting factor concentrates. However, this does not constitute a cure, and the development of gene-based therapies for hemophilia to achieve prolonged high level expression of clotting factors to correct the bleeding diathesis are warranted. Different types of viral and nonviral gene delivery systems and a wide range of different target cells, including hepatocytes, skeletal muscle cells, hematopoietic stem cells (HSCs), and endothelial cells, have been explored for hemophilia gene therapy. Adeno-associated virus (AAV)-based and lentiviral vectors are among the most promising vectors for hemophilia gene therapy. Stable correction of the bleeding phenotypes in hemophilia A and B was achieved in murine and canine models, and these promising preclinical studies prompted clinical trials in patients suffering from severe hemophilia. These studies recently resulted in the first demonstration that long-term expression of therapeutic FIX levels could be achieved in patients undergoing gene therapy. Despite this progress, there are still a number of hurdles that need to be overcome. In particular, the FIX levels obtained were insufficient to prevent bleeding induced by trauma or injury. Moreover, the gene-modified cells in these patients can become potential targets for immune destruction by effector T cells, specific for the AAV vector antigens. Consequently, more efficacious approaches are needed to achieve full hemostatic correction and to ultimately establish a cure for hemophilia A and B.

  8. [The hair follicle as a target for gene therapy].

    Science.gov (United States)

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  9. Gene therapy for primary immunodeficiencies: current status and future prospects.

    Science.gov (United States)

    Qasim, Waseem; Gennery, Andrew R

    2014-06-01

    Gene therapy using autologous haematopoietic stem cells offers a valuable treatment option for patients with primary immunodeficiencies who do not have access to an HLA-matched donor, although such treatments have not been without their problems. This review details gene therapy trials for X-linked and adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID), Wiskott-Aldrich syndrome (WAS) and chronic granulomatous disease (CGD). X-linked SCID was chosen for gene therapy because of previous 'natural' genetic correction through a reversion event in a single lymphoid precursor, demonstrating limited thymopoiesis and restricted T-lymphocyte receptor repertoire, showing selective advantage of progenitors possessing the wild-type gene. In early studies, patients were treated with long terminal repeats-intact gamma-retroviral vectors, without additional chemotherapy. Early results demonstrated gene-transduced cells, sustained thymopoiesis, and a diverse T-lymphocyte repertoire with normal function. Serious adverse effects were subsequently reported in 5 of 20 patients, with T-lymphocyte leukaemia developing, secondary to the viral vector integrating adjacent to a known oncogene. New trials using self-inactivating gamma-retroviral vectors are progressing. Trials for ADA-SCID using gamma-retroviral vectors have been successful, with no similar serious adverse effects reported; trials using lentiviral vectors are in progress. Patients with WAS and CGD treated with early gamma-retroviral vectors have developed similar lymphoproliferative adverse effects to those seen in X-SCID--current trials are using new-generation vectors. Targeted gene insertion using homologous recombination of corrected gene sequences by cellular DNA repair pathways following targeted DNA breakage will improve efficacy and safety of gene therapy. A number of new techniques are discussed.

  10. ENHANCED ANTITUMOR EFFECTS OF SUICIDE GENE THERAPY BY SIMULTANEOUS TRANSFER OF GMCSF GENE IN LEUKEMIA-BEARING MICE

    Institute of Scientific and Technical Information of China (English)

    Ju Dianwen; Cao Xuetao; Yu Yizhi; Tao Qun; Wang Baomei; Wan Tao

    1998-01-01

    In the present report, antitumor effect of combined transfer of suicide gene and cytokine gene was studied.Adenovirus engineered to express E. Coli. Cytosine deaminase (AdCD) and/or adenovirus engineered toexpress murine granulocyte-macrophage colonystimulating factor (AdGMCSF) were used for the treatment of leukemia-bearing mice. The mice were inoculated s.c. With FBL-3 erythroleukemia cells and 3days later received intratumoral injection of AdCD in the presence or absence of AdGMCSF followed by intraperitoneal 5-fluorocytosine (5FC) treatment. The results demonstrated that mice received combined therapy of AdCD/5FC and AdGMCSF developed tumors most slowly and survived much longer when compared with mice treated with AdCD/5FC alone, AdGMCSF alone, AdlacZ/5FC or PBS. Combined transfer of CD gene and GM-CSF gene achieved higher specific CTL activity than control therapies. Pathological examination illustrated that the tumor mass showed obvious necrosis and inflammatory cell infiltration in mice after combined therapy. The results demonstrated that combined transfer of suicide gene and cytokine gene could synergistically inhibit the growth of leukemia in mice and induce antitumor immunity of the host. The combination therapy might be a potential approach for cancer gene therapy.

  11. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  12. Newer gene editing technologies toward HIV gene therapy.

    Science.gov (United States)

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  13. Combination therapy for pain in musculoskeletal diseases

    OpenAIRE

    Andrei Evgenyevich Karateev

    2012-01-01

    When managing patients with locomotor pathology, serious attention is paid to symptomatic therapy aimed at eliminating the unpleasant manifestations of the disease. At the same time, rational analgesia is of the greatest importance. If acute pain should be arrested, parenteral or tableted formulations of fast-acting analgesics are used for days. Longer analgesic therapy especially for clinically relevant inflammation is based on the use of nonsteroidal anti-inflammatory drugs (NSAID) having a...

  14. AAV-Based Targeting Gene Therapy

    Directory of Open Access Journals (Sweden)

    Wenfang Shi

    2008-01-01

    Full Text Available Since the first parvovirus serotype AAV2 was isolated from human and used as a vector for gene therapy application, there have been significant progresses in AAV vector development. AAV vectors have been extensively investigated in gene therapy for a broad application. AAV vectors have been considered as the first choice of vector due to efficient infectivity, stable expression and non-pathogenicity. However, the untoward events in AAV mediated in vivo gene therapy studies proposed the new challenges for their further applications. Deep understanding of the viral life cycle, viral structure and replication, infection mechanism and efficiency of AAV DNA integration, in terms of contributing viral, host-cell factors and circumstances would promote to evaluate the advantages and disadvantages and provide more insightful information for the possible clinical applications. In this review, main effort will be focused on the recent progresses in gene delivery to the target cells via receptor-ligand interaction and DNA specific integration regulation. Furthermore AAV receptor and virus particle intracellular trafficking are also discussed.

  15. Current advances in retroviral gene therapy.

    Science.gov (United States)

    Yi, Youngsuk; Noh, Moon Jong; Lee, Kwan Hee

    2011-06-01

    There have been major changes since the incidents of leukemia development in X-SCID patients after the treatments using retroviral gene therapy. Due to the risk of oncogenesis caused by retroviral insertional activation of host genes, most of the efforts focused on the lentiviral therapies. However, a relative clonal dominance was detected in a patient with β-thalassemia Major, two years after the subject received genetically modified hematopoietic stem cells using lentiviral vectors. This disappointing result of the recent clinical trial using lentiviral vector tells us that the current and most advanced vector systems does not have enough safety. In this review, various safety features that have been tried for the retroviral gene therapy are introduced and the possible new ways of improvements are discussed. Additional feature of chromatin insulators, co-transduction of a suicidal gene under the control of an inducible promoter, conditional expression of the transgene only in appropriate target cells, targeted transduction, cell type-specific expression, targeted local administration, splitting of the viral genome, and site specific insertion of retroviral vector are discussed here.

  16. Gene Therapy Helps 2 Babies Fight Type of Leukemia

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_163244.html Gene Therapy Helps 2 Babies Fight Type of Leukemia Tweaking ... time," said Qasim, a professor of cell and gene therapy at University College London. Small trials are under ...

  17. Gene Therapy: a Breakthrough for Sickle Cell Anemia?

    Science.gov (United States)

    ... fullstory_163849.html Gene Therapy: A Breakthrough for Sickle Cell Anemia? But treatment has only been given to ... gene therapy to treat, or even potentially cure, sickle cell anemia. The findings come from just one patient, ...

  18. Imaging reporter gene for monitoring gene therapy; Imagerie par gene rapporteur: un atout pour la therapie genique

    Energy Technology Data Exchange (ETDEWEB)

    Beco, V. de; Baillet, G.; Tamgac, F.; Tofighi, M.; Weinmann, P.; Vergote, J.; Moretti, J.L. [Centre Hospitalier Universitaire Avicenne, Service Central de Medecine Nucleaire et Biophysique, UPRES 2360, 93 - Bobigny (France); Tamgac, G. [Univetsite d' Uludag, Service de Medecine Nucleaire, Bursa (Turkey)

    2002-06-01

    Scintigraphic images can be obtained to document gene function at cellular level. This approach is presented here and the use of a reporter gene to monitor gene therapy is described. Two main ways are presented: either the use of a reporter gene coding for an enzyme the action of which will be monitored by radiolabeled pro-drug, or a cellular receptor gene, the action of which is documented by a radio labeled cognate receptor ligand. (author)

  19. Novel AIDS therapies based on gene editing.

    Science.gov (United States)

    Khalili, Kamel; White, Martyn K; Jacobson, Jeffrey M

    2017-02-16

    HIV/AIDS remains a major public health issue. In 2014, it was estimated that 36.9 million people are living with HIV worldwide, including 2.6 million children. Since the advent of combination antiretroviral therapy (cART), in the 1990s, treatment has been so successful that in many parts of the world, HIV has become a chronic condition in which progression to AIDS has become increasingly rare. However, while people with HIV can expect to live a normal life span with cART, lifelong medication is required and cardiovascular, renal, liver, and neurologic diseases are still possible, which continues to prompt research for a cure for HIV. Infected reservoir cells, such as CD4+ T cells and myeloid cells, allow persistence of HIV as an integrated DNA provirus and serve as a potential source for the re-emergence of virus. Attempts to eradicate HIV from these cells have focused mainly on the so-called "shock and kill" approach, where cellular reactivation is induced so as to trigger the purging of virus-producing cells by cytolysis or immune attack. This approach has several limitations and its usefulness in clinical applications remains to be assessed. Recent advances in gene-editing technology have allowed the use of this approach for inactivating integrated proviral DNA in the genome of latently infected cells or knocking out HIV receptors. Here, we review this strategy and its potential to eliminate the latent HIV reservoir resulting in a sterile cure of AIDS.

  20. Combination antifungal therapy: a critical review of the evidence.

    Science.gov (United States)

    Ostrosky-Zeichner, L

    2008-05-01

    Invasive fungal infections have extremely high rates of morbidity and mortality, particularly in immunocompromised hosts. Combination antifungal therapy is conceptually attractive as a life-saving measure. However, in-vitro and in-vivo evidence is often conflicting and clinical trials in this area are limited. Most clinical studies show similar outcomes for combination antifungal therapy when compared to monotherapy, although secondary endpoints and sub-analyses often show advantages for the combinations in endpoints such as culture sterilisation. The logistics of large clinical trials of combination therapy are highly complex. Combination of antifungals with immune modulators is an exciting new research area. Until more data are available, clinicians should approach combination antifungal therapy with caution.

  1. Federal Regulation of Gene Therapy: Who Will Save our Germline?

    OpenAIRE

    2003-01-01

    This paper will attempt to address some of these more complex issues involving human gene therapy and the encompassing regulations. The first section will deal with the science of gene therapy and will briefly touch upon the scientific hurdles that remain for scientists in this field, as this is important to understanding many of the ethical issues. This section will be divided into a basic genetic overview, a description of somatic gene therapy, and a summary of germline gene therapy. The se...

  2. Combination therapy for erectile dysfunction: an update review

    Institute of Scientific and Technical Information of China (English)

    Rohit R Dhir; Hao-Cheng Lin; Steven E Canfield; Run Wang

    2011-01-01

    The introduction of oral phosphodiesterase-5 inhibitors (PDE5ls) in the late 1990s and early 2000s revolutionized the field of sexual medicine and PDE5ls are currently first-line monotherapy for erectile dysfunction (ED). However, a significant proportion of patients with complex ED will be therapeutic non-responders to PDE5I monotherapy. Combination therapy has recently been adopted for more refractory cases of ED, but a critical evaluation of current combination therapies is lacking. A thorough PubMed and Cochrane Library search was conducted focusing on the effectiveness of combination therapies for ED in therapeutic non-responders to PDE5I therapy. Journal articles spanning the time period between January 1990 and December 2010 were reviewed. Criteria included all pertinent review articles, randomized controlled trials, cohort studies and retrospective analyses. References from retrieved articles were also manually scanned for additional relevant publications. Published combination therapies include PDE5I plus vacuum erectile device (VED), intraurethral medication, intracavernosal injection (ICI), androgen supplement, a-blocker or miscellaneous combinations. Based on this review, some of these combination treatments appeared to be quite effective in preliminary testing. Caution must be advised, however, as the majority of combination therapy articles in the last decade have numerous limitations including study biases and small subject size. Regardless of limitations, present combination therapy research provides a solid foundation for future studies in complex ED management.

  3. New gene therapy strategies for hepatic fibrosis.

    Science.gov (United States)

    Salazar-Montes, Adriana M; Hernández-Ortega, Luis D; Lucano-Landeros, Martha S; Armendariz-Borunda, Juan

    2015-04-07

    The liver is the largest internal organ of the body, which may suffer acute or chronic injury induced by many factors, leading to cirrhosis and hepatocarcinoma. Cirrhosis is the irreversible end result of fibrous scarring and hepatocellular regeneration, characterized by diffuse disorganization of the normal hepatic structure, regenerative nodules and fibrotic tissue. Cirrhosis is associated with a high co-morbidity and mortality without effective treatment, and much research has been aimed at developing new therapeutic strategies to guarantee recovery. Liver-based gene therapy has been used to downregulate specific genes, to block the expression of deleterious genes, to delivery therapeutic genes, to prevent allograft rejection and to augment liver regeneration. Viral and non-viral vectors have been used, with viral vectors proving to be more efficient. This review provides an overview of the main strategies used in liver-gene therapy represented by non-viral vectors, viral vectors, novel administration methods like hydrodynamic injection, hybrids of two viral vectors and blocking molecules, with the hope of translating findings from the laboratory to the patient's bed-side.

  4. Targeting tumor suppressor genes for cancer therapy.

    Science.gov (United States)

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  5. Recent advances in gene therapy of endometriosis.

    Science.gov (United States)

    Shubina, Anastasia N; Egorova, Anna A; Baranov, Vladislav S; Kiselev, Anton V

    2013-12-01

    Endometriosis is a gynecological disease that affects up to 10%-15% of all reproductive-age women worldwide. It is characterized by the presence of endometrial tissues outside the uterine cavity. Endometriosis is a complex disease; its pathogenesis includes altered steroid metabolism and immune system abnormalities such as inflammation, increased angiogenic activity in the peritoneal fluid and impaired recognition of ectopic endometrial cells. The development of endometriosis also depends on genetic, anatomical and environmental factors. Numerous surgical and medical approaches to treat endometriosis have been developed to date. However, complete resolution of the problem has not been achieved so far. Gene therapy holds exciting promise for the treatment of numerous disorders and current studies have indicated it can also be applied to endometriosis. The focus of this review is to summarize the pathogenetic background of the disease and to highlight current gene therapy approaches for this common gynecological disorder.

  6. Cardiac gene therapy: from concept to reality.

    Science.gov (United States)

    Kratlian, Razmig Garo; Hajjar, Roger J

    2012-03-01

    Heart failure is increasing in incidence throughout the world, especially in industrialized countries. Although the current therapeutic modalities have been successful in stabilizing the course of heart failure, morbidity and mortality remain quite high and there remains a great need for innovative breakthroughs that will offer new treatment strategies for patients with advanced forms of the disease. The past few years have witnessed a greater understanding of the molecular underpinnings of the failing heart, paving the way for novel strategies in modulating the cellular environment. As such, gene therapy has recently emerged as a powerful tool offering the promise of a new paradigm for alleviating heart failure. Current gene therapy research for heart failure is focused on exploring potential cellular targets and preclinical and clinical studies are ongoing toward the realization of this goal. Efforts also include the development of sophisticated viral vectors and vector delivery methods for efficient transduction of cardiomyocytes.

  7. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June, E-mail: hjlee@kcch.re.kr; Lee, Yoon-Jin, E-mail: yjlee8@kcch.re.kr

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  8. Rationale for combination therapy as initial treatment for hypertension.

    Science.gov (United States)

    Giles, Thomas D

    2003-01-01

    Recent hypertension guidelines recommend initiating antihypertensive therapy with a combination of two or more agents in patients whose blood pressure exceeds their appropriate blood pressure goal by 20/10 mm Hg. This recommendation is based on the knowledge that the majority of patients with blood pressures of this magnitude will not achieve sufficient blood pressure reduction with monotherapy. Further, compared with high-dose monotherapy, combination therapy is often associated with fewer adverse effects and, for this reason, may improve patient adherence. Bringing patients to blood pressure goal quickly is likely to improve clinical outcomes. This article discusses the rationale for using combination antihypertensive therapy as initial therapy for high blood pressure in selected patients and reviews data from a study of 364 high-risk patients with Stage 2 hypertension in which a fixed-dose combination product (amlodipine besylate/benazepril HCl) proved more successful as initial therapy than high-dose monotherapy (amlodipine besylate) in reducing blood pressure.

  9. Gene therapy in glaucoma-3: Therapeutic approaches

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Recently, several promising genetic therapeutic approaches had been investigated. Some are either used to stop apoptosis and halt further glaucomatous damage, wound healing modulating effect or long lasting intraocular pressure lowering effects than the conventional commercially available antiglaucoma medications. Method of Literature Search The literature was searched on the Medline database using the PubMed interface. The key words for search were glaucoma, gene therapy, and genetic diagnosis of glaucoma.

  10. Gene therapy in glaucoma-3: Therapeutic approaches

    OpenAIRE

    Mohamed Abdel-Monem Soliman Mahdy

    2010-01-01

    Despite new and improving diagnostic and therapeutic options for glaucoma, blindness from glaucoma is increasing and glaucoma remains a major public health problem. The role of heredity in ocular disease including glaucoma is attracting greater attention as the knowledge and recent advances of Human Genome Project and the HapMap Project have made genetic analysis of many human disorders possible. Glaucoma offers a variety of potential targets for gene therapy. All risk factors for glaucom...

  11. GENE THERAPY IN THALASSEMIA AND HEMOGLOBINOPATHIES

    Directory of Open Access Journals (Sweden)

    Laura Breda

    2009-11-01

    Full Text Available Sickle cell disease (SCD and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS cells, gene targeting, splice-switching and stop codon readthrough.

  12. Gene therapy in thalassemia and hemoglobinopathies.

    Science.gov (United States)

    Breda, Laura; Gambari, Roberto; Rivella, Stefano

    2009-11-13

    Sickle cell disease (SCD) and ß-thalassemia represent the most common hemoglobinopathies caused, respectively, by the alteration of structural features or deficient production of the ß-chain of the Hb molecule. Other hemoglobinopathies are characterized by different mutations in the α- or ß-globin genes and are associated with anemia and might require periodic or chronic blood transfusions. Therefore, ß-thalassemia, SCD and other hemoglobinopathies are excellent candidates for genetic approaches since they are monogenic disorders and, potentially, could be cured by introducing or correcting a single gene into the hematopoietic compartment or a single stem cell. Initial attempts at gene transfer of these hemoglobinopathies have proved unsuccessful due to limitations of available gene transfer vectors. With the advent of lentiviral vectors many of the initial limitations have been overcame. New approaches have also focused on targeting the specific mutation in the ß-globin genes, correcting the DNA sequence or manipulating the fate of RNA translation and splicing to restore ß-globin chain synthesis. These techniques have the potential to correct the defect into hematopoietic stem cells or be utilized to modify stem cells generated from patients affected by these disorders. This review discusses gene therapy strategies for the hemoglobinopathies, including the use of lentiviral vectors, generation of induced pluripotent stem cells (iPS) cells, gene targeting, splice-switching and stop codon readthrough.

  13. Combination Therapy for Advanced Kaposi Sarcoma

    Science.gov (United States)

    In this clinical trial, adult patients with any form of advanced Kaposi sarcoma will be treated with liposomal doxorubicin and bevacizumab every 3 weeks for a maximum of six treatments.  Patients who respond to this therapy or have stable disease will rec

  14. Bystander or No Bystander for Gene Directed Enzyme Prodrug Therapy

    Directory of Open Access Journals (Sweden)

    Adam V. Patterson

    2009-11-01

    Full Text Available Gene directed enzyme prodrug therapy (GDEPT of cancer aims to improve the selectivity of chemotherapy by gene transfer, thus enabling target cells to convert nontoxic prodrugs to cytotoxic drugs. A zone of cell kill around gene-modified cells due to transfer of toxic metabolites, known as the bystander effect, leads to tumour regression. Here we discuss the implications of either striving for a strong bystander effect to overcome poor gene transfer, or avoiding the bystander effect to reduce potential systemic effects, with the aid of three successful GDEPT systems. This review concentrates on bystander effects and drug development with regard to these enzyme prodrug combinations, namely herpes simplex virus thymidine kinase (HSV-TK with ganciclovir (GCV, cytosine deaminase (CD from bacteria or yeast with 5-fluorocytodine (5-FC, and bacterial nitroreductase (NfsB with 5-(azaridin-1-yl-2,4-dinitrobenzamide (CB1954, and their respective derivatives.

  15. Hyperbaric oxygen in chronic traumatic brain injury: oxygen, pressure, and gene therapy.

    Science.gov (United States)

    Harch, Paul G

    2015-01-01

    Hyperbaric oxygen therapy is a treatment for wounds in any location and of any duration that has been misunderstood for 353 years. Since 2008 it has been applied to the persistent post-concussion syndrome of mild traumatic brain injury by civilian and later military researchers with apparent conflicting results. The civilian studies are positive and the military-funded studies are a mixture of misinterpreted positive data, indeterminate data, and negative data. This has confused the medical, academic, and lay communities. The source of the confusion is a fundamental misunderstanding of the definition, principles, and mechanisms of action of hyperbaric oxygen therapy. This article argues that the traditional definition of hyperbaric oxygen therapy is arbitrary. The article establishes a scientific definition of hyperbaric oxygen therapy as a wound-healing therapy of combined increased atmospheric pressure and pressure of oxygen over ambient atmospheric pressure and pressure of oxygen whose main mechanisms of action are gene-mediated. Hyperbaric oxygen therapy exerts its wound-healing effects by expression and suppression of thousands of genes. The dominant gene actions are upregulation of trophic and anti-inflammatory genes and down-regulation of pro-inflammatory and apoptotic genes. The combination of genes affected depends on the different combinations of total pressure and pressure of oxygen. Understanding that hyperbaric oxygen therapy is a pressure and oxygen dose-dependent gene therapy allows for reconciliation of the conflicting TBI study results as outcomes of different doses of pressure and oxygen.

  16. Current concepts in combination antibiotic therapy for critically ill patients

    Directory of Open Access Journals (Sweden)

    Armin Ahmed

    2014-01-01

    Full Text Available Widespread emergence of multidrug resistant (MDR bacterial pathogens is a problem of global dimension. MDR infections are difficult to treat and frequently associated with high mortality. More than one antibiotic is commonly used to treat such infections, but scientific evidence does not favor use of combination therapy in most cases. However, there are certain subgroups where combination therapy may be beneficial, e.g. sepsis due to carbapenem-resistant Enterobacteriaceae (CRE, bacteremic pneumococcal pneumonia, and patients with multiple organ failure. Well-designed prospective studies are needed to clearly define the role of combination therapy in these subgroups.

  17. Hyperbilirubinemia without Transaminitis during Combined Therapy with Daclatasvir and Asunaprevir

    Directory of Open Access Journals (Sweden)

    Hayato Baba

    2016-07-01

    Full Text Available Daclatasvir (DCV and asunaprevir (ASV are direct-acting antivirals (DAAs used in the treatment of chronic hepatitis C virus (HCV infection. Combined therapy with DCV and ASV shows high efficacy and safety even in patients with cirrhosis. We encountered a patient exhibiting severe hyperbilirubinemia during combined therapy, which is an unreported side effect of DCV and ASV. A 78-year-old woman with cirrhosis developed hyperbilirubinemia >10 mg/dl without transaminitis 3 weeks after starting combined therapy. We suspected DAAs-induced liver disorder and discontinued treatment, which resulted in the improvement of hyperbilirubinemia. Caution is required in the use of DAAs for patients with advanced cirrhosis.

  18. Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents

    Directory of Open Access Journals (Sweden)

    Shashank R. Sirsi, Mark A. Borden

    2012-01-01

    Full Text Available Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1 improving cell membrane permeability, 2 modulate vascular permeability, and 3 enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  19. Advances in ultrasound mediated gene therapy using microbubble contrast agents.

    Science.gov (United States)

    Sirsi, Shashank R; Borden, Mark A

    2012-01-01

    Microbubble ultrasound contrast agents have the potential to dramatically improve gene therapy treatments by enhancing the delivery of therapeutic DNA to malignant tissue. The physical response of microbubbles in an ultrasound field can mechanically perturb blood vessel walls and cell membranes, enhancing drug permeability into malignant tissue. In this review, we discuss literature that provided evidence of specific mechanisms that enhance in vivo gene delivery utilizing microbubble contrast agents, namely their ability to 1) improving cell membrane permeability, 2) modulate vascular permeability, and 3) enhance endocytotic uptake in cells. Additionally, we review novel microbubble vectors that are being developed in order to exploit these mechanisms and deliver higher gene payloads with greater target specificity. Finally, we discuss some future considerations that should be addressed in the development of next-generation microbubbles in order to improve in vivo microbubble gene delivery. Overall, microbubbles are rapidly gaining popularity as efficient gene carriers, and combined with their functionality as imaging contrast agents, they represent powerful theranostic tools for image guided gene therapy applications.

  20. New frontiers in the therapy of primary immunodeficiency: From gene addition to gene editing.

    Science.gov (United States)

    Kohn, Donald B; Kuo, Caroline Y

    2017-03-01

    The most severe primary immune deficiency diseases (PIDs) have been successfully treated with allogeneic hematopoietic stem cell transplantation for more than 4 decades. However, such transplantations have the best outcomes when there is a well-matched donor available because immune complications, such as graft-versus-host disease, are greater without a matched sibling donor. Gene therapy has been developed as a method to perform autologous transplantations of a patient's own stem cells that are genetically corrected. Through an iterative bench-to-bedside-and-back process, methods to efficiently add new copies of the relevant gene to hematopoietic stem cells have led to safe and effective treatments for several PIDs, including forms of severe combined immune deficiency, Wiskott-Aldrich syndrome, and chronic granulomatous disease. New methods for gene editing might allow additional PIDs to be treated by gene therapy because they will allow the endogenous gene to be repaired and expressed under its native regulatory elements, which are essential for genes involved in cell processes of signaling, activation, and proliferation. Gene therapy is providing exciting new treatment options for patients with PIDs, and advances are sure to continue.

  1. Current Aspect and Future Prospect of Human Gene Therapy in Childhood (Gene Therapy : Advances in Research and Treatment)

    OpenAIRE

    1996-01-01

    Almost four years have passed since the first human gene therapy for adenosine deaminase (ADA) deficiency had been performed. Gene therapy protocols for cystic fibrosis, familial hypercholesterolaemia and hemophilia B were also started during this period. In this review, we reported and discussed the current aspect and the future prospect of gene therapy for inherited disease in childhood.

  2. Challenges and future expectations of reversed gene therapy.

    Science.gov (United States)

    He, Nongyue; Zeng, Xin; Wang, Weida; Deng, Kunlong; Pan, Yunzhi; Xiao, Li; Zhang, Jia; Li, Kai

    2011-10-01

    Gene therapy is a genetic intervention used for the prevention or treatment of diseases by targeting selected genes with specific nucleotides. The most common form of gene therapy involves the establishment of a function by transfer of functional genes or correction of mutated genes. In other situations, suppression or abolishment of a function is required in order to balance a complicated regulatory system or to deplete cellular molecules crucial for pathogen infection. The latter in fact employs an opposite strategy compared to those used in classical gene therapy, and can be defined as reversed gene therapy. This paper takes CCR5-based stem cell gene therapy as an example to discuss the challenges and future expectations of reversed gene therapy.

  3. An overview of gene therapy in head and neck cancer

    Directory of Open Access Journals (Sweden)

    Amit Bali

    2013-01-01

    Full Text Available Gene therapy is a new treatment modality in which new gene is introduced or existing gene is manipulated to cause cancer cell death or slow the growth of the tumor. In this review, we have discussed the different treatment approaches for cancer gene therapy; gene addition therapy, immunotherapy, gene therapy using oncolytic viruses, antisense ribonucleic acid (RNA and RNA interference-based gene therapy. Clinical trials to date in head and neck cancer have shown evidence of gene transduction and expression, mediation of apoptosis and clinical response including pathological complete responses. The objective of this article is to provide an overview of the current available gene therapies for head and neck cancer.

  4. Gene therapy for Leber congenital amaurosis: advances and future directions.

    Science.gov (United States)

    Hufnagel, Robert B; Ahmed, Zubair M; Corrêa, Zélia M; Sisk, Robert A

    2012-08-01

    Leber congenital amaurosis (LCA) is a congenital retinal dystrophy that results in significant and often severe vision loss at an early age. Comprehensive analysis of the genetic mutations and phenotypic correlations in LCA patients has allowed for significant improvements in understanding molecular pathways of photoreceptor degeneration and dysfunction. The purpose of this article is to review the literature on the subject of retinal gene therapy for LCA, including historical descriptions, preclinical animal studies, and human clinical trials. A literature search of peer-reviewed and indexed publications from 1996-2011 using the PubMed search engine was performed. Key terms included "Leber congenital amaurosis", LCA, RPE65, "cone-rod dystrophy", "gene therapy", and "human trials" in various combinations. Seminal articles prior to 1996 were selected from primary sources and reviews from the initial search. Articles were chosen based on pertinence to clinical, genetic, and therapeutic topics reviewed in this manuscript. Fundus photographs from LCA patients were obtained retrospectively from the clinical practice of one of the authors (R.A.S). Herein, we reviewed the literature on LCA as a genetic disease, the results of human gene therapy trials to date, and possible future directions towards treating inherited retinal diseases at the genetic level. Original descriptions of LCA by Theodor Leber and subsequent research demonstrate the severity of this disease with early-onset blindness. Discoveries of the causative heritable mutations revealed genes and protein products involved in photoreceptor development and visual transduction. Animal models have provided a means to test novel therapeutic strategies, namely gene therapy. Stemming from these experiments, three independent clinical trials tested the safety of subretinal delivery of viral gene therapy to patients with mutations in the RPE65 gene. More recently, efficacy studies have been conducted with encouraging

  5. The Use of Viral Vectors in Gene Transfer Therapy

    Directory of Open Access Journals (Sweden)

    A. Dziaková

    2016-05-01

    Full Text Available Gene therapy is strategy based on using genes as pharmaceuticals. Gene therapy is a treatment that involves altering the genes inside body's cells to stop disease. Genes contain DNA- the code controlling body form and function. Genes that do not work properly can cause disease. Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve the ability of the body to fight disease. Gene therapy holds promise for treating a wide range of diseases, including cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS. Various types of genetic material are used in gene therapy; double-stranded DNA (dsDNA, single-stranded DNA (ssDNA, plasmid DNA and antisense oligodeoxynucleotides (ASON. The success of gene therapy depends on assuring the entrance of the therapeutic gene to targeted cells without any form of biodegradation. Commonly used vectors in gene therapy are: adenoviruses (400 clinical studies; 23.8%, retroviruses (344 clinical studies; 20.5%, unenveloped/plasmid DNA (304 clinical studies, 17.7%, adeno-associated viruses (75 clinical studies; 4.5% and others. In this paper, we have reviewed the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors.

  6. Gene expression-targeted isoflavone therapy.

    Science.gov (United States)

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  7. Pluripotent Stem Cells for Gene Therapy of Degenerative Muscle Diseases.

    Science.gov (United States)

    Loperfido, Mariana; Steele-Stallard, Heather B; Tedesco, Francesco Saverio; VandenDriessche, Thierry

    2015-01-01

    Human pluripotent stem cells represent a unique source for cell-based therapies and regenerative medicine. The intrinsic features of these cells such as their easy accessibility and their capacity to be expanded indefinitely overcome some limitations of conventional adult stem cells. Furthermore, the possibility to derive patient-specific induced pluripotent stem (iPS) cells in combination with the current development of gene modification methods could be used for autologous cell therapies of some genetic diseases. In particular, muscular dystrophies are considered to be a good candidate due to the lack of efficacious therapeutic treatments for patients to date, and in view of the encouraging results arising from recent preclinical studies. Some hurdles, including possible genetic instability and their efficient differentiation into muscle progenitors through vector/transgene-free methods have still to be overcome or need further optimization. Additionally, engraftment and functional contribution to muscle regeneration in pre-clinical models need to be carefully assessed before clinical translation. This review offers a summary of the advanced methods recently developed to derive muscle progenitors from pluripotent stem cells, as well as gene therapy by gene addition and gene editing methods using ZFNs, TALENs or CRISPR/Cas9. We have also discussed the main issues that need to be addressed for successful clinical translation of genetically corrected patient-specific pluripotent stem cells in autologous transplantation trials for skeletal muscle disorders.

  8. New Approaches for Prostate Cancer Combination Therapy

    Science.gov (United States)

    2009-04-01

    In prostate cancer PDEF is involved in regulating NFkB -promoter 0 1 2 3 4 5 pCI PDEF fo ld in d u ct io n PC-3 LNCaP Figure 4. PDEF...Although current studies indicate that members of the GADD45 family appear infrequently mutated in cancer, reduced GADD45 expression due to gene and or

  9. Combination therapy of disseminated coccidioidomycosis with caspofungin and fluconazole

    Directory of Open Access Journals (Sweden)

    Ja Kim Min

    2006-02-01

    Full Text Available Abstract Background The current recommended therapy for diffuse coccidioidal pneumonia involves initial treatment with amphotericin B deoxycholate or high-dose fluconazole, followed by an azole after clinical improvement. Amphotericin B is more frequently used as initial therapy if the patient's deterioration is rapid. Case presentation A 31-year-old Korean male with coccidioidomycosis presented to the hospital with miliary infiltrates on chest X-ray (CXR and skin rash on the face and trunk. Initially, the patient did not respond to amphotericin B deoxycholate therapy. However, following caspofungin and fluconazole combination therapy, the patient showed favourable radiological, serological, and clinical response. Conclusion This appears to be the first case of diffuse coccidioidal pneumonia with skin involvement in an immunocompetent patient who was treated successfully with caspofungin and fluconazole. Combination therapy with caspofungin and fluconazole may, therefore, be an alternative treatment for diffuse coccidioidal pneumonia that does not respond to amphotericin B deoxycholate therapy.

  10. Neural stem cells may be uniquely suited for combined gene therapy and cell replacement: Evidence from engraftment of Neurotrophin-3-expressing stem cells in hypoxic-ischemic brain injury.

    Science.gov (United States)

    Park, Kook In; Himes, B Timothy; Stieg, Philip E; Tessler, Alan; Fischer, Itzhak; Snyder, Evan Y

    2006-05-01

    -derived glia were rare, and astroglial scarring was blunted. NT-3 likely functioned not only on donor cells in an autocrine/paracrine fashion but also on host cells to enhance neuronal differentiation of both. Taken together, these observations suggest (1) the feasibility of taking a fundamental biological response to injury and augmenting it for repair purposes and (2) the potential use of migratory NSCs in some degenerative conditions for simultaneous combined gene therapy and cell replacement during the same procedure in the same recipient using the same cell (a unique property of cells with stem-like attributes).

  11. Combined versus monotherapy or concurrent therapy for treatment of thalassaemia.

    Science.gov (United States)

    Song, Ta-Shu; Hsieh, Yow-Wen; Peng, Ching-Tien; Chen, Tai-Lin; Lee, Hong-Zin; Chung, Jing-Gung; Hour, Mann-Jen

    2014-01-01

    A combined deferasirox (DFX) and deferiprone (DFP) treatment protocol for relieving thalassemia patients' iron-overload was designed and the pharmacokinetic study was performed by LC-MS/MS. For this open-label, randomized trial, eight patients were recruited and randomly allocated to different treatment regimens: (A) monotherapy with single oral dose of DFX 30 mg/kg, (B) monotherapy with DFP 80 mg/kg/day, twice daily, (C) combined therapy with DFX and DFP (DFX 30 mg/kg for first dose, DFP 40 mg/kg 7 hours later, and DFP 40 mg/kg after another 7 h) and (D) concurrent therapy with DFX 30 mg/kg and DFP 80 mg/kg. Descriptive statistics evaluated pharmacokinetic parameters, AUC0-t, AUC0-inf, Cmax, Tmax, T1/2 and MRT. A positive pharmacokinetic drug interaction was observed in combined therapy. In case of DFX, combined therapy tallied about 2-fold larger than monotherapy in AUC, 1.5-fold larger in Cmax, 1 h longer in Tmax, but 1 h shorter in T1/2. Regarding DFP, most such parameters of combined therapy concurred with monotherapy. Conversely, negative drug interaction was observed in concurrent therapy. With DFX, concurrent therapy attained 1.2- to 2.2-fold lower than monotherapy in AUC0-t and Cmax, 0.6-h shorter in Tmax, and 3-fold longer in T1/2. With DFP, concurrent therapy proved approximately 2-fold larger than monotherapy in AUC and Cmax, 2.5-fold longer in T1/2, and 1.4-fold longer in MRT. Follow-up of subjects' clinical examinations and subjective symptoms showed no adverse events. Our findings showed the combined therapy had advantages, safe, convenient and painless for patients, over the existing concurrent therapy with deferoxamine (DFO) and DFX. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Effect of Combination Therapy on Joint Destruction in Rheumatoid Arthritis

    DEFF Research Database (Denmark)

    Graudal, N.; Hubeck-Graudal, T.; Tarp, S.

    2014-01-01

    on progression of radiographic joint erosions in patients with rheumatoid arthritis (RA). Methods and Findings: The following combination drug therapies compared versus single DMARD were investigated: Double DMARD: 2 DMARDs (methotrexate, sulfasalazine, leflunomide, injectable gold, cyclosporine, chloroquine...

  13. Calreticulin as cancer treatment adjuvant: combination with photodynamic therapy and photodynamic therapy-generated vaccines

    Directory of Open Access Journals (Sweden)

    Mladen eKorbelik

    2015-02-01

    Full Text Available Calreticulin is recognized as one of pivotal damage-associated molecular pattern (DAMP molecules alerting the host of the presence of distressed cells. In this role, calreticulin becomes exposed on the surface of tumor cells treated by several types of cancer therapy including photodynamic therapy (PDT. The goal of the present study was to examine the potential of externally added calreticulin for augmenting antitumor effect mediated by PDT. Recombinant calreticulin was found to bind to mouse SCCVII tumor cells treated by PDT. Compared to the outcome with PDT alone, cure-rates of SCCVII tumors grown in immunocompetent C3H/HeN mice were elevated when calreticulin (0.4 mg/mouse was injected peritumorally immediately after PDT. Such therapeutic gain with PDT plus calreticulin combination was not obtained with SCCVII tumors growing in immunodeficient NOD-scid mice. In PDT vaccine protocol, where PDT-treated SCCVII cells are used for vaccination of SCCVII tumor-bearing mice, adding recombinant calreticulin to cells before their injection produced improved therapeutic effect. The expression of calreticulin gene was reduced in PDT-treated cells, while no changes were observed with the expression of this gene in tumor, liver, and spleen tissues in PDT vaccine-treated mice. These findings reveal that externally added recombinant calreticulin can boost antitumor responses elicited by PDT or PDT-generated vaccines, and can thus serve as an effective adjuvant for cancer treatment with PDT and probably other cancer cell stress-inducing modalities.

  14. Gene-modified bone marrow cell therapy for prostate cancer.

    Science.gov (United States)

    Wang, H; Thompson, T C

    2008-05-01

    There is a critical need to develop new and effective cancer therapies that target bone, the primary metastatic site for prostate cancer and other malignancies. Among the various therapeutic approaches being considered for this application, gene-modified cell-based therapies may have specific advantages. Gene-modified cell therapy uses gene transfer and cell-based technologies in a complementary fashion to chaperone appropriate gene expression cassettes to active sites of tumor growth. In this paper, we briefly review potential cell vehicles for this approach and discuss relevant gene therapy strategies for prostate cancer. We further discuss selected studies that led to the conceptual development and preclinical testing of IL-12 gene-modified bone marrow cell therapy for prostate cancer. Finally, we discuss future directions in the development of gene-modified cell therapy for metastatic prostate cancer, including the need to identify and test novel therapeutic genes such as GLIPR1.

  15. Current concepts in combination antibiotic therapy for critically ill patients

    OpenAIRE

    Armin Ahmed; Afzal Azim; Mohan Gurjar; Arvind Kumar Baronia

    2014-01-01

    Widespread emergence of multidrug resistant (MDR) bacterial pathogens is a problem of global dimension. MDR infections are difficult to treat and frequently associated with high mortality. More than one antibiotic is commonly used to treat such infections, but scientific evidence does not favor use of combination therapy in most cases. However, there are certain subgroups where combination therapy may be beneficial, e.g. sepsis due to carbapenem-resistant Enterobacteriaceae (CRE), bacteremic ...

  16. p53 gene therapy using RNA interference.

    Science.gov (United States)

    Berindan-Neagoe, I; Balacescu, O; Burz, C; Braicu, C; Balacescu, L; Tudoran, O; Cristea, V; Irimie, A

    2009-09-01

    p53 gene, discovered almost 35 years ago, keeps the main role in cell cycle control, apoptosis pathways and transcription. p53 gene is found mutated in more than 50% of all human cancers in different locations. Many structures from viral to non viral were designed to incorporate and deliver in appropriate conditions forms of p53 gene or its transcripts, systemically to target tumor cells and to eliminate them through apoptosis or to restore the normal tumor suppressor gene role. Each delivery system presents advantages and low performance in relation to immune system recognition and acceptance. One of the major discoveries in the last years, silencing of RNA, represents a powerful tool for inhibiting post transcriptional control of gene expression. According to several studies, the RNA silencing technology for p53 transcripts together with other carriers or transporters at nano level can be used for creating new therapeutic models. RNA interference for p53 uses different double-stranded (ds) molecules like short interfering (si) RNA and, despite the difficulty of introducing them into mammalian cells due to immune system response, it can be exploited in cancer therapy.

  17. Potential of gene therapy as a treatment for heart failure

    OpenAIRE

    2013-01-01

    Advances in understanding the molecular basis of myocardial dysfunction, together with the evolution of increasingly efficient gene transfer technology, make gene-based therapy a promising treatment option for heart conditions. Cardiovascular gene therapy has benefitted from recent advancements in vector technology, design, and delivery modalities. There is a critical need to explore new therapeutic approaches in heart failure, and gene therapy has emerged as a viable alternative. Advances in...

  18. Combined aspirin and anticoagulant therapy in patients with atrial fibrillation.

    Science.gov (United States)

    So, Charlotte H; Eckman, Mark H

    2017-01-01

    The combined use of aspirin and oral anticoagulant therapy in patients with atrial fibrillation (AF) and stable coronary artery disease (CAD) has been questioned due to an increased risk of major bleeding with little to no benefit in preventing ischemic events. (1) To better understand patterns and indications for combined antiplatelet and anticoagulant therapy and identify patients who might reasonably be treated with oral anticoagulant (OAC) therapy alone. (2) To perform an updated literature review regarding the use of combined antiplatelet and OAC therapy in patients with AF and stable CAD. Retrospective review. Patients within the University of Cincinnati Health System with a diagnosis of non-valvular AF, excluding those with acute coronary syndrome or revascularization within the last 12 months. Numbers and indications for combined antiplatelet and anticoagulant therapy and sequence of events leading to the initiation of each. Of 948 patients receiving OAC, 430 (45 %) were receiving concomitant OAC and aspirin. Among patients receiving combined antiplatelet and anticoagulant therapy, 49 and 42 % of patients respectively, had CAD or DM. In a more detailed analysis including chart review of 219 patients receiving combined OAC and aspirin, 27 % had a diagnosis of CAD and 14 % had a diagnosis of DM prior to the development of AF. These patients were initially treated with aspirin. Warfarin was added when they subsequently developed AF but aspirin wasn't discontinued. A surprisingly large proportion of patients (22.8 %) had no obvious indication for dual therapy. Prior myocardial infarction, CAD, vascular disease and DM (among others) increase the likelihood of receiving combined antiplatelet and anticoagulant therapy among patients with AF. A literature review suggests this may lead to increased major bleeding with little benefit in decreasing either AF-related stroke or cardiovascular events.

  19. Combined photovacuum therapy of copulative dysfunction

    Science.gov (United States)

    Menyaev, Yulian A.; Zharov, Vladimir P.; Mishanin, Evgeniy A.; Kuzmich, Aleksandr P.; Bessonov, Sergey E.

    2006-02-01

    One of the important problems of modern medicine is treatment of urogenital diseases. 1-2 There is a set of the treatment methods for such problems, but any of them does not obey the modern physicians completely. 3-4 Our aim is to present the new combined therapeutic apparatus called "Yarovit" (produced in Russia, in collaboration between Bauman Moscow State University of Technology and Scientific Production Association and Medical Center "Yarovit") which successfully applied in clinics for cure the patients with copulative dysfunction diseases. 5-6 At this apparatus "Yarovit" (description model have abbreviation AMVL-0 1) there is a combination of vacuum decompression (0.1-0.4 kgs/cm2) and light emitting diodes matrix system (660 nm, 1-3 mW/cm2). In treatment procedure apparatus can be applied together with expanded module "Intratherm" (39 °C on average), which has rectal heating elements. The latest clinical studies were made together with volunteer participation of more then one hundred patients, and received results showed the good dynamic of healing. That let to conclude these combinations of physical therapeutic methods supplement each other and in conjunction provides a significant clinical effect. The further developments of such apparatuses are discussed.

  20. Self-Assembled Fluorodendrimers Combine the Features of Lipid and Polymeric Vectors in Gene Delivery.

    Science.gov (United States)

    Wang, Hui; Wang, Yitong; Wang, Yu; Hu, Jingjing; Li, Tianfu; Liu, Hongmei; Zhang, Qiang; Cheng, Yiyun

    2015-09-28

    An ideal vector in gene therapy should exhibit high serum stability, excellent biocompatibility, a desired transfection efficacy and permeability into targeted tissues. Here, we describe a class of low-molecular-weight fluorodendrimers for efficient gene delivery. These materials self-assemble into uniform nanospheres and allow for efficient transfection at low charge ratios and very low DNA doses with minimal cytotoxicity. Our results demonstrate that these vectors combine the features of synthetic gene vectors such as liposomes and cationic polymers and present promising potential for clinical gene therapy.

  1. Combination therapy for carbapenem-resistant Gram-negative bacteria.

    Science.gov (United States)

    Paul, Mical; Carmeli, Yehuda; Durante-Mangoni, Emanuele; Mouton, Johan W; Tacconelli, Evelina; Theuretzbacher, Ursula; Mussini, Cristina; Leibovici, Leonard

    2014-09-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) represent an increasing hazard in healthcare settings. A central question concerning the treatment of invasive infections caused by CR-GNB involves the use of combination therapy. Potential advantages of combination therapy include improved efficacy due to synergy, while the disadvantages include adverse events and increased antibiotic use with a potential drive towards resistance. Several observational studies have examined whether combination therapy offers an advantage over colistin/polymyxin monotherapy. We highlight the inherent limitations of these studies related to their observational design and sample size to show why they do not at present provide an answer to the question of combination versus monotherapy. This distinction is important to guide clinical practice until solid evidence has been obtained and to enable the recruitment of patients into randomized controlled trials. A few randomized controlled trials examining specific combinations have recently been completed or are ongoing. Currently, however, there is no evidence-based support for most combination therapies against CR-GNB, including colistin/carbapenem combination therapy.

  2. The comparison between monotherapy and combination therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Khalvat A

    2007-05-01

    Full Text Available Background: Rheumatoid arthritis (RA is a chronic inflammatory condition. The condition can affected many tissues throught out the body, but the joints are usually most severely affected. The high incidence of RA, the conventional treatments and the experimental observation have shown by combination therapy, the disease symptoms of the patients reduce. To compare the efficacy and tolerability of single-agent Hydroxychloroquin (HCQ with combination therapies composed of (HCQ and Methotrexate (MTX and (HCQ, (MTX and Sulfasalazin (SSZ in active rheumatoid arthritis patients with additive arthritis. Methods: One hundred and twenty RA patients with active arthritis (male/female: 30/90 who were treated in rheumatology clinic between 2003 and 2005 were enrolled in this trial. Patients treated with (HCQ alone(200 mg/daywere include in group (I, patients treated with combination of (HCQ (200 mg/dayand (MTX (7.5mg/weekin group (II,and patents treated with combination of (HCQ (200mg/day,(MTX (7.5mg/weekand (SSZ(1 gr/dayin group (III, Forty patients (male/female:10/30 in group (I,(II and (IIIwere eligible for statistical analysis at the end of study. Changes in variable were compared by the T-test. Results: The combination of (MTX, (HCQand (SSZ and the combination of (MTX and (HCQ were more effective regarding the clinical and laboratory parameters than (HCQ alone (P<0.05. Moreover the combination of (MTX, (HCQ and (SSZ was more effective than the combination of (MTX and (HCQ (P<0.05. Combination therapies seem to be more effective and no more toxic than monotherapy in RA patients with additive arthritis. Conclusion: Combination therapy with methotrexate, hydroxychloroquin and sulfasalazin is more effective than hydroxychloroquin alone or a combination of methotrexate and hydroxychloroquin in RA. We suggest starting combination therapy for the patients with early RA, when the diagnosis has been established.

  3. Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures

    DEFF Research Database (Denmark)

    Gøtzsche, Casper René; Nikitidou, Litsa; Sørensen, Andreas;

    2012-01-01

    on kainate-induced motor seizures in rats. However, combined overexpression of Y5 receptors and neuropeptide Y exerted prominent suppression of seizures. This seizure-suppressant effect of combination gene therapy with Y5 receptors and neuropeptide Y was significantly stronger as compared to neuropeptide Y...

  4. Response to combination antiretroviral therapy: variation by age

    DEFF Research Database (Denmark)

    Lundgren, Jens

    2008-01-01

    OBJECTIVE: To provide information on responses to combination antiretroviral therapy in children, adolescents and older HIV-infected persons. DESIGN AND SETTING: Multicohort collaboration of 33 European cohorts. SUBJECTS:: Forty-nine thousand nine hundred and twenty-one antiretroviral......-naive individuals starting combination antiretroviral therapy from 1998 to 2006. OUTCOME MEASURES: Time from combination antiretroviral therapy initiation to HIV RNA less than 50 copies/ml (virological response), CD4 increase of more than 100 cells/microl (immunological response) and new AIDS/death were analysed...... and the three oldest age groups had 2693, 1656 and 1613 individuals. Precombination antiretroviral therapy CD4 cell counts were highest in young children and declined with age. By 12 months, 53.7% (95% confidence interval: 53.2-54.1%) and 59.2% (58.7-59.6%) had experienced a virological and immunological...

  5. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Vestergaard, Martin; Paulander, Wilhelm; Marvig, Rasmus L; Clasen, Julie; Jochumsen, Nicholas; Molin, Søren; Jelsbak, Lars; Ingmer, Hanne; Folkesson, Anders

    2016-01-01

    Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin with the resistance evolved after single-drug exposure. Combination therapy selected for mutants that displayed broad-spectrum resistance, and a major resistance mechanism was mutational inactivation of the repressor gene mexR that regulates the multidrug efflux operon mexAB-oprM. Deregulation of this operon led to a broad-spectrum resistance phenotype that decreased susceptibility to the combination of drugs applied during selection as well as to unrelated antibiotic classes. Mutants isolated after single-drug exposure displayed narrow-spectrum resistance and carried mutations in the MexCD-OprJ efflux pump regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use, combination therapy consistently selected for mutants with enhanced fitness expressing broad-spectrum resistance mechanisms.

  6. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy

    DEFF Research Database (Denmark)

    Khan, Z.; Knecht, Wolfgang; Willer, Mette

    2010-01-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen...... suicide gene therapy system in combination with stem cell mediated gene delivery promises new treatment of malignant gliomas....... for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine...

  7. Stem Cell-Based Gene Therapy.

    Science.gov (United States)

    Bagnis; Mannoni

    1997-01-01

    Many researchers and clinicians wonder if gene therapy remains a way to treat genetic or acquired life-threatening diseases. For the last few years, many experimental, pre-clinical, and clinical data have been published showing that it is possible to transfer with relatively high efficiency new genetic information (transgene) in many cells or tissues including both hematopoietic progenitor cells and differentiated cells. Based on experimental works, addition of the normal gene to cells with deletions, mutations, or alterations of the corresponding endogenous one has been shown to reverse the phenotype and to restore (in some case) the functional defect. In spite of very attractive preliminary results, however, suggesting the feasibility and safety of this process, therapeutically efficient gene transfer and expression in targeted cells or tissues must be proven. In this review, we will focus primarily on the attempts to use gene transfer in hematopoietic stem cells as a model for more general genetic manipulations of stem cells. Hematopoietic stem cells are included in a subset of bone marrow, cord blood, or peripheral blood cells identified by the expression of the CD34 antigen on their membrane.

  8. Combined cannabinoid therapy via an oromucosal spray.

    Science.gov (United States)

    Perez, Jordi

    2006-08-01

    Extensive basic science research has identified the potential therapeutic benefits of active compounds extracted from the Cannabis sativa L. plant (the cannabinoids). It is recognized that a significant proportion of patients suffering with the debilitating symptoms of pain and spasticity in multiple sclerosis or other conditions smoke cannabis despite the legal implications and stigma associated with this controlled substance. GW Pharmaceuticals have developed Sativex (GW- 1,000-02), a combined cannabinoid medicine that delivers and maintains therapeutic levels of two principal cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), via an oromucosal pump spray, that aims to minimize psychotropic side effects. Sativex has proved to be well tolerated and successfully self-administered and self-titrated in both healthy volunteers and patient cohorts. Clinical assessment of this combined cannabinoid medicine has demonstrated efficacy in patients with intractable pain (chronic neuropathic pain, pain due to brachial plexus nerve injury, allodynic peripheral neuropathic pain and advanced cancer pain), rheumatoid arthritis and multiple sclerosis (bladder problems, spasticity and central pain), with no significant intoxication-like symptoms, tolerance or withdrawal syndrome.

  9. Oxidative stress in malaria and artemisinin combination therapy

    DEFF Research Database (Denmark)

    Kavishe, Reginald A.; Koenderink, Jan B.; Alifrangis, Michael

    2017-01-01

    Artemisinin-based combination therapy (ACT) has been adopted as a strategy to mitigate multidrug resistance to antimalarial monotherapies. ACT combines the rapid and effective but rather short plasma half-life antimalarial action of an artemisinin derivative with a longer acting partner drug...

  10. Glucagon-Like Peptide-1 Gene Therapy

    Directory of Open Access Journals (Sweden)

    Anne M. Rowzee

    2011-01-01

    Full Text Available Glucagon-like peptide 1 (GLP-1 is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.

  11. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    NARCIS (Netherlands)

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction effici

  12. Pharmacological Interventions for Improving Adenovirus Usage in Gene Therapy

    NARCIS (Netherlands)

    Haisma, Hidde J.; Bellu, Anna Rita

    2011-01-01

    Gene therapy may be an innovative and promising new treatment strategy for cancer but is limited due to a low efficiency and specificity of gene delivery to the target cells. Adenovirus is the preferred gene therapy vector for systemic delivery because of its unparalleled in vivo transduction

  13. Combination therapy: the next opportunity and challenge of medicine

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2011-07-01

    Full Text Available Abstract From an historical point of view, combination therapy was the basis for the care of important diseases like infection diseases or cancer. Today the "cocktail drug" of the Highly Active Anti Retroviral Therapy (HAART has reduced the death for HIV infection changing the outcome of such disease. Moreover, the combination of different strategies changed the course of transplants (both in haematology and surgical transplant. Different diseases with high social impact including cardiovascular, metabolic (obesity, hypercholesterolaemia and diabetes and autoimmune diseases, have better results with combinations of different drug classes of drugs. After recent successes in the immunotherapy field (Sepuleucel-T, ipilimumab and the new promising small molecule therapies, cancer should be the next challenge for combination strategies.

  14. Immunotherapy and gene therapy of thyroid cancer.

    Science.gov (United States)

    Schott, M; Scherbaum, W A

    2004-12-01

    Most forms of thyroid cancer have a good prognosis. Some tumours, however, dedifferentiate and may finally develop into highly malignant anaplastic thyroid carcinomas with a low survival time. Due to their dedifferentiation these tumours are inaccessible to classical therapeutic options as radioiodide treatment or thyrotropin-suppression. Radical surgical revision of the tumour masses is the therapy of choice of patients with limited disease stages including patients with medullary thyroid carcinomas. Despite progress in radiation and chemotherapy regimes, many metastatic forms remain, however, incurable by conventional therapies. During the past few years new developments in immunology have revealed increasing information about the molecular basis of tumour-host interactions. The multitude of information resulting from basic science in cellular immunology, together with the availability of biologic reagents in pharmacological amounts, has opened new venues for the development of immunotherapy approaches for patients with different kind of cancers including thyroid malignancies. This review describes some most important developments in cellular immunotherapies e.g. dendritic cells-based protocols and gene therapy. It also provides a brief overview on the role of cytokines and antibodies in the treatment of advanced thyroid malignancies.

  15. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    Science.gov (United States)

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  16. Propranolol, doxycycline and combination therapy for the treatment of rosacea.

    Science.gov (United States)

    Park, Jung-Min; Mun, Je-Ho; Song, Margaret; Kim, Hoon-Soo; Kim, Byung-Soo; Kim, Moon-Bum; Ko, Hyun-Chang

    2015-01-01

    Doxycycline is the standard systemic treatment for rosacea. Recently, there have been a few reports on β-adrenergic blockers such as nadolol, carvedilol and propranolol for suppressing flushing reactions in rosacea. To our knowledge, there are no comparative studies of propranolol and doxycycline, and combination therapy using both. The aim of this study was to investigate and compare the efficacy and safety of monotherapy of propranolol, doxycycline and combination therapy. A total of 78 patients who visited Pusan National University Hospital and were diagnosed with rosacea were included in this study. Among them, 28 patients were in the propranolol group, 22 the doxycycline group and 28 the combination group. We investigated the patient global assessment (PGA), investigator global assessment (IGA), assessment of rosacea clinical score (ARCS) and adverse effects. Improvement in PGA and IGA scores from baseline was noted in all groups, and the combination therapy was found to be the most effective during the entire period, but this was statistically insignificant. The reduction rate of ARCS during the treatment period was also highest in the combination group (57.4%), followed by the doxycycline group (52.2%) and the propranolol group (51.0%). Three patients in the combination group had mild and transient gastrointestinal disturbances but there was no significant difference from the other groups. We conclude that the combination therapy of doxycycline and propranolol is effective and safe treatment for rosacea and successful for reducing both flushing and papulation in particular.

  17. Sono-photodynamic combination therapy: a review on sensitizers.

    Science.gov (United States)

    Sadanala, Krishna Chaitanya; Chaturvedi, Pankaj Kumar; Seo, You Mi; Kim, Jeung Mo; Jo, Yong Sam; Lee, Yang Koo; Ahn, Woong Shick

    2014-09-01

    Cancer is characterized by the dysregulation of cell signaling pathways at several steps. The majority of current anticancer therapies involve the modulation of a single target. A tumor-targeting drug-delivery system consists of a tumor detection moiety and a cytotoxic material joined directly or through a suitable linker to form a conjugate. Photodynamic therapy has been used for more than 100 years to treat tumors. One of the present goals of photodynamic therapy research is to enhance the selective targeting of tumor cells in order to reduce the risk and extension of unwanted side-effects, caused by normal cell damage. Sonodynamic therapy is a promising new treatment for patients with cancer. It treats cancer with ultrasound and sonosensitive agents. Porphyrin compounds often serve as photosensitive and sonosensitive agents. The combination of these two methods makes cancer treatment more effective. The present review provides an overview of photodynamic therapy, sonodynamic therapy, sono-photodynamic therapy and the four sensitizers which are suitable candidates for combined sono-photodynamic therapy. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Perspectives on best practices for gene therapy programs.

    Science.gov (United States)

    Cheever, Thomas R; Berkley, Dale; Braun, Serge; Brown, Robert H; Byrne, Barry J; Chamberlain, Jeffrey S; Cwik, Valerie; Duan, Dongsheng; Federoff, Howard J; High, Katherine A; Kaspar, Brian K; Klinger, Katherine W; Larkindale, Jane; Lincecum, John; Mavilio, Fulvio; McDonald, Cheryl L; McLaughlin, James; Weiss McLeod, Bonnie; Mendell, Jerry R; Nuckolls, Glen; Stedman, Hansell H; Tagle, Danilo A; Vandenberghe, Luk H; Wang, Hao; Wernett, Pamela J; Wilson, James M; Porter, John D; Gubitz, Amelie K

    2015-03-01

    With recent successes in gene therapy trials for hemophilia and retinal diseases, the promise and prospects for gene therapy are once again garnering significant attention. To build on this momentum, the National Institute of Neurological Disorders and Stroke and the Muscular Dystrophy Association jointly hosted a workshop in April 2014 on "Best Practices for Gene Therapy Programs," with a focus on neuromuscular disorders. Workshop participants included researchers from academia and industry as well as representatives from the regulatory, legal, and patient advocacy sectors to cover the gamut from preclinical optimization to intellectual property concerns and regulatory approval. The workshop focused on three key issues in the field: (1) establishing adequate scientific premise for clinical trials in gene therapy, (2) addressing regulatory process issues, and (3) intellectual property and commercialization issues as they relate to gene therapy. The outcomes from the discussions at this workshop are intended to provide guidance for researchers and funders in the gene therapy field.

  19. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    Science.gov (United States)

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  20. Customized biomaterials to augment chondrocyte gene therapy.

    Science.gov (United States)

    Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J

    2017-02-07

    A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins.

  1. Adenovirus-Mediated Gene Therapy Against Viral Biothreat Agents

    Science.gov (United States)

    2016-04-12

    34--- I lr_ Transworld Research Network 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India Recent Development in Gene Therapy , 2007: 77-94...ISBN: 81-7895-262-9 Editor: Jim Xiang Adenovirus-mediated gene therapy against viral biothreat agents Josh Q.H. Wu Chemical Biological Defence... therapy , which introduces therapeutic genes into mammalian cells to achieve therapeutic effective, hds a great potential for use as a defensive

  2. Gene therapy for gastric cancer: Is it promising?

    Institute of Scientific and Technical Information of China (English)

    Andreas P Sutter; Henry Fechner

    2006-01-01

    Gastric cancer is one of the most common tumors worldwide. The therapeutic outcome of conventional therapies is inefficient. Thus, new therapeutic strategies are urgently needed. Gene therapy is a promising molecular alternative in the treatment of gastric cancer,including the replacement of defective tumor suppressor genes, the inactivation of oncogenes, the introduction of suicide genes, genetic immunotherapy, anti-angiogenetic gene therapy, and virotherapy. Improved molecular biological techniques and a better understanding of gastric carcinogenesis have allowed us to validate a variety of genes as molecular targets for gene therapy.This review provides an update of the new developments in cancer gene therapy, new principles, techniques,strategies and vector systems, and shows how they may be applied in the treatment of gastric cancer.

  3. Prospectives for gene therapy of retinal degenerations.

    Science.gov (United States)

    Thumann, Gabriele

    2012-08-01

    Retinal degenerations encompass a large number of diseases in which the retina and associated retinal pigment epithelial (RPE) cells progressively degenerate leading to severe visual disorders or blindness. Retinal degenerations can be divided into two groups, a group in which the defect has been linked to a specific gene and a second group that has a complex etiology that includes environmental and genetic influences. The first group encompasses a number of relatively rare diseases with the most prevalent being Retinitis pigmentosa that affects approximately 1 million individuals worldwide. Attempts have been made to correct the defective gene by transfecting the appropriate cells with the wild-type gene and while these attempts have been successful in animal models, human gene therapy for these inherited retinal degenerations has only begun recently and the results are promising. To the second group belong glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). These retinal degenerations have a genetic component since they occur more often in families with affected probands but they are also linked to environmental factors, specifically elevated intraocular pressure, age and high blood sugar levels respectively. The economic and medical impact of these three diseases can be assessed by the number of individuals affected; AMD affects over 30 million, DR over 40 million and glaucoma over 65 million individuals worldwide. The basic defect in these diseases appears to be the relative lack of a neurogenic environment; the neovascularization that often accompanies these diseases has suggested that a decrease in pigment epithelium-derived factor (PEDF), at least in part, may be responsible for the neurodegeneration since PEDF is not only an effective neurogenic and neuroprotective agent but also a potent inhibitor of neovascularization. In the last few years inhibitors of vascularization, especially antibodies against vascular endothelial cell

  4. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pollom, Erqi L.; Deng, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Pai, Reetesh K. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C. [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States); Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California (United States)

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  5. Non-Viral Ocular Gene Therapy: Assessment and Future Directions

    OpenAIRE

    2008-01-01

    The purpose of this review is to give the general reader a brief overview of the current state of the field of non-viral ocular gene therapy. For multiple reasons the eye is an excellent organ for gene therapy application and while non-viral gene therapy modalities have been around for quite some time; they have only been applied to the eye in the last few years. This review will cover the exciting current trends in non-viral gene therapy and their application to the eye in addition to a brie...

  6. Gene therapy for the treatment of cystic fibrosis

    OpenAIRE

    2012-01-01

    Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy invol...

  7. Combination antibiotic therapy for community-acquired pneumonia

    OpenAIRE

    Caballero, Jesus; Rello, Jordi

    2011-01-01

    Community-acquired pneumonia (CAP) is a common and potentially serious illness that is associated with morbidity and mortality. Although medical care has improved during the past decades, it is still potentially lethal. Streptococcus pneumoniae is the most frequent microorganism isolated. Treatment includes mandatory antibiotic therapy and organ support as needed. There are several antibiotic therapy regimens that include β-lactams or macrolides or fluoroquinolones alone or in combination. Co...

  8. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound.

    Science.gov (United States)

    Omata, Daiki; Negishi, Yoichi; Suzuki, Ryo; Oda, Yusuke; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2015-01-01

    The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.

  9. 78 FR 70307 - Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy...

    Science.gov (United States)

    2013-11-25

    ... Investigational Cellular and Gene Therapy Products; Availability AGENCY: Food and Drug Administration, HHS. ACTION... entitled ``Guidance for Industry: Preclinical Assessment of Investigational Cellular and Gene Therapy... and Gene Therapies (OCTGT). The product areas covered by this guidance are cellular therapy,...

  10. Gene therapy takes a cue from HAART: combinatorial antiviral therapeutics reach the clinic.

    Science.gov (United States)

    Shah, Priya S; Schaffer, David V

    2010-06-16

    For the first time, scientists have tested a combination of three RNA-based gene therapies, delivered via a lentiviral vector, to target HIV in patients. This study not only demonstrates the safety and long-term viability of this approach, but also highlights areas in which focused improvements in gene therapy strategies may provide the most impact in increasingly translating promise in the laboratory to efficacy in the clinic.

  11. The role of combination therapy in the treatment of hypertension.

    Science.gov (United States)

    Ruilope, L M; Coca, A

    1998-01-01

    Antihypertensive therapy is indicated for reducing the risk of cardiovascular morbidity and mortality that accompanies arterial hypertension. Usually, pharmacological treatment is started as monotherapy, which, if unsuccessful, is followed by sequential monotherapy, or by combination therapy. Recent data indicate that combination therapy is required in more than 50% of the hypertensive population when the goal is to reduce blood pressure to below 140/90 mm Hg. The choice and doses of drugs used in combination therapy should be such that their synergistic effect on blood pressure is maximized, the tolerability of the drugs is maintained and side-effects are minimized. The combination of a dihydropyridine calcium antagonist with a beta-blocker or an angiotensin-converting enzyme (ACE) inhibitor is one of the most commonly used combination therapies. Two randomized, double-blind, parallel-group studies compared the antihypertensive effects of the dihydropyridine, barnidipine, with the beta-blocker, atenolol (n = 247), and the ACE inhibitor, enalapril (n = 155). The efficacy and tolerability of barnidipine in combination with either atenolol or enalapril was also investigated. Monotherapy with barnidipine was as effective in reducing blood pressure as monotherapy with either atenolol or enalapril. Combining barnidipine with either atenolol or enalapril reduced blood pressure further, and significantly increased the percentage of patients attaining the required reduction in blood pressure. When patients whose blood pressure was not adequately controlled by enalapril monotherapy were switched to barnidipine monotherapy, the majority then achieved the desired reduction in blood pressure. These results indicate that if barnidipine monotherapy fails to lower blood pressure to the desired values, its combination with either a beta-blocker or an ACE inhibitor is effective and well tolerated.

  12. Treating Hypothyroidism with Thyroxine/Triiodothyronine Combination Therapy in Denmark

    DEFF Research Database (Denmark)

    Michaelsson, Luba Freja; Medici, Bjarke Borregaard; la Cour, Jeppe Lerche

    2015-01-01

    BACKGROUND: Five to ten percent of patients with hypothyroidism describe persistent symptoms despite being biochemically well regulated on levothyroxine (L-T4). Thyroxine (T4)/triiodothyronine (T3) combination therapy [L-T4/liothyronine (L-T3) or desiccated thyroid] are still regarded as experime......BACKGROUND: Five to ten percent of patients with hypothyroidism describe persistent symptoms despite being biochemically well regulated on levothyroxine (L-T4). Thyroxine (T4)/triiodothyronine (T3) combination therapy [L-T4/liothyronine (L-T3) or desiccated thyroid] are still regarded...... after a patient published a book describing her experiences with hypothyroidism and treatment. OBJECTIVE: To investigate current Danish trends in the use of T4/T3 combination therapy. METHODS: We used an Internet-based questionnaire, distributed as a link via two Danish patient fora. Further...

  13. Experimental gene therapy using p21Waf1 gene for esophageal squamous cell carcinoma by gene gun technology.

    Science.gov (United States)

    Tanaka, Yuichi; Fujii, Teruhiko; Yamana, Hideaki; Kato, Seiya; Morimatsu, Minoru; Shirouzu, Kazuo

    2004-10-01

    In our previous study, the proliferation rate of esophageal squamous cell carcinoma cell lines, which poorly expressed p21Waf1, was found to be regulated by p21Waf1 gene transfection using adenovirus vector. In the present study, in order to examine the effect of p21Waf1 gene therapy in esophageal cancer, we used gene gun technology, which proved to be a powerful method to introduce the p21Waf1 gene into esophageal cancer cells. p21Waf1 transfection to KE3 and YES2 cells (weakly expressed p21Waf1 protein cells) showed a high expression of p21Waf1 protein after applying this gene gun technique. In KE3 and YES2 cells, statistical significant growth inhibition was observed after p21Waf1 transfection compared with LacZ transfection (KE3, p=0.0009; YES2, pgun technique significantly inhibited the low basal p21Waf1 expressed esophageal cancer cell growth in vitro and in vivo. Furthermore, p21Waf1 transfection strongly enhanced the effect of 5Fu suggesting that p21Waf1 may prove beneficial in chemotherapy combined with gene therapy using gene gun technology in patients with esophageal cancer who have a low level of p21Waf1 expressed tumor.

  14. Synthesis of Magnetic Nanoparticles for Application of Retroviral Vectors Mediated Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    Huan-Chiu Ku; Ming-Fong Tai; K.-H. William Lau; David Baylink; Shin-Tai Chen

    2004-01-01

    @@ Successful gene therapy depends on accurate delivery of therapeutic genes to target sites. In this report, we used magnetic nanopartieles to achieve this goal by developing magnetic Moloney leukemia virus-based (MRV) vectors. The vectors are combined by magnetic nanoparticles with the MRV viral vectors and can be guided to a specific site by an external magnetic filed.

  15. Improved animal models for testing gene therapy for atherosclerosis.

    Science.gov (United States)

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long

  16. Combined Chelation Therapy with Deferasirox and Deferoxamine in Thalassemia

    OpenAIRE

    Lal, Ashutosh; Porter, John; Sweeters, Nancy; Ng, Vivian; Evans, Patricia; Neumayr, Lynne; Kurio, Gregory; Harmatz, Paul; Vichinsky, Elliott

    2012-01-01

    Iron overload is the primary cause of mortality and morbidity in thalassemia major despite advances in chelation therapy. We performed a pilot clinical trial to evaluate the safety and efficacy of combined therapy with deferasirox (DFX, 20-30 mg/kg daily) and deferoxamine (DFO, 35-50 mg/kg on 3-7 days/week) in 22 patients with persistent iron overload or organ damage. In the 18 subjects completing 12 months of therapy, median liver iron concentration decreased by 31% from 17.4 mg/g (range 3.9...

  17. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    Science.gov (United States)

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment.

  18. Gene Therapy and Gene Editing for the Corneal Dystrophies.

    Science.gov (United States)

    Williams, Keryn A; Irani, Yazad D

    2016-01-01

    Despite ever-increasing understanding of the genetic underpinnings of many corneal dystrophies, gene therapy designed to ameliorate disease has not yet been reported in any human patient. In this review, we explore the likely reasons for this apparent failure of translation. We identify the requirements for success: the genetic defect involved must have been identified and mapped, vision in the affected patient must be significantly impaired or likely to be impaired, no better or equivalently effective treatment must be available, the treatment must be capable of modulating corneal pathology, and delivery of the construct to the appropriate cell must be practicable. We consider which of the corneal dystrophies might be amenable to treatment by genetic manipulations, summarize existing therapeutic options for treatment, and explore gene editing using clustered regularly interspaced short palindromic repeat/Cas and other similar transformative technologies as the way of the future. We then summarize recent laboratory-based advances in gene delivery and the development of in vitro and in vivo models of the corneal dystrophies. Finally, we review recent experimental work that has increased our knowledge of the pathobiology of these conditions.

  19. Genetically engineering adenoviral vectors for gene therapy.

    Science.gov (United States)

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter.

  20. Il2rg gene-targeted severe combined immunodeficiency pigs.

    Science.gov (United States)

    Suzuki, Shunichi; Iwamoto, Masaki; Saito, Yoriko; Fuchimoto, Daiichiro; Sembon, Shoichiro; Suzuki, Misae; Mikawa, Satoshi; Hashimoto, Michiko; Aoki, Yuki; Najima, Yuho; Takagi, Shinsuke; Suzuki, Nahoko; Suzuki, Emi; Kubo, Masanori; Mimuro, Jun; Kashiwakura, Yuji; Madoiwa, Seiji; Sakata, Yoichi; Perry, Anthony C F; Ishikawa, Fumihiko; Onishi, Akira

    2012-06-14

    A porcine model of severe combined immunodeficiency (SCID) promises to facilitate human cancer studies, the humanization of tissue for xenotransplantation, and the evaluation of stem cells for clinical therapy, but SCID pigs have not been described. We report here the generation and preliminary evaluation of a porcine SCID model. Fibroblasts containing a targeted disruption of the X-linked interleukin-2 receptor gamma chain gene, Il2rg, were used as donors to generate cloned pigs by serial nuclear transfer. Germline transmission of the Il2rg deletion produced healthy Il2rg(+/-) females, while Il2rg(-/Y) males were athymic and exhibited markedly impaired immunoglobulin and T and NK cell production, robustly recapitulating human SCID. Following allogeneic bone marrow transplantation, donor cells stably integrated in Il2rg(-/Y) heterozygotes and reconstituted the Il2rg(-/Y) lymphoid lineage. The SCID pigs described here represent a step toward the comprehensive evaluation of preclinical cellular regenerative strategies.

  1. [Gene replacement therapy in achromatopsia type 2].

    Science.gov (United States)

    Mühlfriedel, R; Tanimoto, N; Seeliger, M W

    2014-03-01

    Achromatopsia is an autosomal recessive inherited retinal disease caused by a complete loss of cone photoreceptor function. About 80 % of achromatopsia patients show mutations in the alpha or beta subunit (A3 and B3) of the cGMP controlled cation channel CNG (cyclic nucleotide-gated channel) of cone photoreceptors. Homologous to the human disease, CNGA3 deficient mice reveal a loss of cone specific functionality leading to degeneration of affected cone photoreceptors. The Institute for Ophthalmic Research in Tübingen has now succeeded in curing achromatopsia ACHM2 in an animal model. In this article, we explain the recombinant adeno-associated virus-based approach in detail. Furthermore, applied non-invasive diagnostic techniques for quality and success control, ERG, SLO and OCT, are described. The success of the therapy is indicated by a restored cone photoreceptor function as well as the neuronal processing of retinal signals resulting in a specific, cone-mediated behaviour. The outstanding results derived from the animal model are the starting point for the first human translation of a gene therapy for achromatopsia in Germany. Georg Thieme Verlag KG Stuttgart · New York.

  2. Gene Therapy for HIV Infections: Intracellular Immunization

    Directory of Open Access Journals (Sweden)

    Alain Piché

    1999-01-01

    Full Text Available Despite significant advances in the treatment of human immunodeficiency virus (HIV infection in the past 10 years, it remains an incurable disease. The inability of traditional drug-based therapies to inhibit HIV replication effectively for extended periods of time has stimulated intense research to develop novel approaches for this disease. Current understanding of HIV molecular biology and pathogenesis has opened the way for the development of gene therapy strategies for HIV infections. In this context, a number of intracellular immunization-based strategies have been evaluated, and some of them have reached the stage of phase I/II human clinical trials. These strategies include the use of single-chain antibodies, capsid-targeted viral inactivation, transdominant negative mutants, ribozymes, antisense oligonucleotides and RNA decoys. While a number of issues remain to be studied before intracellular immunization can be applied to the treatment of HIV infections, the significant progress already made in this field is likely to lead to clinical applications.

  3. Gene therapy and angiogenesis in patients with coronary artery disease

    DEFF Research Database (Denmark)

    Kastrup, Jens

    2010-01-01

    Not all patients with severe coronary artery disease can be treated satisfactorily with current recommended medications and revascularization techniques. Various vascular growth factors have the potential to induce angiogenesis in ischemic tissue. Clinical trials have only evaluated the effect...... of VEGF and FGF in patients with coronary artery disease. The initial small and unblinded studies with either recombinant growth factor proteins or genes encoding growth factors were encouraging, demonstrating both clinical improvement and evidence of angiogenesis. However, subsequent larger double...... an improvement in clinical results can be obtained with a cocktail of growth factors or by a combination of gene and stem cell therapy in patients with severe coronary artery disease, which cannot be treated effectively with current treatment strategies....

  4. The Application of Nanoparticles in Gene Therapy and Magnetic Resonance Imaging

    Science.gov (United States)

    HERRANZ, FERNANDO; ALMARZA, ELENA; RODRÍGUEZ, IGNACIO; SALINAS, BEATRIZ; ROSELL, YAMILKA; DESCO, MANUEL; BULTE, JEFF W.; RUIZ-CABELLO, JESÚS

    2012-01-01

    The combination of nanoparticles, gene therapy, and medical imaging has given rise to a new field known as gene theranostics, in which a nanobioconjugate is used to diagnose and treat the disease. The process generally involves binding between a vector carrying the genetic information and a nanoparticle, which provides the signal for imaging. The synthesis of this probe generates a synergic effect, enhancing the efficiency of gene transduction and imaging contrast. We discuss the latest approaches in the synthesis of nanoparticles for magnetic resonance imaging, gene therapy strategies, and their conjugation and in vivo application. PMID:21484943

  5. Combined statin-fibrate therapy-induced rhabdomyolysis: Case report

    Directory of Open Access Journals (Sweden)

    Jozić Tanja L.

    2014-01-01

    Full Text Available Introduction Rhabdomyolysis is a rare, but serious and potentially fatal adverse reaction of the statin application that may be developed in any time of therapy. It is characterized by massive destruction of muscles associated with the large increase of creatine kinase (CK leading to myoglobinuria and potential acute renal failure. Combined statin-fibrate therapy increases the risk of rhabdomyolysis, especially in elderly and diabetic patients. Case report An 81-year-old male was admitted to Coronary Care Unit of the Emergency Center, Clinical Center of Serbia (CCS with the clinical picture and electrocardiogram of the acute anterior wall myocardial infarction complicated with pulmonary edema. Laboratory tests on admission showed higher elevated values of serum creatinine 179 μmol/L and BUN 9.2 mmol/L (eGFR 32 mL/min/1.73m2, CK 309 U/L (on day 2: 3476 U/L and mixed hyperlipidemia (total cholesterol 10.3 mmol/L, HDL 2.26 mmol/L, TG 4.85 mmol/L. The patient was treated with thrombolysis medication therapy (Alteplase, anticoagulant and dual antiplatelet therapy, diuretics, organic nitrates, angiotensin-converting enzyme (ACE inhibitors, antibiotics, and proton pump inhibitors. During seven days, his therapy included combined pravastatin 20 mg and fenofibrate (160 mg, which was discontinued due to pains and weakness of muscles and significantly elevated CC to 7080 U/L (upper limit 200 U/L, but no significant deterioration of renal function was observed. Discontinuation of therapy resulted in CC level normalization and improvement of clinical condition. Conclusion Combined statin and fibrate therapy requires strict clinical control and monitoring of CK i transaminases. Four-time or higher increase of CK requires discontinuation of therapy. In addition, patients are advised to report immediately any pains in muscles, sensibility, weakness or cramps.

  6. Sonodynamic therapy with photosensitizers and its combination with photodynamic therapy in treatment of malignant tumors

    Directory of Open Access Journals (Sweden)

    D. A. Zerkovskiy

    2014-01-01

    Full Text Available The article reviews mechanisms of sonodynamic therapy with photosensitizers (ultrasound + photosensitizer and combination of sonodynamic with photodynamic therapy (ultrasound + photosensitizer + light exposure for treatment of malignant tumors. Efficacy of these methods with photosensitizers of different chemical structure in experimental study in vitro and in vivo on different tumor models and in clinical trials was assessed. 

  7. Newer approaches in topical combination therapy for acne.

    Science.gov (United States)

    Fu, Lisa W; Vender, Ronald B

    2011-10-01

    Acne vulgaris is a common chronic inflammatory cutaneous disease involving the pilosebaceous unit. Its pathophysiology is multifactorial and complex, including obstruction of the pilosebaceous unit due to increased sebum production, abnormal keratinization, proliferation of Propionibacterium acnes (P. acnes), and inflammation. Topical agents are the most commonly used therapy for acne. First generation topicals mainly consist of single agent retinoids, benzoyl peroxide (BPO) and antibacterials that target comedones, P. acnes, and inflammation. Novel topical therapies include combination products with advanced vehicle formulations that target multiple acne pathophysiologies and offer simplified treatment regimes. For example, the combination of clindamycin and tretinoin in a unique vehicle formulation allows for progressive follicle penetration and decreased irritation, resulting in increased efficacy. Furthermore, adapalene or clindamycin with BPO combinations target comedones, inflammation, and P. acnes synergistically. These newer combination products have the potential to increase both efficacy and patient adherence when compared with single agent treatment.

  8. Gene replacement therapy for retinal CNG channelopathies.

    Science.gov (United States)

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  9. 用于肿瘤联合治疗的基因和化疗药物纳米共载体系的研究进展%Research progress in co-delivery of gene and chemotherapy drugs with nanocarriers for combination cancer therapy

    Institute of Scientific and Technical Information of China (English)

    魏向娟; 秦靖雯; 张刘源; 陈贵梅; 南文滨; 陈红丽

    2016-01-01

    化学药物治疗(化疗)或基因治疗单独使用治疗肿瘤均具有较多缺陷,而将两者联合应用能协同治疗肿瘤,克服单一疗法的不足.纳米载体既能包载化疗药物又能递送基因,其用于肿瘤的联合治疗,可减少化疗药物的剂量,增加药物在靶器官的分布量,减轻毒副作用,从而提高抗肿瘤效果;同时保护携带基因的稳定性和完整性,一定程度上提高基因的转染效率,以达到减轻毒副作用及提高疗效的协同目的.基因和化疗药物纳米共载体系用于肿瘤的联合治疗是近年来肿瘤治疗的研究热点.就基因和化疗药物纳米共载体系的类型及负载基因类型,特别是纳米共载体系用于肿瘤联合治疗的研究进行总结和展望.%Chemotherapy or gene therapy has many defects when used alone in the treatment of cancers.Co-delivery of chemotherapy drugs and gene therapy could achieve synergistic therapeutic effect and overcome the shortcomings of monotherapy.Nanocarrier can package chemotherapy drugs and deliver genes for combination cancer therapy,which will increase the amount of the drug distribution in target organ and reduce the toxic side effects,thus enhancing the treatment efficacy.Meanwhile,the nanocarrier can protect the stability and integrity of genes,and improve the efficiency of gene transfection to a certain extent,to achieve the purpose of reducing side effects and improving the synergetic effects of the therapy.Co-delivery of gene and chemotherapy drugs with nanocarriers for combination cancer therapy is currently the hotspot of tumor treatment.The types of co-delivery carriers for gene and chemotherapy drugs and loading genetic types are summarized as well.On the basis,future research prospect is discussed.

  10. Combination DMARD therapy including corticosteroids in early rheumatoid arthritis.

    Science.gov (United States)

    Möttönen, T T; Hannonen, P J; Boers, M

    1999-01-01

    A number of reports indicating the growing acceptance of simultaneous therapy with multiple disease-modifying anti-rheumatic drugs (DMARDs), as well as the use of more aggressive treatment measures in the early phases of disease to combat rheumatoid arthritis (RA), have appeared during the last decade. However, only a few randomized controlled clinical trials have been conducted on the use of DMARD combinations in early RA. We review these trials in this article. In two separate one-year studies combination therapy with sulphasalazine (SSZ) and methotrexate (MTX) seemed to offer no benefits compared to either drug used as monotherapy. On the other hand, the DMARD combinations so far proven to be superior to single DMARDs have initially also included a corticosteroid component. In the COBRA study (Combinatietherapie Bij Reumatoide Artritis) the combination of SSZ (2 gm/day), MTX (7.5 mg/week for 40 weeks), and prednisolone (Prd) (initially 60 mg/day, tapered in 6 weekly steps to 7.5 mg/day and stopped after 28 weeks) compared to SSZ alone (2 gm/day) resulted in significantly better clinical outcomes at week 28. Although the difference in clinical response between the treatment arms was lost at week 58, the progression of joint damage remained statistically significantly slower at week 80 in the patients initially assigned to the combination therapy. Furthermore, in the FIN-RACo trial (Finnish Rheumatoid Arthritis Combination Therapy Trial), therapy using a "tailored-steps" strategy with SSZ (1-2 gm/day), MTX (7.5-1.5 mg/week), hydroxychloroquine (300 mg/day), and Prd (up to 10 mg/day) yielded a significantly increased remission rate and less peripheral joint damage at two years than the single DMARD treatment strategy (initially SSZ 2 gm/day), with or without Prd. Adverse effects in both study arms were comparable. Two additional preliminary reports (in abstract form) suggest that intensive local therapy in the form of intra-articular injections added to single or

  11. Adenoviral gene therapy in gastric cancer: A review

    Institute of Scientific and Technical Information of China (English)

    Nima Khalighinejad; Hesammodin Hariri; Omid Behnamfar; Arash Yousefi; Amir Momeni

    2008-01-01

    Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors.Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.

  12. Combination therapy: the propitious rationale for drug development.

    Science.gov (United States)

    Phougat, Neetu; Khatri, Savita; Singh, Anu; Dangi, Mrridula; Kumar, Manish; Dabur, Rajesh; Chhillar, Anil Kumar

    2014-01-01

    Therapeutic options for many infections are extremely limited and at crisis point. We run the risk of entering a second pre-antibiotic era. There had been no miracle drug for the patients infected by resistant microbial pathogens. Most of the very few new drugs under development have problems with their toxicity, or pharmacokinetics and pharmacodynamics. We are already decades behind in the discovery, characterization and development of new antimicrobials. In that scenario, we could not imagine surviving without newer and effective antimicrobial agents. Bacteria have been the champions of evolution and are still evolving continuously, where they pose serious challenges for humans. Along with the crisis of evolving resistance, the condition is made worst by the meager drug pipeline for new antimicrobials. Despite ongoing efforts only 2 new antibiotics (Telavancin in 2009 and Ceftaroline fosamil in 2010) have been approved since 2009 pipeline status report of Infectious Disease Society of America (IDSA). Recent approval of new combination based antiviral drugs such as Stribild (combination of four drugs for HIV treatment) and Menhibrix (combination vaccine to prevent meningococcal disease and Haemophilus influenzae type b in children) proves that combination therapy is still the most promising approach to combat the ever evolving pathogens. Combination therapy involves the drug repurposing and regrouping of the existing antimicrobial agents to provide a synergistic approach for management of infectious diseases. This review article is an effort to highlight the challenges in new drug development and potential of combination drug therapy to deal with them.

  13. Combination therapy in hypertension: an Asia-Pacific consensus viewpoint.

    Science.gov (United States)

    Abdul Rahman, Abdul Rashid; Reyes, Eugenio B; Sritara, Piyamitr; Pancholia, Arvind; Van Phuoc, Dang; Tomlinson, Brian

    2015-05-01

    Hypertension incurs a significant healthcare burden in Asia-Pacific countries, which have suboptimal rates of blood pressure (BP) treatment and control. A consensus meeting of hypertension experts from the Asia-Pacific region convened in Hanoi, Vietnam, in April 2013. The principal objectives were to discuss the growing problem of hypertension in the Asia-Pacific region, and to develop consensus recommendations to promote standards of care across the region. A particular focus was recommendations for combination therapy, since it is known that most patients with hypertension will require two or more antihypertensive drugs to achieve BP control, and also that combinations of drugs with complementary mechanisms of action achieve BP targets more effectively than monotherapy. The expert panel reviewed guidelines for hypertension management from the USA and Europe, as well as individual Asia-Pacific countries, and devised a treatment matrix/guide, in which they propose the preferred combination therapy regimens for patients with hypertension, both with and without compelling indications. This report summarizes key recommendations from the group, including recommended antihypertensive combinations for specific patient populations. These strategies generally entail initiating therapy with free drug combinations, starting with the lowest available dosage, followed by treatment with single-pill combinations once the BP target has been achieved. A single reference for the whole Asia-Pacific region may contribute to increased consistency of treatment and greater proportions of patients achieving BP control, and hence reducing hypertension-related morbidity and mortality.

  14. Prospects for Gene Therapy in the Fragile X Syndrome

    Science.gov (United States)

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  15. Prospects for Gene Therapy in the Fragile X Syndrome

    Science.gov (United States)

    Rattazzi, Mario C.; LaFauci, Giuseppe; Brown, W. Ted

    2004-01-01

    Gene therapy is unarguably the definitive way to treat, and possibly cure, genetic diseases. A straightforward concept in theory, in practice it has proven difficult to realize, even when directed to easily accessed somatic cell systems. Gene therapy for diseases in which the central nervous system (CNS) is the target organ presents even greater…

  16. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  17. Gene therapy and peripheral nerve repair : a perspective

    NARCIS (Netherlands)

    Hoyng, Stefan A; de Winter, Fred; Tannemaat, Martijn R; Blits, Bas; Malessy, Martijn J A; Verhaagen, J.

    2015-01-01

    Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan's, Parkinson's (PD) and Alzheimer's disease (AD), retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral

  18. Regulatory considerations for translating gene therapy: a European Union perspective.

    Science.gov (United States)

    Galli, Maria Cristina

    2009-11-11

    A preclinical study on a gene therapy approach for treatment of the severe muscle weakness associated with a variety of neuromuscular disorders provides a forum to discuss the translational challenges of gene therapy from a regulatory point of view. In this Perspective, the findings are considered from the view of European regulatory requirements for first clinical use.

  19. Effect of photodynamic therapy combined with intravitreal injection of Lucentis therapy on choroidal neovascularization

    Institute of Scientific and Technical Information of China (English)

    Yan-Mei Su

    2016-01-01

    Objective:To analyze the efficacy of photodynamic therapy combined with intravitreal injection of Lucentis therapy for choroidal neovascularization.Methods: A total of 82 cases with choroidal neovascularization receiving inpatient therapy in our hospital from August 2013 to August 2014 were selected as research subjects, and according to random number table method, all enrolled patients were divided into control group (received photodynamic therapy) and observation group (received photodynamic therapy combined with intravitreal injection of Lucentis therapy), each group with 41 cases. Differences in best corrected visual acuity, intraocular pressure and central macular thickness, mean sensitivity of visual field and so on of two groups were compared.Results:After treatment, visual acuity improvement ratio of observation group was significantly higher than that of control group and visual acuity decrease ratio was lower than that of control group (P<0.05); intraocular pressure and central macular thickness were significantly less than those of control group (P<0.05); mean sensitivity of 10o and 30o visual field was higher than that of control group (P<0.05).Conclusions:Photodynamic therapy combined with intravitreal injection of Lucentis therapy can effectively improve vision and visual acuity of patients with choroidal neovascularization and reduce intraocular pressure and central macular thickness; it is an ideal treatment method.

  20. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  1. Cardiac gene therapy: Recent advances and future directions.

    Science.gov (United States)

    Mason, Daniel; Chen, Yu-Zhe; Krishnan, Harini Venkata; Sant, Shilpa

    2015-10-10

    Gene therapy has the potential to serve as an adaptable platform technology for treating various diseases. Cardiovascular disease is a major cause of mortality in the developed world and genetic modification is steadily becoming a more plausible method to repair and regenerate heart tissue. Recently, new gene targets to treat cardiovascular disease have been identified and developed into therapies that have shown promise in animal models. Some of these therapies have advanced to clinical testing. Despite these recent successes, several barriers must be overcome for gene therapy to become a widely used treatment of cardiovascular diseases. In this review, we evaluate specific genetic targets that can be exploited to treat cardiovascular diseases, list the important delivery barriers for the gene carriers, assess the most promising methods of delivering the genetic information, and discuss the current status of clinical trials involving gene therapies targeted to the heart.

  2. Antibiotic combination therapy can select for broad-spectrum multidrug resistance in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm; Marvig, Rasmus L.

    2016-01-01

    Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin with the resi......Combination therapy with several antibiotics is one strategy that has been applied in order to limit the spread of antimicrobial resistance. We compared the de novo evolution of resistance during combination therapy with the β-lactam ceftazidime and the fluoroquinolone ciprofloxacin...... regulator gene nfxB conferring ciprofloxacin resistance, or in the gene encoding the non-essential penicillin-binding protein DacB conferring ceftazidime resistance. Reconstruction of resistance mutations by allelic replacement and in vitro fitness assays revealed that in contrast to single antibiotic use...

  3. Development of gene and stem cell therapy for ocular neurodegeneration

    Institute of Scientific and Technical Information of China (English)

    Jing-Xue; Zhang; Ning-Li; Wang; Qing-Jun; Lu

    2015-01-01

    Retinal degenerative diseases pose a serious threat to eye health, but there is currently no effective treatment available. Recent years have witnessed rapid development of several cutting-edge technologies, such as gene therapy, stem cell therapy, and tissue engineering. Due to the special features of ocular structure, some of these technologies have been translated into ophthalmological clinic practice with fruitful achievements, setting a good example for other fields. This paper reviews the development of the gene and stem cell therapies in ophthalmology.

  4. Advances in Gene Therapy for Diseases of the Eye.

    Science.gov (United States)

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-08-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future.

  5. [Progress in gene therapy study of Leber congenital amaurosis].

    Science.gov (United States)

    Pan, Shan-Shan; Zheng, Qin-Xiang; Li, Wen-Sheng; Pang, Ji-Jing

    2011-01-01

    Leber congenital amaurosis (LCA) is an early onset retinal dystrophy that causes severe visual impairment. With the development of molecular genetics and the therapeutic gene replacement technology, the adeno-associated viral (AAV) vector-mediated gene therapy for LCA achieved encouraging progress in the past decade. The success of the Phase I clinical trials of human RPE65 gene therapy for LCA II patients makes it a pioneer in the field of retinal gene therapy and brings light to the cure of other hereditary retinopathy. This article briefly reviews the recent developments in the preclinical animal experiments and Phase I clinical trials for LCA.

  6. Advances in Gene Therapy for Diseases of the Eye

    Science.gov (United States)

    Petit, Lolita; Khanna, Hemant; Punzo, Claudio

    2016-01-01

    Over the last few years, huge progress has been made with regard to the understanding of molecular mechanisms underlying the pathogenesis of neurodegenerative diseases of the eye. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Challenges regarding the efficacy and efficiency of therapeutic gene delivery have driven the development of novel therapeutic approaches, which continue to evolve the field of ocular gene therapy. In this review article, we will discuss the evolution of preclinical and clinical strategies that have improved gene therapy in the eye, showing that treatment of vision loss has a bright future. PMID:27178388

  7. Taking stock of gene therapy for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Alton Eric WFW

    2000-09-01

    Full Text Available Abstract The identification of the cystic fibrosis (CF gene opened the way for gene therapy. In the ten years since then, proof of principle in vitro and then in animal models in vivo has been followed by numerous clinical studies using both viral and non-viral vectors to transfer normal copies of the gene to the lungs and noses of CF patients. A wealth of data have emerged from these studies, reflecting enormous progress and also helping to focus and define key difficulties that remain unresolved. Gene therapy for CF remains the most promising possibility for curative rather than symptomatic therapy.

  8. Effectiveness of medication / auricular therapy / phyto-therapy combination in the treatment of hypertensive patients

    Directory of Open Access Journals (Sweden)

    José Ramón Martínez Pérez

    2015-10-01

    Full Text Available Background: hypertension is one of the main cardiovascular risk factors, so its control improves the life expectancy of patients.Objective: to assess the effects of a treatment combining medication with auricular therapy and phyto-therapy in hypertensive patients assisted at the health area of ”Romárico Oro” Polyclinic, in Puerto Padre, Las Tunas province.Methods: an intervention study was carried out in 68 hypertensive patients of the health area of “Romárico Oro” Polyclinic in Puerto Padre from April, 2013 to April, 2014. The patients were distributed at random into two equal groups; the first received medication combined with auricular therapy and phyto-therapy, while the second one received only medication. The statistical analysis was done by means of Statistic system, t-student and Chi-Square tests were used and p< or =0.05 was considered as level of statistical significance.Results: by the end of the intervention, 73, 53% of the patients of the group with the combination of drug treatment and auricular therapy and phyto-therapy were controlled. In this group, the diastolic filling pressure diminished to 2, 2 mm Hg and the systolic gradient to 3, 66 mm, regarding the group treated only with drugs. Only one patient, representing the 2, 94% showed adverse reaction to the natural and traditional treatment.Conclusions: the combination of medication with auricular therapy and phyto-therapy proved to be effective, corroborated by a significant decrease of quantity of crisis, diastolic and systolic filling pressure values and increase of number of patients with their disease controlled; the report of only one complication shows the innocuousness of the auricular therapy and phyto-therapy treatment.

  9. Human gene therapy: a brief overview of the genetic revolution.

    Science.gov (United States)

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  10. Safety profile, efficacy, and biodistribution of a bicistronic high-capacity adenovirus vector encoding a combined immunostimulation and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Puntel, Mariana [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Ghulam, Muhammad A.K.M. [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Farrokhi, Catherine [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); VanderVeen, Nathan; Paran, Christopher; Appelhans, Ashley [Department of Neurosurgery, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Department of Cell and Developmental Biology, The University of Michigan School of Medicine, MSRB II, RM 4570C, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5689 (United States); Kroeger, Kurt M.; Salem, Alireza [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Lacayo, Liliana [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Pechnick, Robert N. [Department of Psychiatry and Behavioral Neurosciences, Cedars Sinai Medical Center, Los Angeles, CA 90048 (United States); Department of Psychiatry and Behavioral Neurosciences, David Geffen School of Medicine, University of California, Los Angeles, CA (United States); Kelson, Kyle R.; Kaur, Sukhpreet; Kennedy, Sean [Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 (United States); Palmer, Donna; Ng, Philip [Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 (United States); and others

    2013-05-01

    Adenoviral vectors (Ads) are promising gene delivery vehicles due to their high transduction efficiency; however, their clinical usefulness has been hampered by their immunogenicity and the presence of anti-Ad immunity in humans. We reported the efficacy of a gene therapy approach for glioma consisting of intratumoral injection of Ads encoding conditionally cytotoxic herpes simplex type 1 thymidine kinase (Ad-TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Ad-Flt3L). Herein, we report the biodistribution, efficacy, and neurological and systemic effects of a bicistronic high-capacity Ad, i.e., HC-Ad-TK/TetOn-Flt3L. HC-Ads elicit sustained transgene expression, even in the presence of anti-Ad immunity, and can encode large therapeutic cassettes, including regulatory elements to enable turning gene expression “on” or “off” according to clinical need. The inclusion of two therapeutic transgenes within a single vector enables a reduction of the total vector load without adversely impacting efficacy. Because clinically the vectors will be delivered into the surgical cavity, normal regions of the brain parenchyma are likely to be transduced. Thus, we assessed any potential toxicities elicited by escalating doses of HC-Ad-TK/TetOn-Flt3L (1 × 10{sup 8}, 1 × 10{sup 9}, or 1 × 10{sup 10} viral particles [vp]) delivered into the rat brain parenchyma. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points. The results indicate that doses up to 1 × 10{sup 9} vp of HC-Ad-TK/TetOn-Flt3L can be safely delivered into the normal rat brain and underpin further developments for its implementation in a phase I clinical trial for glioma. - Highlights: ► High capacity Ad vectors elicit sustained therapeutic gene expression in the brain. ► HC-Ad-TK/TetOn-Flt3L encodes two therapeutic genes and a transcriptional switch. ► We performed a dose escalation study at

  11. Precision medicine and personalized breast cancer: combination pertuzumab therapy

    Directory of Open Access Journals (Sweden)

    Reynolds K

    2014-03-01

    Full Text Available Kerry Reynolds, Sasmit Sarangi, Aditya Bardia, Don S Dizon Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA Abstract: Trastuzumab (Herceptin, a monoclonal antibody directed against the human epidermal growth-factor receptor 2 (HER2, is the poster child for antibody-based targeted therapy in breast cancer. Pertuzumab, another humanized monoclonal antibody, binds to a different domain of HER2 and prevents the formation of HER2:HER3 dimers, which is the most potent heterodimer in the HER family. The combination of trastuzumab and pertuzumab has synergistic activity, and is associated with improved clinical outcomes. The US Food and Drug Administration (FDA approved pertuzumab in combination with trastuzumab-based chemotherapy originally as first-line therapy for metastatic HER2-positive breast cancer in 2012, and more recently as neoadjuvant therapy for localized disease in 2013. Pertuzumab is the first neoadjuvant drug to receive accelerated approval by the FDA based on pathological complete response as the primary end point. In this article, we review the mechanism of action, pharmacokinetics, clinical efficacy, safety, and current role of pertuzumab in the management of breast cancer, as well as ongoing clinical trials and future directions regarding the utility of pertuzumab as a personalized therapeutic option for HER2-positive breast cancer. In the coming years, we anticipate increased utilization of neoadjuvant trials for drug development, biomarker discovery, and validation, and envision conduct of personalized breast cancer clinics in which therapies will be routinely selected based on genetic alterations in the tumor. Regardless of the targeted therapy combinations employed based on tumor genomic profile, trastuzumab and pertuzumab will likely continue to form the backbone of the personalized regimen for HER2-positive breast cancer. Keywords: pertuzumab, HER2 breast cancer, personalized therapy

  12. Nanoparticle-mediated p53 gene therapy for tumor inhibition

    OpenAIRE

    Sharma, Blanka; Ma, Wenxue; Adjei, Isaac Morris; Panyam, Jayanth; Dimitrijevic, Sanja; Labhasetwar, Vinod

    2011-01-01

    The p53 tumor suppressor gene is mutated in 50% of human cancers, resulting in more aggressive disease with greater resistance to chemotherapy and radiation therapy. Advances in gene therapy technologies offer a promising approach to restoring p53 function. We have developed polymeric nanoparticles (NPs), based on poly (lactic-co-glycolic acid), that provide sustained intracellular delivery of plasmid DNA, resulting in sustained gene expression without vector-associated toxicity. Our previous...

  13. Advances in gene therapy technologies to treat retinitis pigmentosa

    OpenAIRE

    2013-01-01

    Hilda Petrs-Silva, Rafael LindenInstitute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, BrazilAbstract: Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant a...

  14. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    OpenAIRE

    Md Zahidul Islam Pranjol; Amin Hajitou

    2015-01-01

    Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent dev...

  15. Amlodipine/benazepril: fixed dose combination therapy for hypertension.

    Science.gov (United States)

    Faulkner, M A; Hilleman, D E

    2001-01-01

    Myocardial infarction, stroke, heart failure and end-stage renal disease have all been linked to inadequate control of blood pressure. Despite overwhelming evidence that uncontrolled hypertension is responsible for a sizeable number of adverse health-related outcomes, control of the disease remains considerably suboptimal. Available data demonstrate that in order to achieve adequate blood pressure control, a large number of patients require therapy with more than one medication. Fixed dose combination antihypertensive therapy has many advantages over other treatment options. Positive effects on blood pressure control, rates of adherence, adverse effects and cost have been identified. Amlodipine/benazepril (Lotrel), Novartis) is a fixed dose combination product indicated for the treatment of hypertension. Although not currently recommended as first-line therapy, studies confirm that this combination of a long-acting calcium antagonist and an angiotensin-converting enzyme (ACE) inhibitor possesses substantial blood pressure lowering capabilities. Whereas adverse events tend to become more frequent with increasing doses of antihypertensive monotherapy, the rate of adverse events attributed to amlodipine/benazepril in clinical trials often correlates with rates ascribed to placebo. Amlodipine/benazepril is capable of sustaining blood pressure control over a 24 h period and appears to be minimally affected by an occasional dose omission. Unlike the older calcium antagonists, amlodipine is unlikely to cause alterations in myocardial contractility. Additionally, the amlodipine/benazepril combination product costs less than the same therapy administered as the individual components. It is, therefore, reasonable to consider therapy with amlodipine/benazepril in appropriate patients after an adequate trial of antihypertensive monotherapy.

  16. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  17. Optimizing antimicrobial therapy of sepsis and septic shock: focus on antibiotic combination therapy.

    Science.gov (United States)

    Vazquez-Grande, Gloria; Kumar, Anand

    2015-02-01

    There has been little improvement in septic shock mortality in the past 70 years, despite ever more broad-spectrum and potent antimicrobials. In the past, resuscitative elements have been the primary area of clinical septic shock management and research. The question of the optimal use of antimicrobial therapy was relatively ignored in recent decades. This review explores the pathophysiology of sepsis in an attempt to produce a better understanding and define key determinants of antimicrobial therapy response in septic shock. Optimizing existing antimicrobials delivery can drive significant improvements in the outcome of sepsis and septic shock. Inappropriate antimicrobial selection and dosing or delays in the administration substantially increase mortality and morbidity in life-threatening infections. Definitive combination therapy (where a pathogen known to be susceptible to a given agent is additionally covered by another agent) remains controversial. Although some in vitro studies, animal models, and clinical studies of infection including endocarditis, gram-negative bacteremia, and neutropenic infections have supported combination therapy, the potential clinical benefit in other severe infections has been questioned. Several meta-analyses have failed to demonstrate improvement of outcome with combination therapy in immunocompetent patients with sepsis and/or gram-negative bacteremia. These meta-analyses did not undertake subgroup analyses of the septic shock population. This article reviews the existing evidence supporting combination therapy for severe infections, sepsis, and septic shock.

  18. Effects of thermal therapy combining sauna therapy and underwater exercise in patients with fibromyalgia.

    Science.gov (United States)

    Matsumoto, Shuji; Shimodozono, Megumi; Etoh, Seiji; Miyata, Ryuji; Kawahira, Kazumi

    2011-08-01

    Fibromyalgia syndrome (FMS) is a chronic disorder that is characterized by widespread pain with localized tenderness. We aimed to investigate whether thermal therapy combining sauna therapy and underwater exercise improved pain, symptoms, and quality of life (QOL) in FMS patients. Forty-four female FMS patients who fulfilled the American College of Rheumatology (ACR) criteria received 12-week thermal therapy program comprising sauna therapy once daily for 3 days/week and underwater exercise once daily for 2 days/week. Pain, symptoms, and QOL were assessed using a pain visual analog scale (VAS), a fibromyalgia impact questionnaire (FIQ), and a short form 36-item questionnaire (SF-36), respectively. All of the patients reported significant reductions in pain and symptoms of 31-77% after the 12-week thermal therapy program, which remained relatively stable (28-68%) during the 6-month follow-up period (that is, the thermal therapy program improved both the short-term and the long-term VAS and FIQ scores). Improvements were also observed in the SF-36 score. Thermal therapy combining sauna therapy and underwater exercise improved the QOL as well as the pain and symptoms of FMS patients.

  19. Is fixed combination therapy appropriate for initial hypertension treatment?

    Science.gov (United States)

    Elliott, William J

    2002-08-01

    Recent clinical trials in hypertension prove how seldom single drug therapy achieves target blood pressure (BP) and reduces cardiovascular morbidity and mortality. A natural response is the testing and marketing of fixed-dose combination products for hypertension, of which 14 have been approved in the United States since 1993. Currently, only five products are indicated by the Food and Drug Administration for initial therapy of hypertension; all include a diuretic. To achieve such an indication, studies must show not only safety and efficacy of the combination, but also BP lowering that is at least additive compared with the two agents given separately, as well as a "synergy" not present when each agent is given alone. Some advantages to initial combination therapy include greater BP reduction, improved adherence to pill taking, fewer side effects, and lower cost. The most likely candidates for initial combination therapy are patients with initial BP higher than 160/100 mm Hg, or those with a BP goal lower than the customary 140/90 mm Hg. These include patients with target organ damage, clinical cardiovascular disease, proteinuria, renal impairment, or diabetes mellitus. In many of these circumstances, an angiotensin converting enzyme inhibitor or angiotensin II receptor antagonist is frequently recommended; adding a diuretic or calcium antagonist to it is much more likely to result in achievement of the BP goal. More research is being done to explore the combination of not only two representatives from classes of conventional agents, but also other drugs that may help address the multiple manifestations of the "metabolic syndrome" that often accompanies hypertension.

  20. Myostatin: genetic variants, therapy and gene doping

    Directory of Open Access Journals (Sweden)

    André Katayama Yamada

    2012-09-01

    Full Text Available Since its discovery, myostatin (MSTN has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.Desde sua descoberta, a miostatina (MSTN entrou na linha de frente em pesquisas relacionadas às terapias musculares porque mutações intrínsecas ou inibição desta proteína tanto por abordagens farmacológicas como genéticas resultam em hipertrofia muscular e hiperplasia. Além do aumento da massa muscular, a inibição de MSTN potencialmente prejudica o tecido conectivo, modula a força muscular, facilita o transplante de mioblastos, promove regeneração tecidual, induz termogênese no tecido adiposo e aumenta a oxidação na musculatura esquelética. É também sabido que os atuais avanços em terapia gênica têm uma relação com o esporte devido ao uso ilícito de tal método. Os efeitos adversos de tal abordagem, seus efeitos no desempenho de atletas e métodos para detectar doping genético s

  1. Ultrasound-targeted microbubble destruction in gene therapy: A new tool to cure human diseases

    Directory of Open Access Journals (Sweden)

    Jun Wu

    2017-06-01

    Full Text Available Human gene therapy has made significant advances in less than two decades. Within this short period of time, gene therapy has proceeded from the conceptual stage to technology development and laboratory research, and finally to clinical trials for the treatment of a variety of deadly diseases. Cardiovascular disease, cancer, and stroke are leading causes of death worldwide. Despite advances in medical, interventional, radiation and surgical treatments, the mortality rate remains high, and the need for novel therapies is great. Gene therapy provides an efficient approach to disease treatment. Notable advances in gene therapy have been made for genetic disorders, including severe combined immune deficiency, chronic granulomatus disorder, hemophilia and blindness, as well as for acquired diseases, including cancer and neurodegenerative and cardiovascular diseases. However, lack of an efficient delivery system to target cells as well as the difficulty of sustained expression of transgenes has hindered advancements in gene therapy. Ultrasound targeted microbubble destruction (UTMD is a promising approach for target-specific gene delivery, and it has been successfully investigated for the treatment of many diseases in the past decade. In this paper, we review UTMD-mediated gene delivery for the treatment of cardiovascular diseases, cancer and stroke.

  2. Bacteria as vectors for gene therapy of cancer.

    LENUS (Irish Health Repository)

    Baban, Chwanrow K

    2012-01-31

    Anti-cancer therapy faces major challenges, particularly in terms of specificity of treatment. The ideal therapy would eradicate tumor cells selectively with minimum side effects on normal tissue. Gene or cell therapies have emerged as realistic prospects for the treatment of cancer, and involve the delivery of genetic information to a tumor to facilitate the production of therapeutic proteins. However, there is still much to be done before an efficient and safe gene medicine is achieved, primarily developing the means of targeting genes to tumors safely and efficiently. An emerging family of vectors involves bacteria of various genera. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally. Furthermore, invasive species can deliver heterologous genes intra-cellularly for tumor cell expression. Here, we review the use of bacteria as vehicles for gene therapy of cancer, detailing the mechanisms of action and successes at preclinical and clinical levels.

  3. 75 FR 65640 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-26

    ... HUMAN SERVICES Food and Drug Administration Cellular, Tissue and Gene Therapies Advisory Committee... and Gene Therapies Advisory Committee. General Function of the Committee: To provide advice and... Tumor Vaccines and Biotechnology Branch, Office of Cellular, Tissue and Gene Therapies, Center...

  4. Vector-mediated cancer gene therapy: an overview.

    Science.gov (United States)

    Seth, Prem

    2005-05-01

    In recent years there has been a dramatic increase in developing gene therapy approaches for the treatment of cancer. The two events that have permitted the formulation of concept of cancer gene therapy are the new understanding of the molecular mechanisms underlying oncogenesis, and the development of the DNA-delivery vehicles or vectors. Many approaches to cancer gene therapy have been proposed, and several viral and non-viral vectors have been utilized. The purpose of this review article is to describe the various strategies of cancer gene therapy (transfer of tumor suppressor genes, suicide genes-enzyme/pro-drug approach, inhibition of dominant oncogenes, immunomodulation approaches, expression of molecules that affect angiogenesis, tumor invasion and metastasis, chemosensitization and radiosensitization approaches, and chemoprotection of stem cells). The chapter also reviews the commonly used vectors (retroviral vectors, adenoviral vectors, adeno-associated viral vectors, pox viruses, herpes simplex viruses, HIV- vectors, non-viral vectors and targetable vectors) for cancer gene therapy. Some of the important issues in cancer gene therapy, and the potential future directions are also being discussed.

  5. Identification of Hematopoietic Stem Cell Engraftment Genes in Gene Therapy Studies.

    Science.gov (United States)

    Powers, John M; Trobridge, Grant D

    2013-09-01

    Hematopoietic stem cell (HSC) therapy using replication-incompetent retroviral vectors is a promising approach to provide life-long correction for genetic defects. HSC gene therapy clinical studies have resulted in functional cures for several diseases, but in some studies clonal expansion or leukemia has occurred. This is due to the dyregulation of endogenous host gene expression from vector provirus insertional mutagenesis. Insertional mutagenesis screens using replicating retroviruses have been used extensively to identify genes that influence oncogenesis. However, retroviral mutagenesis screens can also be used to determine the role of genes in biological processes such as stem cell engraftment. The aim of this review is to describe the potential for vector insertion site data from gene therapy studies to provide novel insights into mechanisms of HSC engraftment. In HSC gene therapy studies dysregulation of host genes by replication-incompetent vector proviruses may lead to enrichment of repopulating clones with vector integrants near genes that influence engraftment. Thus, data from HSC gene therapy studies can be used to identify novel candidate engraftment genes. As HSC gene therapy use continues to expand, the vector insertion site data collected will be of great interest to help identify novel engraftment genes and may ultimately lead to new therapies to improve engraftment.

  6. Effect of ganglioside and levodopa combined therapy on Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Qiong Li; Nan-Nan Li; Jie Zhu

    2016-01-01

    Objective:To investigate the effect of ganglioside and levodopa combined therapy on oxidative stress indexes, serum Parkinson related proteins and inflammatory factors of patients with Parkinson's disease.Methods:A total of 110 patients with Parkinson’s disease treated in our hospital were selected, and randomly divided to be the combination group and the control group, 55 cases for each. Patients in control group were treated with levodopa, patients in combination group were provided with ganglioside and levodopa combined therapy. Oxidative stress indexes, serum Parkinson related proteins and serum inflammatory factors for each group of patients were detected before and after treatment.Results:No statistical difference showed in oxidative stress indexes, serum Parkinson related proteins and serum inflammatory factors between the two groups of patients with Parkinson's disease (P>0.05). Compared with prior treatment, serum Parkinson related proteins (Csy C and S-100B), MDA and inflammatory factors (TNF-α, CRP, IL-6) after relevant treatment were significantly decreased, BDNF, IL-2 and oxidative stress indexes (NO, SOD and GSH) were significantly increased (P<0.05). Oxidative stress indexes (NO, SOD and GSH), BDNF, IL-2 in combination group were significantly higher than which in control group after treatment, serum Parkinson related proteins (Csy C and S-100B), inflammatory factors (TNF-α, CRP, IL-6) and MDA were significantly lower than in control group after treatment (P<0.05).Conclusions:Ganglioside and levodopa combination can significantly improve levels of oxidative stress indexes, serum Parkinson related proteins and serum inflammatory factors in patients with Parkinson’s disease. It has important clinical significance on therapy of patients with Parkinson’s disease.

  7. Optimal lipid modification: the rationale for combination therapy

    Directory of Open Access Journals (Sweden)

    James M Backes

    2005-12-01

    Full Text Available James M Backes1, Cheryl A Gibson2, Patricia A Howard31Department of Pharmacy Practice, Lipid, Atherosclerosis, Metabolic and LDL Apheresis Center, University of Kansas Medical Center, Kansas City, KS, USA; 2Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA; 3Department of Pharmacy Practice, University of Kansas School of Pharmacy, Kansas City, KS, USABackground: An emphasis on more aggressive lipid-lowering, particularly of low-density lipoprotein cholesterol, to improve patient outcomes has led to an increased use of combination lipid-lowering drugs. This strategy, while potentially beneficial, has triggered concerns regarding fears of adverse effects, harmful drug interactions, and patient nonadherence.Objective: To present key data regarding combination lipid-altering therapy including use, rationale, major trials, benefits, potential adverse effects, compliance issues, and limitations. Method: Literature was obtained from MEDLINE (1966 – June 2005 and references from selected articles.Results: A substantial body of evidence from epidemiological data and clinical trials indicates that aggressive lipid modification, especially low-density lipoprotein reduction, is associated with reduced cardiovascular events. Numerous studies utilizing various combinations of cholesterol-lowering agents including statin/fibrate, statin/niacin, statin/bile acid resin, and statin/ezetimibe have demonstrated significant changes in the lipid profile with acceptable safety. Long-term trials of combination therapy evaluating clinical outcomes or surrogate markers of cardiovascular disease, while limited, are promising.Conclusion: Combining lipid-altering agents results in additional improvements in lipoproteins and has the potential to further reduce cardiovascular events beyond that of monotherapy.Keywords: combination therapy, coronary heart disease, hypercholesterolemia, lipid-lowering, low-density lipoprotein, statins

  8. Orthodontics-surgical combination therapy for Class III skeletal malocclusion

    Science.gov (United States)

    Ravi, M. S.; Shetty, Nillan K.; Prasad, Rajendra B.

    2012-01-01

    The correction of skeletal Class III malocclusion with severe mandibular prognathism in an adult individual requires surgical and Othodontic combination therapy. The inter disciplinary approach is the treatment of choice in most of the skeletal malocclusions. A case report of an adult individual with Class III malocclusion, having mandibular excess in sagittal and vertical plane and treated with orthodontics,, bilateral sagittal split osteotomy and Le – Forte I osteotomy for the correction of skeletal, dental and soft tissue discrepancies is herewith presented. The surgical–orthodontic combination therapy has resulted in near–normal skeletal, dental and soft tissue relationship, with marked improvement in the facial esthetics in turn, has helped the patient to improve the self-confidence level. PMID:22557903

  9. Orthodontics-surgical combination therapy for Class III skeletal malocclusion

    Directory of Open Access Journals (Sweden)

    M S Ravi

    2012-01-01

    Full Text Available The correction of skeletal Class III malocclusion with severe mandibular prognathism in an adult individual requires surgical and Othodontic combination therapy. The inter disciplinary approach is the treatment of choice in most of the skeletal malocclusions. A case report of an adult individual with Class III malocclusion, having mandibular excess in sagittal and vertical plane and treated with orthodontics,, bilateral sagittal split osteotomy and Le - Forte I osteotomy for the correction of skeletal, dental and soft tissue discrepancies is herewith presented. The surgical-orthodontic combination therapy has resulted in near-normal skeletal, dental and soft tissue relationship, with marked improvement in the facial esthetics in turn, has helped the patient to improve the self-confidence level.

  10. Combined Radiation Therapy and Immune Checkpoint Blockade Therapy for Breast Cancer.

    Science.gov (United States)

    Hu, Zishuo I; Ho, Alice Y; McArthur, Heather L

    2017-09-01

    Treatment with checkpoint inhibitors has shown durable responses in a number of solid tumors, including melanoma, lung, and renal cell carcinoma. However, most breast cancers are resistant to monotherapy with checkpoint inhibitors. Radiation therapy (RT) has been shown to have a number of immunostimulatory effects, including priming the immune system, recruiting immune cells to the tumor environment, and altering the immunosuppressive effects of the tumor microenvironment. RT therefore represents a promising adjuvant therapy to checkpoint blockade in breast cancer. We review the data from the checkpoint blockade studies on breast cancer reported to date, the mechanisms by which RT potentiates immune responses, the preclinical and clinical data of checkpoint blockade and RT combinations, and the landscape of current clinical trials of RT and immune checkpoint inhibitor combinations in breast cancer. Clinical trials with checkpoint blockade therapy have demonstrated response rates of up to 19% in breast cancer, and many of the responses are durable. Preclinical data indicate that RT combined with checkpoint inhibition synergizes not only to enhance antitumor efficacy but also to induce responses outside of the radiation field. Thus multiple clinical trials are currently investigating the combination of checkpoint inhibition with RT. The use of combination strategies that incorporate chemotherapy and/or local strategies such as RT may be needed to augment responses to immune therapy in breast cancer. Preclinical and clinical results show that RT in combination with checkpoint blockade may be a promising therapeutic option in breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Combination of Physical and Acupuncture Therapy: Acupoint Stimulation Physical Therapy (ASPT)

    OpenAIRE

    Suzuki, Toshiaki; Tani, Makiko; Onigata, Chieko; Bunno, Yoshibumi; Yoshida, Sohei

    2013-01-01

    We introduced Acupoint Stimulation Physical Therapy (ASPT) as a combination of physical and acupuncture therapy. The characteristics of ASPT were as follows. We pressed acupoints on the meridians running through the affected muscles. The magnitude and duration of acupressure stimulation were maximized to alter muscle tonus and not cause pain to the patient. We demonstrated its effects by scientific research using EMG and clinical evaluation in patients with knee contracture. In the future, we...

  12. Cancer treatment: the combination of vaccination with other therapies

    DEFF Research Database (Denmark)

    Andersen, M.H.; Sorensen, R.B.; Schrama, D.

    2008-01-01

    approach to fight cancer, the combination with additional therapy could create a number of synergistic effects. Herein we discuss the possibilities and prospects of vaccination when combined with other treatments. In this regard, cell death upon drug exposure may be immunogenic or non-immunogenic depending...... and endothelial cells. The efficacy of therapeutic vaccination against cancer will over the next few years be studied in settings taking advantage of strategies in which vaccination is combined with other treatment modalities. These combinations should be based on current knowledge not only regarding the biology...... of the cancer cell per se, but also considering how treatment may influence the malignant cell population as well as the immune system Udgivelsesdato: 2008/11...

  13. Gene Therapy Applications in Gastroenterology and Hepatology

    Directory of Open Access Journals (Sweden)

    Catherine H Wu

    2000-01-01

    Full Text Available Advantages and disadvantages of viral vectors and nonviral vectors for gene delivery to digestive organs are reviewed. Advances in systems for the introduction of new gene expression are described, including self-deleting retroviral transfer vectors, chimeric viruses and chimeric oligonucleotides. Systems for inhibition of gene expression are discussed, including antisense oligonucleotides, ribozymes and dominant-negative genes.

  14. Optimising treatment for COPD--new strategies for combination therapy.

    Science.gov (United States)

    Welte, T

    2009-08-01

    Chronic obstructive pulmonary disease (COPD) is a multi-component disease characterised by airflow limitation and airway inflammation. Exacerbations of COPD have a considerable impact on the quality of life, daily activities and general well-being of patients and are a great burden on the health system. Thus, the aims of COPD management include not only relieving symptoms and preventing disease progression but also preventing and treating exacerbations. Attention towards the day-to-day burden of the disease is also required in light of evidence that suggests COPD may be variable throughout the day with morning being the time when symptoms are most severe and patients' ability to perform regular morning activities the most problematic. While available therapies improve clinical symptoms and decrease airway inflammation, they do not unequivocally slow long-term progression or address all disease components. With the burden of COPD continuing to increase, research into new and improved treatment strategies to optimise pharmacotherapy is ongoing - in particular, combination therapies, with a view to their complementary modes of action enabling multiple components of the disease to be addressed. Evidence from recent clinical trials indicates that triple therapy, combining an anticholinergic with an inhaled corticosteroid and a long-acting beta(2)-agonist, may provide clinical benefits additional to those associated with each treatment alone in patients with more severe COPD. This article reviews the evidence for treatment strategies used in COPD with a focus on combination therapies and introduces the 3-month CLIMB study (Evaluation of Efficacy and Safety of Symbicort as an Add-on Treatment to Spiriva in Patients With Severe COPD) which investigated the potential treatment benefits of combining tiotropium with budesonide/formoterol in patients with COPD with regard to lung function, exacerbations, symptoms and morning activities.

  15. Germ-line gene therapy and the medical imperative.

    Science.gov (United States)

    Munson, Ronald; Davis, Lawrence H

    1992-06-01

    Somatic cell gene therapy has yielded promising results. If germ cell gene therapy can be developed, the promise is even greater: hundreds of genetic diseases might be virtually eliminated. But some claim the procedure is morally unacceptable. We thoroughly and sympathetically examine several possible reasons for this claim but find them inadequate. There is no moral reason, then, not to develop and employ germ-line gene therapy. Taking the offensive, we argue next that medicine has a prima facie moral obligation to do so.

  16. Alphavirus vectors for vaccine production and gene therapy.

    Science.gov (United States)

    Lundstrom, Kenneth

    2003-06-01

    Alphavirus vectors demonstrate high expression of heterologous proteins in a broad range of host cells. Replication-deficient as well as replication-competent variants exist. Systemic delivery of many viral antigens has elicited strong antibody responses in immunized mice and primates, and protection against challenges with lethal viruses was obtained. Similarly, prophylactic vaccination was established against tumor challenges. Attention has been paid to the engineering of improved targeting to immunologically active cells, such as dendritic cells. In the area of gene therapy, intratumoral injections of alphavirus vectors have resulted in potentially promising tumor rejection. Moreover, encapsulation of alphavirus particles into liposomes demonstrated efficient tumor targeting in mice with severe combined immunodeficiency, which permitted the initiation of clinical trials for patients with advanced kidney carcinoma and melanoma.

  17. Gef gene therapy enhances the therapeutic efficacy of doxorubicin to combat growth of MCF-7 breast cancer cells.

    Science.gov (United States)

    Prados, Jose; Melguizo, Consolación; Rama, Ana Rosa; Ortiz, Rául; Segura, Ana; Boulaiz, Houria; Vélez, Celia; Caba, Octavio; Ramos, Juan Luís; Aránega, Antonia

    2010-05-01

    The potential use of combined therapy is under intensive study including the association between classical cytotoxic and genes encoding toxic proteins which enhanced the antitumour activity. The main aim of this work was to evaluate whether the gef gene, a suicide gene which has a demonstrated antiproliferative activity in tumour cells, improved the antitumour effect of chemotherapeutic drugs used as first-line treatment in the management of advanced breast cancer. MCF-7 human breast cancer cells were transfected with gef gene using pcDNA3.1-TOPO expression vector. To determine the effect of the combined therapy, MCF-7 transfected and non-transfected cells were exposed to paclitaxel, docetaxel and doxorubicin at different concentrations. The growth-inhibitory effect of gef gene and/or drugs was assessed by MTT assay. Apoptosis modulation was determined by flow cytometric analysis, DNA fragmentation and morphological analysis. Multicellular tumour spheroids (MTS) from MCF-7 cells were used to confirm effectiveness of combined therapy (gef gene and drug). Our results demonstrate that combined therapy gef gene/drugs (paclitaxel, docetaxel or doxurubicin) caused a decrease in cell viability. However, only the gef-doxorubicin (10 microM) combination induced a greater enhancement in the antitumour activity in MCF-7 cells. Most importantly, this combined strategy resulted in a significant synergistic effect, thus allowing lower doses of the drug to be used to achieve the same therapeutic effect. These results were confirmed using MTS in which volume decrease with combined therapy was greater than obtained using the gene therapy or chemotherapy alone, or the sum of both therapies. The cytotoxic effect of gef gene in breast cancer cells enhances the chemotherapeutic effect of doxorubicin. This therapeutic approach has the potential to overcome some of the major limitations of conventional chemotherapy, and may therefore constitute a promising strategy for future

  18. Azilsartan/chlorthalidone combination therapy for blood pressure control

    Directory of Open Access Journals (Sweden)

    Cheng JW

    2013-05-01

    Full Text Available Judy WM ChengMassachusetts College of Pharmacy and Health Sciences, Brigham and Women's Hospital, Boston, MA, USABackground: Edarbyclor® is a combined angiotensin receptor blocker (ARB and thiazide-like diuretic (azilsartan and chlorthalidone, and was approved on December 20, 2011 by the US Food and Drug Administration (FDA for hypertension management.Objective: To review the pharmacology, pharmacokinetics, efficacy, safety, tolerability, and role of azilsartan plus chlorthalidone for hypertension management.Methods: Peer-reviewed clinical trials, review articles, and relevant treatment guidelines, were identified from the databases MEDLINE and Current Contents (both 1966 to February 15, 2013, inclusive using search terms “azilsartan”, “chlorthalidone”, “pharmacology”, “pharmacokinetics”, “pharmacodynamics”, “pharmacoeconomics”, and “cost-effectiveness”. The FDA website, as well as manufacturer prescribing information, was also reviewed to identify other relevant information.Results: Azilsartan is a new ARB with high affinity for the angiotensin 1 receptor, approved by the FDA for hypertension management. Unlike other ARBs, azilsartan has no clinical data supporting improvement in cardiovascular outcomes, and is not approved for indications other than hypertension, which a select few other ARBs may be used for (eg, diabetic nephropathy and heart failure. Chlorthalidone is a longer acting thiazide-like diuretic that has been demonstrated to improve cardiovascular outcomes. Combination treatment with azilsartan/chlorthalidone is effective for reducing blood pressure. Compared to olmesartan/hydrochlorothiazide and azilsartan/hydrochlorothiazide combinations, azilsartan/chlorthalidone appears to be more efficacious for reducing blood pressure.Conclusions: Azilsartan/chlorthalidone can be considered an antihypertensive therapy option in patients for whom combination therapy is required (blood pressure >20 mmHg systolic or

  19. Recent advances in gene therapy for lysosomal storage disorders

    Directory of Open Access Journals (Sweden)

    Rastall DP

    2015-06-01

    Full Text Available David PW Rastall,1 Andrea Amalfitano1,2 1Department of Microbiology and Molecular Genetics, 2Department of Pediatrics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA Abstract: Lysosomal storage disorders (LSDs are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood–brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field. Keywords: human trials, clinical trials, gene therapy, lysosomal storage disease, blood-brain barrier, adeno-associated virus, lentivirus, adenovirus 

  20. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    Science.gov (United States)

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  1. Gene therapy in the management of oral cancer: review of the literature.

    Science.gov (United States)

    Ayllón Barbellido, Sonia; Campo Trapero, Julián; Cano Sánchez, Jorge; Perea García, Miguel A; Escudero Castaño, Nayra; Bascones Martínez, Antonio

    2008-01-01

    Gene therapy essentially consists of introducing specific genetic material into target cells without producing toxic effects on surrounding tissue. Advances over recent decades in the surgical, radiotherapeutic and chemotherapeutic treatment of oral cancer patients have not produced a significant improvement in patient survival. Increasing interest is being shown in developing novel therapies to reverse oral epithelial dysplastic lesions. This review provides an update on transfer techniques, therapeutic strategies, and the clinical applications and limitations of gene therapy in the management of oral cancer and precancer. We highlight the combination of gene therapy with chemotherapy (e.g., 5-Fluoracil) and immunotherapy, given the promising results obtained in the use of adenovirus to act at altered gene level (e.g., p53). Other techniques such as suicide gene therapy, use of oncolytic viruses or the use of antisense RNA have shown positive although very preliminary results. Therefore, further research into these promising gene therapy techniques is required to assess their true efficacy and safety in the management of these lesions.

  2. Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Staunstrup, Line Maersk; Michaelsen, Signe Regner

    2017-01-01

    Background: Bevacizumab combined with chemotherapy produces clinical durable response in 25-30% of recurrent glioblastoma patients. This group of patients has shown improved survival and quality of life. The aim of this study was to investigate changes in gene expression associated with response...... and resistance to bevacizumab combination therapy.Methods: Recurrent glioblastoma patients who had biomarker-accessible tumor tissue surgically removed both before bevacizumab treatment and at time of progression were included. Patients were grouped into responders (n = 7) and non-responders (n = 14). Gene...... mesenchymal phenotype at the time of progression.Conclusions: Bevacizumab combination treatment demonstrated a significant impact on the transcriptional changes in responders; but only minimal changes in non-responders. This suggests that non-responding glioblastomas progress chaotically without following...

  3. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  4. Genetic correction using engineered nucleases for gene therapy applications.

    Science.gov (United States)

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy.

  5. Alphavirus vectors as tools in neuroscience and gene therapy.

    Science.gov (United States)

    Lundstrom, Kenneth

    2016-05-02

    Alphavirus-based vectors have been engineered for in vitro and in vivo expression of heterelogous genes. The rapid and easy generation of replication-deficient recombinant particles and the broad range of host cell infection have made alphaviruses attractive vehicles for applications in neuroscience and gene therapy. Efficient delivery to primary neurons and hippocampal slices has allowed localization studies of gene expression and electrophysiological recordings of ion channels. Alphavirus vectors have also been applied for in vivo delivery to rodent brain. Due to the strong local transient expression provided by alphavirus vectors a number of immunization and gene therapy approaches have demonstrated both therapeutic and prophylactic efficacy in various animal models.

  6. Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy

    Directory of Open Access Journals (Sweden)

    Md Zahidul Islam Pranjol

    2015-01-01

    Full Text Available Cancer gene therapy expanded and reached its pinnacle in research in the last decade. Both viral and non-viral vectors have entered clinical trials, and significant successes have been achieved. However, a systemic administration of a vector, illustrating safe, efficient, and targeted gene delivery to solid tumors has proven to be a major challenge. In this review, we summarize the current progress and challenges in the targeted gene therapy of cancer. Moreover, we highlight the recent developments of bacteriophage-derived vectors and their contributions in targeting cancer with therapeutic genes following systemic administration.

  7. Fixed-dose combination therapy in hypertension: pros.

    Science.gov (United States)

    Taddei, Stefano

    2012-06-01

    Effective treatment of high blood pressure represents a key strategy for reducing the burden of hypertension-related cardiovascular diseases, mostly myocardial infarction and stroke. Despite these well established concepts, however, hypertension remains poorly controlled, worldwide. In addition, treated hypertensive patients often remain at higher risk compared with the normotensive population, even when a satisfactory blood pressure control is achieved, due to the high or very high added cardiovascular risk profile observed in these patients. An emerging strategy to improve blood pressure control and achieve this unmet target for cardiovascular disease prevention in hypertensive patients is represented by a more extensive use of rational and effective combination therapies with respect to monotherapy. Such an approach has been recently proposed even as first-line strategy in hypertensive patients at high added cardiovascular risk or in those in whom strict blood pressure control is required. Within the possible antihypertensive drug combinations currently available for the clinical management of hypertension, those based on the association of drugs inhibiting the renin-angiotensin system and thiazide diuretics or calcium channel blockers have demonstrated to be effective and safe in lowering both systolic and diastolic blood pressure levels with a good tolerability profile. In addition, these strategies have provided evidence for effective cardiovascular protection compared with conventional antihypertensive therapies. Among the antihypertensive drugs able to counteract the deleterious effects of abnormal activation of the renin-angiotensin system, angiotensin II receptor blockers have demonstrated to provide better tolerability profile and greater cardiovascular protection on hypertension-related organ damage compared with ACE inhibitors in randomized controlled clinical trials, in the presence of similar antihypertensive efficacy and safety. In particular, these

  8. The use of genes for performance enhancement: doping or therapy?

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2011-12-01

    Full Text Available Recent biotechnological advances have permitted the manipulation of genetic sequences to treat several diseases in a process called gene therapy. However, the advance of gene therapy has opened the door to the possibility of using genetic manipulation (GM to enhance athletic performance. In such ‘gene doping’, exogenous genetic sequences are inserted into a specific tissue, altering cellular gene activity or leading to the expression of a protein product. The exogenous genes most likely to be utilized for gene doping include erythropoietin (EPO, vascular endothelial growth factor (VEGF, insulin-like growth factor type 1 (IGF-1, myostatin antagonists, and endorphin. However, many other genes could also be used, such as those involved in glucose metabolic pathways. Because gene doping would be very difficult to detect, it is inherently very attractive for those involved in sports who are prepared to cheat. Moreover, the field of gene therapy is constantly and rapidly progressing, and this is likely to generate many new possibilities for gene doping. Thus, as part of the general fight against all forms of doping, it will be necessary to develop and continually improve means of detecting exogenous gene sequences (or their products in athletes. Nevertheless, some bioethicists have argued for a liberal approach to gene doping.

  9. Cystic Fibrosis Gene Therapy in the UK and Elsewhere.

    Science.gov (United States)

    Griesenbach, Uta; Pytel, Kamila M; Alton, Eric W F W

    2015-05-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) gene was identified in 1989. This opened the door for the development of cystic fibrosis (CF) gene therapy, which has been actively pursued for the last 20 years. Although 26 clinical trials involving approximately 450 patients have been carried out, the vast majority of these trials were short and included small numbers of patients; they were not designed to assess clinical benefit, but to establish safety and proof-of-concept for gene transfer using molecular end points such as the detection of recombinant mRNA or correction of the ion transport defect. The only currently published trial designed and powered to assess clinical efficacy (defined as improvement in lung function) administered AAV2-CFTR to the lungs of patients with CF. The U.K. Cystic Fibrosis Gene Therapy Consortium completed, in the autumn of 2014, the first nonviral gene therapy trial designed to answer whether repeated nonviral gene transfer (12 doses over 12 months) can lead to clinical benefit. The demonstration that the molecular defect in CFTR can be corrected with small-molecule drugs, and the success of gene therapy in other monogenic diseases, is boosting interest in CF gene therapy. Developments are discussed here.

  10. Lessons learned from gene therapy for color blindness in primates

    National Research Council Canada - National Science Library

    NEITZ, J

    2014-01-01

    Color blindness is the most common genetic disorder. The possibility of curing color blindness using gene therapy was explored by adding a third type of cone pigment to dichromatic retinas of squirrel monkeys...

  11. Gene Therapy Offers Hope to Some Hemophilia Patients

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_162389.html Gene Therapy Offers Hope to Some Hemophilia Patients Small, preliminary trial suggests it may free hemophilia B patients from transfusions To use the sharing features on this page, please enable ...

  12. Advances in Gene/Cell Therapy in Epidermolysis Bullosa.

    Science.gov (United States)

    Murauer, Eva M; Koller, Ulrich; Pellegrini, Graziella; De Luca, Michele; Bauer, Johann W

    2015-01-01

    In the past few years, substantial preclinical and experimental advances have been made in the treatment of the severe monogenic skin blistering disease epidermolysis bullosa (EB). Promising approaches have been developed in the fields of protein and cell therapies, including allogeneic stem cell transplantation; in addition, the application of gene therapy approaches has become reality. The first ex vivo gene therapy for a junctional EB (JEB) patient was performed in Italy more than 8 years ago and was shown to be effective. We have now continued this approach for an Austrian JEB patient. Further, clinical trials for a gene therapy treatment of recessive dystrophic EB are currently under way in the United States and in Europe. In this review, we aim to point out that sustainable correction of autologous keratinocytes by stable genomic integration of a therapeutic gene represents a realistic option for patients with EB.

  13. [Gene therapy for hereditary ophthalmological diseases: Advances and future perspectives].

    Science.gov (United States)

    Chacón-Camacho, Óscar Francisco; Astorga-Carballo, Aline; Zenteno, Juan Carlos

    2015-01-01

    Gene therapy is a promising new therapeutic strategy that could provide a novel and more effective way of targeting hereditary ophthalmological diseases. The eye is easily accessible, highly compartmentalized, and an immune-privileged organ that gives advantages as an ideal gene therapy target. Recently, important advances in the availability of various intraocular vector delivery routes and viral vectors that are able to efficiently transduce specific ocular cell types have been described. Gene therapy has advanced in some retinal inherited dystrophies; in this way, preliminary success is now being reported for the treatment of Leber congenital amaurosis (LCA). This review will provide an update in the field of gene therapy for the treatment of ocular inherited diseases.

  14. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    Science.gov (United States)

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  15. Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy.

    Science.gov (United States)

    Ďuriniková, E; Kučerová, L; Matúšková, M

    2014-01-01

    Mesenchymal stem/stromal cells (MSC) possess a set of several fairly unique properties which make them ideally suitable both for cellular therapies and regenerative medicine. These include: relative ease of isolation, the ability to differentiate along mesenchymal and non-mesenchymal lineages in vitro and the ability to be extensively expanded in culture without a loss of differentiative capacity. MSC are not only hypoimmunogenic, but they mediate immunosuppression upon transplantation, and possess pronounced anti-inflammatory properties. They are able to home to damaged tissues, tumors, and metastases following systemic administration. The ability of homing holds big promise for tumor-targeted delivery of therapeutic agents. Viruses are naturally evolved vehicles efficiently transferring their genes into host cells. This ability made them suitable for engineering vector systems for the delivery of genes of interest. MSC can be retrovirally transduced with genes encoding prodrug-converting genes (suicide genes), which are not toxic per se, but catalyze the formation of highly toxic metabolites following the application of a nontoxic prodrug. The homing ability of MSC holds advantages compared to virus vehicles which display many shortcomings in effective delivery of the therapeutic agents. Gene therapies mediated by viruses are limited by their restricted ability to track cancer cells infiltrating into the surrounding tissue, and by their low migratory capacity towards tumor. Thus combination of cellular therapy and gene delivery is an attractive option - it protects the vector from immune surveillance, and supports targeted delivery of a therapeutic gene/protein to the tumor site.

  16. New insights and unresolved issues regarding insertional mutagenesis in X-linked SCID gene therapy.

    Science.gov (United States)

    Pike-Overzet, Karin; van der Burg, Mirjam; Wagemaker, Gerard; van Dongen, Jacques J M; Staal, Frank J T

    2007-11-01

    The oncogenic potential of retrovirus-mediated gene therapy has been re-emphasized because four patients developed T-cell acute lymphoblastic leukemia (T-ALL)-like disease from an otherwise successful gene therapy trial for X-linked severe combined immunodeficiency (X-linked SCID). X-linked SCID, a disease caused by inactivating mutations in the IL2Rgamma gene, is part of a heterogeneous group of SCIDs characterized by the lack of T cells in conjunction with the absence of B and/or natural killer (NK) cells. Gene therapy approaches are being developed for this group of diseases. In this review we discuss the various forms of SCID in relation to normal T-cell development. In addition, we consider the possible role of LMO2 and other T-ALL oncogenes in the development of adverse effects as seen in the X-linked SCID gene therapy trial. Furthermore, we debate whether the integration near the LMO2 locus is sufficient to result in T-ALL-like proliferations or whether the gamma-retroviral viral expression of the therapeutic IL2RG gene contributes to leukemogenesis. Finally, we review some newly developed murine models that may have added value for gene therapy safety studies.

  17. Carfilzomib boosted combination therapy for relapsed multiple myeloma

    Science.gov (United States)

    Steiner, Raphael E; Manasanch, Elisabet E

    2017-01-01

    Carfilzomib is a proteasome inhibitor that binds selectively and irreversibly to the 20S proteasome, the proteolytic core particle within the 26S proteasome, resulting in the accumulation of proteasome substrates and ultimately growth arrest and apoptosis of tumor cells. The development and ultimate approval of this medication by regulatory agencies has been an important step toward improving clinical outcomes in multiple myeloma. Although initially approved as a single agent for the treatment of multiply relapsed and/or refractory myeloma, in the USA, it is now widely used in the early relapse setting in combination with lenalidomide and dexamethasone. Carfilzomib has also been studied in combination with second-generation immunomodulatory drugs, histone deacetylase inhibitors, alkylating agents and other novel medications. In this review article, we will discuss the efficacy, safety, tolerability and quality of life of carfilzomib-based combination therapies, as well as novel agents, for relapsed multiple myeloma. PMID:28243125

  18. Gene Therapy – Potential, Pros, Cons and Ethics

    OpenAIRE

    Ananth Nanjunda Rao

    2002-01-01

    Genetic technology poses risks along with its rewards, just as any technology has in the past. To stop its development and forfeit the benefits gene therapy could offer would be a far greater mistake than forging ahead could ever be. People must always try to be responsible with their new technology, but gene therapy has the potential to be the future of medicine and its possibilities must be explored.

  19. Clinical Opportunities in Combining Immunotherapy with Radiation Therapy

    Directory of Open Access Journals (Sweden)

    Steven Eric Finkelstein

    2012-11-01

    Full Text Available Preclinical work in murine models suggests that local radiotherapy plus intratumoral syngeneic DC injection can mediate immunologic tumor eradication. Radiotherapy affects the immune response to cancer, besides the direct impact on the tumor cells, and other ways to coordinate immune modulation with radiotherapy have been explored. We review here the potential for immune mediated anticancer activity of radiation on tumors. This is mediated by antigen acquisition and presentation by dendritic cells, and through changes of lymphocytes’ activity. Recent work has implemented the combination of external beam radiation (EBRT with intratumoral injection of dendritic cells (DC. This included a pilot study of coordinated intraprostatic, autologous DC injection together with radiation therapy with five HLA-A2(+ subjects with high-risk, localized prostate cancer; the protocol used androgen suppression, external beam radiation therapy (25 fractions, 45 Gy, DC injections after fractions 5, 15, and 25, and then interstitial radioactive implant. Another was a phase II trial using neo-adjuvant cell death-inducing EBRT plus intra-tumoral DC in soft tissue sarcoma, to test if this would increase immune activity toward soft tissue sarcoma associated antigens. Clinical experience using radiation therapies combined with other systemic immune treatments are additionally surveyed, including use of investigational recombinant vaccinia and fowlpox, interleukin-2, toll like receptor 9 (TLR9 agonists and lymphocyte checkpoint inhibitors directed at PD1 and at CTLA4.

  20. A cost-minimization analysis of combination therapy in hypertension: fixed-dose vs extemporary combinations

    Directory of Open Access Journals (Sweden)

    Marco Bellone

    2013-12-01

    Full Text Available BACKGROUND: Cardiovascular disease management and prevention represent the leading cost driver in Italian healthcare expenditure. In order to reach the target blood pressure, a large majority of patients require simultaneous administration of multiple antihypertensive agents.OBJECTIVE: To assess the economic impact of the use of fixed dose combinations of antihypertensive agents, compared to the extemporary combination of the same principles.METHODS: A cost minimization analysis was conducted to determine the pharmaceutical daily cost of five fixed dose combinations (olmesartan 20 mg + amlodipine 5 mg, perindopril 5 mg + amlodipine 5 mg, enalapril 20 mg + lercanidipine 10 mg, felodipine 5 mg + ramipril 5 mg, and delapril 30 mg + manidipine 10 mg compared with extemporary combination of the same principles in the perspective of the Italian NHS. Daily acquisition costs are estimated based on current Italian prices and tariffs.RESULTS: In three cases the use of fixed‑dose combination instead of extemporary combination induces a lower daily cost. Fixed combination treatment with delapril 30 mg + manidipine 10 mg induces greater cost savings for the National Health System (95,47 €/pts/year, as compared to free drugs combination therapy.CONCLUSIONS: Compared with free drug combinations, fixed‑dose combinations of antihypertensive agents are associated with lower daily National Health Service acquisition costs.http://dx.doi.org/10.7175/fe.v14i4.886

  1. Xenogeneic homologous genes, molecular evolution and cancer therapy

    Institute of Scientific and Technical Information of China (English)

    田聆; 魏于全

    2001-01-01

    Cancer is one of the main causes for death of human beings to date, and cancer biotherapy (mainlyimmunotherapy and gene therapy) has become the most promising approach after surgical therapy, radiotherapy andchemotherapy. However, there are still many limitations on cancer immunotherapy and gene therapy; therefore great ef-fort is being made to develop new strategies. It has been known that, in the process of evolution, a number of genes, theso-called xenogeneic homologous genes, are well-conserved and show the structural and/or functional similarity betweenvarious species to some degree. The nucleotide changes between various xenogeneic homologous genes are derived frommutation, and most of them are neutral mutations. Considering that the subtle differences in xenogeneic homologousgenes can break immune tolerance, enhance the immunogenicity and induce autologous immune response so as to elimi-nate tumor cells, we expect that a strategy of inducing autoimmune response using the property of xenogeneic homologousgenes will become a new therapy for cancer. Moreover, this therapy can also be used in the treatment of other diseases,such as autoimmune diseases and AIDS. This article will discuss the xenogeneic homologous genes, molecular evolutionand cancer therapy.

  2. Gene therapy and peripheral nerve repair: a perspective

    Directory of Open Access Journals (Sweden)

    Stefan A. Hoyng

    2015-07-01

    Full Text Available Clinical phase I/II studies have demonstrated the safety of gene therapy for a variety of central nervous system disorders, including Canavan’s, Parkinson’s and Alzheimer’s disease, retinal diseases and pain. The majority of gene therapy studies in the CNS have used adeno-associated viral vectors (AAV and the first AAV-based therapeutic, a vector encoding lipoprotein lipase, is now marketed in Europe under the name Glybera. These remarkable advances may become relevant to translational research on gene therapy to promote peripheral nervous system (PNS repair. This short review first summarizes the results of gene therapy in animal models for peripheral nerve repair. Secondly, we identify key areas of future research in the domain of PNS-gene therapy. Finally, a perspective is provided on the path to clinical translation of PNS gene therapy for traumatic nerve injuries. In the latter section we discuss the route and mode of delivery of the vector to human patients, the efficacy and safety of the vector, and the choice of the patient population for a first possible proof-of-concept clinical study.

  3. Gene therapy for the fetus: is there a future?

    Science.gov (United States)

    David, Anna L; Peebles, Donald

    2008-02-01

    Gene therapy uses the intracellular delivery of genetic material for the treatment of disease. A wide range of diseases - including cancer, vascular and neurodegenerative disorders and inherited genetic diseases - are being considered as targets for this therapy in adults. There are particular reasons why fetal application might prove better than application in the adult for treatment, or even prevention of early-onset genetic disorders such as cystic fibrosis and Duchenne muscular dystrophy. Research shows that gene transfer to the developing fetus targets rapidly expanding populations of stem cells, which are inaccessible after birth, and indicates that the use of integrating vector systems results in permanent gene transfer. In animal models of congenital disease such as haemophilia, studies show that the functionally immature fetal immune system does not respond to the product of the introduced gene, and therefore immune tolerance can be induced. This means that treatment could be repeated after birth, if that was necessary to continue to correct the disease. For clinicians and parents, fetal gene therapy would give a third choice following prenatal diagnosis of inherited disease, where termination of pregnancy or acceptance of an affected child are currently the only options. Application of this therapy in the fetus must be safe, reliable and cost-effective. Recent developments in the understanding of genetic disease, vector design, and minimally invasive delivery techniques have brought fetal gene therapy closer to clinical practice. However more research needs to be done in before it can be introduced as a therapy.

  4. Noncoding oligonucleotides: the belle of the ball in gene therapy.

    Science.gov (United States)

    Shum, Ka-To; Rossi, John J

    2015-01-01

    Gene therapy carries the promise of cures for many diseases based on manipulating the expression of a person's genes toward the therapeutic goal. The relevance of noncoding oligonucleotides to human disease is attracting widespread attention. Noncoding oligonucleotides are not only involved in gene regulation, but can also be modified into therapeutic tools. There are many strategies that leverage noncoding oligonucleotides for gene therapy, including small interfering RNAs, antisense oligonucleotides, aptamers, ribozymes, decoys, and bacteriophage phi 29 RNAs. In this chapter, we will provide a broad, comprehensive overview of gene therapies that use noncoding oligonucleotides for disease treatment. The mechanism and development of each therapeutic will be described, with a particular focus on its clinical development. Finally, we will discuss the challenges associated with developing nucleic acid therapeutics and the prospects for future success.

  5. Gene therapy: Regulations, ethics and its practicalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Xi Jin; Yi-Da Yang; You-Ming Li

    2008-01-01

    Gene therapy is a new and promising approach which opens a new door to the treatment of human diseases.By direct transfer of genetic materials to the target cells, it could exert functions on the level of genes and molecules. It is hoped to be widely used in the treatment of liver disease, especially hepatic tumors by using different vectors encoding the aim gene for anti-tumor activity by activating primary and adaptive immunity,inhibiting oncogene and angiogenesis. Despite the huge curative potential shown in animal models and some pilot clinical trials, gene therapy has been under fierce discussion since its birth in academia and the public domain because of its unexpected side effects and ethical problems. There are other challenges arising from the technique itself like vector design, administration route test and standard protocol exploration. How well we respond will decide the fate of gene therapy clinical medical practice.

  6. Gene therapy for cartilage and bone tissue engineering

    CERN Document Server

    Hu, Yu-Chen

    2014-01-01

    "Gene Therapy for Cartilage and Bone Tissue Engineering" outlines the tissue engineering and possible applications of gene therapy in the field of biomedical engineering as well as basic principles of gene therapy, vectors and gene delivery, specifically for cartilage and bone engineering. It is intended for tissue engineers, cell therapists, regenerative medicine scientists and engineers, gene therapist and virologists. Dr. Yu-Chen Hu is a Distinguished Professor at the Department of Chemical Engineering, National Tsing Hua University and has received the Outstanding Research Award (National Science Council), Asia Research Award (Society of Chemical Engineers, Japan) and Professor Tsai-Teh Lai Award (Taiwan Institute of Chemical Engineers). He is also a fellow of the American Institute for Medical and Biological Engineering (AIMBE) and a member of the Tissue Engineering International & Regenerative Medicine Society (TERMIS)-Asia Pacific Council.

  7. Gene therapy in dentistry: tool of genetic engineering. Revisited.

    Science.gov (United States)

    Gupta, Khushboo; Singh, Saurabh; Garg, Kavita Nitish

    2015-03-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The concept of transferring genes to tissues for clinical applications has been discussed nearly half a century, but the ability to manipulate genetic material via recombinant DNA technology has brought this goal to reality. The feasibility of gene transfer was first demonstrated using tumour viruses. This led to development of viral and nonviral methods for the genetic modification of somatic cells. Applications of gene therapy to dental and oral problems illustrate the potential impact of this technology on dentistry. Preclinical trial results regarding the same have been very promising. In this review we will discuss methods, vectors involved, clinical implication in dentistry and scientific issues associated with gene therapy.

  8. Bioethical conflicts of gene therapy: a brief critical review

    Directory of Open Access Journals (Sweden)

    José Ednésio da Cruz Freire

    2014-12-01

    Full Text Available Methods and techniques employed in gene therapy are reviewed in parallel with pertinent ethical conflicts. Clinical interventions based on gene therapy techniques preferentially use vectors for the transportation of therapeutic genes, however little is known about the potential risks and damages to the patient. Thus, attending carefully to the clinical complications arising as well as to security is essential. Despite the scientific and technological advances, there are still many uncertainties about the side effects of gene therapy. Moreover, there is a need, above all, to understand the principles of bioethics as both science and ethics, in accordance with its socioecological responsibility, in order to prioritize the health and welfare of man and nature, using properly natural resources and technology. Therefore, it is hard to determine objective results and to which extent the insertion of genes can affect the organism, as well as the ethical implication

  9. Combination therapy versus separate therapy in real-life primary care asthma patients

    NARCIS (Netherlands)

    Metting, Esther I.; Kocks, Janwillem W.H.; Van Der Molen, Thys

    2015-01-01

    In uncontrolled steroid naive asthma patients guidelines recommend separate ICS plus SABA(ST). Many physicians however prescribe combination therapy(CT) in these patients. We retrospectively evaluated the effectiveness of both strategies in an Asthma/COPD(AC)-service for primary care. We included st

  10. Targeted Therapies in Combination With Immune Therapies for the Treatment of Metastatic Melanoma.

    Science.gov (United States)

    Christiansen, Shelly A; Khan, Shaheer; Gibney, Geoffrey T

    In recent years, the field of oncology has witnessed many breakthroughs in the treatment of advanced malignancies, particularly in patients with advanced melanoma. Targeted and immune checkpoint therapies have emerged as the primary treatment strategies for these patients. Molecular profiling of melanoma is incorporated into routine practice to identify potential therapeutic targets, and patients are offered either a targeted or immune checkpoint inhibitor therapy approach. Both strategies have limitations where not all patients experience durable responses. Preclinical data have demonstrated the ability of targeted therapy to enhance activity of effector T cells, reduce immunosuppressive cytokine production, and increase tumor cell antigen presentation, which can augment antitumor immunity. In vivo models have shown synergy with improved tumor control when targeted and immune checkpoint agents are combined. Therefore, combination strategies with targeted and immune checkpoint therapy may improve patient outcomes. Early clinical data with anti-programmed cell-death protein 1/programmed cell-death ligand 1 agents in combination with targeted inhibitors appear to have acceptable toxicity rates and the potential for enhanced antitumor activity. This review explores the current status of preclinical and clinical development for these combination approaches in patients with advanced melanoma.

  11. Combination therapy with catechins and caffeine inhibits fat accumulation in 3T3-L1 cells

    Science.gov (United States)

    Zhu, Xiaojuan; Yang, Licong; Xu, Feng; Lin, Lezhen; Zheng, Guodong

    2017-01-01

    Catechins and caffeine, which are green tea components, have a slimming effect; however, the combinational effect of fat metabolism in 3T3-L1 cells remains unclear. In the present study, 3T3-L1 cells were treated with catechins and caffeine in combination, and it was found that combination therapy with catechins and caffeine markedly reduced intracellular fat accumulation, mRNA expression levels of peroxisome proliferator-activated receptor-γ and CCAAT/enhancer-binding protein α in the early stage of cell differentiation were significantly reduced, and mRNA expression of fatty acid synthetase(FAS) andglycerol-3-phosphate dehydrogenase protein expression levels of FAS were downregulated. Noradrenaline-induced lipolysis was enhanced by caffeine, which markedly increased the protein expression of adipose triglyceride lipase and hormone sensitive lipase. These results indicated that combination therapy with catechins and caffeine synergistically inhibited lipid accumulation by regulating the gene and protein expression levels of lipid metabolism-related enzymes. Therefore, catechins and caffeine combination therapy has potential as a functional food that may be used to prevent obesity and lifestyle-associated diseases. PMID:28352352

  12. Inhibitors of DNA Methylation, Histone Deacetylation, and Histone Demethylation: A Perfect Combination for Cancer Therapy.

    Science.gov (United States)

    Zahnow, C A; Topper, M; Stone, M; Murray-Stewart, T; Li, H; Baylin, S B; Casero, R A

    2016-01-01

    Epigenetic silencing and inappropriate activation of gene expression are frequent events during the initiation and progression of cancer. These events involve a complex interplay between the hypermethylation of CpG dinucleotides within gene promoter and enhancer regions, the recruitment of transcriptional corepressors and the deacetylation and/or methylation of histone tails. These epigenetic regulators act in concert to block transcription or interfere with the maintenance of chromatin boundary regions. However, DNA/histone methylation and histone acetylation states are reversible, enzyme-mediated processes and as such, have emerged as promising targets for cancer therapy. This review will focus on the potential benefits and synergistic/additive effects of combining DNA-demethylating agents and histone deacetylase inhibitors or lysine-specific demethylase inhibitors together in epigenetic therapy for solid tumors and will highlight what is known regarding the mechanisms of action that contribute to the antitumor response.

  13. Current status of gene therapy for motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xingkai An; Rong Peng; Shanshan Zhao

    2006-01-01

    OBJECTIVE: Although the etiology and pathogenesis of motor neuron disease is still unknown, there are many hypotheses on motor neuron mitochondrion, cytoskeleton structure and functional injuries. Thus, gene therapy of motor neuron disease has become a hot topic to apply in viral vector, gene delivery and basic gene techniques.DATA SOURCES: The related articles published between January 2000 and October 2006 were searched in Medline database and ISl database by computer using the keywords "motor neuron disease, gene therapy", and the language is limited to English. Meanwhile, the related references of review were also searched by handiwork. STUDY SELECTION: Original articles and referred articles in review were chosen after first hearing, then the full text which had new ideas were found, and when refer to the similar study in the recent years were considered first.DATA EXTRACTION: Among the 92 related articles, 40 ones were accepted, and 52 were excluded because of repetitive study or reviews.DATA SYNTHESIS: The viral vectors of gene therapy for motor neuron disease include adenoviral, adeno-associated viral vectors, herpes simplex virus type 1 vectors and lentiviral vectors. The delivery of them can be achieved by direct injection into the brain, or by remote delivery after injection vectors into muscle or peripheral nerves, or by ex vivo gene transfer. The viral vectors of gene therapy for motor neuron disease have been successfully developed, but the gene delivery of them is hampered by some difficulties. The RNA interference and neuroprotection are the main technologies for gene-based therapy in motor neuron disease. CONCLUSION : The RNA interference for motor neuron disease has succeeded in animal models, and the neuroprotection also does. But, there are still a lot of questions for gene therapy in the clinical treatment of motor neuron disease.

  14. Cancer nanomedicine: from targeted delivery to combination therapy.

    Science.gov (United States)

    Xu, Xiaoyang; Ho, William; Zhang, Xueqing; Bertrand, Nicolas; Farokhzad, Omid

    2015-04-01

    The advent of nanomedicine marks an unparalleled opportunity to advance the treatment of various diseases, including cancer. The unique properties of nanoparticles (NPs), such as large surface-to-volume ratio, small size, the ability to encapsulate various drugs, and tunable surface chemistry, give them many advantages over their bulk counterparts. This includes multivalent surface modification with targeting ligands, efficient navigation of the complex in vivo environment, increased intracellular trafficking, and sustained release of drug payload. These advantages make NPs a mode of treatment potentially superior to conventional cancer therapies. This review highlights the most recent developments in cancer treatment using NPs as drug delivery vehicles, including promising opportunities in targeted and combination therapy.

  15. Metastatic melanoma treatment: Combining old and new therapies.

    Science.gov (United States)

    Davey, Ryan J; van der Westhuizen, Andre; Bowden, Nikola A

    2016-02-01

    Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Gene therapy: light is finally in the tunnel.

    Science.gov (United States)

    Cao, Huibi; Molday, Robert S; Hu, Jim

    2011-12-01

    After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.

  17. Gene therapy and editing: Novel potential treatments for neuronal channelopathies.

    Science.gov (United States)

    Wykes, R C; Lignani, G

    2017-05-28

    Pharmaceutical treatment can be inadequate, non-effective, or intolerable for many people suffering from a neuronal channelopathy. Development of novel treatment options, particularly those with the potential to be curative is warranted. Gene therapy approaches can permit cell-specific modification of neuronal and circuit excitability and have been investigated experimentally as a therapy for numerous neurological disorders, with clinical trials for several neurodegenerative diseases ongoing. Channelopathies can arise from a wide array of gene mutations; however they usually result in periods of aberrant network excitability. Therefore gene therapy strategies based on up or downregulation of genes that modulate neuronal excitability may be effective therapy for a wide range of neuronal channelopathies. As many channelopathies are paroxysmal in nature, optogenetic or chemogenetic approaches may be well suited to treat the symptoms of these diseases. Recent advances in gene-editing technologies such as the CRISPR-Cas9 system could in the future result in entirely novel treatment for a channelopathy by repairing disease-causing channel mutations at the germline level. As the brain may develop and wire abnormally as a consequence of an inherited or de novo channelopathy, the choice of optimal gene therapy or gene editing strategy will depend on the time of intervention (germline, neonatal or adult). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The use of gene therapy tools in reproductive immunology research.

    Science.gov (United States)

    Zenclussen, Ana Claudia; Zenclussen, Maria L; Ritter, Thomas; Volk, Hans D

    2005-10-01

    Mammalian pregnancy is a complex phenomenon allowing the maternal immune system to support its allogeneic fetus, while still being effective against pathogens. Gene therapy approaches have the potential to treat devastating inherited diseases for which there is a little hope of finding a conventional cure. In reproductive medicine, experimental trials have been made so far only for correcting gene defects in utero. The use of gene therapy for improving pregnancy-rate success or avoiding pregnancy-related diseases i.e. miscarriage or pre-eclampsia, remains a very distant goal with unresolved moral and ethical aspects. However, gene therapy may help determining the role of several genes in supporting fetal growth and/or avoiding its rejection experimentally and might further help to identify new targets of intervention. Gene therapy strategies to avoid fetal rejection may include the transfer and expression of cyto-protective molecules locally at the fetal-placental interface. In addition, the ex-vivo genetic modification of immune cells for tolerance induction is a novel and tempting approach. In this regard, we have confirmed the role of the cyto-protective and immunomodulatory molecule Heme Oxygenase-1 (HO-1), by treating animals undergoing abortion with an adenovirus coding for HO-1. Since the sole application of a control vector did not provoke deleterious effects in pregnancy outcome, we propose the use of experimental gene therapy for unveiling molecular and cellular pathways leading to pregnancy success.

  19. Development and Safety Assessment of Lentiviral Vector Gene Therapy for SCID-X1

    NARCIS (Netherlands)

    M.W. Huston (Marshall W.)

    2013-01-01

    markdownabstract__Abstract__ This thesis work focuses on exploring ways to improve hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency disease (SCID-X1) using lentiviral vectors and a mouse model of the disease. This involved 3-part approach: modifying some components

  20. Combination of photodynamic therapy and immunotherapy - evolving role in dermatology

    Science.gov (United States)

    Wang, Xiu-Li; Wang, Hong-Wei; Huang, Zheng

    2008-02-01

    Photodynamic therapy (PDT) is a promising treatment modality. It offers alternative options in the treatment of cancer and vascular diseases. In cancer treatment, PDT has been used primarily for localized superficial or endoluminal malignant and premalignant conditions. More recently, its application has also been expanded to solid tumors. However, its antitumor efficacy remains debatable and its acceptance still variable. Pre-clinical studies demonstrate that, in addition to the primary local cytotoxicity, PDT might induce secondary host immune responses, which may further enhance PDT's therapeutic effects on primary tumor as well as metastasis. Therefore, PDT-induced local and systemic antitumor immune response might play an important role in successful control of malignant diseases. Furthermore, PDT's antitumor efficacy might also be enhanced through an effective immunoadjuvant or immunomodulator. Our recent clinical data also indicate that improved clinical outcomes can be obtained by a combination of PDT and immunomodulation therapy for the treatment of pre-malignant skin diseases. For instance, the combination of topical ALA-PDT and Imiquimod is effective for the treatment of genital bowenoid papulosis. This presentation will also report our preliminary data in developing combination approaches of PDT and immunotherapy for actinic keratosis (AK), basal cell carcinomas (BCCs) and Bowen's disease.

  1. Combined aquaretic and diuretic therapy in acute heart failure

    Directory of Open Access Journals (Sweden)

    Goyfman M

    2017-06-01

    Full Text Available Michael Goyfman,1 Paul Zamudio,2 Kristine Jang,3 Jennifer Chee,3 Catherine Miranda,2 Javed Butler,1 Nand K Wadhwa2 1Division of Cardiology, 2Division of Nephrology, 3Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA Introduction: Acute heart failure (AHF is a leading cause of hospitalization and readmission in the US. The present study evaluated maximum diuresis while minimizing electrolyte imbalances, hemodynamic instability, and kidney dysfunction, to achieve a euvolemic state safely in a shorter period of time.Methods and results: A protocol of combined therapy with furosemide, metolazone, and spironolactone, with or without tolvaptan and acetazolamide, was used in 17 hospitalized patients with AHF. The mean number of days on combination diuretic protocol was 3.8 days. The mean daily fluid balance was 3.0±2.1 L negative. The mean daily urine output (UOP was 4.1±2.0 L (range 1.8–10.5 L. There were minimal fluctuations in serum electrolyte levels and serum creatinine over the duration of diuretic therapy. There was no statistically significant change in patients’ creatinine from immediately prior to therapy to the last day of therapy, with a mean increase in creatinine of 0.14 mg/dL (95% CI −0.03, +0.30, p=0.10.Conclusion: Our strategy of treating AHF by achieving high UOP, while maintaining stable electrolytes and creatinine in a short period to euvolemic state, is safe. Keywords: diuretics, aquaretic, acute heart failure, volume overload

  2. All-trans retinoic acid enhances bystander effect of suicide gene therapy in the treatment of breast cancer.

    Science.gov (United States)

    Kong, Heng; Liu, Xia; Yang, Liucheng; Qi, Ke; Zhang, Haoyun; Zhang, Jingwen; Huang, Zonghai; Wang, Hongxian

    2016-03-01

    All-trans retinoic acid (ATRA) has been shown to enhance the expression of connexin 43 (Cx43) and the bystander effect (BSE) in suicide gene therapy. These in turn improve effects of suicide gene therapies for several tumor types. However, whether ATRA can improve BSE remains unclear in suicide gene therapy for breast cancer. In the present study, MCF-7, human breast cancer cells were treated with ATRA in combination with a VEGFP-TK/CD gene suicide system developed by our group. We found that this combination enhances the efficiency of cell killing and apoptosis of breast cancer by strengthening the BSE in vitro. ATRA also promotes gap junction intercellular communication (GJIC) in MCF-7 cells by upregulation of the connexin 43 mRNA and protein in MCF-7 cells. These results indicate that enhancement of GJIC by ATRA in suicide gene system might serve as an attractive and cost-effective strategy of therapy for breast cancer cells.

  3. Adeno-Associated Virus Gene Therapy for Liver Disease

    Science.gov (United States)

    Kattenhorn, Lisa M.; Tipper, Christopher H.; Stoica, Lorelei; Geraghty, Deborah S.; Wright, Teresa L.; Clark, K. Reed; Wadsworth, Samuel C.

    2016-01-01

    The field of adeno-associated virus (AAV) gene therapy has progressed rapidly over the past decade, with the advent of novel capsid serotype and organ-specific promoters, and an increasing understanding of the immune response to AAV administration. In particular, liver-directed therapy has made remarkable strides, with a number of clinical trials currently planned and ongoing in hemophilia A and B, as well as other liver disorders. This review focuses on liver-directed AAV gene therapy, including historic context, current challenges, and future developments. PMID:27897038

  4. [Advances in superenzyme gene therapy in penile rehabilitation].

    Science.gov (United States)

    Qin, Feng; Run, Wang; Yuan, Jiu-Hong

    2013-04-01

    Erectile dysfunction (ED) is an almost unavoidable complication of radical prostatectomy. At present, though the concept of penile rehabilitation (PR) is accepted by most clinicians, the outcomes of erectile function recovery vary widely. Prostacyclin (PGI2) is a prostanoid and a main vasoprotectant which induces smooth muscle relaxation, but not used for replacement therapy because of its high unstability. SuperEnzyme is capable of continuous, specific and targeted promotion of PGI2 synthesis, and helps PR in ED patients after radical prostatectomy. SuperEnzyme gene therapy has a promising prospect for PR and the management of ED. This review updates SuperEnzyme gene therapy in PR.

  5. Nonviral Technologies for Gene Therapy in Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Cheng-Huang Su

    2008-06-01

    Full Text Available Gene therapy, which is still at an experimental stage, is a technique that attempts to correct or prevent a disease by delivering genes into an individual's cells and tissues. In gene delivery, a vector is a vehicle for transferring genetic material into cells and tissues. Synthetic vectors are considered to be prerequisites for gene delivery, because viral vectors have fundamental problems in relation to safety issues as well as large-scale production. Among the physical approaches, ultrasound with its associated bioeffects such as acoustic cavitation, especially inertial cavitation, can increase the permeability of cell membranes to macromolecules such as plasmid DNA. Microbubbles or ultrasound contrast agents lower the threshold for cavitation by ultrasound energy. Furthermore, ultrasound-enhanced gene delivery using polymers or other nonviral vectors may hold much promise for the future but is currently at the preclinical stage. We all know aging is cruel and inevitable. Currently, among the promising areas for gene therapy in acquired diseases, the incidences of cancer and ischemic cardiovascular diseases are strongly correlated with the aging process. As a result, gene therapy technology may play important roles in these diseases in the future. This brief review focuses on understanding the barriers to gene transfer as well as describing the useful nonviral vectors or tools that are applied to gene delivery and introducing feasible models in terms of ultrasound-based gene delivery.

  6. Discodermolide analogues as the chemical component of combination bacteriolytic therapy.

    Science.gov (United States)

    Smith, Amos B; Freeze, B Scott; LaMarche, Matthew J; Sager, Jason; Kinzler, Kenneth W; Vogelstein, Bert

    2005-08-01

    The marine natural product (+)-discodermolide (1) and several simplified analogues of this microtubule-stabilizing agent have proven to be potent in vitro cell growth inhibitory agents in several human cancer cell lines. Here, we demonstrate the in vivo efficacy of discodermolide and several simplified congeners, both as stand-alone anti-tumor agents and, in the case of (+)-2,3-anhydrodiscodermolide (3), as a chemical component of the combination bacteriolytic therapy. A single intravenous injection of (+)-3 plus genetically modified Clostridium novyi-NT spores caused rapid and complete regressions of tumors in mice bearing HCT116 colorectal cancer xenografts.

  7. Triple antiviral therapy in HCV positive patients who failed prior combination therapy

    Institute of Scientific and Technical Information of China (English)

    Silvia Fargion; Mauro Borzio; Alessandra Maraschi; Antonietta Cargnel

    2006-01-01

    AIM: To assess the efficacy of triple therapy (peginterferon or high dose standard interferon, plus ribavirin and amantadine) in nonresponders to prior combination therapy.METHODS: A total of 196 patients were enrolled in a multicenter, open, randomized study. Patients were given 180 μg/wk of peginterferon-alpha-2a (40 kD) plus ribavirin (800-1000 mg/d) and amantadine (200 mg/d)for 48 wk (group A) or interferon-alpha-2a (6 MU/d for 4 wk, 3 MU/d for 20 wk, and 3 MU tiw for 24 wk) plus ribavirin (800-1000 mg/d) and amantadine (200 mg/d)for 48 wk (group B).RESULTS: Overall sustained virologic response (SVR)was 26.6% (32.1% and 19.5% in group A and B, P =0.057). Baseline ALT >120 UI/L (OR 2.4; 95% CI:1.11to 5.20; P = 0.026) and HCV RNA negativity after 12 wk (OR 8.7; 95% CI: 3.87 to 19.74; P < 0.0001)were independently associated with SVR. Therapy discontinuation occurred less frequently in patients treated with peginterferon than standard interferon (P =0.036).CONCLUSION: More than 25% of nonresponders to combination therapy can eradicate HCV infection when retreated with triple therapy, especially if they have a high baseline ALT and are treated with pegylated interferon.

  8. Gene therapy for the treatment of cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burney TJ

    2012-05-01

    Full Text Available Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF, a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational

  9. Current advances in gene therapy for the treatment of genodermatoses.

    Science.gov (United States)

    Long, Heather A; McMillan, James R; Qiao, Hongjiang; Akiyama, Masashi; Shimizu, Hiroshi

    2009-12-01

    Gene therapy provides the possibility of long term treatment for the severest of congenital disorders. In this review we will examine the recent advances in gene therapy for genodermatoses. Congenital diseases of the skin exhibit a wide range of severity and underlying causes and there are many possible therapeutic avenues. Gene therapy approaches can follow three paths-in vivo, ex vivo and fetal gene therapy, though the later is currently theoretical only it can provide potential results for even the most severe congenital diseases. All approaches utilize the many different vector systems available, including viral and the emerging use of non- viral integrating vectors. In addition, the use of RNAi based techniques to prevent dominant mutant protein expression has been explored as a therapy for specific dominant disorders such as keratin mutation disorders. Progress has been rapid in the past few years with some initial successful clinical trials reported. However, there are still some issues surrounding long term expression, transgene sustainability and safety issues that need to be addressed to further shift from experimental to clinically therapeutic applications. With the continuing development, merger and refinement of existing techniques there is an ever increasing likelihood of gene therapies becoming available for the more severe genodermatoses within the next decade or shortly thereafter.

  10. Gene Therapy In Squamous Cell Carcinoma – A Short Review

    Directory of Open Access Journals (Sweden)

    Soma Susan Varghese

    2011-07-01

    Full Text Available Oral cancer remains one of the leading causes of death world wide. Various means to destroy tumor cells preferentially have been developed; gene therapy is one among them with less treatment morbidity. Gene therapy involves the transfer of therapeutic or working copy of genes into a specific cell of an individual in order to repair a faulty copy of gene. The alteration can be accomplished by repairing or replacing the damaged DNA by various strategies and vectors. To date genetically altered viruses are commonly used as gene delivery vehicle (vector which has an advantage of evolutionary selection of host-virus relation. Non viral vectors which include the physical transfection of genes can be accomplished by electrophoration, microinjection, or use of ballistic particles and chemical transfection by forming liposomes.

  11. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    Directory of Open Access Journals (Sweden)

    René Klysner

    2014-01-01

    Full Text Available The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.

  12. Future aspects of immunotherapy and gene therapy in neuroblastoma.

    Science.gov (United States)

    Aktas, S

    2009-09-01

    Immunotherapy against cancer aims at stimulating the immune system or building an immune response against targeted tumor-associated antigens (TAAs). It was proposed theoretically as a potential therapy for cancer over a century ago but it became popular in the past two decades. Gene therapy represents a promising approach for reversing the neoplastic phenotype or driving tumor cells to self-destruction. Although survival rates of neuroblastoma (NB) with biologically favorable disease are greater than 90%, outcomes of patients with high risk disease are less than 40%. Stage 4 metastatic NB cases over 18 months of age are often incurable with multimodality chemotherapy regimens. In this article, translation of immuno-gene therapy strategies into clinical trials for NB are reviewed. Future aspects of immuno-gene therapy are discussed.

  13. Lentiviral transgenesis--a versatile tool for basic research and gene therapy.

    Science.gov (United States)

    Pfeifer, Alexander

    2006-08-01

    Transgenic animals are of outstanding relevance for medical sciences, because they can be used to model human diseases and to develop gene therapy strategies. A recent development is lentiviral transgenesis: The generation of transgenic animals by lentiviral transduction of oocytes or early embryos. Lentiviral transgenesis is an efficient method to express transgenes in mice and rats as well as in biomedically relevant livestock. Thus, the applications of this technology range from the generation of disease models to gene pharming for human proteins. An important extension of viral transgenesis is the combination of lentiviral gene transfer with RNA interference. Thereby, expression of specific genes can be silenced and loss-of-function models can be generated. Finally, lentiviral transgenic animals can be used to directly evaluate gene therapy strategies that are based on lentiviral vectors prior to their use in humans.

  14. New approaches to gene and cell therapy for hemophilia.

    Science.gov (United States)

    Ohmori, T; Mizukami, H; Ozawa, K; Sakata, Y; Nishimura, S

    2015-06-01

    Hemophilia is considered suitable for gene therapy because it is caused by a single gene abnormality, and therapeutic coagulation factor levels may vary across a broad range. Recent success of hemophilia B gene therapy with an adeno-associated virus (AAV) vector in a clinical trial showed the real prospect that, through gene therapy, a cure for hemophilia may become a reality. However, AAV-mediated gene therapy is not applicable to patients with hemophilia A at present, and neutralizing antibodies against AAV reduce the efficacy of AAV-mediated strategies. Because patients that benefit from AAV treatment (hemophilia B without neutralizing antibodies) are estimated to represent only 15% of total patients with hemophilia, the development of basic technologies for hemophilia A and those that result in higher therapeutic effects are critical. In this review, we present an outline of gene therapy methods for hemophilia, including the transition of technical developments thus far and our novel techniques. © 2015 International Society on Thrombosis and Haemostasis.

  15. Gene therapy for hemophilia: past, present and future.

    Science.gov (United States)

    George, Lindsey A; Fogarty, Patrick F

    2016-01-01

    After numerous preclinical studies demonstrated consistent success in large and small animal models, gene therapy has finally seen initial signs of clinically meaningful success. In a landmark study, Nathwani and colleagues reported sustained factor (F)IX expression in individuals with severe hemophilia B following adeno-associated virus (AAV)-mediated in vivo FIX gene transfer. As the next possible treatment-changing paradigm in hemophilia care, gene therapy may provide patients with sufficient hemostatic improvement to achieve the World Federation of Hemophilia's aspirational goal of "integration of opportunities in all aspects of life… equivalent to someone without a bleeding disorder." Although promising momentum supports the potential of gene therapy to replace protein-based therapeutics for hemophilia, several obstacles remain. The largest challenges appear to be overcoming the cellular immune responses to the AAV capsid; preexisting AAV neutralizing antibodies, which immediately exclude approximately 50% of the target population; and the ability to scale-up vector manufacturing for widespread applicability. Additional obstacles specific to hemophilia A (HA) include designing a vector cassette to accommodate a larger cDNA; avoiding development of inhibitory antibodies; and, perhaps the greatest difficulty to overcome, ensuring adequate expression efficiency. This review discusses the relevance of gene therapy to the hemophilia disease state, previous research progress, the current landscape of clinical trials, and considerations for promoting the future availability of gene therapy for hemophilia. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gene therapy for cancer: regulatory considerations for approval.

    Science.gov (United States)

    Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K

    2015-12-01

    The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.

  17. Recent advances in gene therapy for lysosomal storage disorders.

    Science.gov (United States)

    Rastall, David Pw; Amalfitano, Andrea

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of genetic diseases that result in metabolic derangements of the lysosome. Most LSDs are due to the genetic absence of a single catabolic enzyme, causing accumulation of the enzyme's substrate within the lysosome. Over time, tissue-specific substrate accumulations result in a spectrum of symptoms and disabilities that vary by LSD. LSDs are promising targets for gene therapy because delivery of a single gene into a small percentage of the appropriate target cells may be sufficient to impact the clinical course of the disease. Recently, there have been several significant advancements in the potential for gene therapy of these disorders, including the first human trials. Future clinical trials will build upon these initial attempts, with an improved understanding of immune system responses to gene therapy, the obstacle that the blood-brain barrier poses for neuropathic LSDs, as well other biological barriers that, when overcome, may facilitate gene therapy for LSDs. In this manuscript, we will highlight the recent innovations in gene therapy for LSDs and discuss the clinical limitations that remain to be overcome, with the goal of fostering an understanding and further development of this important field.

  18. Bioengineered lysozyme in combination therapies for Pseudomonas aeruginosa lung infections

    Science.gov (United States)

    Griswold, Karl E; Bement, Jenna L; Teneback, Charlotte C; Scanlon, Thomas C; Wargo, Matthew J; Leclair, Laurie W

    2014-01-01

    There is increasing urgency in the battle against drug-resistant bacterial pathogens, and this public health crisis has created a desperate need for novel antimicrobial agents. Recombinant human lysozyme represents one interesting candidate for treating pulmonary infections, but the wild type enzyme is subject to electrostatic mediated inhibition by anionic biopolymers that accumulate in the infected lung. We have redesigned lysozyme’s electrostatic potential field, creating a genetically engineered variant that is less susceptible to polyanion inhibition, yet retains potent bactericidal activity. A recent publication demonstrated that the engineered enzyme outperforms wild type lysozyme in a murine model of Pseudomonas aeruginosa lung infection. Here, we expand upon our initial studies and consider dual therapies that combine lysozymes with an antimicrobial peptide. Consistent with our earlier results, the charge modified lysozyme combination outperformed its wild type counterpart, yielding more than an order-of-magnitude reduction in bacterial burden following treatment with a single dose. PMID:24637705

  19. Combining chemotherapy and targeted therapies in metastatic colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Colorectal cancer remains one of the major causes of cancer death worldwide. During the past years, the development of new effective treatment options has led to a considerable improvement in the outcome of this disease. The advent of agents such as capecitabine, irinotecan, oxaliplatin, cetuximab and bevacizumab has translated into median survival times in the range of 2 years. Intense efforts have focused on identifying novel agents targeting specific growth factor receptors, critical signal transduction pathways or mediators of angiogenesis. In addition, several clinical trials have suggested that some of these molecularly targeted drugs can be safely and effectively used in combination with conventional chemotherapy. In this article we review various treatment options combining cytotoxic and targeted therapies currently available for patients with metastatic colorectal cancer.

  20. Combination Adriamycin and radiation therapy in gynecologic cancers

    Energy Technology Data Exchange (ETDEWEB)

    Watring, W.G.; Byfield, J.E.; Lagasse, L.D.; Lee, Y.D.; Juillard, G.; Jacobs, M.; Smith, M.L.

    1974-12-01

    Anthracyclic antibiotics, of which adriamycin is representative, have the ability to bind to cellular DNA and thereby interfere with the X ray repair process. When radiation survival curves of tissue cultures were studied, increased cell-killing was noted in those cultures with adriamycin over those without the drug. The mechanism by which this occurs may be related to a reduced rate of DNA strand break rejoining, as demonstrated by use of alkaline sucrose gradient techniques. A preliminary clinical Phase I study, in which patients with advanced gynecologic malignancy were treated by simultaneous adriamycin and X radiation, suggests that combined therapy is well-tolerated, and that such combinations may prove useful in selected patients.

  1. Transient Serotonin Toxicity Evoked by Combination of Electroconvulsive Therapy and Fluoxetine

    DEFF Research Database (Denmark)

    Klysner, René; Bjerg Bendsen, Birgitte; Hansen, Maja Soon

    2014-01-01

    The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine.......The serotonin syndrome has been described only in rare instances for electroconvulsive therapy combined with an antidepressant medication. We describe a case of serotonin toxicity induced by electroconvulsive therapy in combination with fluoxetine....

  2. Choosing the right combination therapy in severe community-acquired pneumonia

    OpenAIRE

    Waterer, Grant W.; Rello, Jordi

    2006-01-01

    Recent studies have suggested that combination antibiotic therapy is preferable to monotherapy for severe community-acquired pneumonia (CAP). In this issue Mortensen and colleagues present retrospective data suggesting that combination therapy with a cephalosporin and a fluoroquinolone is inferior to combination therapy with a cephalosporin and a macrolide. Several mechanisms exist by which quinolones could be inferior to macrolides in combination therapy, so if these findings are confirmed b...

  3. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria

    OpenAIRE

    Tängdén, Thomas

    2014-01-01

    Combination antibiotic therapy for Gram-negative sepsis is controversial. The present review provides a brief summary of the existing knowledge on combination therapy for severe infections with multidrug-resistant Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae. Empirical combination antibiotic therapy is recommended for severe sepsis and septic shock to reduce mortality related to inappropriate antibiotic treatment. Because definitive combination therapy has not been proven supe...

  4. Gene therapy of inherited skin adhesion disorders: a critical overview.

    Science.gov (United States)

    De Luca, M; Pellegrini, G; Mavilio, F

    2009-07-01

    Gene therapy has the potential to treat devastating inherited diseases for which there is little hope of finding a conventional cure. These include lethal diseases, like immunodeficiencies or several metabolic disorders, or conditions associated with a relatively long life expectancy but poor quality of life and expensive and life-long symptomatic treatments, such as muscular dystrophy, cystic fibrosis and thalassaemia. Skin adhesion defects belong to both groups. For the nonlethal forms, gene therapy, or transplantation of cultured skin derived from genetically corrected epidermal stem cells, represents a very attractive therapeutic option, and potentially a definitive treatment. Recent advances in gene transfer and stem cell culture technology are making this option closer than ever. This paper critically reviews the progress and prospects of gene therapy for epidermolysis bullosa, and the technical and nontechnical factors currently limiting its development.

  5. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  6. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders.

    Science.gov (United States)

    Gessler, Dominic J; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann-Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases.

  7. Immunostimulatory Gene Therapy Using Oncolytic Viruses as Vehicles

    Directory of Open Access Journals (Sweden)

    Angelica Loskog

    2015-11-01

    Full Text Available Immunostimulatory gene therapy has been developed during the past twenty years. The aim of immunostimulatory gene therapy is to tilt the suppressive tumor microenvironment to promote anti-tumor immunity. Hence, like a Trojan horse, the gene vehicle can carry warriors and weapons into enemy territory to combat the tumor from within. The most promising immune stimulators are those activating and sustaining Th1 responses, but even if potent effects were seen in preclinical models, many clinical trials failed to show objective responses in cancer patients. However, with new tools to control ongoing immunosuppression in cancer patients, immunostimulatory gene therapy is now emerging as an interesting option. In parallel, oncolytic viruses have been shown to be safe in patients. To prolong immune stimulation and to increase efficacy, these two fields are now merging and oncolytic viruses are armed with immunostimulatory transgenes. These novel agents are racing towards approval as established cancer immunotherapeutics.

  8. Advances in gene therapy technologies to treat retinitis pigmentosa.

    Science.gov (United States)

    Petrs-Silva, Hilda; Linden, Rafael

    2014-01-01

    Retinitis pigmentosa (RP) is a class of diseases that leads to progressive degeneration of the retina. Experimental approaches to gene therapy for the treatment of inherited retinal dystrophies have advanced in recent years, inclusive of the safe delivery of genes to the human retina. This review is focused on the development of gene therapy for RP using recombinant adenoassociated viral vectors, which show a positive safety record and have so far been successful in several clinical trials for congenital retinal disease. Gene therapy for RP is under development in a variety of animal models, and the results raise expectations of future clinical application. Nonetheless, the translation of such strategies to the bedside requires further understanding of the mutations and mechanisms that cause visual defects, as well as thorough examination of potential adverse effects.

  9. Gene Therapy for the Treatment of Neurological Disorders: Metabolic Disorders

    Science.gov (United States)

    Gessler, Dominic J.; Gao, Guangping

    2016-01-01

    Metabolic disorders comprise a large group of heterogeneous diseases ranging from very prevalent diseases such as diabetes mellitus to rare genetic disorders like Canavan Disease. Whether either of these diseases is amendable by gene therapy depends to a large degree on the knowledge of their pathomechanism, availability of the therapeutic gene, vector selection, and availability of suitable animal models. In this book chapter, we review three metabolic disorders of the central nervous system (CNS; Canavan Disease, Niemann–Pick disease and Phenylketonuria) to give examples for primary and secondary metabolic disorders of the brain and the attempts that have been made to use adeno-associated virus (AAV) based gene therapy for treatment. Finally, we highlight commonalities and obstacles in the development of gene therapy for metabolic disorders of the CNS exemplified by those three diseases. PMID:26611604

  10. Safety of gene therapy: new insights to a puzzling case.

    Science.gov (United States)

    Rothe, Michael; Schambach, Axel; Biasco, Luca

    2014-01-01

    Over the last few years, the transfer of therapeutic genes via gammaretro- or lentiviral vector systems has proven its virtue as an alternative treatment for a series of genetic disorders. The number of approved phase I/II clinical trials, especially for rare diseases, is steadily increasing, but the overall hurdles to become a broadly acceptable therapy remain numerous. The efforts by clinicians and basic scientists have tremendously improved the knowledge available about feasibility and biosafety of gene therapy. Nonetheless, despite the generation of a plethora of clinical and preclinical safety data, we still lack sufficiently powerful assays to predictively assess the exact levels of toxicity that might be observed in any given clinical gene therapy. Insertional mutagenesis is one of the major concerns when using integrating vectors for permanent cell modification, and the occurrence of adverse events related to genotoxicity, in early gene therapy trials, has refrained the field of gene therapy from emerging further. In this review, we provided a comprehensive overview on the basic principles and potential co-factors concurring in the generation of adverse events reported in gene therapy clinical trials using integrating vectors. Additionally, we summarized the available systems to assess genotoxicity at the preclinical level and we shed light on the issues affecting the predictive value of these assays when translating their results into the clinical arena. In the last section of the review we briefly touched on the future trends and how they could increase the safety of gene therapy employing integrating vector technology to take it to the next level.

  11. Clonal evolution of hepatitis B virus polymerase gene mutations during lamivudine-adefovir combination treatment

    Institute of Scientific and Technical Information of China (English)

    Soon Young Ko; Byung Kook Kim; So Young Kwon; Kyun-Hwan Kim; Jeong Han Kim; Won Hyeok Choe; Chang HongLee

    2012-01-01

    AIM:To identify hepatitis B virus polymerase gene mutations during antiviral therapy using lamivudineadefovir sequential monotherapy followed by lamivudine-adefovir combination therapy.METHODS:The patient cohort included four adult chronic hepatitis B patients who had undergone sequential monotherapy,first with lamivudine (LMV)and then,after developing viral breakthrough,with adefovir (ADV) therapy.All of the patients had non-response or viral breakthrough after LMV-ADV sequential monotherapy,which resulted in the switching of their antiviral regimen to LMV-ADV combination therapy.Eleven serum samples from the four patients who showed non-response to rescue LMV-ADV combination therapy were collected sequentially at a time before the antiviral treatment and then during the LMV monotherapy,ADV monotherapy,and LMV-ADV combination therapy.For the genotypic analysis,the whole 1310-bp polymerase gene region was amplified,cloned and sequenced.RESULTS:All patients had been previously treated with 100 mg of LMV once daily for a 15-to 26-mo period.The emergence of resistance mutations to LMV,such as rtM204V/I and/or rtL180M,were found in all patients.Their antiviral regimens were switched to ADV monotherapy as the second line treatment.All patients had viral breakthrough or non-response after the LMV-ADV sequential monotherapy.ADV-resistant mutations were detected after 13 to 19 mo of LMV-ADV sequential monotherapy.The rtA181V/T mutations were predominantly identified during the ADV treatment in the LMV-resistant patients.Twenty-seven of 38 clones were combined with an amino acid change at rt181;three clones had mutations in rt236 and one clone had a combined mutation.The rtA181V/T mutations were not suppressed by the LMV-ADV combination therapy.Thirty-nine of 64 clones showed an rtA181V/T mutation and six clones showed combined mutations in rt181 and rt236.Mutations in rt204 re-emerged during the combination treatment.The rt181 and rt204 mutations did not co-exist in one

  12. A novel temperature-responsive micelle for enhancing combination therapy

    Directory of Open Access Journals (Sweden)

    Peng CL

    2016-07-01

    Full Text Available Cheng-Liang Peng,1,* Yuan-I Chen,2,3,* Hung-Jen Liu,2 Pei-Chi Lee,2 Tsai-Yueh Luo,1 Ming-Jium Shieh2,3 1Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, 2Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, 3Department of Oncology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: A novel thermosensitive polymer p(N-isopropylacrylamide-co-poly[ethylene glycol] methyl ether acrylate-block-poly(epsilon-caprolactone, p(NIPAAM-co-PEGMEA-b-PCL, was synthesized and developed as nanomicelles. The hydrophobic heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin and the photosensitizer cyanine dye infrared-780 were loaded into the core of the micelles to achieve both chemotherapy and photothermal therapy simultaneously at the tumor site. The release of the drug could be controlled by varying the temperature due to the thermosensitive nature of the micelles. The micelles were less than 200 nm in size, and the drug encapsulation efficiency was >50%. The critical micelle concentrations were small enough to allow micelle stability upon dilution. Data from cell viability and animal experiments indicate that this combination treatment using photothermal therapy with chemotherapy had synergistic effects while decreasing side effects. Keywords: thermosensitive, photothermal therapy, chemotherapy, nanocarrier, control release, synergistic effect

  13. Recent trends in the gene therapy of β-thalassemia.

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.

  14. Recent trends in the gene therapy of β-thalassemia

    Science.gov (United States)

    Finotti, Alessia; Breda, Laura; Lederer, Carsten W; Bianchi, Nicoletta; Zuccato, Cristina; Kleanthous, Marina; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases. PMID:25737641

  15. A Framework for Combining rTMS with Behavioral Therapy.

    Science.gov (United States)

    Tsagaris, K Zoe; Labar, Douglas R; Edwards, Dylan J

    2016-01-01

    Upon its inception, repetitive transcranial magnetic stimulation (rTMS) was delivered at rest, without regard to the potential impact of activity occurring during or around the time of stimulation. rTMS was considered an experimental intervention imposed on the brain; therefore, the myriad features that might suppress or enhance its desired effects had not yet been explored. The field of rTMS has since grown substantially and therapeutic benefits have been reported, albeit with modest and inconsistent improvements. Work in this field accelerated following approval of a psychiatric application (depression), and it is now expanding to other applications and disciplines. In the last decade, experimental enquiry has sought new ways to improve the therapeutic benefits of rTMS, intended to enhance underlying brain reorganization and functional recovery by combining it with behavioral therapy. This concept is appealing, but poorly defined and requires clarity. We provide an overview of how combined rTMS and behavioral therapy has been delineated in the literature, highlighting the diversity of approaches. We outline a framework for study design and reporting such that the effects of this emerging method can be better understood.

  16. A Framework for Combining rTMS with Behavioral Therapy

    Directory of Open Access Journals (Sweden)

    K. Zoe Tsagaris

    2016-11-01

    Full Text Available Upon its inception, repetitive transcranial magnetic stimulation (rTMS was delivered at rest, without regard to the potential impact of activity occurring during or around the time of stimulation. rTMS was considered an experimental intervention imposed on the brain; therefore, the myriad features that might suppress or enhance its desired effects had not yet been explored. The field of rTMS has since grown substantially and therapeutic benefits have been reported, albeit with modest and inconsistent improvements. Work in this field accelerated following approval of a psychiatric application (depression, and it is now expanding to other applications and disciplines. In the last decade, experimental enquiry has sought new ways to improve the therapeutic benefits of rTMS, intended to enhance underlying brain reorganization and functional recovery by combining it with behavioral therapy. This concept is appealing, but poorly defined and requires clarity. We provide a snapshot of how combined rTMS and behavioral therapy has been delineated in the literature, highlighting the diversity of approaches. We outline a framework for study design and reporting such that the effects of this emerging method can be better understood.

  17. Combined preoperative therapy for oral cancer with nedaplatin and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Masatoshi; Shibata, Akihiko; Hayashi, Munehiro [Nippon Dental Univ., Tokyo (Japan). Hospital] (and others)

    2002-03-01

    We performed preoperative combined therapy using nedaplatin (CDGP) and radiation in 12 patients with squamous cell carcinoma originating from the oral cavity and maxillary sinus, and examined for any adverse events that may have occurred during this therapeutic regimen. Regarding the irradiation, external irradiation utilizing a 6 MV linac (linear accelerator) at a dose of 2.0 Gy/day was performed 5 times a week, with the target total radiation dose set at 40 Gy. In addition, CDGP was intravenously administered 30 minutes before irradiation at a dose of 5 mg/m{sup 2}/day. Mucositis was observed in all 12 subjects, however, the severity was observed to be grade 1-2 with no major differences in comparison to the patients given standard radiation monotherapy. Two subjects developed grade 3 leucopenia and were thus given granulocyte colony stimulating factor (G-CSF). In addition, grade 2 and grade 3 thrombocytopenia were both observed in one subject each. The subject with grade 3 thrombocytopenia required a platelet transfusion during surgery. No marked changes in serum creatinine levels were noted. These findings are therefore considered to provide evidence supporting the safety of this combination therapy. (author)

  18. Advances in gene therapy for muscular dystrophies.

    Science.gov (United States)

    Abdul-Razak, Hayder; Malerba, Alberto; Dickson, George

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

  19. Pancreatic cancer: systemic combination therapies for a heterogeneous disease.

    Science.gov (United States)

    Melisi, Davide; Calvetti, Lorenzo; Frizziero, Melissa; Tortora, Giampaolo

    2014-01-01

    Pancreatic cancer is the only human malignancy for which patients' survival has not improved substantially during the past 30 years. Despite advances in the comprehension of the molecular mechanisms underlying pancreatic carcinogenesis, current systemic treatments offer only a modest benefit in tumor-related symptoms and survival. Over the past decades, gemcitabine and its combination with other standard cytotoxic agents have been the reference treatments for advanced pancreatic cancer patients. The recent introduction of the three-drug combination regimen FOLFIRINOX or the new taxane nab-paclitaxel represent key advances for a better control of the disease. Novel agents targeting molecular mechanisms involved in cancer development and maintenance are currently under clinical investigation. This review describes the most important findings in the field of systemic combination therapies for the treatment of pancreatic cancer. We discuss the emerging evidences for the clinical activity of combination treatments with standard chemotherapy plus novel agents targeting tumor cell-autonomous and tumor microenvironment signaling pathways. We present some of the most important advances in the comprehension of the molecular mechanisms responsible for the chemoresistance of pancreatic cancer and the emerging therapeutic targets to overcome this resistance.

  20. Epigenetic therapy in gastrointestinal cancer: the right combination

    Science.gov (United States)

    Abdelfatah, Eihab; Kerner, Zachary; Nanda, Nainika; Ahuja, Nita

    2016-01-01

    Epigenetics is a relatively recent field of molecular biology that has arisen over the past 25 years. Cancer is now understood to be a disease of widespread epigenetic dysregulation that interacts extensively with underlying genetic mutations. The development of drugs targeting these processes has rapidly progressed; with several drugs already FDA approved as first-line therapy in hematological malignancies. Gastrointestinal (GI) cancers possess high degrees of epigenetic dysregulation, exemplified by subtypes such as CpG island methylator phenotype (CIMP), and the potential benefit of epigenetic therapy in these cancers is evident. The application of epigenetic drugs in solid tumors, including GI cancers, is just emerging, with increased understanding of the cancer epigenome. In this review, we provide a brief overview of cancer epigenetics and the epigenetic targets of therapy including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. We discuss the epigenetic drugs currently in use, with a focus on DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, and explain the pharmacokinetic and mechanistic challenges in their application. We present the strategies employed in incorporating these drugs into the treatment of GI cancers, and explain the concept of the cancer stem cell in epigenetic reprogramming and reversal of chemo resistance. We discuss the most promising combination strategies in GI cancers including: (1) epigenetic sensitization to radiotherapy, (2) epigenetic sensitization to cytotoxic chemotherapy, and (3) epigenetic immune modulation and priming for immune therapy. Finally, we present preclinical and clinical trial data employing these strategies thus far in various GI cancers including colorectal, esophageal, gastric, and pancreatic cancer. PMID:27366224

  1. Aliskiren and valsartan combination therapy for the management of hypertension

    Directory of Open Access Journals (Sweden)

    Benjamin J Epstein

    2010-08-01

    Full Text Available Benjamin J EpsteinDepartments of Pharmacotherapy and Translational Research and Medicine, Colleges of Pharmacy and Medicine, University of Florida, Gainesville, Florida, USA and East Coast Institute for Research, Jacksonville, Florida, USAAbstract: Combination therapy is necessary for most patients with hypertension, and agents that inhibit the renin-angiotensin-aldosterone system (RAAS are mainstays in hypertension management, especially for patients at high cardiovascular and renal risk. Single blockade of the RAAS with an angiotensin-converting enzyme (ACE inhibitor or angiotensin receptor blocker (ARB confers some cardiorenal protection; however, these agents do not extinguish the RAAS as evidenced by a reactive increase in plasma renin activity (PRA, a cardiovascular risk marker, and incomplete cardiorenal protection. Dual blockade with an ACE inhibitor and an ARB offers no additional benefit in patients with hypertension and normal renal and left ventricular function. Indeed, PRA increases synergistically with dual blockade. Aliskiren, the first direct renin inhibitor (DRI to become available has provided an opportunity to study the merit of DRI/ARB combination treatment. By blocking the first and rate-limiting step in the RAAS, aliskiren reduces PRA by at least 70% and buffers the compensatory increase in PRA observed with ACE inhibitors and ARBs. The combination of a DRI and an ARB or an ACE inhibitor is an effective approach for lowering blood pressure; available data indicate that such combinations favorably affect proteinuria, left ventricular mass index, and brain natriuretic peptide in patients with albuminuria, left ventricular hypertrophy, and heart failure, respectively. Ongoing outcome studies will clarify the role of aliskiren and aliskiren-based combination RAAS blockade in patients with hypertension and those at high cardiorenal risk.Keywords: aliskiren, valsartan, single-pill combination, hypertension, renin

  2. Gene Therapy of Human Breast Cancer

    Science.gov (United States)

    1996-10-01

    1987. Partial characterization of chicken spleen cell culture supernatants stimulated with Staphylococcus aureus. Developmental & Comparative...Immunology 1 1: 191. 8. Schoof, D. D., and C. H. Tempelis. 1 986. The role of soluble protein A in chicken spleen cell activation. Developmental...promoter upstream of the neomycin phosphotransferase gene. No other eukarjotic genes are expressed. Other sequences include an intron and poly(A) site

  3. Gene therapy for the treatment of cystic fibrosis.

    Science.gov (United States)

    Burney, Tabinda J; Davies, Jane C

    2012-01-01

    Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy.

  4. Gene engineering biological therapy for juvenile arthritis

    Directory of Open Access Journals (Sweden)

    Kh Mikhel's

    2011-01-01

    However, GEBA therapy cannot completely cure the disease as before despite the progress achieved. GEBAs have potentially a number of serious side effects, among which there are severe infections and there is a risk of developing malignancies and autoimmune processes. Their administration requires careful monitoring to reveal the early development of serious adverse reactions, thus preventing a poor outcome.

  5. Faster T-cell development following gene therapy compared with haploidentical HSCT in the treatment of SCID-X1.

    Science.gov (United States)

    Touzot, Fabien; Moshous, Despina; Creidy, Rita; Neven, Bénédicte; Frange, Pierre; Cros, Guilhem; Caccavelli, Laure; Blondeau, Johanna; Magnani, Alessandra; Luby, Jean-Marc; Ternaux, Brigitte; Picard, Capucine; Blanche, Stéphane; Fischer, Alain; Hacein-Bey-Abina, Salima; Cavazzana, Marina

    2015-06-04

    During the last decade, gene therapy via ex vivo gene transfer into autologous hematopoietic stem cells has emerged as a convincing therapy for severe combined immunodeficiency caused by ILR2G mutation (SCID-X1) despite the occurrence of genotoxicity caused by the integration of first-generation retroviral vectors. However, the place of gene therapy among the therapeutic armamentarium remains to be defined. We retrospectively analyze and compare clinical outcomes and immune reconstitution in 13 consecutive SCID-X1 patients having undergone haploidentical hematopoietic stem cell transplantation (HSCT) and 14 SCID-X1 patients treated with gene therapy over the same period at a single center level: the Necker Children's Hospital (Paris, France). Our results show a clear advantage in terms of T-cell development of gene therapy over HSCT with a mismatched donor. Patients treated with gene therapy display a faster T-cell reconstitution and a better long-term thymic output. Interestingly, this advantage of gene therapy vs haploidentical HSCT seems to be independent of the existence of clinical graft-versus-host disease in the latter condition. If data of safety are confirmed over the long term, gene therapy for SCID-X1 appears to be an equal, if not superior, alternative to haploidentical HSCT.

  6. Sjogren Syndrome-Gene Therapy and its Prospective

    Directory of Open Access Journals (Sweden)

    R Rahpeyma

    2003-02-01

    Full Text Available Sjogren syndrome is one of the autoimmune diseases which is characterized by lymphocytic infiltration to exocrine glands and causes keratoconjunctivitis sicca and xerostomia. Today, a large population, with a majority of women over 40, suffer from this disease and have several complications regarding oral health and reduced life quality such as severe dental caries, painful eyes, olfactory and gustatory deficiency, speech, mastication and swallowing discomforts. Unfortunately, these patients do not respond to the conventional therapies. Nowadays in medical world, which its target is basic therapy and not symptomatic one, several gene therapy approaches, have gained importance in treatment of this apparently incurable diseases. Due to the facts that this disease is the second prevelant autoimmune disease, after rheumatoid arthritis, and the conventional therapies of the disease are all relative and symptomatic, researchers have insisted on the basic and causative therapy through gene transfer more than before. In the Present article, through reviewing 58 references containing recent scientific and investigatory findings it has been tried, to consider the pathogenesis and conventional therapies of this syndrome. Another purpose of this study was to investigate several and potentially very effective gene transfer systems and different theraputic genes (mainly membrane water channels, ione transporter molecules, transcription factors, antifungal proteins and free radical scavengers.

  7. Intracellular delivery of potential therapeutic genes: prospects in cancer gene therapy.

    Science.gov (United States)

    Bakhtiar, Athirah; Sayyad, Mustak; Rosli, Rozita; Maruyama, Atsushi; Chowdhury, Ezharul H

    2014-01-01

    Conventional therapies for malignant cancer such as chemotherapy and radiotherapy are associated with poor survival rates owing to the development of cellular resistance to cancer drugs and the lack of targetability, resulting in unwanted adverse effects on healthy cells and necessitating the lowering of therapeutic dose with consequential lower efficacy of the treatment. Gene therapy employing different types of viral and non-viral carriers to transport gene(s) of interest and facilitating production of the desirable therapeutic protein(s) has tremendous prospects in cancer treatments due to the high-level of specificity in therapeutic action of the expressed protein(s) with diminished off-target effects, although cancer cell-specific delivery of transgene(s) still poses some challenges to be addressed. Depending on the potential therapeutic target genes, cancer gene therapy could be categorized into tumor suppressor gene replacement therapy, immune gene therapy and enzyme- or prodrug-based therapy. This review would shed light on the current progress of delivery of potentially therapeutic genes into various cancer cells in vitro and animal models utilizing a variety of viral and non-viral vectors.

  8. Changes in winter depression phenotype correlate with white blood cell gene expression profiles: a combined metagene and gene ontology approach.

    Science.gov (United States)

    Bosker, Fokko J; Terpstra, Peter; Gladkevich, Anatoliy V; Janneke Dijck-Brouwer, D A; te Meerman, Gerard; Nolen, Willem A; Schoevers, Robert A; Meesters, Ybe

    2015-04-03

    In the present study we evaluate the feasibility of gene expression in white blood cells as a peripheral marker for winter depression. Sixteen patients with winter type seasonal affective disorder were included in the study. Blood was taken by venous puncture at three time points; in winter prior and following bright light therapy and in summer. RNA was isolated, converted into cRNA, amplified and hybridized on Illumina® gene expression arrays. The raw optical array data were quantile normalized and thereafter analyzed using a metagene approach, based on previously published Affymetrix gene array data. The raw data were also subjected to a secondary analysis focusing on circadian genes and genes involved in serotonergic neurotransmission. Differences between the conditions were analyzed, using analysis of variance on the principal components of the metagene score matrix. After correction for multiple testing no statistically significant differences were found. Another approach uses the correlation between metagene factor weights and the actual expression values, averaged over conditions. When comparing the correlations of winter vs. summer and bright light therapy vs. summer significant changes for several metagenes were found. Subsequent gene ontology analyses (DAVID and GeneTrail) of 5 major metagenes suggest an interaction between brain and white blood cells. The hypothesis driven analysis with a smaller group of genes failed to demonstrate any significant effects. The results from the combined metagene and gene ontology analyses support the idea of communication between brain and white blood cells. Future studies will need a much larger sample size to obtain information at the level of single genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Theragnosis-based combined cancer therapy using doxorubicin-conjugated microRNA-221 molecular beacon.

    Science.gov (United States)

    Lee, Jonghwan; Choi, Kyung-Ju; Moon, Sung Ung; Kim, Soonhag

    2016-01-01

    Recently, microRNA (miRNA or miR) has emerged as a new cancer biomarker because of its high expression level in various cancer types and its role in the control of tumor suppressor genes. In cancer studies, molecular imaging and treatment based on target cancer markers have been combined to facilitate simultaneous cancer diagnosis and therapy. In this study, for combined therapy with diagnosis of cancer, we developed a doxorubicin-conjugated miR-221 molecular beacon (miR-221 DOXO MB) in a single platform composed of three different nucleotides: miR-221 binding sequence, black hole quencher 1 (BHQ1), and doxorubicin binding site. Imaging of endogenous miR-221 was achieved by specific hybridization between miR-221 and the miR-221 binding site in miR-221 DOXO MB. The presence of miR-221 triggered detachment of the quencher oligo and subsequent activation of a fluorescent signal of miR-221 DOXO MB. Simultaneous cancer therapy in C6 astrocytoma cells and nude mice was achieved by inhibition of miRNA-221 function that downregulates tumor suppressor genes. The detection of miR-221 expression and inhibition of miR-221 function by miR-221 DOXO MB provide the feasibility as a cancer theragnostic probe. Furthermore, a cytotoxic effect was induced by unloading of doxorubicin intercalated into miR-221 DOXO MB inside cells. Loss of miR-221 function and cytotoxicity induced by the miR-221 DOXO MB provides combined therapeutic efficacy against cancers. This method could be used as a new theragnostic probe with enhanced therapy to detect and inhibit many cancer-related miRNAs.

  10. Gene therapy clinical trials worldwide to 2012 - an update.

    Science.gov (United States)

    Ginn, Samantha L; Alexander, Ian E; Edelstein, Michael L; Abedi, Mohammad R; Wixon, Jo

    2013-02-01

    To date, over 1800 gene therapy clinical trials have been completed, are ongoing or have been approved worldwide. Our database brings together global information on gene therapy clinical trials from official agency sources, published literature, conference presentations and posters kindly provided to us by individual investigators or trial sponsors. This review presents our analysis of clinical trials that, to the best of our knowledge, have been or are being performed worldwide. As of our June 2012 update, we have entries on 1843 trials undertaken in 31 countries. We have analysed the geographical distribution of trials, the disease indications (or other reasons) for trials, the proportions to which different vector types are used, and which genes have been transferred. Details of the analyses presented, and our searchable database are available on The Journal of Gene Medicine Gene Therapy Clinical Trials Worldwide website at: http://www.wiley.co.uk/genmed/clinical. We also provide an overview of the progress being made in clinical trials of gene therapy approaches around the world and discuss the prospects for the future.

  11. Development of Viral Vectors for Gene Therapy for Chronic Pain

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2011-01-01

    Full Text Available Chronic pain is a major health concern that affects millions of people. There are no adequate long-term therapies for chronic pain sufferers, leading to significant cost for both society and the individual. The most commonly used therapy for chronic pain is the application of opioid analgesics and nonsteroidal anti-inflammatory drugs, but these drugs can lead to addiction and may cause side effects. Further studies of the mechanisms of chronic pain have opened the way for development of new treatment strategies, one of which is gene therapy. The key to gene therapy is selecting safe and highly efficient gene delivery systems that can deliver therapeutic genes to overexpress or suppress relevant targets in specific cell types. Here we review several promising viral vectors that could be applied in gene transfer for the treatment of chronic pain and further discuss the possible mechanisms of genes of interest that could be delivered with viral vectors for the treatment of chronic pain.

  12. Heart failure gene therapy: the path to clinical practice.

    Science.gov (United States)

    Pleger, Sven T; Brinks, Henriette; Ritterhoff, Julia; Raake, Philip; Koch, Walter J; Katus, Hugo A; Most, Patrick

    2013-08-30

    Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.

  13. Effects of combined therapy of orbital cobalt Irradiation and oral corticosteroid administration, and pulse therapy for Graves' ophthalmopathy

    Energy Technology Data Exchange (ETDEWEB)

    Shigemasa, Chiaki; Ueta, Yoshihiko; Taniguchi, Shinichi; Mitani, Yasuo; Urabe, Keita; Tanaka, Takashi; Yoshida, Akio; Mashiba, Hiroto

    1989-03-01

    This preliminary study was performed to investigate the efficacy of the combined therapy of orbital cobalt irradiation and oral prednisolone administration, and pulse therapy, for Graves' ophthalmopathy. The combined therapy was undergone according to procedure of Bartalena et al. (1983) in 5 patients. Excellent or good response to combined therapy were shown by 3 patients with short-standing ocular symptoms (3-4 months), but not by 2 patients with long-standing ocular symptoms (12-13 months). Pulse therapy was performed on 2 patients who showed no improvement from combined therapy, and on a patient who had acute onset of opthalmopathy. One gram of methylprednisolone sodium succinate was given intravenously daily for 3 successive days. This infusion procedure was repeated 3 to 4 times at intervals of 1 week. One of 2 patients who showed no improvement from combined therapy also had no response to pulse therapy. The other 2 patients showed a good response to pulse therapy and showed no relapse of ophthalmopathy for 10 and 8 months, respectively. These data emphasize the need for early immuno-suppressive therapy for Graves' ophthalmopathy. Pulse therapy may be employed in patients who show no response to other therapy method.

  14. Herpes simplex virus thymidine kinase and ganciclovir suicide gene therapy for human pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Xiao-Xuan Lu; Dao-Zhen Chen; Shu-Feng Li; Li-Shan Zhang

    2004-01-01

    AIM: To investigate the in vitro effects of suicide gene therepy system of herpes simplex virus thymidine kinase gene (HSV-TK) in combination with the treatment of nucleotide analog-ganciclovir (GCV) on human pancreatic cancer, and to provide a novel clinical therapeutic method for human pancreatic cancer.METHODS: We used a replication defective recombinant retrovirus vector GINaTK (bearing HSV-TK gene) to make packaging cell PA317 produce progeny virions. We then transferred the HSV-TK gene to target cells SW1990 using these progeny virions, and treated these gene-modified tumor cells with GCV to study the sensitivity of the cells to GCV and their bystander effects by routine MTT-method.RESULTS: Packaging cell PA317/TK was successfully constructed, and we acquired SW1990/TK through virus progeny infection. These gene-modified pancreatic cancer cells were sensitive to the treatment of GCV compared with unmodified tumor cells (t=4.15, n=10, P<0.0025). We also observed a remarkable bystander effect by mixing two kinds of cells at different ratio.CONCLUSION: Our data demonstrate that HSV-TK/GCV suicide gene therapy system is effective for treating experimental human pancreatic cancer, which is largely resistant to the common therapies, so the suicide gene therapy system may be a potential treatment approach for pancreatic cancer.

  15. Radiopharmaceuticals to monitor the expression of transferred genes in gene transfer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, L. I. [University of Alberta, Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-10-01

    The development and application of radiopharmaceuticals has, in many instances, been based on the pharmacological properties of therapeutic agents. The molecular biology-biotechnology revolution has had an important impact on treatment of diseases, in part through the reduced toxicity of `biologicals`, in part because of their specificity for interaction at unique molecular sites and in part because of their selective delivery to the target site. Immunotherapeutic approaches include the use of monoclonal antibodies (MABs), MAB-fragments and chemotactic peptides. Such agents currently form the basis of both diagnostic and immunotherapeutic radiopharmaceuticals. More recently, gene transfer techniques have been advanced to the point that a new molecular approach, gene therapy, has become a reality. Gene therapy offers an opportunity to attack disease at its most fundamental level. The therapeutic mechanism is based on the expression of a specific gene or genes, the product of which will invoke immunological, receptor-based or enzyme-based therapeutic modalities. Several approaches to gene therapy of cancer have been envisioned, the most clinically-advanced concepts involving the introduction of genes that will encode for molecular targets nor normally found in healthy mammalian cells. A number of gene therapy clinical trials are based on the introduction of the Herpes simplex virus type-1 (HSV-1) gene that encodes for viral thymidine kinase (tk+). Once HSV-1 tk+ is expressed in the target (cancer) cell, therapy can be effected by the administration of a highly molecularly-targeted and systemically non-toxic antiviral drug such as ganciclovir. The development of radiodiagnostic imaging in gene therapy will be reviewed, using HSV-1 tk+ and radioiodinated IVFRU as a basis for development of the theme. Molecular targets that could be exploited in gene therapy, other than tk+, will be identified

  16. Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma

    Science.gov (United States)

    Huang, Liyan; Cai, Muyan; Zhang, Xu; Wang, Fang; Chen, Likun; Xu, Meng; Yang, Ke; Chen, Zhen; Wang, Xiaokun; Fu, Liwu

    2017-01-01

    Malignant pleural mesothelioma (MPM) is a relative rare but highly aggressive neoplasm which is associated with asbestos exposure in most patients. The majority of patients are diagnosed in advanced stages so patients neither benefit from chemotherapy (e.g. pemetrexed-platinum combination) nor from surgery. It has been reported that cellular-mesenchymal to epithelial transition factor (MET) and epidermal growth factor receptor (EGFR) were critical for MPM cell proliferation. Moreover, targeting MET and EGFR drugs have gained promising results on anti-tumor therapy. Here, a striking difference in overall survival was observed between the MET and EGFR co-expression group (median survival time = 13.5 months) and non-co-expression group (median survival time = 20.5 months). In addition, treatment with combination of crizotinib and afatinib showed stronger inhibition on cell proliferation of MPM than the treatment by either one in vitro and in vivo. In conclusion, our data illustrated that crizotinib combined with afatinib may be a potentially effective strategy for treating MPM patients with over-expression of MET and EGFR.

  17. Carfilzomib boosted combination therapy for relapsed multiple myeloma

    Directory of Open Access Journals (Sweden)

    Steiner RE

    2017-02-01

    Full Text Available Raphael E Steiner, Elisabet E Manasanch Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: Carfilzomib is a proteasome inhibitor that binds selectively and irreversibly to the 20S proteasome, the proteolytic core particle within the 26S proteasome, resulting in the accumulation of proteasome substrates and ultimately growth arrest and apoptosis of tumor cells. The development and ultimate approval of this medication by regulatory agencies has been an important step toward improving clinical outcomes in multiple myeloma. Although initially approved as a single agent for the treatment of multiply relapsed and/or refractory myeloma, in the USA, it is now widely used in the early relapse setting in combination with lenalidomide and dexamethasone. Carfilzomib has also been studied in combination with second-generation immunomodulatory drugs, histone deacetylase inhibitors, alkylating agents and other novel medications. In this review article, we will discuss the efficacy, safety, tolerability and quality of life of carfilzomib-based combination therapies, as well as novel agents, for relapsed multiple myeloma. Keywords: multiple myeloma, relapsed and refractory myeloma, carfilzomib, novel drugs, salvage chemotherapy

  18. Combined therapy with methylprednisolone and ulinastatin in experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    SHU Ya-qing; YANG Yu; WANG Yu-ge; DAI Yong-qiang; XIAO Li; QIU Wei; LU Zheng-qi

    2013-01-01

    Background Our previous study had demonstrated that ulinastatin (UTI) had a neureprotective effect in experimental autoimmune encephalomyelitis (EAE).Methylprednisolone has been recommended to be a standard drug in multiple sclerosis (MS) therapies.The present study was to investigate the protective effects of UTI combined methylprednisolone in EAE.Methods Mice were divided into a UTI treatment group,a methylprednisolone treatment group,a combined treatment group with UTI and methylprednisolone,a normal saline treatment group,and a normal control group.EAE mice were induced in groups receiving different combined treatments,or respective monotherapies.Demyelination was evaluated by Solochrome cyanin staining.2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP)/myelin basic protein (MBP)/the precursor form of nerve growth factor (proNGF)/p75/inducible nitric oxide synthase (iNOS) proteins in cerebral cortex of EAE were detected by Western blotting.Results The combined treatment group had a lower clinical score (0.61±0.06) and demyelinating score (1.33±0.33)than the groups with normal saline (clinical score:1.39±0.08,P <0.001; demyelinating score:2.75±0.49,P <0.05) or monotheraphies.Compared with the saline treated EAE group,UTI combined methylprednisolone significantly increased expressions of CNP (1.14±0.06 vs.0.65±0.04,P <0.001),MBP (1.28±0.14 vs.0.44±0.17,P <0.001),and decreased expressions of proNGF (1.08±0.10 vs.2.32±0.12,P <0.001),p75 (1.13±0.13 vs.2.33±0.17,P <0.001),and iNOS (1.05±0.31 vs.2.17±0.13,P <0.001) proteins in EAE.Furthermore,UTI combined methyiprednisolone could significantly upregulate MBP (1.28±0.14 vs.1.01±0.15,P <0.05) expression and downregulate iNOS (1.05±0.31 vs.1.35±0.14,P <0.05) expression compared to methylprednisolone treatment EAE group.And proNGF expression was significantly lower in combined treatment (1.08±0.10) than that in UTI (1.51±0.24,P <0.05) or methylprednisolone (1.31±0.04,P <0

  19. Mesenchymal stem cell-based gene therapy for erectile dysfunction.

    Science.gov (United States)

    Kim, J H; Lee, H J; Song, Y S

    2016-05-01

    Despite the overwhelming success of PDE5 inhibitor (PDE5I), the demand for novel pharmacotherapeutic and surgical options for ED continues to rise owing to the increased proportion of elderly individuals in the population, in addition to the growing percentage of ED patients who do not respond to PDE5I. Surgical treatment of ED is associated with many complications, thus warranting the need for nonsurgical therapies. Moreover, none of the above-mentioned treatments essentially corrects, cures or prevents ED. Although gene therapy is a promising option, many challenges and obstacles such as local inflammatory response and random transgene expression, in addition to other safety issues, limit its use at the clinical level. The use of stem cell therapy alone also has many shortcomings. To overcome these inadequacies, many scientists and clinicians are investigating new gene and stem cell therapies.

  20. Gene Therapy to Cure HIV: Where to from Here?

    Science.gov (United States)

    Johnston, Rowena

    2016-12-01

    A variety of approaches are being tested to cure HIV, but with the exception of the Berlin patient case, none has been successful. The Berlin patient, positive for both HIV and acute myeloid leukemia (AML), received two stem cell transplants from a donor homozygous for the CCR5delta32 mutation. In the 8 years since his second transplant, he has remained free of both HIV and AML. This case provides strong proof-of-principle that a cure for HIV is possible and might be achieved through gene therapy. Several technological barriers must be resolved and are discussed here, including the safe delivery of the intervention throughout the body of the infected person, increased efficiency of gene editing, and avoidance of resistance to the therapy. Delivery of a gene therapy intervention to HIV-infected people around the world will also be a considerable challenge.