WorldWideScience

Sample records for gene synchrony suggests

  1. The Spatial Association of Gene Expression Evolves from Synchrony to Asynchrony and Stochasticity with Age

    Science.gov (United States)

    Zhang, Xinmin; Wu, Bin; Liu, Xiaoyu; Shen, Ziyin

    2011-01-01

    For multicellular organisms, different tissues coordinate to integrate physiological functions, although this systematically and gradually declines in the aging process. Therefore, an association exists between tissue coordination and aging, and investigating the evolution of tissue coordination with age is of interest. In the past decade, both common and heterogeneous aging processes among tissues were extensively investigated. The results on spatial association of gene changes that determine lifespan appear complex and paradoxical. To reconcile observed commonality and heterogeneity of gene changes among tissues and to address evolution feature of tissue coordination with age, we introduced a new analytical strategy to systematically analyze genome-wide spatio-temporal gene expression profiles. We first applied the approach to natural aging process in three species (Rat, Mouse and Drosophila) and then to anti-aging process in Mouse. The results demonstrated that temporal gene expression alteration in different tissues experiences a progressive association evolution from spatial synchrony to asynchrony and stochasticity with age. This implies that tissue coordination gradually declines with age. Male mice showed earlier spatial asynchrony in gene expression than females, suggesting that male animals are more prone to aging than females. The confirmed anti-aging interventions (resveratrol and caloric restriction) enhanced tissue coordination, indicating their underlying anti-aging mechanism on multiple tissue levels. Further, functional analysis suggested asynchronous DNA/protein damage accumulation as well as asynchronous repair, modification and degradation of DNA/protein in tissues possibly contributes to asynchronous and stochastic changes of tissue microenvironment. This increased risk for a variety of age-related diseases such as neurodegeneration and cancer that eventually accelerate organismal aging and death. Our study suggests a novel molecular event

  2. Synchrony in Dyadic Psychotherapy Sessions

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    Synchrony is a multi-faceted concept used in diverse domains such as physics, biology, and the social sciences. This chapter reviews some of the evidence of nonverbal synchrony in human communication, with a main focus on the role of synchrony in the psychotherapeutic setting. Nonverbal synchrony describes coordinated behavior of patient and therapist. Its association with empathy, rapport and the therapeutic relationship has been pointed out repeatedly, yet close evaluation of empirical studies suggests that the evidence remains inconclusive. Particularly in naturalistic studies, research with quantitative measures of synchrony is still lacking. We introduce a new empirical approach for the study of synchrony in psychotherapies under field conditions: Motion Energy Analysis (MEA). This is a video-based algorithm that quantifies the amount of movement in freely definable regions of interest. Our statistical analysis detects synchrony on a global level, irrespective of the specific body parts moving. Synchrony thus defined can be considered as a general measure of movement coordination between interacting individuals. Data from a sequence of N = 21 therapy sessions taken from one psychotherapy dyad shows a high positive relationship between synchrony and the therapeutic bond. Nonverbal synchrony can thus be considered a promising concept for research on the therapeutic alliance. Further areas of application are discussed.

  3. Pattern Genes Suggest Functional Connectivity of Organs

    Science.gov (United States)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  4. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  5. Prosocial Consequences of Interpersonal Synchrony

    Science.gov (United States)

    2016-01-01

    Abstract. The capacity to establish interpersonal synchrony is fundamental to human beings because it constitutes the basis for social connection and understanding. Interpersonal synchrony refers to instances when the movements or sensations of two or more people overlap in time and form. Recently, the causal influence of interpersonal synchrony on prosociality has been established through experiments. The current meta-analysis is the first to synthesize these isolated and sometimes contradictory experiments. We meta-analyzed 60 published and unpublished experiments that compared an interpersonal synchrony condition with at least one control condition. The results reveal a medium effect of interpersonal synchrony on prosociality with regard to both attitudes and behaviors. Furthermore, experimenter effects and intentionality moderate these effects. We discuss the strengths and limitations of our analysis, as well as its practical implications, and we suggest avenues for future research. PMID:28105388

  6. Cooperative Learning and Interpersonal Synchrony.

    Science.gov (United States)

    Vink, Roy; Wijnants, Maarten L; Cillessen, Antonius H N; Bosman, Anna M T

    2017-04-01

    Cooperative learning has been shown to result in better task performance, compared to individual and competitive learning, and can lead to positive social effects. However, potential working mechanisms at a micro level remain unexplored. One potential working mechanism might be the level of interpersonal synchrony between cooperating individuals. It has been shown that increased levels of interpersonal synchrony are related to better cognitive performance (e.g., increased memory). Social factors also appear to be affected by the level of interpersonal synchrony, with more interpersonal synchrony leading to increased likeability. In the present study, interpersonal synchrony of postural sway and its relation to task performance and social factors (i.e., popularity, social acceptance, and likeability) was examined. To test this, 183 dyads performed a tangram task while each child stood on a Nintendo Wii Balance Board that recorded their postural sway. The results showed that lower levels of interpersonal synchrony were related to better task performance and those dyads who were on average more popular synchronized more. These results contradict previous findings. It is suggested that for task performance, a more loosely coupled system is better than a synchronized system. In terms of social competence, dyad popularity was associated with more interpersonal synchrony.

  7. Nonverbal synchrony and affect in dyadic interactions.

    Science.gov (United States)

    Tschacher, Wolfgang; Rees, Georg M; Ramseyer, Fabian

    2014-01-01

    In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (motion energy analysis). Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology, and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.8 years). Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted 5 min. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  8. Nonverbal synchrony and affect in dyadic interactions

    Directory of Open Access Journals (Sweden)

    Wolfgang eTschacher

    2014-11-01

    Full Text Available In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (Motion Energy Analysis, MEA. Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.3 years. Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted five minutes. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  9. Candidate Gene Studies in Hypodontia Suggest Role for FGF3

    Science.gov (United States)

    Vieira, Alexandre R.; D’Souza, Rena N.; Mues, Gabriele; Deeley, Kathleen; Hsin, Hong-Yuan; Küchler, Erika C.; Meira, Raquel; Patir, Asli; Tannure, Patricia N.; Lips, Andrea; Costa, Marcelo C.; Granjeiro, Jose M.; Seymen, Figen; Modesto, Adriana

    2013-01-01

    The majority of tooth agenesis cases are mild (hypodontia) and typically not associated with the gene mutations linked to oligodontia. From this, we hypothesize that most cases of tooth agenesis fit a polygenic mode of inheritance, where several genes with small effects cause a variety of varying phenotypes. In this study, we looked at 18 not typically studied genes in this condition, to ascertain their contribution to hypodontia. Our study subjects consisted of 167 patients with hypodontia and their parents from two cohorts (one from Brazil and one from Turkey). An additional 465 DNA samples (93 cases with hypodontia and 372 controls without family history for tooth agenesis or oral clefts) from Brazil were also available for this study. 93 single nucleotide polymorphisms that maximally represent the linkage disequilibrium structure of the genes for the 18 genes were selected and genotyped using Taqman chemistry. Chi-square was used to test if genotype distributions were in Hardy-Weinberg equilibrium, and 24 markers that were in Hardy-Weinberg equilibrium and had allele frequencies higher than 5% in a panel of 50 CEPH samples were further tested. Association between hypodontia and genetic variants was tested with the transmission disequilibrium test within the program Family-Based Association Test (FBAT) and by using chi-square and Fisher’s exact tests. Alpha at a level of 0.05 was used to report results. Results suggest possible associations between several genes and hypodontia in the three populations. In the Turkish cohort (n=51 parent-affected child trios) the most significant results were as follows: FGF3 rs1893047, p=0.08; GLI3 rs929387, p=0.03; GLI3 haplotype rs929387-rs846266, p=0.002; and PAX9 rs2073242, p=0.03. In the Brazilian cohort (n=116 parent-affected child trios), the results were as follows: DLX1 rs788173, p=0.07; FGF3 rs12574452, p=0.03; GLI2 rs1992901, p=0.03; and PITX2 rs2595110, p=0.01. The second Brazilian cohort also suggested that FGF3

  10. Evidence suggesting possible SCA1 gene involvement in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, S.R.; Wange, S.; Sun, C. [NIDR, Bethesda, MD (United States)] [and others

    1994-09-01

    Several findings suggest a possible role for the SCA1 gene on chromosome 6p in some cases of schizophrenia. First, linkage analyses in Irish pedigrees provided LOD scores up to 3.0 for one model tested using microsatellites closely linked to SCA1. Reanalysis of these data using affected sibpair methods yielded a significant result (p = 0.01) for one marker. An attempt to replicate this linkage finding was made using 44 NIMH families (206 individuals, 80 affected) and 12 Utah families (120 individuals, 49 affected). LOD scores were negative in these new families, even allowing for heterogeneity, as were results using affected sibpair methods. However, one Utah family provided a LOD score of 1.3. We also screened the SCA1 trinucleotide repeat to search for expansions characteristic of this disorder in these families and in 38 additional unrelated schizophrenics. We found 1 schizophrenic with 41 repeats, which is substantially larger than the maximum size of 36 repeats observed in previous studies of several hundred controls. We are now assessing whether the distribution of SCA1 repeats differs significantly in schizophrenia versus controls. Recent reports suggest possible anticipation in schizophrenia (also characteristic of SCA1) and a few cases of psychiatric symptoms suggesting schizophrenia have been observed in the highly related disorder DRPLA (SCA2), which is also based on trinucleotide repeat expansion. These findings suggest that further investigations of this gene and chromosome region may be a priority.

  11. DNA-energetics-based analyses suggest additional genes in prokaryotes

    Indian Academy of Sciences (India)

    Garima Khandelwal; Jalaj Gupta; B Jayaram

    2012-07-01

    We present here a novel methodology for predicting new genes in prokaryotic genomes on the basis of inherent energetics of DNA. Regions of higher thermodynamic stability were identified, which were filtered based on already known annotations to yield a set of potentially new genes. These were then processed for their compatibility with the stereo-chemical properties of proteins and tripeptide frequencies of proteins in Swissprot data, which results in a reliable set of new genes in a genome. Quite surprisingly, the methodology identifies new genes even in well-annotated genomes. Also, the methodology can handle genomes of any GC-content, size and number of annotated genes.

  12. Abnormal brain synchrony in Down Syndrome☆

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Ferguson, Michael A.; Burback, Melissa C.; Cox, Elizabeth T.; Dai, Li; Gerig, Guido; Edgin, Jamie O.; Korenberg, Julie R.

    2013-01-01

    Down Syndrome is the most common genetic cause for intellectual disability, yet the pathophysiology of cognitive impairment in Down Syndrome is unknown. We compared fMRI scans of 15 individuals with Down Syndrome to 14 typically developing control subjects while they viewed 50 min of cartoon video clips. There was widespread increased synchrony between brain regions, with only a small subset of strong, distant connections showing underconnectivity in Down Syndrome. Brain regions showing negative correlations were less anticorrelated and were among the most strongly affected connections in the brain. Increased correlation was observed between all of the distributed brain networks studied, with the strongest internetwork correlation in subjects with the lowest performance IQ. A functional parcellation of the brain showed simplified network structure in Down Syndrome organized by local connectivity. Despite increased interregional synchrony, intersubject correlation to the cartoon stimuli was lower in Down Syndrome, indicating that increased synchrony had a temporal pattern that was not in response to environmental stimuli, but idiosyncratic to each Down Syndrome subject. Short-range, increased synchrony was not observed in a comparison sample of 447 autism vs. 517 control subjects from the Autism Brain Imaging Exchange (ABIDE) collection of resting state fMRI data, and increased internetwork synchrony was only observed between the default mode and attentional networks in autism. These findings suggest immature development of connectivity in Down Syndrome with impaired ability to integrate information from distant brain regions into coherent distributed networks. PMID:24179822

  13. Somatosensory driven interpersonal synchrony during rhythmic sway.

    Science.gov (United States)

    Sofianidis, George; Hatzitaki, Vassilia; Grouios, George; Johannsen, Leif; Wing, Alan

    2012-06-01

    Spontaneous synchrony emerges between individuals performing together rhythmic activities while communicating by means of sensory feedback. In this study, we examined the nature of interpersonal synchrony mediated by light fingertip contact when individuals sway rhythmically in the sagittal plane. The effect of traditional dance expertise on interpersonal synchrony was investigated. Sixty participants (30 dancers, 30 novices) formed three types of couples (10 expert couples, 10 novice couples, 10 mixed couples) and performed a rhythmical sway task (40s) that was either self or metronome paced (frequency: 0.25Hz). Cross spectral analysis of the center of pressure (CoP) displacement signals revealed that during self-paced sway fingertip contact evoked a decrease of the dominant sway frequency difference between partners, an increase in the coherence between the sway signals and a concentration of relative phase angles towards the in-phase (0°-20°) region. In metronome paced sway however, only expert dancers were able to benefit from haptic contact to further improve interpersonal synchrony. These findings suggest that haptic contact can stabilize the spontaneous coordination dynamics of two persons performing rhythmic sway together. The strength of the emerged synchrony depends on the individuals' expertise to integrate tactile and auditory information about sway.

  14. Monitoring spike train synchrony

    CERN Document Server

    Kreuz, Thomas; Houghton, Conor; Andrzejak, Ralph G; Mormann, Florian

    2012-01-01

    Recently, the SPIKE-distance has been proposed as a parameter-free and time-scale independent measure of spike train synchrony. This measure is time-resolved since it relies on instantaneous estimates of spike train dissimilarity. However, its original definition led to spuriously high instantaneous values for event-like firing patterns. Here we present a substantial improvement of this measure which eliminates this shortcoming. The reliability gained allows us to track changes in instantaneous clustering, i.e., time-localized patterns of (dis)similarity among multiple spike trains. Additional new features include selective and triggered temporal averaging as well as the instantaneous comparison of spike train groups. In a second step, a causal SPIKE-distance is defined such that the instantaneous values of dissimilarity rely on past information only so that time-resolved spike train synchrony can be estimated in real-time. We demonstrate that these methods are capable of extracting valuable information from ...

  15. Neuronal synchrony 

    OpenAIRE

    Buzsáki, Gyorgy

    2010-01-01

    1. Neuronal synchrony: metabolic and wiring costs of excitatory and inhibitory systems The major part of the brain’s energy budget (~ 60-80%) is devoted to its communication activities. While inhibition is critical to brain function, relatively little attention has been paid to its metabolic costs. Understanding how inhibitory interneurons contribute to brain energy consumption (brain work) is not only of interest in understanding a fundamental aspect of brain function but also in understandi...

  16. Monitoring spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Chicharro, Daniel; Houghton, Conor; Andrzejak, Ralph G; Mormann, Florian

    2013-03-01

    Recently, the SPIKE-distance has been proposed as a parameter-free and timescale-independent measure of spike train synchrony. This measure is time resolved since it relies on instantaneous estimates of spike train dissimilarity. However, its original definition led to spuriously high instantaneous values for eventlike firing patterns. Here we present a substantial improvement of this measure that eliminates this shortcoming. The reliability gained allows us to track changes in instantaneous clustering, i.e., time-localized patterns of (dis)similarity among multiple spike trains. Additional new features include selective and triggered temporal averaging as well as the instantaneous comparison of spike train groups. In a second step, a causal SPIKE-distance is defined such that the instantaneous values of dissimilarity rely on past information only so that time-resolved spike train synchrony can be estimated in real time. We demonstrate that these methods are capable of extracting valuable information from field data by monitoring the synchrony between neuronal spike trains during an epileptic seizure. Finally, the applicability of both the regular and the real-time SPIKE-distance to continuous data is illustrated on model electroencephalographic (EEG) recordings.

  17. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    Science.gov (United States)

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  18. Properties of precise firing synchrony between synaptically coupled cortical interneurons depend on their mode of coupling.

    Science.gov (United States)

    Hu, Hang; Agmon, Ariel

    2015-07-01

    Precise spike synchrony has been widely reported in the central nervous system, but its functional role in encoding, processing, and transmitting information is yet unresolved. Of particular interest is firing synchrony between inhibitory cortical interneurons, thought to drive various cortical rhythms such as gamma oscillations, the hallmark of cognitive states. Precise synchrony can arise between two interneurons connected electrically, through gap junctions, chemically, through fast inhibitory synapses, or dually, through both types of connections, but the properties of synchrony generated by these different modes of connectivity have never been compared in the same data set. In the present study we recorded in vitro from 152 homotypic pairs of two major subtypes of mouse neocortical interneurons: parvalbumin-containing, fast-spiking (FS) interneurons and somatostatin-containing (SOM) interneurons. We tested firing synchrony when the two neurons were driven to fire by long, depolarizing current steps and used a novel synchrony index to quantify the strength of synchrony, its temporal precision, and its dependence on firing rate. We found that SOM-SOM synchrony, driven solely by electrical coupling, was less precise than FS-FS synchrony, driven by inhibitory or dual coupling. Unlike SOM-SOM synchrony, FS-FS synchrony was strongly firing rate dependent and was not evident at the prototypical 40-Hz gamma frequency. Computer simulations reproduced these differences in synchrony without assuming any differences in intrinsic properties, suggesting that the mode of coupling is more important than the interneuron subtype. Our results provide novel insights into the mechanisms and properties of interneuron synchrony and point out important caveats in current models of cortical oscillations.

  19. Measurements of spatial population synchrony: influence of time series transformations.

    Science.gov (United States)

    Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël

    2015-09-01

    Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.

  20. Signatures of synchrony in pairwise count correlations

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2010-04-01

    Full Text Available Concerted neural activity can reflect specific features of sensory stimuli or behavioral tasks. Correlation coefficients and count correlations are frequently used to measure correlations between neurons, design synthetic spike trains and build population models. But are correlation coefficients always a reliable measure of input correlations? Here, we consider a stochastic model for the generation of correlated spike sequences which replicate neuronal pairwise correlations in many important aspects. We investigate under which conditions the correlation coefficients reflect the degree of input synchrony and when they can be used to build population models. We find that correlation coefficients can be a poor indicator of input synchrony for some cases of input correlations. In particular, count correlations computed for large time bins can vanish despite the presence of input correlations. These findings suggest that network models or potential coding schemes of neural population activity need to incorporate temporal properties of correlated inputs and take into consideration the regimes of firing rates and correlation strengths to ensure that their building blocks are an unambiguous measures of synchrony.

  1. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.

    Science.gov (United States)

    Li, Wen-Chang; Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-04-23

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.

  2. Endogenous rhythms influence interpersonal synchrony.

    Science.gov (United States)

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination.

  3. The Subjective Sensation of Synchrony: An Experimental Study

    KAUST Repository

    Llobera, Joan

    2016-02-12

    People performing actions together have a natural tendency to synchronize their behavior. Consistently, people doing a task together build internal representations not only of their actions and goals, but also of the other people performing the task. However, little is known about which are the behavioral mechanisms and the psychological factors affecting the subjective sensation of synchrony, or “connecting” with someone else. In this work, we sought to find which factors induce the subjective sensation of synchrony, combining motion capture data and psychological measures. Our results show that the subjective sensation of synchrony is affected by performance quality together with task category, and time. Psychological factors such as empathy and negative subjective affects also correlate with the subjective sensation of synchrony. However, when people estimate synchrony as seen from a third person perspective, their psychological factors do not affect the accuracy of the estimation. We suggest that to feel this sensation it is necessary to, first, have a good joint performance and, second, to assume the existence of an attention monitoring mechanism that reports that the attention of both participants (self and other) is focused on the task.

  4. Gaze Synchrony between Mothers with Mood Disorders and Their Infants: Maternal Emotion Dysregulation Matters.

    Directory of Open Access Journals (Sweden)

    Annett Lotzin

    Full Text Available A lowered and heightened synchrony between the mother's and infant's nonverbal behavior predicts adverse infant development. We know that maternal depressive symptoms predict lowered and heightened mother-infant gaze synchrony, but it is unclear whether maternal emotion dysregulation is related to mother-infant gaze synchrony. This cross-sectional study examined whether maternal emotion dysregulation in mothers with mood disorders is significantly related to mother-infant gaze synchrony. We also tested whether maternal emotion dysregulation is relatively more important than maternal depressive symptoms in predicting mother-infant gaze synchrony, and whether maternal emotion dysregulation mediates the relation between maternal depressive symptoms and mother-infant gaze synchrony. We observed 68 mothers and their 4- to 9-month-old infants in the Still-Face paradigm during two play interactions, before and after social stress was induced. The mothers' and infants' gaze behaviors were coded using microanalysis with the Maternal Regulatory Scoring System and Infant Regulatory Scoring System, respectively. The degree of mother-infant gaze synchrony was computed using time-series analysis. Maternal emotion dysregulation was measured by the Difficulties in Emotion Regulation Scale; depressive symptoms were assessed using the Beck Depression Inventory. Greater maternal emotion dysregulation was significantly related to heightened mother-infant gaze synchrony. The overall effect of maternal emotion dysregulation on mother-infant gaze synchrony was relatively more important than the effect of maternal depressive symptoms in the five tested models. Maternal emotion dysregulation fully mediated the relation between maternal depressive symptoms and mother-infant gaze synchrony. Our findings suggest that the effect of the mother's depressive symptoms on the mother-infant gaze synchrony may be mediated by the mother's emotion dysregulation.

  5. Gaze Synchrony between Mothers with Mood Disorders and Their Infants: Maternal Emotion Dysregulation Matters.

    Science.gov (United States)

    Lotzin, Annett; Romer, Georg; Schiborr, Julia; Noga, Berit; Schulte-Markwort, Michael; Ramsauer, Brigitte

    2015-01-01

    A lowered and heightened synchrony between the mother's and infant's nonverbal behavior predicts adverse infant development. We know that maternal depressive symptoms predict lowered and heightened mother-infant gaze synchrony, but it is unclear whether maternal emotion dysregulation is related to mother-infant gaze synchrony. This cross-sectional study examined whether maternal emotion dysregulation in mothers with mood disorders is significantly related to mother-infant gaze synchrony. We also tested whether maternal emotion dysregulation is relatively more important than maternal depressive symptoms in predicting mother-infant gaze synchrony, and whether maternal emotion dysregulation mediates the relation between maternal depressive symptoms and mother-infant gaze synchrony. We observed 68 mothers and their 4- to 9-month-old infants in the Still-Face paradigm during two play interactions, before and after social stress was induced. The mothers' and infants' gaze behaviors were coded using microanalysis with the Maternal Regulatory Scoring System and Infant Regulatory Scoring System, respectively. The degree of mother-infant gaze synchrony was computed using time-series analysis. Maternal emotion dysregulation was measured by the Difficulties in Emotion Regulation Scale; depressive symptoms were assessed using the Beck Depression Inventory. Greater maternal emotion dysregulation was significantly related to heightened mother-infant gaze synchrony. The overall effect of maternal emotion dysregulation on mother-infant gaze synchrony was relatively more important than the effect of maternal depressive symptoms in the five tested models. Maternal emotion dysregulation fully mediated the relation between maternal depressive symptoms and mother-infant gaze synchrony. Our findings suggest that the effect of the mother's depressive symptoms on the mother-infant gaze synchrony may be mediated by the mother's emotion dysregulation.

  6. The Effect of Different Phases of Synchrony on Pain Threshold in a Drumming Task

    Directory of Open Access Journals (Sweden)

    Philip Sullivan

    2017-06-01

    Full Text Available Behavioral synchrony has been linked to endorphin activity (Cohen et al., 2010; Sullivan and Rickers, 2013; Sullivan et al., 2014; Tarr et al., 2015, 2016; Weinstein et al., 2016. This has been called the synchrony effect. Synchrony has two dominant phases of movement; in-phase and anti-phase. The majority of research investigating synchrony’s effect on endorphin activity has focused on in-phase synchrony following vigorous activities. The only research to investigate the effects of anti-phase synchrony on endorphin activity found that anti-phase synchronized rowing did not produce the synchrony effect (Sullivan et al., 2014. Anti-phase synchrony, however, is counter-intuitive to the sport of rowing and may have interfered with the synchrony effect. This study investigated the effect of anti-phase synchrony on endorphin activity in a different task (i.e., drumming. University students (n = 30 were asked to drum solo and in in-phase and anti-phase pairs for 3 min. Pain threshold was assessed as an indirect indicator of endorphin activity prior to and following the task. Although the in-phase synchrony effect was not found, a repeated measures ANOVA found that there was a significant difference in pain threshold change among the three conditions [F(2,24 = 4.10, = 0.255, p < 0.05. Post hoc t-tests showed that the anti-phase condition had a significantly greater pain threshold change than both the solo and in-phase conditions at p < 0.05. This is the first time that anti-phase synchrony has been shown to produce the synchrony effect. Because anti-phase drumming may have required more attention between partners than in-phase synchrony, it may have affected self-other merging (Tarr et al., 2014. These results support Tarr et al.’s (2014 model that multiple mechanisms account for the effect of synchrony on pain threshold, and suggest that different characteristics of the activity may influence the synchrony effect.

  7. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    Science.gov (United States)

    Schwab, Bettina C; Heida, Tjitske; Zhao, Yan; van Gils, Stephan A; van Wezel, Richard J A

    2014-10-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a major role in modifying this synchrony, because they show functional plasticity under the influence of dopamine and after neural injury. In this study, confocal imaging was used to detect connexin-36, the major neural gap junction protein, in postmortem tissues of PD patients and control subjects in the putamen, subthalamic nucleus (STN), and external and internal globus pallidus (GPe and GPi, respectively). Moreover, we quantified how gap junctions affect synchrony in an existing computational model of the basal ganglia. We detected connexin-36 in the human putamen, GPe, and GPi, but not in the STN. Furthermore, we found that the number of connexin-36 spots in PD tissues increased by 50% in the putamen, 43% in the GPe, and 109% in the GPi compared with controls. In the computational model, gap junctions in the GPe and GPi strongly influenced synchrony. The basal ganglia became especially susceptible to synchronize with input from the cortex when gap junctions were numerous and high in conductance. In conclusion, connexin-36 expression in the human GPe and GPi suggests that gap junctional coupling exists within these nuclei. In PD, neural injury and dopamine depletion could increase this coupling. Therefore, we propose that gap junctions act as a powerful modulator of synchrony in the basal ganglia. © 2014 International Parkinson and Movement Disorder Society.

  8. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations.

    Science.gov (United States)

    Tian, Chang Fu; Zhou, Yuan Jie; Zhang, Yan Ming; Li, Qin Qin; Zhang, Yun Zeng; Li, Dong Fang; Wang, Shuang; Wang, Jun; Gilbert, Luz B; Li, Ying Rui; Chen, Wen Xin

    2012-05-29

    The rhizobium-legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium-legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process.

  9. Synchrony-optimized power grids

    CERN Document Server

    Pinto, Rafael S

    2014-01-01

    We investigate synchronization in power grids, which we assume to be modeled by a network of Kuramoto oscillators with inertia. More specifically, we study the optimization of the power grid topology to favor the network synchronization. We introduce a rewiring algorithm which consists basically in a hill climb scheme where the edges of the network are swapped in order enhance the main measures of synchronization. As a byproduct of the optimization algorithm, we typically have also the anticipation of the synchronization onset for the optimized network. We perform several robustness tests for the synchrony-optimized power grids, including the impact of consumption peaks. In our analyses, we investigate synthetic random networks, which we consider as hypothetical decentralized power generation situations, and also a network based in the actual power grid of Spain, which corresponds to the current paradigm of centralized power grids. The synchrony-optimized power grids obtained by our algorithm have some intere...

  10. Analysis of pea HMG-I/Y expression suggests a role in defence gene regulation.

    Science.gov (United States)

    Klosterman, Steven J; Choi, Jane J; Hadwiger, Lee A

    2003-07-01

    SUMMARY HMG-I/Y proteins are characterized by the presence of AT-hook motifs, DNA binding domains that recognize AT-rich tracts of DNA. By facilitating protein:protein and protein:DNA interactions in the vicinity of these AT-rich binding sites, HMG-I/Y positively or negatively regulates gene expression. Several pea defence gene promoters have AT-rich tracts of DNA that are potential targets for modulation via HMG-I/Y. In this study, a comparison of the expression of a pea defence gene (DRR206) mRNA relative to the expression of HMG-I/Y mRNA was monitored by Northern analysis following the inoculation of a fungal pathogen, Fusarium solani or treatment with chitosan and a F. solani DNase (Fsph DNase). In pea pod endocarp tissue, HMG-I/Y expression was observed at high levels in untreated tissue and at lower levels 6 h following inoculation or wounding of the tissue. Western blots with an antipea HMG-I/Y polyclonal antibody also revealed that pea HMG-I/Y is expressed at decreased levels 6 h following inoculation or elicitor treatment. HMG-I/Y extracted from pea caused alterations in the gel migration of radio-labelled AT-rich sequences from the pea DRR206 promoter, suggesting that similar interactions could exist in vivo. Agroinfiltration was utilized to express the pea HMG-I/Y gene in tobacco containing a chimeric gene fusion of a promoter from the PR gene, DRR206, and the beta-glucuronidase (GUS) reporter gene. Transient expression of pea HMG-I/Y led to a decrease in GUS reporter gene activity in the heterologous tobacco system. These data implicate pea HMG-I/Y abundance in the down-regulation of DRR206 gene expression, and possibly HMG-I/Y depletion in the expression of defence genes in pea.

  11. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-Jun.

    Science.gov (United States)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata; Aumercier, Marc; Mukhopadhyay, Gauranga; Tyagi, Rakesh K

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis

    NARCIS (Netherlands)

    Schothorst, van E.M.; Franssen-Hal, van N.L.W.; Schaap, M.M.; Pennings, J.; Hoebee, B.; Keijer, J.

    2005-01-01

    VAN SCHOTHORST, EVERT M., NICOLE FRANSSEN-VAN HAL, MIRJAM M. SCHAAP, JEROEN PENNINGS, BARBARA HOEBEE, AND JAAP KEIJER. Adipose gene expression patterns of weight gain suggest counteracting steroid hormone synthesis. Obes Res. 2005;13:1031-1041. Objective: To identify early molecular changes in weigh

  13. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship.

    Science.gov (United States)

    Perotto, Silvia; Rodda, Marco; Benetti, Alex; Sillo, Fabiano; Ercole, Enrico; Rodda, Michele; Girlanda, Mariangela; Murat, Claude; Balestrini, Raffaella

    2014-06-01

    Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.

  14. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization.

    Science.gov (United States)

    Shamblott, M J; Litman, G W

    1989-01-01

    The genomic organization and sequence of immunoglobulin light chain genes in Heterodontus francisci (horned shark), a phylogenetically primitive vertebrate, have been characterized. Light chain variable (VL) and joining (JI) segments are separated by 380 nucleotides and together with the single constant region exon (CI), occupy less than 2.7 kb, the closest linkage described thus far for a rearranging gene system. The VL segment is flanked by a characteristic recombination signal sequence possessing a 12 nucleotide spacer; the recombination signal sequence flanking the JL segment is 23 nucleotides. The VL genes, unlike heavy chain genes, possess a typical upstream regulatory octamer as well as conserved enhancer core sequences in the intervening sequence separating JL and CL. Restriction mapping and genomic Southern blotting are consistent with the presence of multiple light chain gene clusters. There appear to be considerably fewer light than heavy chain genes. Heavy and light chain clusters show no evidence of genomic linkage using field inversion gel electrophoresis. The findings of major differences in the organization and functional rearrangement properties of immunoglobulin genes in species representing different levels of vertebrate evolution, but consistent similarity in the organization of heavy and light chain genes within a species, suggests that these systems may be coevolving. Images PMID:2511000

  15. Gene expression profile suggests that pigs (Sus scrofa are susceptible to Anaplasma phagocytophilum but control infection

    Directory of Open Access Journals (Sweden)

    Galindo Ruth C

    2012-08-01

    Full Text Available Abstract Background Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. Results For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1, T-cell receptor alpha chain (TCR-alpha, thrombospondin 4 (TSP-4 and Gap junction protein alpha 1 (GJA1 genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. Conclusions These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.

  16. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Science.gov (United States)

    Johansson, Anna-Mia; Stenberg, Per; Pettersson, Fredrik; Larsson, Jan

    2007-11-01

    Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF) protein, which, together with heterochromatin protein 1 (HP1), modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  17. POF and HP1 bind expressed exons, suggesting a balancing mechanism for gene regulation.

    Directory of Open Access Journals (Sweden)

    Anna-Mia Johansson

    2007-11-01

    Full Text Available Two specific chromosome-targeting and gene regulatory systems are present in Drosophila melanogaster. The male X chromosome is targeted by the male-specific lethal complex believed to mediate the 2-fold up-regulation of the X-linked genes, and the highly heterochromatic fourth chromosome is specifically targeted by the Painting of Fourth (POF protein, which, together with heterochromatin protein 1 (HP1, modulates the expression level of genes on the fourth chromosome. Here we use chromatin immunoprecipitation and tiling microarray analysis to map POF and HP1 on the fourth chromosome in S2 cells and salivary glands at high resolution. The enrichment profiles were complemented by transcript profiles to examine the link between binding and transcripts. The results show that POF specifically binds to genes, with a strong preference for exons, and the HP1 binding profile is a mirror image of POF, although HP1 displays an additional "peak" in the promoter regions of bound genes. HP1 binding within genes is much higher than the basal HP1 enrichment on Chromosome 4. Our results suggest a balancing mechanism for the regulation of the fourth chromosome where POF and HP1 competitively bind at increasing levels with increased transcriptional activity. In addition, our results contradict transposable elements as a major nucleation site for HP1 on the fourth chromosome.

  18. Suggestive evidence for association of two potassium channel genes with different idiopathic generalised epilepsy syndromes.

    Science.gov (United States)

    Chioza, B; Osei-Lah, A; Wilkie, H; Nashef, L; McCormick, D; Asherson, P; Makoff, A J

    2002-12-01

    Several potassium channel genes have been implicated in epilepsy. We have investigated three such genes, KCNJ3, KCNJ6 and KCNQ2, by association studies using a broad sample of idiopathic generalised epilepsy (IGE) unselected by syndrome. One of the two single nucleotide polymorphisms (SNPs) examined in one of the inward rectifying potassium channel genes, KCNJ3, was associated with IGE by genotype (P=0.0097), while its association by allele was of borderline significance (P=0.051). Analysis of the different clinical subgroups within the IGE sample showed more significant association with the presence of absence seizures (P=0.0041) and which is still significant after correction for multiple testing. Neither SNP in the other rectifying potassium channel gene, KCNJ6, was associated with IGE or any subgroup. None of the three SNPs in the voltage-gated potassium channel gene, KCNQ2, was associated with IGE. However, one SNP was associated with epilepsy with generalised tonic clonic seizures only (P=0.016), as was an SNP approximately 56 kb distant in the closely linked nicotinic acetylcholine gene CHRNA4 (P=0.014). These two SNPs were not in linkage disequilibrium with each other, suggesting that if they are not true associations they have independently occurred by chance. Neither association remains significant after correcting for multiple testing.

  19. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    Science.gov (United States)

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.

  20. Nonverbal synchrony of head- and body-movement in psychotherapy: different signals have different associations with outcome

    Directory of Open Access Journals (Sweden)

    Fabian eRamseyer

    2014-09-01

    Full Text Available Objective: The coordination of patient’s and therapist’s bodily movement – nonverbal synchrony – has been empirically shown to be associated with psychotherapy outcome. This finding was based on dynamic movement patterns of the whole body. The present paper is a new analysis of an existing dataset (Ramseyer & Tschacher, 2011, which extends previous findings by differentiating movements pertaining to head and upper-body regions. Method: In a sample of 70 patients (37 female, 33 male treated at an outpatient psychotherapy clinic, we quantified nonverbal synchrony with an automated objective video-analysis algorithm (Motion Energy Analysis, MEA. Head- and body-synchrony was quantified during the initial 15 minutes of video-recorded therapy sessions. Micro-outcome was assessed with self-report post-session questionnaires provided by patients and their therapists. Macro-outcome was measured with questionnaires that quantified attainment of treatment goals and changes in experiencing and behavior at the end of therapy. Results: The differentiation of head- and body-synchrony showed that these two facets of motor coordination were differentially associated with outcome. Head-synchrony predicted global outcome of therapy, while body-synchrony did not, and body-synchrony predicted session outcome, while head-synchrony did not. Conclusions: The results pose an important amendment to previous findings, which showed that nonverbal synchrony embodied both outcome and interpersonal variables of psychotherapy dyads. The separation of head- and body-synchrony suggested that distinct mechanisms may operate in these two regions: Head-synchrony embodied phenomena with a long temporal extension (overall therapy success, while body-synchrony embodied phenomena of a more immediate nature (session-level success. More explorations with fine-grained analyses of synchronized phenomena in nonverbal behavior may shed additional light on the embodiment of

  1. Pregnane and Xenobiotic Receptor gene expression in liver cells is modulated by Ets-1 in synchrony with transcription factors Pax5, LEF-1 and c-jun

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Sangeeta; Saradhi, Mallampati; Rana, Manjul; Chatterjee, Swagata [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Aumercier, Marc [IRI, CNRS USR 3078, Université de Lille-Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, BP 70478, 59658 Villeneuve d’Ascq Cedex (France); Mukhopadhyay, Gauranga [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India); Tyagi, Rakesh K., E-mail: rktyagi@yahoo.com [Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067 (India)

    2015-01-15

    Nuclear receptor PXR is predominantly expressed in liver and intestine. Expression of PXR is observed to be dysregulated in various metabolic disorders indicating its involvement in disease development. However, information available on mechanisms of PXR self-regulation is fragmentary. The present investigation identifies some of the regulatory elements responsible for its tight regulation and low cellular expression. Here, we report that the PXR-promoter is a target for some key transcription factors like PU.1/Ets-1, Pax5, LEF-1 and c-Jun. Interestingly, we observed that PXR-promoter responsiveness to Pax5, LEF-1 and c-Jun, is considerably enhanced by Ets transcription factors (PU.1 and Ets-1). Co-transfection of cells with Ets-1, LEF-1 and c-Jun increased PXR-promoter activity by 5-fold and also induced expression of endogenous human PXR. Site-directed mutagenesis and transfection studies revealed that two Ets binding sites and two of the three LEF binding sites in the PXR-promoter are functional and have a positive effect on PXR transcription. Results suggest that expression of Ets family members, in conjunction with Pax5, LEF-1 and c-Jun, lead to coordinated up-regulation of PXR gene transcription. Insights obtained on the regulation of PXR gene have relevance in offering important cues towards normal functioning as well as development of several metabolic disorders via PXR signaling. - Highlights: • The study identified cis-regulatory elements in the nuclear receptor PXR promoter. • Several trans-acting factors modulating the PXR-promoter have been identified. • PU.1/Ets-1, Pax5, LEF-1, c-Jun, LyF-VI and NF-1 act as modulators of the PXR-promoter. • Ets-1 in conjunction with LEF-1 and c-Jun exhibit 5-fold activation of the PXR-promoter. • Insights into PXR-regulation have relevance in normal and pathological conditions.

  2. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  3. Initial characterization of shade avoidance response suggests functional diversity between Populus phytochrome B genes.

    Energy Technology Data Exchange (ETDEWEB)

    Karve, Abhijit A [ORNL; Weston, David [ORNL; Jawdy, Sara [ORNL; Gunter, Lee E [ORNL; Allen, Sara M [ORNL; Yang, Xiaohan [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2012-01-01

    Shade avoidance signaling in higher plants involves perception of the incident red/far-red (R/FR) light by phytochromes and the modulation of downstream transcriptional networks to regulate developmental plasticity in relation to heterogeneous light environments. In this study, we characterized the expression and functional features of Populus phytochrome (PHY) gene family as well as the transcriptional responses of Populus to the changes in R/FR light. Expression data indicated that PHYA is the predominant PHY in the dark grown Populus seedling whereas PHYBs are most abundant in mature tissue types. Out of three Populus PHYs, PHYA is light labile and localized to cytosol in dark whereas both PHYB1 and PHYB2 are light stable and are localized to nucleus in mesophyll protoplasts. When expressed in Arabidopsis, PHYB1 rescued Arabidopsis phyB mutant phenotype whereas PHYB2 did not, suggesting functional diversification between these two gene family members. However, phenotypes of transgenic Populus lines with altered expression of PHYB1, PHYB2 or both and the expression of candidate shade response genes in these transgenic lines suggest that PHYB1 and PHYB2 may have distinct yet overlapping functions. The RNAseq results and analysis of Populus exposed to enriched-FR light indicate that genes associated in cell wall modification and brassinosteroid signaling were induced under far red light. Overall our data indicate that Populus transcriptional responses are at least partially conserved with Arabidopsis.

  4. Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells.

    Science.gov (United States)

    Zhang, Zan; Lei, Anhua; Xu, Liyang; Chen, Lu; Chen, Yonglong; Zhang, Xuena; Gao, Yan; Yang, Xiaoli; Zhang, Min; Cao, Ying

    2017-08-04

    Cancer cells are immature cells resulting from cellular reprogramming by gene misregulation, and redifferentiation is expected to reduce malignancy. It is unclear, however, whether cancer cells can undergo terminal differentiation. Here, we show that inhibition of the epigenetic modification enzyme enhancer of zeste homolog 2 (EZH2), histone deacetylases 1 and 3 (HDAC1 and -3), lysine demethylase 1A (LSD1), or DNA methyltransferase 1 (DNMT1), which all promote cancer development and progression, leads to postmitotic neuron-like differentiation with loss of malignant features in distinct solid cancer cell lines. The regulatory effect of these enzymes in neuronal differentiation resided in their intrinsic activity in embryonic neural precursor/progenitor cells. We further found that a major part of pan-cancer-promoting genes and the signal transducers of the pan-cancer-promoting signaling pathways, including the epithelial-to-mesenchymal transition (EMT) mesenchymal marker genes, display neural specific expression during embryonic neurulation. In contrast, many tumor suppressor genes, including the EMT epithelial marker gene that encodes cadherin 1 (CDH1), exhibited non-neural or no expression. This correlation indicated that cancer cells and embryonic neural cells share a regulatory network, mediating both tumorigenesis and neural development. This observed similarity in regulatory mechanisms suggests that cancer cells might share characteristics of embryonic neural cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock.

    Science.gov (United States)

    Riedel-Kruse, Ingmar H; Müller, Claudia; Oates, Andrew C

    2007-09-28

    The "segmentation clock" is thought to coordinate sequential segmentation of the body axis in vertebrate embryos. This clock comprises a multicellular genetic network of synchronized oscillators, coupled by intercellular Delta-Notch signaling. How this synchrony is established and how its loss determines the position of segmentation defects in Delta and Notch mutants are unknown. We analyzed the clock's synchrony dynamics by varying strength and timing of Notch coupling in zebra-fish embryos with techniques for quantitative perturbation of gene function. We developed a physical theory based on coupled phase oscillators explaining the observed onset and rescue of segmentation defects, the clock's robustness against developmental noise, and a critical point beyond which synchrony decays. We conclude that synchrony among these genetic oscillators can be established by simultaneous initiation and self-organization and that the segmentation defect position is determined by the difference between coupling strength and noise.

  6. Molecular Network Analysis Suggests Aberrant CREB-Mediated Gene Regulation in the Alzheimer Disease Hippocampus

    Directory of Open Access Journals (Sweden)

    Jun-ichi Satoh

    2009-01-01

    Full Text Available The pathogenesis of Alzheimer disease (AD involves the complex interaction between genetic and environmental factors affecting multiple cellular pathways. Recent advances in systems biology provide a system-level understanding of AD by elucidating the genome-wide molecular interactions. By using KeyMolnet, a bioinformatics tool for analyzing molecular interactions on the curated knowledgebase, we characterized molecular network of 2,883 all stages of AD-related genes (ADGs and 559 incipient AD-related genes (IADGs identified by global gene expression profiling of the hippocampal CA1 region of AD brains in terms of significant clinical and pathological correlations (Blalock et al., Proc Natl Acad Sci USA 101: 2173-2178, 2004. By the common upstream search, KeyMolnet identified cAMP-response element-binding protein (CREB as the principal transcription factor exhibiting the most significant relevance to molecular networks of both ADGs and IADGs. The CREB-regulated transcriptional network included upregulated and downregulated sets of ADGs and IADGs, suggesting an involvement of generalized deregulation of the CREB signaling pathway in the pathophysiology of AD, beginning at the early stage of the disease. To verify the in silico observations in vivo, we conducted immunohistochemical studies of 11 AD and 13 age-matched control brains by using anti-phoshorylated CREB (pCREB antibody. An abnormal accumulation of pCREB imunoreactivity was identified in granules of granulovacuolar degeneration (GVD in the hippocampal neurons of AD brains. These observations suggest that aberrant CREB-mediated gene regulation serves as a molecular biomarker of AD-related pathological processes, and support the hypothesis that sequestration of pCREB in GVD granules is in part responsible for deregulation of CREB-mediated gene expression in AD hippocampus.

  7. Exit from Synchrony in Joint Improvised Motion

    Science.gov (United States)

    Dahan, Assi; Noy, Lior; Hart, Yuval; Mayo, Avi; Alon, Uri

    2016-01-01

    Motion synchrony correlates with effective and well-rated human interaction. However, people do not remain locked in synchrony; Instead, they repeatedly enter and exit synchrony. In many important interactions, such as therapy, marriage and parent-infant communication, it is the ability to exit and then re-enter synchrony that is thought to build strong relationship. The phenomenon of entry into zero-phase synchrony is well-studied experimentally and in terms of mathematical modeling. In contrast, exit-from-synchrony is under-studied. Here, we focus on human motion coordination, and examine the exit-from-synchrony phenomenon using experimental data from the mirror game paradigm, in which people perform joint improvised motion, and from human tracking of computer-generated stimuli. We present a mathematical mechanism that captures aspects of exit-from-synchrony in human motion. The mechanism adds a random motion component when the accumulated velocity error between the players is small. We introduce this mechanism to several models for human coordinated motion, including the widely studied HKB model, and the predictor-corrector model of Noy, Dekel and Alon. In all models, the new mechanism produces realistic simulated behavior when compared to experimental data from the mirror game and from tracking of computer generated stimuli, including repeated entry and exit from zero-phase synchrony that generates a complexity of motion similar to that of human players. We hope that these results can inform future research on exit-from-synchrony, to better understand the dynamics of coordinated action of people and to enhance human-computer and human-robot interaction. PMID:27711185

  8. Measuring multiple spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Chicharro, Daniel; Andrzejak, Ralph G; Haas, Julie S; Abarbanel, Henry D I

    2009-10-15

    Measures of multiple spike train synchrony are essential in order to study issues such as spike timing reliability, network synchronization, and neuronal coding. These measures can broadly be divided in multivariate measures and averages over bivariate measures. One of the most recent bivariate approaches, the ISI-distance, employs the ratio of instantaneous interspike intervals (ISIs). In this study we propose two extensions of the ISI-distance, the straightforward averaged bivariate ISI-distance and the multivariate ISI-diversity based on the coefficient of variation. Like the original measure these extensions combine many properties desirable in applications to real data. In particular, they are parameter-free, time scale independent, and easy to visualize in a time-resolved manner, as we illustrate with in vitro recordings from a cortical neuron. Using a simulated network of Hindemarsh-Rose neurons as a controlled configuration we compare the performance of our methods in distinguishing different levels of multi-neuron spike train synchrony to the performance of six other previously published measures. We show and explain why the averaged bivariate measures perform better than the multivariate ones and why the multivariate ISI-diversity is the best performer among the multivariate methods. Finally, in a comparison against standard methods that rely on moving window estimates, we use single-unit monkey data to demonstrate the advantages of the instantaneous nature of our methods.

  9. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies.

    Directory of Open Access Journals (Sweden)

    Dennis Lal

    2015-05-01

    Full Text Available Genetic generalised epilepsy (GGE is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb and rare (< 1% autosomal microdeletions with high calling confidence (≥ 200 markers were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1 assess the microdeletion burden in common GGE syndromes, 2 estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3 identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9. Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17 relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6 or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1 were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1. Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.

  10. Widespread divergence of the CEACAM/PSG genes in vertebrates and humans suggests sensitivity to selection.

    Directory of Open Access Journals (Sweden)

    Chia Lin Chang

    Full Text Available In mammals, carcinoembryonic antigen cell adhesion molecules (CEACAMs and pregnancy-specific glycoproteins (PSGs play important roles in the regulation of pathogen transmission, tumorigenesis, insulin signaling turnover, and fetal-maternal interactions. However, how these genes evolved and to what extent they diverged in humans remain to be investigated specifically. Based on syntenic mapping of chordate genomes, we reveal that diverging homologs with a prototypic CEACAM architecture-including an extracellular domain with immunoglobulin variable and constant domain-like regions, and an intracellular domain containing ITAM motif-are present from cartilaginous fish to humans, but are absent in sea lamprey, cephalochordate or urochordate. Interestingly, the CEACAM/PSG gene inventory underwent radical divergence in various vertebrate lineages: from zero in avian species to dozens in therian mammals. In addition, analyses of genetic variations in human populations showed the presence of various types of copy number variations (CNVs at the CEACAM/PSG locus. These copy number polymorphisms have 3-80% frequency in select populations, and encompass single to more than six PSG genes. Furthermore, we found that CEACAM/PSG genes contain a significantly higher density of nonsynonymous single nucleotide polymorphism (SNP compared to the chromosome average, and many CEACAM/PSG SNPs exhibit high population differentiation. Taken together, our study suggested that CEACAM/PSG genes have had a more dynamic evolutionary history in vertebrates than previously thought. Given that CEACAM/PSGs play important roles in maternal-fetal interaction and pathogen recognition, these data have laid the groundwork for future analysis of adaptive CEACAM/PSG genotype-phenotypic relationships in normal and complicated pregnancies as well as other etiologies.

  11. Burden Analysis of Rare Microdeletions Suggests a Strong Impact of Neurodevelopmental Genes in Genetic Generalised Epilepsies

    Science.gov (United States)

    Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas

    2015-01-01

    Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944

  12. Dynamic synchrony of local cell assembly.

    Science.gov (United States)

    Sakurai, Yoshio; Takahashi, Susumu

    2008-01-01

    In the present paper, we focus on the problem of the dynamic size of a cell assembly and discuss how we can detect synchronized firing of a local cell assembly consisting of closely neighboring neurons in the working brain. A local cell assembly is difficult to detect because of the problem of spike overlapping of neighboring neurons, which cannot be overcome by ordinary spike-sorting techniques. We introduce a unique technique of spike-sorting that combines independent component analysis (ICA) and an ordinary sorting method to separate individual neighboring neurons and analyze their firing synchrony in behaving animals. One of our experiments employing this method showed that some closely neighboring neurons in the monkey prefrontal cortex have dynamic and sharp synchrony of firing reflecting local cell assemblies during working-memory processes. Another experiment showed that our other method (ICSort) of novel spike-sorting by ICA using special electrodes (dodecatrodes) can distinguish firing signals from the soma and those from the dendrites of individual neurons in behaving rats and suggests that the somatic and dendritic signals have different roles in information processing. This indicates that functional connectivity among neurons may be more dynamic and complex and spikes from the soma and dendrites of individual neurons should be considered in the investigation of the activity of local cell assemblies. We finally propose that detailed and real features of a local cell assembly consisting of closely neighboring neurons should be examined further and detection of local cell assemblies could be applied to the development of neuronal prosthetic devices, that is, brain-machine interfaces (BMIs).

  13. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling.

    Science.gov (United States)

    Skardal, Per Sebastian; Ott, Edward; Restrepo, Juan G

    2011-09-01

    We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen [Chaos 18, 037113 (2008)] and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multistability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

  14. Cluster Synchrony in Systems of Coupled Phase Oscillators with Higher-Order Coupling

    CERN Document Server

    Skardal, Per Sebastian; Restrepo, Juan G

    2011-01-01

    We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen \\cite{OA1} and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multi-stability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

  15. Human PTCHD3 nulls: rare copy number and sequence variants suggest a non-essential gene

    Directory of Open Access Journals (Sweden)

    Lionel Anath C

    2011-03-01

    Full Text Available Abstract Background Copy number variations (CNVs can contribute to variable degrees of fitness and/or disease predisposition. Recent studies show that at least 1% of any given genome is copy number variable when compared to the human reference sequence assembly. Homozygous deletions (or CNV nulls that are found in the normal population are of particular interest because they may serve to define non-essential genes in human biology. Results In a genomic screen investigating CNV in Autism Spectrum Disorders (ASDs we detected a heterozygous deletion on chromosome 10p12.1, spanning the Patched-domain containing 3 (PTCHD3 gene, at a frequency of ~1.4% (6/427. This finding seemed interesting, given recent discoveries on the role of another Patched-domain containing gene (PTCHD1 in ASD. Screening of another 177 ASD probands yielded two additional heterozygous deletions bringing the frequency to 1.3% (8/604. The deletion was found at a frequency of ~0.73% (27/3,695 in combined control population from North America and Northern Europe predominately of European ancestry. Screening of the human genome diversity panel (HGDP-CEPH covering worldwide populations yielded deletions in 7/1,043 unrelated individuals and those detected were confined to individuals of European/Mediterranean/Middle Eastern ancestry. Breakpoint mapping yielded an identical 102,624 bp deletion in all cases and controls tested, suggesting a common ancestral event. Interestingly, this CNV occurs at a break of synteny between humans and mouse. Considering all data, however, no significant association of these rare PTCHD3 deletions with ASD was observed. Notwithstanding, our RNA expression studies detected PTCHD3 in several tissues, and a novel shorter isoform for PTCHD3 was characterized. Expression in transfected COS-7 cells showed PTCHD3 isoforms colocalize with calnexin in the endoplasmic reticulum. The presence of a patched (Ptc domain suggested a role for PTCHD3 in various biological

  16. Multiple pathways for steel regulation suggested by genomic and sequence analysis of the murine Steel gene

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, M.A.; Copeland, N.G.; Jenkins, N.A. [NCI-Frederick Cancer Research and Development Center, Frederick, MD (United States)

    1996-03-01

    The Steel (Sl) locus encodes mast cell growth factor (Mgf) that is required for the development of germ cells, hematopoietic cells and melanocytes. Although the expression patterns of the Mgf gene are well characterized, little is known of the factors which regulate its expression. Here, we describe the cloning and sequence of the full-length transcription unit and the 5{prime} flanking region of the murine Mgf gene. The full-length Mgf mRNA consists of a short 5{prime} untranslated region (UTR), a 0.8-kb ORF and a long 3{prime} UTR. A single transcription initiation site is used in a number of mouse tissues and is located just downstream of binding sites for several known transcription factors. In the 5{prime} UTR, two ATGs were found upstream of the initiator methionine and are conserved among different species, suggesting that Mgf may be translationally regulated. At least two Mgf mRNAs are produced by alternative use of polyadenylation sites, but numerous other potential polyadenylation sites were found in the 3{prime} UTR. In addition, the 3{prime} UTR contains numerous sequence motifs that may regulate Mgf mRNA stability. These studies suggest multiple ways in which expression of Mgf may be regulated. 39 refs., 4 figs.

  17. Patterns of evolution of MHC class II genes of crows (Corvus suggest trans-species polymorphism

    Directory of Open Access Journals (Sweden)

    John A. Eimes

    2015-03-01

    Full Text Available A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP, in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis American crows (C. brachyrhynchos and carrion crows (C. corone orientalis. Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While

  18. The Electromagnetic Field as a Synchrony Gauge Field

    CERN Document Server

    Bock, Robert D

    2015-01-01

    Building on our previous work, we investigate the identification of the electromagnetic field as a local gauge field of a restricted group of synchrony transformations. We begin by arguing that the inability to measure the one-way speed of light independent of a synchronization scheme necessitates that physical laws must be reformulated without distant simultaneity. As a result, we are forced to introduce a new operational definition of time which leads to a fundamental space-time invariance principle that is related to a subset of the synchrony group. We identify the gauge field associated with this new invariance principle with the electromagnetic field. Consequently, the electromagnetic field acquires a space-time interpretation, as suggested in our previous work. In addition, we investigate the static, spherically symmetric solution of the resulting field equations. Also, we discuss implications of the present work for understanding the tension between classical and quantum theory.

  19. Mosquito Species (Diptera: Culicidae) Persistence and Synchrony Across an Urban Altitudinal Gradient.

    Science.gov (United States)

    Chaves, Luis Fernando

    2017-03-01

    Patterns of mosquito spatial persistence and temporal presence, as well as synchrony, i.e., the degree of concerted fluctuations in abundance, have been scarcely studied at finely grained spatial scales and over altitudinal gradients. Here, we present a spatial persistence, temporal presence, and synchrony analysis of four common mosquito species across the altitudinal gradient of Mt. Konpira in Nagasaki, Japan. We found that Aedes albopictus (Skuse) was more frequently found at the mountain base. In contrast, Aedes japonicus (Theobald) and Aedes flavopictus Yamada were common higher in the mountain, while Armigeres subalbatus (Coquillet) was uniformly present across the mountain, yet less frequently than the other species during the studied period. Our analysis showed that these spatial heterogeneities were associated with differences in landscape and microclimatic elements of Mt. Konpira. Temporally we found that presence across sampling locations was mainly synchronous across the four species and positively associated with rainfall and temperature. With the exception of Ae albopictus, where no significant synchrony was observed, mosquito species mainly showed flat synchrony profiles in Mt. Konpira when looking at the geographic (2-D) distance between their sampling locations. By contrast, when synchrony was studied across altitude, it was observed that Ae. flavopictus tracked the temperature synchrony pattern, decreasing its synchrony with the separation in altitude between sampling locations. Finally, our results suggest that differences in mosquito species persistence, temporal presence, and synchrony might be useful to understand the entomological risk of vector-borne disease transmission in urban landscapes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. How interpersonal synchrony facilitates early prosocial behavior.

    Science.gov (United States)

    Cirelli, Laura K

    2017-08-09

    When infants and children affiliate with others, certain cues may direct their social efforts to 'better' social partners. Interpersonal synchrony, or when two or more people move together in time, can be one such cue. In adults, experiencing interpersonal synchrony encourages affiliative behaviors. Recent studies have found that these effects also influence early prosociality-for example, 14-month-olds help a synchronous partner more than an asynchronous partner. These effects on helping are specifically directed to the synchronous movement partner and members of that person's social group. In older children, the prosocial effects of interpersonal synchrony may even cross group divides. How synchrony and other cues for group membership influence early prosociality is a promising avenue for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Neural synchrony in cortical networks: history, concept and current status

    Directory of Open Access Journals (Sweden)

    Peter Uhlhaas

    2009-07-01

    Full Text Available Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies.

  2. Audiovisual Temporal Recalibration for Speech in Synchrony Perception and Speech Identification

    Science.gov (United States)

    Asakawa, Kaori; Tanaka, Akihiro; Imai, Hisato

    We investigated whether audiovisual synchrony perception for speech could change after observation of the audiovisual temporal mismatch. Previous studies have revealed that audiovisual synchrony perception is re-calibrated after exposure to a constant timing difference between auditory and visual signals in non-speech. In the present study, we examined whether this audiovisual temporal recalibration occurs at the perceptual level even for speech (monosyllables). In Experiment 1, participants performed an audiovisual simultaneity judgment task (i.e., a direct measurement of the audiovisual synchrony perception) in terms of the speech signal after observation of the speech stimuli which had a constant audiovisual lag. The results showed that the “simultaneous” responses (i.e., proportion of responses for which participants judged the auditory and visual stimuli to be synchronous) at least partly depended on exposure lag. In Experiment 2, we adopted the McGurk identification task (i.e., an indirect measurement of the audiovisual synchrony perception) to exclude the possibility that this modulation of synchrony perception was solely attributable to the response strategy using stimuli identical to those of Experiment 1. The characteristics of the McGurk effect reported by participants depended on exposure lag. Thus, it was shown that audiovisual synchrony perception for speech could be modulated following exposure to constant lag both in direct and indirect measurement. Our results suggest that temporal recalibration occurs not only in non-speech signals but also in monosyllabic speech at the perceptual level.

  3. Temporally increasing spatial synchrony of North American temperature and bird populations

    Science.gov (United States)

    Koenig, Walter D.; Liebhold, Andrew M.

    2016-06-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony--the coincident change in abundance or value across the landscape--despite the importance of environmental synchrony as a driver of population trends and the central role of environmental variability in population rescue and extinction. Here we demonstrate that across North America, spatial synchrony of a significant proportion of 49 widespread North American wintering bird species has increased over the past 50 years--the period encompassing particularly intense anthropogenic effects in climate--paralleling significant increases in spatial synchrony of mean maximum air temperature. These results suggest the potential for increased spatial synchrony in environmental factors to be affecting a wide range of ecological phenomena. These effects are likely to vary, but for North American wildlife species, increased spatial synchrony driven by environmental factors may be the basis for a previously unrecognized threat to their long-term persistence in the form of more synchronized population dynamics reducing the potential for demographic rescue among interacting subpopulations.

  4. Emotional lability and affective synchrony in borderline personality disorder.

    Science.gov (United States)

    Schoenleber, Michelle; Berghoff, Christopher R; Tull, Matthew T; DiLillo, David; Messman-Moore, Terri; Gratz, Kim L

    2016-07-01

    Extant research on emotional lability in borderline personality disorder (BPD) has focused almost exclusively on lability of individual emotions or emotion types, with limited research considering how different types of emotions shift together over time. Thus, this study examined the temporal dynamics of emotion in BPD at the level of both individual emotions (i.e., self-conscious emotions [SCE], anger, and anxiety) and mixed emotions (i.e., synchrony between emotions). One hundred forty-four women from the community completed a diagnostic interview and laboratory study involving 5 emotion induction tasks (each of which was preceded and followed by a 5-min resting period or neutral task). State ratings of SCE, anger, and anxiety were provided at 14 time points (before and after each laboratory task and resting period). Hierarchical linear modeling results indicate that women with BPD reported greater mean levels of SCE and Anxiety (but not Anger), and greater lability of Anxiety. Women with BPD also exhibited greater variability in lability of all 3 emotions (suggestive of within-group differences in the relevance of lability to BPD). Results also revealed synchrony (i.e., positive relations) between each possible pair of emotions, regardless of BPD status. Follow-up regression analyses suggest the importance of accounting for lability when examining the role of synchrony in BPD, as the relation of SCE-Anger synchrony to BPD symptom severity was moderated by Anger and SCE lability. Specifically, synchronous changes in SCE and Anger were associated with greater BPD symptom severity when large shifts in SCE were paired with minor shifts in Anger. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. A two-stage association study suggests BRAP as a susceptibility gene for schizophrenia.

    Directory of Open Access Journals (Sweden)

    Fuquan Zhang

    Full Text Available Schizophrenia (SZ is a neurodevelopmental disorder in which altered immune function typically plays an important role in mediating the effect of environmental insults and regulation of inflammation. The breast cancer suppressor protein associated protein (BRAP is suggested to exert vital effects in neurodevelopment by modulating the mitogen-activated protein kinase cascade and inflammation signaling. To explore the possible role of BRAP in SZ, we conducted a two-stage study to examine the association of BRAP polymorphisms with SZ in the Han Chinese population. In stage one, we screened SNPs in BRAP from our GWAS data, which detected three associated SNPs, with rs3782886 being the most significant one (P  =  2.31E-6, OR  =  0.67. In stage two, we validated these three SNPs in an independently collected population including 1957 patients and 1509 controls, supporting the association of rs3782886 with SZ (P  =  1.43E-6, OR  =  0.73. Furthermore, cis-eQTL analysis indicates that rs3782886 genotypes are associated with mRNA levels of aldehyde dehydrogenase 2 family (ALDH2 (P  =  0.0039 and myosin regulatory light chain 2 (MYL2 (P < 1.0E-4. Our data suggest that the BRAP gene may confer vulnerability for SZ in Han Chinese population, adding further evidence for the involvement of developmental and/or neuroinflammatory cascades in the illness.

  6. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Directory of Open Access Journals (Sweden)

    Rohini Garg

    Full Text Available DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases, namely Methyltransferase (MET, Chromomethylase (CMT and Domains Rearranged Methyltransferase (DRM, which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2 subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  7. Genomic survey, gene expression analysis and structural modeling suggest diverse roles of DNA methyltransferases in legumes.

    Science.gov (United States)

    Garg, Rohini; Kumari, Romika; Tiwari, Sneha; Goyal, Shweta

    2014-01-01

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization. First three MTases represent DNA MTases, whereas DNMT2 represents a transfer RNA (tRNA) MTase. Structural comparison of all the MTases in plants with known MTases in mammalian and plant systems have been reported to assign structural features in context of biological functions of these proteins. The structure analysis clearly specified regions crucial for protein-protein interactions and regions important for nucleosome binding in various domains of CMT and MET proteins. In addition, structural model of DRM suggested that circular permutation of motifs does not have any effect on overall structure of DNA methyltransferase domain. These results provide valuable insights into role of various domains in molecular recognition and should facilitate mechanistic understanding of their function in mediating specific methylation patterns. Further, the comprehensive gene expression analyses of MTases in legumes provided evidence of their role in various developmental processes throughout the plant life cycle and response to various abiotic stresses. Overall, our study will be very helpful in establishing the specific functions of DNA MTases in legumes.

  8. Impairments of Social Motor Synchrony Evident in Autism Spectrum Disorder

    Science.gov (United States)

    Fitzpatrick, Paula; Frazier, Jean A.; Cochran, David M.; Mitchell, Teresa; Coleman, Caitlin; Schmidt, R. C.

    2016-01-01

    Social interactions typically involve movements of the body that become synchronized over time and both intentional and spontaneous interactional synchrony have been found to be an essential part of successful human interaction. However, our understanding of the importance of temporal dimensions of social motor synchrony in social dysfunction is limited. Here, we used a pendulum coordination paradigm to assess dynamic, process-oriented measures of social motor synchrony in adolescents with and without autism spectrum disorder (ASD). Our data indicate that adolescents with ASD demonstrate less synchronization in both spontaneous and intentional interpersonal coordination. Coupled oscillator modeling suggests that ASD participants assembled a synchronization dynamic with a weaker coupling strength, which corresponds to a lower sensitivity and decreased attention to the movements of the other person, but do not demonstrate evidence of a delay in information transmission. The implication of these findings for isolating an ASD-specific social synchronization deficit that could serve as an objective, bio-behavioral marker is discussed. PMID:27630599

  9. Electrical synapses and synchrony: the role of intrinsic currents.

    Science.gov (United States)

    Pfeuty, Benjamin; Mato, Germán; Golomb, David; Hansel, David

    2003-07-16

    Electrical synapses are ubiquitous in the mammalian CNS. Particularly in the neocortex, electrical synapses have been shown to connect low-threshold spiking (LTS) as well as fast spiking (FS) interneurons. Experiments have highlighted the roles of electrical synapses in the dynamics of neuronal networks. Here we investigate theoretically how intrinsic cell properties affect the synchronization of neurons interacting by electrical synapses. Numerical simulations of a network of conductance-based neurons randomly connected with electrical synapses show that potassium currents promote synchrony, whereas the persistent sodium current impedes it. Furthermore, synchrony varies with the firing rate in qualitatively different ways depending on the intrinsic currents. We also study analytically a network of quadratic integrate-and-fire neurons. We relate the stability of the asynchronous state of this network to the phase-response function (PRF), which characterizes the effect of small perturbations on the firing timing of the neurons. In particular, we show that the greater the skew of the PRF toward the first half of the period, the more stable the asynchronous state. Combining our simulations with our analytical results, we establish general rules to predict the dynamic state of large networks of neurons coupled with electrical synapses. Our work provides a natural explanation for surprising experimental observations that blocking electrical synapses may increase the synchrony of neuronal activity. It also suggests different synchronization properties for LTS and FS cells. Finally, we propose to further test our predictions in experiments using dynamic clamp techniques.

  10. Verbal Synchrony and Action Dynamics in Large Groups.

    Science.gov (United States)

    von Zimmermann, Jorina; Richardson, Daniel C

    2016-01-01

    While synchronized movement has been shown to increase liking and feelings of togetherness between people, we investigated whether collective speaking in time would change the way that larger groups played a video game together. Anthropologists have speculated that the function of interpersonal coordination in dance, chants, and singing is not just to produce warm, affiliative feelings, but also to improve group action. The group that chants and dances together hunts well together. Direct evidence for this is sparse, as research so far has mainly studied pairs, the effects of coordinated physical movement, and measured cooperation and affiliative decisions. In our experiment, large groups of people were given response handsets to play a computer game together, in which only joint coordinative efforts lead to success. Before playing, the synchrony of their verbal behavior was manipulated. After the game, we measured group members' affiliation toward their group, their performance on a memory task, and the way in which they played the group action task. We found that verbal synchrony in large groups produced affiliation, enhanced memory performance, and increased group members' coordinative efforts. Our evidence suggests that the effects of synchrony are stable across modalities, can be generalized to larger groups and have consequences for action coordination.

  11. Population synchrony in small-world networks.

    Science.gov (United States)

    Ranta, Esa; Fowler, Mike S; Kaitala, Veijo

    2008-02-22

    Network topography ranges from regular graphs (linkage between nearest neighbours only) via small-world graphs (some random connections between nodes) to completely random graphs. Small-world linkage is seen as a revolutionary architecture for a wide range of social, physical and biological networks, and has been shown to increase synchrony between oscillating subunits. We study small-world topographies in a novel context: dispersal linkage between spatially structured populations across a range of population models. Regular dispersal between population patches interacting with density-dependent renewal provides one ecological explanation for the large-scale synchrony seen in the temporal fluctuations of many species, for example, lynx populations in North America, voles in Fennoscandia and grouse in the UK. Introducing a small-world dispersal kernel leads to a clear reduction in synchrony with both increasing dispersal rate and small-world dispersal probability across a variety of biological scenarios. Synchrony is also reduced when populations are affected by globally correlated noise. We discuss ecological implications of small-world dispersal in the frame of spatial synchrony in population fluctuations.

  12. Overlapping gene structure of the human neuropeptide Y receptor subtypes Y1 and Y5 suggests coordinate transcriptional regulation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.; Darby, K.; Ball, H. [St. Vincent`s Hospital, Sydney (Australia)] [and others

    1997-05-01

    The human y1 and y5 receptor genes are transcribed in opposite directions from a common promoter region on chromosome 4q31-q32. One of the alternately spliced 5{prime} exons of the y1 receptor gene (1C) is also an integral part of the coding region of a novel neuropeptide Y receptor, Y5. Exon 1C of the y1 receptor gene, if translated from the opposite strand, encodes sequences corresponding to the large third intracellular loop of the Y5 receptor. The close proximity of the two neuropeptide Y receptor genes suggests that they have evolved from a gene duplication event with the small intron interrupting the coding sequence of the y1 gene being converted into a functional sequence within the y5 gene, while the reverse complementary sequence was utilized as an alternatively spliced 5{prime} exon for the y1 gene. The transcription of both genes from opposite strands of the same DNA sequence suggests that transcriptional activation of one will have an effect on the regulation of gene expression of the other. As both Y1 and Y5 receptors are thought to play an important role in the regulation of food intake, coordinate expression of their specific genes may be important in the modulation of NPY activity. 23 refs., 2 figs.

  13. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers.

    Directory of Open Access Journals (Sweden)

    Ricardo A Verdugo

    Full Text Available Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts

  14. Don't worry, be (moderately) happy: Mothers' anxiety and positivity during pregnancy independently predict lower mother-infant synchrony.

    Science.gov (United States)

    Moore, Ginger A; Quigley, Kelsey M; Voegtline, Kristin M; DiPietro, Janet A

    2016-02-01

    Maternal positivity and mother-infant synchrony have been linked, independently, to beneficial infant outcomes; however, research that has examined relations between the two has found that higher positivity is associated with lower synchrony. Methodological issues may inform this counter-intuitive association and clinical theory supports its validity. This study examined the theory that heightened positivity associated with anxiety is a way of avoiding negative emotion and contributes to lower synchrony because it interferes with appropriate responding to infant cues. We examined mothers' (N=75) self-reported anxiety and verbal expression of positivity during pregnancy in relation to mother-infant synchrony at 6 months post-partum. Verbal positivity was assessed using linguistic analysis of interviews about pregnancy experiences. Mother and infant affect and gaze were coded during interaction and synchrony was computed as the correlation between mother and infant behaviors. Higher verbal positivity and anxiety during pregnancy independently predicted lower mother-infant synchrony, suggesting distinct pathways to the same degree of synchrony with potentially different consequences for infant development.

  15. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies

    DEFF Research Database (Denmark)

    Lal, Dennis; Ruppert, Ann-Kathrin; Trucks, Holger

    2015-01-01

    -18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy...... a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes....

  16. Genes related to inflammation and bone loss process in periodontitis suggested by bioinformatics methods

    OpenAIRE

    2015-01-01

    Background Despite of numerous studies on periodontitis, the mechanism underlying the progression of periodontitis still remains largely unknown. This study aimed to have an expression profiling comparison between periodontitis and normal control and to identify more candidate genes involved in periodontitis and to gain more insights into the molecular mechanisms of periodontitis progression. Methods The gene expression profile of GSE16134, comprising 241 gingival tissue specimens and 69 heal...

  17. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids.

    Science.gov (United States)

    Grant, Jessica R; Katz, Laura A

    2014-09-01

    Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages.

  18. Temporal Synchrony Detection and Associations with Language in Young Children with ASD

    Directory of Open Access Journals (Sweden)

    Elena Patten

    2014-01-01

    Full Text Available Temporally synchronous audio-visual stimuli serve to recruit attention and enhance learning, including language learning in infants. Although few studies have examined this effect on children with autism, it appears that the ability to detect temporal synchrony between auditory and visual stimuli may be impaired, particularly given social-linguistic stimuli delivered via oral movement and spoken language pairings. However, children with autism can detect audio-visual synchrony given nonsocial stimuli (objects dropping and their corresponding sounds. We tested whether preschool children with autism could detect audio-visual synchrony given video recordings of linguistic stimuli paired with movement of related toys in the absence of faces. As a group, children with autism demonstrated the ability to detect audio-visual synchrony. Further, the amount of time they attended to the synchronous condition was positively correlated with receptive language. Findings suggest that object manipulations may enhance multisensory processing in linguistic contexts. Moreover, associations between synchrony detection and language development suggest that better processing of multisensory stimuli may guide and direct attention to communicative events thus enhancing linguistic development.

  19. Synchrony in embryogenesis via an active medium

    Science.gov (United States)

    McIsaac, R. Scott; Sengupta, Anirvan; Wingreen, Ned

    2009-03-01

    In developing embryos of the frog Xenopus, mitotic divisions occur at 8-minute intervals. After the initial rounds of division, nuclei divide in near-perfect synchrony throughout the embryo. Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. Furthermore, developing embryos are found to be very robust, meaning that their spatial and temporal patterns are highly repeatable over a broad range of environmental conditions and despite biochemical noise. We report on robust synchronization of oscillations for a coupled two-species system consisting of diffusing activator and repressor molecules.

  20. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.

    Science.gov (United States)

    Inoue, Jun; Sato, Yukuto; Sinclair, Robert; Tsukamoto, Katsumi; Nishida, Mutsumi

    2015-12-01

    Whole-genome duplication (WGD) is believed to be a significant source of major evolutionary innovation. Redundant genes resulting from WGD are thought to be lost or acquire new functions. However, the rates of gene loss and thus temporal process of genome reshaping after WGD remain unclear. The WGD shared by all teleost fish, one-half of all jawed vertebrates, was more recent than the two ancient WGDs that occurred before the origin of jawed vertebrates, and thus lends itself to analysis of gene loss and genome reshaping. Using a newly developed orthology identification pipeline, we inferred the post-teleost-specific WGD evolutionary histories of 6,892 protein-coding genes from nine phylogenetically representative teleost genomes on a time-calibrated tree. We found that rapid gene loss did occur in the first 60 My, with a loss of more than 70-80% of duplicated genes, and produced similar genomic gene arrangements within teleosts in that relatively short time. Mathematical modeling suggests that rapid gene loss occurred mainly by events involving simultaneous loss of multiple genes. We found that the subsequent 250 My were characterized by slow and steady loss of individual genes. Our pipeline also identified about 1,100 shared single-copy genes that are inferred to have become singletons before the divergence of clupeocephalan teleosts. Therefore, our comparative genome analysis suggests that rapid gene loss just after the WGD reshaped teleost genomes before the major divergence, and provides a useful set of marker genes for future phylogenetic analysis.

  1. GWAS for executive function and processing speed suggests involvement of the CADM2 gene

    DEFF Research Database (Denmark)

    Ibrahim-Verbaas, C A; Bressler, J; Debette, S;

    2016-01-01

    in the discovery cohorts for the single-nucleotide polymorphism (SNP) rs17518584 (discovery P-value=3.12 × 10(-8)) and in the joint discovery and replication meta-analysis (P-value=3.28 × 10(-9) after adjustment for age, gender and education) in an intron of the gene cell adhesion molecule 2 (CADM2...

  2. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    Science.gov (United States)

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  3. Making children laugh: parent-child dyadic synchrony and preschool attachment.

    Science.gov (United States)

    Bureau, Jean-FrançOis; Yurkowski, Kim; Schmiedel, Sabrina; Martin, Jodi; Moss, Ellen; Pallanca, Dominique

    2014-01-01

    The current study examined whether dyadic synchrony of father-child and mother-child interactions in a playful context were associated with attachment organization in preschool children. One hundred seven children (48 boys, Mage = 46.67 months, SD = 8.57) and their mothers and fathers (counterbalanced order of lab visits) participated in a playful interaction without toys (Laughing Task procedure). Playful interactions were coded based on the degree to which the dyads demonstrated a variety of behavior representing dyadic synchrony and task management. Children's attachment behavior toward fathers and mothers was observed in a modified separation-reunion procedure adapted for the preschool period. Results demonstrate that mothers and fathers are similar in their effort to arouse and engage their child in a playful context, but mothers achieved a greater synchrony with their child. Disorganized attachment to either mother or father is linked with a lack of synchrony in dyadic interaction. Findings are in contrast with prevailing theory, suggesting that despite gender-related differences in parental playful behaviors, dyadic synchrony is equally important in both mother- and father-child relationships for the development of organized social and affectional bonds.

  4. Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees.

    Directory of Open Access Journals (Sweden)

    Paul H Williams

    Full Text Available Our grasp of biodiversity is fine-tuned through the process of revisionary taxonomy. If species do exist in nature and can be discovered with available techniques, then we expect these revisions to converge on broadly shared interpretations of species. But for the primarily arctic bumblebees of the subgenus Alpinobombus of the genus Bombus, revisions by some of the most experienced specialists are unusual for bumblebees in that they have all reached different conclusions on the number of species present. Recent revisions based on skeletal morphology have concluded that there are from four to six species, while variation in colour pattern of the hair raised questions as to whether at least seven species might be present. Even more species are supported if we accept the recent move away from viewing species as morphotypes to viewing them instead as evolutionarily independent lineages (EILs using data from genes. EILs are recognised here in practice from the gene coalescents that provide direct evidence for their evolutionary independence. We show from fitting both general mixed Yule/coalescent (GMYC models and Poisson-tree-process (PTP models to data for the mitochondrial COI gene that there is support for nine species in the subgenus Alpinobombus. Examination of the more slowly evolving nuclear PEPCK gene shows further support for a previously unrecognised taxon as a new species in northwestern North America. The three pairs of the most morphologically similar sister species are separated allopatrically and prevented from interbreeding by oceans. We also find that most of the species show multiple shared colour patterns, giving the appearance of mimicry among parts of the different species. However, reconstructing ancestral colour-pattern states shows that speciation is likely to have cut across widespread ancestral polymorphisms, without or largely without convergence. In the particular case of Alpinobombus, morphological, colour-pattern, and

  5. New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism.

    Science.gov (United States)

    Kapranov, Philipp; Ozsolak, Fatih; Kim, Sang Woo; Foissac, Sylvain; Lipson, Doron; Hart, Chris; Roels, Steve; Borel, Christelle; Antonarakis, Stylianos E; Monaghan, A Paula; John, Bino; Milos, Patrice M

    2010-07-29

    Small (<200 nucleotide) RNA (sRNA) profiling of human cells using various technologies demonstrates unexpected complexity of sRNAs with hundreds of thousands of sRNA species present. Genetic and in vitro studies show that these RNAs are not merely degradation products of longer transcripts but could indeed have a function. Furthermore, profiling of RNAs, including the sRNAs, can reveal not only novel transcripts, but also make clear predictions about the existence and properties of novel biochemical pathways operating in a cell. For example, sRNA profiling in human cells indicated the existence of an unknown capping mechanism operating on cleaved RNA, a biochemical component of which was later identified. Here we show that human cells contain a novel type of sRNA that has non-genomically encoded 5' poly(U) tails. The presence of these RNAs at the termini of genes, specifically at the very 3' ends of known mRNAs, strongly argues for the presence of a yet uncharacterized endogenous biochemical pathway in cells that can copy RNA. We show that this pathway can operate on multiple genes, with specific enrichment towards transcript-encoding components of the translational machinery. Finally, we show that genes are also flanked by sense, 3' polyadenylated sRNAs that are likely to be capped.

  6. Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.

    Science.gov (United States)

    Gagen, Emma J; Denman, Stuart E; Padmanabha, Jagadish; Zadbuke, Someshwar; Al Jassim, Rafat; Morrison, Mark; McSweeney, Christopher S

    2010-12-01

    Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.

  7. Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network.

    Science.gov (United States)

    Finger, Holger; König, Peter

    2013-01-01

    Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli.

  8. Phase synchrony facilitates binding and segmentation of natural images in a coupled neural oscillator network

    Directory of Open Access Journals (Sweden)

    Holger eFinger

    2014-01-01

    Full Text Available Synchronization has been suggested as a mechanism of binding distributed feature representations facilitating segmentation of visual stimuli. Here we investigate this concept based on unsupervised learning using natural visual stimuli. We simulate dual-variable neural oscillators with separate activation and phase variables. The binding of a set of neurons is coded by synchronized phase variables. The network of tangential synchronizing connections learned from the induced activations exhibits small-world properties and allows binding even over larger distances. We evaluate the resulting dynamic phase maps using segmentation masks labeled by human experts. Our simulation results show a continuously increasing phase synchrony between neurons within the labeled segmentation masks. The evaluation of the network dynamics shows that the synchrony between network nodes establishes a relational coding of the natural image inputs. This demonstrates that the concept of binding by synchrony is applicable in the context of unsupervised learning using natural visual stimuli.

  9. Prefrontally driven downregulation of neural synchrony mediates goal-directed forgetting.

    Science.gov (United States)

    Hanslmayr, Simon; Volberg, Gregor; Wimber, Maria; Oehler, Nora; Staudigl, Tobias; Hartmann, Thomas; Raabe, Markus; Greenlee, Mark W; Bäuml, Karl-Heinz T

    2012-10-17

    Neural synchronization between distant cell assemblies is crucial for the formation of new memories. To date, however, it remains unclear whether higher-order brain regions can adaptively regulate neural synchrony to control memory processing in humans. We explored this question in two experiments using a voluntary forgetting task. In the first experiment, we simultaneously recorded electroencephalography along with fMRI. The results show that a reduction in neural synchrony goes hand-in-hand with a BOLD signal increase in the left dorsolateral prefrontal cortex (dlPFC) when participants are cued to forget previously studied information. In the second experiment, we directly stimulated the left dlPFC with repetitive transcranial magnetic stimulation during the same task, and show that such stimulation specifically boosts the behavioral forgetting effect and induces a reduction in neural synchrony. These results suggest that prefrontally driven downregulation of long-range neural synchronization mediates goal-directed forgetting of long-term memories.

  10. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality.

    Science.gov (United States)

    Freed, Nikki E; Bumann, Dirk; Silander, Olin K

    2016-09-06

    Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.

  11. Synchrony and neural coding in cerebellar circuits

    Directory of Open Access Journals (Sweden)

    Abigail L Person

    2012-12-01

    Full Text Available The cerebellum regulates complex movements and is also implicated in cognitive tasks, and cerebellar dysfunction is consequently associated not only with movement disorders, but also with conditions like autism and dyslexia. How information is encoded by specific cerebellar firing patterns remains debated, however. A central question is how the cerebellar cortex transmits its integrated output to the cerebellar nuclei via GABAergic synapses from Purkinje neurons. Possible answers come from accumulating evidence that subsets of Purkinje cells synchronize their firing during behaviors that require the cerebellum. Consistent with models predicting that coherent activity of inhibitory networks has the capacity to dictate firing patterns of target neurons, recent experimental work supports the idea that inhibitory synchrony may regulate the response of cerebellar nuclear cells to Purkinje inputs, owing to the interplay between unusually fast inhibitory synaptic responses and high rates of intrinsic activity. Data from multiple laboratories lead to a working hypothesis that synchronous inhibitory input from Purkinje cells can set the timing and rate of action potentials produced by cerebellar nuclear cells, thereby relaying information out of the cerebellum. If so, then changing spatiotemporal patterns of Purkinje activity would allow different subsets of inhibitory neurons to control cerebellar output at different times. Here we explore the evidence for and against the idea that a synchrony code defines, at least in part, the input-output function between the cerebellar cortex and nuclei. We consider the literature on the existence of simple spike synchrony, convergence of Purkinje neurons onto nuclear neurons, and intrinsic properties of nuclear neurons that contribute to responses to inhibition. Finally, we discuss factors that may disrupt or modulate a synchrony code and describe the potential contributions of inhibitory synchrony to other motor

  12. Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder.

    Science.gov (United States)

    Dunkley, Benjamin T; Doesburg, Sam M; Jetly, Rakesh; Sedge, Paul A; Pang, Elizabeth W; Taylor, Margot J

    2015-11-30

    Soldiers with post-traumatic stress disorder (PTSD) exhibit elevated gamma-band synchrony in left fronto-temporal cortex, and connectivity measures in these regions correlate with comorbidities and PTSD severity, which suggests increased gamma synchrony is related to symptomology. However, little is known about the role of intrinsic, phase-synchronised networks in the disorder. Using magnetoencephalography (MEG), we characterised spectral connectivity in the default-mode, salience, visual, and attention networks during resting-state in a PTSD population and a trauma-exposed control group. Intrinsic network connectivity was examined in canonical frequency bands. We observed increased inter-network synchronisation in the PTSD group compared with controls in the gamma (30-80 Hz) and high-gamma range (80-150 Hz). Analyses of connectivity and symptomology revealed that PTSD severity was positively associated with beta synchrony in the ventral-attention-to-salience networks, and gamma synchrony within the salience network, but also negatively correlated with beta synchrony within the visual network. These novel results show that frequency-specific, network-level atypicalities may reflect trauma-related alterations of ongoing functional connectivity, and correlations of beta synchrony in attentional-to-salience and visual networks with PTSD severity suggest complicated network interactions mediate symptoms. These results contribute to accumulating evidence that PTSD is a complicated network-based disorder expressed as altered neural interactions.

  13. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  14. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes

    Directory of Open Access Journals (Sweden)

    Leon French

    2017-05-01

    Full Text Available Genome-wide expression profiling of the human brain has revealed genes that are differentially expressed across the lifespan. Characterizing these genes adds to our understanding of both normal functions and pathological conditions. Additionally, the specific cell-types that contribute to the motor, sensory and cognitive declines during aging are unclear. Here we test if age-related genes show higher expression in specific neural cell types. Our study leverages data from two sources of murine single-cell expression data and two sources of age-associations from large gene expression studies of postmortem human brain. We used nonparametric gene set analysis to test for age-related enrichment of genes associated with specific cell-types; we also restricted our analyses to specific gene ontology groups. Our analyses focused on a primary pair of single-cell expression data from the mouse visual cortex and age-related human post-mortem gene expression information from the orbitofrontal cortex. Additional pairings that used data from the hippocampus, prefrontal cortex, somatosensory cortex and blood were used to validate and test specificity of our findings. We found robust age-related up-regulation of genes that are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not specific to any neural cell type were also down-regulated, possibly due to the bulk tissue source of the age-related genes. A gene ontology-driven dissection of the cell-type enriched genes highlighted the strong down-regulation of genes involved in synaptic transmission and cell-cell signaling in the Somatostatin (Sst neuron subtype that expresses the cyclin dependent kinase 6 (Cdk6 and in the vasoactive intestinal peptide (Vip neuron subtype expressing myosin binding protein C, slow type (Mybpc1. These findings provide new insights into cell specific susceptibility to normal aging

  15. Infant negative reactivity defines the effects of parent-child synchrony on physiological and behavioral regulation of social stress.

    Science.gov (United States)

    Pratt, Maayan; Singer, Magi; Kanat-Maymon, Yaniv; Feldman, Ruth

    2015-11-01

    How infants shape their own development has puzzled developmentalists for decades. Recent models suggest that infant dispositions, particularly negative reactivity and regulation, affect outcome by determining the extent of parental effects. Here, we used a microanalytic experimental approach and proposed that infants with varying levels of negative reactivity will be differentially impacted by parent-infant synchrony in predicting physiological and behavioral regulation of increasing social stress during an experimental paradigm. One hundred and twenty-two mother-infant dyads (4-6 months) were observed in the face-to-face still face (SF) paradigm and randomly assigned to three experimental conditions: SF with touch, standard SF, and SF with arms' restraint. Mother-infant synchrony and infant negative reactivity were observed at baseline, and three mechanisms of behavior regulation were microcoded; distress, disengagement, and social regulation. Respiratory sinus arrhythmia baseline, reactivity, and recovery were quantified. Structural equation modeling provided support for our hypothesis. For physiological regulation, infants high in negative reactivity receiving high mother-infant synchrony showed greater vagal withdrawal, which in turn predicted comparable levels of vagal recovery to that of nonreactive infants. In behavioral regulation, only infants low in negative reactivity who received high synchrony were able to regulate stress by employing social engagement cues during the SF phase. Distress was reduced only among calm infants to highly synchronous mothers, and disengagement was lowest among highly reactive infants experiencing high mother-infant synchrony. Findings chart two pathways by which synchrony may bolster regulation in infants of high and low reactivity. Among low reactive infants, synchrony builds a social repertoire for handling interpersonal stress, whereas in highly reactive infants, it constructs a platform for repeated reparation of

  16. A motion capture study to measure the feeling of synchrony in romantic couples and in professional musicians

    Directory of Open Access Journals (Sweden)

    Delphine Preissmann

    2016-10-01

    Full Text Available The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronisation and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking, the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronisation tasks (mirror game, musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms.

  17. A Motion Capture Study to Measure the Feeling of Synchrony in Romantic Couples and in Professional Musicians.

    Science.gov (United States)

    Preissmann, Delphine; Charbonnier, Caecilia; Chagué, Sylvain; Antonietti, Jean-Philippe; Llobera, Joan; Ansermet, Francois; Magistretti, Pierre J

    2016-01-01

    The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronization and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking), the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronization tasks (mirror game), musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms.

  18. A Motion Capture Study to Measure the Feeling of Synchrony in Romantic Couples and in Professional Musicians

    KAUST Repository

    Preissmann, Delphine

    2016-10-27

    The feeling of synchrony is fundamental for most social activities and prosocial behaviors. However, little is known about the behavioral correlates of this feeling and its modulation by intergroup differences. We previously showed that the subjective feeling of synchrony in subjects involved in a mirror imitation task was modulated by objective behavioral measures, as well as contextual factors such as task difficulty and duration of the task performance. In the present study, we extended our methodology to investigate possible interindividual differences. We hypothesized that being in a romantic relationship or being a professional musician can modulate both implicit and explicit synchronization and the feeling of synchrony as well as the ability to detect synchrony from a third person perspective. Contrary to our hypothesis, we did not find significant differences between people in a romantic relationship and control subjects. However, we observed differences between musicians and control subjects. For the implicit synchrony (spontaneous synchronization during walking), the results revealed that musicians that had never met before spontaneously synchronized their movements earlier among themselves than control subjects, but not better than people sharing a romantic relationship. Moreover, in explicit behavioral synchronization tasks (mirror game), musicians reported earlier feeling of synchrony and had less speed errors than control subjects. This was in interaction with tasks difficulty as these differences appeared only in tasks with intermediate difficulty. Finally, when subjects had to judge synchrony from a third person perspective, musicians had a better performance to identify if they were present or not in the videos. Taken together, our results suggest that being a professional musician can play a role in the feeling of synchrony and its underlying mechanisms. © 2016 Preissmann, Charbonnier, Chagué, Antonietti, Llobera, Ansermet and Magistretti.

  19. Study of Gene Trafficking between Acanthamoeba and Giant Viruses Suggests an Undiscovered Family of Amoeba-Infecting Viruses

    Science.gov (United States)

    Maumus, Florian; Blanc, Guillaume

    2016-01-01

    The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain unicellular eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. These findings prompted us to search the genome of Acanthamoeba castellanii strain Neff (Neff), one of the most prolific hosts in the discovery of giant NCLDVs, for possible DNA inserts of viral origin. We report the identification of 267 markers of lateral gene transfer with viruses, approximately half of which are clustered in Neff genome regions of viral origins, transcriptionally inactive or exhibit nucleotide-composition signatures suggestive of a foreign origin. The integrated viral genes had diverse origin among relatives of viruses that infect Neff, including Mollivirus, Pandoravirus, Marseillevirus, Pithovirus, and Mimivirus. However, phylogenetic analysis suggests the existence of a yet-undiscovered family of amoeba-infecting NCLDV in addition to the five already characterized. The active transcription of some apparently anciently integrated virus-like genes suggests that some viral genes might have been domesticated during the amoeba evolution. These insights confirm that genomic insertion of NCLDV DNA is a common theme in eukaryotes. This gene flow contributed fertilizing the eukaryotic gene repertoire and participated in the occurrence of orphan genes, a long standing issue in genomics. Search for viral inserts in eukaryotic genomes followed by environmental screening of the original viruses should be used to isolate radically new NCLDVs. PMID:27811174

  20. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers

    Directory of Open Access Journals (Sweden)

    Céline Brochier-Armanet

    2006-01-01

    Full Text Available Reverse gyrase, an enzyme of uncertain funtion, is present in all hyperthermophilic archaea and bacteria. Previous phylogenetic studies have suggested that the gene for reverse gyrase has an archaeal origin and was transferred laterally (LGT to the ancestors of the two bacterial hyperthermophilic phyla, Thermotogales and Aquificales. Here, we performed an in-depth analysis of the evolutionary history of reverse gyrase in light of genomic progress. We found genes coding for reverse gyrase in the genomes of several thermophilic bacteria that belong to phyla other than Aquificales and Thermotogales. Several of these bacteria are not, strictly speaking, hyperthermophiles because their reported optimal growth temperatures are below 80 °C. Furthermore, we detected a reverse gyrase gene in the sequence of the large plasmid of Thermus thermophilus strain HB8, suggesting a possible mechanism of transfer to the T. thermophilus strain HB8 involving plasmids and transposases. The archaeal part of the reverse gyrase tree is congruent with recent phylogenies of the archaeal domain based on ribosomal proteins or RNA polymerase subunits. Although poorly resolved, the complete reverse gyrase phylogeny suggests an ancient acquisition of the gene by bacteria via one or two LGT events, followed by its secondary distribution by LGT within bacteria. Finally, several genes of archaeal origin located in proximity to the reverse gyrase gene in bacterial genomes have bacterial homologues mostly in thermophiles or hyperthermophiles, raising the possibility that they were co-transferred with the reverse gyrase gene. Our new analysis of the reverse gyrase history strengthens the hypothesis that the acquisition of reverse gyrase may have been a crucial evolutionary step in the adaptation of bacteria to high-temperature environments. However, it also questions the role of this enzyme in thermophilic bacteria and the selective advantage its presence could provide.

  1. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Annapurna

    2010-01-01

    Full Text Available Abstract Background Glutathione S-transferases (GSTs are the ubiquitous enzymes that play a key role in cellular detoxification. Although several GSTs have been identified and characterized in various plant species, the knowledge about their role in developmental processes and response to various stimuli is still very limited. In this study, we report genome-wide identification, characterization and comprehensive expression analysis of members of GST gene family in crop plant rice, to reveal their function(s. Results A systematic analysis revealed the presence of at least 79 GST genes in the rice genome. Phylogenetic analysis grouped GST proteins into seven classes. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of GST gene family members in rice. The tandem gene duplications have contributed a major role in expansion of this gene family. Microarray data analysis revealed tissue-/organ- and developmental stage-specific expression patterns of several rice GST genes. At least 31 GST genes showed response to plant hormones auxin and cytokinin. Furthermore, expression analysis showed the differential expression of quite a large number of GST genes during various abiotic stress (20, arsenate stress (32 and biotic stress (48 conditions. Many of the GST genes were commonly regulated by developmental processes, hormones, abiotic and biotic stresses. Conclusion The transcript profiling suggests overlapping and specific role(s of GSTs during various stages of development in rice. Further, the study provides evidence for the role of GSTs in mediating crosstalk between various stress and hormone response pathways and represents a very useful resource for functional analysis of selected members of this family in rice.

  2. Optimisations and evolution of the mammalian respiratory system : A suggestion of possible gene sharing in evolution.

    Science.gov (United States)

    Sapoval, Bernard; Filoche, Marcel

    2013-09-01

    The respiratory system of mammalians is made of two successive branched structures with different physiological functions. The upper structure, or bronchial tree, is a fluid transportation system made of approximately 15 generations of bifurcations leading to the order of about 2(15) = 30, 000 terminal bronchioles with a diameter of approximately 0.5mm in the human lung. The branching pattern continues up to generation 23 but the structure and function of each of the subsequent structures, called acini, is different. Each acinus consists in a branched system of ducts surrounded by alveoli and plays the role of a diffusion cell where oxygen and carbon dioxide are exchanged with blood across the alveolar membrane. We show here that the bronchial tree simultaneously presents several different optimal properties. It is first energy efficient, second, it is space filling and third it is also "rapid". This physically based multi-optimality suggests that, in the course of evolution, an organ selected against one criterion could have been used later for a totally different purpose. For example, once selected for its energetic efficiency for the transport of a viscous fluid like blood, the same genetic material could have been used for its optimized rapidity. This would have allowed the emergence of atmospheric respiration made of inspiration-expiration cycles. For this phenomenon to exist, rapidity is essential as fresh air has to reach the gas exchange organs, the pulmonary acini, before the beginning of expiration. We finally show that the pulmonary acinus is optimized in the sense that the acinus morphology is directly related to the notion of a "best possible" extraction of entropic energy by a diffusion exchanger that has to feed oxygen efficiently from air to blood across a membrane of finite permeability.

  3. Colon cancer and gene alterations: their immunological implications and suggestions for prognostic indices and improvements in biotherapy.

    Science.gov (United States)

    Contasta, Ida; Pellegrini, Patrizia; Berghella, Anna Maria; Del Beato, Tiziana; Adorno, Domenico

    2006-10-01

    Studies have shown that changes occur in c-Ki-ras, p53, and Bcl2 gene structure and function during the various stages of human colon carcinogenesis. Alterations of these genes are responsible for the establishment of a state of continuous stimulus for cell division and apoptotic inhibition at physiological and pharmacological levels. This paper focuses on the results of our research aimed at investigating how these gene alterations influence tumoral mechanisms on an immunological level and how immunological parameters can be used as prognostic markers for the passage of normal tissue to adenoma and adenoma to carcinoma. Overall, our data suggest that an alteration in the c-Ki-ras gene results in a switch to a suppressive type of immune response, determining an impairment of immune cell activation at both antigen- presenting-cell and T-cell levels. c-Ki-ras gene mutations, p53 deletions, and Bc12 expression, on the other hand, can be used as prognostic markers for the passage of normal tissue to adenoma and adenoma to carcinoma. The p53 oncogene does not appear to impair patients' immunological response further. In conclusion, an evaluation of c-Ki-ras, rather than p53 gene alterations, would seem to be more relevant in colon cancer prevention programs and biotherapy improvement.

  4. Local variations in spatial synchrony of influenza epidemics.

    Directory of Open Access Journals (Sweden)

    James H Stark

    Full Text Available BACKGROUND: Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. METHODOLOGY AND FINDINGS: We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation=62%. Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. CONCLUSIONS: These findings highlight the complex nature of influenza spread across multiple geographic scales.

  5. Gene Expression Profiles from Disease Discordant Twins Suggest Shared Antiviral Pathways and Viral Exposures among Multiple Systemic Autoimmune Diseases.

    Science.gov (United States)

    Gan, Lu; O'Hanlon, Terrance P; Lai, Zhennan; Fannin, Rick; Weller, Melodie L; Rider, Lisa G; Chiorini, John A; Miller, Frederick W

    2015-01-01

    Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups-probands with SAID, their unaffected twins, and matched, unrelated healthy controls-using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.

  6. Enhancing "theory of mind" through behavioral synchrony.

    Science.gov (United States)

    Baimel, Adam; Severson, Rachel L; Baron, Andrew S; Birch, Susan A J

    2015-01-01

    Theory of mind refers to the abilities underlying the capacity to reason about one's own and others' mental states. This ability is critical for predicting and making sense of the actions of others, is essential for efficient communication, fosters social learning, and provides the foundation for empathic concern. Clearly, there is incredible value in fostering theory of mind. Unfortunately, despite being the focus of a wealth of research over the last 40 years relatively little is known about specific strategies for fostering social perspective taking abilities. We provide a discussion of the rationale for applying one specific strategy for fostering efficient theory of mind-that of engaging in "behavioral synchrony" (i.e., the act of keeping together in time with others). Culturally evolved collective rituals involving synchronous actions have long been held to act as social glue. Specifically, here we present how behavioral synchrony tunes our minds for reasoning about other minds in the process of fostering social coordination and cooperation, and propose that we can apply behavioral synchrony as a tool for enhancing theory of mind.

  7. Hierarchical Synchrony of Phase Oscillators in Modular Networks

    CERN Document Server

    Skardal, Per Sebastian

    2011-01-01

    We study synchronization of sinusoidally coupled phase oscillators on networks with modular structure and a large number of oscillators in each community. Of particular interest is the hierarchy of local and global synchrony, i.e., synchrony within and between communities, respectively. Using the recent ansatz of Ott and Antonsen, we find that the degree of local synchrony can be determined from a set of coupled low-dimensional equations. If the number of communities in the network is large, a low-dimensional description of global synchrony can be also found. Using these results, we study bifurcations between different types of synchrony. We find that, depending on the relative strength of local and global coupling, the transition to synchrony in the network can be mediated by local or global effects.

  8. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals.

    Science.gov (United States)

    Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M

    2008-07-25

    Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression

  9. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    Directory of Open Access Journals (Sweden)

    Warren Wesley C

    2008-07-01

    Full Text Available Abstract Background Vertebrate alpha (α- and beta (β-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus, to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21 contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2 contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago, then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages.

  10. Site-Specific Insertion Polymorphism of the MITE Alex-1 in the Genus Coffea Suggests Interspecific Gene Flow

    Directory of Open Access Journals (Sweden)

    Christine Dubreuil-Tranchant

    2011-01-01

    Full Text Available Miniature Inverted-repeat Transposable Elements (MITEs are small nonautonomous class-II transposable elements distributed throughout eukaryotic genomes. We identified a novel family of MITEs (named Alex in the Coffea canephora genome often associated with expressed sequences. The Alex-1 element is inserted in an intron of a gene at the CcEIN4 locus. Its mobility was demonstrated by sequencing the insertion site in C. canephora accessions and Coffea species. Analysis of the insertion polymorphism of Alex-1 at this locus in Coffea species and in C. canephora showed that there was no relationship between the geographical distribution of the species, their phylogenetic relationships, and insertion polymorphism. The intraspecific distribution of C. canephora revealed an original situation within the E diversity group. These results suggest possibly greater gene flow between species than previously thought. This MITE family will enable the study of the C. canephora genome evolution, phylogenetic relationships, and possible gene flows within the Coffea genus.

  11. An Association between Auditory-Visual Synchrony Processing and Reading Comprehension: Behavioral and Electrophysiological Evidence.

    Science.gov (United States)

    Mossbridge, Julia; Zweig, Jacob; Grabowecky, Marcia; Suzuki, Satoru

    2017-03-01

    The perceptual system integrates synchronized auditory-visual signals in part to promote individuation of objects in cluttered environments. The processing of auditory-visual synchrony may more generally contribute to cognition by synchronizing internally generated multimodal signals. Reading is a prime example because the ability to synchronize internal phonological and/or lexical processing with visual orthographic processing may facilitate encoding of words and meanings. Consistent with this possibility, developmental and clinical research has suggested a link between reading performance and the ability to compare visual spatial/temporal patterns with auditory temporal patterns. Here, we provide converging behavioral and electrophysiological evidence suggesting that greater behavioral ability to judge auditory-visual synchrony (Experiment 1) and greater sensitivity of an electrophysiological marker of auditory-visual synchrony processing (Experiment 2) both predict superior reading comprehension performance, accounting for 16% and 25% of the variance, respectively. These results support the idea that the mechanisms that detect auditory-visual synchrony contribute to reading comprehension.

  12. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Da Lage

    Full Text Available Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.

  13. A suggested vital function for eIF-5A and dhs genes during murine malaria blood-stage infection.

    Science.gov (United States)

    Kersting, David; Krüger, Mirko; Sattler, Julia M; Mueller, Ann-Kristin; Kaiser, Annette

    2016-08-01

    The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, suggesting its biological relevance in a variety of biological processes. Hypusinated eIF-5A controls the proliferation of cancer cells and inflammatory processes in malaria. It was shown that pharmacological inhibition of the enzymes involved in this pathway, deoxyhypusine synthase (DHS) and the deoxyhypusine hydroxylase (DOHH), arrested the growth of malaria parasites. Down-regulation of both the malarial eIF-5A and dhs genes by in vitro and in vivo silencing led to decreased transcript levels and protein expression and, in turn, to low parasitemia, confirming a critical role of hypusination in eIF-5A for proliferation in Plasmodium. To further investigate whether eIF-5A and the activating enzyme DHS are essential for Plasmodium erythrocytic stages, targeted gene disruption was performed in the rodent malaria parasite Plasmodium berghei. Full disruption of both genes was not successful; instead parasites harboring the episome for eIF-5A and dhs genes were obtained, suggesting that these genes may perform vital functions during the pathogenic blood cell stage. Next, a knock-in strategy was pursued for both endogenous genes eIF-5A and dhs from P. berghei. The latter resulted in viable recombinant parasites, strengthening the observation that they might be essential for proliferation during asexual development of the malaria parasite.

  14. Elevated risks for amyotrophic lateral sclerosis and blood disorders in Ashkenazi schizophrenic pedigrees suggest new candidate genes in schizophrenia

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A.B. [Columbia Univ. School of Public Health, New York, NY (United States)

    1994-09-15

    Among relatives of Ashkenazi schizophrenic probands the rate of amyotrophic lateral sclerosis was 3/1,000, compared to expected population rates of approximately 2/100,000. Relative risk of bleeding disorders, including hematologic cancers, was increased more than three-fold compared to controls. Co-occurrence of motor neuron disease and blood dyscrasias, accompanied by psychosis, has long been recognized. A virally-mediated autoimmune pathogenesis has been proposed. However, the familial co-occurrence of these three disease entities raises the possibility that the disease constellation be considered as a manifestation of a common underlying genetic defect. Such expansion of the spectrum of affectation might enhance the power of both candidate gene and linkage studies. Based on these findings, the loci suggested as candidate regions in schizophrenia include a potential hot spot on chromosome 21q21-q22, involving the superoxide dismutase and amyloid precursor protein genes. Alternatively, genes on other chromosomes involved in the expression, transcription, or regulation of these genes, or associated with the illnesses of high frequency in these pedigrees are suggested. Candidates include the choroid plexus transport protein, transthyretin at 18q11.2-q12.1; the t(14;18)(q22;21) characterizing B-cell lymphoma-2, the most common form of hematologic cancer; and the 14q24 locus of early onset Alzheimer`s disease, c-Fos, transforming growth factor beta 3, and heat shock protein A2. Expression of hematologic cancers and the suggested candidate genes are known to involve retinoid pathways, and retinoid disregulation has been proposed as a cause of schizophrenia. 67 refs., 2 figs., 1 tab.

  15. Expression of the KNOTTED HOMEOBOX Genes in the Cactaceae Cambial Zone Suggests Their Involvement in Wood Development.

    Science.gov (United States)

    Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa

    2017-01-01

    The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.

  16. Identification of a novel PNMA-MS1 gene in marsupials suggests the LTR retrotransposon-derived PNMA genes evolved differently in marsupials and eutherians.

    Science.gov (United States)

    Iwasaki, Sawa; Suzuki, Shunsuke; Pelekanos, Matthew; Clark, Helen; Ono, Ryuichi; Shaw, Geoff; Renfree, Marilyn B; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2013-10-01

    Two major gene families derived from Ty3/Gypsy long terminal repeat (LTR) retrotransposons were recently identified in mammals. The sushi-ichi retrotransposon homologue (SIRH) family comprises 12 genes: 11 in eutherians including Peg10 and Peg11/Rtl1 that have essential roles in the eutherian placenta and 1 that is marsupial specific. Fifteen and 12 genes were reported in the second gene family, para-neoplastic antigen MA (PNMA), in humans and mice, respectively, although their biological functions and evolutionary history remain largely unknown. Here, we identified two novel candidate PNMA genes, PNMA-MS1 and -MS2 in marsupials. Like all eutherian-specific PNMA genes, they exhibit the highest homology to a Gypsy12_DR (DR, Danio rerio) Gag protein. PNMA-MS1 is conserved in both Australian and South American marsupial species, the tammar wallaby and grey short-tailed opossum. However, no PNMA-MS1 orthologue was found in eutherians, monotremes or non-mammalian vertebrates. PNMA-MS1 was expressed in the ovary, mammary gland and brain during development and growth in the tammar, suggesting that PNMA-MS1 may have acquired a marsupial-specific function. However, PNMA-MS2 seems to be a pseudogene. The absence of marsupial orthologues of eutherian PNMA genes suggests that the retrotransposition events of the Gypsy12_DR-related retrotransposons that gave rise to the PNMA family occurred after the divergence of marsupials and eutherians.

  17. Comprehensive analysis of cystatin family genes suggests their putative functions in sexual reproduction, embryogenesis, and seed formation.

    Science.gov (United States)

    Zhao, Peng; Zhou, Xue-mei; Zou, Jie; Wang, Wei; Wang, Lu; Peng, Xiong-bo; Sun, Meng-xiang

    2014-09-01

    Cystatins are tightly bound and reversible inhibitors of cysteine proteases in C1A and C13 peptidase families, which have been identified in several species and shown to function in vegetative development and response to biotic/abiotic stresses in plants. Recent work revealed their critical role in regulating programmed cell death during embryogenesis in tobacco and suggested their more comprehensive roles in the process of sexual plant reproduction, although little is known about cystatin family genes in the processes. Here, 10 cystatin family genes in Nicotiana tabacum were identified using an expressed sequence tag (EST)-based gene clone strategy. Analysis of their biochemical properties showed that nine of them have the potency to inhibit the activities of both commercial cathepsin L-like proteases and extracted cysteine proteases from seeds, but with different K i values depending on the types of proteases and the developmental stages of the seed tested. This suggests that cystatin-dependent cathepsin L-like proteolytic pathways are probably important for early seed development. Comprehensive expression profile analysis revealed that cystatin family genes showed manifold variations in their transcription levels in different plant cell types, including the sperm, egg, and zygote, especially in the embryo and seed at different developmental stages. More interestingly, intracellular localization analysis of each cystatin revealed that most members of cystatin families are recognized as secretory proteins with signal peptides that direct them to the endoplasmic reticulum. These results suggest their widespread roles in cell fate determination and cell-cell communication in the process of sexual reproduction, especially in gamete and embryo development, as well as in seed formation.

  18. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation.

    Science.gov (United States)

    Novembre, Giacomo; Knoblich, Günther; Dunne, Laura; Keller, Peter E

    2017-01-24

    Synchronous movement is a key component of social behaviour in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared to anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs. pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals' (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes.

  19. Different expression patterns of duplicated PHANTASTICA-like genes in Lotus japonicus suggest their divergent functions during compound leaf development

    Institute of Scientific and Technical Information of China (English)

    Jiang Hong LUO; Jun YAN; Lin WENG; Jun YANG; Zhong ZHAO; Jiang Hua CHEN; Xiao He HU; Da LUO

    2005-01-01

    Recent studies on leaf development demonstrate that the mechanism on the adaxial-abaxial polarity pattern formation could be well conserved among the far-related species, in which PHANTASTICA (PAHN)-like genes play important roles. In this study, we explored the conservation and diversity on functions of PHAN-like genes during the compound leaf development in Lotusjaponicus, a papilionoid legume. Two PHAN-like genes in L. japonicus, LjPHANa and LjPHANb,were found to originate from a gene duplication event and displayed different expression patterns during compound leaf development. Two mutants, reduced leaflets1 (rel1) and reduced leaflets3 (rel3), which exhibited decreased adaxial identity of leaflets and reduced leaflet initiation, were identified and investigated. The expression patterns of both LjPHANs in rel mutants were altered and correlated with abnormalities of compound leaves. Our data suggest that LjPHANa and LjPHANb play important but divergent roles in regulating adaxial-abaxial polarity of compound leaves in L. japonicus.

  20. Whole-genome sequencing suggests a chemokine gene cluster that modifies age at onset in familial Alzheimer's disease.

    Science.gov (United States)

    Lalli, M A; Bettcher, B M; Arcila, M L; Garcia, G; Guzman, C; Madrigal, L; Ramirez, L; Acosta-Uribe, J; Baena, A; Wojta, K J; Coppola, G; Fitch, R; de Both, M D; Huentelman, M J; Reiman, E M; Brunkow, M E; Glusman, G; Roach, J C; Kao, A W; Lopera, F; Kosik, K S

    2015-11-01

    We have sequenced the complete genomes of 72 individuals affected with early-onset familial Alzheimer's disease caused by an autosomal dominant, highly penetrant mutation in the presenilin-1 (PSEN1) gene, and performed genome-wide association testing to identify variants that modify age at onset (AAO) of Alzheimer's disease. Our analysis identified a haplotype of single-nucleotide polymorphisms (SNPs) on chromosome 17 within a chemokine gene cluster associated with delayed onset of mild-cognitive impairment and dementia. Individuals carrying this haplotype had a mean AAO of mild-cognitive impairment at 51.0 ± 5.2 years compared with 41.1 ± 7.4 years for those without these SNPs. This haplotype thus appears to modify Alzheimer's AAO, conferring a large (~10 years) protective effect. The associated locus harbors several chemokines including eotaxin-1 encoded by CCL11, and the haplotype includes a missense polymorphism in this gene. Validating this association, we found plasma eotaxin-1 levels were correlated with disease AAO in an independent cohort from the University of California San Francisco Memory and Aging Center. In this second cohort, the associated haplotype disrupted the typical age-associated increase of eotaxin-1 levels, suggesting a complex regulatory role for this haplotype in the general population. Altogether, these results suggest eotaxin-1 as a novel modifier of Alzheimer's disease AAO and open potential avenues for therapy.

  1. Role of across‐muscle motor unit synchrony for the coordination of forces

    Science.gov (United States)

    Santello, Marco; Fuglevand, Andrew J.

    2007-01-01

    Evidence from five‐digit grasping studies indicates that grip forces exerted by pairs of digits tend to be synchronized. It has been suggested that motor unit synchronization might be a mechanism responsible for constraining the temporal relationships between grip forces. To evaluate this possibility and quantify the effect of motor unit synchrony on force relationships, we used a motor unit model to simulate force produced by two muscles using three physiological levels of motor unit synchrony across the two muscles. In one condition, motor units in the two muscles discharged independently of one another. In the other two conditions, the timing of randomly selected motor unit discharges in one muscle was adjusted to impose low or high levels of synchrony with motor units in the other muscle. Fast Fourier transform analysis was performed to compute the phase differences between forces from 0.5 to 17 Hz. We used circular statistics to assess whether the phase differences at each frequency were randomly or non‐randomly distributed (Rayleigh test). The mean phase difference was then computed on the non‐random distributions. We found that the number of significant phase‐difference distributions increased markedly with increasing synchronization strength from 18% for no synchrony to 65% and 82% for modest and strong synchrony conditions, respectively. Importantly, most of the mean angles clustered at very small phase difference values (∼0 to 10°), indicating a strong tendency for forces to be exerted in a synchronous fashion. These results suggest that motor unit synchronization could play a significant functional role in the coordination of grip forces. PMID:15558252

  2. Gene expression analysis and microdialysis suggest hypothalamic triiodothyronine (T3) gates daily torpor in Djungarian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Bank, Jonathan H H; Cubuk, Ceyda; Wilson, Dana; Rijntjes, Eddy; Kemmling, Julia; Markovsky, Hanna; Barrett, Perry; Herwig, Annika

    2017-07-01

    Thyroid hormones play an important role in regulating seasonal adaptations of mammals. Several studies suggested that reduced availability of 3,3',5-triiodothyronine (T3) in the hypothalamus is required for the physiological adaptation to winter in Djungarian hamsters. We have previously shown that T3 is involved in the regulation of daily torpor, but it remains unclear, whether T3 affects torpor by central or peripheral mechanisms. To determine the effect of T3 concentrations within the hypothalamus in regulating daily torpor, we tested the hypothesis that low hypothalamic T3 metabolism would favour torpor and high T3 concentrations would not. In experiment 1 gene expression in torpid hamsters was assessed for transporters carrying thyroid hormones between cerebrospinal fluid and hypothalamic cells and for deiodinases enzymes, activating or inactivating T3 within hypothalamic cells. Gene expression analysis suggests reduced T3 in hypothalamic cells during torpor. In experiment 2, hypothalamic T3 concentrations were altered via microdialysis and torpor behaviour was continuously monitored by implanted body temperature transmitters. Increased T3 concentrations in the hypothalamus reduced expression of torpor as well as torpor bout duration and depth. Subsequent analysis of gene expression in the ependymal layer of the third ventricle showed clear up-regulation of T3 inactivating deiodinase 3 but no changes in several other genes related to photoperiodic adaptations in hamsters. Finally, serum analysis revealed that increased total T3 serum concentrations were not necessary to inhibit torpor expression. Taken together, our results are consistent with the hypothesis that T3 availability within the hypothalamus significantly contributes to the regulation of daily torpor via a central pathway.

  3. Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males.

    Directory of Open Access Journals (Sweden)

    Yao-Zhong Liu

    Full Text Available BACKGROUND: Current genome-wide association studies (GWAS are normally implemented in a univariate framework and analyze different phenotypes in isolation. This univariate approach ignores the potential genetic correlation between important disease traits. Hence this approach is difficult to detect pleiotropic genes, which may exist for obesity and osteoporosis, two common diseases of major public health importance that are closely correlated genetically. PRINCIPAL FINDINGS: To identify such pleiotropic genes and the key mechanistic links between the two diseases, we here performed the first bivariate GWAS of obesity and osteoporosis. We searched for genes underlying co-variation of the obesity phenotype, body mass index (BMI, with the osteoporosis risk phenotype, hip bone mineral density (BMD, scanning approximately 380,000 SNPs in 1,000 unrelated homogeneous Caucasians, including 499 males and 501 females. We identified in the male subjects two SNPs in intron 1 of the SOX6 (SRY-box 6 gene, rs297325 and rs4756846, which were bivariately associated with both BMI and hip BMD, achieving p values of 6.82x10(-7 and 1.47x10(-6, respectively. The two SNPs ranked at the top in significance for bivariate association with BMI and hip BMD in the male subjects among all the approximately 380,000 SNPs examined genome-wide. The two SNPs were replicated in a Framingham Heart Study (FHS cohort containing 3,355 Caucasians (1,370 males and 1,985 females from 975 families. In the FHS male subjects, the two SNPs achieved p values of 0.03 and 0.02, respectively, for bivariate association with BMI and femoral neck BMD. Interestingly, SOX6 was previously found to be essential to both cartilage formation/chondrogenesis and obesity-related insulin resistance, suggesting the gene's dual role in both bone and fat. CONCLUSIONS: Our findings, together with the prior biological evidence, suggest the SOX6 gene's importance in co-regulation of obesity and osteoporosis.

  4. Environmentally driven synchronies of Mediterranean cephalopod populations

    Science.gov (United States)

    Keller, Stefanie; Quetglas, Antoni; Puerta, Patricia; Bitetto, Isabella; Casciaro, Loredana; Cuccu, Danila; Esteban, Antonio; Garcia, Cristina; Garofalo, Germana; Guijarro, Beatriz; Josephides, Marios; Jadaud, Angelique; Lefkaditou, Evgenia; Maiorano, Porzia; Manfredi, Chiara; Marceta, Bojan; Micallef, Reno; Peristeraki, Panagiota; Relini, Giulio; Sartor, Paolo; Spedicato, Maria Teresa; Tserpes, George; Hidalgo, Manuel

    2017-03-01

    The Mediterranean Sea is characterized by large scale gradients of temperature, productivity and salinity, in addition to pronounced mesoscale differences. Such a heterogeneous system is expected to shape the population dynamics of marine species. On the other hand, prevailing environmental and climatic conditions at whole basin scale may force spatially distant populations to fluctuate in synchrony. Cephalopods are excellent case studies to test these hypotheses owing to their high sensitivity to environmental conditions. Data of two cephalopod species with contrasting life histories (benthic octopus vs nectobenthic squid), obtained from scientific surveys carried out throughout the Mediterranean during the last 20 years were analyzed. The objectives of this study and the methods used to achieve them (in parentheses) were: (i) to investigate synchronies in spatially separated populations (decorrelation analysis); (ii) detect underlying common abundance trends over distant regions (dynamic factor analysis, DFA); and (iii) analyse putative influences of key environmental drivers such as productivity and sea surface temperature on the population dynamics at regional scale (general linear models, GLM). In accordance with their contrasting spatial mobility, the distance from where synchrony could no longer be detected (decorrelation scale) was higher in squid than in octopus (349 vs 217 km); for comparison, the maximum distance between locations was 2620 km. The DFA revealed a general increasing trend in the abundance of both species in most areas, which agrees with the already reported worldwide proliferation of cephalopods. DFA results also showed that population dynamics are more similar in the eastern than in the western Mediterranean basin. According to the GLM models, cephalopod populations were negatively affected by productivity, which would be explained by an increase of competition and predation by fishes. While warmer years coincided with declining octopus

  5. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, Richard van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a majo

  6. Pallidal gap junctions - Triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, Tjitske; Zhao, Yan; van Gils, Stephanus A.; van Wezel, Richard Jack Anton

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a majo

  7. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, Richard van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a majo

  8. Cognitive Style and Synchrony in Measures of Anxiety.

    Science.gov (United States)

    Strohmer, Douglas C.; And Others

    1983-01-01

    Examined the extent to which a cognitive style variable, integrative complexity, was related to synchrony between behavioral and self-report measures of anxiety in counseling students (N=26). During a therapy analogue two measures of anxiety were taken. Results indicated a substantial dependence of synchrony/desynchrony on cognitive style.…

  9. Methodological Advances for Detecting Physiological Synchrony During Dyadic Interactions

    NARCIS (Netherlands)

    McAssey, M.P.; Helm, J.; Hsieh, F.; Sbarra, D.; Ferrer, E.

    2011-01-01

    A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches a

  10. Sub-millisecond firing synchrony of closely neighboring pyramidal neurons in hippocampal CA1 of rats during delayed non-matching to sample task

    Directory of Open Access Journals (Sweden)

    Susumu Takahashi

    2009-09-01

    Full Text Available Firing synchrony among neurons is thought to play functional roles in several brain regions. In theoretical analyses, firing synchrony among neurons within sub-millisecond precision is feasible to convey information. However, little is known about the occurrence and the functional significance of the sub-millisecond synchrony among closely neighboring neurons in the brain of behaving animals because of a technical issue: spikes simultaneously generated from closely neighboring neurons are overlapped in the extracellular space and are not easily separated. As described herein, using a unique spike sorting technique based on independent component analysis together with extracellular 12-channel multi-electrodes (dodecatrodes, we separated such overlapping spikes and investigated the firing synchrony among closely neighboring pyramidal neurons in the hippocampal CA1 of rats during a delayed non-matching to sample task. Results showed that closely neighboring pyramidal neurons in the hippocampal CA1 can co-fire with sub-millisecond precision. The synchrony generally co-occurred with the firing rate modulation in relation to both internal (retention and comparison and external (stimulus input and motor output events during the task. However, the synchrony occasionally occurred in relation to stimulus inputs even when rate modulation was clearly absent, suggesting that the synchrony is not simply accompanied with firing rate modulation and that the synchrony and the rate modulation might code similar information independently. We therefore conclude that the sub-millisecond firing synchrony in the hippocampus is an effective carrier for propagating information—as represented by the firing rate modulations—to downstream neurons.

  11. Oscillatory synchrony between head direction cells recorded bilaterally in the anterodorsal thalamic nuclei.

    Science.gov (United States)

    Butler, William N; Taube, Jeffrey Steven

    2017-03-01

    The head direction (HD) circuit is a complex, interconnected network of brain regions ranging from the brainstem to the cortex. Recent work found that HD cells co-recorded ipsilaterally in the anterodorsal nucleus (ADN) of the thalamus displayed coordinated firing patterns. A high frequency oscillation pattern (130-160 Hz) was visible in the cross-correlograms of these HD cell pairs. Spectral analysis further found that the power of this oscillation was greatest at 0 ms and decreased at greater lags, and demonstrated that there was greater synchrony between HD cells with similar tunings. Here, we demonstrate that the same high frequency synchrony exists in HD cell pairs recorded contralaterally from one another in the bilateral ADN. When we examined the cross-correlograms of HD cells that were co-recorded bilaterally we observed the same high frequency (~150-200 Hz) oscillatory relationship. The strength of this synchrony was similar to the synchrony seen in ipsilateral HD cell pairs, and the degree of synchrony in each cross-correlogram was dependent on the difference in tuning between the two cells. Additionally, the frequency rate of this oscillation appeared to be independent of the firing rates of the two cross-correlated cells. Taken together, these results imply that the left and right thalamic HD network are functionally related, despite an absence of direct anatomical projections. However, anatomical tracing has found that each of the lateral mammillary nuclei (LMN) project bilaterally to both of the ADN, suggesting the LMN may be responsible for the functional connectivity observed between the two ADN.

  12. Dissociable effects of dopamine on neuronal firing rate and synchrony in the dorsal striatum

    Directory of Open Access Journals (Sweden)

    John M Burkhardt

    2009-10-01

    Full Text Available Previous studies showed that dopamine depletion leads to both changes in firing rate and in neuronal synchrony in the basal ganglia. Since dopamine D1 and D2 receptors are preferentially expressed in striatonigral and striatopallidal medium spiny neurons, respectively, we investigated the relative contribution of lack of D1 and/or D2-type receptor activation to the changes in striatal firing rate and synchrony observed after dopamine depletion. Similar to what was observed after dopamine depletion, co-administration of D1 and D2 antagonists to mice chronically implanted with multielectrode arrays in the striatum caused significant changes in firing rate, power of the local field potential (LFP oscillations, and synchrony measured by the entrainment of neurons to striatal local field potentials. However, although blockade of either D1 or D2 type receptors produced similarly severe akinesia, the effects on neural activity differed. Blockade of D2 receptors affected the firing rate of medium spiny neurons and the power of the LFP oscillations substantially, but it did not affect synchrony to the same extent. In contrast, D1 blockade affected synchrony dramatically, but had less substantial effects on firing rate and LFP power. Furthermore, there was no consistent relation between neurons changing firing rate and changing LFP entrainment after dopamine blockade. Our results suggest that the changes in rate and entrainment to the LFP observed in medium spiny neurons after dopamine depletion are somewhat dissociable, and that lack of D1- or D2-type receptor activation can exert independent yet interactive pathological effects during the progression of Parkinson’s disease.

  13. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.

    Science.gov (United States)

    Oliveira, Jorge S; Araújo, Wydemberg J; Figueiredo, Ricardo M; Silva-Portela, Rita C B; de Brito Guerra, Alaine; da Silva Araújo, Sinara Carla; Minnicelli, Carolina; Carlos, Aline Cardoso; de Vasconcelos, Ana Tereza Ribeiro; Freitas, Ana Teresa; Agnez-Lima, Lucymara F

    2017-07-27

    Bacterial and Archaeal communities have a complex, symbiotic role in crude oil bioremediation. Their biosurfactants and degradation enzymes have been in the spotlight, mainly due to the awareness of ecosystem pollution caused by crude oil accidents and their use. Initially, the scientific community studied the role of individual microbial species by characterizing and optimizing their biosurfactant and oil degradation genes, studying their individual distribution. However, with the advances in genomics, in particular with the use of New-Generation-Sequencing and Metagenomics, it is now possible to have a macro view of the complex pathways related to the symbiotic degradation of hydrocarbons and surfactant production. It is now possible, although more challenging, to obtain the DNA information of an entire microbial community before automatically characterizing it. By characterizing and understanding the interconnected role of microorganisms and the role of degradation and biosurfactant genes in an ecosystem, it becomes possible to develop new biotechnological approaches for bioremediation use. This paper analyzes 46 different metagenome samples, spanning 20 biomes from different geographies obtained from different research projects. A metagenomics bioinformatics pipeline, focused on the biodegradation and biosurfactant-production pathways, genes and organisms, was applied. Our main results show that: (1) surfactation and degradation are correlated events, and therefore should be studied together; (2) terrestrial biomes present more degradation genes, especially cyclic compounds, and less surfactation genes, when compared to water biomes; and (3) latitude has a significant influence on the diversity of genes involved in biodegradation and biosurfactant production. This suggests that microbiomes found near the equator are richer in genes that have a role in these processes and thus have a higher biotechnological potential. In this work we have focused on the

  14. Convergent evidence from mouse and human studies suggests the involvement of zinc finger protein 326 gene in antidepressant treatment response.

    Directory of Open Access Journals (Sweden)

    Ying-Jay Liou

    Full Text Available OBJECTIVES: The forced swim test (FST is a commonly used model to predict antidepressant efficacy. Uncovering the genetic basis of the model may unravel the mechanism of antidepressant treatment. METHODS: FVB/NJ (FVB and C57BL/6J (B6 were first identified as the response and non-response strains to fluoxetine (a serotonin-specific reuptake inhibitor antidepressant treatment in the mouse FST. Simple-interval (SIM and composite-interval (CIM mappings were applied to map the quantitative trait loci (QTLs of the anti-immobility effect of fluoxetine in FST (FST(FLX in 865 male B6×FVB-F2 mice. The brain mRNA expressions of the gene with the maximum QTL-linkage signal for FST(FLX after the FST were compared between B6 and FVB mice and also compared between fluoxetine and saline treatment. The association of the variants in the human homologue of the mouse FST(FLX-QTL gene with major depressive disorder (MDD and antidepressant response were investigated in 1080 human subjects (MDD/control = 582/498. RESULTS: One linkage signal for FST(FLX-QTL was detected at an intronic SNP (rs6215396 of the mouse Zfp326 gene (maximal CIM-LOD = 9.36. The Zfp326 mRNA expression in the FVB thalamus was significantly down-regulated by fluoxetine in the FST, and the higher FVB-to-B6 Zfp326 mRNA expressions in the frontal cortex, striatum and hypothalamus diminished after fluoxetine treatment. Two coding-synonymous SNPs (rs2816881 and rs10922744 in the human homologue of Zfp326, ZNF326, were significantly associated with the 8-week antidepressant treatment response in the MDD patients (Bonferroni-corrected p = 0.004-0.028. CONCLUSIONS: The findings suggest the involvement of the Zfp326 and ZNF326 genes in antidepressant treatment response.

  15. Group Rhythmic Synchrony and Attention in Children

    Directory of Open Access Journals (Sweden)

    Alexander K Khalil

    2013-09-01

    Full Text Available Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD. Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child’s attentional behavior.

  16. Century-scale Changes in Environmental Synchrony and Variability and their Effects on Populations of Birds and Reproduction of Trees

    Science.gov (United States)

    Koenig, W.

    2016-12-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena ranging from shifts in species ranges to changes in community composition and human disease dynamics. Thus far, however, little attention has been given to temporal changes in environmental spatial synchrony-the coincident change in abundance or value across the landscape-or environmental variability, despite the importance of these factors as drivers of population rescue and extinction and reproductive dynamics of both animal and plant populations. We quantified spatial synchrony of widespread North American wintering birds species using Audubon Christmas Bird Counts over the past 50 years and seed set variability (mast fruiting) among trees over the past century and found that both spatial synchrony of the birds and seed set variability have significantly increased over these time periods. The first of these results was mirrored by significant increases in spatial synchrony of mean maximum air temperature across North America, primarily during the summer, while the second is consistent with the hypothesis that climate change is resulting in greater seed set variability. These findings suggest the potential for temporal changes in envioronmental synchrony and variability to be affecting a wide range of ecological phenomena by influencing the probability of population rescue and extinction and by affecting ecosystem processes that rely on the resource pulses provided by mast fruiting plants.

  17. Phylogenetic analyses of cyclidiids (Protista, Ciliophora, Scuticociliatia) based on multiple genes suggest their close relationship with thigmotrichids.

    Science.gov (United States)

    Gao, Feng; Gao, Shan; Wang, Pu; Katz, Laura A; Song, Weibo

    2014-06-01

    Cyclidiids and thigmotrichids are two diverse groups of scuticociliates, a diverse clade of ciliates that is often difficult to investigate due to the small size and conserved morphology among its members. Compared to other groups (e.g. hypotrichs and oligotrichs), the scuticociliates have received relatively little attention and their phylogenetic relationships are largely unresolved. To contribute to our understanding of their evolutionary history, we characterized 26 sequences for three linked genes (SSU-rDNA, 5.8S and LSU-rDNA) from 14 isolates of cyclidiids and thigmotrichids. Phylogenetic analyses reveal the following: (1) traditional cyclidiids are associated with thigmotrichs rather than pleuronematids as expected; (2) the validity of the newly-reported genus Falcicyclidium is confirmed by the molecular data and we suggest to transfer this genus to the family Ctedoctematidae; (3) both the genera Cyclidium and Protocyclidium are not monophyletic and the separation of Protocyclidium from Cyclidium is not supported; (4) the genus Cristigera is a well supported monophyletic group and may stand for a new family; (5) according to both morphological and molecular information, Cyclidium plouneouriDragesco, 1963 should be assigned in the genus Falcicyclidium and thus a new combination is suggested: Falcicyclidium plouneouri (Dragesco, 1963) n. comb.; and (6) based on the data available, a new genus is suggested: Acucyclidium gen. nov. with the type species, Acucyclidium atractodes (Fan et al., 2011a) n. comb. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bivariate genome-wide association study suggests that the DARC gene influences lean body mass and age at menarche.

    Science.gov (United States)

    Hai, Rong; Zhang, Lei; Pei, Yufang; Zhao, Lanjuan; Ran, Shu; Han, Yingying; Zhu, Xuezhen; Shen, Hui; Tian, Qing; Deng, Hongwen

    2012-06-01

    Lean body mass (LBM) and age at menarche (AAM) are two important complex traits for human health. The aim of this study was to identify pleiotropic genes for both traits using a powerful bivariate genome-wide association study (GWAS). Two studies, a discovery study and a replication study, were performed. In the discovery study, 909622 single nucleotide polymorphisms (SNPs) were genotyped in 801 unrelated female Han Chinese subjects using the Affymetrix human genome-wide SNP array 6.0 platform. Then, a bivariate GWAS was performed to identify the SNPs that may be important for LBM and AAM. In the replication study, significant findings from the discovery study were validated in 1692 unrelated Caucasian female subjects. One SNP rs3027009 that was bivariately associated with left arm lean mass and AAM in the discovery samples (P=7.26×10(-6)) and in the replication samples (P=0.005) was identified. The SNP is located at the upstream of DARC (Duffy antigen receptor for chemokines) gene, suggesting that DARC may play an important role in regulating the metabolisms of both LBM and AAM.

  19. Tyrosinase-positive oculocutaneous albinism in Southern African blacks: P gene-associated haplotypes suggest a major mutation in the 5{prime} region of the gene

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, M.; Stevens, G.; Beukering, J. van [Univ. of the Witwatersrand, Johannesburg (South Africa)] [and others

    1994-09-01

    Tyrosinase-positive oculocutaneous albinism (ty-pos OCA) occurs with a prevalence of 1 in 3900 among Southern African (SA) blacks. The major contributors to morbidity and mortality are skin cancer and decreased visual acuity. Two distinct phenotypes occur, namely individuals with ephelides (darkly pigmented patches) and those without. There is complete concordance with regard to ephelus status among siblings. The disorder is linked to markers on chromosome 15q11.2-q12, and no obligatory cross-overs were observed with polymophic markers at the human homolog, P, of the mouse pink eyed dilute gene, p. Contrary to what has been shown for Caucasoid ty-pos OCA, this condition shows locus homogeneity among SA blacks. The P gene is an excellent candidate for ty-pos OCA and mutations in this gene will confirm its role in causing the common form of albinism in SA. Numerous P gene mutations have been described in other populations. In an attempt to detect mutations, the P gene cDNA was used to search for structural rearrangements or polymorphisms. Six polymorphisms (plR10/Scal, 912/Xbal, 912/HincII, 912/TaqI, 1412/TaqI [two systems] and 1412/HindIII) were detected with subclones of the P cDNA and haplotypes were determined in each family. None were clearly associated with an albinism-related rearrangement. However, strong linkage disequilibrium was observed with alleles at loci toward the 5{prime} region of the gene ({triangle}=0.65, 0.57 and 0.80 for the three polymorphisms detected with the 912 subclone), suggesting a major ty-pos OCA mutation in this region. Haplotype analysis provides evidence for a major mutation associated with the same haplotype in individuals with ephelides (8/12 OCA chromosomes) and those without ephelides (24:30). The presence of other ty-pos OCA associated haplotypes indicates several other less common mutations.

  20. Role of across‐muscle motor unit synchrony for the coordination of forces

    OpenAIRE

    Santello, Marco; Fuglevand, Andrew J.

    2004-01-01

    Evidence from five‐digit grasping studies indicates that grip forces exerted by pairs of digits tend to be synchronized. It has been suggested that motor unit synchronization might be a mechanism responsible for constraining the temporal relationships between grip forces. To evaluate this possibility and quantify the effect of motor unit synchrony on force relationships, we used a motor unit model to simulate force produced by two muscles using three physiological levels of motor unit synchro...

  1. Expression of the human TSPY gene in the brains of transgenic mice suggests a potential role of this Y chromosome gene in neural functions

    Institute of Scientific and Technical Information of China (English)

    Tatsuo Kido; Stephanie Schubert; J(o)rg Schmidtke; Yun-Fai Chris Lau

    2011-01-01

    The testis specific protein Y-encoded (TSPY) is a member of TSPY/SET/NAPl superfamily, encoded within the gonadoblastoma locus on the Y chromosome. TSPY shares a highly conserved SET/NAP-domain responsible for protein-protein interaction among TSPY/SET/NAPl proteins.Accumulating data, so far, support the role of TSPY as the gonadoblastoma gene, involved in germ cell tumorigenesis. The X-chromosome homolog of TSPY, TSPX is expressed in various tissues at both fetal and adult stages, including the brain, and is capable of interacting with the multi-domain adapter protein CASK, thereby influencing the synaptic and transcriptional functions and developmental regulation of CASK in the brain and other neural tissues. Similar to TSPX, we demonstrated that TSPY could interact with CASK at its SET/NAP-domain in cultured cells. Transgenic mice harboring a human TSPY gene and flanking sequences showed specific expression of the human TSPYtransgene in both testis and brain. The neural expression pattern of the human TSPY gene overlapped with those of the endogenous mouse Cask and Tspx gene. Similarly with TSPX, TSPY was co-localized with CASK in neuronal axon fibers in the brain, suggesting a potential role(s) of TSPY in development and/or physiology of the nervous system.

  2. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.

    2013-01-01

    of the haemoglobin alpha and beta subunit genes was studied in reciprocally transplanted European flounder Platichthys flesus from the highly saline North Sea and the brackish Baltic Sea. Clear differences in expression patterns of haemoglobin alpha and beta subunit genes were found among different types of tissue....... Finally, for kidney tissue a stress response was observed in one population, with gene up-regulation when North Sea flounders were transplanted to low salinity. This study underlines the importance of tissue specific gene expression and the significance of gene expression for evolution of local adaptation...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  3. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom.

    Science.gov (United States)

    Reyes-Velasco, Jacobo; Card, Daren C; Andrew, Audra L; Shaney, Kyle J; Adams, Richard H; Schield, Drew R; Casewell, Nicholas R; Mackessy, Stephen P; Castoe, Todd A

    2015-01-01

    Snake venom gene evolution has been studied intensively over the past several decades, yet most previous studies have lacked the context of complete snake genomes and the full context of gene expression across diverse snake tissues. We took a novel approach to studying snake venom evolution by leveraging the complete genome of the Burmese python, including information from tissue-specific patterns of gene expression. We identified the orthologs of snake venom genes in the python genome, and conducted detailed analysis of gene expression of these venom homologs to identify patterns that differ between snake venom gene families and all other genes. We found that venom gene homologs in the python are expressed in many different tissues outside of oral glands, which illustrates the pitfalls of using transcriptomic data alone to define "venom toxins." We hypothesize that the python may represent an ancestral state prior to major venom development, which is supported by our finding that the expansion of venom gene families is largely restricted to highly venomous caenophidian snakes. Therefore, the python provides insight into biases in which genes were recruited for snake venom systems. Python venom homologs are generally expressed at lower levels, have higher variance among tissues, and are expressed in fewer organs compared with all other python genes. We propose a model for the evolution of snake venoms in which venom genes are recruited preferentially from genes with particular expression profile characteristics, which facilitate a nearly neutral transition toward specialized venom system expression.

  4. Genome-Wide Association Studies Suggest Limited Immune Gene Enrichment in Schizophrenia Compared to 5 Autoimmune Diseases.

    Science.gov (United States)

    Pouget, Jennie G; Gonçalves, Vanessa F; Spain, Sarah L; Finucane, Hilary K; Raychaudhuri, Soumya; Kennedy, James L; Knight, Jo

    2016-09-01

    There has been intense debate over the immunological basis of schizophrenia, and the potential utility of adjunct immunotherapies. The major histocompatibility complex is consistently the most powerful region of association in genome-wide association studies (GWASs) of schizophrenia and has been interpreted as strong genetic evidence supporting the immune hypothesis. However, global pathway analyses provide inconsistent evidence of immune involvement in schizophrenia, and it remains unclear whether genetic data support an immune etiology per se. Here we empirically test the hypothesis that variation in immune genes contributes to schizophrenia. We show that there is no enrichment of immune loci outside of the MHC region in the largest genetic study of schizophrenia conducted to date, in contrast to 5 diseases of known immune origin. Among 108 regions of the genome previously associated with schizophrenia, we identify 6 immune candidates (DPP4, HSPD1, EGR1, CLU, ESAM, NFATC3) encoding proteins with alternative, nonimmune roles in the brain. While our findings do not refute evidence that has accumulated in support of the immune hypothesis, they suggest that genetically mediated alterations in immune function may not play a major role in schizophrenia susceptibility. Instead, there may be a role for pleiotropic effects of a small number of immune genes that also regulate brain development and plasticity. Whether immune alterations drive schizophrenia progression is an important question to be addressed by future research, especially in light of the growing interest in applying immunotherapies in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  5. Tissue specific haemoglobin gene expression suggests adaptation to local marine conditions in North Sea flounder (Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Larsen, P.F.; Eg Nielsen, Einar; Hansen, M.M.;

    2013-01-01

    Recent genetic analyses of candidate genes and gene expression in marine fishes have provided evidence of local adaptation in response to environmental differences, despite the lack of strong signals of population structure from conventional neutral genetic markers. In this study expression...... in high gene flow marine fishes. © 2013 The Genetics Society of Korea...

  6. Sync or sink? Interpersonal synchrony impacts self-esteem

    National Research Council Canada - National Science Library

    Lumsden, Joanne; Miles, Lynden K; Macrae, C Neil

    2014-01-01

    ..., cooperation, and social-cognitive functioning. The current study sought to explore the impact of intentional synchrony versus asynchrony on an individual's self-esteem and their feelings of social connection with a partner...

  7. Synchrony-desynchrony in the tripartite model of fear: Predicting treatment outcome in clinically phobic children.

    Science.gov (United States)

    Benoit Allen, Kristy; Allen, Ben; Austin, Kristin E; Waldron, Jonathan C; Ollendick, Thomas H

    2015-08-01

    The tripartite model of fear posits that the fear response entails three loosely coupled components: subjective distress, behavioral avoidance, and physiological arousal. The concept of synchrony vs. desynchrony describes the degree to which changes in the activation of these components vary together (synchrony), independently, or inversely (both forms of desynchrony) over time. The present study assessed synchrony-desynchrony and its relationship to treatment outcome in a sample of 98 children with specific phobias both prior to and 1 week after receiving one-session treatment, a 3 h cognitive-behavioral intervention. The results suggest an overall pattern of desynchronous change whereby youth improved on behavioral avoidance and subjective distress following treatment, but their level of cardiovascular reactivity remained stable. However, we found evidence that synchronous change on the behavioral avoidance and subjective distress components was related to better treatment outcome, whereas desynchronous change on these components was related to poorer treatment outcome. These findings suggest that a fuller understanding of the three response systems and their interrelations in phobic youth may assist us in the assessment and treatment of these disorders, potentially leading to a more person-centered approach and eventually to enhanced treatment outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments.

    Science.gov (United States)

    Leuchter, Andrew F; Hunter, Aimee M; Krantz, David E; Cook, Ian A

    2015-05-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD.

  9. Rhythms and blues: modulation of oscillatory synchrony and the mechanism of action of antidepressant treatments

    Science.gov (United States)

    Leuchter, Andrew F.; Hunter, Aimee M.; Krantz, David E.; Cook, Ian A.

    2015-01-01

    Treatments for major depressive disorder (MDD) act at different hierarchical levels of biological complexity, ranging from the individual synapse to the brain as a whole. Theories of antidepressant medication action traditionally have focused on the level of cell-to-cell interaction and synaptic neurotransmission. However, recent evidence suggests that modulation of synchronized electrical activity in neuronal networks is a common effect of antidepressant treatments, including not only medications, but also neuromodulatory treatments such as repetitive transcranial magnetic stimulation. Synchronization of oscillatory network activity in particular frequency bands has been proposed to underlie neurodevelopmental and learning processes, and also may be important in the mechanism of action of antidepressant treatments. Here, we review current research on the relationship between neuroplasticity and oscillatory synchrony, which suggests that oscillatory synchrony may help mediate neuroplastic changes related to neurodevelopment, learning, and memory, as well as medication and neuromodulatory treatment for MDD. We hypothesize that medication and neuromodulation treatments may have related effects on the rate and pattern of neuronal firing, and that these effects underlie antidepressant efficacy. Elucidating the mechanisms through which oscillatory synchrony may be related to neuroplasticity could lead to enhanced treatment strategies for MDD. PMID:25809789

  10. Analysis of the beta-tubulin gene and morphological changes of the microsporidium Anncaliia algerae both suggest albendazole sensitivity.

    Science.gov (United States)

    Santiana, Marianita; Pau, Cyrilla; Takvorian, Peter M; Cali, Ann

    2015-01-01

    The Microsporidium, Anncaliia algerae, an obligate intracellular parasite, has been identified as an opportunistic human pathogen, but treatment has not been evaluated for infections with this organism. Albendazole, an antitubulin polymerization drug used against parasitic worm infections, has been the medication of choice used to treat some microsporidial infections affecting humans, with varying results ranging from clearing infection (Encephalitozoon) to resistance (Enterocytozoon). This study illustrates the effect of albendazole treatment on A. algerae infection in Rabbit Kidney (RK13) cells and Human Fetal Lung (HFL-1) fibroblasts. Albendazole appears to have an attenuating effect on A. algerae infection and albendazole's IC50 in RK13 cells is 0.1 μg/ml. Long-term treatment inhibits up to 98% of spore production, but interrupting treatment reestablishes the infection without new exposure to the parasite as supported by microscopic observations. The parasite's beta-tubulin gene was purified, cloned, and sequenced. Five of the six specific amino acids, associated with benzimidazole sensitivity, are conserved in A. algerae. These findings suggest that A. algerae is sensitive to albendazole; however, the organism is not completely cleared from cultures.

  11. Control of spatially patterned synchrony with multisite delayed feedback

    OpenAIRE

    Hauptmann, C.; Omelchenko, O.; Popovych, O. V.; Maistrenko, Y.; Tass, P.A.

    2007-01-01

    We present an analytical study describing a method for the control of spatiotemporal patterns of synchrony in networks of coupled oscillators. Delayed feedback applied through a small number of electrodes effectively induces spatiotemporal dynamics at minimal stimulation intensities. Different arrangements of the delays cause different spatial patterns of synchrony, comparable to central pattern generators (CPGs), i.e., interacting clusters of oscillatory neurons producing patterned output, e...

  12. Frame-differencing methods for measuring bodily synchrony in conversation.

    Science.gov (United States)

    Paxton, Alexandra; Dale, Rick

    2013-06-01

    The study of interpersonal synchrony examines how interacting individuals grow to have similar behavior, cognition, and emotion in time. Many of the established methods of analyzing interpersonal synchrony are costly and time-consuming; the study of bodily synchrony has been especially laborious, traditionally requiring researchers to hand-code movement frame by frame. Because of this, researchers have been searching for more efficient alternatives for decades. Recently, some researchers (e.g., Nagaoka & Komori (IEICE Transactions on Information and Systems, 91(6), 1634-1640, 2008); Ramseyer & Tschacher, 2008) have applied computer science and computer vision techniques to create frame-differencing methods (FDMs) to simplify analyses. In this article, we provide a detailed presentation of one such FDM, created by modifying and adding to existing FDMs. The FDM that we present requires little programming experience or specialized equipment: Only a few lines of MATLAB code are required to execute an automated analysis of interpersonal synchrony. We provide sample code and demonstrate its use with an analysis of brief, friendly conversations; using linear mixed-effects models, the measure of interpersonal synchrony was found to be significantly predicted by time lag (p < .001) and by the interaction between time lag and measures of interpersonal liking (p < .001). This pattern of results fits with existing literature on synchrony. We discuss the current limitations and future directions for FDMs, including their use as part of a larger methodology for capturing and analyzing multimodal interaction.

  13. Interhemispheric synchrony in the neonatal EEG revisited: activation synchrony index as a promising classifier.

    Science.gov (United States)

    Koolen, Ninah; Dereymaeker, Anneleen; Räsänen, Okko; Jansen, Katrien; Vervisch, Jan; Matic, Vladimir; De Vos, Maarten; Van Huffel, Sabine; Naulaers, Gunnar; Vanhatalo, Sampsa

    2014-01-01

    A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS), which refers to the temporal co-incidence of bursting across hemispheres during trace alternant EEG activity. The assessment of IHS in both clinical and scientific work relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A quantitative measure, activation synchrony index (ASI), was recently shown to perform well as compared to visual assessments. The present study was set out to test whether IHS is stable enough for clinical use, and whether it could be an objective feature of EEG normality. We analyzed 31 neonatal EEG recordings that had been clinically classified as normal (n = 14) or abnormal (n = 17) using holistic, conventional visual criteria including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We selected 20-min epochs of discontinuous background pattern. ASI values were computed separately for different channel pair combinations and window lengths to define them for the optimal ASI intraindividual stability. Finally, ROC curves were computed to find trade-offs related to compromised data lengths, a common challenge in neonatal EEG studies. Using the average of four consecutive 2.5-min epochs in the centro-occipital bipolar derivations gave ASI estimates that very accurately distinguished babies clinically classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6) which correctly classified the EEGs in 97% of all cases. Finally, we showed that compromising the length of EEG segments from 20 to 5 min leads to increased variability in ASI-based classification. Our findings support the prior literature that IHS is an important feature of normal neonatal brain function. We show that ASI may provide diagnostic value even at individual level, which strongly supports its use in prospective clinical studies on neonatal EEG as well as in the feature set of upcoming EEG classifiers.

  14. Interhemispheric synchrony in the neonatal EEG revisited: Activation Synchrony Index as a promising classifier

    Directory of Open Access Journals (Sweden)

    Ninah eKoolen

    2014-12-01

    Full Text Available A key feature of normal neonatal EEG at term age is interhemispheric synchrony (IHS, which refers to the temporal co-incidence of bursting across hemispheres during trace alternant EEG activity. The assessment of IHS in both clinical and scientific work relies on visual, qualitative EEG assessment without clearly quantifiable definitions. A quantitative measure, activation synchrony index (ASI, was recently shown to perform well as compared to visual assessments. The present study set out to test whether IHS is stable enough for clinical use, and whether it could be an objective feature of EEG normality.We analyzed 31 neonatal EEG recordings that had been clinically classified as normal (n=14 or abnormal (n=17 using holistic, conventional visual criteria including amplitude, focal differences, qualitative synchrony, and focal abnormalities. We selected 20-minute epochs of discontinuous background pattern. ASI values were computed separately for different channel pair combinations and window lengths to define the optimal ASI intraindividual stability. Finally, ROC curves were computed to find trade-offs related to compromised data lengths, a common challenge in neonatal EEG studies.Using the average of four consecutive 2.5-minute epochs in the centro-occipital bipolar derivations gave ASI estimates that very accurately distinguished babies clinically classified as normal vs. abnormal. It was even possible to draw a cut-off limit (ASI~3.6 which correctly classified the EEGs in 97% of all cases. Finally, we showed that compromising the length of EEG segments from 20 minutes to 5 minutes leads to increased variability in ASI-based classification.Our findings support the prior literature that IHS is an important feature of normal neonatal brain function. We show that ASI may provide diagnostic value even at individual level, which strongly supports its use in prospective clinical studies on neonatal EEG as well as in the feature set of upcoming EEG

  15. Neural dynamics of audiovisual synchrony and asynchrony perception in 6-month-old infants

    Directory of Open Access Journals (Sweden)

    Franziska eKopp

    2013-01-01

    Full Text Available Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related potentials (ERP. In a prior behavioral experiment (n = 45, infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15, synchronous and asynchronous stimuli (visual delay of 400 ms were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants' ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations.

  16. Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    Directory of Open Access Journals (Sweden)

    Petit Michel

    2007-03-01

    Full Text Available Abstract Background The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. Methods We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. Results The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. Conclusion Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh.

  17. Multisensory Interactions across Spatial Location and Temporal Synchrony

    Directory of Open Access Journals (Sweden)

    Ryan A Stevenson

    2011-10-01

    Full Text Available The process of integrating information across sensory modalities is highly dependent upon a number of stimulus characteristics, including spatial and temporal coincidence, as well as effectiveness. Typically, these properties have been studied in isolation, but recent evidence suggests that they are interactive. This study focuses on interactions between the spatial location and temporal synchrony of stimuli. Participants were presented with simple audiovisual in parametrically varied locations, and with parametrically varied stimulus onset asynchronies (SOAs. Participants performed spatial location and perceived simultaneity tasks (PSS. Accuracies and response times were measured. Accuracies of spatial localization were dependent upon spatial location, with no effect of SOA and interaction seen, however, RT analysis showed an effect of SOA and an interaction; more peripheral presentations showed greater slowing of RT in asynchronous conditions, and fewer violations of the race model. With the PSS tasks, effects of SOA and spatial location were found in the responses, as well as an interaction between the two. Peripheral stimuli were more likely to be judged as synchronous, a difference seen particularly with long SOAs. These results suggest that the commonly studied principles of integration are indeed interactive, and that these interactions have measureable behavioral implications.

  18. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Science.gov (United States)

    Vibranovski, Maria D; Lopes, Hedibert F; Karr, Timothy L; Long, Manyuan

    2009-11-01

    In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI) was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  19. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Directory of Open Access Journals (Sweden)

    Maria D Vibranovski

    2009-11-01

    Full Text Available In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  20. Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes.

    Directory of Open Access Journals (Sweden)

    Maria D Vibranovski

    2009-11-01

    Full Text Available In Drosophila, genes expressed in males tend to accumulate on autosomes and are underrepresented on the X chromosome. In particular, genes expressed in testis have been observed to frequently relocate from the X chromosome to the autosomes. The inactivation of X-linked genes during male meiosis (i.e., meiotic sex chromosome inactivation-MSCI was first proposed to explain male sterility caused by X-autosomal translocation in Drosophila, and more recently it was suggested that MSCI might provide the conditions under which selection would favor the accumulation of testis-expressed genes on autosomes. In order to investigate the impact of MSCI on Drosophila testis-expressed genes, we performed a global gene expression analysis of the three major phases of D. melanogaster spermatogenesis: mitosis, meiosis, and post-meiosis. First, we found evidence supporting the existence of MSCI by comparing the expression levels of X- and autosome-linked genes, finding the former to be significantly reduced in meiosis. Second, we observed that the paucity of X-linked testis-expressed genes was restricted to those genes highly expressed in meiosis. Third, we found that autosomal genes relocated through retroposition from the X chromosome were more often highly expressed in meiosis in contrast to their X-linked parents. These results suggest MSCI as a general mechanism affecting the evolution of some testis-expressed genes.

  1. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    Energy Technology Data Exchange (ETDEWEB)

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  2. Transcriptome-wide mining suggests conglomerate of genes associated with tuberous root growth and development in Aconitum heterophyllum Wall.

    Science.gov (United States)

    Malhotra, Nikhil; Sood, Hemant; Chauhan, Rajinder Singh

    2016-12-01

    Tuberous roots of Aconitum heterophyllum constitute storage organ for secondary metabolites, however, molecular components contributing to their formation are not known. The transcriptomes of A. heterophyllum were analyzed to identify possible genes associated with tuberous root development by taking clues from genes implicated in other plant species. Out of 18 genes, eight genes encoding GDP-mannose pyrophosphorylase (GMPase), SHAGGY, Expansin, RING-box protein 1 (RBX1), SRF receptor kinase (SRF), β-amylase, ADP-glucose pyrophosphorylase (AGPase) and Auxin responsive factor 2 (ARF2) showed higher transcript abundance in roots (13-171 folds) compared to shoots. Comparative expression analysis of those genes between tuberous root developmental stages showed 11-97 folds increase in transcripts in fully developed roots compared to young rootlets, thereby implying their association in biosynthesis, accumulation and storage of primary metabolites towards root biomass. Cluster analysis revealed a positive correlation with the gene expression data for different stages of tuberous root formation in A. heterophyllum. The outcome of this study can be useful in genetic improvement of A. heterophyllum for root biomass yield.

  3. Rising climate variability and synchrony in North Pacific ecosystems

    Science.gov (United States)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  4. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.

    Directory of Open Access Journals (Sweden)

    Lei Mao

    Full Text Available Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.

  5. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Gurvich, Artem; Begemann, Martin; Dahm, Liane

    2014-01-01

    of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS: Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling......-gated ion channel 7 (P2RX7). RESULTS: The follow-up of our original case of a patient with rapid cycling who had shown impressive psychopathological improvement under celecoxib revealed complete loss of this effect upon discontinuation of the COX2 inhibitor. Episode-specific gene expression measurements...... with bipolar disorder and the 97 monopolar depressed patients, emphasizing the advantages of the rapid cycling condition with its rapid and frequent shifts for identification of gene expression changes. CONCLUSIONS: This study supports a role for prostaglandins in rapid cycling and advocates the cyclooxygenase...

  6. Combined gene expression and proteomic analysis of EGF induced apoptosis in A431 cells suggests multiple pathways trigger apoptosis.

    Science.gov (United States)

    Alanazi, Ibrahim; Ebrahimie, Esmaeil; Hoffmann, Peter; Adelson, David L

    2013-11-01

    A431 cells, derived from epidermoid carcinoma, overexpress the epidermal growth factor receptor (EGFR) and when treated with a high dose of EGF will undergo apoptosis. We exploited microarray and proteomics techniques and network prediction to study the regulatory mechanisms of EGF-induced apoptosis in A431 cells. We observed significant changes in gene expression in 162 genes, approximately evenly split between pro-apoptotic and anti-apoptotic genes and identified 30 proteins from the proteomic data that had either pro or anti-apoptotic annotation. Our correlation analysis of gene expression and proteome modeled a number of distinct sub-networks that are associated with the onset of apoptosis, allowing us to identify specific pathways and components. These include components of the interferon signalling pathway, and down stream components, including cytokines and suppressors of cytokine signalling. A central component of almost all gene expression sub-networks identified was TP53, which is mutated in A431 cells, and was down regulated. This down regulation of TP53 appeared to be correlated with proteomic sub-networks of cytoskeletal or cell adhesion components that might induce apoptosis by triggering cytochrome C release. Of the only three genes also differentially expressed as proteins, only serpinb1 had a known association with apoptosis. We confirmed that up regulation and cleavage of serpinb1 into L-DNAaseII was correlated with the induction of apoptosis. It is unlikely that a single pathway, but more likely a combination of pathways is needed to trigger EGF induced apoptosis in A431cells.

  7. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    Directory of Open Access Journals (Sweden)

    Sirpa Arte

    Full Text Available Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%, with a mean number of missing teeth of 11.7 (range 4 to 34. Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes.

  8. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and non-random loss

    Energy Technology Data Exchange (ETDEWEB)

    Lavrov, Dennis V.; Boore, Jeffrey L.; Brown, Wesley M.

    2001-11-08

    We determined the complete mtDNA sequences of the millipedes Narceus annularus and Thyropygus sp. (Arthropoda: Diplopoda) and identified in both genomes all 37 genes typical for metazoan mtDNA. The arrangement of these genes is identical in the two millipedes, but differs from that inferred to be ancestral for arthropods by the location of four genes/gene clusters. This novel gene arrangement is unusual for animal mtDNA, in that genes with opposite transcriptional polarities are clustered in the genome and the two clusters are separated by two non-coding regions. The only exception to this pattern is the gene for cysteine tRNA, which is located in the part of the genome that otherwise contains all genes with the opposite transcriptional polarity. We suggest that a mechanism involving complete mtDNA duplication followed by the loss of genes, predetermined by their transcriptional polarity and location in the genome, could generate this gene arrangement from the one ancestral for arthropods. The proposed mechanism has important implications for phylogenetic inferences that are drawn on the basis of gene arrangement comparisons.

  9. Influences on and measures of unintentional group synchrony

    Directory of Open Access Journals (Sweden)

    Melissa Ellamil

    2016-11-01

    Full Text Available Many instances of large-scale coordination occur in real-life social situations without the explicit awareness of the individuals involved. While the majority of research to date has examined dyadic interactions – those between two individuals – during intentional or deliberate coordination, the present review surveys the handful of recent studies investigating behavioral and physiological synchrony across groups of more than two people when coordination was not an explicit goal. Both minimal (e.g., visual information, shared location and naturalistic (e.g., choir singing part, family relationship group interactions appear to promote unintentional group synchrony although they have so far only been studied separately. State differences in unintentional group synchrony, or the relative presence of coordination in various conditions, have tended to be assessed differently, such as using correlation-type relationships, compared to its temporal dynamics, or changes over time in the degree of coordination, which appear to be best captured using phase differences. Simultaneously evaluating behavioral, physiological, and social responses as well systematically comparing different synchrony measures could further our understanding of the influences on and measures of group synchrony, allowing us to move away from studying individual persons responding to static laboratory stimuli and towards investigating collective experiences in natural, dynamic social interactions.

  10. Evaluating Interpersonal Synchrony: Wavelet Transform Toward an Unstructured Conversation.

    Science.gov (United States)

    Fujiwara, Ken; Daibo, Ikuo

    2016-01-01

    This study examined whether interpersonal synchrony could be extracted using spectrum analysis (i.e., wavelet transform) in an unstructured conversation. Sixty-two female undergraduates were randomly paired and they engaged in a 6-min unstructured conversation. Interpersonal synchrony was evaluated by calculating the cross-wavelet coherence of the time-series movement data, extracted using a video-image analysis software. The existence of synchrony was tested using a pseudo-synchrony paradigm. In addition, the frequency at which the synchrony occurred and the distribution of the relative phase was explored. The results showed that the value of cross-wavelet coherence was higher in the experimental participant pairs than in the pseudo pairs. Further, the coherence value was higher in the frequency band under 0.5 Hz. These results support the validity of evaluating interpersonal synchron Behavioral mimicry and interpersonal syyby using wavelet transform even in an unstructured conversation. However, the role of relative phase was not clear; there was no significant difference between each relative-phase region. The theoretical contribution of these findings to the area of interpersonal coordination is discussed.

  11. Plant phenological synchrony increases under rapid within-spring warming

    Science.gov (United States)

    Wang, Cong; Tang, Yanhong; Chen, Jin

    2016-05-01

    Phenological synchrony influences many ecological processes. Recent climate change has altered the synchrony of phenology, but little is known about the underlying mechanisms. Here using in situ phenological records from Europe, we found that the standard deviation (SD, as a measure of synchrony) of first leafing day (FLD) and the SD of first flowering day (FFD) among local plants were significantly smaller in the years and/or in the regions with a more rapid within-spring warming speed (WWS, the linear slope of the daily mean temperature against the days during spring, in oC/day) with correlation coefficients of ‑0.75 and ‑0.48 for FLD and ‑0.55 and ‑0.23 for FFD. We further found that the SDs of temperature sensitivity of local plants were smaller under the rapid WWS conditions with correlation coefficients of ‑0.46 and ‑0.33 for FLD and FFD respectively. This study provides the first evidence that the within-season rate of change of the temperature but not the magnitude determines plant phenological synchrony. It implies that temporally, the asymmetric seasonal climatic warming may decrease the synchrony via increasing WWS, especially in arctic regions; spatially, plants in coastal and low latitude areas with low WWS would have more diverse spring phenological traits.

  12. DMN Operational Synchrony Relates to Self-Consciousness: Evidence from Patients in Vegetative and Minimally Conscious States.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2012-01-01

    The default mode network (DMN) has been consistently activated across a wide variety of self-related tasks, leading to a proposal of the DMN's role in self-related processing. Indeed, there is limited fMRI evidence that the functional connectivity within the DMN may underlie a phenomenon referred to as self-awareness. At the same time, none of the known studies have explicitly investigated neuronal functional interactions among brain areas that comprise the DMN as a function of self-consciousness loss. To fill this gap, EEG operational synchrony analysis [1, 2] was performed in patients with severe brain injuries in vegetative and minimally conscious states to study the strength of DMN operational synchrony as a function of self-consciousness expression. We demonstrated that the strength of DMN EEG operational synchrony was smallest or even absent in patients in vegetative state, intermediate in patients in minimally conscious state and highest in healthy fully self-conscious subjects. At the same time the process of ecoupling of operations performed by neuronal assemblies that comprise the DMN was highest in patients in vegetative state, intermediate in patients in minimally conscious state and minimal in healthy fully self-conscious subjects. The DMN's frontal EEG operational module had the strongest decrease in operational synchrony strength as a function of selfconsciousness loss, when compared with the DMN's posterior modules. Based on these results it is suggested that the strength of DMN functional connectivity could mediate the strength of self-consciousness expression. The observed alterations similarly occurred across EEG alpha, beta1 and beta2 frequency oscillations. Presented results suggest that the EEG operational synchrony within DMN may provide an objective and accurate measure for the assessment of signs of self-(un)consciousness in these challenging patient populations. This method therefore, may complement the current diagnostic procedures for

  13. Intestinal barrier gene variants may not explain the increased levels of antigliadin antibodies, suggesting other mechanisms than altered permeability

    NARCIS (Netherlands)

    Wolters, Victorien M.; Alizadeh, Behrooz Z.; Weijerman, Michel E.; Zhernakova, Alexandra; van Hoogstraten, Ingrid M. W.; Mearin, M. Luisa; Wapenaar, Martin C.; Wijmenga, Cisca; Schreurs, Marco W. J.

    2010-01-01

    Various genes may influence intestinal barrier function, including MAGI2, MY09B, and PARD3, which are associated with celiac disease. Because direct measurement of intestinal permeability is difficult, antibodies against gliadin (AGA) and Baker's yeast (anti-Saccharomyces cerevisiae antibodies [ASCA

  14. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a glutathione S-transferase gene

    Science.gov (United States)

    Plants are attacked by pathogens representing diverse taxonomic groups, such that genes providing multiple disease resistance (MDR) would likely be under positive selection pressure. We examined the novel proposition that naturally occurring allelic variants may confer MDR. To do so, we applied a ...

  15. The targeted inactivation of TRβ gene in thyroid follicular cells suggests a new mechanism of regulation of thyroid hormone production.

    Science.gov (United States)

    Selmi-Ruby, Samia; Bouazza, Lamia; Obregon, Maria-Jesus; Conscience, Aude; Flamant, Frédéric; Samarut, Jacques; Borson-Chazot, Françoise; Rousset, Bernard

    2014-02-01

    Thyroid epithelial cells, or thyrocytes, express functional thyroid hormone receptors but no precise role has yet been assigned to either TRα or TRβ in the thyroid gland. In this study, we analyzed the impact of inactivating the TRβ gene in the thyroid of mice. First, we generated a mouse line named Thyr-Cre, expressing the Cre recombinase under the control of the thyroglobulin gene promoter, which led to a complete recombination of floxed genes in thyrocytes. Thyr-Cre mice were then crossed with TRβ floxed mice (TRβ(flox/flox)) to obtain a thyrocyte-selective deletion of TRβ. Thyr-TRβ(-/-) mice were characterized by a decrease in the size and functional activity of the thyroid gland. These alterations were associated with a decrease in plasma TSH concentration. Surprisingly, Thyr-TRβ(-/-) displayed elevated serum T(4) and rT(3) concentrations with no significant change in serum T(3) levels. Their intrathyroidal free T(4) and rT(3) contents were also elevated, whereas the ratio of serum T(4) to thyroid free T(4) was decreased by comparison with wild-type littermates. Also, within the thyroid, deiodinases D1 and D2 were reduced as well as the expression levels of genes encoding monocarboxylate transporters (Mct8 and Mct10). Such a decrease in intrathyroidal deiodination of T(4) and in the expression of genes encoding thyroid hormone transporters may contribute to the primary overproduction of T(4) observed in Thyr-TRβ(-/-) mice. In conclusion, these data show that the control of thyroid hormone production involves not only TRβ-dependent mechanisms acting at the level of hypothalamus and pituitary but also TRβ-dependent mechanisms acting at the thyroid level.

  16. Coast-wide recruitment dynamics of Olympia oysters reveal limited synchrony and multiple predictors of failure.

    Science.gov (United States)

    Wasson, Kerstin; Hughes, Brent B; Berriman, John S; Chang, Andrew L; Deck, Anna K; Dinnel, Paul A; Endris, Charlie; Espinoza, Michael; Dudas, Sarah; Ferner, Matthew C; Grosholz, Edwin D; Kimbro, David; Ruesink, Jennifer L; Trimble, Alan C; Vander Schaaf, Dick; Zabin, Chela J; Zacherl, Danielle C

    2016-12-01

    Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure

  17. POPULATION SYNCHRONY WITHIN AND AMONG LEPIDOPTERA SPECIES IN RELATION TO WEATHER, PHYLOGENY, AND LARVEL PHENOLOGY

    Science.gov (United States)

    1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...

  18. POPULATION SYNCHRONY WITHIN AND AMONG LEPIDOPTERA SPECIES IN RELATION TO WEATHER, PHYLOGENY, AND LARVEL PHENOLOGY

    Science.gov (United States)

    1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...

  19. Nucleotide sequence analyses of the MRP1 gene in four populations suggest negative selection on its coding region

    Directory of Open Access Journals (Sweden)

    Ryan Stephen

    2006-05-01

    Full Text Available Abstract Background The MRP1 gene encodes the 190 kDa multidrug resistance-associated protein 1 (MRP1/ABCC1 and effluxes diverse drugs and xenobiotics. Sequence variations within this gene might account for differences in drug response in different individuals. To facilitate association studies of this gene with diseases and/or drug response, exons and flanking introns of MRP1 were screened for polymorphisms in 142 DNA samples from four different populations. Results Seventy-one polymorphisms, including 60 biallelic single nucleotide polymorphisms (SNPs, ten insertions/deletions (indel and one short tandem repeat (STR were identified. Thirty-four of these polymorphisms have not been previously reported. Interestingly, the STR polymorphism at the 5' untranslated region (5'UTR occurs at high but different frequencies in the different populations. Frequencies of common polymorphisms in our populations were comparable to those of similar populations in HAPMAP or Perlegen. Nucleotide diversity indices indicated that the coding region of MRP1 may have undergone negative selection or recent population expansion. SNPs E10/1299 G>T (R433S and E16/2012 G>T (G671V which occur at low frequency in only one or two of four populations examined were predicted to be functionally deleterious and hence are likely to be under negative selection. Conclusion Through in silico approaches, we identified two rare SNPs that are potentially negatively selected. These SNPs may be useful for studies associating this gene with rare events including adverse drug reactions.

  20. Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway

    Directory of Open Access Journals (Sweden)

    Rask-Andersen Mathias

    2011-11-01

    Full Text Available Abstract Background The Fat mass and obesity gene (FTO has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI. However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression. Results We identified several candidate genes for functional coupling to FTO through database studies and selected nine for further study in animal models. We observed hypothalamic expression of Profilin 2 (Pfn2, cAMP-dependent protein kinase catalytic subunit beta (Prkacb, Brain derived neurotrophic factor (Bdnf, neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2, Signal transducer and activator of transcription 3 (Stat3, and Btbd12 to be co-regulated in concert with Fto. Pfn2 and Prkacb have previously not been linked to feeding regulation. Conclusions Gene expression studies validate several candidates generated through database studies of possible FTO-interactors. We speculate about a wider functional role for FTO in the context of current and recent findings, such as in extracellular ligand-induced neuronal plasticity via NTRK2/BDNF, possibly via interaction with the transcription factor CCAAT/enhancer binding protein β (C/EBPβ.

  1. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik;

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...

  2. Cochlear Responses and Auditory Brainstem Response Functions in Adults with Auditory Neuropathy/ Dys-Synchrony and Individuals with Normal Hearing

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2007-06-01

    Full Text Available Background and Aim: Physiologic measures of cochlear and auditory nerve function may be of assis¬tance in distinguishing between hearing disorders due primarily to auditory nerve impairment from those due primarily to cochlear hair cells dysfunction. The goal of present study was to measure of co-chlear responses (otoacoustic emissions and cochlear microphonics and auditory brainstem response in some adults with auditory neuropathy/ dys-synchrony and subjects with normal hearing. Materials and Methods: Patients were 16 adults (32 ears in age range of 14-30 years with auditory neu¬ropathy/ dys-synchrony and 16 individuals in age range of 16-30 years from both sexes. The results of transient otoacoustic emissions, cochlear microphonics and auditory brainstem response measures were compared in both groups and the effects of age, sex, ear and degree of hearing loss were studied. Results: The pure-tone average was 48.1 dB HL in auditory neuropathy/dys-synchrony group and the fre¬quency of low tone loss and flat audiograms were higher among other audiogram's shapes. Transient oto¬acoustic emissions were shown in all auditory neuropathy/dys-synchrony people except two cases and its average was near in both studied groups. The latency and amplitude of the biggest reversed co-chlear microphonics response were higher in auditory neuropathy/dys-synchrony patients than control peo¬ple significantly. The correlation between cochlear microphonics amplitude and degree of hearing loss was not significant, and age had significant effect in some cochlear microphonics measures. Audi-tory brainstem response had no response in auditory neuropathy/dys-synchrony patients even with low stim¬uli rates. Conclusion: In adults with speech understanding worsen than predicted from the degree of hearing loss that suspect to auditory neuropathy/ dys-synchrony, the frequency of low tone loss and flat audiograms are higher. Usually auditory brainstem response is absent in

  3. Characterization of 67 mitochondrial tRNA gene rearrangements in the Hymenoptera suggests that mitochondrial tRNA gene position is selectively neutral.

    Science.gov (United States)

    Dowton, Mark; Cameron, Stephen L; Dowavic, Jessica I; Austin, Andy D; Whiting, Michael F

    2009-07-01

    We present entire sequences of two hymenopteran mitochondrial genomes and the major portion of three others. We combined these data with nine previously sequenced hymenopteran mitochondrial genomes. This allowed us to infer and analyze the evolution of the 67 mitochondrial gene rearrangements so far found in this order. All of these involve tRNA genes, whereas four also involve larger (protein-coding or ribosomal RNA) genes. We find that the vast majority of mitochondrial gene rearrangements are independently derived. A maximum of four of these rearrangements represent shared, derived organizations, whereas three are convergently derived. The remaining mitochondrial gene rearrangements represent new mitochondrial genome organizations. These data are consistent with the proposal that there are an enormous number of alternative mitochondrial genome organizations possible and that mitochondrial genome organization is, for the most part, selectively neutral. Nevertheless, some mitochondrial genes appear less mobile than others. Genes close to the noncoding region are generally more mobile but only marginally so. Some mitochondrial genes rearrange in a pattern consistent with the duplication/random loss model, but more mitochondrial genes move in a pattern inconsistent with this model. An increased rate of mitochondrial gene rearrangement is not tightly associated with the evolution of parasitism. Although parasitic lineages tend to have more mitochondrial gene rearrangements than nonparasitic lineages, there are exceptions (e.g., Orussus and Schlettererius). It is likely that only a small proportion of the total number of mitochondrial gene rearrangements that have occurred during the evolution of the Hymenoptera have been sampled in the present study.

  4. Maladaptive neural synchrony in tinnitus: origin and restoration

    Directory of Open Access Journals (Sweden)

    Jos J Eggermont

    2015-02-01

    Full Text Available Tinnitus is the conscious perception of sound heard in the absence of physical sound sources external or internal to the body, reflected in aberrant neural synchrony of spontaneous or resting state brain activity. Neural synchrony is generated by the nearly simultaneous firing of individual neurons, of the synchronization of membrane potential changes in local neural groups as reflected in the local field potentials, resulting in the presence of oscillatory brain waves in the EEG. Noise-induced hearing loss, often resulting in tinnitus, causes a reorganization of the tonotopic map in auditory cortex and increased spontaneous firing rates and neural synchrony. Spontaneous brain rhythms rely on neural synchrony. Abnormal neural synchrony in tinnitus appears to be confined to specific frequency bands of brain rhythms. Increases in delta-band activity are generated by deafferented/deprived neuronal networks resulting from hearing loss. Coordinated reset (CR stimulation was developed in order to specifically counteract such abnormal neuronal synchrony by desynchronization. The goal of acoustic CR neuromodulation is to desynchronize tinnitus-related abnormal delta band oscillations. CR neuromodulation does not require permanent stimulus delivery in order to achieve long-lasting desynchronization or even a full-blown anti-kindling but may have cumulative effects, i.e. the effect of different CR epochs separated by pauses may accumulate. Unlike other approaches, acoustic CR neuromodulation does not intend to reduce tinnitus-related neuronal activity by employing lateral inhibition. The potential efficacy of acoustic CR modulation was shown in a clinical proof of concept trial, where effects achieved in 12 weeks of treatment delivered 4-6h/day persisted through a preplanned 4-week therapy pause and showed sustained long-term effects after 10 months of therapy, leading to 75% responders.

  5. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases.

    Science.gov (United States)

    Jiang, Shih Sheng; Chen, Chung-Hsing; Tseng, Kuo-Yun; Tsai, Fang-Yu; Wang, Ming Jen; Chang, I-Shou; Lin, Jiunn-Liang; Lin, Shankung

    2011-07-01

    Aging is associated with bone loss and degenerative joint diseases, in which the aging of bone marrow-derived mesenchymal stem cell (bmMSC)[1] may play an important role. In this study, we analyzed the gene expression profiles of bmMSC from 14 donors between 36 and 74 years old, and obtained age-associated genes (in the background of osteoarthritis) and osteoarthritis-associated genes (in the background of old age). Pathway analysis of these genes suggests that alterations in glycobiology might play an important role in the aging of human bmMSC. On the other hand, antigen presentation and signaling of immune cells were the top pathways enriched by osteoarthritis-associated genes, suggesting that alteration in immunology of bmMSC might be involved in the pathogenesis of osteoarthritis. Most intriguingly, we found significant age-associated differential expression of HEXA, HEXB, CTSK, SULF1, ADAMTS5, SPP1, COL8A2, GPNMB, TNFAIP6, and RPL29; those genes have been implicated in the bone loss and the pathology of osteoporosis and osteoarthritis in aging. Collectively, our results suggest a pathological role of bmMSC in aging-related skeletal diseases, and suggest the possibility that alteration in the immunology of bmMSC might also play an important role in the etiology of adult-onset osteoarthritis.

  6. Midbrain Synchrony to Envelope Structure Supports Behavioral Sensitivity to Single-Formant Vowel-Like Sounds in Noise.

    Science.gov (United States)

    Henry, Kenneth S; Abrams, Kristina S; Forst, Johanna; Mender, Matthew J; Neilans, Erikson G; Idrobo, Fabio; Carney, Laurel H

    2017-02-01

    Vowels make a strong contribution to speech perception under natural conditions. Vowels are encoded in the auditory nerve primarily through neural synchrony to temporal fine structure and to envelope fluctuations rather than through average discharge rate. Neural synchrony is thought to contribute less to vowel coding in central auditory nuclei, consistent with more limited synchronization to fine structure and the emergence of average-rate coding of envelope fluctuations. However, this hypothesis is largely unexplored, especially in background noise. The present study examined coding mechanisms at the level of the midbrain that support behavioral sensitivity to simple vowel-like sounds using neurophysiological recordings and matched behavioral experiments in the budgerigar. Stimuli were harmonic tone complexes with energy concentrated at one spectral peak, or formant frequency, presented in quiet and in noise. Behavioral thresholds for formant-frequency discrimination decreased with increasing amplitude of stimulus envelope fluctuations, increased in noise, and were similar between budgerigars and humans. Multiunit recordings in awake birds showed that the midbrain encodes vowel-like sounds both through response synchrony to envelope structure and through average rate. Whereas neural discrimination thresholds based on either coding scheme were sufficient to support behavioral thresholds in quiet, only synchrony-based neural thresholds could account for behavioral thresholds in background noise. These results reveal an incomplete transformation to average-rate coding of vowel-like sounds in the midbrain. Model simulations suggest that this transformation emerges due to modulation tuning, which is shared between birds and mammals. Furthermore, the results underscore the behavioral relevance of envelope synchrony in the midbrain for detection of small differences in vowel formant frequency under real-world listening conditions.

  7. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface

    Directory of Open Access Journals (Sweden)

    Yoshio eSakurai

    2014-02-01

    Full Text Available In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain–machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain–machine interface (BMI. We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  8. Allergic rhinitis - a total genome-scan for susceptibility genes suggests a locus on chromosome 4q24-q27

    DEFF Research Database (Denmark)

    Haagerup, A; Bjerke, T; Schøitz, P O

    2001-01-01

    of allergic rhinitis on the contrary have as yet been most sparse. To identify candidate regions holding genes for allergic rhinitis we performed a total genome-scan on affected sib-pair families. From 100 Danish sib-pair families selected for allergy, families containing sib-pairs matching a phenotype...... definition of both clinical allergic rhinitis and confirmed specific allergy were chosen. Thirty-three affected sib-pair families qualified for the scan that was undertaken using 446 microsatellite markers. Non-parametric linkage results were obtained from MAPMAKER/SIBS computer program. The study revealed...

  9. Gene expression profiling of CD8(+) T cells induced by ovarian cancer cells suggests a possible mechanism for CD8(+) Treg cell production.

    Science.gov (United States)

    Wu, Meng; Lou, Jianfang; Zhang, Shuping; Chen, Xian; Huang, Lei; Sun, Ruihong; Huang, Peijun; Pan, Shiyang; Wang, Fang

    2016-12-01

    The aim of this study was to investigate a possible mechanism of CD8(+) regulatory T-cell (Treg) production in an ovarian cancer (OC) microenvironment. Agilent microarray was used to detect changes in gene expression between CD8(+) T cells cultured with and without the SKOV3 ovarian adenocarcinoma cell line. QRT-PCR was performed to determine glycolysis gene expression in CD8(+) T cells from a transwell culturing system and OC patients. We also detected protein levels of glycolysis-related genes using Western blot analysis. Comparing gene expression profiles revealed significant differences in expression levels of 1420 genes, of which 246 were up-regulated and 1174 were down-regulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that biological processes altered in CD8(+) Treg are particularly associated with energy metabolism. CD8(+) Treg cells induced by co-culture with SKOV3 had lower glycolysis gene expression compared to CD8(+) T cells cultured alone. Glycolysis gene expression was also decreased in the CD8(+) T cells of OC patients. These findings provide a comprehensive bioinformatics analysis of DEGs in CD8(+) T cells cultured with and without SKOV3 and suggests that metabolic processes may be a possible mechanism for CD8(+) Treg induction. © 2016 John Wiley & Sons Ltd.

  10. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow.

    Science.gov (United States)

    Guirao-Rico, Sara; Sánchez-Gracia, Alejandro; Charlesworth, Deborah

    2017-03-01

    DNA sequence diversity in genes in the partially sex-linked pseudoautosomal region (PAR) of the sex chromosomes of the plant Silene latifolia is higher than expected from within-species diversity of other genes. This could be the footprint of sexually antagonistic (SA) alleles that are maintained by balancing selection in a PAR gene (or genes) and affect polymorphism in linked genome regions. SA selection is predicted to occur during sex chromosome evolution, but it is important to test whether the unexpectedly high sequence polymorphism could be explained without it, purely by the combined effects of partial linkage with the sex-determining region and the population's demographic history, including possible introgression from Silene dioica. To test this, we applied approximate Bayesian computation-based model choice to autosomal sequence diversity data, to find the most plausible scenario for the recent history of S. latifolia and then to estimate the posterior density of the most relevant parameters. We then used these densities to simulate variation to be expected at PAR genes. We conclude that an excess of variants at high frequencies at PAR genes should arise in S. latifolia populations only for genes with strong associations with fully sex-linked genes, which requires closer linkage with the fully sex-linked region than that estimated for the PAR genes where apparent deviations from neutrality were observed. These results support the need to invoke selection to explain the S. latifolia PAR gene diversity, and encourage further work to test the possibility of balancing selection due to sexual antagonism. © 2016 John Wiley & Sons Ltd.

  11. Real-time PCR detection of Fe-type nitrile hydratase genes from environmental isolates suggests horizontal gene transfer between multiple genera.

    Science.gov (United States)

    Coffey, Lee; Owens, Erica; Tambling, Karen; O'Neill, David; O'Connor, Laura; O'Reilly, Catherine

    2010-11-01

    Nitriles are widespread in the environment as a result of biological and industrial activity. Nitrile hydratases catalyse the hydration of nitriles to the corresponding amide and are often associated with amidases, which catalyze the conversion of amides to the corresponding acids. Nitrile hydratases have potential as biocatalysts in bioremediation and biotransformation applications, and several successful examples demonstrate the advantages. In this work a real-time PCR assay was designed for the detection of Fe-type nitrile hydratase genes from environmental isolates purified from nitrile-enriched soils and seaweeds. Specific PCR primers were also designed for amplification and sequencing of the genes. Identical or highly homologous nitrile hydratase genes were detected from isolates of numerous genera from geographically diverse sites, as were numerous novel genes. The genes were also detected from isolates of genera not previously reported to harbour nitrile hydratases. The results provide further evidence that many bacteria have acquired the genes via horizontal gene transfer. The real-time PCR assay should prove useful in searching for nitrile hydratases that could have novel substrate specificities and therefore potential in industrial applications.

  12. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease.

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    Full Text Available Kashin-Beck Disease (KBD is an endemic osteochondropathy, the pathogenesis of which remains unclear now. In this study, we compared gene expression profiles of articular cartilage derived respectively from KBD patients and normal controls. Total RNA were isolated, amplified, labeled and hybridized to Agilent human 1A 22 k whole genome microarray chip. qRT-PCR was conducted to validate our microarray data. We detected 57 up-regulated genes (ratios ≥2.0 and 24 down-regulated genes (ratios ≤0.5 in KBD cartilage. To further identify the key genes involved in the pathogenesis of KBD, Bayesian analysis of variance for microarrays (BAM software was applied and identified 12 potential key genes with an average ratio 6.64, involved in apoptosis, metabolism, cytokine & growth factor and cytoskeleton & cell movement. Gene Set Enrichment Analysis (GSEA software was used to identify differently expressed gene ontology categories and pathways. GSEA found that a set of apoptosis, hypoxia and mitochondrial function related gene ontology categories and pathways were significantly up-regulated in KBD compared to normal controls. Based on the results of this study, we suggest that chronic hypoxia-induced mitochondrial damage and apoptosis might play an important role in the pathogenesis of KBD. Our efforts may help to understand the pathogenesis of KBD as well as other osteoarthrosis with similar articular cartilage lesions.

  13. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms.

    OpenAIRE

    Soltis, D. E.; Soltis, P S; Morgan, D. R.; Swensen, S M; Mullin, B C; Dowd, J M; Martin, P. G.

    1995-01-01

    Of the approximately 380 families of angiosperms, representatives of only 10 are known to form symbiotic associations with nitrogen-fixing bacteria in root nodules. The morphologically based classification schemes proposed by taxonomists suggest that many of these 10 families of plants are only distantly related, engendering the hypothesis that the capacity to fix nitrogen evolved independently several, if not many, times. This has in turn influenced attitudes toward the likelihood of transfe...

  14. Non-equilibrium estimates of gene flow inferred from nuclear genealogies suggest that Iberian and North African wall lizards (Podarcis spp. are an assemblage of incipient species

    Directory of Open Access Journals (Sweden)

    Harris D James

    2008-02-01

    Full Text Available Abstract Background The study of recently-diverged species offers significant challenges both in the definition of evolutionary entities and in the estimation of gene flow among them. Iberian and North African wall lizards (Podarcis constitute a cryptic species complex for which previous assessments of mitochondrial DNA (mtDNA and allozyme variation are concordant in describing the existence of several highly differentiated evolutionary units. However, these studies report important differences suggesting the occurrence of gene flow among forms. Here we study sequence variation in two nuclear introns, β-fibint7 and 6-Pgdint7, to further investigate overall evolutionary dynamics and test hypotheses related to species delimitation within this complex. Results Both nuclear gene genealogies fail to define species as monophyletic. To discriminate between the effects of incomplete lineage sorting and gene flow in setting this pattern, we estimated migration rates among species using both FST-based estimators of gene flow, which assume migration-drift equilibrium, and a coalescent approach based on a model of divergence with gene flow. Equilibrium estimates of gene flow suggest widespread introgression between species, but coalescent estimates describe virtually zero admixture between most (but not all species pairs. This suggests that although gene flow among forms may have occurred the main cause for species polyphyly is incomplete lineage sorting, implying that most forms have been isolated since their divergence. This observation is therefore in accordance with previous reports of strong differentiation based on mtDNA and allozyme data. Conclusion These results corroborate most forms of Iberian and North African Podarcis as differentiated, although incipient, species, supporting a gradual view of speciation, according to which species may persist as distinct despite some permeability to genetic exchange and without having clearly definable genetic

  15. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  16. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes.

    Directory of Open Access Journals (Sweden)

    Erin N Smith

    2011-06-01

    Full Text Available Although a highly heritable and disabling disease, bipolar disorder's (BD genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10(-7. To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies.

  17. Developmental changes in neuromagnetic rhythms and network synchrony in autism.

    Science.gov (United States)

    Vakorin, Vasily A; Doesburg, Sam M; Leung, Rachel C; Vogan, Vanessa M; Anagnostou, Evdokia; Taylor, Margot J

    2017-02-01

    There is gathering consensus that altered connectivity is a hallmark of the autistic brain. This includes atypical neural oscillations and their coordination across brain regions, which are understood to mediate information processing and integration. It remains unclear whether and how connectivity in various neurophysiological frequency ranges develops atypically in autism spectrum disorder (ASD). To address this in a cross-sectional sample, we recorded resting-state magnetoencephalography from 134 children and adolescents with and without ASD, and calculated resting spectral power and inter-regional synchrony (functional connectivity). Although no overall group differences were observed, significant alterations in linear and nonlinear age-related changes in resting oscillatory power and network synchrony were found. These differences were frequency- and region-specific and implicated brain systems thought to play a prominent role in ASD, such as the frontal cortex and cerebellum. We also found correlations between Autism Diagnostic Observation Schedule scores and the degree to which connectivity in cerebellar networks is "idiosyncratic" in an individual with autism. We provide the first evidence that it is the curvatures of maturational changes in neurophysiological oscillations and synchrony, rather than disturbances in a particular direction, that characterize the brain function in individuals with ASD. Moreover, the patterns of idiosyncratic distortions of network synchrony relative to the group curve are associated with behavioral symptoms of ASD. Ann Neurol 2017;81:199-211. © 2016 American Neurological Association.

  18. Early development of synchrony in cortical activations in the human.

    Science.gov (United States)

    Koolen, N; Dereymaeker, A; Räsänen, O; Jansen, K; Vervisch, J; Matic, V; Naulaers, G; De Vos, M; Van Huffel, S; Vanhatalo, S

    2016-05-13

    Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.

  19. Long-range synchrony and emergence of neural reentry

    Science.gov (United States)

    Keren, Hanna; Marom, Shimon

    2016-11-01

    Neural synchronization across long distances is a functionally important phenomenon in health and disease. In order to access the basis of different modes of long-range synchrony, we monitor spiking activities over centimetre scale in cortical networks and show that the mode of synchrony depends upon a length scale, λ, which is the minimal path that activity should propagate through to find its point of origin ready for reactivation. When λ is larger than the physical dimension of the network, distant neuronal populations operate synchronously, giving rise to irregularly occurring network-wide events that last hundreds of milliseconds to several seconds. In contrast, when λ approaches the dimension of the network, a continuous self-sustained reentry propagation emerges, a regular seizure-like mode that is marked by precise spatiotemporal patterns (‘synfire chains’) and may last many minutes. Termination of a reentry phase is preceded by a decrease of propagation speed to a halt. Stimulation decreases both propagation speed and λ values, which modifies the synchrony mode respectively. The results contribute to the understanding of the origin and termination of different modes of neural synchrony as well as their long-range spatial patterns, while hopefully catering to manipulation of the phenomena in pathological conditions.

  20. The Spacing Principle for Unlearning Abnormal Neuronal Synchrony

    OpenAIRE

    Popovych, Oleksandr V.; Markos N Xenakis; Tass, Peter A.

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, lear...

  1. Combined analyses of kinship and FST suggest potential drivers of chaotic genetic patchiness in high gene-flow populations.

    Science.gov (United States)

    Iacchei, Matthew; Ben-Horin, Tal; Selkoe, Kimberly A; Bird, Christopher E; García-Rodríguez, Francisco J; Toonen, Robert J

    2013-07-01

    We combine kinship estimates with traditional F-statistics to explain contemporary drivers of population genetic differentiation despite high gene flow. We investigate range-wide population genetic structure of the California spiny (or red rock) lobster (Panulirus interruptus) and find slight, but significant global population differentiation in mtDNA (ΦST = 0.006, P = 0.001; D(est_Chao) = 0.025) and seven nuclear microsatellites (F(ST) = 0.004, P < 0.001; D(est_Chao) = 0.03), despite the species' 240- to 330-day pelagic larval duration. Significant population structure does not correlate with distance between sampling locations, and pairwise FST between adjacent sites often exceeds that among geographically distant locations. This result would typically be interpreted as unexplainable, chaotic genetic patchiness. However, kinship levels differ significantly among sites (pseudo-F(16,988) = 1.39, P = 0.001), and ten of 17 sample sites have significantly greater numbers of kin than expected by chance (P < 0.05). Moreover, a higher proportion of kin within sites strongly correlates with greater genetic differentiation among sites (D(est_Chao), R(2) = 0.66, P < 0.005). Sites with elevated mean kinship were geographically proximate to regions of high upwelling intensity (R(2) = 0.41, P = 0.0009). These results indicate that P. interruptus does not maintain a single homogenous population, despite extreme dispersal potential. Instead, these lobsters appear to either have substantial localized recruitment or maintain planktonic larval cohesiveness whereby siblings more likely settle together than disperse across sites. More broadly, our results contribute to a growing number of studies showing that low F(ST) and high family structure across populations can coexist, illuminating the foundations of cryptic genetic patterns and the nature of marine dispersal.

  2. Perceived synchrony for realistic and dynamic audiovisual events.

    Science.gov (United States)

    Eg, Ragnhild; Behne, Dawn M

    2015-01-01

    In well-controlled laboratory experiments, researchers have found that humans can perceive delays between auditory and visual signals as short as 20 ms. Conversely, other experiments have shown that humans can tolerate audiovisual asynchrony that exceeds 200 ms. This seeming contradiction in human temporal sensitivity can be attributed to a number of factors such as experimental approaches and precedence of the asynchronous signals, along with the nature, duration, location, complexity and repetitiveness of the audiovisual stimuli, and even individual differences. In order to better understand how temporal integration of audiovisual events occurs in the real world, we need to close the gap between the experimental setting and the complex setting of everyday life. With this work, we aimed to contribute one brick to the bridge that will close this gap. We compared perceived synchrony for long-running and eventful audiovisual sequences to shorter sequences that contain a single audiovisual event, for three types of content: action, music, and speech. The resulting windows of temporal integration showed that participants were better at detecting asynchrony for the longer stimuli, possibly because the long-running sequences contain multiple corresponding events that offer audiovisual timing cues. Moreover, the points of subjective simultaneity differ between content types, suggesting that the nature of a visual scene could influence the temporal perception of events. An expected outcome from this type of experiment was the rich variation among participants' distributions and the derived points of subjective simultaneity. Hence, the designs of similar experiments call for more participants than traditional psychophysical studies. Heeding this caution, we conclude that existing theories on multisensory perception are ready to be tested on more natural and representative stimuli.

  3. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2

    Science.gov (United States)

    Visschedijk, Marijn C.; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J.; Pierik, Marieke; Spekhorst, Lieke M.; Imhann, Floris; van der Meulen-de Jong, Andrea E.; van der Woude, C. Janneke; van Bodegraven, Adriaan A.; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A.; Franke, Andre

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC. PMID:27490946

  4. Two new cases with microdeletion of 17q23.2 suggest presence of a candidate gene for sensorineural hearing loss within this region

    DEFF Research Database (Denmark)

    Schönewolf-Greulich, Bitten; Ronan, Anne; Ravn, Kristine;

    2011-01-01

    . In this report, we describe two new 17q23.2 deletion patients with mild intellectual disability and sensorineural hearing loss. They both had submicroscopic deletions smaller than the common deleted region for the 8 previously described 17q23.2 microdeletion cases. TBX4 was previously suggested...... as the responsible gene for the heart or limb defects observed in 17q23.2 deletion patients, but the present cases do not have these features despite deletion of this gene. The finding of sensorineural hearing loss in 5 of the 10 cases, including the present cases, with a microdeletion at17q23.2, strongly suggests...... the presence of a candidate gene for hearing loss within this region. We screened 41 patients with profound sensorineural hearing loss for mutations of TBX2 and detected no mutations....

  5. Psychosocial effects of perceived emotional synchrony in collective gatherings.

    Science.gov (United States)

    Páez, Dario; Rimé, Bernard; Basabe, Nekane; Wlodarczyk, Anna; Zumeta, Larraitz

    2015-05-01

    In a classic theory, Durkheim (1912) predicted that because of the social sharing of emotion they generate, collective gatherings bring participants to a stage of collective effervescence in which they experience a sense of union with others and a feeling of empowerment accompanied by positive affect. This would lead them to leave the collective situation with a renewed sense of confidence in life and in social institutions. A century after Durkheim's predictions of these effects, though, they remained untested as a whole. This article reports 4 studies, 2 correlational, 1 semilongitudinal, and 1 experimental, assessing the positive effects of participation in either positively valenced (folkloric marches) or negatively valenced (protest demonstrations) collective gatherings. Results confirmed that collective gatherings consistently strengthened collective identity, identity fusion, and social integration, as well as enhancing personal and collective self-esteem and efficacy, positive affect, and positive social beliefs among participants. In line with a central tenet of the theory, emotional communion, or perceived emotional synchrony with others mediated these effects. Higher perceived emotional synchrony was associated with stronger emotional reactions, stronger social support, and higher endorsement of social beliefs and values. Participation in symbolic collective gatherings also particularly reinforced identity fusion when perceived emotional synchrony was high. The respective contributions of perceived emotional synchrony and flow, or optimal experience, were also assessed. Whereas perceived emotional synchrony emerged as strongly related to the various social outcomes, flow was observed to be related first to collective efficacy and self-esteem, and thus, to encompass mainly empowerment effects. (c) 2015 APA, all rights reserved).

  6. Sixty hertz neurostimulation amplifies subthalamic neural synchrony in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Zack Blumenfeld

    Full Text Available High frequency subthalamic nucleus (STN deep brain stimulation (DBS improves the cardinal motor signs of Parkinson's disease (PD and attenuates STN alpha/beta band neural synchrony in a voltage-dependent manner. While there is a growing interest in the behavioral effects of lower frequency (60 Hz DBS, little is known about its effect on STN neural synchrony. Here we demonstrate for the first time that during intra-operative 60 Hz STN DBS, one or more bands of resting state neural synchrony were amplified in the STN in PD. We recorded intra-operative STN resting state local field potentials (LFPs from twenty-eight STNs in seventeen PD subjects after placement of the DBS lead (model 3389, Medtronic, Inc. before and during three randomized neurostimulation sets (130 Hz/1.35V, 130 Hz/2V, 60 Hz/2V. During 130 Hz/2V DBS, baseline (no DBS STN alpha (8-12 Hz and beta (13-35 Hz band power decreased (N=14, P < 0.001 for both, whereas during 60 Hz/2V DBS, alpha band and peak frequency power increased (P = 0.012, P = 0.007, respectively. The effect of 60 Hz/2V DBS opposed that of power-equivalent (130 Hz/1.35V DBS (alpha: P < 0.001, beta: P = 0.006. These results show that intra-operative 60 Hz STN DBS amplified whereas 130 Hz STN DBS attenuated resting state neural synchrony in PD; the effects were frequency-specific. We demonstrate that neurostimulation may be useful as a tool to selectively modulate resting state resonant bands of neural synchrony and to investigate its influence on motor and non-motor behaviors in PD and other neuropsychiatric diseases.

  7. Fusion protein gene nucleotide sequence similarities, shared antigenic sites and phylogenetic analysis suggest that phocid distemper virus 2 and canine distemper virus belong to the same virus entity.

    NARCIS (Netherlands)

    I.K.G. Visser (Ilona); R.W.J. van der Heijden (Roger); M.W.G. van de Bildt (Marco); M.J.H. Kenter (Marcel); C. Örvell; A.D.M.E. Osterhaus (Albert)

    1993-01-01

    textabstractNucleotide sequencing of the fusion protein (F) gene of phocid distemper virus-2 (PDV-2), recently isolated from Baikal seals (Phoca sibirica), revealed an open reading frame (nucleotides 84 to 2075) with two potential in-frame ATG translation initiation codons. We suggest that the secon

  8. Copper toxicity in Chinese cabbage is not influenced by plant sulphur status, but affects sulphur metabolism-related gene expression and the suggested regulatory metabolites

    NARCIS (Netherlands)

    Shahbaz, M.; Stuiver, C. E. E.; Posthumus, F. S.; Parmar, S.; Hawkesford, M. J.; De Kok, L. J.

    The toxicity of high copper (Cu) concentrations in the root environment of Chinese cabbage (Brassica pekinensis) was little influenced by the sulphur nutritional status of the plant. However, Cu toxicity removed the correlation between sulphur metabolism-related gene expression and the suggested

  9. Regional synchrony of temperature variation and internal wave forcing along the Florida Keys reef tract

    Science.gov (United States)

    Leichter, James J.; Stokes, M. Dale; Vilchis, L. Ignacio; Fiechter, Jerome

    2014-01-01

    Analysis of 10 year temperature records collected along the Florida Keys reef tract (FLKRT) reveals strong, regional-scale synchrony in high-frequency temperature variation suggestive of internal wave forcing at predominately semidiurnal frequencies. In each year and at all sites, the amplitude of semidiurnal temperature variation was greatest from March to September, and markedly lower from October to February. Comparisons of the semidiurnal component of the temperature variation among sites suggest complex patterns in the arrival of internal waves, with highest cross correlation among closely spaced sites and synchrony in periods of enhanced internal wave activity across the length of the FLKRT, particularly in summer. The periods of enhanced semidiurnal temperature variation at the 20 and 30 m isobaths on the reef slopes appear to be associated with the dynamics of the Florida Current and the onshore movement of warm fronts preceding the passage of Florida Current frontal eddies. Regional-scale satellite altimetry observations suggest temporal linkages to sea surface height anomalies in the Loop Current (upstream of the Florida Current) and setup of the Tortugas Gyre. The synchronized forcing of cool water onto the reef slope sites across the FLKRT is likely to affect physiological responses to temperature variation in corals and other ectothermic organisms, as well as larval transport and nutrient dynamics with the potential for regionally coherent pulses of larvae and nutrients arriving on reef slopes across the FLKRT.

  10. Heritability and demographic analyses in the large isolated population of Val Borbera suggest advantages in mapping complex traits genes.

    Directory of Open Access Journals (Sweden)

    Michela Traglia

    Full Text Available BACKGROUND: Isolated populations are a useful resource for mapping complex traits due to shared stable environment, reduced genetic complexity and extended Linkage Disequilibrium (LD compared to the general population. Here we describe a large genetic isolate from the North West Apennines, the mountain range that runs through Italy from the North West Alps to the South. METHODOLOGY/PRINCIPAL FINDINGS: The study involved 1,803 people living in 7 villages of the upper Borbera Valley. For this large population cohort, data from genealogy reconstruction, medical questionnaires, blood, anthropometric and bone status QUS parameters were evaluated. Demographic and epidemiological analyses indicated a substantial genetic component contributing to each trait variation as well as overlapping genetic determinants and family clustering for some traits. CONCLUSIONS/SIGNIFICANCE: The data provide evidence for significant heritability of medical relevant traits that will be important in mapping quantitative traits. We suggest that this population isolate is suitable to identify rare variants associated with complex phenotypes that may be difficult to study in larger but more heterogeneous populations.

  11. Modulation of Purkinje cell complex spike waveform by synchrony levels in the olivocerebellar system.

    Science.gov (United States)

    Lang, Eric J; Tang, Tianyu; Suh, Colleen Y; Xiao, Jianqiang; Kotsurovskyy, Yuriy; Blenkinsop, Timothy A; Marshall, Sarah P; Sugihara, Izumi

    2014-01-01

    Purkinje cells (PCs) generate complex spikes (CSs) when activated by the olivocerebellar system. Unlike most spikes, the CS waveform is highly variable, with the number, amplitude, and timing of the spikelets that comprise it varying with each occurrence. This variability suggests that CS waveform could be an important control parameter of olivocerebellar activity. The origin of this variation is not well known. Thus, we obtained extracellular recordings of CSs to investigate the possibility that the electrical coupling state of the inferior olive (IO) affects the CS waveform. Using multielectrode recordings from arrays of PCs we showed that the variance in the recording signal during the period when the spikelets occur is correlated with CS synchrony levels in local groups of PCs. The correlation was demonstrated under both ketamine and urethane, indicating that it is robust. Moreover, climbing fiber reflex evoked CSs showed an analogous positive correlation between spikelet-related variance and the number of cells that responded to a stimulus. Intra-IO injections of GABA-A receptor antagonists or the gap junction blocker carbenoxolone produced correlated changes in the variance and synchrony levels, indicating the presence of a causal relationship. Control experiments showed that changes in variance with synchrony were primarily due to changes in the CS waveform, as opposed to changes in the strength of field potentials from surrounding cells. Direct counts of spikelets showed that their number increased with synchronization of CS activity. In sum, these results provide evidence of a causal link between two of the distinguishing characteristics of the olivocerebellar system, its ability to generate synchronous activity and the waveform of the CS.

  12. A non-sense mutation in the putative anti-mutator gene ada/alkA of Mycobacterium tuberculosis and M. bovis isolates suggests convergent evolution

    Directory of Open Access Journals (Sweden)

    Gicquel Brigitte

    2007-05-01

    Full Text Available Abstract Background Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR. Results In this study, 55 MDR and 194 non-MDR strains were analyzed. Variations in DNA repair genes ada/alkA and ogt were identified. Among them, by comparison to M. tuberculosis published sequences, we found a non-sense variation in ada/alkA gene which was also observed in M. bovis AF2122 strain. SNPs that are present in the adjacent regions to the amber variation are different in M. bovis and in M. tuberculosis strain. Conclusion An Amber codon was found in the ada/alkA locus of clustered M. tuberculosis isolates and in M. bovis strain AF2122. This is likely due to convergent evolution because SNP differences between strains are incompatible with horizontal transfer of an entire gene. This suggests that such a variation may confer a selective advantage and be implicated in hypermutator phenotype expression, which in turn contributes to adaptation to environmental changes.

  13. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Casey R Richardson

    Full Text Available BACKGROUND: MicroRNAs (miRNAs and trans-acting small-interfering RNAs (tasi-RNAs are small (20-22 nt long RNAs (smRNAs generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. PRINCIPAL FINDINGS: We explored rice (Oryza sativa sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis 'orphan' hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the "ancient" (deeply conserved class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for "new" rapidly-evolving MIRNA genes. CONCLUSIONS: Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non

  14. Nonlinear effect of dispersal rate on spatial synchrony of predator-prey cycles.

    Science.gov (United States)

    Fox, Jeremy W; Legault, Geoffrey; Legault, Geoff; Vasseur, David A; Einarson, Jodie A

    2013-01-01

    Spatially-separated populations often exhibit positively correlated fluctuations in abundance and other population variables, a phenomenon known as spatial synchrony. Generation and maintenance of synchrony requires forces that rapidly restore synchrony in the face of desynchronizing forces such as demographic and environmental stochasticity. One such force is dispersal, which couples local populations together, thereby synchronizing them. Theory predicts that average spatial synchrony can be a nonlinear function of dispersal rate, but the form of the dispersal rate-synchrony relationship has never been quantified for any system. Theory also predicts that in the presence of demographic and environmental stochasticity, realized levels of synchrony can exhibit high variability around the average, so that ecologically-identical metapopulations might exhibit very different levels of synchrony. We quantified the dispersal rate-synchrony relationship using a model system of protist predator-prey cycles in pairs of laboratory microcosms linked by different rates of dispersal. Paired predator-prey cycles initially were anti-synchronous, and were subject to demographic stochasticity and spatially-uncorrelated temperature fluctuations, challenging the ability of dispersal to rapidly synchronize them. Mean synchrony of prey cycles was a nonlinear, saturating function of dispersal rate. Even extremely low rates of dispersal (systems are sufficient to generate and maintain synchrony of cyclic population dynamics, at least when environments are not too spatially heterogeneous.

  15. Changes in large-scale climate alter spatial synchrony of aphid pests

    Science.gov (United States)

    Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.

    2016-06-01

    Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology. Except in special circumstances, researchers historically had difficulty identifying drivers of synchrony in field systems. Perhaps for this reason, the possibility that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects.

  16. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis.

    Directory of Open Access Journals (Sweden)

    Dayalan G Srinivasan

    Full Text Available Aphids exhibit a form of phenotypic plasticity, called polyphenism, in which genetically identical females reproduce sexually during one part of the life cycle and asexually (via parthenogenesis during the remainder of the life cycle. The molecular basis for aphid parthenogenesis is unknown. Cytological observations of aphid parthenogenesis suggest that asexual oogenesis evolved either through a modification of meiosis or from a mitotic process. As a test of these alternatives, we assessed the expression levels and expression patterns of canonical meiotic recombination and germline genes in the sexual and asexual ovaries of the pea aphid, Acyrthosiphon pisum. We observed expression of all meiosis genes in similar patterns in asexual and sexual ovaries, with the exception that some genes encoding Argonaute-family members were not expressed in sexual ovaries. In addition, we observed that asexual aphid tissues accumulated unspliced transcripts of Spo11, whereas sexual aphid tissues accumulated primarily spliced transcripts. In situ hybridization revealed Spo11 transcript in sexual germ cells and undetectable levels of Spo11 transcript in asexual germ cells. We also found that an obligately asexual strain of pea aphid produced little spliced Spo11 transcript. Together, these results suggest that parthenogenetic oogenesis evolved from a meiosis-like, and not a mitosis-like, process and that the aphid reproductive polyphenism may involve a modification of Spo11 gene activity.

  17. Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize.

    Science.gov (United States)

    Small, I D; Isaac, P G; Leaver, C J

    1987-04-01

    Four genomic arrangements of the maize mitochondrial atpA gene (encoding the alpha subunit of the F(1) ATPase), have been characterized. Most N (fertile) and S (male-sterile) cytoplasms contain two atpA arrangements of equal abundance. Prolonged exposure of blots of maize mitochondrial DNA probed with atpA-specific sequences show that cytoplasms previously reported to lack one of the atpA arrangements do contain the second arrangement but at low levels. Similarly, restriction fragments containing the atpA gene previously thought unique to male-sterile S and T cytoplasms are present in low abundance in fertile cytoplasms. These observations suggest that fertile and male-sterile cytoplasms of maize may be more closely related than previously thought, and suggest possible mechanisms to explain the observed mitochondrial genome diversity.

  18. Gene expression in bryozoan larvae suggest a fundamental importance of pre-patterned blastemic cells in the bryozoan life-cycle

    Directory of Open Access Journals (Sweden)

    Fuchs Judith

    2011-06-01

    Full Text Available Abstract Background Bryozoa is a clade of aquatic protostomes. The bryozoan life cycle typically comprises a larval stage, which metamorphoses into a sessile adult that proliferates by asexual budding to form colonies. The homology of bryozoan larvae with other protostome larvae is enigmatic. Bryozoan larvae exhibit blastemic tissues that contribute to build the adult during morphogenesis. However, it remains unclear if the cells of these tissues are pre-determined according to their future fate or if the cells are undifferentiated, pluripotent stem cells. Gene expression studies can help to identify molecular patterning of larval and adult tissues and enlighten the evolution of bryozoan life cycle stages. Results We investigated the spatial expression of 13 developmental genes in the larval stage of the gymnolaemate bryozoan Bugula neritina. We found most genes expressed in discrete regions in larval blastemic tissues that form definitive components of the adult body plan. Only two of the 13 genes, BnTropomyosin and BnFoxAB, were exclusively expressed in larval tissues that are discarded during metamorphosis. Conclusions Our results suggest that the larval blastemas in Bugula are pre-patterned according to their future fate in the adult. The gene expression patterns indicate that some of the bryozoan blastemas can be interpreted to correspond to homologous adult tissues of other animals. This study challenges an earlier proposed view that metazoan larvae share homologous undifferentiated "set-aside cells", and instead points to an independent origin of the bryozoan larval stage with respect to other lophotrochozoans.

  19. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants.

    Science.gov (United States)

    Wang, Bin; Yeun, Li Huey; Xue, Jia-Yu; Liu, Yang; Ané, Jean-Michel; Qiu, Yin-Long

    2010-04-01

    *The colonization of land by plants fundamentally altered environmental conditions on earth. Plant-mycorrhizal fungus symbiosis likely played a key role in this process by assisting plants to absorb water and nutrients from soil. *Here, in a diverse set of land plants, we investigated the evolutionary histories and functional conservation of three genes required for mycorrhiza formation in legumes and rice (Oryza sativa), DMI1, DMI3 and IPD3. *The genes were isolated from nearly all major plant lineages. Phylogenetic analyses showed that they had been vertically inherited since the origin of land plants. Further, cross-species mutant rescue experiments demonstrated that DMI3 genes from liverworts and hornworts could rescue Medicago truncatula dmi3 mutants for mycorrhiza formation. Yeast two-hybrid assays also showed that bryophyte DMI3 proteins could bind to downstream-acting M. trunculata IPD3 protein. Finally, molecular evolutionary analyses revealed that these genes were under purifying selection for maintenance of their ancestral functions in all mycorrhizal plant lineages. *These results indicate that the mycorrhizal genes were present in the common ancestor of land plants, and that their functions were largely conserved during land plant evolution. The evidence presented here strongly suggests that plant-mycorrhizal fungus symbiosis was one of the key processes that contributed to the origin of land flora.

  20. A stochastic model of gene-culture coevolution suggested by the "culture historical hypothesis" for the evolution of adult lactose absorption in humans.

    Science.gov (United States)

    Aoki, K

    1986-05-01

    A stochastic model of gene-culture coevolution, suggested by the "culture historical hypothesis" of Simoons and McCracken, is presented. According to this hypothesis, adult lactose absorption, believed to be an autosomal dominant trait, attained a high frequency in some human populations due to the positive selection pressure induced by culturally determined milk use in those populations. Two-dimensional Kolmogorov backward equations with appropriate boundary conditions are derived for the ultimate fixation probability of milk users, of the gene for adult lactose absorption, and of both jointly, and for the average time until fixation of the gene. These boundary value problems are solved numerically by the Gauss-Seidel method. I define a theoretical measure of the correlation between gene and culture in terms of the three ultimate fixation probabilities. Monte Carlo simulations are conducted to check and extend the numerical results and also to obtain the first arrival time at gene frequency 0.70, which is approximately the highest observed frequency in any population. Two results that pertain to the culture historical hypothesis are obtained. First, the incomplete correlation observed between adult lactose absorption and milk use does not necessarily constitute evidence against the hypothesis. Second, for the postulated genetic change to have occurred within the 6000-year period since the advent of dairying, either the effective population size was of the order of 100, or, if it was of larger order, the selection coefficient probably had to exceed 5%.

  1. Isolation and functional analysis of CONSTANS-LIKE genes suggests that a central role for CONSTANS in flowering time control is not evolutionarily conserved in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Albert eWong

    2014-09-01

    Full Text Available The zinc finger transcription factor CONSTANS has a well-established central role in the mechanism for photoperiod sensing in Arabidopsis, integrating light and circadian clock signals to upregulate the florigen gene FT under long-day but not short-day conditions. Although CONSTANS-like (COL genes in other species have also been shown to regulate flowering time, it is not clear how widely this central role in photoperiod sensing is conserved.Legumes are a major plant group and various legume species show significant natural variation for photoperiod responsive flowering. Orthologs of several Arabidopsis genes have been shown to participate in photoperiodic flowering in legumes, but the possible function of COL genes as integrators of the photoperiod response has not yet been examined in detail. Here we characterize the COL family in the temperate long-day legume Medicago truncatula, using expression analyses, reverse genetics, transient activation assays and Arabidopsis transformation. Our results provide several lines of evidence suggesting that COL genes are unlikely to have a central role in the photoperiod response mechanism in this species.

  2. Transcriptional regulation: effects of promoter proximal pausing on speed, synchrony and reliability.

    Directory of Open Access Journals (Sweden)

    Alistair N Boettiger

    2011-05-01

    Full Text Available Recent whole genome polymerase binding assays in the Drosophila embryo have shown that a substantial proportion of uninduced genes have pre-assembled RNA polymerase-II transcription initiation complex (PIC bound to their promoters. These constitute a subset of promoter proximally paused genes for which mRNA elongation instead of promoter access is regulated. This difference can be described as a rearrangement of the regulatory topology to control the downstream transcriptional process of elongation rather than the upstream transcriptional initiation event. It has been shown experimentally that genes with the former mode of regulation tend to induce faster and more synchronously, and that promoter-proximal pausing is observed mainly in metazoans, in accord with a posited impact on synchrony. However, it has not been shown whether or not it is the change in the regulated step per se that is causal. We investigate this question by proposing and analyzing a continuous-time Markov chain model of PIC assembly regulated at one of two steps: initial polymerase association with DNA, or release from a paused, transcribing state. Our analysis demonstrates that, over a wide range of physical parameters, increased speed and synchrony are functional consequences of elongation control. Further, we make new predictions about the effect of elongation regulation on the consistent control of total transcript number between cells. We also identify which elements in the transcription induction pathway are most sensitive to molecular noise and thus possibly the most evolutionarily constrained. Our methods produce symbolic expressions for quantities of interest with reasonable computational effort and they can be used to explore the interplay between interaction topology and molecular noise in a broader class of biochemical networks. We provide general-purpose code implementing these methods.

  3. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria.

    Directory of Open Access Journals (Sweden)

    Hironobu Fukami

    Full Text Available Modern hard corals (Class Hexacorallia; Order Scleractinia are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b, with analyses of nuclear genes (ss-tubulin, ribosomal DNA of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.

  4. A minimal model of self-consistent partial synchrony

    Science.gov (United States)

    Clusella, Pau; Politi, Antonio; Rosenblum, Michael

    2016-09-01

    We show that self-consistent partial synchrony in globally coupled oscillatory ensembles is a general phenomenon. We analyze in detail appearance and stability properties of this state in possibly the simplest setup of a biharmonic Kuramoto-Daido phase model as well as demonstrate the effect in limit-cycle relaxational Rayleigh oscillators. Such a regime extends the notion of splay state from a uniform distribution of phases to an oscillating one. Suitable collective observables such as the Kuramoto order parameter allow detecting the presence of an inhomogeneous distribution. The characteristic and most peculiar property of self-consistent partial synchrony is the difference between the frequency of single units and that of the macroscopic field.

  5. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    Science.gov (United States)

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  6. Phase-amplitude coupling and interlaminar synchrony are correlated in human neocortex.

    Science.gov (United States)

    McGinn, Ryan J; Valiante, Taufik A

    2014-11-26

    One of the striking manifestations of neuronal population activity is that of rhythmic oscillations in the local field potential. It is thought that such oscillatory patterns, including phase-amplitude coupling (PAC) and inter-regional synchrony, may represent forms of local and long-range cortical computations, respectively. Although it has been speculated that these two oscillatory patterns are functionally related, and bind disparate cortical assemblies to one another at different timescales, there is little direct evidence to support this hypothesis. We have demonstrated recently that theta to high-gamma PAC and interlaminar phase coherence at theta frequencies can be generated in human cortical slices maintained in vitro. Here we show that not only do such oscillatory patterns exist within human temporal neocortex, but that the strength of one is related to the strength of the other. We demonstrate that at theta frequencies, metrics of temporal synchrony between superficial and deep cortical laminae (phase-dependent power correlations, and phase coherence) are correlated to the magnitude of intralaminar PAC between theta and high-gamma. Specifically, our results suggest that interlaminar communication within human temporal neocortex and local laminar excitability are linked to one another through a dependence mediated by theta oscillations. More generally, our results provide evidence for the hypothesis that theta oscillations may coordinate inter-areal excitability in the human brain.

  7. Egg-hatching synchrony and larval cannibalism in the dock leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Kutcherov, Dmitry

    2015-12-01

    Females of leaf beetles and many other herbivorous insects lay eggs in coherent batches. Hatchlings emerge more or less simultaneously and often prey on their late-hatching clutchmates. It is not certain, however, whether this synchrony of hatching is a mere by-product of cannibalism or whether an additional synchronizing factor exists. The following simple experiment was aimed at determining the causal relationship between cannibalism and simultaneous larval emergence. Egg clutches of the dock leaf beetle Gastrophysa viridula were split into two halves. These halves were either kept as coherent groups in two separate dishes or, alternatively, only one half remained whole, whereas the other one was divided into single eggs, each of which was incubated in a separate dish. Halving of a clutch into coherent groups only slightly disrupted the synchrony of emergence. The consequence of individual isolation was more dramatic. Half-clutches consisting of disconnected solitary eggs required almost twice as much time for complete emergence of all larvae, which was significantly more than cannibalism as a sole synchronizing factor might explain. Moreover, survival rates were the same in coherent half-clutches (in the presence of cannibalism) and among isolated individuals. This group effect and the small contribution of cannibalism suggest the existence of an additional synchronizing factor. Possible mechanisms underpinning this phenomenon are discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Bursting and Synchrony in Networks of Model Neurons

    CERN Document Server

    Geier, Christian; Elger, Christian E; Lehnertz, Klaus

    2016-01-01

    Bursting neurons are considered to be a potential cause of over-excitability and seizure susceptibility. The functional influence of these neurons in extended epileptic networks is still poorly understood. There is mounting evidence that the dynamics of neuronal networks is influenced not only by neuronal and synaptic properties but also by network topology. We investigate numerically the influence of different neuron dynamics on global synchrony in neuronal networks with complex connection topologies.

  9. Sync or sink? Interpersonal synchrony impacts self-esteem

    Directory of Open Access Journals (Sweden)

    Joanne eLumsden

    2014-09-01

    Full Text Available Synchronized behaviour has significant social influence both in terms of everyday activities (e.g., walking and talking as well as via more historical contexts (e.g., cultural rituals. Grounded in the science of coordination dynamics, previous research has revealed that interpersonal synchrony has numerous affiliative and pro-social consequences, such as enhanced rapport, cooperation, and social-cognitive functioning. The current study sought to explore the impact of intentional synchrony versus asynchrony on an individual’s self-esteem and their feelings of social connection with a partner. The results revealed that individuals felt better about themselves following a period of synchronous compared to asynchronous movement, while they also perceived a greater self-other overlap with their partner. These findings not only extend previous research on social connections following interpersonal synchrony, but also provide the first demonstration of an influence on self evaluations. Overall, it appears that moving in time with others may result in us feeling better about ourselves compared to moving to our own rhythm.

  10. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Directory of Open Access Journals (Sweden)

    Maggie L Chow

    Full Text Available Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess

  11. Age-dependent brain gene expression and copy number anomalies in autism suggest distinct pathological processes at young versus mature ages.

    Science.gov (United States)

    Chow, Maggie L; Pramparo, Tiziano; Winn, Mary E; Barnes, Cynthia Carter; Li, Hai-Ri; Weiss, Lauren; Fan, Jian-Bing; Murray, Sarah; April, Craig; Belinson, Haim; Fu, Xiang-Dong; Wynshaw-Boris, Anthony; Schork, Nicholas J; Courchesne, Eric

    2012-01-01

    Autism is a highly heritable neurodevelopmental disorder, yet the genetic underpinnings of the disorder are largely unknown. Aberrant brain overgrowth is a well-replicated observation in the autism literature; but association, linkage, and expression studies have not identified genetic factors that explain this trajectory. Few studies have had sufficient statistical power to investigate whole-genome gene expression and genotypic variation in the autistic brain, especially in regions that display the greatest growth abnormality. Previous functional genomic studies have identified possible alterations in transcript levels of genes related to neurodevelopment and immune function. Thus, there is a need for genetic studies involving key brain regions to replicate these findings and solidify the role of particular functional pathways in autism pathogenesis. We therefore sought to identify abnormal brain gene expression patterns via whole-genome analysis of mRNA levels and copy number variations (CNVs) in autistic and control postmortem brain samples. We focused on prefrontal cortex tissue where excess neuron numbers and cortical overgrowth are pronounced in the majority of autism cases. We found evidence for dysregulation in pathways governing cell number, cortical patterning, and differentiation in young autistic prefrontal cortex. In contrast, adult autistic prefrontal cortex showed dysregulation of signaling and repair pathways. Genes regulating cell cycle also exhibited autism-specific CNVs in DNA derived from prefrontal cortex, and these genes were significantly associated with autism in genome-wide association study datasets. Our results suggest that CNVs and age-dependent gene expression changes in autism may reflect distinct pathological processes in the developing versus the mature autistic prefrontal cortex. Our results raise the hypothesis that genetic dysregulation in the developing brain leads to abnormal regional patterning, excess prefrontal neurons

  12. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Directory of Open Access Journals (Sweden)

    Gail S Robertson

    Full Text Available Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis. With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes

  13. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Science.gov (United States)

    Robertson, Gail S; Bolton, Mark; Morrison, Paul; Monaghan, Pat

    2015-01-01

    Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance) influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii) were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis). With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes in the

  14. Influenza epidemics in Iceland over 9 decades: changes in timing and synchrony with the United States and Europe.

    Science.gov (United States)

    Weinberger, Daniel M; Krause, Tyra Grove; Mølbak, Kåre; Cliff, Andrew; Briem, Haraldur; Viboud, Cécile; Gottfredsson, Magnus

    2012-10-01

    Influenza epidemics exhibit a strongly seasonal pattern, with winter peaks that occur with similar timing across temperate areas of the Northern Hemisphere. This synchrony could be influenced by population movements, environmental factors, host immunity, and viral characteristics. The historical isolation of Iceland and subsequent increase in international contacts make it an ideal setting to study epidemic timing. The authors evaluated changes in the timing and regional synchrony of influenza epidemics using mortality and morbidity data from Iceland, North America, and Europe during the period from 1915 to 2007. Cross-correlations and wavelet analyses highlighted 2 major changes in influenza epidemic patterns in Iceland: first was a shift from nonseasonal epidemics prior to the 1930s to a regular winter-seasonal pattern, and second was a change in the early 1990s when a 1-month lag between Iceland and the United States and Europe was no longer detectable with monthly data. There was a moderate association between increased synchrony and the number of foreign visitors to Iceland, providing a plausible explanation for the second shift in epidemic timing. This suggests that transportation might have a minor effect on epidemic timing, but efforts to restrict air travel during influenza epidemics would likely have a limited impact, even for island populations.

  15. Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

    Science.gov (United States)

    Patil, Prabhu B; Sonti, Ramesh V

    2004-01-01

    Background In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. Results We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively

  16. Maternal emotion dysregulation is related to heightened mother-infant synchrony of facial affect.

    Science.gov (United States)

    Lotzin, Annett; Schiborr, Julia; Barkmann, Claus; Romer, Georg; Ramsauer, Brigitte

    2016-05-01

    A heightened synchrony between the mother's and infant's facial affect predicts adverse infant development. We know that maternal psychopathology is related to mother-infant facial affect synchrony, but it is unclear how maternal psychopathology is transmitted to mother-infant synchrony. One pathway might be maternal emotion dysregulation. We examined (a) whether maternal emotion dysregulation is positively related to facial affect synchrony and (b) whether maternal emotion dysregulation mediates the effect of maternal psychopathology on mother-infant facial affect synchrony. We observed 68 mothers with mood disorders and their 4- to 9-month-old infants in the Still-Face paradigm during two play interactions. The mother's and infant's facial affect were rated from high negative to high positive, and the degree of synchrony between the mother's and infant's facial affect was computed with a time-series analysis. Emotion dysregulation was measured with the Difficulties in Emotion Regulation Scale, and psychopathology was assessed with the Symptom Checklist-90-Revised. Higher maternal emotion dysregulation was significantly associated with higher facial affect synchrony; emotion dysregulation fully mediated the effect of maternal psychopathology on facial affect synchrony. Our findings demonstrate that maternal emotion dysregulation rather than maternal psychopathology per se places mothers and infants at risk for heightened facial affect synchrony.

  17. Molecular analysis of endo-β-mannanase genes upon seed imbibition suggest a cross-talk between radicle and micropylar endosperm during germination of Arabidopsis thaliana

    Science.gov (United States)

    Iglesias-Fernández, Raquel; del Carmen Rodríguez-Gacio, María; Barrero-Sicilia, Cristina; Carbonero, Pilar

    2011-01-01

    The endo-β-mannanase (MAN) family is represented in the Arabidopsis genome by eight members, all with canonical signal peptides and only half of them being expressed in germinating seeds. The transcripts of these genes were localized in the radicle and micropylar endosperm (ME) before radicle protrusion and this expression disappears as soon as the endosperm is broken by the emerging radicle tip. However, only three of these MAN genes, AtMAN5, AtMAN7 and especially AtMAN6 influence the germination time (t50) as assessed by the analysis of the corresponding knock-out lines. The data suggest a possible interaction between embryo and ME regarding the role of MAN during the Arabidopsis germination process. PMID:21301215

  18. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria.

    Directory of Open Access Journals (Sweden)

    Jing Su

    Full Text Available Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota.

  19. Rainfall-driven sex-ratio genes in African buffalo suggested by correlations between Y-chromosomal haplotype frequencies and foetal sex ratio

    Directory of Open Access Journals (Sweden)

    Greyling Barend J

    2010-04-01

    Full Text Available Abstract Background The Y-chromosomal diversity in the African buffalo (Syncerus caffer population of Kruger National Park (KNP is characterized by rainfall-driven haplotype frequency shifts between year cohorts. Stable Y-chromosomal polymorphism is difficult to reconcile with haplotype frequency variations without assuming frequency-dependent selection or specific interactions in the population dynamics of X- and Y-chromosomal genes, since otherwise the fittest haplotype would inevitably sweep to fixation. Stable Y-chromosomal polymorphism due one of these factors only seems possible when there are Y-chromosomal distorters of an equal sex ratio, which act by negatively affecting X-gametes, or Y-chromosomal suppressors of a female-biased sex ratio. These sex-ratio (SR genes modify (suppress gamete transmission in their own favour at a fitness cost, allowing for stable polymorphism. Results Here we show temporal correlations between Y-chromosomal haplotype frequencies and foetal sex ratios in the KNP buffalo population, suggesting SR genes. Frequencies varied by a factor of five; too high to be alternatively explained by Y-chromosomal effects on pregnancy loss. Sex ratios were male-biased during wet and female-biased during dry periods (male proportion: 0.47-0.53, seasonally and annually. Both wet and dry periods were associated with a specific haplotype indicating a SR distorter and SR suppressor, respectively. Conclusions The distinctive properties suggested for explaining Y-chromosomal polymorphism in African buffalo may not be restricted to this species alone. SR genes may play a broader and largely overlooked role in mammalian sex-ratio variation.

  20. Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency.

    Science.gov (United States)

    McLaughlin, Richard N; Young, Janet M; Yang, Lei; Neme, Rafik; Wichman, Holly A; Malik, Harmit S

    2014-09-01

    Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1) retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.

  1. Mitochondrial-related gene expression profiles suggest an important role of PGC-1alpha in the compensatory mechanism of endemic dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    He, Shu-Lan [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Tan, Wu-Hong, E-mail: tanwh@mail.xjtu.edu.cn [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Zhang, Zeng-Tie; Zhang, Feng [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Qu, Cheng-Juan [Institute of Biomedicine, University of Eastern Finland, Kuopio (Finland); Lei, Yan-Xia; Zhu, Yan-He [Key Laboratory of Environment and Gene Related Diseases, Xi' an Jiaotong University, Ministry Education, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Key Laboratory of Trace Elements and Endemic Diseases, Xi' an Jiaotong University, Ministry of Health, No. 76 Yanta West Road, Xi' an, Shaanxi 710061 (China); Yu, Han-Jie [Department of Biotechnology, Northwest University, Xi' an, Shaanxi 710069 (China); Xiang, You-Zhang [Shandong Institute for prevention and Treatment of Endemic Disease, Jinan, Shandong 250014 (China); and others

    2013-10-15

    Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD. Highlights: • Thirty-four up-regulated genes were detected in KD versus health controls. • Forty pathways and four networks were detected in KD. • PGC-1alpha regulated energy metabolism and anti-apoptosis in KD.

  2. Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency.

    Directory of Open Access Journals (Sweden)

    Richard N McLaughlin

    2014-09-01

    Full Text Available Mammalian genomes comprise many active and fossilized retroelements. The obligate requirement for retroelement integration affords host genomes an opportunity to 'domesticate' retroelement genes for their own purpose, leading to important innovations in genome defense and placentation. While many such exaptations involve retroviruses, the L1TD1 gene is the only known domesticated gene whose protein-coding sequence is almost entirely derived from a LINE-1 (L1 retroelement. Human L1TD1 has been shown to play an important role in pluripotency maintenance. To investigate how this role was acquired, we traced the origin and evolution of L1TD1. We find that L1TD1 originated in the common ancestor of eutherian mammals, but was lost or pseudogenized multiple times during mammalian evolution. We also find that L1TD1 has evolved under positive selection during primate and mouse evolution, and that one prosimian L1TD1 has 'replenished' itself with a more recent L1 ORF1 from the prosimian genome. These data suggest that L1TD1 has been recurrently selected for functional novelty, perhaps for a role in genome defense. L1TD1 loss is associated with L1 extinction in several megabat lineages, but not in sigmodontine rodents. We hypothesize that L1TD1 could have originally evolved for genome defense against L1 elements. Later, L1TD1 may have become incorporated into pluripotency maintenance in some lineages. Our study highlights the role of retroelement gene domestication in fundamental aspects of mammalian biology, and that such domesticated genes can adopt different functions in different lineages.

  3. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance.

    Science.gov (United States)

    Zhou, Tao; Liu, Shikai; Geng, Xin; Jin, Yulin; Jiang, Chen; Bao, Lisui; Yao, Jun; Zhang, Yu; Zhang, Jiaren; Sun, Luyang; Wang, Xiaozhu; Li, Ning; Tan, Suxu; Liu, Zhanjiang

    2017-02-01

    Disease problems cause major economic losses for the aquaculture industries. In catfish, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the leading disease problem, causing tens of millions of dollars of annual economic losses. In this study, we conducted a genome-wide association study to determine quantitative trait loci (QTL) for resistance against ESC using an interspecific hybrid system. Five hundred fish were used in the analysis and 192 phenotypic extremes were used for genotyping with the catfish 250K SNP arrays. A genomic region on linkage group (LG) 1 was found significantly associated with ESC disease resistance. In addition, two suggestively associated QTL for ESC resistance were identified on LG 12 and LG 16. The nlrc3 duplicates were identified within all the three QTL, suggesting their importance in association with the QTL. Within the significant QTL on LG 1, 16 genes with known functions in immunity were identified. Of particular interest is the nck1 gene nearby the most significantly associated SNP. Nck1 was known to function as an adaptor to facilitating the pathogenesis of enteropathogenic Escherichia coli (EPEC) in humans. E. ictaluri and EPEC pathogens belong to the same bacterial family and share many common characteristics. The fact that nck1 is mapped in the QTL and that it was significantly upregulated in channel catfish intestine after ESC challenge suggested its candidacy of being involved in resistance/susceptibility of ESC.

  4. Genome-wide Gene Expression Analysis of Mucosal Colonic Biopsies and Isolated Colonocytes Suggests a Continuous Inflammatory State in the Lamina Propria of Patients with Quiescent Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerrum, Jacob Tveiten; Hansen, Morten; Olsen, Jørgen

    2010-01-01

    colonocytes from UC patients and controls in order to identify the cell types responsible for the continuous inflammatory state. Methods: Adjacent mucosal colonic biopsies were obtained endoscopically from the descending colon in patients with active UC (n = 8), quiescent UC (n = 9), and with irritable bowel......Background: Genome-wide gene expression (GWGE) profiles of mucosal colonic biopsies have suggested the existence of a continuous inflammatory state in quiescent ulcerative colitis (UC). The aim of this study was to use DNA microarray-based GWGE profiling of mucosal colonic biopsies and isolated...

  5. A homozygous balanced reciprocal translocation suggests LINC00237 as a candidate gene for MOMO (macrosomia, obesity, macrocephaly, and ocular abnormalities) syndrome.

    Science.gov (United States)

    Vu, Phi Yen; Toutain, Jérôme; Cappellen, David; Delrue, Marie-Ange; Daoud, Hussein; El Moneim, Azza Abd; Barat, Pascal; Montaubin, Orianne; Bonnet, Françoise; Dai, Zong Qi; Philippe, Christophe; Tran, Cong Toai; Rooryck, Caroline; Arveiler, Benoît; Saura, Robert; Briault, Sylvain; Lacombe, Didier; Taine, Laurence

    2012-11-01

    Macrosomia, obesity, macrocephaly, and ocular abnormalities syndrome (MOMO syndrome) has been reported in only four patients to date. In these sporadic cases, no chromosomal or molecular abnormality has been identified thus far. Here, we report on the clinical, cytogenetic, and molecular findings in a child of healthy consanguineous parents suffering from MOMO syndrome. Conventional karyotyping revealed an inherited homozygous balanced reciprocal translocation (16;20)(q21;p11.2). Uniparental disomy testing showed bi-parental inheritance for both derivative chromosomes 16 and 20. The patient's oligonucleotide array-comparative genomic hybridization profile revealed no abnormality. From the homozygous balanced reciprocal translocation (16;20)(q21;p11.2), a positional cloning strategy, designed to narrow 16q21 and 20p11.2 breakpoints, revealed the disruption of a novel gene located at 20p11.23. This gene is now named LINC00237, according to the HUGO (Human Genome Organization) nomenclature. The gene apparently leads to the production of a non-coding RNA. We established that LINC00237 was expressed in lymphocytes of control individuals while normal transcripts were absent in lymphocytes of our MOMO patient. LINC00237 was not ubiquitously expressed in control tissues, but it was notably highly expressed in the brain. Our results suggested autosomal recessive inheritance of MOMO syndrome. LINC00237 could play a role in the pathogenesis of this syndrome and could provide new insights into hyperphagia-related obesity and intellectual disability. Copyright © 2012 Wiley Periodicals, Inc.

  6. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Directory of Open Access Journals (Sweden)

    Mette Burmølle

    Full Text Available Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids into a laboratory strain (Escherichia coli Genehogs® for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54 and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33 were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  7. Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae.

    Science.gov (United States)

    Burmølle, Mette; Norman, Anders; Sørensen, Søren J; Hansen, Lars Hestbjerg

    2012-01-01

    Plasmids are a highly effective means with which genetic traits that influence human health, such as virulence and antibiotic resistance, are disseminated through bacterial populations. The IncX-family is a hitherto sparsely populated group of plasmids that are able to thrive within Enterobacteriaceae. In this study, a replicon-centric screening method was used to locate strains from wastewater sludge containing plasmids belonging to the IncX-family. A transposon aided plasmid capture method was then employed to transport IncX-plasmids from their original hosts (and co-hosted plasmids) into a laboratory strain (Escherichia coli Genehogs®) for further study. The nucleotide sequences of the three newly isolated IncX-plasmids (pLN126_33, pMO17_54, pMO440_54) and the hitherto un-sequenced type-plasmid R485 revealed a remarkable occurrence of whole or partial gene cassettes that promote biofilm-formation in Klebsiella pneumonia or E. coli, in all four instances. Two of the plasmids (R485 and pLN126_33) were shown to directly induce biofilm formation in a crystal violet retention assay in E. coli. Sequence comparison revealed that all plasmid-borne forms of the type 3 fimbriae encoding gene cassette mrkABCDF were variations of a composite transposon Tn6011 first described in the E. coli IncX plasmid pOLA52. In conclusion, IncX-plasmids isolated from Enterobacteriaceae over almost 40 years and on three different continents have all been shown to carry a type 3 fimbriae gene cassette mrkABCDF stemming from pathogenic K. pneumoniae. Apart from contributing general knowledge about IncX-plasmids, this study also suggests an apparent ubiquity of a mobile form of an important virulence factor and is an illuminating example of the recruitment, evolution and dissemination of genetic traits through plasmid-mediated horizontal gene transfer.

  8. A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.

    Science.gov (United States)

    An, Sungwon; Harang, Rich; Meeker, Kirsten; Granados-Fuentes, Daniel; Tsai, Connie A; Mazuski, Cristina; Kim, Jihee; Doyle, Francis J; Petzold, Linda R; Herzog, Erik D

    2013-11-12

    Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.

  9. Statistical detection of EEG synchrony using empirical bayesian inference.

    Directory of Open Access Journals (Sweden)

    Archana K Singh

    Full Text Available There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001 for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  10. Statistical detection of EEG synchrony using empirical bayesian inference.

    Science.gov (United States)

    Singh, Archana K; Asoh, Hideki; Takeda, Yuji; Phillips, Steven

    2015-01-01

    There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem. Standard multiple testing methods in neuroimaging research (e.g., false discovery rate, FDR) suffer severe loss of power, because they fail to exploit complex dependence structure between hypotheses that vary in spectral, temporal and spatial dimension. Previously, we showed that a hierarchical FDR and optimal discovery procedures could be effectively applied for PLV analysis to provide better power than FDR. In this article, we revisit the multiple comparison problem from a new Empirical Bayes perspective and propose the application of the local FDR method (locFDR; Efron, 2001) for PLV synchrony analysis to compute FDR as a posterior probability that an observed statistic belongs to a null hypothesis. We demonstrate the application of Efron's Empirical Bayes approach for PLV synchrony analysis for the first time. We use simulations to validate the specificity and sensitivity of locFDR and a real EEG dataset from a visual search study for experimental validation. We also compare locFDR with hierarchical FDR and optimal discovery procedures in both simulation and experimental analyses. Our simulation results showed that the locFDR can effectively control false positives without compromising on the power of PLV synchrony inference. Our results from the application locFDR on experiment data detected more significant discoveries than our previously proposed methods whereas the standard FDR method failed to detect any significant discoveries.

  11. Measurement of phase synchrony of coupled segmentation clocks.

    Science.gov (United States)

    Alam, Md Jahoor; Bhayana, Latika; Devi, Gurumayum Reenaroy; Singh, Heisnam Dinachandra; Singh, R K Brojen; Sharma, B Indrajit

    2011-10-01

    The temporal behavior of segmentation clock oscillations shows phase synchrony via mean field like coupling of delta protein restricting to nearest neighbors only, in a configuration of cells arranged in a regular three dimensional array. We found the increase of amplitudes of oscillating dynamical variables of the cells as the activation rate of delta-notch signaling is increased, however, the frequencies of oscillations are decreased correspondingly. Our results show the phase transition from desynchronized to synchronized behavior by identifying three regimes, namely, desynchronized, transition and synchronized regimes supported by various qualitative and quantitative measurements.

  12. Nonverbal Synchrony in Psychotherapy: Coordinated Body Movement Reflects Relationship Quality and Outcome

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    2011-01-01

    Objective: The authors quantified nonverbal synchrony--the coordination of patient's and therapist's movement--in a random sample of same-sex psychotherapy dyads. The authors contrasted nonverbal synchrony in these dyads with a control condition and assessed its association with session-level and overall psychotherapy outcome. Method: Using an…

  13. Moderators of the synchrony of change between decreasing depression severity and disability

    NARCIS (Netherlands)

    Verboom, C. E.; Ormel, J.; Nolen, W. A.; Penninx, B. W. J. H.; Sijtsema, J. J.

    2012-01-01

    Verboom CE, Ormel J, Nolen WA, Penninx BWJH, Sijtsema JJ. Moderators of the synchrony of change between decreasing depression severity and disability. Objective: To identify moderators of synchrony of change between depression severity and disability. Method: From a large cohort study with 2 years o

  14. Moderators of the synchrony of change between decreasing depression severity and disability

    NARCIS (Netherlands)

    Verboom, C. E.; Ormel, J.; Nolen, W. A.; Penninx, B. W. J. H.; Sijtsema, J. J.

    2012-01-01

    Verboom CE, Ormel J, Nolen WA, Penninx BWJH, Sijtsema JJ. Moderators of the synchrony of change between decreasing depression severity and disability. Objective: To identify moderators of synchrony of change between depression severity and disability. Method: From a large cohort study with 2 years o

  15. One in the Dance: Musical Correlates of Group Synchrony in a Real-World Club Environment

    Science.gov (United States)

    Ellamil, Melissa; Berson, Joshua; Wong, Jen; Buckley, Louis; Margulies, Daniel S.

    2016-01-01

    Previous research on interpersonal synchrony has mainly investigated small groups in isolated laboratory settings, which may not fully reflect the complex and dynamic interactions of real-life social situations. The present study expands on this by examining group synchrony across a large number of individuals in a naturalistic environment. Smartphone acceleration measures were recorded from participants during a music set in a dance club and assessed to identify how group movement synchrony covaried with various features of the music. In an evaluation of different preprocessing and analysis methods, giving more weight to front-back movement provided the most sensitive and reliable measure of group synchrony. During the club music set, group synchrony of torso movement was most strongly associated with pulsations that approximate walking rhythm (100–150 beats per minute). Songs with higher real-world play counts were also correlated with greater group synchrony. Group synchrony thus appears to be constrained by familiarity of the movement (walking action and rhythm) and of the music (song popularity). These findings from a real-world, large-scale social and musical setting can guide the development of methods for capturing and examining collective experiences in the laboratory and for effectively linking them to synchrony across people in daily life. PMID:27764167

  16. The change in perceptual synchrony between auditory and visual speech after exposure to asynchronous speech.

    Science.gov (United States)

    Tanaka, Akihiro; Asakawa, Kaori; Imai, Hisato

    2011-10-05

    Recent studies have shown that audiovisual synchrony is recalibrated after exposure to asynchronous auditory and visual signals. This temporal recalibration has been shown only under a dual-task situation for speech signals. Here we examined whether the temporal recalibration occurs for audiovisual speech in a single-task situation using an offline adaptation method. In the experiment, participants were exposed to synchronous or asynchronous audiovisual syllables (either congruent or incongruent) for 3 min. The adaptation phase was followed by test trials, in which participants judged whether the auditory or visual stimulus was presented first. Results showed shifts in the point of subjective simultaneity and the sensitivity. Our results suggest that attention to adaptation stimuli is necessary to induce temporal recalibration for speech.

  17. Small rodent population synchrony in western Sweden. Effects of landscape structure

    Directory of Open Access Journals (Sweden)

    J. Loman

    2008-04-01

    Full Text Available Small rodents were captured in two regions in western Sweden. One represents an agricultural landscape were captures were made in 19 small habitat islands and in two small forests. The other represents a forest region were captures were made in four sites in a continuous forest. The captures were made for seven years. There were no clear indications of cyclicity. Within both regions, wood mice captures were in synchrony among sites. For bank voles, this was only true in the forest region and for field voles in the agricultural region. Captures of field voles were too few for analysis in the forest region. Among species, captures were not synchronous in the agricultural region but captures of wood mice and bank voles were synchronous in the forest region. These results suggest a role of landscape structure for the population dynamics of these species, rather than differences in predator function.

  18. Analyzing the Effects of Gap Junction Blockade on Neural Synchrony via a Motoneuron Network Computational Model

    Directory of Open Access Journals (Sweden)

    Heraldo Memelli

    2012-01-01

    Full Text Available In specific regions of the central nervous system (CNS, gap junctions have been shown to participate in neuronal synchrony. Amongst the CNS regions identified, some populations of brainstem motoneurons are known to be coupled by gap junctions. The application of various gap junction blockers to these motoneuron populations, however, has led to mixed results regarding their synchronous firing behavior, with some studies reporting a decrease in synchrony while others surprisingly find an increase in synchrony. To address this discrepancy, we employ a neuronal network model of Hodgkin-Huxley-style motoneurons connected by gap junctions. Using this model, we implement a series of simulations and rigorously analyze their outcome, including the calculation of a measure of neuronal synchrony. Our simulations demonstrate that under specific conditions, uncoupling of gap junctions is capable of producing either a decrease or an increase in neuronal synchrony. Subsequently, these simulations provide mechanistic insight into these different outcomes.

  19. amoA Gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not Archaea dominate N cycling in the Colne Estuary, United Kingdom.

    Science.gov (United States)

    Li, Jialin; Nedwell, David B; Beddow, Jessica; Dumbrell, Alex J; McKew, Boyd A; Thorpe, Emma L; Whitby, Corinne

    2015-01-01

    Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 μmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw(-1) day(-1) in June, increasing to 11.7 μmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A

    Energy Technology Data Exchange (ETDEWEB)

    Nobukuni, Yoshitaka; Watanabe, A.; Takeda, Kazushisa; Skarka, Hana; Tachibana, Masayoshi [National Inst. of Health, Bethesda, MD (United States)

    1996-07-01

    Waardenburg syndrome type 2 (WS2) is a dominantly inherited disorder characterized by a pigmentation anomaly and hearing impairment due to lack of melanocyte. Previous work has linked a subset of families with WS2 (WS2A) to the MITF gene that encodes a transcription factor with a basic-helix-loop-helix-leucine zipper (bHLH-Zip) motif and that is involved in melanocyte differentiation. Several splice-site and missense mutations have been reported in individuals affected with WS2A. In this report, we have identified two novel point mutations in the MITF gene in affected individuals from two different families with WS2A. The two mutations (C760{r_arrow}T and C895{r_arrow}T) create stop codons in exons 7 and 8, respectively. Corresponding mutant alleles predict the truncated proteins lacking HLH-Zip or Zip structure. To understand how these mutations cause WS2 in heterozygotes, we generated mutant MITF cDNAs and used them for DNA-binding and luciferase reporter assays. The mutated MITF proteins lose the DNA-binding activity and fail to transactivate the promoter of tyrosinase, a melanocyte-specific enzyme. However, these mutated proteins do not appear to interfere with the activity of wild-type MITF protein in these assays, indicating that they do not show a dominant-negative effect. These findings suggest that the phenotypes of the two families with WS2A in the present study are caused by loss-of-function mutations in one of the two alleles of the MITF gene, resulting in haploinsufficiency of the MITF protein, the protein necessary for normal development of melanocytes. 37 refs., 4 figs.

  1. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    Science.gov (United States)

    Bouwmeester, J.; Baird, A. H.; Chen, C. J.; Guest, J. R.; Vicentuan, K. C.; Berumen, M. L.

    2015-03-01

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15-19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3-4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  2. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2014-09-21

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15–19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3–4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  3. Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes.

    Science.gov (United States)

    Khayi, Slimane; Raoul des Essarts, Yannick; Quêtu-Laurent, Angélique; Moumni, Mohieddine; Hélias, Valérie; Faure, Denis

    2015-04-01

    The blackleg and soft-rot diseases caused by pectinolytic enterobacteria such as Pectobacterium and Dickeya are major causes of losses affecting potato crop in the field and upon storage. In this work, we report the isolation, characterization and genome analysis of the Pectobacterium wasabiae (formerly identified as Pectobacterium carotovorum subsp. carotovorum) strain RNS 08.42.1A, that has been isolated from a Solanum tuberosum host plant in France. Comparative genomics with 3 other P. wasabiae strains isolated from potato plants in different areas in North America and Europe, highlighted both a strong similarity at the whole genome level (ANI > 99 %) and a conserved synteny of the virulence genes. In addition, our analyses evidenced a robust separation between these four P. wasabiae strains and the type strain P. wasabiae CFBP 3304(T), isolated from horseradish in Japan. In P. wasabiae RNS 08.42.1A, the expI and expR nucleotidic sequences are more related to those of some Pectobacterium atrosepticum and P. carotovorum strains (90 % of identity) than to those of the other potato P. wasabiae strains (70 to 74 % of identity). This could suggest a recruitment of these genes in the P. wasabiae strain RNS 08.42.1A by an horizontal transfer between pathogens infecting the same potato host plant.

  4. Gene expression suggests double-segmental and single-segmental patterning mechanisms during posterior segment addition in the beetle Tribolium castaneum.

    Science.gov (United States)

    Janssen, Ralf

    2014-01-01

    In the model arthropod Drosophila, all segments are patterned simultaneously in the blastoderm. In most other arthropods, however, posterior segments are added sequentially from a posterior segment addition zone. Posterior addition of single segments likely represents the ancestral mode of arthropod segmentation, although in Drosophila, segments are patterned in pairs by the pair-rule genes. It has been shown that in the new model insect, the beetle Tribolium, a segmentation clock operates that apparently patterns all segments in pairs as well. Here, I report on the expression of the segment polarity gene H15/midline in Tribolium. In the anterior embryo, segmental stripes of H15 appear in pairs, but in the posterior of the embryo stripes appear in a single-segmental periodicity. This implies that either two completely different segmentation-mechanisms may act in the germ band of Tribolium, that the segmentation clock changes its periodicity during development, or that the speed in which posterior segments are patterned changes. In any case, the data suggest the presence of another (or modified), yet undiscovered, mechanism of posterior segment addition in one of the best-understood arthropod models. The finding of a hitherto unrecognized segmentation mechanism in Tribolium may have major implications for the understanding of the origin of segmentation mechanisms, including the origin of pair rule patterning. It also calls for (re)-investigation of posterior segment addition in Tribolium and other previously studied arthropod models.

  5. Mutation of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair.

    Directory of Open Access Journals (Sweden)

    Ewelina Bolcun-Filas

    2009-02-01

    Full Text Available In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination.

  6. Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants.

    Science.gov (United States)

    Hersom, M J

    2008-04-01

    Increasingly, the need for optimized nutrient utilization to address increasing production costs and environmental considerations will necessitate opportunities to improve nutrient synchrony. Historically, attempts at synchronizing nutrient supply in ruminants, particularly in cattle consuming high-forage diets, have met with variable results. The success of nutrient synchrony has been measured primarily in ruminants by increases in microbial yield, microbial efficiency, nutrient utilization, and to a lesser extent, animal performance. Successful synchrony of nutrient supply to cattle consuming forage-based diets faces several challenges. From a feed supply aspect, the challenges to nutrient synchrony include accurately measuring forage intake and consumed forage chemical composition. The issue of forage intake and chemical composition is perhaps the most daunting for producers grazing cattle. Indeed, for forage-fed cattle, the availability of forage protein and carbohydrate can be the most asynchronous aspect of the diet. In most grazed forages, digestion rates of the carbohydrate fractions are much slower than that of the corresponding protein fractions. Additionally, the forage-supplement interaction exerts a large impact on the synchrony of nutrients. The supplemental feedstuffs compose the component of the nutrient synchrony scenario that is most often manipulated to influence synchrony. The supplement type (e.g., starch vs. fiber, dry vs. liquid), nutrient profile, and degradation rates are often prime considerations associated with nutrient synchrony on high forage diets. Other considerations that warrant attention include temporal intake patterns of the forage and supplement, increased use and types of coproduct supplements, and an assessment of the success of nutrient synchrony. Synchronization of nutrient utilization by forage-fed ruminants has and will continue to encounter challenges for successful outcomes. Ultimately it is the improvement in animal

  7. You are in sync with me: neural correlates of interpersonal synchrony with a partner.

    Science.gov (United States)

    Cacioppo, S; Zhou, H; Monteleone, G; Majka, E A; Quinn, K A; Ball, A B; Norman, G J; Semin, G R; Cacioppo, J T

    2014-09-26

    Interpersonal synchrony is characterized by a temporary alignment of periodic behaviors with another person. This process requires that at least one of the two individuals monitors and adjusts his/her movements to maintain alignment with the other individual (the referent). Interestingly, recent research on interpersonal synchrony has found that people who are motivated to befriend an unfamiliar social referent tend to automatically synchronize with their social referents, raising the possibility that synchrony may be employed as an affiliation tool. It is unknown, however, whether the opposite is true; that is, whether the person serving as the referent of interpersonal synchrony perceives synchrony with his/her partner or experiences affiliative feelings toward the partner. To address this question, we performed a series of studies on interpersonal synchrony with a total of 100 participants. In all studies, participants served as the referent with no requirement to monitor or align their behavior with their partners. Unbeknown to the participants, the timings of their "partner's" movements were actually determined by a computer program based on the participant's (i.e., referent's) behavior. Overall, our behavioral results showed that the referent of a synchrony task expressed greater perceived synchrony and greater social affiliation toward a synchronous partner (i.e., one displaying low mean asynchrony and/or a narrow asynchrony range) than with an asynchronous partner (i.e., one displaying high mean asynchrony and/or high asynchrony range). Our neuroimaging study extended these results by demonstrating involvement of brain areas implicated in social cognition, embodied cognition, self-other expansion, and action observation as correlates of interpersonal synchrony (vs. asynchrony). These findings have practical implications for social interaction and theoretical implications for understanding interpersonal synchrony and social coordination.

  8. Evidence suggesting phosphodiesterase-3B regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

    Science.gov (United States)

    Anamthathmakula, Prashanth; Sahu, Maitrayee; Sahu, Abhiram

    2015-09-14

    Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity. To investigate the direct regulation of NPY/AgRP neuronal activity by PDE3B, we examined the effects of gain-of-function or reduced function of PDE3B on NPY/AgRP gene expression in a clonal hypothalamic neuronal cell line, mHypoE-46, which endogenously express NPY, AgRP and PDE3B. Overexpression of PDE3B in mHypoE-46 cells with transfection of pcDNA-3.1-PDE3B expression plasmid significantly decreased NPY and AgRP mRNA levels and p-CREB levels as compared to the control plasmid. For the PDE3B knockdown study, mHypoE-46 cells transfected with lentiviral PDE3BshRNAmir plasmid or non-silencing lentiviral shRNAmir control plasmid were selected with puromycin, and stably transfected cells were grown in culture for 48h. Results showed that PDE3BshRNAmir mediated knockdown of PDE3B mRNA and protein levels (∼60-70%) caused an increase in both NPY and AgRP gene expression and in p-CREB levels. Together, these results demonstrate a reciprocal change in NPY and AgRP gene expression following overexpression and knockdown of PDE3B, and suggest a significant role for PDE3B in the regulation of NPY/AgRP gene expression in mHypoE-46 hypothalamic neurons.

  9. The spacing principle for unlearning abnormal neuronal synchrony.

    Science.gov (United States)

    Popovych, Oleksandr V; Xenakis, Markos N; Tass, Peter A

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.

  10. Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling

    Directory of Open Access Journals (Sweden)

    Hessner Martin J

    2010-12-01

    Full Text Available Abstract Background In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation. Results In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation. Conclusions Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.

  11. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach.

    Directory of Open Access Journals (Sweden)

    Koyuki Kondo

    Full Text Available Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  12. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach.

    Science.gov (United States)

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades.

  13. Suggested Involvement of PP1/PP2A Activity and De Novo Gene Expression in Anhydrobiotic Survival in a Tardigrade, Hypsibius dujardini, by Chemical Genetic Approach

    Science.gov (United States)

    Kondo, Koyuki; Kubo, Takeo; Kunieda, Takekazu

    2015-01-01

    Upon desiccation, some tardigrades enter an ametabolic dehydrated state called anhydrobiosis and can survive a desiccated environment in this state. For successful transition to anhydrobiosis, some anhydrobiotic tardigrades require pre-incubation under high humidity conditions, a process called preconditioning, prior to exposure to severe desiccation. Although tardigrades are thought to prepare for transition to anhydrobiosis during preconditioning, the molecular mechanisms governing such processes remain unknown. In this study, we used chemical genetic approaches to elucidate the regulatory mechanisms of anhydrobiosis in the anhydrobiotic tardigrade, Hypsibius dujardini. We first demonstrated that inhibition of transcription or translation drastically impaired anhydrobiotic survival, suggesting that de novo gene expression is required for successful transition to anhydrobiosis in this tardigrade. We then screened 81 chemicals and identified 5 chemicals that significantly impaired anhydrobiotic survival after severe desiccation, in contrast to little or no effect on survival after high humidity exposure only. In particular, cantharidic acid, a selective inhibitor of protein phosphatase (PP) 1 and PP2A, exhibited the most profound inhibitory effects. Another PP1/PP2A inhibitor, okadaic acid, also significantly and specifically impaired anhydrobiotic survival, suggesting that PP1/PP2A activity plays an important role for anhydrobiosis in this species. This is, to our knowledge, the first report of the required activities of signaling molecules for desiccation tolerance in tardigrades. The identified inhibitory chemicals could provide novel clues to elucidate the regulatory mechanisms underlying anhydrobiosis in tardigrades. PMID:26690982

  14. Additional brain functional network in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis.

    Directory of Open Access Journals (Sweden)

    Dongchuan Yu

    Full Text Available We develop a method to construct a new type of functional networks by the usage of phase synchrony degree that is different from the widely used Pearson's correlation approach. By a series of very strict statistical tests, we found that there is an additional network in attention-deficit/hyperactivity disorder (ADHD subjects, superimposing the original (normal brain functional network corresponding to healthy controls. The additional network leads to the increase in clustering coefficient, cost, local efficiency, and global efficiency. Our findings are inconsistent with many previous researches (using the Pearson's correlation approach revealing both increased and decreased functional connections between brain regions and many reports revealing that the brain functional networks of ADHD patients have slow information flow and low global efficiency. We also confirm that the additional network in ADHD subjects contains 6 communities, and three of them are associated with emotional control, sensory information integration, and motor control, respectively. Furthermore, we find that there is a pathway connecting the left insula and left anterior cingular gyrus via the frontal gyrus and putamen in the additional network in ADHD subjects. This implies that due to the pathway connecting brain regions in the salience network, the ADHD patients are more sensitive to external stimuli or internal thoughts and are easier to switch to the executive network and hence harder to inhibit. For clinical diagnostic purposes, we apply the k-means clustering method to distinguish ADHD patients with healthy controls at the individual subject level, and obtain a meaningful diagnostic result. More interestingly, we find that the suggested technique using phase synchrony degree to construct functional networks may obtain higher classification accuracy than the method using the Pearson's correlation coefficient.

  15. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams.

    Science.gov (United States)

    Su, Yi-Huang

    2014-01-01

    Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  16. Content congruency and its interplay with temporal synchrony modulate integration between rhythmic audiovisual streams

    Directory of Open Access Journals (Sweden)

    Yi-Huang eSu

    2014-12-01

    Full Text Available Both lower-level stimulus factors (e.g., temporal proximity and higher-level cognitive factors (e.g., content congruency are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently or upwards (incongruently to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.

  17. Synchrony suppression in complex stimulus responses of a biophysical model of the cochlea.

    Science.gov (United States)

    Shamma, S A; Morrish, K A

    1987-05-01

    A minimal biophysical model of the cochlea is used to investigate the validity of the hypothesis that a single compressive nonlinearity at the hair cell level can explain some of the suppression phenomena in cochlear responses to complex stimuli. The dependencies of the model responses on the amplitudes and frequencies of two-tone stimuli resemble in many respects the behavior of the experimental data, and can be traced to explicit biophysical parameters in the model. Most discrepancies between theory and experiment stem from simplifications in parameters of the minimal model that play no direct role in the hypothesis. The analysis and simulations predict further results which, pending experimental verification, may provide a more direct test of the influence of the compressive nonlinearity on the relative amplitudes of the synchronous response components, and hence of its role in synchrony suppression. For instance, regardless of the overall absolute levels of a two-tone stimulus applied to this type of model, the ratio of the amplitudes at the input and the ratio of the corresponding responses at the output remain approximately constant and equal (the output ratio changes by at most 6 dB in favor of the stronger tone). Other nonlinear responses to multitonal stimuli can also be reproduced, such as "spectral edge enhancement" [Horst et al., Peripheral Auditory Mechanisms (Springer, Berlin, 1985)] and some aspects of three-tone suppression [Javel et al., Mechanisms of Hearing (Monash U.P., Australia, 1983)]. In contrast to the complex behavior of suppression with increasing sound intensity and the drastic influence of the compressive nonlinearity on the absolute response measures on the auditory nerve (e.g., average rate and synchrony profiles), the percepts of complex sounds are relatively stable. This suggests that the invariant relative response measures are more likely used in the encoding and CNS extraction of the spectrum of complex stimuli such as speech.

  18. The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae

    Science.gov (United States)

    Costas, E.; González-Gil, S.; López-Rodas, V.; Aguilera, A.

    1996-03-01

    Every year the Earth's rotation period is reduced, mainly due to the tidal drag of the moon. The length of day increases continuously by about 1 h every 200 million years. The period of rotation around the Sun remains constant; hence, the length of the year remains constant, so years acquire progressively fewer days. Many unicellular algae show rhythmicity in their cell division cycle. If primitive algae evolved under a shorter day duration, then it is possible that the early-evolved algae had to synchronize their cell division cycle to shorter lengths of day than did later-evolved algae. We tested this hypothesis by growing Cyanobacteria, Dinophyceae, Prasinophyceae, Bacillariophyceae and Conjugatophyceae (evolutionary appearance probably in this order) at 8∶8 h light-dark cycles (LD), 10∶10 LD, and 12∶12 LD, at 20 or 27°C. Cyanobacteria synchronized their cell division cycles optimally at 8∶8 h LD, Dinophyceae and Prasinophyceae at 10∶10 h LD, and Conjugatophyceae and Bacillariophyceae at 12∶12 h LD. The synchrony of cell division was scarcely affected by temperature. Results suggested that the early evolved unicellular autotrophic organisms such as the Cyanobacteria synchronized their cell division cycle under a shorter day duration than later-evolved unicellular algae, and these traits may have been conserved by quiescent genes up to the present day.

  19. Ultra-deep pyrosequencing of partial surface protein genes from infectious Salmon Anaemia virus (ISAV suggest novel mechanisms involved in transition to virulence.

    Directory of Open Access Journals (Sweden)

    Turhan Markussen

    Full Text Available Uncultivable HPR0 strains of infectious salmon anaemia viruses (ISAVs infecting gills are non-virulent putative precursors of virulent ISAVs (vISAVs causing systemic disease in farmed Atlantic salmon (Salmo salar. The transition to virulence involves two molecular events, a deletion in the highly polymorphic region (HPR of the hemagglutinin-esterase (HE gene and a Q266→L266 substitution or insertion next to the putative cleavage site (R267 in the fusion protein (F. We have performed ultra-deep pyrosequencing (UDPS of these gene regions from healthy fish positive for HPR0 virus carrying full-length HPR sampled in a screening program, and a vISAV strain from an ISA outbreak at the same farming site three weeks later, and compared the mutant spectra. As the UDPS data shows the presence of both HE genotypes at both sampling times, and the outbreak strain was unlikely to be directly related to the HPR0 strain, this is the first report of a double infection with HPR0s and vISAVs. For F amplicon reads, mutation frequencies generating L266 codons in screening samples and Q266 codons in outbreak samples were not higher than at any random site. We suggest quasispecies heterogeneity as well as RNA structural properties are linked to transition to virulence. More specifically, a mechanism where selected single point mutations in the full-length HPR alter the RNA structure facilitating single- or sequential deletions in this region is proposed. The data provides stronger support for the deletion hypothesis, as opposed to recombination, as the responsible mechanism for generating the sequence deletions in HE.

  20. Rate-synchrony relationship between input and output of spike trains in neuronal networks

    Science.gov (United States)

    Wang, Sentao; Zhou, Changsong

    2010-01-01

    Neuronal networks interact via spike trains. How the spike trains are transformed by neuronal networks is critical for understanding the underlying mechanism of information processing in the nervous system. Both the rate and synchrony of the spikes can affect the transmission, while the relationship between them has not been fully understood. Here we investigate the mapping between input and output spike trains of a neuronal network in terms of firing rate and synchrony. With large enough input rate, the working mode of the neurons is gradually changed from temporal integrators into coincidence detectors when the synchrony degree of input spike trains increases. Since the membrane potentials of the neurons can be depolarized to near the firing threshold by uncorrelated input spikes, small input synchrony can cause great output synchrony. On the other hand, the synchrony in the output may be reduced when the input rate is too small. The case of the feedforward network can be regarded as iterative process of such an input-output relationship. The activity in deep layers of the feedforward network is in an all-or-none manner depending on the input rate and synchrony.

  1. The evolutionary host switches of Polychromophilus: a multi-gene phylogeny of the bat malaria genus suggests a second invasion of mammals by a haemosporidian parasite

    Directory of Open Access Journals (Sweden)

    Witsenburg Fardo

    2012-02-01

    Full Text Available Abstract Background The majority of Haemosporida species infect birds or reptiles, but many important genera, including Plasmodium, infect mammals. Dipteran vectors shared by avian, reptilian and mammalian Haemosporida, suggest multiple invasions of Mammalia during haemosporidian evolution; yet, phylogenetic analyses have detected only a single invasion event. Until now, several important mammal-infecting genera have been absent in these analyses. This study focuses on the evolutionary origin of Polychromophilus, a unique malaria genus that only infects bats (Microchiroptera and is transmitted by bat flies (Nycteribiidae. Methods Two species of Polychromophilus were obtained from wild bats caught in Switzerland. These were molecularly characterized using four genes (asl, clpc, coI, cytb from the three different genomes (nucleus, apicoplast, mitochondrion. These data were then combined with data of 60 taxa of Haemosporida available in GenBank. Bayesian inference, maximum likelihood and a range of rooting methods were used to test specific hypotheses concerning the phylogenetic relationships between Polychromophilus and the other haemosporidian genera. Results The Polychromophilus melanipherus and Polychromophilus murinus samples show genetically distinct patterns and group according to species. The Bayesian tree topology suggests that the monophyletic clade of Polychromophilus falls within the avian/saurian clade of Plasmodium and directed hypothesis testing confirms the Plasmodium origin. Conclusion Polychromophilus' ancestor was most likely a bird- or reptile-infecting Plasmodium before it switched to bats. The invasion of mammals as hosts has, therefore, not been a unique event in the evolutionary history of Haemosporida, despite the suspected costs of adapting to a new host. This was, moreover, accompanied by a switch in dipteran host.

  2. submitter Metabolomic Profile of Low–Copy Number Carriers at the Salivary α-Amylase Gene Suggests a Metabolic Shift Toward Lipid-Based Energy Production

    CERN Document Server

    Arredouani, Abdelilah; Culeddu, Nicola; Moustafa, Julia El-Sayed; Tichet, Jean; Balkau, Beverley; Brousseau, Thierry; Manca, Marco; Falchi, Mario

    2016-01-01

    Low serum salivary amylase levels have been associated with a range of metabolic abnormalities, including obesity and insulin resistance. We recently suggested that a low copy number at the AMY1 gene, associated with lower enzyme levels, also increases susceptibility to obesity. To advance our understanding of the effect of AMY1 copy number variation on metabolism, we compared the metabolomic signatures of high– and low–copy number carriers. We analyzed, using mass spectrometry and nuclear magnetic resonance (NMR), the sera of healthy normal-weight women carrying either low–AMY1 copies (LAs: four or fewer copies; n = 50) or high–AMY1 copies (HAs: eight or more copies; n = 50). Best-fitting multivariate models (empirical P < 1 × $10^{−3})$ of mass spectrometry and NMR data were concordant in showing differences in lipid metabolism between the two groups. In particular, LA carriers showed lower levels of long- and medium-chain fatty acids, and higher levels of dicarboxylic fatty acids and 2-hydrox...

  3. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki-Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior.

    Science.gov (United States)

    Heck, Detlef H; Gu, Wenli; Cao, Ying; Qi, Shuhua; Lacaria, Melanie; Lupski, James R

    2012-11-01

    A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.

  4. Crowd Synchrony and Quorum Sensing in Delay-Coupled Lasers

    Science.gov (United States)

    Zamora-Munt, Jordi; Masoller, C.; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-12-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are nonidentical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  5. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  6. SPIKY: A graphical user interface for monitoring spike train synchrony

    CERN Document Server

    Bozanic, Nebojsa

    2014-01-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface which facilitates the applicati...

  7. Dispersal and noise: Various modes of synchrony in ecological oscillators

    KAUST Repository

    Bressloff, Paul C.

    2012-10-21

    We use the theory of noise-induced phase synchronization to analyze the effects of dispersal on the synchronization of a pair of predator-prey systems within a fluctuating environment (Moran effect). Assuming that each isolated local population acts as a limit cycle oscillator in the deterministic limit, we use phase reduction and averaging methods to derive a Fokker-Planck equation describing the evolution of the probability density for pairwise phase differences between the oscillators. In the case of common environmental noise, the oscillators ultimately synchronize. However the approach to synchrony depends on whether or not dispersal in the absence of noise supports any stable asynchronous states. We also show how the combination of partially correlated noise with dispersal can lead to a multistable steady-state probability density. © 2012 Springer-Verlag Berlin Heidelberg.

  8. Crowd synchrony and quorum sensing in delay-coupled lasers

    CERN Document Server

    Zamora-Munt, Jordi; Garcia-Ojalvo, Jordi; Roy, Rajarshi

    2010-01-01

    Crowd synchrony and quorum sensing arise when a large number of dynamical elements communicate with each other via a common information pool. Previous evidence in different fields, including chemistry, biology and civil engineering, has shown that this type of coupling leads to synchronization, when coupling is instantaneous and the number of coupled elements is large enough. Here we consider a situation in which the transmission of information between the system components and the coupling pool is not instantaneous. To that end, we model a system of semiconductor lasers optically coupled to a central laser with a delay. Our results show that, even though the lasers are non-identical due to their distinct optical frequencies, zero-lag synchronization arises. By changing a system parameter, we can switch between two different types of synchronization transition. The dependence of the transition with respect to the delay-coupling parameters is studied.

  9. Higher Order Spike Synchrony in Prefrontal Cortex during visual memory

    Directory of Open Access Journals (Sweden)

    Gordon ePipa

    2011-06-01

    Full Text Available Precise temporal synchrony of spike firing has been postulated as an important neuronal mechanism for signal integration and the induction of plasticity in neocortex. As prefrontal cortex plays an important role in organizing memory and executive functions, the convergence of multiple visual pathways onto PFC predicts that neurons should preferentially synchronize their spiking when stimulus information is processed. Furthermore, synchronous spike firing should intensify if memory processes require the induction of neuronal plasticity, even if this is only for short-term. Here we show with multiple simultaneously recorded units in ventral prefrontal cortex that neurons participate in 3 ms precise synchronous discharges distributed across multiple sites separated by at least 500 µm. The frequency of synchronous firing is modulated by behavioral performance and is specific for the memorized visual stimuli. In particular, during the memory period in which activity is not stimulus driven, larger groups of up to 7 sites exhibit performance dependent modulation of their spike synchronization.

  10. SPIKY: a graphical user interface for monitoring spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Mulansky, Mario; Bozanic, Nebojsa

    2015-05-01

    Techniques for recording large-scale neuronal spiking activity are developing very fast. This leads to an increasing demand for algorithms capable of analyzing large amounts of experimental spike train data. One of the most crucial and demanding tasks is the identification of similarity patterns with a very high temporal resolution and across different spatial scales. To address this task, in recent years three time-resolved measures of spike train synchrony have been proposed, the ISI-distance, the SPIKE-distance, and event synchronization. The Matlab source codes for calculating and visualizing these measures have been made publicly available. However, due to the many different possible representations of the results the use of these codes is rather complicated and their application requires some basic knowledge of Matlab. Thus it became desirable to provide a more user-friendly and interactive interface. Here we address this need and present SPIKY, a graphical user interface that facilitates the application of time-resolved measures of spike train synchrony to both simulated and real data. SPIKY includes implementations of the ISI-distance, the SPIKE-distance, and the SPIKE-synchronization (an improved and simplified extension of event synchronization) that have been optimized with respect to computation speed and memory demand. It also comprises a spike train generator and an event detector that makes it capable of analyzing continuous data. Finally, the SPIKY package includes additional complementary programs aimed at the analysis of large numbers of datasets and the estimation of significance levels. Copyright © 2015 the American Physiological Society.

  11. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family

    DEFF Research Database (Denmark)

    Hansen, Martin A; Nielsen, John E; Retelska, Dorota

    2008-01-01

    Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search...... with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths....

  12. Genome-wide gene-based analysis suggests an association between Neuroligin 1 (NLGN1) and post-traumatic stress disorder

    Science.gov (United States)

    Kilaru, V; Iyer, S V; Almli, L M; Stevens, J S; Lori, A; Jovanovic, T; Ely, T D; Bradley, B; Binder, E B; Koen, N; Stein, D J; Conneely, K N; Wingo, A P; Smith, A K; Ressler, K J

    2016-01-01

    Post-traumatic stress disorder (PTSD) develops in only some people following trauma exposure, but the mechanisms differentially explaining risk versus resilience remain largely unknown. PTSD is heritable but candidate gene studies and genome-wide association studies (GWAS) have identified only a modest number of genes that reliably contribute to PTSD. New gene-based methods may help identify additional genes that increase risk for PTSD development or severity. We applied gene-based testing to GWAS data from the Grady Trauma Project (GTP), a primarily African American cohort, and identified two genes (NLGN1 and ZNRD1-AS1) that associate with PTSD after multiple test correction. Although the top SNP from NLGN1 did not replicate, we observed gene-based replication of NLGN1 with PTSD in the Drakenstein Child Health Study (DCHS) cohort from Cape Town. NLGN1 has previously been associated with autism, and it encodes neuroligin 1, a protein involved in synaptogenesis, learning, and memory. Within the GTP dataset, a single nucleotide polymorphism (SNP), rs6779753, underlying the gene-based association, associated with the intermediate phenotypes of higher startle response and greater functional magnetic resonance imaging activation of the amygdala, orbitofrontal cortex, right thalamus and right fusiform gyrus in response to fearful faces. These findings support a contribution of the NLGN1 gene pathway to the neurobiological underpinnings of PTSD.

  13. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder ( Platichthys flesus )

    DEFF Research Database (Denmark)

    Larsen, Peter Foged; Eg Nielsen, Einar; Williams, T.D.

    2008-01-01

    mimicking natural salinities in the North Sea and the Baltic Sea. Applying real-time quantitative PCR and microarray analysis we studied expression of four candidate genes (hsp70, angiotensinogen, Na/K-ATPase-alpha and 5-aminolevulinic acid synthase (ALAS)) in gill, kidney and liver tissues. Genes involved...

  14. Close linkage of the mouse and human CD3. gamma. - and delta-chain genes suggests that their transcription is controlled by common regulatory elements

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H.; Koyama, T.; Georgopoulos, K.; Clevers, H.; Haser, W.G.; LeBien, T.; Tonegawa, S.; Terhorst, C.

    1987-12-01

    Antigen receptors on the T-cell surface are noncovalently associated with at least four invariant polypeptide chains, CD3-..gamma.., -delta, -epsilon, and -zeta. The mouse CD3-..gamma.. gene, consisting of seven exons, was found to be highly homologous to the CD3-..gamma.. described earlier. Both the high level of sequence homology and the exon/intron organization indicate that the CD3-..gamma.. and -delta genes arose by gene duplication. Surprisingly, murine and human genomic DNA clones could be isolated that contained elements of both the CD3-..gamma.. and CD3-delta genes. In fact, the putative transcription start site of the mouse CD3-..gamma.. gene is less than 1.4 kilobases from the transcription initiation site of the mouse CD3-delta gene. Common elements that regulate the divergent transcription of the two genes are therefore proposed to be located in the intervening 1.4-kilobase DNA segment. This might contribute to the coordinate expression of the CD3-..gamma.. and -delta genes during intrathymic maturation of T lymphocytes.

  15. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction.

    Science.gov (United States)

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in 'Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed.

  16. Expression Profiling of FLOWERING LOCUS T-Like Gene in Alternate Bearing ‘Hass' Avocado Trees Suggests a Role for PaFT in Avocado Flower Induction

    Science.gov (United States)

    Ziv, Dafna; Zviran, Tali; Zezak, Oshrat; Samach, Alon; Irihimovitch, Vered

    2014-01-01

    In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in ‘Hass' avocado (Persea americana). De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded) and off (fruit-lacking) trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s) by which fruit crop might repress PaFT expression, are discussed. PMID:25330324

  17. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction.

    Directory of Open Access Journals (Sweden)

    Dafna Ziv

    Full Text Available In many perennials, heavy fruit load on a shoot decreases the ability of the plant to undergo floral induction in the following spring, resulting in a pattern of crop production known as alternate bearing. Here, we studied the effects of fruit load on floral determination in 'Hass' avocado (Persea americana. De-fruiting experiments initially confirmed the negative effects of fruit load on return to flowering. Next, we isolated a FLOWERING LOCUS T-like gene, PaFT, hypothesized to act as a phloem-mobile florigen signal and examined its expression profile in shoot tissues of on (fully loaded and off (fruit-lacking trees. Expression analyses revealed a strong peak in PaFT transcript levels in leaves of off trees from the end of October through November, followed by a return to starting levels. Moreover and concomitant with inflorescence development, only off buds displayed up-regulation of the floral identity transcripts PaAP1 and PaLFY, with significant variation being detected from October and November, respectively. Furthermore, a parallel microscopic study of off apical buds revealed the presence of secondary inflorescence axis structures that only appeared towards the end of November. Finally, ectopic expression of PaFT in Arabidopsis resulted in early flowering transition. Together, our data suggests a link between increased PaFT expression observed during late autumn and avocado flower induction. Furthermore, our results also imply that, as in the case of other crop trees, fruit-load might affect flowering by repressing the expression of PaFT in the leaves. Possible mechanism(s by which fruit crop might repress PaFT expression, are discussed.

  18. Effects of flowering phenology and synchrony on the reproductive success of a long-flowering shrub

    OpenAIRE

    Rodríguez-Pérez, Javier; Traveset, Anna

    2016-01-01

    Flowering phenology and synchrony with biotic and abiotic resources are crucial traits determining the reproductive success in insect-pollinated plants. In seasonal climates, plants flowering for long periods should assure reproductive success when resources are more predictable. In this work, we evaluated the relationship between flowering phenology and synchrony and reproductive success in Hypericum balearicum, a shrub flowering all year round but mainly during spring and summer. We studied...

  19. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV suggest preventive drug candidates.

    Directory of Open Access Journals (Sweden)

    Paloma Encinas

    Full Text Available Spring viremia carp virus (SVCV is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections. We have used newly designed pathway-targeted microarrays 3-4-fold enriched for immune/infection functional-relevant probes by using zebrafish orthologous to human genes from selected pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG. The comparative analysis of differential expression of genes through 20 pathways in 2-day exposed or 30-day survivors of SVCV infection allowed the identification of 16 multipath genes common to more than 6 pathways. In addition, receptors (Toll-like, B-cell, T-cell, RIG1-like as well as viral RNA infection pathways were identified as the most important human-like pathways targeted by SVCV infection. Furthermore, by using bioinformatic tools to compare the promoter sequences corresponding to up and downregulated multipath gene groups, we identified putative common transcription factors which might be controlling such responses in a coordinated manner. Possible drug candidates to be tested in fish, can be identified now through search of data bases among those associated with the human orthologous to the zebrafish multipath genes. With the use of pathway-targeted microarrays, we identified some of the most important genes and transcription factors which might be implicated in viral shutoff and/or host survival responses after SVCV infection. These results could contribute to develop novel drug-based prevention methods and consolidate the zebrafish/SVCV as a

  20. Characterization of the doublesex gene within the Culex pipiens complex suggests regulatory plasticity at the base of the mosquito sex determination cascade

    OpenAIRE

    Price, Dana C.; Egizi, Andrea; Dina M Fonseca

    2015-01-01

    Background The doublesex gene controls somatic sexual differentiation of many metazoan species, including the malaria mosquito Anopheles gambiae and the dengue and yellow fever vector Aedes aegypti (Diptera: Culicidae). As in other studied dipteran dsx homologs, the gene maintains functionality via evolutionarily conserved protein domains and sex-specific alternative splicing. The upstream factors that regulate splicing of dsx and the manner in which they do so however remain variable even am...

  1. Identification of multipath genes differentially expressed in pathway-targeted microarrays in zebrafish infected and surviving spring viremia carp virus (SVCV) suggest preventive drug candidates.

    Science.gov (United States)

    Encinas, Paloma; Garcia-Valtanen, Pablo; Chinchilla, Blanca; Gomez-Casado, Eduardo; Estepa, Amparo; Coll, Julio

    2013-01-01

    Spring viremia carp virus (SVCV) is a rhabdovirus seasonally affecting warm-water cyprinid fish farming causing high impacts in worldwide economy. Because of the lack of effective preventive treatments, the identification of multipath genes involved in SVCV infection might be an alternative to explore the possibilities of using drugs for seasonal prevention of this fish disease. Because the zebrafish (Danio rerio) is a cyprinid susceptible to SVCV and their genetics and genome sequence are well advanced, it has been chosen as a model for SVCV infections. We have used newly designed pathway-targeted microarrays 3-4-fold enriched for immune/infection functional-relevant probes by using zebrafish orthologous to human genes from selected pathways of the Kyoto Encyclopedia of Genes and Genomes (KEGG). The comparative analysis of differential expression of genes through 20 pathways in 2-day exposed or 30-day survivors of SVCV infection allowed the identification of 16 multipath genes common to more than 6 pathways. In addition, receptors (Toll-like, B-cell, T-cell, RIG1-like) as well as viral RNA infection pathways were identified as the most important human-like pathways targeted by SVCV infection. Furthermore, by using bioinformatic tools to compare the promoter sequences corresponding to up and downregulated multipath gene groups, we identified putative common transcription factors which might be controlling such responses in a coordinated manner. Possible drug candidates to be tested in fish, can be identified now through search of data bases among those associated with the human orthologous to the zebrafish multipath genes. With the use of pathway-targeted microarrays, we identified some of the most important genes and transcription factors which might be implicated in viral shutoff and/or host survival responses after SVCV infection. These results could contribute to develop novel drug-based prevention methods and consolidate the zebrafish/SVCV as a model for

  2. Mate guarding and territorial aggression vary with breeding synchrony in golden whistlers ( Pachycephala pectoralis)

    Science.gov (United States)

    van Dongen, Wouter F. D.

    2008-06-01

    Male paternity assurance behaviour during the female fertile period has been widely documented amongst birds. In contrast, how sex-specific behavioural strategies vary with local breeding synchrony levels remains largely unknown. This is important because, in many species, intra-population patterns of extra-pair fertilisation rates, and hence cuckoldry risk, are known to vary with the number of simultaneously fertile females. Each sex may therefore differ in how they behave towards male conspecifics during different degrees of breeding synchrony. Here I provide evidence of such sex-specific differences in the golden whistler ( Pachycephala pectoralis), a species in which within-pair paternity assurance is negatively associated with breeding synchrony. Via simulated territorial intrusions using decoy males, I show that males, but not females, increase levels of aggression to male intruders during periods of low synchrony, possibly because cuckoldry risk is greatest during this period. In addition, males appear to invest more effort into mate guarding after, but not before, territorial intrusions during this period. These inter-sexual differences may reflect conflicts in interest between the sexes, with females consistently showing interest in males during the fertile period regardless of synchrony levels and males investing more resources into expelling intruders when the risk of paternity loss is greatest. This study thus provides evidence that males may be able to detect variation in breeding synchrony and cuckoldry risk and adjust their paternity assurance behaviour accordingly.

  3. Oxytocin enhances inter-brain synchrony during social coordination in male adults.

    Science.gov (United States)

    Mu, Yan; Guo, Chunyan; Han, Shihui

    2016-12-01

    Recent brain imaging research has revealed oxytocin (OT) effects on an individual's brain activity during social interaction but tells little about whether and how OT modulates the coherence of inter-brain activity related to two individuals' coordination behavior. We developed a new real-time coordination game that required two individuals of a dyad to synchronize with a partner (coordination task) or with a computer (control task) by counting in mind rhythmically. Electroencephalography (EEG) was recorded simultaneously from a dyad to examine OT effects on inter-brain synchrony of neural activity during interpersonal coordination. Experiment 1 found that dyads showed smaller interpersonal time lags of counting and greater inter-brain synchrony of alpha-band neural oscillations during the coordination (vs control) task and these effects were reliably observed in female but not male dyads. Moreover, the increased alpha-band inter-brain synchrony predicted better interpersonal behavioral synchrony across all participants. Experiment 2, using a double blind, placebo-controlled between-subjects design, revealed that intranasal OT vs placebo administration in male dyads improved interpersonal behavioral synchrony in both the coordination and control tasks but specifically enhanced alpha-band inter-brain neural oscillations during the coordination task. Our findings provide first evidence that OT enhances inter-brain synchrony in male adults to facilitate social coordination. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Measuring Group Synchrony: A Cluster-Phase Method for Analyzing Multivariate Movement Time-Series

    Directory of Open Access Journals (Sweden)

    Michael eRichardson

    2012-10-01

    Full Text Available A new method for assessing group synchrony is introduced as being potentially useful for objectively determining degree of group cohesiveness or entitativity. The cluster-phase method of Frank and Richardson (2010 was used to analyze movement data from the rocking chair movements of six-member groups who rocked their chairs while seated in a circle facing the center. In some trials group members had no information about others’ movements (their eyes were shut or they had their eyes open and gazed at a marker in the center of the group. As predicted, the group level synchrony measure was able to distinguish between situations where synchrony would have been possible and situations where it would be impossible. Moreover, other aspects of the analysis illustrated how the cluster phase measures can be used to determine the type of patterning of group synchrony, and, when integrated with multi-level modeling, can be used to examine individual-level differences in synchrony and dyadic level synchrony as well.

  5. Estrous synchrony in a group of African elephants (Loxodonta africana) under human care.

    Science.gov (United States)

    Weissenböck, Nicole M; Schwammer, Harald M; Ruf, Thomas

    2009-07-01

    Synchrony of estrous, and consequently of conception and birth of young, may be of adaptive significance for certain mammals. Among the species in which estrous synchrony has been suspected several times are elephants, but clear evidence is still missing. We determined estrous cycles of African elephants (Loxodonta africana) (n=4) at the Vienna Zoo, Austria, between June 2003 and January 2006 by measuring serum progesterone levels from weekly blood samples. Except for the dominant female when she was intensively lactating, all animals showed clear cycles or progesterone release with a mean period of 105.3+/-15.37 days. For most of the study period, estrous cycles were asynchronous between females. However, after re-occurrence of the progesterone cycle in the dominant female following the first period of lactation, all four females showed high synchrony of progesterone release over the two subsequent cycles. Large changes in individual period lengths indicated that synchronization was due to the adjustment of cycle length in subdominants to that of the dominant female. We used a bootstrap procedure, based on resampling measured times of progesterone peaks, to determine if this apparent synchrony could have been caused by chance alone. This statistical analysis indicated that between-individual variances of the timing of progesterone peaks were much smaller that to be expected by chance (P=0.009). This finding represents the first evidence for estrous synchrony between elephants. We discuss various hypotheses to explain the biological function of cycle synchrony in elephants.

  6. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression.

    Science.gov (United States)

    Li, Jie; Overall, Christopher C; Nakayasu, Ernesto S; Kidwai, Afshan S; Jones, Marcus B; Johnson, Rudd C; Nguyen, Nhu T; McDermott, Jason E; Ansong, Charles; Heffron, Fred; Cambronne, Eric D; Adkins, Joshua N

    2015-01-01

    The extracytoplasmic functioning sigma factor σ(E) is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σ(E) in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ(E) regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ(E) in at least one of the three conditions. An important finding is that σ(E) up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ(E) is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ(E) and SPI-2 genes, combined with the global regulatory effect of σ(E), may account for the lethality of rpoE-deficient Salmonella in murine infection.

  7. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment.

    Science.gov (United States)

    Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J

    2013-06-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.

  8. Oscillatory neurocomputing with ring attractors: a network architecture for mapping locations in space onto patterns of neural synchrony.

    Science.gov (United States)

    Blair, Hugh T; Wu, Allan; Cong, Jason

    2014-02-01

    Theories of neural coding seek to explain how states of the world are mapped onto states of the brain. Here, we compare how an animal's location in space can be encoded by two different kinds of brain states: population vectors stored by patterns of neural firing rates, versus synchronization vectors stored by patterns of synchrony among neural oscillators. It has previously been shown that a population code stored by spatially tuned 'grid cells' can exhibit desirable properties such as high storage capacity and strong fault tolerance; here it is shown that similar properties are attainable with a synchronization code stored by rhythmically bursting 'theta cells' that lack spatial tuning. Simulations of a ring attractor network composed from theta cells suggest how a synchronization code might be implemented using fewer neurons and synapses than a population code with similar storage capacity. It is conjectured that reciprocal connections between grid and theta cells might control phase noise to correct two kinds of errors that can arise in the code: path integration and teleportation errors. Based upon these analyses, it is proposed that a primary function of spatially tuned neurons might be to couple the phases of neural oscillators in a manner that allows them to encode spatial locations as patterns of neural synchrony.

  9. Phenological synchrony between Scaphoideus titanus (Hemiptera: Cicadellidae) hatchings and grapevine bud break: could this explain the insect's expansion?

    Science.gov (United States)

    Chuche, J; Desvignes, E; Bonnard, O; Thiéry, D

    2015-02-01

    Scaphoideus titanus is the invasive vector of the phytoplasma causing the Flavescence dorée in European vineyards. This epidemic is a serious threat to viticulture that has been increasing for more than 60 years in Europe. We studied the effect of synchrony with the plant phenology and the effect of plant-sap quality on the individual fitness. Thus, we conducted laboratory experiments to determine if insect hatchings were synchronized with grapevine bud break. We used two natural populations: one from a cold winter vineyard and one from a mild winter vineyard. In both cases, egg hatching was synchronized with bud break and leaf appearance. The phloem quality of the young and old leaves as a food source was analysed by high-performance liquid chromatography, and the effects on S. titanus growth were evaluated. Phloem composition varied with the grapevine cutting's age but also varied between leaves of different ages from the same plant. The older leaves were less nutritious because they had the highest carbon-to-nitrogen ratio and the lowest content of essential amino acids. Despite diverse phloem qualities, no fitness difference was observed. We found that the synchronization of egg hatchings with bud break is well regulated. However, the nymphs are not affected by the phloem-sap quality, suggesting that S. titanus may accept different food qualities and that egg hatching synchrony could contribute to population expansion in vineyards.

  10. Evolutionary reversion of editing sites of ndh genes suggests their origin in the Permian-Triassic, before the increase of atmospheric CO2

    Directory of Open Access Journals (Sweden)

    Mercedes eMartin

    2015-07-01

    Full Text Available The plastid ndh genes have hovered frequently on the edge of dispensability. They are absent in the plastid DNA of many algae and certain higher plants and present editing sites requiring C-to-U corrections of primary transcripts. The evolutionary origin of editing sites and their loss due to C-to-T reversions at the DNA level are unknown and must be related to the dispensability of the ndh genes in specific environments. In order to better understand the evolution of ndh gene editing sites, we have created expandable data banks with the 12 editing sites of the ndhB gene (600 GenBank sequences and both editing sites of the ndhF gene (1,600 GenBank sequences. Since their origin via T-to-C mutations that probably occurred between 300 and 200 Myr BP (Permian-Triassic, ndh editing sites have undergone independent and random C-to-T reversions in the different angiosperm lineages. Some of these reversions appear early in angiosperm diversification. Old C-to-T reversions can be traced back to radiation steps that gave origin to main classes, orders and some families.

  11. Verbs in Mothers' Input to Six-Month-Olds: Synchrony between Presentation, Meaning, and Actions Is Related to Later Verb Acquisition.

    Science.gov (United States)

    Nomikou, Iris; Koke, Monique; Rohlfing, Katharina J

    2017-04-29

    In embodied theories on language, it is widely accepted that experience in acting generates an expectation of this action when hearing the word for it. However, how this expectation emerges during language acquisition is still not well understood. Assuming that the intermodal presentation of information facilitates perception, prior research had suggested that early in infancy, mothers perform their actions in temporal synchrony with language. Further research revealed that this synchrony is a form of multimodal responsive behavior related to the child's later language development. Expanding on these findings, this article explores the relationship between action-language synchrony and the acquisition of verbs. Using qualitative and quantitative methods, we analyzed the coordination of verbs and action in mothers' input to six-month-old infants and related these maternal strategies to the infants' later production of verbs. We found that the verbs used by mothers in these early interactions were tightly coordinated with the ongoing action and very frequently responsive to infant actions. It is concluded that use of these multimodal strategies could significantly predict the number of spoken verbs in infants' vocabulary at 24 months.

  12. Verbs in Mothers’ Input to Six-Month-Olds: Synchrony between Presentation, Meaning, and Actions Is Related to Later Verb Acquisition

    Directory of Open Access Journals (Sweden)

    Iris Nomikou

    2017-04-01

    Full Text Available In embodied theories on language, it is widely accepted that experience in acting generates an expectation of this action when hearing the word for it. However, how this expectation emerges during language acquisition is still not well understood. Assuming that the intermodal presentation of information facilitates perception, prior research had suggested that early in infancy, mothers perform their actions in temporal synchrony with language. Further research revealed that this synchrony is a form of multimodal responsive behavior related to the child’s later language development. Expanding on these findings, this article explores the relationship between action–language synchrony and the acquisition of verbs. Using qualitative and quantitative methods, we analyzed the coordination of verbs and action in mothers’ input to six-month-old infants and related these maternal strategies to the infants’ later production of verbs. We found that the verbs used by mothers in these early interactions were tightly coordinated with the ongoing action and very frequently responsive to infant actions. It is concluded that use of these multimodal strategies could significantly predict the number of spoken verbs in infants’ vocabulary at 24 months.

  13. Meta-analysis of gene expression patterns in animal models of prenatal alcohol exposure suggests role for protein synthesis inhibition and chromatin remodeling

    Science.gov (United States)

    Rogic, Sanja; Wong, Albertina; Pavlidis, Paul

    2017-01-01

    Background Prenatal alcohol exposure (PAE) can result in an array of morphological, behavioural and neurobiological deficits that can range in their severity. Despite extensive research in the field and a significant progress made, especially in understanding the range of possible malformations and neurobehavioral abnormalities, the molecular mechanisms of alcohol responses in development are still not well understood. There have been multiple transcriptomic studies looking at the changes in gene expression after PAE in animal models, however there is a limited apparent consensus among the reported findings. In an effort to address this issue, we performed a comprehensive re-analysis and meta-analysis of all suitable, publically available expression data sets. Methods We assembled ten microarray data sets of gene expression after PAE in mouse and rat models consisting of samples from a total of 63 ethanol-exposed and 80 control animals. We re-analyzed each data set for differential expression and then used the results to perform meta-analyses considering all data sets together or grouping them by time or duration of exposure (pre- and post-natal, acute and chronic, respectively). We performed network and Gene Ontology enrichment analysis to further characterize the identified signatures. Results For each sub-analysis we identified signatures of differential expressed genes that show support from multiple studies. Overall, the changes in gene expression were more extensive after acute ethanol treatment during prenatal development than in other models. Considering the analysis of all the data together, we identified a robust core signature of 104 genes down-regulated after PAE, with no up-regulated genes. Functional analysis reveals over-representation of genes involved in protein synthesis, mRNA splicing and chromatin organization. Conclusions Our meta-analysis shows that existing studies, despite superficial dissimilarity in findings, share features that allow us

  14. A Framework for Group Key Management Protocol Assessment Independent of View Synchrony

    Directory of Open Access Journals (Sweden)

    David Manz

    2010-01-01

    Full Text Available Problem statement: As group key management extended into the area of large dynamic networks, complex issues emerged involving the many operations that run over several network topologies. The issues that occurred due to multiple topologies were also compounded by differing views of the network, taken at different time slices or positions within the network. This was especially complex when figuring in mobile, ad-hoc networks. View synchrony is the current operational technique, or assumption, applied to group key exchange protocols. However, before this analysis view synchrony was just that, an assumption and the literature for group key exchange lacked an inquiry into what could happen when view synchrony was removed. Current group key management protocols rely on view synchrony and yet all protocols vary in requisite operational descriptions and performance measures. In this study, a framework for group key management protocol operations and performance measures was defined and examined how that framework could be used to compare and contrast existing protocols with and, more importantly, without view synchrony. Approach: Current literature lacked categories by which to quantify the performance metric of the protocols. This study first defined the dynamic key operations that all protocols share. By these definitions, group key management protocols were directly compared. Once definitions existed, this study assembled a list of costs that every protocol requires to establish and share keys across the dynamic group. These results provided an understanding of view synchrony's role and whether or not it should be solely relied on in these current protocols. Results: The prior conclusion that view synchrony was an integral part of all group key management protocols was shattered, when seen through the lens of communication costs and assumptions in wireless ad-hoc networks. View synchrony, as an assumed part of all group key management was

  15. Molecular data from the chloroplast rpoC1 gene suggest a deep and distinct dichotomy of contemporary spermatophytes into two monophyla: gymnosperms (including Gnetales) and angiosperms.

    Science.gov (United States)

    Samigullin, T K; Martin, W F; Troitsky, A V; Antonov, A S

    1999-09-01

    Partial sequences of the rpoC1 gene from two species of angiosperms and three species of gymnosperms (8330 base pairs) were determined and compared. The data obtained support the hypothesis that angiosperms and gymnosperms are monophyletic and none of the recent groups of the latter is sister to angiosperms.

  16. A large candidate-gene association study suggests genetic variants at IRF5 and PRDM1 to be associated with aggressive periodontitis

    NARCIS (Netherlands)

    Schaefer, Arne S.; Jochens, Arne; Dommisch, Henrik; Graetz, Christian; Jockel-Schneider, Yvonne; Harks, Inga; Staufenbiel, Ingmar; Meyle, Joerg; Eickholz, Peter; Folwaczny, Mathias; Laine, Marja; Noack, Barbara; Wijmenga, Cisca; Lieb, Wolfgang; Bruckmann, Corinna; Schreiber, Stefan; Jepsen, Soren; Loos, Bruno G.

    2014-01-01

    Aim: Epidemiological and clinical studies indicated a relationship of periodontitis with rheumatoid arthritis (RA). We aimed to identify shared genetic susceptibility loci of RA and periodontitis. Materials and Methods: Forty-seven risk genes of genome-wide significance of RA and SLE were genotyped

  17. A large candidate-gene association study suggests genetic variants at IRF5 and PRDM1 to be associated with aggressive periodontitis

    NARCIS (Netherlands)

    Schaefer, A.S.; Jochens, A.; Dommisch, H.; Graetz, C.; Jockel-Schneider, Y.; Harks, I.; Staufenbiel, I.; Meyle, J.; Eickholz, P.; Folwaczny, M.; Laine, M.; Noack, B.; Wijmenga, C.; Lieb, W.; Bruckmann, C.; Schreiber, S.; Jepsen, S.; Loos, B.G.

    2014-01-01

    Aim Epidemiological and clinical studies indicated a relationship of periodontitis with rheumatoid arthritis (RA). We aimed to identify shared genetic susceptibility loci of RA and periodontitis. Materials and Methods Forty-seven risk genes of genome-wide significance of RA and SLE were genotyped in

  18. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoes, Martin; Kilstrup, Mogens; Roepstorff, P.;

    2002-01-01

    strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG 1363 and the gapA overexpressing strain the GAPDH activity...

  19. The complex translocation (9;14;14 involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Rachid Zerrouki

    2016-03-01

    Full Text Available Abstract Many subtypes of acute lymphoblastic leukemia (ALL are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14, a variant of the translocation (14;14(q11;q32, is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH and CCAAT enhancer-binding protein (CEBPE genes in B-lineage ALL (B-ALL and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9(p21,t(14;14(q11;q32. FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC probes showed a complex t(9;14;14 associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A and paired box gene 5 (PAX5 at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  20. Multi-locus molecular phylogeny and allelic variation in a transcription factor gene suggest the multiple independent origins of kabuli chickpea

    Science.gov (United States)

    To examine the patterns of molecular diversity in wild crop relatives and the cultivated gene pool of chickpea we genotyped a set of 98 wild annual and 224 cultivated accessions with a 768 feature assay that monitored SNPs in low-copy orthologous loci. Analyses of the resulting multi-locus genotypin...

  1. CNS expression pattern of Lmx1b and coexpression with Ptx genes suggest functional cooperativity in the development of forebrain motor control systems

    NARCIS (Netherlands)

    Asbreuk, CHJ; Vogelaar, CF; Hellemons, A; Smidt, MP; Burbach, JPH

    2002-01-01

    In the central nervous system, acquisition of regional specification is an important developmental process. The regional specification is reflected by restricted and overlapping expression of homeobox genes, which are regulators of this event. Here, we detail the expression pattern of Lmx1b during l

  2. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    , the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced...

  3. Time series analysis of benzo[a]pyrene-induced transcriptome changes suggests that a network of transcription factors regulates the effects on functional gene sets

    NARCIS (Netherlands)

    Delft, J.H.M. van; Mathijs, K.; Staal, Y.C.M.; Herwijnen, M.H.M. van; Brauers, K.J.J.; Boorsma, A.; Kleinjans, J.C.S.

    2010-01-01

    Chemical carcinogens may cause a multitude of effects inside cells, thereby affecting transcript levels of genes by direct activation of transcription factors (TF) or indirectly through the formation of DNA damage. As the temporal profiles of these responses may be profoundly different, examining ti

  4. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2

    NARCIS (Netherlands)

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch

  5. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo.

    Directory of Open Access Journals (Sweden)

    Anna Thorfve

    Full Text Available Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+. The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid (PLGA implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway.

  6. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species.

    Science.gov (United States)

    Liu, Junli; Liu, Jianjian; Chen, Aiqun; Ji, Minjie; Chen, Jiadong; Yang, Xiaofeng; Gu, Mian; Qu, Hongye; Xu, Guohua

    2016-10-01

    In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.

  7. Movement Synchrony Forges Social Bonds Across Group Divides

    Directory of Open Access Journals (Sweden)

    Bahar eTuncgenc

    2016-05-01

    Full Text Available Group dynamics play an important role in the social interactions of both children and adults. A large amount of research has shown that merely being allocated to arbitrarily defined groups can evoke disproportionately positive attitudes toward one’s in-group and negative attitudes toward out-groups, and that these biases emerge in early childhood. This prompts important empirical questions with far-reaching theoretical and applied significance. How robust are these inter-group biases? Can biases be mitigated by behaviors known to bond individuals and groups together? How can bonds be forged across existing group divides? To explore these questions, we examined the bonding effects of interpersonal synchrony on minimally constructed groups in a controlled experiment. In-group and out-group bonding were assessed using questionnaires administered before and after a task in which groups performed movements either synchronously or non-synchronously in a between-participants design. We also developed an implicit behavioral measure, the Island Game, in which physical proximity was used as an indirect measure of interpersonal closeness. Self-report and behavioral measures showed increased bonding between groups after synchronous movement. Bonding with the out-group was significantly higher in the condition in which movements were performed synchronously than when movements were performed non-synchronously between groups. The findings are discussed in terms of their importance for the developmental social psychology of group dynamics as well as their implications for applied intervention programs.

  8. Interaction between Olfaction and Gustation by Using Synchrony Perception Task

    Directory of Open Access Journals (Sweden)

    Tatsu Kobayakawa

    2011-10-01

    Full Text Available It seems that interaction between olfaction (smell sensation and gustation (taste sensation will stronger than other interactions among five senses, although no one has ever confirmed psychophysically. In this study, we utilized synchrony perception task to confirm this specificity comparing control condition, interaction between vision and olfaction and one between vision and gustation. We used NaCl as taste stimuli and flavor from bubbling chicken stock as olfactory stimuli. We used taste stimulator which was able to present pure gustation without tactile stimuli, and smell stimulator with original developed real time stimulus monitoring. We used LED for vision stimuli. Timing of both stimuli was shifted from −1000 ms to +1000ms with each other, and participants were instructed to judge synchronicity. Control conditions revealed that olfaction and gustation has almost equivalent temporal resolution to other sensations. And probability distribution between olfaction and gustation was quite different from other interactions including vision. These results shows interaction between olfaction and gustation is more specific.

  9. Ising-like patterns of spatial synchrony in population biology

    Science.gov (United States)

    Noble, Andrew; Hastings, Alan; Machta, Jon

    2014-03-01

    Systems of coupled dynamical oscillators can undergo a phase transition between synchronous and asynchronous phases. In the case of coupled map lattices, the spontaneous symmetry breaking of a temporal-phase order parameter is known to exhibit Ising-like critical behavior. Here, we investigate a noisy coupled map motivated by the study of spatial synchrony in ecological populations far from the extinction threshold. Ising-like patterns of criticality, as well as spinodal decomposition and homogeneous nucleation, emerge from the nonlinear interactions of environmental fluctuations in habitat quality, local density-dependence in reproduction, and dispersal. In the mean-field limit, the correspondence to the Ising model is exact: the fixed points of our dynamical system are given by the equation of state for Weiss mean-field theory under an appropriate mapping of parameters. We have strong evidence that a quantitative correspondence persists, both near and far from the critical point, in the presence of fluctuations. Our results provide a formal connection between equilibrium statistical physics and population biology. This work is supported by the National Science Foundation under Grant No. 1344187.

  10. The spatial structure and temporal synchrony of water quality in stream networks

    Science.gov (United States)

    Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles

    2017-04-01

    high variability in the target parameter, which indicates decreased system inertia and demonstrates that alternative system responses are possible. The subcatchment synchrony concept suggests that periodic sampling of headwaters can provide valuable information about pollutant sources and inherent resilience in subcatchments and that if agricultural activity were redistributed based on this assessment of catchment vulnerability to nutrient loading, water quality could be improved while maintaining crop yields.

  11. Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development

    Directory of Open Access Journals (Sweden)

    Jeanne A. Robert

    2016-07-01

    Full Text Available Cold-induced mortality has historically been a key aspect of mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, population control, but little is known about the molecular basis for cold tolerance in this insect. We used RNA-seq analysis to monitor gene expression patterns of mountain pine beetle larvae at four time points during their overwintering period—early-autumn, late-autumn, early-spring, and late-spring. Changing transcript profiles over the winter indicates a multipronged physiological response from larvae that is broadly characterized by gene transcripts involved in insect immune responses and detoxification during the autumn. In the spring, although transcripts associated with developmental process are present, there was no particular biological process dominating the transcriptome.

  12. The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings

    Science.gov (United States)

    Pinheiro, Hudson Tercio; Martins, Agnaldo Silva; Riul, Pablo; Bruno, Soraya Christina; Janzen, Fredric J.

    2016-01-01

    Group formation is a common behaviour among prey species. In egg-laying animals, despite the various factors that promote intra-clutch variation leading to asynchronous hatching and emergence from nests, synchronous hatching and emergence occurs in many taxa. This synchrony may be adaptive by reducing predation risk, but few data are available in any natural system, even for iconic examples of the anti-predator function of group formation. Here, we show for the first time that increased group size (number of hatchlings emerging together from a nest) reduces green turtle (Chelonia mydas) hatchling predation. This effect was only observed earlier in the night when predation pressure was greatest, indicated by the greatest predator abundance and a small proportion of predators preoccupied with consuming captured prey. Further analysis revealed that the effect of time of day was due to the number of hatchlings already killed in an evening; this, along with the apparent lack of other anti-predatory mechanisms for grouping, suggests that synchronous emergence from a nest appears to swamp predators, resulting in an attack abatement effect. Using a system with relatively pristine conditions for turtle hatchlings and their predators provides a more realistic environmental context within which intra-nest synchronous emergence has evolved. PMID:27383817

  13. Spatial synchrony of malaria outbreaks in a highland region of Ethiopia.

    Science.gov (United States)

    Wimberly, Michael C; Midekisa, Alemayehu; Semuniguse, Paulos; Teka, Hiwot; Henebry, Geoffrey M; Chuang, Ting-Wu; Senay, Gabriel B

    2012-10-01

    To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts. © 2012 Blackwell Publishing Ltd.

  14. The consistency of crossmodal synchrony perception across the visual, auditory, and tactile senses.

    Science.gov (United States)

    Machulla, Tonja-Katrin; Di Luca, Massimiliano; Ernst, Marc O

    2016-07-01

    Crossmodal judgments of relative timing commonly yield a nonzero point of subjective simultaneity (PSS). Here, we test whether subjective simultaneity is coherent across all pairwise combinations of the visual, auditory, and tactile modalities. To this end, we examine PSS estimates for transitivity: If Stimulus A has to be presented x ms before Stimulus B to result in subjective simultaneity, and B y ms before C, then A and C should appear simultaneous when A precedes C by z ms, where z = x + y. We obtained PSS estimates via 2 different timing judgment tasks-temporal order judgments (TOJs) and synchrony judgments (SJs)-thus allowing us to examine the relationship between TOJ and SJ. We find that (a) SJ estimates do not violate transitivity, and that (b) TOJ and SJ data are linearly related. Together, these findings suggest that both TOJ and SJ access the same perceptual representation of simultaneity and that this representation is globally coherent across the tested modalities. Furthermore, we find that (b) TOJ estimates are intransitive. This is consistent with the proposal that while the perceptual representation of simultaneity is coherent, relative timing judgments that access this representation can at times be incoherent with each other because of postperceptual response biases. (PsycINFO Database Record

  15. The effects of visual material and temporal synchrony on the processing of letters and speech sounds.

    Science.gov (United States)

    Mittag, Maria; Takegata, Rika; Kujala, Teija

    2011-06-01

    Associating letters with speech sounds is essential for reading skill acquisition. In the current study, we aimed at determining the effects of different types of visual material and temporal synchrony on the integration of letters and speech sounds. To this end, we recorded the mismatch negativity (MMN), an index of automatic change detection in the brain, from literate adults. Subjects were presented with auditory consonant-vowel syllable stimuli together with visual stimuli, which were either written syllables or scrambled pictures of the written syllables. The visual stimuli were presented in half of the blocks synchronously with the auditory stimuli and in the other half 200 ms before the auditory stimuli. The auditory stimuli were consonant, vowel or vowel length changes, or changes in syllable frequency or intensity presented by using the multi-feature paradigm. Changes in the auditory stimuli elicited MMNs in all conditions. MMN amplitudes for the consonant and frequency changes were generally larger for the sounds presented with written syllables than with scrambled syllables. Time delay diminished the MMN amplitude for all deviants. The results suggest that speech sound processing is modulated when the sounds are presented with letters versus non-linguistic visual stimuli, and further, that the integration of letters and speech sounds seems to be dependent on precise temporal alignment. Moreover, the results indicate that with our paradigm, a variety of parameters relevant and irrelevant for reading can be tested within one experiment.

  16. Synchrony between fruit maturation and effective dispersers' foraging activity increases seed protection against seed predators.

    Science.gov (United States)

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2007-10-22

    The evolution of pollination and seed dispersal mutualisms is conditioned by the spatial and temporal co-occurrence of animals and plants. In the present study we explore the timing of seed release of a myrmecochorous plant (Helleborus foetidus) and ant activity in two populations in southern Spain during 2 consecutive years. The results indicate that fruit dehiscence and seed shedding occur mostly in the morning and correspond to the period of maximum foraging activity of the most effective ant dispersers. By contrast, ant species that do not transport seeds and/or that do not abound near the plants are active either before or after H. foetidus diaspores are released. Experimental analysis of diet preference for three kinds of food shows that effective ant dispersers are mostly scavengers that readily feed on insect corpses and sugars. Artificial seed depots suggest that seeds deposited on the ground out of the natural daily time window of diaspore releasing are not removed by ants and suffer strong predation by nocturnal rodents Apodemus sylvaticus. Nevertheless, important inter-annual variations in rodent populations cast doubts on their real importance as selection agents. We argue that traits allowing synchrony between seed presentation and effective partners may constitute a crucial pre-adaptation for the evolution of plant-animal mutualisms involving numerous animal partners.

  17. Preliminary Analysis of the Nonsynonymous Polymorphism rs17563 in BMP4 Gene in Brazilian Population Suggests Protection for Nonsyndromic Cleft Lip and Palate

    Directory of Open Access Journals (Sweden)

    Tânia Kawasaki Araújo

    2012-01-01

    Full Text Available Cleft lip with or without palate (CL±P is common congenital anomalies in humans. Experimental evidence has demonstrated that bone morphogenetic protein 4 gene (Bmp4 is involved in the etiology of CL±P in animal models. The nonsynonymous polymorphism rs17563 T>C (p.V152A in the BMP4 gene has been associated to the risk of nonsyndromic CL±P in Chinese population and microforms from different ethnic backgrounds. The aim of this study was to investigate the role of BMP4 gene in CL±P in Brazilian sample using genetic association approach. Our sample was composed by 123 patients with nonsyndromic CL±P and 246 controls, in which absence of CL±P was confirmed in 3 generations. The rs17563 polymorphism was genotyped by PCR-RFLP technique. Logistic regression was performed to evaluate allele and genotype association. Our data showed statistical power to detect association (86.83% in this sample. Logistic regression results showed significant association between C allele and CL±P (P=0.00018, OR =0.40, and 95% CI = 0.25–0.65, as well as CC genotype and CL±P (P=0.00018, OR =0.35, and 95% CI = 0.19–0.66. So, there is a strong association between nonsyndromic CL±P and BMP4 rs17563 polymorphism in our sample and the C allele had a protective effect against the occurrence of nonsyndromic CL±P.

  18. Infanticide and within-clutch competition select for reproductive synchrony in a cooperative bird.

    Science.gov (United States)

    Riehl, Christina

    2016-08-01

    Reproduction among members of social animal groups is often highly synchronized, but neither the selective advantages nor the proximate causes of synchrony are fully understood. Here I investigate the evolution of hatching synchrony in the Greater Ani (Crotophaga major), a communally nesting bird in which several unrelated females contribute eggs to a large, shared clutch. Hatching synchrony is variable, ranging from complete synchrony to moderate asynchrony, and is determined by the onset of incubation of the communal clutch. Data from a 10-year field study indicate that individual reproductive success is highest in synchronous groups, and that nestlings that hatch in the middle of the hatching sequence are most likely to survive. Nestling mortality is high in asynchronous clutches because early-hatching nestlings are more likely to be killed by adult group members, whereas late-hatching nestlings are more likely to starve due competition with their older nest-mates. Therefore, the timing of hatching appears to be under stabilizing selection from infanticide and resource competition acting in concert. These results provide empirical support for models predicting that synchrony may evolve as an adaptive counter-strategy to infanticide, and they highlight the importance of competition in shaping the timing of reproduction in social groups.

  19. Nonverbal Synchrony in Social Interactions of Patients with Schizophrenia Indicates Socio-Communicative Deficits.

    Science.gov (United States)

    Kupper, Zeno; Ramseyer, Fabian; Hoffmann, Holger; Tschacher, Wolfgang

    2015-01-01

    Disordered interpersonal communication can be a serious problem in schizophrenia. Recent advances in computer-based measures allow reliable and objective quantification of nonverbal behavior. Research using these novel measures has shown that objective amounts of body and head movement in patients with schizophrenia during social interactions are closely related to the symptom profiles of these patients. In addition to and above mere amounts of movement, the degree of synchrony, or imitation, between patients and normal interactants may be indicative of core deficits underlying various problems in domains related to interpersonal communication, such as symptoms, social competence, and social functioning. Nonverbal synchrony was assessed objectively using Motion Energy Analysis (MEA) in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia. Low nonverbal synchrony was indicative of symptoms, low social competence, impaired social functioning, and low self-evaluation of competence. These relationships remained largely significant when correcting for the amounts of patients' movement. When patients showed reduced imitation of their interactants' movements, negative symptoms were likely to be prominent. Conversely, positive symptoms were more prominent in patients when their interaction partners' imitation of their movements was reduced. Nonverbal synchrony can be an objective and sensitive indicator of the severity of patients' problems. Furthermore, quantitative analysis of nonverbal synchrony may provide novel insights into specific relationships between symptoms, cognition, and core communicative problems in schizophrenia.

  20. Nonverbal Synchrony in Social Interactions of Patients with Schizophrenia Indicates Socio-Communicative Deficits.

    Directory of Open Access Journals (Sweden)

    Zeno Kupper

    Full Text Available Disordered interpersonal communication can be a serious problem in schizophrenia. Recent advances in computer-based measures allow reliable and objective quantification of nonverbal behavior. Research using these novel measures has shown that objective amounts of body and head movement in patients with schizophrenia during social interactions are closely related to the symptom profiles of these patients. In addition to and above mere amounts of movement, the degree of synchrony, or imitation, between patients and normal interactants may be indicative of core deficits underlying various problems in domains related to interpersonal communication, such as symptoms, social competence, and social functioning.Nonverbal synchrony was assessed objectively using Motion Energy Analysis (MEA in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia.Low nonverbal synchrony was indicative of symptoms, low social competence, impaired social functioning, and low self-evaluation of competence. These relationships remained largely significant when correcting for the amounts of patients' movement. When patients showed reduced imitation of their interactants' movements, negative symptoms were likely to be prominent. Conversely, positive symptoms were more prominent in patients when their interaction partners' imitation of their movements was reduced.Nonverbal synchrony can be an objective and sensitive indicator of the severity of patients' problems. Furthermore, quantitative analysis of nonverbal synchrony may provide novel insights into specific relationships between symptoms, cognition, and core communicative problems in schizophrenia.

  1. Population synchrony of a native fish across three Laurentian Great Lakes: Evaluating the effects of dispersal and climate

    Science.gov (United States)

    Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.

    2010-01-01

    Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.

  2. Examination of the cell sensitizing gene orf43 of ICE R391 suggests a role in ICE transfer enhancement to recipient cells.

    Science.gov (United States)

    Armshaw, Patricia; Pembroke, J Tony

    2015-02-01

    SXT/R391 family of ICEs have been found to express an unusual function that enhances bacterial cell death post-UV irradiation. Previous analysis of ICE R391 found four core SXT/R391 ICE genes to be involved—orf96, orf90, orf91 and orf43. These genes functioned as part of a UV-inducible pathway, where upon exposure to UV, the levels of the Orf43 protein, a TraV homolog which we propose naming TraV(R391), were upregulated, resulting in increased cell sensitization. Here, we examined the effect of orf43 overexpression and found it led to host cell permeabilization. The inducing agent for orf43, UV irradiation, is also known to increase the ICE R391 extrachromosomal form and apparent conjugative transfer rate. We demonstrated, via conjugative transfer deficient mutants, that orf43 overexpression alone restored a small level of ICE R391 transfer to recipient cells via an unknown mechanism other than conjugation. TraV homologs have been reported to function in conjugative transfer. However, TraV(R391) is the first homolog to cause UV-associated cell sensitization. TraV(R391) when overexpressed must contain a unique adaptation or function which results in cell lysis and decreased survival. A hypothesis for retaining such a detrimental effect may be in its role of enhancing ICE survival upon cell damage. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators.

    Science.gov (United States)

    Hurst, Laurence D; Sachenkova, Oxana; Daub, Carsten; Forrest, Alistair R R; Huminiecki, Lukasz

    2014-07-31

    Conventional wisdom holds that, owing to the dominance of features such as chromatin level control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of the wrong parameters. Here we address this issue through integration of two exceptional resources: ENCODE data on transcription factor binding and the FANTOM5 high-resolution expression atlas. Consistent with the notion that in eukaryotes most transcription factors are activating, the number of transcription factors binding a promoter is a strong predictor of expression breadth. In addition, evolutionarily young duplicates have fewer transcription factor binders and narrower expression. Nonetheless, we find several binders and cooperative sets that are disproportionately associated with broad expression, indicating that models more complex than simple correlations should hold more predictive power. Indeed, a machine learning approach improves fit to the data compared with a simple correlation. Machine learning could at best moderately predict tissue of expression of tissue specific genes. We find robust evidence that some expression parameters and paralog expression divergence are strongly predictable with knowledge of transcription factor binding repertoire. While some cooperative complexes can be identified, consistent with the notion that most eukaryotic transcription factors are activating, a simple predictor, the number of binding transcription factors found on a promoter, is a robust predictor of expression breadth.

  4. Out-of-synchrony speech entrainment in developmental dyslexia.

    Science.gov (United States)

    Molinaro, Nicola; Lizarazu, Mikel; Lallier, Marie; Bourguignon, Mathieu; Carreiras, Manuel

    2016-08-01

    Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc.

  5. Suggestive association between the C825T polymorphism of the G-protein beta3 subunit gene (GNB3) and clinical improvement with antipsychotics in schizophrenia.

    Science.gov (United States)

    Müller, Daniel J; De Luca, Vincenzo; Sicard, Tricia; King, Nicole; Hwang, Rudi; Volavka, Jan; Czobor, Pal; Sheitman, Brian B; Lindenmayer, Jean-Pierre; Citrome, Leslie; McEvoy, Joseph P; Lieberman, Jeffrey A; Meltzer, Herbert Y; Kennedy, James L

    2005-10-01

    G-proteins are composed of alpha, beta and gamma subunits. Once activated, these subunits play a major role in the conversion of external receptor activation into intracellular signals. The functional C825T polymorphism of the beta3 subunit gene (GNB3) has recently been shown to modulate antidepressant response, with the T-allele conferring an increased signaling and being associated with favorable antidepressant response. We hypothesized that this polymorphism may be associated with response to antipsychotics in a population of 145 chronic schizophrenic patients deriving from two study-samples and being mainly treated with clozapine for up to 6 months. Overall, the C/C genotype was significantly associated with relative clinical improvement as measured by Brief Psychiatric Rating Scale (BPRS) change scores after 6 and 12 weeks (ppoint to the role of intracellular mechanisms in antipsychotic response.

  6. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

    DEFF Research Database (Denmark)

    Lafferty-Whyte, K; Cairney, C J; Will, M B

    2009-01-01

    Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular le......TERT in different tumour types and normal tissues. We also show evidence to suggest a novel mesenchymal stem cell origin for ALT immortalization in cell lines and mesenchymal tissues....

  7. More than reflections: empathy in motivational interviewing includes language style synchrony between therapist and client.

    Science.gov (United States)

    Lord, Sarah Peregrine; Sheng, Elisa; Imel, Zac E; Baer, John; Atkins, David C

    2015-05-01

    Empathy is a basic psychological process that involves the development of synchrony in dyads. It is also a foundational ingredient in specific, evidence-based behavioral treatments like motivational interviewing (MI). Ratings of therapist empathy typically rely on a gestalt, "felt sense" of therapist understanding and the presence of specific verbal behaviors like reflective listening. These ratings do not provide a direct test of psychological processes like behavioral synchrony that are theorized to be an important component of empathy in psychotherapy. To explore a new objective indicator of empathy, we hypothesized that synchrony in language style (i.e., matching how statements are phrased) between client and therapists would predict gestalt ratings of empathy over and above the contribution of reflections. We analyzed 122 MI transcripts with high and low empathy ratings based on the Motivational Interviewing Treatment Integrity global rating scale. Linguistic inquiry and word count was used to estimate language style synchrony (LSS) of adjacent client and therapist talk turns. High-empathy sessions showed greater LSS across 11 language style categories compared with low-empathy sessions (pempathy versus low-empathy sessions (d=0.62). Regression analyses showed that LSS was predictive of empathy ratings over and above reflection counts; a 1 SD increase in LSS is associated with a 2.4 times increase in the odds of a high-empathy rating, controlling for therapist reflections (odds ratio=2.4; 95% CI: 1.36; 4.24, pempathy ratings are related to synchrony in language style, over and above synchrony of content as measured by therapist reflections. Novel indicators of therapist empathy may have implications for the study of MI process as well as the training of therapists. Copyright © 2014. Published by Elsevier Ltd.

  8. Long-range synchrony in the gamma band: role in music perception.

    Science.gov (United States)

    Bhattacharya, J; Petsche, H; Pereda, E

    2001-08-15

    Synchronization seems to be a central mechanism for neuronal information processing within and between multiple brain areas. Furthermore, synchronization in the gamma band has been shown to play an important role in higher cognitive functions, especially by binding the necessary spatial and temporal information in different cortical areas to build a coherent perception. Specific task-induced (evoked) gamma oscillations have often been taken as an indication of synchrony, but the presence of long-range synchrony cannot be inferred from spectral power in the gamma range. We studied the usefulness of a relatively new measure, called similarity index to detect asymmetric interdependency between two brain regions. Spontaneous EEG from two groups-musicians and non-musicians-were recorded during several states: listening to music, listening to text, and at rest (eyes closed and eyes open). While listening to music, degrees of the gamma band synchrony over distributed cortical areas were found to be significantly higher in musicians than non-musicians. Yet no differences between these two groups were found at resting conditions and while listening to a neutral text. In contrast to the degree of long-range synchrony, spectral power in the gamma band was higher in non-musicians. The degree of spatial synchrony, a measure of signal complexity based on eigen-decomposition method, was also significantly increased in musicians while listening to music. As compared with non-musicians, the finding of increased long-range synchrony in musicians independent of spectral power is interpreted as a manifestation of a more advanced musical memory of musicians in binding together several features of the intrinsic complexity of music in a dynamical way.

  9. Nested synchrony – a novel cross-scale interaction among neuronal oscillations

    Directory of Open Access Journals (Sweden)

    Simo eMonto

    2012-09-01

    Full Text Available Neuronal interactions form the basis for our brain function, and oscillations and synchrony are the principal candidates for mediating them in the cortical networks. Phase synchrony, where oscillatory neuronal ensembles directly synchronize their phases, enables precise integration between separated brain regions. However, it is unclear how neuronal interactions are dynamically coordinated in space and over time. Cross-scale effects have been proposed to be responsible for linking levels of processing hierarchy and to regulate neuronal dynamics. Most notably, nested oscillations, where the phase of a neuronal oscillation modulates the amplitude of a faster one, may locally integrate neuronal activities in distinct frequency bands. Yet, hierarchical control of inter-areal synchrony could provide a more comprehensive view to the dynamical structure of oscillatory interdependencies in the human brain.In this study, the notion of nested oscillations is extended to a cross-frequency and inter-areal model of oscillatory interactions. In this model, the phase of a slower oscillation modulates inter-areal synchrony in a higher frequency band. This would allow cross-scale integration of global interactions and, thus, offers a mechanism for binding distributed neuronal activities.We show that inter-areal phase synchrony can be modulated by the phase of a slower neuronal oscillation using magnetoencephalography. This effect is the most pronounced at frequencies below 35 Hz. Importantly, changes in oscillation amplitudes did not explain the findings. We expect that the novel cross-frequency interaction could offer new ways to understand the flexible but accurate dynamic organization of ongoing neuronal oscillations and synchrony.

  10. Recent Male-Mediated Gene Flow over a Linguistic Barrier in Iberia, Suggested by Analysis of a Y-Chromosomal DNA Polymorphism

    Science.gov (United States)

    Hurles, Matthew E.; Veitia, Reiner; Arroyo, Eduardo; Armenteros, Manuel; Bertranpetit, Jaume; Pérez-Lezaun, Anna; Bosch, Elena; Shlumukova, Maria; Cambon-Thomsen, Anne; McElreavey, Ken; López de Munain, Adolfo; Röhl, Arne; Wilson, Ian J.; Singh, Lalji; Pandya, Arpita; Santos, Fabrício R.; Tyler-Smith, Chris; Jobling, Mark A.

    1999-01-01

    Summary We have examined the worldwide distribution of a Y-chromosomal base-substitution polymorphism, the T/C transition at SRY-2627, where the T allele defines haplogroup 22; sequencing of primate homologues shows that the ancestral state cannot be determined unambiguously but is probably the C allele. Of 1,191 human Y chromosomes analyzed, 33 belong to haplogroup 22. Twenty-nine come from Iberia, and the highest frequencies are in Basques (11%; n=117) and Catalans (22%; n=32). Microsatellite and minisatellite (MSY1) diversity analysis shows that non-Iberian haplogroup-22 chromosomes are not significantly different from Iberian ones. The simplest interpretation of these data is that haplogroup 22 arose in Iberia and that non-Iberian cases reflect Iberian emigrants. Several different methods were used to date the origin of the polymorphism: microsatellite data gave ages of 1,650, 2,700, 3,100, or 3,450 years, and MSY1 gave ages of 1,000, 2,300, or 2,650 years, although 95% confidence intervals on all of these figures are wide. The age of the split between Basque and Catalan haplogroup-22 chromosomes was calculated as only 20% of the age of the lineage as a whole. This study thus provides evidence for direct or indirect gene flow over the substantial linguistic barrier between the Indo-European and non–Indo-European–speaking populations of the Catalans and the Basques, during the past few thousand years. PMID:10521311

  11. Impact on offspring methylation patterns of maternal gestational diabetes mellitus and intrauterine growth restraint suggest common genes and pathways linked to subsequent type 2 diabetes risk.

    Science.gov (United States)

    Quilter, Claire R; Cooper, Wendy N; Cliffe, Kerry M; Skinner, Benjamin M; Prentice, Philippa M; Nelson, LaTasha; Bauer, Julien; Ong, Ken K; Constância, Miguel; Lowe, William L; Affara, Nabeel A; Dunger, David B

    2014-11-01

    Size at birth, postnatal weight gain, and adult risk for type 2 diabetes may reflect environmental exposures during developmental plasticity and may be mediated by epigenetics. Both low birth weight (BW), as a marker of fetal growth restraint, and high birth weight (BW), especially after gestational diabetes mellitus (GDM), have been linked to increased risk of adult type 2 diabetes. We assessed DNA methylation patterns using a bead chip in cord blood samples from infants of mothers with GDM (group 1) and infants with prenatal growth restraint indicated by rapid postnatal catch-up growth (group 2), compared with infants with normal postnatal growth (group 3). Seventy-five CpG loci were differentially methylated in groups 1 and 2 compared with the controls (group 3), representing 72 genes, many relevant to growth and diabetes. In replication studies using similar methodology, many of these differentially methylated regions were associated with levels of maternal glucose exposure below that defined by GDM [the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study] or were identified as changes observed after randomized periconceptional nutritional supplementation in a Gambian cohort characterized by maternal deprivation. These studies provide support for the concept that similar epigenetic modifications may underpin different prenatal exposures and potentially increase long-term risk for diseases such as type 2 diabetes.

  12. Detection of the short-term preseizure changes in EEG recordings using complexity and synchrony analysis

    Institute of Scientific and Technical Information of China (English)

    JIA Wenyan; KONG Na; MA Jun; LIU Hesheng; GAO Xiaorong; GAO Shangkai; YANG Fusheng

    2006-01-01

    An important consideration in epileptic seizure prediction is proving the existence of a pre-seizure state that can be detected using various signal processing algorithms. In the analyses of intracranial electroencephalographic (EEG)recordings of four epilepsy patients, the short-term changes in the measures of complexity and synchrony were detected before the majority of seizure events across the sample patient population. A decrease in complexity and increase in phase synchrony appeared several minutes before seizure onset and the changes were more pronounced in the focal region than in the remote region. This result was also validated statistically using a surrogate data method.

  13. Hypnosis, suggestion, and suggestibility: an integrative model.

    Science.gov (United States)

    Lynn, Steven Jay; Laurence, Jean-Roch; Kirsch, Irving

    2015-01-01

    This article elucidates an integrative model of hypnosis that integrates social, cultural, cognitive, and neurophysiological variables at play both in and out of hypnosis and considers their dynamic interaction as determinants of the multifaceted experience of hypnosis. The roles of these variables are examined in the induction and suggestion stages of hypnosis, including how they are related to the experience of involuntariness, one of the hallmarks of hypnosis. It is suggested that studies of the modification of hypnotic suggestibility; cognitive flexibility; response sets and expectancies; the default-mode network; and the search for the neurophysiological correlates of hypnosis, more broadly, in conjunction with research on social psychological variables, hold much promise to further understanding of hypnosis.

  14. Orchestration of presto and largo synchrony in up-down activity of cortical networks

    Directory of Open Access Journals (Sweden)

    Francesca Gullo

    2010-04-01

    Full Text Available It has been demonstrated using single-cell and multiunit electrophysiology in layer III entorhinal cortex and disinhibited hippocampal CA3 slices that the balancing of the up-down activity is characterized by both GABAA and GABAB mechanisms. Here we report novel results obtained using multi-electrode array (MEA, 60 electrodes simultaneous recordings from reverberating postnatal neocortical networks containing 19.2±1.4% GABAergic neurons, typical of intact tissue. We observed that in each spontaneous active-state the total number of spikes in identified clusters of excitatory and inhibitory neurons is almost equal, thus suggesting a balanced average activity. Interestingly, in the active-state, the early phase is sustained by only 10 % of the total spikes and the firing rate follows a sigmoidal regenerative mode up to peak at 35 ms with the number of excitatory spikes greater than inhibitory, therefore indicating an early unbalance. Concentration-response pharmacology of up- and down-state lifetimes in clusters of excitatory (n=1067 and inhibitory (n=305 cells suggests that, besides the GABAA and GABAB mechanisms, others such as GAT-1-mediated uptake, Ih, INaP and IM ion channel activity, robustly govern both up- and down-activity. Some drugs resulted to affect up- and/or down-states with different IC50s, providing evidence that various mechanisms are involved. These results should reinforce not only the role of synchrony in CNS networks, but also the recognized analogies between the Hodgkin-Huxley action potential and the population bursts as basic mechanisms for originating membrane excitability and CNS network synchronization, respectively.

  15. Impairment of decision making and disruption of synchrony between basolateral amygdala and anterior cingulate cortex in the maternally separated rat.

    Science.gov (United States)

    Cao, Bing; Wang, Jun; Zhang, Xu; Yang, Xiangwei; Poon, David Chun-Hei; Jelfs, Beth; Chan, Rosa H M; Wu, Justin Che-Yuen; Li, Ying

    2016-12-01

    There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress. Copyright © 2016 Elsevier Inc. All rights

  16. Speaker detection for conversational robots using synchrony between audio and video

    NARCIS (Netherlands)

    A. Noulas; G. Englebienne; B. Terwijn; B. Kröse

    2010-01-01

    This paper compares different methods for detecting the speaking person when multiple persons are interacting with a robot. We evaluate the state-of-the-art speaker detection methods on the iCat robot. These methods use the synchrony between audio and video to locate the most probable speaker. We co

  17. Functioning within a relationship : Mother-infant synchrony and infant sleep

    NARCIS (Netherlands)

    de Graag, Jolien A.; Cox, Ralf F. A.; Hasselman, Fred; Jansen, Jarno; de Weerth, Carolina

    2012-01-01

    The aim of this study was to investigate the coupling of the biological system of infant sleep and the social system of mother-infant synchrony. Before birth and shortly after birth the systems appear to be connected, but it is unclear whether this remains the case over time. This study therefore ex

  18. Phenology of forest caterpillars and their host trees: The importance of synchrony

    NARCIS (Netherlands)

    Van Asch, M.; Visser, M.E.

    2007-01-01

    For many leaf-feeding herbivores, synchrony in phenology with their host plant is crucial as development outside a narrow phenological time window has severe fitness consequences. In this review, we link mechanisms, adaptation, and population dynamics within a single conceptual framework, needed for

  19. Timing and synchrony of births in bighorn sheep: implications for reintroduction and conservation

    Science.gov (United States)

    Whiting, Jericho C.; Olson, Daniel D.; Shannon, Justin M.; Bowyer, R. Terry; Klaver, Robert W.; Flinders, Jerran T.

    2012-01-01

    Context: Timing (mean birthdate) and synchrony (variance around that date) of births can influence survival of young and growth in ungulate populations. Some restored populations of ungulates may not adjust these life-history characteristics to environments of release sites until several years after release, which may influence success of reintroductions.

  20. Sharing the Now in the Social Present: Duration of Nonverbal Synchrony Is Linked With Personality.

    Science.gov (United States)

    Tschacher, Wolfgang; Ramseyer, Fabian; Koole, Sander L

    2016-12-15

    The social present is a novel descriptor of dyadic nowness and social sharing, extending research on individual nowness (James's [1890] specious present) to the interpersonal and intersubjective domain. We wished to connect this descriptor to personality attributes. We define the social present by the duration of significant nonverbal synchrony, based on the phenomenon of movement synchrony that generally emerges in social interactions. It is thus an implicit and objective measure that can be implemented by automated video analyses. In this study, 168 healthy participants were invited to verbal conversations in same-sex dyads. We analyzed the associations of the social present with personality attributes and interaction types (competition, cooperation, fun task). The average duration of the social present was 6.0 seconds, highest in competitive interactions and in male-male dyads. People with higher Openness to Experience, higher avoidant attachment, and lower narcissistic interpersonal styles showed extended social present in their interactions. The concept of the social present extends personality attributes to the interpersonal domain and to intersubjectivity. The social present may be computed based on movement synchrony but also prosodic or physiological synchronies. We foresee implications for health-related interactions such as psychotherapy, where therapeutic presence is an essential property of alliance. © 2016 Wiley Periodicals, Inc.

  1. Physical and Relational Aggression in Young Children: The Role of Mother-Child Interactional Synchrony

    Science.gov (United States)

    Ambrose, Holly N.; Menna, Rosanne

    2013-01-01

    This study examined the relationships between the quality of parent-child interactions, specifically interactional synchrony (IS), and physical and relational aggression in young children. Seventy-three children (3-6 years; 44 males, 29 females) and their mothers participated in this study. The children's level of aggression was assessed through…

  2. Selective Attention to a Talker's Mouth in Infancy: Role of Audiovisual Temporal Synchrony and Linguistic Experience

    Science.gov (United States)

    Hillairet de Boisferon, Anne; Tift, Amy H.; Minar, Nicholas J.; Lewkowicz, David J.

    2017-01-01

    Previous studies have found that infants shift their attention from the eyes to the mouth of a talker when they enter the canonical babbling phase after 6 months of age. Here, we investigated whether this increased attentional focus on the mouth is mediated by audio-visual synchrony and linguistic experience. To do so, we tracked eye gaze in 4-,…

  3. Phenology of forest caterpillars and their host trees: The importance of synchrony

    NARCIS (Netherlands)

    Van Asch, M.; Visser, M.E.

    2007-01-01

    For many leaf-feeding herbivores, synchrony in phenology with their host plant is crucial as development outside a narrow phenological time window has severe fitness consequences. In this review, we link mechanisms, adaptation, and population dynamics within a single conceptual framework, needed for

  4. Synchrony and Specificity in the Maternal and the Paternal Brain: Relations to Oxytocin and Vasopressin

    Science.gov (United States)

    Atzil, Shir; Hendler, Talma; Zagoory-Sharon, Orna; Winetraub, Yonatan; Feldman, Ruth

    2012-01-01

    Objective: Research on the neurobiology of parenting has defined "biobehavioral synchrony," the coordination of biological and behavioral responses between parent and child, as a central process underpinning mammalian bond formation. Bi-parental rearing, typically observed in monogamous species, is similarly thought to draw on mechanisms of…

  5. Synchrony in the snowshoe hare cycle in Northwestern North America, 1970-2012

    Science.gov (United States)

    C.J. Krebs; K. Kielland; J.P Bryant; M. O' Donoghue; F. Doyle; C. McIntyre; D. DiFolco; N. Berg; S. Carriere; R. Boonstra; S. Boutin; A. J. Kenney; D. G. Reid; K. Bodony; J. Putera; H. K. Timm; T. Burke.

    2013-01-01

    Snowshoe hares (Lepus americanus Erxleben, 1777) fluctuate in 9–10 year cycles throughout much of their North American range. Regional synchrony has been assumed to be the rule for these cycles, so that hare populations in virtually all of northwestern North America have been assumed to be in phase. We gathered qualitative and quantitative data on...

  6. Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom.

    Science.gov (United States)

    Dikker, Suzanne; Wan, Lu; Davidesco, Ido; Kaggen, Lisa; Oostrik, Matthias; McClintock, James; Rowland, Jess; Michalareas, Georgios; Van Bavel, Jay J; Ding, Mingzhou; Poeppel, David

    2017-05-08

    The human brain has evolved for group living [1]. Yet we know so little about how it supports dynamic group interactions that the study of real-world social exchanges has been dubbed the "dark matter of social neuroscience" [2]. Recently, various studies have begun to approach this question by comparing brain responses of multiple individuals during a variety of (semi-naturalistic) tasks [3-15]. These experiments reveal how stimulus properties [13], individual differences [14], and contextual factors [15] may underpin similarities and differences in neural activity across people. However, most studies to date suffer from various limitations: they often lack direct face-to-face interaction between participants, are typically limited to dyads, do not investigate social dynamics across time, and, crucially, they rarely study social behavior under naturalistic circumstances. Here we extend such experimentation drastically, beyond dyads and beyond laboratory walls, to identify neural markers of group engagement during dynamic real-world group interactions. We used portable electroencephalogram (EEG) to simultaneously record brain activity from a class of 12 high school students over the course of a semester (11 classes) during regular classroom activities (Figures 1A-1C; Supplemental Experimental Procedures, section S1). A novel analysis technique to assess group-based neural coherence demonstrates that the extent to which brain activity is synchronized across students predicts both student class engagement and social dynamics. This suggests that brain-to-brain synchrony is a possible neural marker for dynamic social interactions, likely driven by shared attention mechanisms. This study validates a promising new method to investigate the neuroscience of group interactions in ecologically natural settings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Novel space alters theta and gamma synchrony across the longitudinal axis of the hippocampus

    Directory of Open Access Journals (Sweden)

    stephanie c penley

    2013-06-01

    Full Text Available Hippocampal theta (6-10 Hz and gamma (25-50 Hz and 65-100 Hz local field potentials reflect the dynamic synchronization of inputs impinging upon hippocampal neurons. Novel experience is known to engage hippocampal physiology and promote successful encoding. Does novelty synchronize or desynchronize theta and/or gamma frequency inputs across the septotemporal (long axis of the hippocampus? The present study tested the hypothesis that a novel spatial environment would alter theta power and coherence across the long axis. We compared theta and gamma local field potential signals at individual (power and millimeter distant electrode pairs (coherence within the dentate gyrus (DG and CA1 region while rats navigated a runway 1 in a familiar environment, 2 with a modified path in the same environment and 3 in a novel space. Locomotion in novel space was related to increases in theta and gamma power at most CA1 and DG sites. The increase in theta and gamma power was concurrent with an increase in theta and gamma coherence across the long axis of CA1; however, there was a significant decrease in theta coherence across the long axis of the DG. These findings illustrate significant shifts in the synchrony of entorhinal, CA3 and/or neuromodulatory afferents conveying novel spatial information to the dendritic fields of CA1 and DG targets across the long axis of the hippocampus. This shift suggests that the entire theta/gamma-related input to the CA1 network, and likely output, receives and conveys a more coherent message in response to novel sensory experience. Such may contribute to the successful encoding of novel sensory experience.

  8. Gene regulatory networks reused to build novel traits: co-option of an eye-related gene regulatory network in eye-like organs and red wing patches on insect wings is suggested by optix expression.

    Science.gov (United States)

    Monteiro, Antónia

    2012-03-01

    Co-option of the eye developmental gene regulatory network may have led to the appearance of novel functional traits on the wings of flies and butterflies. The first trait is a recently described wing organ in a species of extinct midge resembling the outer layers of the midge's own compound eye. The second trait is red pigment patches on Heliconius butterfly wings connected to the expression of an eye selector gene, optix. These examples, as well as others, are discussed regarding the type of empirical evidence and burden of proof that have been used to infer gene network co-option underlying the origin of novel traits. A conceptual framework describing increasing confidence in inference of network co-option is proposed. Novel research directions to facilitate inference of network co-option are also highlighted, especially in cases where the pre-existent and novel traits do not resemble each other.

  9. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds.

    Science.gov (United States)

    Alvarez-Martínez, Estela R; Valverde, Angel; Ramírez-Bahena, Martha Helena; García-Fraile, Paula; Tejedor, Carmen; Mateos, Pedro F; Santillana, Nery; Zúñiga, Doris; Peix, Alvaro; Velázquez, Encarna

    2009-08-01

    In this work, we analysed the core and symbiotic genes of rhizobial strains isolated from Vicia sativa in three soils from the Northwest of Spain, and compared them with other Vicia endosymbionts isolated in other geographical locations. The analysis of rrs, recA and atpD genes and 16S-23S rRNA intergenic spacer showed that the Spanish strains nodulating V. sativa are phylogenetically close to those isolated from V. sativa and V. faba in different European, American and Asian countries forming a group related to Rhizobium leguminosarum. The analysis of the nodC gene of strains nodulating V. sativa and V. faba in different continents showed they belong to a phylogenetically compact group indicating that these legumes are restrictive hosts. The results of the nodC gene analysis allow the delineation of the biovar viciae showing a common phylogenetic origin of V. sativa and V. faba endosymbionts in several continents. Since these two legume species are indigenous from Europe, our results suggest a world distribution of strains from R. leguminosarum together with the V. sativa and V. faba seeds and a close coevolution among chromosome, symbiotic genes and legume host in this Rhizobium-Vicia symbiosis.

  10. Theories of Suggestion.

    Science.gov (United States)

    Brown, W

    1928-02-01

    The word "suggestion" has been used in educational, scientific and medical literature in slightly different senses. In psychological medicine the use of suggestion has developed out of the earlier use of hypnotic influence.Charcot defined hypnosis as an artificial hysteria, Bernheim as an artificially increased suggestibility. The two definitions need to be combined to give an adequate account of hypnosis. Moreover, due allowance should be made for the factors of dissociation and of rapport in hypnotic phenomena.The relationships between dissociation, suggestibility, and hypnotizability.Theories of suggestion propounded by Pierre Janet, Freud, McDougall, Pawlow and others. Ernest Jones's theory of the nature of auto-suggestion. Janet explains suggestion in terms of ideo-motor action in which the suggested idea, because of the inactivity of competing ideas, produces its maximum effect. Freud explains rapport in terms of the sex instinct "inhibited in its aim" (transference) and brings in his distinction of "ego" and "ego-ideal" (or "super-ego") to supplement the theory. Jones explains auto-suggestion in terms of narcissism. McDougall explains hypnotic suggestion in terms of the instinct of self-abasement. But different instincts may supply the driving power to produce suggestion-effects in different circumstances. Such instincts as those of self-preservation (fear) and gregariousness may play their part. Auto-suggestion as a therapeutic factor is badly named. It supplements, but does not supplant the will, and makes complete volition possible.

  11. Comprehensive expression profiling of highly homologous 39 hox genes in 26 different human adult tissues by the modified systematic multiplex RT-pCR method reveals tissue-specific expression pattern that suggests an important role of chromosomal structure in the regulation of hox gene expression in adult tissues.

    Science.gov (United States)

    Yamamoto, Miyako; Takai, Daisaku; Yamamoto, Fumiya; Yamamoto, Fumiichiro

    2003-01-01

    Homeobox genes play a crucial role as molecular address labels in early embryogenesis by conferring cell fate and establishing regional identity in tissues. Homeobox gene expression is not restricted to the early development, but it is also observed in the differentiated cells in adult tissues. To have a better understanding of the functionality of homeobox gene expression in adult tissues in physiological and pathological phenomena, it is important to determine the expression profiles of Hox genes. We established a system to study the expression of 39 human Hox genes by the modified Systematic Multiplex RT-PCR method. Using this system, we have systematically examined their expression in 26 different adult tissues. The results showed tissue-specific differential expression. They also revealed that the posterior tissues generally express more Hox genes than the anterior tissues and that the genes located centrally in the Hox Gene Complexes are expressed in more tissues than the genes located at the 5' or 3' end of the complexes. Instead of similar expression patterns among paralogous genes, we found that several neighboring Hox genes on the same chromosomes exhibited similar tissue-specific expression pattern, which may suggest that the regulation of Hox gene expression may be more dependent on chromosomal structure in adult tissues.

  12. Comparison of the sequences of the Aspergillus nidulans hxB and Drosophila melanogaster ma-l genes with nifS from Azotobacter vinelandii suggests a mechanism for the insertion of the terminal sulphur atom in the molybdopterin cofactor.

    Science.gov (United States)

    Amrani, L; Primus, J; Glatigny, A; Arcangeli, L; Scazzocchio, C; Finnerty, V

    2000-10-01

    The molybdopterin cofactor (MoCF) is required for the activity of a variety of oxidoreductases. The xanthine oxidase class of molybdoenzymes requires the MoCF to have a terminal, cyanolysable sulphur ligand. In the sulphite oxidase/nitrate reductase class, an oxygen is present in the same position. Mutations in both the ma-l gene of Drosophila melanogaster and the hxB gene of Aspergillus nidulans result in loss of activities of all molybdoenzymes that necessitate a cyanolysable sulphur in the active centre. The ma-l and hxB genes encode highly similar proteins containing domains common to pyridoxal phosphate-dependent cysteine transulphurases, including the cofactor binding site and a conserved cysteine, which is the putative sulphur donor. Key similarities were found with NifS, the enzyme involved in the generation of the iron-sulphur centres in nitrogenase. These similarities suggest an analogous mechanism for the generation of the terminal molybdenum-bound sulphur ligand. We have identified putative homologues of these genes in a variety of organisms, including humans. The human homologue is located in chromosome 18.q12.

  13. A joint behavioral and emotive analysis of synchrony in music therapy of children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Paola Venuti

    2016-12-01

    Full Text Available Background Synchrony is an essential component of interactive exchanges. In mother-infant interaction, synchrony underlies reciprocity and emotive regulation. A severe lack of synchrony is indeed a core issue within the communication and interaction deficit that characterizes autism spectrum disorders (ASD in accordance with the DSM-5 classification. Based on emerging evidence that music therapy can improve the communication and regulation ability in children with ASD, we aim to verify quantitatively whether: 1 children with ASD improve synchrony with their therapist during music therapy sessions, and 2 this ability persists in different structured contexts. Participants and procedure Twenty-five children, aged from 4 to 6 years (M = 57.80, SD = 16.70, with an autistic disorder diagnosis based on DSM IV-TR and the Autism Diagnostic Observation Schedule (ADOS, participated in the study. An observational tool for coding behaviors and emotive states of synchrony (Child Behavioral and Emotional status Code [CBEC] and Adult Behavioral and Emotional status Code [ABEC] was applied in video recorded sessions of improvisational music therapy (IMT for the subject-therapist pair. For each subject, we considered the 20 central minutes of the first, tenth and twentieth session of IMT. To verify the persistence of effect in a different context with a different adult, we administered and coded the interactive ADOS section (anticipation of a routine with objects applied after session 20 of therapy. Results During the IMT cycle, the amount of synchronic activity increases, with a significant difference from Session 1 to Session 20 in behavioral synchrony and emotional attunement. Also, the increase of synchrony is confirmed at the end of the therapy cycle as measured by an interactive ADOS section. Conclusions Synchrony is an effective indicator of efficacy for music therapy in children with ASD, in particular to evaluate the expansion of positive emotive

  14. Identification of Methyl Halide-Utilizing Genes in the Methyl Bromide-Utilizing Bacterial Strain IMB-1 Suggests a High Degree of Conservation of Methyl Halide-Specific Genes in Gram-Negative Bacteria

    OpenAIRE

    Woodall, Claire A.; Warner, Karen L.; Oremland, Ronald S.; Murrell, J. Colin; McDonald, Ian R.

    2001-01-01

    Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif an...

  15. Suggested safeguards an

    African Journals Online (AJOL)

    MJM Venter

    ... COORDINATION. (FACILITATION OR CASE MANAGEMENT) IN SOUTH AFRICA ... SUGGESTED SAFEGUARDS AND LIMITATIONS FOR EFFECTIVE AND .... professional practice.27 They have to assess the situation; educate the parents.

  16. Manufacturer's Suggested Retail Prices

    NARCIS (Netherlands)

    Rosenkranz, S.

    2003-01-01

    Based on arguments of the `reference- dependent' theory of consumer choice we assume that a retailer's discount of a manufacturer's suggested retail price changes consumers' demand. We can show that the producer benefits from suggesting a retail price. If consumers are additionally sufficiently `los

  17. Resequencing and association analysis of coding regions at twenty candidate genes suggest a role for rare risk variation at AKAP9 and protective variation at NRXN1 in schizophrenia susceptibility.

    Science.gov (United States)

    Suárez-Rama, José Javier; Arrojo, Manuel; Sobrino, Beatriz; Amigo, Jorge; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Brión, María; Carracedo, Ángel; Páramo, Mario; Costas, Javier

    2015-01-01

    A fraction of genetic risk to develop schizophrenia may be due to low-frequency variants. This multistep study attempted to find low-frequency variants of high effect at coding regions of eleven schizophrenia susceptibility genes supported by genome-wide association studies (GWAS) and nine genes for the DISC1 interactome, a susceptibility gene-set. During the discovery step, a total of 125 kb per sample were resequenced in 153 schizophrenia patients and 153 controls from Galicia (NW Spain), and the cumulative role of low-frequency variants at a gene or at the DISC1 gene-set were analyzed by burden and variance-based tests. Relevant results were meta-analyzed when appropriate data were available. In addition, case-only putative damaging variants were genotyped in a further 419 cases and 398 controls. The discovery step revealed a protective effect of rare missense variants at NRXN1, a result supported by meta-analysis (OR = 0.67, 95% CI: 0.47-0.94, P = 0.021, based on 3848 patients and 3896 controls from six studies). The follow-up step based on case-only putative damaging variants revealed a promising risk variant at AKAP9. This variant, K873R, reached nominal significance after inclusion of 240 additional Spanish controls from databases. The variant, located in an ADCY2 binding region, is absent from large public databases. Interestingly, GWAS revealed an association between common ADCY2 variants and bipolar disorder, a disorder with considerable genetic overlap with schizophrenia. These data suggest a role of rare missense variants at NRXN1 and AKAP9 in schizophrenia susceptibility, probably related to alteration of the excitatory/inhibitory synaptic balance, deserving further investigation.

  18. An eight month randomized controlled exercise intervention alters resting state synchrony in overweight children.

    Science.gov (United States)

    Krafft, C E; Pierce, J E; Schwarz, N F; Chi, L; Weinberger, A L; Schaeffer, D J; Rodrigue, A L; Camchong, J; Allison, J D; Yanasak, N E; Liu, T; Davis, C L; McDowell, J E

    2014-01-03

    Children with low aerobic fitness have altered brain function compared to higher-fit children. This study examined the effect of an 8-month exercise intervention on resting state synchrony. Twenty-two sedentary, overweight (body mass index ≥85th percentile) children 8-11 years old were randomly assigned to one of two after-school programs: aerobic exercise (n=13) or sedentary attention control (n=9). Before and after the 8-month programs, all subjects participated in resting state functional magnetic resonance imaging scans. Independent components analysis identified several networks, with four chosen for between-group analysis: salience, default mode, cognitive control, and motor networks. The default mode, cognitive control, and motor networks showed more spatial refinement over time in the exercise group compared to controls. The motor network showed increased synchrony in the exercise group with the right medial frontal gyrus compared to controls. Exercise behavior may enhance brain development in children.

  19. The "conscious pilot"-dendritic synchrony moves through the brain to mediate consciousness.

    Science.gov (United States)

    Hameroff, Stuart

    2010-01-01

    Cognitive brain functions including sensory processing and control of behavior are understood as "neurocomputation" in axonal-dendritic synaptic networks of "integrate-and-fire" neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic-dendritic gap junctions, forming transient syncytia ("dendritic webs") in input/integration layers oriented sideways to axonal-dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The "conscious pilot" is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation.

  20. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea.

    Science.gov (United States)

    Bouwmeester, Jessica; Berumen, Michael L

    2015-01-01

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  1. Incorporating oximeter analyses to investigate synchronies in heart rate while teaching and learning about race

    Science.gov (United States)

    Amat, Arnau; Zapata, Corinna; Alexakos, Konstantinos; Pride, Leah D.; Paylor-Smith, Christian; Hernandez, Matthew

    2016-09-01

    In this paper, we look closely at two events selected through event-oriented inquiry that were part of a classroom presentation on race. The first event was a provocative discussion about Mark Twain's ( Pudd'nhead Wilson, Harper, New York, 1899) and passing for being White. The other was a discussion on the use of the N-word. Grounded in authentic inquiry, we use ethnographic narrative, cogenerative dialogues, and video and oximeter data analyses as part of a multi-ontological approach for studying emotions. Statistical analysis of oximeter data shows statistically significant heart rate synchrony among two of the coteachers during their presentations, providing evidence of emotional synchrony, resonance, and social and emotional contagion.

  2. A universal order parameter for synchrony in networks of limit cycle oscillators

    Science.gov (United States)

    Schröder, Malte; Timme, Marc; Witthaut, Dirk

    2017-07-01

    We analyze the properties of order parameters measuring synchronization and phase locking in complex oscillator networks. First, we review network order parameters previously introduced and reveal several shortcomings: none of the introduced order parameters capture all transitions from incoherence over phase locking to full synchrony for arbitrary, finite networks. We then introduce an alternative, universal order parameter that accurately tracks the degree of partial phase locking and synchronization, adapting the traditional definition to account for the network topology and its influence on the phase coherence of the oscillators. We rigorously prove that this order parameter is strictly monotonously increasing with the coupling strength in the phase locked state, directly reflecting the dynamic stability of the network. Furthermore, it indicates the onset of full phase locking by a diverging slope at the critical coupling strength. The order parameter may find applications across systems where different types of synchrony are possible, including biological networks and power grids.

  3. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble

    Science.gov (United States)

    Schiff, Steven J.; So, Paul; Chang, Taeun; Burke, Robert E.; Sauer, Tim

    1996-12-01

    A method to characterize dynamical interdependence among nonlinear systems is derived based on mutual nonlinear prediction. Systems with nonlinear correlation will show mutual nonlinear prediction when standard analysis with linear cross correlation might fail. Mutual nonlinear prediction also provides information on the directionality of the coupling between systems. Furthermore, the existence of bidirectional mutual nonlinear prediction in unidirectionally coupled systems implies generalized synchrony. Numerical examples studied include three classes of unidirectionally coupled systems: systems with identical parameters, nonidentical parameters, and stochastic driving of a nonlinear system. This technique is then applied to the activity of motoneurons within a spinal cord motoneuron pool. The interrelationships examined include single neuron unit firing, the total number of neurons discharging at one time as measured by the integrated monosynaptic reflex, and intracellular measurements of integrated excitatory postsynaptic potentials (EPSP's). Dynamical interdependence, perhaps generalized synchrony, was identified in this neuronal network between simultaneous single unit firings, between units and the population, and between units and intracellular EPSP's.

  4. Perceptual synchrony of audiovisual streams for natural and artificial motion sequences.

    Science.gov (United States)

    Arrighi, Roberto; Alais, David; Burr, David

    2006-03-16

    We investigated the conditions necessary for perceptual simultaneity of visual and auditory stimuli under natural conditions: video sequences of conga drumming at various rhythms. Under most conditions, the auditory stream needs to be delayed for sight and sound to be perceived simultaneously. The size of delay for maximum perceived simultaneity varied inversely with drumming tempo, from about 100 ms at 1 Hz to 30 ms at 4 Hz. Random drumming motion produced similar results, with higher random tempos requiring less delay. Video sequences of disk stimuli moving along a motion profile matched to the drummer produced near-identical results. When the disks oscillated at constant speed rather than following "biological" speed variations, the delays necessary for perceptual synchrony were systematically less. The results are discussed in terms of real-world constraints for perceptual synchrony and possible neural mechanisms.

  5. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2015-01-05

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  6. True and Perceived Synchrony are Preferentially Associated With Particular Sensory Pairings

    Science.gov (United States)

    Noel, Jean-Paul; Wallace, Mark T.; Orchard-Mills, Emily; Alais, David; Van der Burg, Erik

    2015-01-01

    Perception and behavior are fundamentally shaped by the integration of different sensory modalities into unique multisensory representations, a process governed by spatio-temporal correspondence. Prior work has characterized temporal perception using the point in time at which subjects are most likely to judge multisensory stimuli to be simultaneous (PSS) and the temporal binding window (TBW) over which participants are likely to do so. Here we examine the relationship between the PSS and the TBW within and between individuals, and within and between three sensory combinations: audiovisual, audiotactile and visuotactile. We demonstrate that TBWs correlate within individuals and across multisensory pairings, but PSSs do not. Further, we reveal that while the audiotactile and audiovisual pairings show tightly related TBWs, they also exhibit a differential relationship with respect to true and perceived multisensory synchrony. Thus, audiotactile and audiovisual temporal processing share mechanistic features yet are respectively functionally linked to objective and subjective synchrony. PMID:26621493

  7. Time-resolved and time-scale adaptive measures of spike train synchrony

    CERN Document Server

    Kreuz, Thomas; Greschner, Martin; Andrzejak, Ralph G

    2010-01-01

    A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data.

  8. Time-resolved and time-scale adaptive measures of spike train synchrony.

    Science.gov (United States)

    Kreuz, Thomas; Chicharro, Daniel; Greschner, Martin; Andrzejak, Ralph G

    2011-01-30

    A wide variety of approaches to estimate the degree of synchrony between two or more spike trains have been proposed. One of the most recent methods is the ISI-distance which extracts information from the interspike intervals (ISIs) by evaluating the ratio of the instantaneous firing rates. In contrast to most previously proposed measures it is parameter free and time-scale independent. However, it is not well suited to track changes in synchrony that are based on spike coincidences. Here we propose the SPIKE-distance, a complementary measure which is sensitive to spike coincidences but still shares the fundamental advantages of the ISI-distance. In particular, it is easy to visualize in a time-resolved manner and can be extended to a method that is also applicable to larger sets of spike trains. We show the merit of the SPIKE-distance using both simulated and real data. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured.

    Science.gov (United States)

    Munguía-Rosas, Miguel A; Ollerton, Jeff; Parra-Tabla, Victor; De-Nova, J Arturo

    2011-05-01

    Flowering times of plants are important life-history components and it has previously been hypothesized that flowering phenologies may be currently subject to natural selection or be selectively neutral. In this study we reviewed the evidence for phenotypic selection acting on flowering phenology using ordinary and phylogenetic meta-analysis. Phenotypic selection exists when a phenotypic trait co-varies with fitness; therefore, we looked for studies reporting an association between two components of flowering phenology (flowering time or flowering synchrony) with fitness. Data sets comprising 87 and 18 plant species were then used to assess the incidence and strength of phenotypic selection on flowering time and flowering synchrony, respectively. The influence of dependence on pollinators, the duration of the reproductive event, latitude and plant longevity as moderators of selection were also explored. Our results suggest that selection favours early flowering plants, but the strength of selection is influenced by latitude, with selection being stronger in temperate environments. However, there is no consistent pattern of selection on flowering synchrony. Our study demonstrates that phenotypic selection on flowering time is consistent and relatively strong, in contrast to previous hypotheses of selective neutrality, and has implications for the evolution of temperate floras under global climate change. © 2011 Blackwell Publishing Ltd/CNRS.

  10. Reduction in Cortical Gamma Synchrony during Depolarized State of Slow Wave Activity in Mice

    Directory of Open Access Journals (Sweden)

    EUNJIN eHWANG

    2013-12-01

    Full Text Available EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power.

  11. Temporally increasing spatial synchrony of North American temperature and bird populations

    Science.gov (United States)

    Walter D. Koenig; Andrew M. Liebhold

    2016-01-01

    The ecological impacts of modern global climate change are detectable in a wide variety of phenomena, ranging from shifts in species ranges to changes in community composition and human disease dynamics. So far, however, little attention has been given to temporal changes in spatial synchrony—the coincident change in abundance or value across the landscape—despite the...

  12. Research Suggestions for Students

    Science.gov (United States)

    Holland, John L.

    1974-01-01

    Describes how to perform accurate research. Also includes suggestions for specific research projects under such headings as: (1) types; (2) environments; (3) interactions; (4) classification; (5) hexagonal model; and (6) differentiation. (HMV)

  13. Open to Suggestion.

    Science.gov (United States)

    Journal of Reading, 1984

    1984-01-01

    Contributors offer suggestions concerning parents as reading stimulators, book discussions, a test bank for the secondary school/college reading lab, standardized reading tests, television reading, plagiarism, vocabulary development, and book reports. (FL)

  14. Open To Suggestion.

    Science.gov (United States)

    Journal of Reading, 1988

    1988-01-01

    Suggests class activities in three short articles including: (1) "Students Evaluate Reading," by Lenore Sandel; (2) "Solving Verbal Analogies," by Edward J. Dwyer; and (3) "Becoming Testwise," by Dean Schoen. (RS)

  15. Optimizing rTMS treatment of a balance disorder with EEG neural synchrony and functional connectivity.

    Science.gov (United States)

    Guofa Shou; Han Yuan; Urbano, Diamond; Yoon-Hee Cha; Lei Ding

    2016-08-01

    Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used for its potential treatment effects across diverse mental disorders. However, the treatment effect is elusive and the rate of positive responders is not high, which make it in great demand of optimizing rTMS protocols to improve the treatment effects and the rate. In this regard, neural activity guided optimization has indicated great potential in several neuroimaging studies. In this paper, we present our ongoing work on optimizing rTMS treatment of a balance disorder, i.e., Mal de Debarquement syndrome (MdDS), by investigating treatment-related EEG neural synchrony and functional connectivity changes. Motivated by our previous pilot study of rTMS on MdDS, we firstly applied a bilateral dorsolateral prefrontal cortex (DLPFC) rTMS protocol to evaluate its efficacy and the treatment-related neural responses via an independent component analysis (ICA)-based framework. Thereafter, guided by identified EEG neural synchrony and functional connectivity patterns, we proposed three potential stimulation targets covering posterior nodes of the default mode network (DMN), and implemented a new rTMS protocol by stimulating the target with the great symptoms relief. The preliminary clinical response data has indicated that the new rTMS protocol significantly increase the rate of positive responders and the degrees of the improvement. The present study demonstrates that it is promising to integrate EEG neural synchrony and functional connectivity into the optimization of rTMS protocols for different mental disorders.

  16. Body Movement Synchrony in Psychotherapeutic Counseling: A Study Using the Video-Based Quantification Method

    Science.gov (United States)

    Nagaoka, Chika; Komori, Masashi

    Body movement synchrony (i. e. rhythmic synchronization between the body movements of interacting partners) has been described by subjective impressions of skilled counselors and has been considered to reflect the depth of the client-counselor relationship. This study analyzed temporal changes in body movement synchrony through a video analysis of client-counselor dialogues in counseling sessions. Four 50-minute psychotherapeutic counseling sessions were analyzed, including two negatively evaluated sessions (low evaluation groups) and two positively evaluated sessions (high evaluation groups). In addition, two 50-minute ordinary advice sessions between two high school teachers and the clients in the high rating group were analyzed. All sessions represent role-playing. The intensity of the participants' body movement was measured using a video-based system. Temporal change of body movement synchrony was analyzed using moving correlations of the intensity between the two time series. The results revealed (1) A consistent temporal pattern among the four counseling cases, though the moving correlation coefficients were higher for the high evaluation group than the low evaluation group and (2) Different temporal patterns for the counseling and advice sessions even when the clients were the same. These results were discussed from the perspective of the quality of client-counselor relationship.

  17. Temporal dynamics of musical emotions examined through intersubject synchrony of brain activity.

    Science.gov (United States)

    Trost, Wiebke; Frühholz, Sascha; Cochrane, Tom; Cojan, Yann; Vuilleumier, Patrik

    2015-12-01

    To study emotional reactions to music, it is important to consider the temporal dynamics of both affective responses and underlying brain activity. Here, we investigated emotions induced by music using functional magnetic resonance imaging (fMRI) with a data-driven approach based on intersubject correlations (ISC). This method allowed us to identify moments in the music that produced similar brain activity (i.e. synchrony) among listeners under relatively natural listening conditions. Continuous ratings of subjective pleasantness and arousal elicited by the music were also obtained for the music outside of the scanner. Our results reveal synchronous activations in left amygdala, left insula and right caudate nucleus that were associated with higher arousal, whereas positive valence ratings correlated with decreases in amygdala and caudate activity. Additional analyses showed that synchronous amygdala responses were driven by energy-related features in the music such as root mean square and dissonance, while synchrony in insula was additionally sensitive to acoustic event density. Intersubject synchrony also occurred in the left nucleus accumbens, a region critically implicated in reward processing. Our study demonstrates the feasibility and usefulness of an approach based on ISC to explore the temporal dynamics of music perception and emotion in naturalistic conditions.

  18. Rigid patterns of synchrony for equilibria and periodic cycles in network dynamics

    Science.gov (United States)

    Golubitsky, Martin; Stewart, Ian

    2016-09-01

    We survey general results relating patterns of synchrony to network topology, applying the formalism of coupled cell systems. We also discuss patterns of phase-locking for periodic states, where cells have identical waveforms but regularly spaced phases. We focus on rigid patterns, which are not changed by small perturbations of the differential equation. Symmetry is one mechanism that creates patterns of synchrony and phase-locking. In general networks, there is another: balanced colorings of the cells. A symmetric network may have anomalous patterns of synchrony and phase-locking that are not consequences of symmetry. We introduce basic notions on coupled cell networks and their associated systems of admissible differential equations. Periodic states also possess spatio-temporal symmetries, leading to phase relations; these are classified by the H/K theorem and its analog for general networks. Systematic general methods for computing the stability of synchronous states exist for symmetric networks, but stability in general networks requires methods adapted to special classes of model equations.

  19. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    Science.gov (United States)

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  20. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal.

    Science.gov (United States)

    Kiviniemi, Vesa J; Haanpää, Hannu; Kantola, Juha-Heikki; Jauhiainen, Jukka; Vainionpää, Vilho; Alahuhta, Seppo; Tervonen, Osmo

    2005-05-01

    The blood oxygen level-dependent (BOLD) magnetic resonance signal of functional brain cortices is dominated by very low frequency (VLF) fluctuations in anesthetized child patients. The temporal synchrony of the BOLD signal is also higher in anesthetized children compared with awake adults. The origin of the synchronous fluctuations can be related to maturation, pathological status or the anesthesia used in the imaging. Two of the three confounding variables (maturation and pathology) were controlled in this study. The effect of midazolam (4+/-0.8 mg) sedation on the BOLD signal was assessed in 12 healthy adults (aged 24+/-1.5 years) at 1.5 T. The VLF fluctuation power and temporal synchrony of the BOLD signal increased significantly after the sedation in the auditory and visual cortices. The fast Fourier transformation power spectral baseline fit parameters of the BOLD signal were also found to change significantly after sedation. It is concluded that the VLF fluctuation and temporal synchrony of the BOLD signal become increased after sedation in functional brain regions.

  1. Role of myelin plasticity in oscillations and synchrony of neuronal activity.

    Science.gov (United States)

    Pajevic, S; Basser, P J; Fields, R D

    2014-09-12

    Conduction time is typically ignored in computational models of neural network function. Here we consider the effects of conduction delays on the synchrony of neuronal activity and neural oscillators, and evaluate the consequences of allowing conduction velocity (CV) to be regulated adaptively. We propose that CV variation, mediated by myelin, could provide an important mechanism of activity-dependent nervous system plasticity. Even small changes in CV, resulting from small changes in myelin thickness or nodal structure, could have profound effects on neuronal network function in terms of spike-time arrival, oscillation frequency, oscillator coupling, and propagation of brain waves. For example, a conduction delay of 5ms could change interactions of two coupled oscillators at the upper end of the gamma frequency range (∼100Hz) from constructive to destructive interference; delays smaller than 1ms could change the phase by 30°, significantly affecting signal amplitude. Myelin plasticity, as another form of activity-dependent plasticity, is relevant not only to nervous system development but also to complex information processing tasks that involve coupling and synchrony among different brain rhythms. We use coupled oscillator models with time delays to explore the importance of adaptive time delays and adaptive synaptic strengths. The impairment of activity-dependent myelination and the loss of adaptive time delays may contribute to disorders where hyper- and hypo-synchrony of neuronal firing leads to dysfunction (e.g., dyslexia, schizophrenia, epilepsy). Published by Elsevier Ltd.

  2. The development of neural synchrony and large-scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis.

    Science.gov (United States)

    Uhlhaas, Peter J; Singer, Wolf

    2011-05-01

    Recent data from developmental cognitive neuroscience highlight the profound changes in the organization and function of cortical networks during the transition from adolescence to adulthood. While previous studies have focused on the development of gray and white matter, recent evidence suggests that brain maturation during adolescence extends to fundamental changes in the properties of cortical circuits that in turn promote the precise temporal coding of neural activity. In the current article, we will highlight modifications in the amplitude and synchrony of neural oscillations during adolescence that may be crucial for the emergence of cognitive deficits and psychotic symptoms in schizophrenia. Specifically, we will suggest that schizophrenia is associated with impaired parameters of synchronous oscillations that undergo changes during late brain maturation, suggesting an important role of adolescent brain development for the understanding, treatment, and prevention of the disorder.

  3. Attitudes to Suggestions

    Institute of Scientific and Technical Information of China (English)

    PETER; JOHNSON

    2007-01-01

    As an Australian expat teaching English in China for over four years, I often encourage my students to not only learn the English language but also try to understand Western culture. This includes the fact that Westerners frequently initiate proactive suggestions on any aspects of soci-

  4. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  5. Two-dimensional speckle-tracking echocardiographic assessment of left ventricular mechanical synchrony in clinically normal cats

    Directory of Open Access Journals (Sweden)

    Hsu YL

    2016-03-01

    Full Text Available Yueh-Lun Hsu, Hui-Pi Huang Institute of Veterinary Clinical Science, Veterinary School, National Taiwan University, Taipei, Taiwan Abstract: Ventricular heterogeneity and synchrony are associated with hypertrophic cardiomyopathy in humans. Hypertrophic cardiomyopathy is commonly observed in cats. The aim of this study was to determine the presence and normal range of left ventricular mechanical heterogeneity and synchrony in clinically healthy cats using two-dimensional speckle-tracking echocardiography. Thirty-four clinically healthy cats were included in this prospective study. Two-dimensional echocardiography and two-dimensional speckle-tracking echocardiography were performed on all cats. Echocardiographic parameters, including circumferential, radial, and longitudinal strain and strain rate, heterogeneity, and synchrony, were measured. Segmental heterogeneity values in the circumferential, radial, and longitudinal directions were 13.1%±5.9%, 19.1%±10.3%, and 15.4%±6.8%, respectively. Transmural heterogeneity was -14.3%±4.6% in the circumferential direction. Left ventricular synchrony values in the circumferential, radial, and longitudinal directions were 11.7±4.2, 16.5±13.4, and 19.4±8.5 ms, respectively. Interventricular synchrony was -3.9±13.2 ms. Left ventricular heterogeneity and synchrony were noted in clinically healthy cats; segmental heterogeneity, which is characterized as longitudinal, progressively increased from the apical to the basal segments, while transmural heterogeneity, which is characterized as circumferential, progressively decreased from the endocardium to the epicardium. Keywords: feline, ventricular heterogeneity, synchrony

  6. Suggestions for Teaching Practice

    Institute of Scientific and Technical Information of China (English)

    ZHAN Na-na

    2013-01-01

    Teacher development and teaching practice(TP) have caught the eyes of researchers at home and abroad for many years. Many western scholars hold that reflective teaching is an efficient way to promote teacher development, but traditional TP is prevailing in China. Based on the merits and demerits of traditional TP and reflective TP, the author hopes to provide some suggestions for the people involved to promote the development of teacher education.

  7. Agency over a phantom limb and electromyographic activity on the stump depend on visuomotor synchrony: a case study

    Directory of Open Access Journals (Sweden)

    Shu eImaizumi

    2014-07-01

    Full Text Available Most patients, post-amputation, report the experience of a phantom limb. Some even sense voluntary movements when viewing a mirror image of the intact limb superimposed onto the phantom limb. While delayed visual feedback of an action is known to reduce a sense of agency, the effect of delayed visual feedback on phantom motor sensation (i.e., sense of controlling a phantom limb has not been examined. Using a video-projection system, we examined the effect of delayed visual feedback on phantom motor sensation in an upper-limb amputee (male; left upper-limb amputation. He was instructed to view mirrored video images of his intact hand clasping and unclasping during a phantom limb movement. He then rated the intensity of the phantom motor sensation. Three types of hand movement images were presented as follows: synchronous, asynchronous with a 250-ms delay, and asynchronous with a 500-ms delay. Results showed that phantom motor sensation decreased when the image was delayed by 250 and 500 ms. However, when we instructed the patient to adjust the phase of phantom limb movement to that of the image with a 500-ms delay, phantom motor sensation increased. There was also a positive correlation between intensity of phantom motor sensation and electromyographic activity on deltoids at the patient’s stump. These results suggest that phantom motor sensation and electromyographic activity on the stump depend on visuomotor synchrony and top-down effects.

  8. Agency over a phantom limb and electromyographic activity on the stump depend on visuomotor synchrony: a case study.

    Science.gov (United States)

    Imaizumi, Shu; Asai, Tomohisa; Kanayama, Noriaki; Kawamura, Mitsuru; Koyama, Shinichi

    2014-01-01

    Most patients, post-amputation, report the experience of a phantom limb. Some even sense voluntary movements when viewing a mirror image of the intact limb superimposed onto the phantom limb. While delayed visual feedback of an action is known to reduce a sense of agency, the effect of delayed visual feedback on phantom motor sensation (i.e., sense of controlling a phantom limb) has not been examined. Using a video-projection system, we examined the effect of delayed visual feedback on phantom motor sensation in an upper-limb amputee (male; left upper-limb amputation). He was instructed to view mirrored video images of his intact hand clasping and unclasping during a phantom limb movement. He then rated the intensity of the phantom motor sensation. Three types of hand movement images were presented as follows: synchronous, asynchronous with a 250-ms delay, and asynchronous with a 500-ms delay. Results showed that phantom motor sensation decreased when the image was delayed by 250 and 500 ms. However, when we instructed the patient to adjust the phase of phantom limb movement to that of the image with a 500-ms delay, phantom motor sensation increased. There was also a positive correlation between intensity of phantom motor sensation and electromyographic (EMG) activity on deltoids at the patient's stump. These results suggest that phantom motor sensation and EMG activity on the stump depend on visuomotor synchrony and top-down effects.

  9. A {open_quotes}balanced{close_quotes} Y:16 translocation with the Y breakpoint just proximal to the Yq heterochromatin boundary associated with Turner-like neonatal lymphedema suggests the location of a potential anti-Turner gene

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.P.; Hudgins, L. [Univ. of Arizona, Tucson, AZ (United States); Stone, J.F. [Southwest Biomedical Research Institute, Scottsdale, AZ (United States)] [and others

    1994-09-01

    A male patient with Turner-like hydrops in the newborn period (Bonnevie-Ullrich syndrome) was studied. The extensive nucchal cystic hygroma and hydrops resolved over several weeks. The karyotype was 46,X,t(Y;16)(q11.2;q24). The paternal karyotype was normal. Chromosome painting with the heterochromatic long arm repeat DYZ2 disclosed that all the hybridization was on the derivative 16. This was confirmed by chromosome painting with DYZ1, the other major Y long arm heterochromatic repeat, and DYZ3, the Y alphoid, centromeric repeat, which showed chromosomal separation of the 2 stained regions. A {open_quotes}FISHing trip{close_quotes} was performed using the Y YAC contig created in Dr. David Page`s laboratory. This disclosed 2 YACs located just proximal to the Y heterochromatin which {open_quotes}jumped{close_quotes} the translocation. The recent discovery of a candidate gene for the azoospermia factor (AZF) in this region suggests the possibility that there are several Y-expressed genes adjacent to the heterochromatin boundary as there are near the pseudoautosomal boundary.

  10. Secondary bilateral synchrony associated to a parasagittal tumor case report

    Directory of Open Access Journals (Sweden)

    A. Cukiert

    1991-09-01

    Full Text Available A 32 years old woman who had postural limbic and primarily generalized tonic-clonic seizures since the age of 11 presented to us with a CT image strongly suggestive of a mesial meningeoma near the right cingulum. Her ictal EEG pattern was characterized by regular 1.5-2.0 Hz sharp and slow wave complexes. A right craniotomy was performed under general anesthesia and intraoperative electroencephalographic and electrocorticographic recordings were obtained by means of scalp steel electrodes and modified cerebellar stimulation electrodes, respectively. These recordings demonstrated that surface spikes were often independent from the electrocorticographically recorded ones. Before tumor excision, electrical stimulation of the peritumoral mesial cortex resulted in an increase in the epileptic activity. The stimulation of the cavity left after tumor excision led to a prolonged electrographic seizure and neurophysiological procedures were stopped. Post-operatively, the patient has remained seizure free for 6 months and her EEG was normal. The pre-, intra- and post-operative findings in this case suggest that the gliotic peritumoral mesial cortex was at least involved in the epileptogenic process.

  11. Bio-behavioral synchrony promotes the development of conceptualized emotions.

    Science.gov (United States)

    Atzil, Shir; Gendron, Maria

    2017-07-17

    As adults, we have structured conceptual representations of our emotions that help us to make sense of and regulate our ongoing affective experience. The ability to use emotion concepts is critical to make predictions about the world and choose appropriate action, such as 'I am afraid, and going to run away' or 'I am hungry and going to eat'. Thus, emotion concepts have an important role in helping us maintain our ongoing physiological balance, or allostasis. We will suggest here that infants can learn emotion concepts for the purpose of allostasis regulation, and that conceptualization is key component in emotional development. Moreover, we will suggest that social dyads facilitate concept learning because of a robust evolutionary feature seen in newborns of social species: they cannot survive alone and depend on conspecifics for allostasis regulation. Such social dependency creates a robust driving force for social learning of emotion concepts, and makes the social dyad, which is designed to regulate the infant's allostasis, an optimal medium for concept learning. In line with that, we will review evidence showing that the neural reference space for emotion overlaps with neural circuits that support allostasis (striatum, amygdala, and hypothalamus) and conceptualization (medial prefrontal cortex, posterior cingulate cortex), and that their developmental trajectories are interrelated, and depend on synchronous social care. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Left Ventricular Synchrony and Function in Pediatric Patients with Definitive Pacemakers

    Science.gov (United States)

    Ortega, Michel Cabrera; Morejón, Adel Eladio Gonzales; Ricardo, Giselle Serrano

    2013-01-01

    Background Chronic right ventricular pacing (RVP) induces a dyssynchronous contraction pattern, producing interventricular and intraventricular asynchrony. Many studies have shown the relationship of RVP with impaired left ventricular (LV) form and function. Objective The aim of this study was to evaluate LV synchrony and function in pediatric patients receiving RVP in comparison with those receiving LV pacing (LVP). Methods LV systolic and diastolic function and synchrony were evaluated in 80 pediatric patients with either nonsurgical or postsurgical complete atrioventricular block, with pacing from either the RV endocardium (n = 40) or the LV epicardium (n = 40). Echocardiographic data obtained before pacemaker implantation, immediately after it, and at the end of a mean follow-up of 6.8 years were analyzed. Results LV diastolic function did not change in any patient during follow-up. LV systolic function was preserved in patients with LVP. However, in children with RVP the shortening fraction and ejection fraction decreased from medians of 41% ± 2.6% and 70% ± 6.9% before implantation to 32% ± 4.2% and 64% ± 2.5% (p < 0.0001 and p < 0.0001), respectively, at final follow-up. Interventricular mechanical delay was significantly larger with RVP (66 ± 13 ms) than with LVP (20 ± 8 ms). Similarly, the following parameters were significantly different in the two groups: LV mechanical delay (RVP: 69 ± 6 ms, LVP: 30 ± 11 ms, p < 0.0001); septal to lateral wall motion delay (RVP: 75 ± 19 ms, LVP: 42 ± 10 ms, p < 0.0001); and, septal to posterior wall motion delay (RVP: 127 ± 33 ms, LVP: 58 ± 17 ms, p < 0.0001). Conclusion Compared with RV endocardium, LV epicardium is an optimal site for pacing to preserve cardiac synchrony and function. PMID:24061683

  13. The interaction of intrinsic dynamics and network topology in determining network burst synchrony.

    Science.gov (United States)

    Gaiteri, Chris; Rubin, Jonathan E

    2011-01-01

    The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active, rhythmically bursting, or quiescent. Despite this intrinsic heterogeneity, coupled networks of pre-BötC neurons en bloc engage in synchronized bursting that can drive inspiratory motor neuron activation. The region's connection topology has been recently characterized and features dense clusters of cells with occasional connections between clusters. We investigate how the dynamics of individual neurons (quiescent/bursting/tonic) and the betweenness centrality of neurons' positions within the network connectivity graph interact to govern network burst synchrony, by simulating heterogeneous networks of computational model pre-BötC neurons. Furthermore, we compare the prevalence and synchrony of bursting across networks constructed with a variety of connection topologies, analyzing the same collection of heterogeneous neurons in small-world, scale-free, random, and regularly structured networks. We find that several measures of network burst synchronization are determined by interactions of network topology with the intrinsic dynamics of neurons at central network positions and by the strengths of synaptic connections between neurons. Surprisingly, despite the functional role of synchronized bursting within the pre-BötC, we find that synchronized network bursting is generally weakest when we use its specific connection topology, which leads to synchrony within clusters but poor coordination across clusters. Overall, our results highlight the relevance of interactions between topology and intrinsic dynamics in shaping the activity of networks and the concerted effects of connectivity patterns and dynamic heterogeneities.

  14. Effects of right atrial and ventricular DDD pacing on cardiac function and ventricular contraction synchrony

    Institute of Scientific and Technical Information of China (English)

    支力大; 华伟; 张澍; 史蓉芳; 王方正; 陈新

    2004-01-01

    Background Right ventricular apical pacing has been reported to reduce cardiac performance. But there are few reports on the effects of dual chamber (DDD) pacing on cardiac function compared to sinus rhythm. In this study, we evaluated the effects of right atrial and ventricular DDD pacing on cardiac function and ventricular contraction synchrony using equilibrium radionuclide angiography.Methods Ten patients implanted with a right atrial and ventricular DDD pacemaker underwent equilibrium radionuclide angiography. The scintigraphic data were obtained during sinus rhythm and pacing rhythm. Cardiac function parameters were obtained semimanually. Phase analysis was used to study the ventricular activation sequence and ventricular synchrony.Results The left ventricular 1/3 ejection fraction decreased significantly during pacing compared with that during sinus rhythm[(23.4 ±6.1)% vs(27.7 ±4.5)%, P =0.01]. Regional ejection fraction also decreased during pacing, although the difference was not statistically significant. Phase analysis showed that the right ventricle was activated earlier than the left ventricle during pacing, and that the phase shift was significantly greater during pacing than that during sinus rhythm[64.13°±16.80° vs 52.88°± 9.26°, P =0.007]. The activation of both ventricles occurred simultaneously during sinus rhythm, with the activation sequence from proximal septum or base of left ventricle to apex. The earliest activation during pacing occurred at the right ventricular apex, and subsequently spread to the base and left ventricle.Conclusion Right atrial and ventricular DDD pacing impairs left ventricular systolic function and ventricular synchrony.

  15. PySpike - A Python library for analyzing spike train synchrony

    CERN Document Server

    Mulansky, Mario

    2016-01-01

    Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing patterns (spike trains) plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to compute bi- and multivariate dissimilarity profiles, averaged values and bivariate matrices. Although mainly focusing on neuroscience, PySpike can also be applied in other contexts like climate research or social sciences. The package is available as Open Source on Github and PyPI.

  16. Pacemaker repetitive nonreentrant ventriculoatrial synchrony. Why did automatic mode switching occur?

    Science.gov (United States)

    Barold, S Serge; Stroobandt, Roland X; Van Heuverswyn, Frederic

    2012-01-01

    Repetitive nonreentrant ventriculoatrial synchrony during dual-chamber pacing is characterized by long intervals alternating with short intervals. This arrangement activated automatic mode switching in a St Jude dual-chamber pacemaker in which the algorithm requires an atrial sensed event for automatic mode switching initiation. Automatic mode switching activation by an atrial sensed event (retrograde P wave) was puzzling because the programmed postventricular atrial period was longer than the retrograde ventriculoatrial conduction time. The explanation is presented in the form of questions and answers to facilitate the understanding of pacemaker function and complex timing cycles.

  17. Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators

    Science.gov (United States)

    Zhou, Brian B.; Roy, Rajarshi

    2007-02-01

    We propose a basic mechanism for isochronal synchrony and communication with mutually delay-coupled chaotic systems. We show that two Ikeda ring oscillators, mutually coupled with a propagation delay, synchronize isochronally when both are symmetrically driven by a third Ikeda oscillator. This synchronous operation, unstable in the two delay-coupled oscillators alone, facilitates simultaneous, bidirectional communication of messages with chaotic carrier wave forms. This approach to combine both bidirectional and unidirectional coupling represents an application of generalized synchronization using a mediating drive signal for a spatially distributed and internally synchronized multicomponent system.

  18. [Development of an automatic pneumatic tourniquet system that determines pressures in synchrony with systolic blood pressure].

    Science.gov (United States)

    Liu, Hongyun; Li, Kaiyuan; Zhang, Zhengbo; Guo, Junyan; Wang, Weidong

    2012-11-01

    The correlation coefficients between arterial occlusion pressure and systolic blood pressure, diastolic blood pressure, limb circumference, body mass etc were obtained through healthy volunteer experiments, in which tourniquet were applied on upper/lower extremities. The prediction equations were derived from the data of experiments by multiple regression analysis. Based on the microprocessor C8051F340, a new pneumatic tourniquet system that can determine tourniquet pressure in synchrony with systolic blood pressure was developed and verified the function and stability of designed system. Results showed that the pneumatic tourniquet which automatically adjusts occlusion pressure in accordance with systolic blood pressure could stop the flow of blood to get a bloodless field.

  19. PySpike—A Python library for analyzing spike train synchrony

    Directory of Open Access Journals (Sweden)

    Mario Mulansky

    2016-01-01

    Full Text Available Understanding how the brain functions is one of the biggest challenges of our time. The analysis of experimentally recorded neural firing patterns (spike trains plays a crucial role in addressing this problem. Here, the PySpike library is introduced, a Python package for spike train analysis providing parameter-free and time-scale independent measures of spike train synchrony. It allows to compute similarity and dissimilarity profiles, averaged values and distance matrices. Although mainly focusing on neuroscience, PySpike can also be applied in other contexts like climate research or social sciences. The package is available as Open Source on Github and PyPI.

  20. Judged and Remembered Trustworthiness of Faces Is Enhanced by Experiencing Multisensory Synchrony and Asynchrony in the Right Order.

    Science.gov (United States)

    Toscano, Hugo; Schubert, Thomas W

    2015-01-01

    This work builds on the enfacement effect. This effect occurs when experiencing a rhythmic stimulation on one's cheek while seeing someone else's face being touched in a synchronous way. This typically leads to cognitive and social-cognitive effects similar to self-other merging. In two studies, we demonstrate that this multisensory stimulation can change the evaluation of the other's face. In the first study, participants judged the stranger's face and similar faces as being more trustworthy after synchrony, but not after asynchrony. Synchrony interacted with the order of the stroking; hence trustworthiness only changed when the synchronous stimulation occurred before the asynchronous one. In the second study, a synchronous stimulation caused participants to remember the stranger's face as more trustworthy, but again only when the synchronous stimulation came before the asynchronous one. The results of both studies show that order of stroking creates a context in which multisensory synchrony can affect the trustworthiness of faces.

  1. Plant-herbivore synchrony and selection on plant flowering phenology.

    Science.gov (United States)

    Fogelström, Elsa; Olofsson, Martin; Posledovich, Diana; Wiklund, Christer; Dahlgren, Johan P; Ehrlén, Johan

    2017-03-01

    Temporal variation in natural selection has profound effects on the evolutionary trajectories of populations. One potential source of variation in selection is that differences in thermal reaction norms and temperature influence the relative phenology of interacting species. We manipulated the phenology of the butterfly herbivore Anthocharis cardamines relative to genetically identical populations of its host plant, Cardamine pratensis, and examined the effects on butterfly preferences and selection acting on the host plant. We found that butterflies preferred plants at an intermediate flowering stage, regardless of the timing of butterfly flight relative to flowering onset of the population. Consequently, the probability that plant genotypes differing in timing of flowering should experience a butterfly attack depended strongly on relative phenology. These results suggest that differences in spring temperature influence the direction of herbivore-mediated selection on flowering phenology, and that climatic conditions can influence natural selection also when phenotypic preferences remain constant.

  2. Long-term trends and synchrony in dissolved organic matter characteristics in Wisconsin, USA, lakes: Quality, not quantity, is highly sensitive to climate

    Science.gov (United States)

    Jane, Stephen F.; Winslow, Luke A.; Remucal, Christina K.; Rose, Kevin C.

    2017-03-01

    Dissolved organic matter (DOM) is a fundamental driver of many lake processes. In the past several decades, many lakes have exhibited a substantial increase in DOM quantity, measured as dissolved organic carbon (DOC) concentration. While increasing DOC is now widely recognized, fewer studies have sought to understand how characteristics of DOM (DOM quality) change over time. Quality can be measured in several ways, including the optical characteristics spectral slope (S275-295), spectral ratio (SR), absorbance at 254 nm (A254), and DOC-specific absorbance (SUVA; A254:DOC). However, long-term measurements of quality are not nearly as common as long-term measurements of DOC concentration. We used 24 years of DOC and absorbance data for seven lakes in the North Temperate Lakes Long-Term Ecological Research site in northern Wisconsin, USA, to examine temporal trends and synchrony in both DOC concentration and quality. We predicted lower SR and S275-295 and higher A254 and SUVA trends, consistent with increasing DOC and greater allochthony. DOC concentration exhibited both significant positive and negative trends among lakes. In contrast, DOC quality exhibited trends suggesting reduced allochthony or increased degradation, with significant long-term increases in SR in three lakes. Patterns and synchrony of DOM quality parameters suggest that they are more responsive to climatic variations than DOC concentration. SUVA was particularly responsive to the degree of soil moisture. These results demonstrate that DOC quantity and quality can exhibit different complex long-term trends and responses to climatic drivers, with implications for carbon cycling and microbial communities in aquatic ecosystems.

  3. Chorusing, synchrony and the evolutionary functions of rhythm

    Directory of Open Access Journals (Sweden)

    Andrea eRavignani

    2014-10-01

    Full Text Available A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc. with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony, we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, making group behavior key to understand the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates. Finally, we propose an Evolving Signal Timing hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s of rhythmic behavior in our proto-musical primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  4. Chorusing, synchrony, and the evolutionary functions of rhythm.

    Science.gov (United States)

    Ravignani, Andrea; Bowling, Daniel L; Fitch, W Tecumseh

    2014-01-01

    A central goal of biomusicology is to understand the biological basis of human musicality. One approach to this problem has been to compare core components of human musicality (relative pitch perception, entrainment, etc.) with similar capacities in other animal species. Here we extend and clarify this comparative approach with respect to rhythm. First, whereas most comparisons between human music and animal acoustic behavior have focused on spectral properties (melody and harmony), we argue for the central importance of temporal properties, and propose that this domain is ripe for further comparative research. Second, whereas most rhythm research in non-human animals has examined animal timing in isolation, we consider how chorusing dynamics can shape individual timing, as in human music and dance, arguing that group behavior is key to understanding the adaptive functions of rhythm. To illustrate the interdependence between individual and chorusing dynamics, we present a computational model of chorusing agents relating individual call timing with synchronous group behavior. Third, we distinguish and clarify mechanistic and functional explanations of rhythmic phenomena, often conflated in the literature, arguing that this distinction is key for understanding the evolution of musicality. Fourth, we expand biomusicological discussions beyond the species typically considered, providing an overview of chorusing and rhythmic behavior across a broad range of taxa (orthopterans, fireflies, frogs, birds, and primates). Finally, we propose an "Evolving Signal Timing" hypothesis, suggesting that similarities between timing abilities in biological species will be based on comparable chorusing behaviors. We conclude that the comparative study of chorusing species can provide important insights into the adaptive function(s) of rhythmic behavior in our "proto-musical" primate ancestors, and thus inform our understanding of the biology and evolution of rhythm in human music and

  5. Repetitive nonreentrant ventriculoatrial synchrony: An underrecognized cause of pacemaker-related arrhythmia.

    Science.gov (United States)

    Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Koneru, Jayanthi N; Shepard, Richard; Ellenbogen, Kenneth A; Huizar, Jose F

    2016-08-01

    Similar to endless loop tachycardia (ELT), repetitive nonreentrant ventriculoatrial synchrony (RNRVAS) is a ventriculoatrial (VA) synchrony pacemaker-mediated arrhythmia. RNRVAS was first described in 1990 and can only occur in the presence of retrograde VA conduction and dual-chamber or cardiac resynchronization devices with tracking (P-synchronous ventricular pacing such as DDD, DDDR) or nontracking pacing modes that allow AV-sequential pacing (DDI, DDIR). RNRVAS is promoted by (1) high lower rate limit or any feature that allows rapid pacing, (2) long AV intervals, or (3) long postventricular atrial refractory period (PVARP). In contrast to ELT, RNRVAS is a less well-recognized form of pacemaker-mediated arrhythmia; thus, unlike ELT, there are no specific device algorithms to prevent, recognize, and terminate RNRVAS. However, RNRVAS has been recently shown to occur frequently. We present a series of cases, some of which were found fortuitously. Owing to its clinical implications, we propose that algorithms should be developed to prevent, identify, and terminate RNRVAS.

  6. Short- and long-range neural synchrony in grapheme-color synesthesia.

    Science.gov (United States)

    Volberg, Gregor; Karmann, Anna; Birkner, Stefanie; Greenlee, Mark W

    2013-07-01

    Grapheme-color synesthesia is a perceptual phenomenon where single graphemes (e.g., the letter "E") induce simultaneous sensations of colors (e.g., the color green) that were not objectively shown. Current models disagree as to whether the color sensations arise from increased short-range connectivity between anatomically adjacent grapheme- and color-processing brain structures or from decreased effectiveness of inhibitory long-range connections feeding back into visual cortex. We addressed this issue by examining neural synchrony obtained from EEG activity, in a sample of grapheme-color synesthetes that were presented with color-inducing versus non-color-inducing graphemes. For color-inducing graphemes, the results showed a decrease in the number of long-range couplings in the theta frequency band (4-7 Hz, 280-540 msec) and a concurrent increase of short-range phase-locking within lower beta band (13-20 Hz, 380-420 msec at occipital electrodes). Because the effects were both found in long-range synchrony and later within the visual processing stream, the results support the idea that reduced inhibition is an important factor for the emergence of synesthetic colors.

  7. Children's synchrony and rhythmicity in imitation of peers: toward a developmental model of empathy.

    Science.gov (United States)

    Xavier, Jean; Tilmont, Elodie; Bonnot, Olivier

    2013-09-01

    The main mechanisms of children's imitative exchanges with peers are highlighted here through a developmental approach taking into account the importance of rhythmicity and synchrony. We focused on spontaneous motor imitation to describe a playful dynamic that is paradoxical: in the experience of play in which roles are not clearly distributed, mutual discovery of the self and others gradually arises. From an integrative perspective, this form of interaction, produced by positional reversal and turn taking, is apprehended through two axis. On the temporal plan, it can be considered as a rhythmic pattern with repetition and synchrony. Moreover, these mutual exchanges between the self and others challenge visuo-spatial abilities in children who must be able to change their reference point through an operation of mental rotation. Based on this description of the intersubjective experience produced through a succession of spatial and symbolic viewpoint changes, a developmental model of empathy is offered and discussed. According to this model, the capacity of empathy has two dimensions, emotional and cognitive, and is understood as a process involved in child development. In this article, we propose that empathy is more than the "mere" capacity of decentration corresponding to the acquisition of a theory of mind. It involves an individual in relationship with others and who has the ability to integrate perspectives.

  8. Testing for synchrony in recruitment among four Lake Michigan fish species

    Science.gov (United States)

    Bunnell, David; Höök, Tomas O.; Troy, Cary D.; Liu, Wentao; Madenjian, Charles P.; Adams, Jean V.

    2017-01-01

    In the Great Lakes region, multiple fish species display intra-specific spatial synchrony in 28 recruitment success, with inter-annual climate variation hypothesized as the most likely driver. 29 In Lake Michigan, we evaluated whether climatic or other physical variables could also induce 30 spatial synchrony across multiple species, including bloater (Coregonus hoyi), rainbow smelt 31 (Osmerus mordax), yellow perch (Perca flavescens), and alewife (Alosa pseudoharengus). The 32 residuals from stock-recruitment relationships revealed yellow perch recruitment to be correlated 33 with recruitment of both rainbow smelt (r = 0.37) and alewife (r = 0.36). Across all four species, 34 higher than expected recruitment occurred in 5 years between 1978 and 1987 and then switched 35 to lower than expected recruitment in 5 years between 1996 and 2004. Generalized additive 36 models revealed warmer spring and summer water temperatures and lower wind speeds 37 corresponded to higher than expected recruitment for the nearshore-spawning species, and 38 overall variance explained ranged from 14% (yellow perch) to 61% (alewife). For all species 39 but rainbow smelt, higher recruitment also occurred in extremely high or low years of the North 40 Atlantic Oscillation index. Future development of indices that describe the physical Great Lakes 41 environment could improve understanding of how climate can synchronize fish populations 42 within and across species.

  9. Structural (operational) synchrony of EEG alpha activity during an auditory memory task.

    Science.gov (United States)

    Fingelkurts, Andrew; Fingelkurts, Alexander; Krause, Christina; Kaplan, Alexander; Borisov, Sergei; Sams, Mikko

    2003-09-01

    Memory paradigms are often used in psycho-physiological experiments in order to understand the neural basis underlying cognitive processes. One of the fundamental problems encountered in memory research is how specific and complementary cortical structures interact with each other during episodic encoding and retrieval. A key aspect of the research described below was estimating the coupling of rapid transition processes (in terms of EEG description) which occur in separate cortical areas rather than estimating the routine phase-frequency synchrony in terms of correlation and coherency. It is assumed that these rapid transition processes in the EEG amplitude correspond to the "switching on/off" of brain elemental operations. By making a quantitative estimate of the EEG structural synchrony of alpha-band power between different EEG channels, it was shown that short-term memory has the emergent property of a multiregional neuronal network, and is not the product of strictly hierarchical processing based on convergence through association regions. Moreover, it was demonstrated that the dynamic temporal structure of alpha activity is strongly correlated to the dynamic structure of working memory.

  10. An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria

    Science.gov (United States)

    Rompolas, Panteleimon; Patel-King, Ramila S.

    2010-01-01

    Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony. PMID:20844081

  11. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal.

    Directory of Open Access Journals (Sweden)

    Benjamin M Althouse

    Full Text Available Isolations of sylvatic dengue-2 virus from mosquitoes, humans and non-human primates in Senegal show synchronized multi-annual dynamics over the past 50 years. Host demography has been shown to directly affect the period between epidemics in other pathogen systems, therefore, one might expect unsynchronized multi-annual cycles occurring in hosts with dramatically different birth rates and life spans. However, in Senegal, we observe a single synchronized eight-year cycle across all vector species, suggesting synchronized dynamics in all vertebrate hosts. In the current study, we aim to explore two specific hypotheses: 1 primates with different demographics will experience outbreaks of dengue at different periodicities when observed as isolated systems, and that coupling of these subsystems through mosquito biting will act to synchronize incidence; and 2 the eight-year periodicity of isolations observed across multiple primate species is the result of long-term cycling in population immunity in the host populations. To test these hypotheses, we develop a multi-host, multi-vector Susceptible, Infected, Removed (SIR model to explore the effects of coupling multiple host-vector systems of dengue virus transmission through cross-species biting rates. We find that under small amounts of coupling, incidence in the host species synchronize. Long-period multi-annual dynamics are observed only when prevalence in troughs reaches vanishingly small levels (< 10(-10, suggesting that these dynamics are inconsistent with sustained transmission in this setting, but are consistent with local dengue virus extinctions followed by reintroductions. Inclusion of a constant introduction of infectious individuals into the system causes the multi-annual periods to shrink, while the effects of coupling remain the same. Inclusion of a stochastic rate of introduction allows for multi-annual periods at a cost of reduced synchrony. Thus, we conclude that the eight-year period

  12. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment.

    Science.gov (United States)

    Cole, Ella F; Long, Peter R; Zelazowski, Przemyslaw; Szulkin, Marta; Sheldon, Ben C

    2015-11-01

    Population-level studies of how tit species (Parus spp.) track the changing phenology of their caterpillar food source have provided a model system allowing inference into how populations can adjust to changing climates, but are often limited because they implicitly assume all individuals experience similar environments. Ecologists are increasingly using satellite-derived data to quantify aspects of animals' environments, but so far studies examining phenology have generally done so at large spatial scales. Considering the scale at which individuals experience their environment is likely to be key if we are to understand the ecological and evolutionary processes acting on reproductive phenology within populations. Here, we use time series of satellite images, with a resolution of 240 m, to quantify spatial variation in vegetation green-up for a 385-ha mixed-deciduous woodland. Using data spanning 13 years, we demonstrate that annual population-level measures of the timing of peak abundance of winter moth larvae (Operophtera brumata) and the timing of egg laying in great tits (Parus major) and blue tits (Cyanistes caeruleus) is related to satellite-derived spring vegetation phenology. We go on to show that timing of local vegetation green-up significantly explained individual differences in tit reproductive phenology within the population, and that the degree of synchrony between bird and vegetation phenology showed marked spatial variation across the woodland. Areas of high oak tree (Quercus robur) and hazel (Corylus avellana) density showed the strongest match between remote-sensed vegetation phenology and reproductive phenology in both species. Marked within-population variation in the extent to which phenology of different trophic levels match suggests that more attention should be given to small-scale processes when exploring the causes and consequences of phenological matching. We discuss how use of remotely sensed data to study within-population variation

  13. Perception of Audio-Visual Speech Synchrony in Spanish-Speaking Children with and without Specific Language Impairment

    Science.gov (United States)

    Pons, Ferran; Andreu, Llorenc; Sanz-Torrent, Monica; Buil-Legaz, Lucia; Lewkowicz, David J.

    2013-01-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the…

  14. Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex

    Directory of Open Access Journals (Sweden)

    Shumikhina Svetlana

    2008-07-01

    Full Text Available Abstract Background Visual neurons respond essentially to luminance variations occurring within their receptive fields. In primary visual cortex, each neuron is a filter for stimulus features such as orientation, motion direction and velocity, with the appropriate combination of features eliciting maximal firing rate. Temporal correlation of spike trains was proposed as a potential code for linking the neuronal responses evoked by various features of a same object. In the present study, synchrony strength was measured between cells following an adaptation protocol (prolonged exposure to a non-preferred stimulus which induce plasticity of neurons' orientation preference. Results Multi-unit activity from area 17 of anesthetized adult cats was recorded. Single cells were sorted out and (1 orientation tuning curves were measured before and following 12 min adaptation and 60 min after adaptation (2 pairwise synchrony was measured by an index that was normalized in relation to the cells' firing rate. We first observed that the prolonged presentation of a non-preferred stimulus produces attractive (58% and repulsive (42% shifts of cell's tuning curves. It follows that the adaptation-induced plasticity leads to changes in preferred orientation difference, i.e. increase or decrease in tuning properties between neurons. We report here that, after adaptation, the neuron pairs that shared closer tuning properties display a significant increase of synchronization. Recovery from adaptation was accompanied by a return to the initial synchrony level. Conclusion We conclude that synchrony reflects the similarity in neurons' response properties, and varies accordingly when these properties change.

  15. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community

    DEFF Research Database (Denmark)

    Lasky, Jesse R.; Uriarte, Maria; Muscarella, Robert

    2016-01-01

    among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked...

  16. Learning of Syllable-Object Relations by Preverbal Infants: The Role of Temporal Synchrony and Syllable Distinctiveness

    Science.gov (United States)

    Gogate, Lakshmi J.

    2010-01-01

    The role of temporal synchrony and syllable distinctiveness in preverbal infants' learning of word-object relations was investigated. In Experiment 1, 7- and 8-month-olds (N=64) were habituated under conditions where two "similar-sounding" syllables, /tah/ and /gah/, were spoken simultaneously with the motions of one of two sets of…

  17. EEG frequency tagging dissociates between neural processing of motion synchrony and human quality of multiple point-light dancers

    Science.gov (United States)

    Alp, Nihan; Nikolaev, Andrey R.; Wagemans, Johan; Kogo, Naoki

    2017-01-01

    Do we perceive a group of dancers moving in synchrony differently from a group of drones flying in-sync? The brain has dedicated networks for perception of coherent motion and interacting human bodies. However, it is unclear to what extent the underlying neural mechanisms overlap. Here we delineate these mechanisms by independently manipulating the degree of motion synchrony and the humanoid quality of multiple point-light displays (PLDs). Four PLDs moving within a group were changing contrast in cycles of fixed frequencies, which permits the identification of the neural processes that are tagged by these frequencies. In the frequency spectrum of the steady-state EEG we found two emergent frequency components, which signified distinct levels of interactions between PLDs. The first component was associated with motion synchrony, the second with the human quality of the moving items. These findings indicate that visual processing of synchronously moving dancers involves two distinct neural mechanisms: one for the perception of a group of items moving in synchrony and one for the perception of a group of moving items with human quality. We propose that these mechanisms underlie high-level perception of social interactions. PMID:28272421

  18. Perception of Audio-Visual Speech Synchrony in Spanish-Speaking Children with and without Specific Language Impairment

    Science.gov (United States)

    Pons, Ferran; Andreu, Llorenc; Sanz-Torrent, Monica; Buil-Legaz, Lucia; Lewkowicz, David J.

    2013-01-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the…

  19. Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus

    DEFF Research Database (Denmark)

    Søgaard-Andersen, L.; Overgaard, M.; Lobedanz, S.;

    2003-01-01

    A recurring theme in morphogenesis is the coupling of the expression of genes that drive morphogenesis and the morphogenetic process per se. This coupling ensures that gene expression and morphogenesis are carried out in synchrony. Morphogenesis of the spore-filled fruiting bodies in Myxococcus...

  20. GABAergic transmission facilitates ictogenesis and synchrony between CA3, hilus, and dentate gyrus in slices from epileptic rats

    Science.gov (United States)

    Gafurov, Boris

    2013-01-01

    The impact of regional hippocampal interactions and GABAergic transmission on ictogenesis remain unclear. Cortico-hippocampal slices from pilocarpine-treated epileptic rats were compared with controls to investigate associations between seizurelike events (SLE), GABAergic transmission, and neuronal synchrony within and between cortico-hippocampal regions. Multielectrode array recordings revealed more prevalent hippocampal SLE in epileptic tissue when excitatory transmission was enhanced and GABAergic transmission was intact [removal of Mg2+ (0Mg)] than when GABAergic transmission was blocked [removal of Mg2+ + bicuculline methiodide (0Mg+BMI)]. When activity within individual regions was analyzed, spectral and temporal slow oscillation/SLE correlations and cross-correlations were highest within the hilus of epileptic tissue during SLE but were similar in 0Mg and 0Mg+BMI. GABAergic facilitation of spectral “slow” oscillation and ripple correlations was most prominent within CA3 of epileptic tissue during SLE. When activity between regions was analyzed, slow oscillation and ripple coherence was highest between the hilus and dentate gyrus as well as between the hilus and CA3 of epileptic tissue during SLE and was significantly higher in 0Mg than 0Mg+BMI. High 0Mg-induced SLE cross-correlations between the hilus and dentate gyrus as well as between the hilus and CA3 were reduced or abolished in 0Mg+BMI. SLE cross-correlation lag measurements provided evidence for a monosynaptic connection from the hilus to the dentate gyrus during SLE. Findings implicate the hilus as an oscillation generator, whose impact on other cortico-hippocampal regions is mediated by GABAergic transmission. Data also suggest that GABAA receptor-mediated transmission facilitates back-propagation from CA3/hilus to the dentate gyrus and that this back-propagation augments SLE in epileptic hippocampus. PMID:23615549

  1. Difficulty-related changes in inter-regional neural synchrony are dissociated between target and non-target processing.

    Science.gov (United States)

    Choi, Jeong Woo; Cha, Kwang Su; Choi, Jong Doo; Jung, Ki-Young; Kim, Kyung Hwan

    2015-04-01

    The major purpose of this study was to explore the changes in the local/global gamma-band neural synchronies during target/non-target processing due to task difficulty under an auditory three-stimulus oddball paradigm. Multichannel event-related potentials (ERPs) were recorded from fifteen healthy participants during the oddball task. In addition to the conventional ERP analysis, we investigated the modulations in gamma-band activity (GBA) and inter-regional gamma-band phase synchrony (GBPS) for infrequent target and non-target processing due to task difficulty. The most notable finding was that the difficulty-related changes in inter-regional GBPS (33-35 Hz) at P300 epoch (350-600 ms) completely differed for target and non-target processing. As task difficulty increased, the GBPS significantly reduced for target processing but increased for non-target processing. This result contrasts with the local neural synchrony in gamma-bands, which was not affected by task difficulty. Another major finding was that the spatial patterns of functional connectivity were dissociated for target and non-target processing with regard to the difficult task. The spatial pattern for target processing was compatible with the top-down attention network, whereas that for the non-target corresponded to the bottom-up attention network. Overall, we found that the inter-regional gamma-band neural synchronies during target/non-target processing change significantly with task difficulty and that this change is dissociated between target and non-target processing. Our results indicate that large-scale neural synchrony is more relevant for the difference in information processing between target and non-target stimuli.

  2. Mean-field dispersion-induced spatial synchrony, oscillation and amplitude death, and temporal stability in an ecological model.

    Science.gov (United States)

    Banerjee, Tanmoy; Dutta, Partha Sharathi; Gupta, Anubhav

    2015-05-01

    One of the most important issues in spatial ecology is to understand how spatial synchrony and dispersal-induced stability interact. In the existing studies it is shown that dispersion among identical patches results in spatial synchrony; on the other hand, the combination of spatial heterogeneity and dispersion is necessary for dispersal-induced stability (or temporal stability). Population synchrony and temporal stability are thus often thought of as conflicting outcomes of dispersion. In contrast to the general belief, in this present study we show that mean-field dispersion is conducive to both spatial synchrony and dispersal-induced stability even in identical patches. This simultaneous occurrence of rather conflicting phenomena is governed by the suppression of oscillation states, namely amplitude death (AD) and oscillation death (OD). These states emerge through spatial synchrony of the oscillating patches in the strong-coupling strength. We present an interpretation of the mean-field diffusive coupling in the context of ecology and identify that, with increasing mean-field density, an open ecosystem transforms into a closed ecosystem. We report on the occurrence of OD in an ecological model and explain its significance. Using a detailed bifurcation analysis we show that, depending on the mortality rate and carrying capacity, the system shows either AD or both AD and OD. We also show that the results remain qualitatively the same for a network of oscillators. We identify a new transition scenario between the same type of oscillation suppression states whose geneses differ. In the parameter-mismatched case, we further report on the direct transition from OD to AD through a transcritical bifurcation. We believe that this study will lead to a proper interpretation of AD and OD in ecology, which may be important for the conservation and management of several communities in ecosystems.

  3. Detection of phase and lag synchrony as an adaptive measure of asymmetric neuronal interactions

    Science.gov (United States)

    Zochowski, Michal

    2006-03-01

    Asymmetric temporal interdependencies between individual neurons and their populations are though to underlie learning and memory formation and can provide information about direction of information transfer in neural systems. We have developed an adaptive measure that detects asymmetries in phase and lag synchrony between activities of individual neurons of synchronized networks. In the first part of the talk I will discuss the properties of the measure on network models of coupled non-linear oscillators and show progression of rapid transitions in temporal patterning in such networks as a function of their topology. In the second part of the talk I will present its application in analysis of normal and pathological neural activity: detection of evolving asymmetry in interactions of hippocampal neurons in freely behaving rats, and characterization of dynamical progression of synchronous seizure-like activity recorded from intact rat hippocampus.

  4. Psychological Data from an Exploration of the Rapport / Synchrony Interplay Using Motion Energy Analysis

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    2014-07-01

    Full Text Available These data result from an investigation examining the interplay between dyadic rapport and consequential behavior-mirroring. Participants responded to a variety of interpersonally-focused pretest measures prior to their engagement in videotaped interdependent tasks (coded for interactional synchrony using Motion Energy Analysis [17,18]. A post-task evaluation of rapport and other related constructs followed each exchange. Four studies shared these same dependent measures, but asked distinct questions: Study 1 (Ndyad = 38 explored the influence of perceived responsibility and gender-specificity of the task; Study 2 (Ndyad = 51 focused on dyad sex-makeup; Studies 3 (Ndyad = 41 and 4 (Ndyad = 63 examined cognitive load impacts on the interactions. Versions of the data are structured with both individual and dyad as the unit of analysis. Our data possess strong reuse potential for theorists interested in dyadic processes and are especially pertinent to questions about dyad agreement and interpersonal perception / behavior association relationships.

  5. Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music

    Science.gov (United States)

    Bhattacharya, Joydeep; Petsche, Hellmuth

    2001-07-01

    Multichannel electroencephalograph signals from two broad groups, 10 musicians and 10 nonmusicians, recorded in different states (in resting states or no task condition, with eyes opened and eyes closed, and with two musical tasks, listening to two different pieces of music) were studied. Degrees of phase synchrony in various frequency bands were assessed. No differences in the degree of synchronization in any frequency band were found between the two groups in resting conditions. Yet, while listening to music, significant increases of synchronization were found only in the γ-frequency range (>30 Hz) over large cortical areas for the group of musicians. This high degree of synchronization elicited by music in the group of musicians might be due to their ability to host long-term memory representations of music and mediate access to these stored representations.

  6. Controlling synchrony in oscillatory networks via an act-and-wait algorithm.

    Science.gov (United States)

    Ratas, Irmantas; Pyragas, Kestutis

    2014-09-01

    The act-and-wait control algorithm is proposed to suppress synchrony in globally coupled oscillatory networks in the situation when the simultaneous registration and stimulation of the system is not possible. The algorithm involves the periodic repetition of the registration (wait) and stimulation (act) stages, such that in the first stage the mean field of the free system is recorded in a memory and in the second stage the system is stimulated with the recorded signal. A modified version of the algorithm that takes into account the charge-balanced requirement is considered as well. The efficiency of our algorithm is demonstrated analytically and numerically for globally coupled Landau-Stuart oscillators and synaptically all-to-all coupled FitzHugh-Nagumo as well as Hodgkin-Huxley neurons.

  7. Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Heitor Scarpati Liuth

    2013-03-01

    Full Text Available In tropical forests with low seasonality, climatic variables generally exert a weak influence on the phenology of species. The seasonality of phenophases in closely related taxa can be controlled by phylogenetic constraints in such environments. In this study, our aim was to describe the phenology of Rubiaceae in the understory of the Atlantic Forest in the southern part of Bahia, Brazil, as well as to evaluate the seasonality and phenological synchrony of this family. For two years, we observed 90 individuals belonging to 13 species, in an area of 0.2 ha. Leaf flushing and leaf fall did not demonstrate any seasonality, were continuous for most species and correlated with few of the climatic variables. Flowering was seasonal and correlated positively with all climatic variables. Species exhibited seasonality for this phenophase with high flowering overlap among species of Psychotria, indicating an aggregated pattern for this genus. Fruiting was also seasonal and correlated with all the climatic variables, unripe fruit development peaking at the beginning of the season during which humidity is highest and fruit ripening peaking in the season during which humidity is slightly lower. The vegetative and flowering patterns observed in the study area are commonly seen in other tropical forests. The reproductive seasonality of this family can facilitate the attraction of biotic agents, as postulated in the facilitation hypothesis. Our results demonstrate that climatic variables influenced the phenological patterns observed here, although the high reproductive seasonality and interspecific synchrony, especially in congeneric species, raises the possibility that phylogenetic proximity plays a role in the pattern of the family Rubiaceae.

  8. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia.

    Science.gov (United States)

    van Panhuis, Willem G; Choisy, Marc; Xiong, Xin; Chok, Nian Shong; Akarasewi, Pasakorn; Iamsirithaworn, Sopon; Lam, Sai K; Chong, Chee K; Lam, Fook C; Phommasak, Bounlay; Vongphrachanh, Phengta; Bouaphanh, Khamphaphongphane; Rekol, Huy; Hien, Nguyen Tran; Thai, Pham Quang; Duong, Tran Nhu; Chuang, Jen-Hsiang; Liu, Yu-Lun; Ng, Lee-Ching; Shi, Yuan; Tayag, Enrique A; Roque, Vito G; Lee Suy, Lyndon L; Jarman, Richard G; Gibbons, Robert V; Velasco, John Mark S; Yoon, In-Kyu; Burke, Donald S; Cummings, Derek A T

    2015-10-20

    Dengue is a mosquito-transmitted virus infection that causes epidemics of febrile illness and hemorrhagic fever across the tropics and subtropics worldwide. Annual epidemics are commonly observed, but there is substantial spatiotemporal heterogeneity in intensity. A better understanding of this heterogeneity in dengue transmission could lead to improved epidemic prediction and disease control. Time series decomposition methods enable the isolation and study of temporal epidemic dynamics with a specific periodicity (e.g., annual cycles related to climatic drivers and multiannual cycles caused by dynamics in population immunity). We collected and analyzed up to 18 y of monthly dengue surveillance reports on a total of 3.5 million reported dengue cases from 273 provinces in eight countries in Southeast Asia, covering ∼ 10(7) km(2). We detected strong patterns of synchronous dengue transmission across the entire region, most markedly during a period of high incidence in 1997-1998, which was followed by a period of extremely low incidence in 2001-2002. This synchrony in dengue incidence coincided with elevated temperatures throughout the region in 1997-1998 and the strongest El Niño episode of the century. Multiannual dengue cycles (2-5 y) were highly coherent with the Oceanic Niño Index, and synchrony of these cycles increased with temperature. We also detected localized traveling waves of multiannual dengue epidemic cycles in Thailand, Laos, and the Philippines that were dependent on temperature. This study reveals forcing mechanisms that drive synchronization of dengue epidemics on a continental scale across Southeast Asia.

  9. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.

    Science.gov (United States)

    Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G

    2016-08-01

    The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.

  10. EARLY LIFE-HISTORY OF MELAMPUS AND THE SIGNIFICANCE OF SEMILUNAR SYNCHRONY.

    Science.gov (United States)

    Russell-Hunter, W D; Apley, Martyn L; Hunter, R Douglas

    1972-12-01

    1. The salt-marsh pulmonate snail, Melampus bidentatus, is placed in the Ellobiidae which family encompasses the most primitive of living Pulmonata and is regarded as not far removed from the ancestral stem-group of both modern land snails and freshwater pulmonates. Inhabiting the higher levels of salt marshes. Melampus is "amphibious": although an air-breather with a gill-less vascularized mantle-cavity functioning as a lung, if retains an archetypic pattern of reproduction with small eggs and a free-swimming veliger larva. 2. Field and laboratory studies over several years (based on natural populations at Little Sippewisset, Cape Cod, Massachusetts) have shown that egg-laying, hatching, and larval settlement are each confined to cycles of about four days in phase with the spring high tides. Adaptively such semilunar synchronies ensure that these processes occur only during the 2.3% to 4% of each month when the Melampus habitat in the upper 12% of the intertidal zone is bathed by seawater. 3. The annual reproductive period extends from late May or early June through early July. with either three or four cycles of egg-laying occurring at two-week intervals in phase with the tides of new and of full moon. Synchrony of egg-laying (and of the patterned aggregation and copulation which precede it) is obligate. Stocks of Melampus brought into the laboratory in spring will maintain the same semilunar rhythm of reproductive behavior during the summer period. 4. Eggs are small (about 109 ng organic carbon) and are laid in gelatinous egg-masses averaging 850 eggs. Mean numerical fecundity is 33,150 eggs per snail per year. For most freshwater pulmonates fecundity would lie in the range 8-800 eggs per snail per year. At 18° C, development to a well-differentiated and active veliger within the egg-shell takes 11 days. 5. Hatching shows semilunar synchrony in the field: enormous numbers of newly hatched veligers can be collected on the flood of appropriate spring tides. A

  11. Genome-wide association study suggests common variants within RP11-634B7.4 gene influencing severe pre-treatment pain in head and neck cancer patients

    Science.gov (United States)

    Reyes-Gibby, Cielito C.; Wang, Jian; Silvas, Mary Rose T.; Yu, Robert K.; Hanna, Ehab Y.; Shete, Sanjay

    2016-01-01

    Pain is often one of the first signs of squamous cell carcinoma of the head and neck (HNSCC). Pain at diagnosis is an important prognostic marker for the development of chronic pain, and importantly, for the overall survival time. To identify variants influencing severe pre-treatment pain in 1,368 patients newly diagnosed with HNSCC, we conducted a genome-wide association study based on 730,525 tagging SNPs. The patients were all previously untreated for cancer. About 15% of the patients had severe pre-treatment pain, defined as pain score ≥7 (0 = “no pain” and 10 = “worst pain”). We identified 3 common genetic variants in high linkage disequilibrium for severe pre-treatment pain, representing one genomic region at 1q44 (rs3862188, P = 3.45 × 10−8; rs880143, P = 3.45 × 10−8; and rs7526880, P = 4.92 × 10−8), which maps to the RP11-634B7.4 gene, a novel antisense gene to three olfactory receptor genes. Olfactory receptor genes, upstream effectors of the MAPK signaling cascade, might be novel target genes for pain in HNSCC patients. Future experimental validation to explore biological mechanisms will be key to defining the role of the intronic variants and non-coding RNA for pain in patients with HNSCC. PMID:27670397

  12. Existing Motor State Is Favored at the Expense of New Movement during 13-35 Hz Oscillatory Synchrony in the Human Corticospinal System

    National Research Council Canada - National Science Library

    Gilbertson, Thomas; Lalo, Elodie; Doyle, Louise; Di Lazzaro, Vincenzo; Cioni, Beatrice; Brown, Peter

    2005-01-01

    .... Three experiments were performed. First, healthy subjects were instructed to make reaction time movements of the outstretched index finger in response to imperative cues triggered by transient increases in corticospinal synchrony...

  13. Proteome analysis of a Lactococcus lactis strain overexpressing gapA suggests that the gene product is an auxiliary glyceraldehyde 3-phosphate dehydrogenase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Kilstrup, Mogens; Roepstorff, Peter;

    2002-01-01

    strain that overexpessed the gapA gene derived from MG1363 upon nisin induction. Compared to the wild-type, the overexpressing strain had a 3.4-fold elevated level of specific GAPDH activity when grown in the presence of nisin. In both MG1363 and the gapA overexpressing strain the GAPDH activity...

  14. Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing.

    Science.gov (United States)

    Lumer, E D; Edelman, G M; Tononi, G

    1997-01-01

    Activity in the mammalian thalamocortical system is often accompanied by a synchronous discharge of cortical and thalamic neurons. Although many functions have been attributed to such synchronous firing, it is not known whether or how synchrony of firing per se affects thalamocortical operations. Direct experimental tests of the consequences of neuronal synchronization in vivo are hard to carry out, whereas theoretical studies based on single-neuron models cannot reveal the effects of synchrony at the system level. To overcome these limitations, we have used a perturbational approach to test the causal efficacy of synchrony per se in large-scale simulations of the thalamocortical system. The test consists of selectively disrupting firing synchrony by 'jittering' the timing of action potentials in the simulations and determining whether firing rates are modified by this perturbation. The simulations are based in detail on the known anatomy and physiology of the thalamocortical-visual system of the cat, and have been shown in a companion paper to produce episodes of fast synchronous activity at multiple levels. By carrying out the perturbation analysis, we established that neurons can have long membrane time constants (8-16 ms) and balanced synaptic activations, and yet function collectively in such a way that synchrony within a time window of 4 ms significantly affects the rates and selectivity of the responses to visual stimuli. The simulations also revealed a complex interplay, at the network level, between synchrony of firing and rate of firing. The dynamic consequences of firing synchrony were most evident when spike jittering was applied to specific polysynaptic loops involving corticocortical and corticothalamic connections. These results support the view that firing synchrony within thalamocortical and corticocortical loops plays a causal role in the cooperative and competitive neural interactions that produce pattern-selective responses in the cortex.

  15. A new approach for the quantification of synchrony of multivariate non-stationary psychophysiological variables during emotion eliciting stimuli

    Directory of Open Access Journals (Sweden)

    Augustin eKelava

    2015-01-01

    Full Text Available Emotion eliciting situations are accompanied by reactions on multiple response variables on subjective, physiological, and behavioral levels. The quantification of the overall simultaneous synchrony of psychophysiological reactions, plays a major role in emotion theories and has received increasing attention in recent research. From a psychometric perspective, the reactions represent multivariate non-stationary intra-individual time series. In this paper, we present a new time-frequency based latent variable approach for the quantification of the synchrony of the responses. The approach is applied to empirical data collected during an emotion eliciting situation. The results are compared with a complementary inter-individual approach of Hsieh et al. (2011. Finally, the proposed approach is discussed in the context of emotion theories, and possible future applications and limitations are provided.

  16. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  17. A new method for evaluating flowering synchrony to support the temporal isolation of genetically modified crops from their wild relatives.

    Science.gov (United States)

    Ohigashi, Kentaro; Mizuguti, Aki; Yoshimura, Yasuyuki; Matsuo, Kazuhito; Miwa, Tetsuhisa

    2014-01-01

    Hybridization between crops and their wild relatives potentially threatens the genetic identity of the wild plants, particularly in the case of genetically modified crops. Only a few studies have examined the use of temporal isolation to prevent hybridization, and the indices used in those studies, (e.g., the days of flowering overlap), are not precise to evaluate the degree of synchrony in flowering. Here we propose a flowering similarity index that can compare the degree of flowering synchrony between two relevant species and measure the efficiency of temporal isolation. The results showed that the flowering similarity index predicts the likelihood of hybridization much better than the number of flowering-overlap days, regardless of different flowering patterns among cultivars. Thus, temporal isolation of flowering or flowering asynchrony is the most effective means in preventing hybridization between crops and their wild relatives.

  18. Effects of primary PCI and facilitated PCI on myocardial viability and ventricular systolic synchrony in acute myocardial infarction patients

    Institute of Scientific and Technical Information of China (English)

    谷新顺; 傅向华; 马宁

    2003-01-01

    Effects of primary PCI and facilitated PCI on myocardial viability and ventricular systolic synchrony in acute myocardial infarction patients!石家庄050000$河北医科大学第二医院@谷新顺 !石家庄050000$河北医科大学第二医院@傅向华 !石家庄050000$河北医科大学第二医院@马宁

  19. Influenza Epidemics in Iceland Over 9 Decades: Changes in Timing and Synchrony With the United States and Europe

    OpenAIRE

    Weinberger, Daniel M.; Krause, Tyra Grove; Mølbak, Kåre; Cliff, Andrew; Briem, Haraldur; Viboud, Cécile; Gottfredsson, Magnus

    2012-01-01

    Influenza epidemics exhibit a strongly seasonal pattern, with winter peaks that occur with similar timing across temperate areas of the Northern Hemisphere. This synchrony could be influenced by population movements, environmental factors, host immunity, and viral characteristics. The historical isolation of Iceland and subsequent increase in international contacts make it an ideal setting to study epidemic timing. The authors evaluated changes in the timing and regional syn...

  20. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  1. Movement Coordination in Psychotherapy: Synchrony of Hand Movements is Associated with Session Outcome. A Single-Case Study.

    Science.gov (United States)

    Ramseyer, Fabian; Tschacher, Wolfgang

    2016-04-01

    Previous work has shown that nonverbal behavior was associated with both session-level outcome and global outcome in psychotherapy. Nonverbal synchrony--here the coordination between patient's and psychotherapist's movement behavior--is a facet of nonverbal behavior that has recently been studied with video-based motion energy analysis (MEA). The present study aimed to replicate and extend these findings by using direct acquisition of movement data. In a single-case analysis, we monitored patient's and therapist's hand movements with a high-resolution accelerometric measurement system (Vitaport (r)). In addition to these behavioral data, both patient and therapist provided session-level ratings of various factors relevant to the psychotherapy process, which were assessed with post-session questionnaires. The patient-therapist coordination of hand movements, i.e. nonverbal synchrony, in (N = 27) sessions of this dyadic psychotherapy was positively associated with progress reported in post-session questionnaires. Sessions with good evaluations concerning the quality of therapeutic alliance were characterized by high movement coordination. Thus, accelerometric data of this therapy dyad confirmed previous findings gained through video analyses: The coordination of nonverbal behavior shown by patient and therapist was an indicator of beneficial processes occurring within sessions. This replication study showed that nonverbal synchrony embodies important aspects of the alliance. Its assessment and quantification may provide therapists important additional information on processes that usually occur outside conscious awareness, but that nevertheless influence core aspects of the therapy.

  2. Long-term meditation training induced changes in the operational synchrony of default mode network modules during a resting state.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2016-02-01

    Using theoretical analysis of self-consciousness concept and experimental evidence on the brain default mode network (DMN) that constitutes the neural signature of self-referential processes, we hypothesized that the anterior and posterior subnets comprising the DMN should show differences in their integrity as a function of meditation training. Functional connectivity within DMN and its subnets (measured by operational synchrony) has been measured in ten novice meditators using an electroencephalogram (EEG) recording in a pre-/post-meditation intervention design. We have found that while the whole DMN was clearly sup